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Abstract
This thesis explores the sequential analysis paradigm in the field of mathematical

statistics, where sample size is not predetermined, allowing for adaptive decision-
making. The first chapter outlines the theory’s foundations, particularly in sequential
hypothesis testing, introducing the properties of two of the most relevant sequen-
tial tests: the Sequential Probability Ratio Test (SPRT) and the mixture Sequential
Probability Ratio Test (mSPRT). The second chapter focuses on applying sequential
hypothesis testing to online controlled experimentation, using Always Valid Infer-
ence. This alternative offers a statistically rigorous and efficient solution, potentially
outperforming fixed-horizon methods. Empirical evidence of simulated real-world
case-scenarios supports the proposed methodology’s advantages in online controlled
experimentation.

Resum
Aquesta tesi explora el paradigma de l’anàlisi seqüencial dins del camp de

l’estadı́stica matemàtica, on la mida de la mostra no està predeterminada, permetent
aixı́ una presa de decisions adaptativa. El primer capı́tol explica els fonaments
d’aquesta teoria; en particular, sobre els tests d’hipòtesi seqüencials, enunciant les
propietats de dos dels tests seqüencials més rellevants: el Sequential Probability
Ratio Test (SPRT) i el mixture Sequential Probability Ratio Test (mSPRT). El segon
capı́tol es centra en l’aplicació dels tests d’hipòtesi seqüencials a l’experimentació
controlada en lı́nia, utilitzant Always Valid Inference. Aquesta alternativa ofereix una
solució estadı́sticament rigorosa i eficient, amb el potencial de superar els mètodes
clàssics amb mida de mostra fixa. Evidència empı́rica obtinguda mitjançant la
simulació de casuı́stiques reals recolza les avantatges de la metodologia proposada
en l’experimentació controlada en lı́nia.

2020 Mathematics Subject Classification: 62F03, 62L05, 62L10, 62L15, 62P30
Key-words and phrases: sequential analysis, sequential hypothesis testing, SPRT, mSPRT, online

controlled experiments, A/B testing, Always Valid Inference
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Modern mathematics teaching has settled the theory of mathematical statistics as
the one first developed during early XXth century by prominent figures like Fisher,
Neyman and Pearson. While their contributions have proven to be exceptionally
useful, oftentimes the dominion of this theory leaves no room for other ideas which
can be more suitable for certain problems. This is nothing new in the field of statis-
tics, where the actual interpretation of probability is already known to be the subject
of a controversial discussion.

In the first chapter of this body of work we introduce the theory of sequential
analysis, which is defined to be the statistical theory corresponding to a context
where the sample size is not fixed beforehand. Whether it is estimation or testing
that we want to perform, observations are gathered sequentially, so at each step we
can decide to stop our inference procedure according to a predefined rule, or else we
can continue sampling. The development of this field was motivated by the efficient
decision-making that this framework indeed offers. This is specially the case for
sequential hypothesis testing, which was the foundation stone of sequential analysis,
and which traditionally found its applications in quality control and clinical trials,
where quickness in decision is most valuable. Nonetheless, the emergence and wide
availability of data in the last decade has brought sequential testing to new grounds.

Controlled experiments are held nowadays in almost the entirety of the Internet.
Every social network, e-commerce site or online product optimizes its features in
order to maximize user engagement or return-on-investment, using randomization
and statistical methods to detect significant effects. It’s clear that identifying these
features as quickly as possible is crucial for the successful development of the prod-
uct. However, classic statistical methods, and fixed-horizon hypothesis testing in
particular, define a really strict framework which followed unrigorously can truncate
the statistical validity of the results. Moreover, these tools might not even result
optimal for the problem in question.

Thereupon, the second chapter focuses on introducing sequential hypothesis testing
to online controlled experimentation via Always Valid Inference [6], which adapts
the sequential methodology to the intricacies that the controlled experimentation
framework presents. We will show that the proposed alternative provides an sta-
tistically rigorous and efficient solution, which can even outshine fixed-horizon in
certain casuistics. Finally, these results are furthermore backed with empirical evi-
dence through the simulation of real-word case-scenarios using The R Programming
Language.



Chapter 1

Sequential analysis

1.1 Sequential statistical models
Let (Ω,F ,P) be a probability space. Suppose that we sequentially observe i.i.d.

realizations of random variables 𝑋1, 𝑋2, . . . taking values on the measurable space
(X ,B(X )) and we wish to perform inference over the distribution of 𝑋1. For each
new observation 𝑋𝑛, we gather an 𝑛-dimensional random vector

X𝑛 = (𝑋1, . . . , 𝑋𝑛) : (Ω,F) → (X𝑛,A𝑛)

known as our sample of size 𝑛 ∈ 𝐼 ⊆ N, where

X𝑛 =

𝑛∏
𝑖=1

X , A𝑛 = B(X𝑛) = B(X )𝑛.

In contrast to classical statistical theory, we can decide to stop the sampling process
at any stage, so 𝐼 may be non-finite, or else we can decide a maximum sample size
beforehand. We assume that the law of 𝑋1 is contained in a family of probability
distributions P .

Definition 1.1 (Sequential statistical model). A sequential statistical model is a
triple ((X𝑛,A𝑛)𝑛∈𝐼 ,P , 𝐼) where

• (X𝑛,A𝑛)𝑛∈𝐼 is a family of measurable spaces, known as the sequential sample
space

• P is a family of probability distributions on (X ,B(X ))

• 𝐼 ⊆ N is a non-empty set representing all possible sample sizes

During this work we will focus on the study of parametric sequential statistical
models:

1



2 Sequential analysis

Definition 1.2 (Parametric sequential statistical model). A sequential statistical
model is said to be parametric if P = {P𝜃 , 𝜃 ∈ Θ}, where the non-empty Θ ⊆ R𝑑

is known as the parameter space.

Observe that our growing sample generates a natural filtration of the probability
space F = (F𝑛)𝑛∈𝐼 , where F𝑛 = 𝜎 (X𝑛) represents the information available with
our sample of size 𝑛. Hence, the terminal decision to stop sampling and terminate
our inference procedure shall be made using only the observed information F𝑛.
Recall by the theory of stochastic processes that this action can be encapsulated by
the following definition:

Definition 1.3 (Stopping time). A random variable 𝑁 : Ω → 𝐼 is said to be a
stopping time with respect to a filtration F = (F𝑛)𝑛∈𝐼 if {𝑁 = 𝑛} ∈ F𝑛 for all 𝑛 ∈ 𝐼.

From now on, we fix the filtered probability space (Ω,F ,F,P).

1.2 Sequential hypothesis testing
Consider a (parametric) sequential statistical model. Suppose that we have a

partition of the parameter space in Θ = Θ0 ∪ Θ1, and we wish to know whether
𝜃 ∈ Θ0 or else 𝜃 ∈ Θ1. Equivalently, we wish to test between the two hypothesis{

𝐻0 : 𝜃 ∈ Θ0
𝐻1 : 𝜃 ∈ Θ1

where 𝐻0 is known as the null hypothesis and 𝐻1 as the alternative hypothesis.

Definition 1.4 (Simple and composite hypothesis). A hypothesis 𝐻𝑖 is said to be
simple if Θ𝑖 = {𝜃𝑖}. We say that 𝐻𝑖 is composite otherwise.

The sequential analysis literature highlights two main approaches to testing hy-
pothesis sequentially, which can only be used depending on whether 𝐻𝑖 are simple
or composite.

Given that our realizations are observed in a sequential fashion, then at every stage
𝑛 ∈ 𝐼 we can make use of all the available information up to that point F𝑛 to make
a decision. The first (and classic) approach doesn’t apply restrictions on the type of
𝐻𝑖, and consists in choosing at each sampling stage whether to

1. Stop the experiment and either accept or reject 𝐻0 according to some rule.

2. Continue sampling.
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Definition 1.5 (Sequential hypothesis test). Given a sequential statistical model
((X𝑛,A𝑛)𝑛∈𝐼 ,P , 𝐼) and a partition of the parameter space Θ = Θ0∪Θ1, a sequential
hypothesis test for the hypotheses 𝐻0 : 𝜃 ∈ Θ0 and 𝐻1 : 𝜃 ∈ Θ1 is a pair 𝛿 = (𝑁, 𝑑)
where

• 𝑁 : Ω → 𝐼 is a stopping time with respect to F, the random sample size

• 𝑑 = (𝑑𝑛)𝑛∈𝐼 is a family of F𝑛-measurable functions 𝑑𝑛 : X𝑛 → Δ, the decision
rule

where Δ B {0, 1}, with 𝑑𝑛 = 1 meaning that we reject 𝐻0 (accept 𝐻1) and 𝑑𝑛 = 0
that we accept 𝐻0.

The sampling process shall continue until 𝑁 is first observed, meaning that we
have gathered enough evidence to either accept or reject the null hypothesis 𝐻0
following the corresponding decision rule at stage 𝑁 = 𝑛, 𝑑𝑛.

The second, more modern approach, builds upon last definition but lies its founda-
tions in decision theory ([6]). In this case, we require 𝐻0 to be simple. Suppose
then that, under the null hypothesis, sampling observations costs nothing, so our
preferred action is to observe ad infinitum, and hence accept 𝐻0. However, if the
alternative hypothesis happens to be true, our sampling costs a fixed amount, so we
want to stop sampling as soon as possible and reject 𝐻0 ([14]).

Definition 1.6 (Open-ended sequential hypothesis test). A sequential hypothesis
test is said to be open-ended if it rejects a simple null hypothesis in finite time:

𝑑𝑛 ≡ 𝑑 = 1{𝑁<∞} for all 𝑛 ∈ 𝐼 .

Notice then how this approach can be seen as more “detection-oriented”, mean-
ing that the (simple) null hypothesis maintains its role of being the default hypothesis
indefinitely, being compared against a (possibly composite) set of alternatives, and
we wish to only stop our procedure in case the alternative hypothesis is true.

In either case, we will more commonly refer to sequential hypothesis tests as simply
sequential tests.

Sequential tests being defined by a stopping time and a terminal decision implies
that comparison is fundamentally achieved by the following magnitudes:

Definition 1.7 (Expected sample size). Given a sequential hypothesis test 𝛿 =

(𝑁, 𝑑), the expected value E𝜃 (𝑁) for any 𝜃 ∈ Θ is known as the expected sample
size (ESS).
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Higher moments of 𝑁 are also relevant for the study of the random sample size;
however, we will mostly focus on the ESS, and in occasions we will also treat its
second order moment.

Moreover, upon test termination two types of error can be committed:

Definition 1.8 (Type-I error). The Type-I error function of a sequential hypothesis
test 𝛿 = (𝑁, 𝑑) is the probability of false rejection of the null hypothesis, as a
function of 𝜃 ∈ Θ0:

P𝜃 (𝑑𝑁 = 1) for 𝜃 ∈ Θ0.

Definition 1.9 (Type-II error). The Type-II error function of a sequential test
𝛿 = (𝑁, 𝑑) is the probability of incorrectly accepting the null hypothesis, as a
function of 𝜃 ∈ Θ1:

P𝜃 (𝑑𝑁 = 0) for 𝜃 ∈ Θ1.

Inherited by fixed-horizon hypothesis testing theory, we will sometimes make
use of the following terminology:

Definition 1.10 (Test size). We say a sequential hypothesis test 𝛿 = (𝑁, 𝑑) is of size
𝛼 ∈ (0, 1) if

𝛼 = sup
𝜃∈Θ0

P𝜃 (𝑑𝑁 = 1)

Definition 1.11 (Power of a sequential test). The power function of a sequential
hypothesis test 𝛿 = (𝑁, 𝑑) is the probability of correctly rejecting the null hypothesis,
as a function of 𝜃 ∈ Θ1:

P𝜃 (𝑑𝑁 = 1) = 1 − P𝜃 (𝑑𝑁 = 0), for 𝜃 ∈ Θ1.

Finally, it’s worth noting that open-ended tests, by being more “detection-
oriented”, satisfy the property of being nested: the family (𝛿(𝛼))𝛼∈(0,1) of open-
ended tests of size 𝛼 satisfies that 𝑁 (𝛼) is a.s. non-increasing in 𝛼, and 𝑑 (𝛼) is a.s.
non-decreasing in 𝛼. In other words, “less conservative rules necessarily terminate
faster and make more rejections” ([7]).
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1.3 The Sequential Probability Ratio Test (SPRT)
Sequential hypothesis testing and sequential analysis as a whole was first intro-

duced by Wald [21] with the Sequential Probability Ratio Test (SPRT), which was
designed to test a simple null hypothesis against a simple alternative.

Formally, let ((X𝑛,A𝑛)𝑛∈𝐼 ,P , 𝐼) be a sequential statistical model such that

Θ = {0, 1}, P = {P0,P1}

where P0,P1 are two distinct probability measures corresponding to probability
density functions 𝑓0, 𝑓1, respectively, and suppose we test for{

𝐻0 : 𝜃 = 0
𝐻1 : 𝜃 = 1 .

The fundamental tool upon which most sequential tests are developed is the likeli-
hood ratio of a sample:

Definition 1.12 (Likelihood ratio). Given a sequential statistical model, the likeli-
hood ratio (LR) at sampling stage 𝑛 ∈ 𝐼 for testing the simple hypotheses 𝐻0 : 𝜃 = 𝜃0
and 𝐻1 : 𝜃 = 𝜃1 is the function of the sample

Λ𝑛 : X𝑛 −→ R

X𝑛 ↦→
𝑛∏
𝑖=1

𝑓𝜃1 (𝑋𝑖)
𝑓𝜃0 (𝑋𝑖)

.

Given an 𝑛-dimensional sample X𝑛, the LR compares the two proposed statistical
models at stage 𝑛 ∈ 𝐼 by taking the ratio of the joint probability of the sample under
both cases. Indeed, if 𝐻0 is true, then the LR becomes small as the experiment
develops; otherwise, the LR becomes large. Wald then, naturally, proposed the first
sequential test as the one which consider this likelihood ratio at each sampling stage
and only stops the experiment in case its value becomes too large or too small.

Definition 1.13 (SPRT). The Sequential Probability Ratio Test (SPRT) with bound-
aries (𝐵, 𝐴) for testing the simple hypothesis 𝐻0 : 𝜃 = 0 and 𝐻1 : 𝜃 = 1 is the
sequential test 𝛿 = (𝑁, 𝑑) defined by

𝑁 = inf{𝑛 ∈ 𝐼 : Λ𝑛 ∉ (𝐵, 𝐴)}

𝑑 = (𝑑𝑛)𝑛∈𝐼 , with 𝑑𝑛 (X𝑛) =
{

0 if Λ𝑛 ≤ 𝐵

1 if Λ𝑛 ≥ 𝐴

where 𝐴, 𝐵 ∈ R such that 0 < 𝐵 < 1 < 𝐴 < ∞.
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Hence, the SPRT proposes to continue sampling until the likelihood ratio leaves
the interval (𝐵, 𝐴) for the first time. The magnitudes of 𝐵, 𝐴 then will mean how
tolerant we are with decanting upon the truth of the null or the alternative hypothesis.

For theoretical reasons, sometimes it will be convenient to work with the log-
likelihood ratio (LLR). Let 𝑍𝑘 B log ( 𝑓1(𝑋𝑘 )/ 𝑓0(𝑋𝑘 )), then

𝜆𝑛 (X𝑛) B logΛ𝑛 (X𝑛) =
𝑛∑︁
𝑖=1

log
(
𝑓1(𝑋𝑖)
𝑓0(𝑋𝑖)

)
=

𝑛∑︁
𝑖=1

𝑍𝑖,

which translates the SPRT to the sequential test 𝛿∗ = (𝑁∗, 𝑑∗) with

𝑁∗ = inf{𝑛 ∈ 𝐼 : 𝜆𝑛 ∉ (𝑏, 𝑎)}

𝑑∗ = (𝑑∗𝑛)𝑛∈𝐼 , with 𝑑∗𝑛 (X𝑛) =
{

0 if 𝜆𝑛 ≤ 𝑏

1 if 𝜆𝑛 ≥ 𝑎

where 𝑎 B log 𝐴, 𝑏 B log 𝐵, satisfying 𝑏 < 0 < 𝑎.

1.3.1 Type-I and Type-II error control
Observe that given that both the null and the alternative hypothesis are simple, the

Type-I error and Type-II error functions are constant. Hence, the SPRT boundaries
(𝐵, 𝐴) can be chosen in such a way that the Type-I error and Type-II error functions
are fixed to predefined values 𝛼, 𝛽 ∈ (0, 1). Assuming thatP𝜃 (𝑁 < ∞) = 1, we will
derive relations between the error functions and 𝐵, 𝐴.

For each sample size 𝑛 ∈ 𝐼, consider the subset

𝐵𝑛 B {𝐵 < Λ𝑘 < 𝐴 ∀ 𝑘 = 1, 2, . . . , 𝑛 − 1, Λ𝑛 ≥ 𝐴} ⊂ X𝑛

Then,

P0(𝑑𝑁 = 1) = P0(Λ𝑁 ≥ 𝐴) =
∞∑︁
𝑛=1
P0(𝑁 = 𝑛,Λ𝑛 ≥ 𝐴)

=

∞∑︁
𝑛=1

∫
𝐵𝑛

𝑓0(𝜉1, . . . , 𝜉𝑛) 𝑑𝜉1, . . . , 𝑑𝜉𝑛

=

∞∑︁
𝑛=1

∫
𝐵𝑛

𝑓0(𝜉1, . . . , 𝜉𝑛)
𝑓1(𝜉1, . . . , 𝜉𝑛)

𝑓1(𝜉1, . . . , 𝜉𝑛) 𝑑𝜉1, . . . , 𝑑𝜉𝑛

=

∞∑︁
𝑛=1
E1(Λ−1

𝑛 1{𝑁=𝑛, Λ𝑛≥𝐴}) = E1(Λ−1
𝑁 1{Λ𝑁≥𝐴}) ≤

P1(Λ𝑁 ≥ 𝐴)
𝐴

=
1 − P1(𝑑𝑁 = 0)

𝐴

(1.1)
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without equality since Λ𝑁 may be strictly greater than 𝐴. We can analogously derive
the following bound for 𝛽 :

P1(𝑑𝑁 = 0) = P1(Λ𝑁 ≤ 𝐵) ≤ 𝐵P0(Λ𝑁 ≤ 𝐵) = 𝐵(1 − P0(𝑑𝑁 = 1)).

Hence, treating the inequalities as an approximation,

P0(𝑑𝑁 = 1) ≊ 1 − P1(𝑑𝑁 = 0)
𝐴

, P1(𝑑𝑁 = 0) ≊ 𝐵(1 − P0(𝑑𝑁 = 1)). (1.2)

Setting 𝐴, 𝐵 as a function of 𝛼, 𝛽 we obtain the Wald boundaries

𝐴 B
1 − 𝛽

𝛼
, 𝐵 B

𝛽

1 − 𝛼
.

Moreover, observe that if we solve Equation 1.2 for the error functions we also obtain

P0(𝑑𝑁 = 1) ≊ 1 − 𝐵

𝐴 − 𝐵
, P1(𝑑𝑁 = 0) ≊ 𝐵

𝐴 − 1
𝐴 − 𝐵

. (1.3)

1.3.2 Properties of 𝑁
We shall now study the ESS and other properties of the random sample size 𝑁

of the SPRT. We first present the following definition:

Definition 1.14 (Exponentially bounded r.v.). A non-negative random variable 𝑀

is said to be exponentially bounded (EB) if there exist constants𝐶 > 0 and 0 < 𝜌 < 1
such that P(𝑀 > 𝑚) ≤ 𝐶𝜌𝑚 for all 𝑚 ≥ 1.

Observe that the EB property implies that 𝑀 has finite moment-generating
function. In particular, P(𝑀 < ∞) = 1 and E(𝑀 𝑘 ) < ∞ for all 𝑘 = 1, 2, . . ..
Indeed, we have

P(𝑀 < ∞) =
∞∑︁
𝑖=1
P(𝑀 = 𝑖) = lim

𝑛→∞

𝑛∑︁
𝑖=1
P(𝑀 = 𝑖) = lim

𝑛→∞
P(𝑀 ≤ 𝑛) =⇒

0 ≤ P(𝑀 = ∞) = lim
𝑛→∞

P(𝑀 > 𝑛) ≤ lim
𝑛→∞

𝐶𝜌𝑛 = 0

since 0 < 𝜌 < 1. Moreover,

E(𝑒𝑡𝑀) =
∞∑︁
𝑛=1

𝑒𝑡𝑛P(𝑀 = 𝑛) ≤
∞∑︁
𝑛=1

𝑒𝑡𝑛P(𝑀 > 𝑛 − 1)

≤
∞∑︁
𝑛=1

𝑒𝑡𝑛𝐶𝜌𝑛−1 ≤ 𝐶𝑒𝑡
∞∑︁
𝑛=1

(𝜌𝑒𝑡)𝑛−1
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which converges for 𝑡 < − log 𝜌.

The following result will prove that the random sample size of the SPRT is, in
fact, exponentially bounded.

Lemma 1.15 (Stein’s lemma). Let (𝑋𝑛)𝑛∈𝐼 be i.i.d. random variables with P(𝑋1 =

0) < 1. Let 𝜆𝑛 B
∑𝑛

𝑗=1 𝑋 𝑗 , 𝑛 = 1, 2, . . ., let 𝑎, 𝑏 ∈ R such that 𝑏 < 0 < 𝑎, and
define

𝑀 B min{𝑛 ≥ 1 : 𝜆𝑛 ∉ (𝑏, 𝑎)}
Then 𝑀 is EB.

Proof. If P(𝑋1 = 0) < 1, then there is 𝑥 > 0 such that either P(𝑋1 ≥ 𝑥) > 0 or
P(𝑋1 ≤ −𝑥) > 0. Without loss of generality, assume that P(𝑋1 ≥ 𝑥) = 𝜀 > 0. Let
𝑚 ∈ N such that 𝑚𝑥 > 𝑎 − 𝑏. Then

P(𝜆𝑚 ≥ 𝑎 − 𝑏) ≥ P(𝜆𝑚 ≥ 𝑚𝑥) ≥ P(𝑋1 ≥ 𝑥, . . . , 𝑋𝑚 ≥ 𝑥) = 𝜀𝑚,

and hence for all 𝑘 ≥ 1,

P(𝑀 > 𝑚𝑘) = P(𝑏 < 𝜆𝑛 < 𝑎, 𝑛 = 1, . . . , 𝑚𝑘) ≤ (1 − 𝜀𝑚)𝑘 .

For any 𝑛, let 𝑘 be such that 𝑚𝑘 < 𝑛 ≤ (𝑘 + 1)𝑚. Then

P(𝑀 > 𝑛) ≤ P(𝑀 > 𝑘𝑚) ≤ (1 − 𝜀𝑚)𝑘 ≤ (1 − 𝜀𝑚) 𝑛
𝑚
−1 =

1
1 − 𝜀𝑚

(1 − 𝜀𝑚) 𝑛
𝑚 = 𝐶𝜌𝑛

where 𝐶 B 1/(1 − 𝜀𝑚) and 𝜌 B (1 − 𝜀𝑚)1/𝑚. □

Consider the SPRT defined by the LLR 𝛿∗. Observe that if 𝑓0 and 𝑓1 are distinct
a.e., then P𝑖 (𝑍0 ≠ 0) = 1, for 𝑖 = 0, 1. Hence, applying Lemma 1.15 we obtain that
the random sample size 𝑁∗ of the SPRT is exponentially bounded, implying that the
sequential test terminates w.p. 1 and all moments of 𝑁∗ exist (and hence, the same
applies for the classic SPRT).

Given that E𝑖 (𝑁) < ∞ for 𝑖 = 0, 1, we can try to derive an approximate ex-
pression for the expected sample size in terms of the predefined Type-I and Type-II
error rates. We will make use of the following proposition:

Proposition 1.16 (Wald identities).

1. Let (𝑋𝑛)𝑛∈𝐼 be i.i.d. such that 𝜇 B E(𝑋1) < ∞, and let 𝑁 be a stopping time
such that E |𝑁 | < ∞. Then,

E(𝑆𝑁 ) = 𝜇E(𝑁).
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2. Let (𝑋𝑛)𝑛∈𝐼 be i.i.d. such that E
��𝑋2

1
�� < ∞, with E(𝑋1) = 0 and 𝜎2 = V(𝑋1).

Let 𝑁 be a stopping time such that E |𝑁 | < ∞. Then,

E(𝑆2
𝑁 ) = 𝜎2E(𝑁).

Proof.

1. We suppose initially that 𝑋𝑛 ≥ 0 for all 𝑛. Observe that {𝑁 ≥ 𝑛} =(⋃𝑛−1
𝑗=1{𝑁 = 𝑗}

)𝑐
is independent of 𝑋𝑛, 𝑋𝑛+1, . . . since 𝑁 is a stopping time.

Then, by monotone convergence

E(𝑆𝑁 ) = E
(

𝑁∑︁
𝑛=1

𝑋𝑛

)
= E

( ∞∑︁
𝑛=1

𝑋𝑛1{𝑁≥𝑛}

)
=

∞∑︁
𝑛=1
E(𝑋𝑛1{𝑁≥𝑛})

=

∞∑︁
𝑛=1
E(𝑋𝑛)E(1{𝑁≥𝑛}) = 𝜇

∞∑︁
𝑛=1
P(𝑁 ≥ 𝑛) = 𝜇E(𝑁).

For the general case, we apply the same procedure to each term of the decom-
position

𝑁∑︁
𝑛=1

𝑋𝑛 =

𝑁∑︁
𝑛=1

max(𝑋𝑛, 0) −
𝑁∑︁
𝑛=1

−min(𝑋𝑛, 0).

2. Recall that (𝑀𝑛)𝑛∈𝐼 with 𝑀𝑛 B 𝑆2
𝑛 − 𝑛𝜎2 is a martingale. Hence, (𝑀𝑁∧𝑛)𝑛∈𝐼

is also a martingale and

0 = E(𝑀𝑁∧𝑛) = E
(
𝑆2
𝑁∧𝑛 − (𝑁 ∧ 𝑛)𝜎2

)
= E(𝑆2

𝑁∧𝑛) − 𝜎2E(𝑁 ∧ 𝑛). (1.4)

On one hand, we have E(𝑁 ∧ 𝑛) ↑ E(𝑁) as 𝑛 → ∞. On the other, observe
that since E(𝑋1) = 0, then (𝑆𝑛)𝑛∈𝐼 is a martingale, and hence, (𝑆𝑁∧𝑛)𝑛∈𝐼 is a
martingale. Observe that the latter satisfies, by (1.4),

E(𝑆2
𝑁∧𝑛) = 𝜎2E(𝑁 ∧ 𝑛) ≤ 𝜎2E(𝑁) < ∞

for all 𝑛 ∈ 𝐼. Therefore, 𝑆𝑁∧𝑛 converges a.s. and in 𝐿2 to 𝑆𝑁 . It’s easy to see
that convergence in 𝐿2 implies convergence of the second moment.

□

Notice that upon observing 𝑁∗, the LLR𝜆𝑁∗ can be approximated as a two-valued
random variable taking the values 𝜆𝑁∗ ≤ 𝑏 or 𝜆𝑁∗ ≥ 𝑎. Therefore,

E𝜃 (𝜆𝑁∗) ≈ 𝑏P𝜃 (𝜆𝑁∗ ≤ 𝑏) + 𝑎P𝜃 (𝜆𝑁∗ ≥ 𝑎) = 𝑏P𝜃 (Λ𝑁 ≤ 𝐵) + 𝑎P𝜃 (Λ𝑁 ≥ 𝐴).
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Together with Proposition 1.16 and the approximations given by Equation 1.3, we
obtain

E0(𝑁) = 𝜇−1
0

(
𝛼 log

(
1 − 𝛽

𝛼

)
+ (1 − 𝛼) log

(
𝛽

1 − 𝛼

))
(1.5)

E1(𝑁) = 𝜇−1
1

(
(1 − 𝛽) log

(
1 − 𝛽

𝛼

)
+ 𝛽 log

(
𝛽

1 − 𝛼

))
(1.6)

where 𝜇𝑖 B E𝑖 (𝑋) for 𝑖 = 0, 1.

Further higher order moments of 𝑁 can be approximated by differentiating its
characteristic function ([4]) and are beyond the scope of this work.

1.3.3 Optimality of the SPRT
The most remarkable property of the SPRT, first proved by Wald and Wolfowitz

[22], is that in the case of i.i.d. observations and finite ESS under both hypothesis,
the SPRT minimizes the expected sample size among all tests of the same size and
power, including those of fixed sample size.

Recall that under fixed-horizon testing, given a fixed sample size and a desired
test size, we can always find a test which is of the most power among all tests of
the same characteristics (UMP). However, if we wish to achieve a particular level
of power, we are forced to increase the sample size until we reach the desired value.
Observe then that this tradeoff of increasing the sample size until both error rates
are controlled comes out more naturally under the sequential paradigm, where we
decide to bound first both error rates and later minimize the ESS under both hypoth-
esis. Moreover, it’s worth noting that the SPRT does not make use of any knowledge
about the distribution of the likelihood ratio.

The proof of optimality relies on the following proposition:

Proposition 1.17 (Wald’s likelihood ratio identity). Let ((X𝑛,A𝑛)𝑛∈𝐼 ,P , 𝐼) be
sequential statistical model with P = {P0,P1}. Suppose that

E1(𝑌𝑛) = E0(𝑌𝑛Λ𝑛) (1.7)

for any F𝑛-measurable random variable 𝑌𝑛. Then, for any stopping time 𝑁 and
non-negative random variable 𝑌 such that 𝑌1{𝑁=𝑛} is F𝑛-measurable for all 𝑛,

E1(𝑌1{𝑁<∞}) = E0(𝑌Λ𝑁1{𝑁<∞}).
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In particular, if 𝑌 = 1𝐴 for some 𝐴 ∈ F

P1(𝐴, 𝑁 < ∞) = E0(Λ𝑁1{𝐴, 𝑁<∞}).

Proof. The proof repeats (1.1) with the assumption of the property of the random
variable 𝑌 and (1.7) used to justify the second equality:

E1(𝑌1{𝑁<∞}) =
∞∑︁
𝑛=1
E1(𝑌1{𝑁=𝑛}) =

∞∑︁
𝑛=1
E0(𝑌Λ𝑛1{𝑁=𝑛}) = E0(𝑌Λ𝑁1{𝑁<∞}).

□

Formally, let C (𝛼, 𝛽) be the class of two simple hypothesis, sequential or fixed-
horizon tests with Type-I and Type-II error probabilities at most𝛼 and 𝛽, respectively,
for given 0 < 𝛼, 𝛽 < 1, and with E𝑖 (𝑁) < ∞, 𝑖 = 0, 1. Then the following theorem
holds:

Theorem 1.18 (Wald-Wolfowitz). Let the observations (𝑋𝑛)𝑛∈𝐼 be i.i.d. with density
𝑓0 under 𝐻0 and with density 𝑓1 under 𝐻1, where 𝑓0 . 𝑓1 a.e. Assume that 𝛼+𝛽 < 1.
If the bounds (𝑏, 𝑎) can be selected in such a way that Type-I and Type-II error are
at most 𝛼 and 𝛽, respectively, then the SPRT 𝛿∗ = (𝑁∗, 𝑑∗) is optimal in the class
C (𝛼, 𝛽) under the criteria

inf
𝛿∈C (𝛼,𝛽)

E0(𝑁) = E0(𝑁∗) and inf
𝛿∈C (𝛼,𝛽)

E1(𝑁) = E1(𝑁∗).

Proof. It will be sufficient for this work to follow the proof by Siegmund [14] which
asserts that the ESS approximations given in (1.5) are approximately minimal in the
class C (𝛼, 𝛽). A rather complete proof involves several concepts out of the main
scope of this work and can be found in Wald and Wolfowitz [22] or Ferguson [3].

Recall first that for any random variable𝑌 we haveE(exp{𝑌 }) ≥ exp{E(𝑌 )}: indeed,
since exp{𝑥} ≥ 1+𝑥 for all 𝑥 ∈ R, thenE (exp{𝑌 − E(𝑌 )}) ≥ 1+E(𝑌 −E(𝑌 )) = 1,
and the result follows.

Let 𝛿 = (𝑁, 𝑑) ∈ C (𝛼, 𝛽) be arbitrary. If we make use of Proposition 1.17, we
have that

𝛼 = P0(𝑑𝑁 = 1) = E1

(
Λ−1
𝑁 1{𝑑𝑁=1}

)
= 𝐸1 ( exp{− logΛ𝑁 }| 𝑑𝑁 = 1) P1(𝑑𝑁 = 1)
≥ exp{−𝐸1 ( logΛ𝑁 | 𝑑𝑁 = 1)}(1 − 𝛽)
= exp{−E1

(
logΛ𝑁1{𝑑𝑁=1}

)
/(1 − 𝛽)}(1 − 𝛽).
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Hence, taking logarithms yields

(1 − 𝛽) log
(

𝛼

1 − 𝛽

)
≥ −E1(logΛ𝑁1{𝑑𝑁=1}) (1.8)

Analogously, we obtain

𝛽 log
(
1 − 𝛼

𝛽

)
≥ E1(logΛ𝑁1{𝑑𝑁=0}) (1.9)

Adding (1.8) and (1.9) together, and using the first identity from Proposition 1.16,
we obtain

(1 − 𝛽) log
(

𝛼

1 − 𝛽

)
+ 𝛽 log

(
1 − 𝛼

𝛽

)
≥ −E1(logΛ𝑁 ) = −𝜇1E1(𝑁),

which is equivalent to the approximation given by (1.5). Proceeding similarly we
obtain a lower bound equivalent to the other approximation.

□
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1.4 The mixture Sequential Probability Ratio Test
(mSPRT)

Let ((X𝑛,A𝑛)𝑛∈𝐼 ,P , 𝐼) be a sequential statistical model. For the rest of this
chapter we will assume that P = {P𝜃 , 𝜃 ∈ Θ} with the density 𝑓𝜃 belonging to
the natural exponential type family of probability distributions with Θ ⊂ R, i.e., we
assume that

𝑓𝜃 (𝑥) = ℎ(𝑥) exp{𝜃𝑥 − 𝜓(𝜃)}

for all 𝜃 ∈ Θ, where ℎ : X → R is a sufficient statistic and 𝜓 : Θ → R is a strictly
convex function known as the log-partition function. Moreover, we also assume that
ℎ(𝑥) = 1.

Suppose we wish to test {
𝐻0 : 𝜃 = 𝜃0
𝐻1 : 𝜃 ≠ 𝜃0

.

For each sampling stage 𝑛 ∈ 𝐼, recall the likelihood ratio between 𝑓𝜃0 and 𝑓𝜃 for
arbitrary 𝜃 ∈ Θ1:

Λ𝜃
𝑛 (X𝑛) =

𝑛∏
𝑖=1

𝑓𝜃 (𝑋𝑖)
𝑓𝜃0 (𝑋𝑖)

= exp {(𝜃 − 𝜃0)𝑆𝑛 − 𝑛(𝜓(𝜃) − 𝜓(𝜃0))}

where 𝑆𝑛 B
∑𝑛

𝑖=1 𝑋𝑖. Given a probability density function 𝜋 : Θ → R known as
the mixing distribution we can then consider the mixture likelihood ratio (mLR),
defined as

Λ̄𝜋
𝑛 (X𝑛) =

∫
Θ

Λ𝜃
𝑛 (X𝑛)𝜋(𝜃) 𝑑𝜃.

Definition 1.19 (mSPRT). The mixture Sequential Probability Ratio Test (mSPRT)
with boundary 𝑎 > 0 and mixing distribution 𝜋 : Θ → R for testing the simple
null hypothesis 𝐻0 : 𝜃 = 𝜃0 against the composite alternative 𝐻1 : 𝜃 ≠ 𝜃0 is the
open-ended test 𝛿 = (𝑁, 𝑑) such that

𝑁 = inf{𝑛 ∈ 𝐼 : Λ̄𝜋
𝑛 (X𝑛) ≥ 𝑎}

Hence, the mSPRT runs indefinitely under the assumption that 𝐻0 is true until
the mLR first excesses the fixed boundary 𝑎, in which case we reject 𝐻0 in favor of
𝐻1. It’s also worth noting that the pdf 𝜋 is sometimes regarded as a Bayesian prior
for the parameter 𝜃 over the values of Θ1, meaning that if 𝜃 were to be treated as a
random variable, then 𝜋 would encapsulate all information known about 𝜃 assuming
𝐻1 to be true before observing the data X𝑛 at sampling stage 𝑛 ∈ 𝐼 ([2]).
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1.4.1 Type-I error control
With the mSPRT being an open-ended test, we shall prove that Type-I error can

indeed be bounded at any predefined level and for any choice of mixing distribution.
Formally, we wish to find 𝑎 B 𝑎(𝛼) > 0 such that

P𝜃0 (𝑑 = 1) = P𝜃0 (𝑁 < ∞) = P𝜃0 (Λ̄𝜋
𝑛 ≥ 𝑎) ≤ 𝛼

for any 𝛼 ∈ (0, 1) and pdf 𝜋 : Θ → R.

In this case, notice that since 𝑓𝜃0 . 𝑓𝜃 a.e. for all 𝜃 ∈ Θ1, then (Λ𝜃
𝑛)𝑛∈𝐼 is a

martingale under the null hypothesis. Indeed, for every 𝑛 ∈ 𝐼 observe that

E𝜃0 |Λ𝜃
𝑛 | =

∫
X𝑛

Λ𝜃
𝑛 𝑓𝜃0 (𝜉1) . . . 𝑓𝜃0 (𝜉𝑛) 𝑑𝜉1 . . . 𝑑𝜉𝑛

=

∫
X𝑛

𝑓𝜃 (𝜉1) . . . 𝑓𝜃 (𝜉𝑛) 𝑑𝜉1 . . . 𝑑𝜉𝑛

= 1

Moreover,

𝐸𝜃0 (Λ𝜃
𝑛+1 |F𝑛) = 𝐸𝜃0

(
𝑓𝜃 (𝑋𝑛+1)
𝑓𝜃0 (𝑋𝑛+1)

Λ𝜃
𝑛

����F𝑛

)
= Λ𝜃

𝑛𝐸𝜃0

(
𝑓𝜃 (𝑋𝑛+1)
𝑓𝜃0 (𝑋𝑛+1)

����F𝑛

)
= Λ𝜃

𝑛E𝜃0

(
𝑓𝜃 (𝑋𝑛+1)
𝑓𝜃0 (𝑋𝑛+1)

)
= Λ𝜃

𝑛

∫
X

𝑓𝜃 (𝜉)
𝑓𝜃0 (𝜉)

𝑓𝜃0 (𝜉) 𝑑𝜉

= Λ𝜃
𝑛

∫
X

𝑓𝜃 (𝜉) 𝑑𝜉 = Λ𝜃
𝑛.

By Fubini’s theorem it follows that (Λ̄𝜋
𝑛)𝑛∈𝐼 is also a martingale under the same

assumptions. Recall now Doob’s First Martingale Inequality:

Theorem 1.20. (Doob’s First Martingale Inequality) Let 𝑀 = (𝑀𝑛)𝑛≥0 be a
martingale. Let 𝑀∗

𝑛 = sup0≤ 𝑗≤𝑛 |𝑀 𝑗 |. Then

P
(
𝑀∗

𝑛 ≥ 𝑎
)
≤ E( |𝑀𝑛 |)

𝑎

Proof. Let 𝑇 = min{ 𝑗 : |𝑀 𝑗 | ≥ 𝑎}. Since the absolute value 𝜑(𝑥) = |𝑥 | is a convex
function and is increasing on R+, then it follows that ( |𝑀𝑛 |)𝑛≥0 is a submartingale.
Since {𝑇 ≤ 𝑛, |𝑀𝑇 | ≥ 𝑎} = {𝑀∗

𝑛 ≥ 𝑎}, then

P(𝑀∗
𝑛 ≥ 𝑎) = P(𝑇 ≤ 𝑛, |𝑀𝑇 | ≥ 𝑎) ≤ E

(
|𝑀𝑇 |
𝑎
1{𝑇≤𝑛}

)
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and since 𝑀𝑇 = 𝑀𝑇∧𝑛 on {𝑇 ≤ 𝑛},

P(𝑀∗
𝑛 ≥ 𝑎) ≤ 1

𝑎
E

(
|𝑀𝑇∧𝑛 |1{𝑇≤𝑛}

)
≤ E ( |𝑀𝑇∧𝑛 |)

𝑎
≤ E ( |𝑀𝑛 |)

𝑎
.

□

Provided that (Λ̄𝜋
𝑛)𝑛∈𝐼 is a martingale under 𝐻0, we can apply Theorem 1.20 to

obtain P𝜃0 (Λ̄𝜋
𝑛 ≥ 𝑎) ≤ 1/𝑎 for all 𝑎 > 0. Hence, by setting 𝑎 B 1/𝛼 we obtain

P𝜃0 (𝑁 < ∞) = P𝜃0 (Λ̄𝜋
𝑛 ≥ 𝛼−1) ≤ 𝛼 (1.10)

for all 𝑛 ∈ 𝐼.

1.4.2 Expected sample size of the mSPRT
This last section will expose an approximation to the ESS of the mSPRT, as well

as some auxiliary results that we will use in further chapters.

Our main result, which we will prove, was introduced by Pollak and Siegmund
[10, Theorem 1], and gives an asymptotic approximation for the expected sample
size of the mSPRT in the limit as 𝑎 → ∞ (𝛼 → 0 by last section) when 𝜃 ≠ 𝜃0.
For the rest of this section, 𝛿 = (𝑁, 𝑑) will denote an arbitrary mSPRT, and we will
denote its mixing distribution by 𝑔 to avoid confusion. Moreover, denote by

𝐼 (𝜃, 𝜃0) B (𝜃 − 𝜃0)𝜓′(𝜃) − (𝜓(𝜃) − 𝜓(𝜃0)).

The proof of the theorem relies on several lemmas which are described later. To sim-
plify statements, all of our auxiliary results are proved under the same assumptions
(and same notation) as the theorem:

Theorem 1.21 (Pollak and Siegmund). Suppose 𝜃 ≠ 𝜃0 such that 𝑔 exists in a
neighborhood of 𝜃 and is positive and continuous at 𝜃. Then as 𝑎 → ∞,

E𝜃 (𝑁) ≊ [2 log 𝑎+log(log 𝑎/𝐼 (𝜃))−log(2𝜋𝑔(𝜃)2/𝜓′′(𝜃))−1]/2𝐼 (𝜃)+𝑜(1) (1.11)

Proof. Put 𝜇 B E𝜃 (𝑋1) and 𝜎2 B V𝜃 (𝑋1). Then, 𝑋1 has finite moment-generating
function and by differentiating it, it’s easy to see that 𝜓′(𝜃) = 𝜇 and 𝜓′′(𝜃) = 𝜎2. We
can center 𝑋1 to obtain 𝜓′(𝜃0) = E𝜃0 (𝑋1) = 0, and with its distribution being from
the exponential type family we can assume without loss of generality that 𝜃0 = 0
and 𝜓(𝜃0) = 0. Under this framework,

Λ̄
𝑔
𝑛 B Λ̄

𝑔
𝑛 (X𝑛) =

∫
Θ

exp {𝜂𝑆𝑛 − 𝑛𝜓(𝜂)} 𝑔(𝜂)𝑑𝜂
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and denote 𝐼 (𝜃) B 𝐼 (𝜃, 0). Assume also (again, without loss of generality) that
𝜃 > 0, and hence, by the strict convexity of the log-partition function 𝜓, we have
𝜇 = 𝜓′(𝜃) > 0.

By Lemma 1.22 we are assured that E𝜃 (𝑁) < ∞; then, by the definition of 𝑁 ,

log 𝑎 ≤ 𝜃𝑆𝑁 − 𝑁𝜓(𝜃) − 1
2

log 𝑁 (1.12)

+ log
(
𝑁1/2

∫
Θ

exp{(𝜂 − 𝜃)𝑆𝑁 − 𝑁 (𝜓(𝜂) − 𝜓(𝜃))}𝑔(𝜂) 𝑑𝜂
)

(1.13)

Let 0 < 𝜀 < 1 and 0 < 𝛿1 < 𝛿2 be arbitrary. Also, let 𝑛1 = (1 − 𝜀) log 𝑎/𝐼 (𝜃) and
𝐴 = {𝑁 > 𝑛1, max𝑛≥𝑛1

��𝑛−1𝑆𝑛 − 𝜇
�� < 𝛿1}. Then,

P𝜃 (𝐴𝑐) ≤ P𝜃 (𝑁 ≤ 𝑛1) + P𝜃

(
max
𝑛≥𝑛1

��𝑛−1𝑆𝑛 − 𝜇
�� ≥ 𝛿1

)
and hence by Lemma 1.23 and Lemma 1.24, there exists 𝜆 > 0 such that

P𝜃 (𝐴𝑐) = 𝑂 (𝑎−𝜆) as 𝑎 → ∞. (1.14)

By Proposition 1.16,∫
𝐴

(𝜃𝑆𝑁 − 𝑁𝜓(𝜃)) 𝑓𝜃 (𝑥) 𝑑𝑥 =

∫
𝐴

(𝜃 (𝑆𝑁 − 𝜇𝑁) + 𝑁𝐼 (𝜃)) 𝑓𝜃 (𝑥) 𝑑𝑥

= 𝐼 (𝜃)E𝜃 (𝑁) − 𝜃

∫
𝐴𝑐

(𝑆𝑁 − 𝜇𝑁) 𝑓𝜃 (𝑥) 𝑑𝑥 − 𝐼 (𝜃)
∫
𝐴𝑐

𝑁 𝑓𝜃 (𝑥) 𝑑𝑥.
(1.15)

Then by Schwarz’s inequality, Wald’s Lemma for Squared Sums and Proposition
1.26 we obtain

0 <

∫
𝐴𝑐

𝑁 𝑓𝜃 (𝑥) 𝑑𝑥 ≤
(
E𝜃 (𝑁2)P𝜃 (𝐴𝑐)

)1/2
= 𝑜(1) (1.16)

and ∫
𝐴𝑐

(𝑆𝑁 − 𝜇𝑁) 𝑓𝜃 (𝑥) 𝑑𝑥 ≤
(
E𝜃 (𝑆𝑁 − 𝜇𝑁)2P𝜃 (𝐴𝑐)

)1/2

=

(
E𝜃 (𝑁)𝜎2P𝜃 (𝐴𝑐)

)1/2
= 𝑜(1)

(1.17)

as 𝑎 → ∞. Hence, combining (1.16) and (1.17) with (1.15) we obtain∫
𝐴

(𝜃𝑆𝑁 − 𝑁𝜓(𝜃)) 𝑓𝜃 (𝑥) 𝑑𝑥 = 𝐼 (𝜃)E𝜃 (𝑁) + 𝑜(1) (1.18)
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Now, let 0 < 𝛾 < 1 be arbitrary, and fix 𝛿2 < min{𝜇, 𝐼 (𝜃)/𝜃} such that 𝑔(𝜂) is
defined for all |𝜂 − 𝜃 | < 𝛿2. Then,

𝑔(𝜃) (1 − 𝛾) ≤ 𝑔(𝜂) ≤ 𝑔(𝜃) (1 + 𝛾) (1.19)

and
1
2
(𝜂 − 𝜃)2𝜎2(1 − 𝛾) ≤ 𝜓(𝜂) − 𝜓(𝜃) − (𝜂 − 𝜃)𝜇 ≤ 1

2
(𝜂 − 𝜃)2𝜎2(1 + 𝛾) (1.20)

Recall the term (1.13): if we consider the integral over the values of |𝜂 − 𝜃 | < 𝛿2,
then using (1.19) and (1.20) we obtain

𝑁1/2
∫
|𝜂−𝜃 |<𝛿2

exp{(𝜂 − 𝜃)𝑆𝑁 − 𝑁 (𝜓(𝜂) − 𝜓(𝜃))}𝑔(𝜂) 𝑑𝜂

≤ (2𝜋)1/2 exp
{
(𝑆𝑁 − 𝜇𝑁)2

2𝜎2(1 − 𝛾)𝑁

}
𝑁1/2

×
∫
|𝜂−𝜃 |<𝛿2

𝜙

(
(𝜎2(1 − 𝛾)𝑁)1/2

(
𝜂 − 𝜃 −

(
𝑆𝑁 − 𝜇𝑁

𝜎2(1 − 𝛾)𝑁

)))
𝑔(𝜂) 𝑑𝜂

≤
(

2𝜋
𝜎2(1 − 𝛾)

)1/2
exp

{
(𝑆𝑁 − 𝜇𝑁)2

2𝜎2(1 − 𝛾)𝑁

}
𝑔(𝜃) (1 + 𝛾) (1.21)

with 𝜙(𝑥) being the density of the standard normal distribution.

We know by Lemma 1.25 that for sufficiently small 𝛿1, 𝛿2 on 𝐴

𝑁1/2
∫
|𝜂−𝜃 |<𝛿2

exp{(𝜂 − 𝜃)𝑆𝑁 − 𝑁 (𝜓(𝜂) − 𝜓(𝜃))}𝑔(𝜂) 𝑑𝜂 ≤ 𝜀(𝑎)

where 𝜀(𝑎) is nonrandom and 𝜀(𝑎) → 0 as 𝑎 → ∞. Hence using (1.21),∫
𝐴

log
(
𝑁1/2

∫
|𝜂−𝜃 |<𝛿2

exp{(𝜂 − 𝜃)𝑆𝑁 − 𝑁 (𝜓(𝜂) − 𝜓(𝜃))}𝑔(𝜂) 𝑑𝜂
)
𝑓𝜃 (𝑥) 𝑑𝑥

≤ 1
2

log
(

2𝜋
𝜎2(1 − 𝛾)

)
+ log (𝑔(𝜃) (1 + 𝛾))

+
(
2𝜎2(1 − 𝛾)

)−1 ∫
𝐴

(𝑆𝑁 − 𝜇𝑁)2

𝑁
𝑓𝜃 (𝑥) 𝑑𝑥 + 𝑜(1). (1.22)

Moreover, by the definition of 𝐴 and using Wald’s Lemma for Squared Sums and
Proposition 1.26 it follows that the term∫

𝐴

(𝑆𝑁 − 𝜇𝑁)2

𝑁
𝑓𝜃 (𝑥) 𝑑𝑥 ≤ 𝑛1

−1E𝜃 (𝑆𝑁 − 𝜇𝑁)2

= 𝜎2𝑛−1
1 E𝜃 (𝑁) = 𝜎2(1 − 𝜀)−1 + 𝑜(1).

(1.23)
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Then, if we integrate the whole inequality (1.12) with respect to P𝜃 on 𝐴, using
(1.14), (1.18), (1.22) and (1.23) we obtain as 𝑎 → ∞

𝐼 (𝜃)E𝜃 (𝑁) ≥ log 𝑎 + 1
2

log 𝑛1 −
1
2

log
(
2𝜋(𝑔(𝜃) (1 + 𝛾))2

𝜎2(1 − 𝛾)

)
− (2(1 − 𝛾) (1 − 𝜀))−1 + 𝑜(1).

(1.24)

Finally, since 𝜀 and 𝛾 are arbitrary, if we neglect the excess over the boundary

E𝜃

(
log Λ̄𝑔

𝑁

)
− log 𝑎,

our result follows. □

Lemma 1.22. E𝜃 (𝑁) < ∞.

Proof. Let 𝜏 = min{𝑁, 𝑛} − 1, so 𝜏 + 1 is a stopping time w.r.t. F. Let |𝜂 − 𝜃 | < 𝛿

be a neighbourhood where 𝑔 is defined. From the definition of 𝑁 we know that

log 𝑎 ≥ 𝜃𝑆𝜏 − 𝜓(𝜃)𝜏

+ log
(∫

|𝜂−𝜃 |<𝛿
exp{(𝜂 − 𝜃)𝑆𝜏 − 𝜏(𝜓(𝜂) − 𝜓(𝜃))}𝑔(𝜂) 𝑑𝜂

)
(1.25)

Using the Taylor’s expansion around 𝜃

𝜓(𝜂) = 𝜓(𝜃) + (𝜂 − 𝜃)𝜓′(𝜃) + 1
2
(𝜂 − 𝜃)2𝜓′′(𝜂)

and restricting 𝛿 such that |𝜂 − 𝜃 | 𝜓′′(𝜂) ≤ 1 for all |𝜂 − 𝜃 | < 𝛿,

log 𝑎 > 𝜃 (𝑆𝜏 − 𝜇𝜏) + 𝐼 (𝜃)𝜏

+ log
(∫

|𝜂−𝜃 |<𝛿
exp{(𝜂 − 𝜃) (𝑆𝜏 − 𝜇𝜏)}𝑔(𝜂) 𝑑𝜂

)
− 𝛿𝜏

(1.26)

and hence by Jensen’s inequality

log 𝑎 ≥ 𝜃 (𝑆𝜏 − 𝜇𝜏) + (𝐼 (𝜃) − 𝛿)𝜏 − log
(∫

|𝜂−𝜃 |<𝛿
𝑔(𝜂) 𝑑𝜂

)
+ (𝑐 − 𝜃) (𝑆𝜏 − 𝜇𝜏),

(1.27)

with

𝑐 B

∫
|𝜂−𝜃 |<𝛿 𝜂𝑔(𝜂) 𝑑𝜂∫
|𝜂−𝜃 |<𝛿 𝑔(𝜂) 𝑑𝜂

=

∫
|𝜂−𝜃 |<𝛿

𝜂 𝑑𝜂.
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Therefore,

(𝐼 (𝜃) − 𝛿)𝜏 ≤ − 𝑐(𝑆𝜏+1 − 𝜇(𝜏 + 1)) + 𝑐 |𝑋𝜏+1 − 𝜇 |

+ log 𝑎 − log
(∫

|𝜂−𝜃 |<𝛿
𝑔(𝜂) 𝑑𝜂

)
.

(1.28)

By Proposition 1.16 and Schwarz’s inequality, E𝜃 (𝑆𝜏+1 − 𝜇(𝜏 + 1)) = 0 and

E𝜃 ( |𝑋𝜏+1 − 𝜇 |) ≤
(
E𝜃

(
𝜏+1∑︁
𝑘=1

(𝑋𝑘 − 𝜇)2

))1/2

=

(
𝜎2E𝜃 (𝜏 + 1)

)1/2

Hence, if we pick 𝛿 sufficiently small such that 𝐼 (𝜃) − 𝛿 > 0, taking expectations on
(1.28) yields an upper bound for E𝜃 (𝜏) as 𝑛 → ∞.

□

Lemma 1.23. For all 𝛿 > 0 there exists 0 < 𝜆 < ∞, 0 < 𝛼 < ∞ such that

P𝜃

(
max
𝑛≥𝑟

����𝑆𝑛𝑛 − 𝜇

���� ≥ 𝛿

)
≤ 𝛼 exp{−𝜆𝑟}

Proof. We have

P𝜃

(
max
𝑛≥𝑟

����𝑆𝑛𝑛 − 𝜇

���� ≥ 𝛿

)
≤

∞∑︁
𝑛=𝑟

P𝜃

(����𝑆𝑛𝑛 − 𝜇

���� ≥ 𝛿

)
therefore, for all 𝜉 > 𝜃 > 0,

P𝜃 (𝑆𝑛 − 𝑛𝜇 ≥ 𝑛𝛿) =
∫
{𝑆𝑛−𝑛𝜇≥𝑛𝛿}

exp{(𝜃 − 𝜉)𝑆𝑛 − 𝑛(𝜓(𝜃) − 𝜓(𝜉))} 𝑓𝜉 (𝑥) 𝑑𝑥

≤ exp{−𝑛((𝜇 + 𝛿) (𝜉 − 𝜃) − (𝜓(𝜃) − 𝜓(𝜉)))}P𝜉 (𝑆𝑛 − 𝑛𝜇 ≥ 𝑛𝛿) .

Now, since 𝜇 = 𝜓′(𝜃), then 𝜓(𝜉) − 𝜓(𝜃) ≊ 𝜇(𝜉 − 𝜃) as 𝜉 ↓ 𝜃. Hence, if we pick 𝜉

sufficiently close to 𝜃, there exists 𝜆1 B 𝜆1(𝛿, 𝜃) > 0 such that

P𝜃 (𝑆𝑛 − 𝑛𝜇 ≥ 𝑛𝛿) ≤ exp{−𝜆1𝑛}.

A similar argument yields

P𝜃 (𝑆𝑛 − 𝑛𝜇 ≤ −𝑛𝛿) ≤ exp{−𝜆2𝑛}

for some 𝜆2 B 𝜆2(𝛿, 𝜃) > 0. Therefore, there exists 𝜆 B 𝜆(𝛿, 𝜃) > 0 such that

P𝜃 ( |𝑆𝑛 − 𝑛𝜇 | ≥ 𝑛𝛿) ≤ exp{−𝜆𝑛}. (1.29)

The result follows from summing over 𝑛 ≥ 𝑟. □
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Lemma 1.24. Let 0 < 𝜀 < 1 and 𝑛1 = (1 − 𝜀) log 𝑎/𝐼 (𝜃). There exists 𝜆 > 0 such
that

P𝜃 (𝑁 ≤ 𝑛1) = 𝑂 (𝑎−𝜆) as 𝑎 → ∞.

Proof. For all 𝑥 > 0

P𝜃 (𝑁 ≤ 𝑛1) ≤ P𝜃

(
𝑆𝑛1 − 𝜇𝑛1 ≥ 𝑥(𝜎2𝑛1)1/2

)
+

∫
{𝑁≤𝑛1, 𝑆𝑛1−𝜇𝑛1<𝑥(𝜎2𝑛1)1/2}

exp{𝜃𝑆𝑛1 − 𝑛1𝜓(𝜃)} 𝑓0(𝑥) 𝑑𝑥

≤ P𝜃

(
𝑆𝑛1 − 𝜇𝑛1 ≥ 𝑥(𝜎2𝑛1)1/2

)
+ exp{𝐼 (𝜃)𝑛1 + 𝜃𝑥(𝜎2𝑛1)1/2}P0(𝑁 ≤ 𝑛1).

(1.30)

We know by (1.10) that P0(𝑁 < ∞) ≤ 𝑎−1, then for 𝑥 = 𝜀(𝐼 (𝜃) log 𝑎)1/2/2𝜃𝜎,
equation (1.30) yields an upper bound which is 𝑂 (𝑎−𝜀/2). The result then follows
by using (1.29). □

Lemma 1.25. Given 𝛿2 < min(𝜇, 𝐼 (𝜃)/𝜃), for all 𝛿1 satisfying that for all 𝜂 ≥ 𝜃+𝛿2

𝜓(𝜂) ≥ 𝜓(𝜃) + (𝜂 − 𝜃) (𝜓′(𝜃) + 2𝛿1) (1.31)

and
4𝛿1 < 𝛿2 inf

0≤𝑥≤𝜃
𝜓′′(𝑥), (1.32)

then on 𝐴,∫
|𝜂−𝜃 |>𝛿2

𝑁1/2 exp{(𝜂 − 𝜃)𝑆𝑁 − 𝑁 (𝜓(𝜂) − 𝜓(𝜃))}𝑔(𝜂) 𝑑𝜂 ≤ 𝜀(𝑎) (1.33)

where 𝜀(𝑎) is a nonrandom quantity such that 𝜀(𝑎) → 0 as 𝑎 → ∞.

Proof. By the mean value theorem, there exists 𝜉 ∈ (𝜃, 𝜂) such that

𝜓(𝜂) = 𝜓(𝜃) + (𝜂 − 𝜃)𝜓′(𝜉).

By the strict convexity of 𝜓, 𝜓′ is strictly increasing and hence 𝜉 B 𝜉 (𝜂) is an
increasing function of 𝜂 for 𝜂 > 𝜃. Split the integration (1.33) into the domains
{𝜂 ≤ 0}, {0 < 𝜂 < 𝜃 − 𝛿2} and {𝜂 > 𝜃 + 𝛿2}, and denote these integrals by 𝐼1, 𝐼2
and 𝐼3, respectively. Then on 𝐴 for sufficiently large 𝑎

𝐼1 ≤ 𝑁1/2 exp{−(𝜃 (𝜇 − 𝛿1) − 𝜓(𝜃))𝑁} ≤ 𝑛1
1/2 exp{−𝑛1(𝐼 (𝜃) − 𝛿1𝜃)}. (1.34)
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Moreover, using (1.31), on 𝐴 for large 𝑎,

𝐼3 ≤ 𝑁1/2
∫
{𝜂≥𝜃+𝛿2}

exp{(𝜂 − 𝜃) (𝜇 + 𝛿1)𝑁 − 𝑁 (𝜂 − 𝜃) (𝜇 + 2𝛿1)}𝑔(𝜂)𝑑𝜂

≤ 𝑛
1/2
1 exp{−𝛿1𝛿2𝑛1}.

(1.35)

If we also develop a two-term Taylor series expansion and use (1.32), under the same
previous assumptions

𝐼2 ≤ 𝑁1/2
∫
{0<𝜂<𝜃−𝛿2}

exp{𝑁 |𝜂 − 𝜃 | (𝛿1 −
1
2
|𝜂 − 𝜃 | 𝜓′′(𝜉))}𝑔(𝜂) 𝑑𝜂

≤
∫
{0<𝜂<𝜃−𝛿2}

exp{𝑁 |𝜂 − 𝜃 | (𝛿1 − 2𝛿1)}𝑔(𝜂) 𝑑𝜂

≤ 𝑛1
1/2 exp{−𝛿1𝛿2𝑛1}.

(1.36)

The result follows from (1.34), (1.36) and (1.35). □

We now highlight our last auxiliary result since it characterizes the run-length
of the mSPRT, and it will be of use in the next chapter.

Proposition 1.26. 𝑁
P−−−−→ log 𝑎/𝐼 (𝜃) and 𝑁

𝐿𝑝

−−−−→ log 𝑎/𝐼 (𝜃) for 𝑝 = 1, 2.

Proof. Convergence in probability follows easily from (1.13), (1.14), (1.21) and
Lemma 1.25. Hence,

lim inf𝑎→∞ E𝜃 (𝑁 𝑝)/(log 𝑎)𝑝 ≥ (𝐼 (𝜃))−𝑝 for 𝑝 = 1, 2.

Reasoning as in the proof of Lemma 1.22 we obtain equation (1.28) with 𝜏 replaced
by 𝑁 − 1. If we apply Proposition 1.16, we obtain

lim inf𝑎→∞ E𝜃 (𝑁 𝑝)/(log 𝑎)𝑝 ≤ (𝐼 (𝜃))−𝑝 for 𝑝 = 1, 2.

□

Note that the ESS given by (1.11) can be equivalently expressed as

E𝜃 (𝑁) ≊
1

2𝐼 (𝜃) [2 log 𝑎 + log log 𝑎] +𝑂 (1).

Further work along the same line of research as of Theorem 1.21 shows the
mSPRT with arbitrary mixing distribution to be asymptotically second-order opti-
mal. Formally, the result is as follows, and its proof was developed by Pollak [11,
Theorem 2]:
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Theorem 1.27. Suppose 𝑔 : [𝑏, 𝑐] → R is continuous and positive, with 𝜃0 < 𝑏 <

𝑐 < ∞ and [𝑏, 𝑐] ⊆ Θ1. Suppose 𝜃 ≠ 𝜃0. Then,

inf
{𝑁: P𝜃0 (𝑁<∞)≤𝑎−1}

sup
𝑏≤𝜃≤𝑐

E𝜃 (𝑁) =
1

2𝐼 (𝜃) [2 log 𝑎 + log log 𝑎] +𝑂 (1)

as 𝑎 → ∞.



Chapter 2

Application to online controlled
experiments

Controlled experimentation has recently experienced a major rise on its indus-
trial use on fields other than traditional ones like pharmacy or auditing, mostly due
to the increase in the generation and availability of large amounts of data.

The simplest (but most used) example of controlled experiment is the one know
as the A/B test. An A/B test consists of the deployment of two different variants
of a product, A and B, into two equitable groups of users, know as the control
and treatment groups, respectively. The control variant is usually considered as the
default or already existing version of the product, and the treatment variant is rather
considered as a new iteration we wish to contrast.

Each user in each group makes use of their respective version of the product and
generates a quantitative measure or metric of our interest, which we record. The
objective is to assess whether variant B generates a significant increase (or decrease)
in the value of our metric with respect to variant A, or else both variants are the same.
In other words, we say that we want to check whether an effect exists when modifying
features from variant A to variant B. If such an effect exists, we then wish to detect it.

It’s easy to see that our problem can be formalized as a hypothesis test, where
we test the simple null hypothesis that no difference between the two groups exists
versus the composite alternative that the groups are indeed different. In the case of
regular metric values, the data generating process could be assumed to be normally
distributed, so we would test the difference between the means of the two groups.
For binary data, we would test for the difference in rates.

23
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Our focus on A/B testing is put on online controlled experimentation, with on-
line connoting experiments deployed on digital interfaces: for example, website
visitors which are randomized to two different variants of the site in a persistent
manner (meaning that they will continue receiving the same variant after ending the
session), where difference in variants may simply be aesthetic changes to the user
interface (UI), and we may record relevant metrics such as time spent on the site by
the user or whether they clicked on a certain button or not.

The largest digital companies like Google, Facebook, Netflix or Microsoft run
thousands of A/B tests every year involving sample sizes of millions of users with
the objective to assess changes on UI, relevance algorithms or customer support sys-
tems. A relevant example on the power of these procedures is described in Kohavi et
al. [8, Chapter 2], where a simple change on the ad headlines display of Microsoft’s
search engine Bing led to a $100M annual return-on-investment. Most of these big
companies have built fully-fledged internal tools for running controlled experiments
of this kind, known as experimentation engines or experimentation platforms ([20],
[15]). However, the widespread of A/B testing has led to the creation of companies
specialized in the development of tools for online controlled experimentation, where
Optimizely, Statsig or Eppo are some of the most popular.

A convenient commercial experimentation platform may provide a simple, easy-
to-use dashboard to track ongoing A/B tests, and it may do so without advanced
statistical training requirements over its users. Classical hypothesis testing methods
are used to compute the experiment results, which are reported to the user via pa-
rameters like 𝑝-values and confidence intervals, due to the simple decision rule that
these define. In most cases, these platforms also allow their users to continuously
monitor their tests as new observations are received, in what is known as fixed-
horizon testing: the user fixes a sample size 𝑁 and a significance level 𝛼 at the start
of the experiment, and after each observation received 𝑋𝑛 a 𝑝-value 𝑝𝑛 is computed
using the 𝑛-dimensional sample, rejecting 𝐻0 after reaching 𝑁 observations if and
only if 𝑝𝑁 ≤ 𝛼 ([6]). Note that the 𝑝𝑛 for 𝑛 < 𝑁 are computed only to allow the
user to observe the development of the experiment.

Continuous monitoring finds its value in the ability to detect true effects as quickly
as possible, or else stopping the experiment earlier in case no effect is ever noticed.
Nonetheless, commercial platforms were found to be also allowing their users to
dynamically modify the experiment’s sample size based on the reported data. This
practice, known as peeking by the experimentation community, truncates the sta-
tistical validity of the test, inflating Type-I error to levels beyond the predefined
significance level 𝛼.
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Johari et al. [6] explores statistical methods to allow the continuous monitoring
of A/B tests, providing valid and efficient inference on the simple interface of an
experimentation platform. In order to do so, the authors highlight the following
objectives:

1. Maintain a simple reporting interface: inference shall be made using tradi-
tional A/B testing parameters like 𝑝-values or confidence intervals.

2. Type-I error shall be controlled under any stopping time with respect to the
observed data.

3. Efficiently trade-off runtime and detection: if the user is willing to wait until
the 𝑝-value drops below its predefined significance level 𝛼, the resulting
decision rule shall efficiently trade-off the overall experiment runtime and the
test’s detection (power). Moreover, this trade-off shall be obtained with no
previous knowledge on the user’s preferences.

This paper is considered to be the main contributor to the introduction of sequential
analysis to the A/B testing space, presenting this paradigm as the key to allow
the continuous monitoring of controlled experiments while maintaining statistical
rigour.

2.1 Formalization of A/B tests
Consider an online controlled experiment, and let (𝑋𝑛)𝑛∈𝐼 and (𝑌𝑛)𝑛∈𝐼 be the

two independent sequences of i.i.d. observations corresponding to the metric data
generated by the visitors of the control and treatment groups, respectively. As dis-
cussed previously, we can assume that these observations are normally or Bernoulli
distributed. However, during this work we will focus on the first case.

Suppose then that 𝑋𝑛 ∼ N (𝜇0, 𝜎2) and 𝑌𝑛 ∼ N (𝜇1, 𝜎2), where 𝜇0, 𝜇1 ∈ R

are unknown and 𝜎2 ∈ R is common and assumed to be known. Our parameter of
interest, however, is the difference of these means.

Definition 2.1 (Effect size). The difference between the group means 𝜃 = 𝜇1 − 𝜇0
is know as the effect size.

Given that the deployment of both variants is assumed to be equitable, we can
make the simplification that visitors arrive as a sequence of i.i.d. pairs (𝑊𝑛)𝑛∈𝐼 ,
with 𝑊𝑛 = (𝑋𝑛, 𝑌𝑛). We can then consider the difference 𝑍𝑛 B 𝑌𝑛 − 𝑋𝑛, and hence
𝑍𝑛 ∼ N (𝜃, 2𝜎2).
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In this context, at each sample stage 𝑛 ∈ 𝐼 we gather an 𝑛-dimensional sample
Z𝑛 = (𝑍1, . . . , 𝑍𝑛), and hence we can fix the following sequential statistical model
((X𝑛,A𝑛)𝑛∈𝐼 ,P , 𝐼):

1. (X𝑛,A𝑛) = (R𝑛, B(R)𝑛) for all 𝑛 ∈ 𝐼.

2. P = {P𝜃 , 𝜃 ∈ Θ}, where P𝜃 is the probability measure corresponding to the
density 𝑓𝜃 (𝑥) = 1√

2𝜎
𝜙

(
𝑥−𝜃√

2𝜎

)
and Θ = R.

3. 𝐼 = N, allowing the possibility that the experiment runs indefinitely.

Under this framework, we can formalize our online A/B test as the contrast{
𝐻0 : 𝜃 = 0
𝐻1 : 𝜃 ≠ 0 .

Note then that detecting that a true effect exists depends on the power of the test that
we use.

2.2 Always Valid Inference
Having formalized our A/B testing problem as a sequential hypothesis test, we

would now be ready to propose a suitable statistical method to assess it. However,
the authors emphasize the importance of maintaining a simple inference framework
through the use of 𝑝-values.

Recall fixed-horizon testing theory: for any 𝑛 ∈ N, there exists a family of uni-
formly most powerful (UMP) tests parameterized by 𝛼, which maximize power
uniformly over all 𝜃 ≠ 0 while maintaining a test size of 𝛼. Furthermore, these tests
reject 𝐻0 if a test statistic 𝜏𝑛 ≥ 𝑘 (𝛼), where 𝑘 (𝛼) is a particular threshold which
only depends on the test size 𝛼. Equivalently, the same decision rule can be obtained
by computing a 𝑝-value as

𝑝𝑛 = inf{𝛼 : 𝜏𝑛 ≥ 𝑘 (𝛼)} (2.1)

rejecting 𝐻0 if and only if 𝑝𝑛 ≤ 𝛼.

As introduced earlier, commercial platforms traditionally allowed continuous mon-
itoring of experiments via fixed-horizon testing. Formally, the user commits to a
sample size 𝑁 ∈ N and a significance level 𝛼 ∈ (0, 1) in advance, generating a
sequence of 𝑝-values (𝑝𝑛)𝑁𝑛=1 computed according to (2.1) using Z𝑛, and rejecting
the null hypothesis in case 𝑝𝑁 ≤ 𝛼. Observe that this approach provides a simple
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and user-friendly decision rule that controls Type-I error and maximizes power for
any choice of (𝑁, 𝛼), with the only drawback that 𝑁 must be estimated prior to
the experiment in order to achieve a desired level of detection, which is commonly
known as the Minimum Detectable Effect (MDE). This estimate is then highly sen-
sible to the MDE and the magnitude of the effect size 𝜃.

Observe that the property that for each 𝑛 ∈ N, the family of UMP tests, and conse-
quently, the decision rules defined by 𝑝𝑛, controls Type-I error, can be equivalently
expressed as the 𝑝𝑛 being superuniform under the null hypothesis, i. e.

∀𝑥 ∈ [0, 1], P0(𝑝𝑛 ≤ 𝑥) ≤ 𝑥.

This first definition then aims to generalize our sequence of UMP-generated 𝑝-values
obtained via fixed-horizon testing:

Definition 2.2 (Fixed-horizon p-value process). A fixed-horizon p-value process
is any sequence (𝑝𝑛)𝑛∈𝐼 of [0, 1]-valued, F𝑛-measurable random variables 𝑝𝑛 such
that for all 𝑛 ∈ 𝐼, 𝑝𝑛 is superuniform under the null hypothesis.

But recall that our objective is to allow the user to stop the experiment when-
ever they want, following any data-dependent rule, and with the resulting 𝑝-value
controlling Type-I error.

Definition 2.3 (Always valid p-value process). We say that a fixed-horizon 𝑝-value
process (𝑝𝑛)𝑛∈𝐼 is always valid if for any (possibly infinite) stopping time 𝑇 it holds

∀𝑥 ∈ [0, 1], P0(𝑝𝑇 ≤ 𝑥) ≤ 𝑥.

Having adapted 𝑝-values to our particular problem, our next step is to find a way
to construct always valid 𝑝-values using sequential tests. Recall that our A/B testing
problem involves testing a simple null hypothesis against a composite alternative,
with our contrast assessing whether a true effect exists (in other words, to detect)
when comparing a default version against an alternative variation. Moreover, we
are comfortable allowing the experiment to run indefinitely, only stopping in case
an effect is detected, or in case the user decides to. Hence, it is natural to approach
this sequential testing problem using open-ended tests.

The following theorem states a natural correspondence between open-ended tests
and always valid 𝑝-value processes.
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Theorem 2.4.

1. Let 𝛿(𝛼) = (𝑁 (𝛼), 𝑑 (𝛼)) be an open-ended test of size 𝛼 ∈ (0, 1). Then

𝑝𝑛 = inf{𝛼 : 𝑁 (𝛼) ≤ 𝑛, 𝑑 (𝛼) = 1} (2.2)

defines an always valid 𝑝-value process.

2. For any always valid 𝑝-value process (𝑝𝑛)∞𝑛=1, an open-ended test 𝛿(𝛼) =

(�̃� (𝛼), 𝑑 (𝛼)) of size 𝛼 ∈ (0, 1) is obtained from (𝑝𝑛)∞𝑛=1 as follows:

�̃� (𝛼) = inf{𝑛 : 𝑝𝑛 ≤ 𝛼}, 𝑑 (𝛼) = 1{�̃� (𝛼)<∞} (2.3)

3. Let 𝛿(𝛼) = (𝑁 (𝛼), 𝑑 (𝛼)) be any open-ended test where 𝑁 = ∞ whenever
𝑑 = 0. If (𝑝𝑛)∞𝑛=1 is derived as in (2.2), then the construction (2.3) recovers
the original open-ended test: 𝛿(𝛼) = 𝛿(𝛼).

Proof. Let 𝑁 be a stopping time with respect to F. Nestedness of open-ended tests
implies that, for any 𝑠 ∈ [0, 1], 𝜀 > 0:

{𝑝𝑁 ≤ 𝑠} ⊂ {𝑁 (𝑠 + 𝜀) ≤ 𝑁, 𝑑 (𝑠 + 𝜀) = 1} ⊂ {𝑑 (𝑠 + 𝜀) = 1}.

Therefore, P0(𝑝𝑁 ≤ 𝑠) ≤ P0(𝑑 (𝑠 + 𝜀) = 1) ≤ 𝑠 + 𝜀, and hence the result follows
letting 𝜀 → 0. Conversely, it is immediate from the definition that the tests are
nested. For any 𝜀 > 0

P0(𝑑 (𝛼) = 1) = P0(𝑁 (𝛼) < ∞) ≤ P0(𝑝𝑁 (𝛼) ≤ 𝛼 + 𝜀) ≤ 𝛼 + 𝜀

where the last inequality follows from the definition of always valid 𝑝-value process.
The result follows letting 𝜀 → 0. □

2.3 Power and run-time trade-off
In the last section we introduced always valid 𝑝-value processes to provide infer-

ence in a simple interface while controlling Type-I error under any data-dependent
rule that the user might take. Moreover, we have seen that these processes naturally
correspond to open-ended tests. Recall that these procedures provide power one,
meaning that, for the hypothetical case of a user that is willing to wait forever, any
true effect is assured to be detected.

However, in practice, no user is ever willing to wait forever, so power must be
traded-off in favor of a shorter run-time. Therefore, the objective of this section is to
pick an open-ended test that will allow any user to trade-off detection and run-time
efficiently, regardless (and without prior knowledge) of their priorities.
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We can naturally characterize user behaviour in the following way:

Definition 2.5 (User). A user is a pair (𝑀, 𝛼) such that 𝑀 ∈ N is the maximum
sample size and 𝛼 ∈ (0, 1) is the significance level.

Let (𝑝𝑛)∞𝑛=1 be an always valid 𝑝-value process corresponding to an A/B test,
and let (𝑀 , 𝛼) be an arbitrary user. As the experiment develops, the user will stop
the first time 𝑝𝑛 ≤ 𝛼 for some 𝑛, rejecting 𝐻0 in favor of 𝐻1, or upon reaching the
𝑀-th observation, accepting 𝐻0 in that case. Hence, we can define the (𝑀, 𝛼) user’s
decision rule (𝑁 (𝑀, 𝛼), 𝑑 (𝑀, 𝛼)) as

𝑁 (𝑀, 𝛼) B min{𝑁 (𝛼), 𝑀}, 𝑑 (𝑀, 𝛼) B 1{𝑁 (𝛼)≤𝑀}

where 𝛿(𝛼) = (𝑁 (𝛼), 𝑑 (𝛼)) is the corresponding open-ended test constructed using
our always valid 𝑝-value process according to Theorem 2.4.

With user behaviour well defined, we shall now formalize efficiency in our con-
text of power and run-time trade-off. Let (𝑁 (𝑀, 𝛼), 𝑑 (𝑀, 𝛼)) an arbitrary (𝑀, 𝛼)
user decision rule. We will consider the two following functions:

Definition 2.6 (Power profile). The power profile associated to (𝑁 (𝑀, 𝛼), 𝑑 (𝑀, 𝛼))
is the power function

𝜈(𝜃; 𝑀, 𝛼) = P𝜃 (𝑑 = 1) for 𝜃 ≠ 0.

Definition 2.7 (Relative run-length profile). The relative run-length profile asso-
ciated to (𝑁 (𝑀, 𝛼), 𝑑 (𝑀, 𝛼)) is the function

𝜌(𝜃; 𝑀, 𝛼) = E𝜃 (𝑁)/𝑀 for 𝜃 ≠ 0.

Any (𝑀, 𝛼) user wishes to pick a decision rule which maximizes its power pro-
file and minimizes its relative run-length profile, with perfect efficiency implying
𝜌(𝜃; 𝑀, 𝛼) = 0 and 𝜈(𝜃; 𝑀, 𝛼) = 1 for 𝜃 ≠ 0. As discussed beforehand, perfect
efficiency will never be attainable in practice, so we shall study an open-ended test
that optimizes our criteria as best as possible.

We will focus on the family of open-ended tests given by the mSPRT. Indeed, given
an arbitrary mixing distribution 𝜋, consider (𝛿𝜋 (𝛼))𝛼∈(0,1) the family of mSPRT
indexed by 𝛼, with 𝛿𝜋 (𝛼) = (𝑁𝜋 (𝛼), 𝑑𝜋 (𝛼)). We know by Proposition 1.26 that the
run-length of the mSPRT when 𝜃 ≠ 0 in the limit as 𝛼 → 0 is given by

𝑁𝜋 (𝛼)/log(1/𝛼) P−−−−→ 𝐼 (𝜃)−1 = {𝜃𝜓′(𝜃) − (𝜓(𝜃) − 𝜓(0))}−1

=
4𝜎2

𝜃2 .

(2.4)
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Observe then that we can exploit this characterization to compare the maximum
sample size 𝑀 with the magnitude of the significance level 𝛼 for any given user
(𝑀, 𝛼), in a context where 𝛼 is expected to be small. Hence, we can then simplify
our problem to optimize for three distinct types of users. Denote from now on
(𝑁𝜋 (𝑀, 𝛼), 𝑑𝜋 (𝑀, 𝛼)) the (𝑀, 𝛼) user decision rule corresponding to the mSPRT
with mixing distribution 𝜋.

2.3.1 “Aggressive” users
This type of user is characterized by its choice of a rather large significance

level relative to their maximum sample size (𝑀 ≫ log(1/𝛼)), meaning that they
are willing to wait longer despite not being too restrictive about their Type-I error
control. It seems clear then that, in this case, the user receives almost the entirety of
the power one provided by the mSPRT:

Proposition 2.8. Let 𝜌(𝜃; 𝑀, 𝛼) and 𝜈(𝜃; 𝑀, 𝛼) be the relative run-length and
power profiles, respectively, associated with (𝑁𝜋 (𝑀, 𝛼), 𝑑𝜋 (𝑀, 𝛼)). If 𝛼 → 0 and
𝑀 → ∞ such that 𝑀/log(1/𝛼) → ∞, then 𝜌(𝜃; 𝑀, 𝛼) → 0 and 𝜈(𝜃; 𝑀, 𝛼) → 1
for 𝜃 ≠ 0.

Proof. Follows immediately from (2.4). □

2.3.2 “Conservative” users
In contrast to the last case, “Conservative” users are those which choose a small

significance level relative to their maximum sample size (𝑀 ≪ log(1/𝛼)), and
hence choose to be really demanding about Type-I error control but are not willing
to wait long enough to payoff this restriction. Naturally, in this case any feasible
user decision rule (𝑁 (𝑀, 𝛼), 𝑑 (𝑀, 𝛼)) performs as well as the mSPRT:

Proposition 2.9. Let (𝑁 (𝑀, 𝛼), 𝑑 (𝑀, 𝛼)) be any feasible user decision rule, and
let 𝜈(𝜃; 𝑀, 𝛼) be its corresponding power profile. Given that 𝛼 → 0, 𝑀 → ∞ such
that 𝑀/log(1/𝛼) → 0, we have 𝜈(𝜃; 𝑀, 𝛼) → 0 for 𝜃 ≠ 0.

Proof. Fix 𝜃 ≠ 0, and assume for contradiction that there is some 𝛽 < 1 such that
there exists some feasible user decision rule (𝑁∗(𝑀, 𝛼), 𝑑∗(𝑀, 𝛼)) such that

P𝜃 (𝑑∗(𝑀, 𝛼) = 0) ≤ 𝛽 as 𝛼 → 0, 𝑀 → ∞.

Provided that P0 (𝑑∗(𝑀, 𝛼) = 1) ≤ 𝛼, using a lower bound from Hoeffding [5]
implies that there exists some 𝜅 such that

E𝜃 (𝑁∗) ≥ 𝜅 log(1/𝛼) (1 + 𝑜(1)).
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Given that 𝑀/log(1/𝛼) → 0 in the limit, this lower bound implies that 𝑁∗ exceeds
the maximum sample size with positive probability. □

2.3.3 “Goldilocks” users
The non-trivial and limiting user case is that which finds and equilibrium between

the maximum run-length and the significance level (𝑀 ∼ log(1/𝛼)). To study this
case, given any family of open-ended tests (𝛿(𝛼))𝛼∈(0,1) , we shall define a measure
of worst-case efficiency over 𝜃 ≠ 0 for an arbitrary (𝑀, 𝛼) user.

Definition 2.10 (Relative efficiency). Let 𝛿(𝛼) = (𝑁 (𝛼), 𝑑 (𝛼)) be an open-ended
test of size 𝛼. Let 𝜌(𝜃; 𝑀, 𝛼) and 𝜈(𝜃; 𝑀, 𝛼) be the relative run-length and power
profiles associated with the user decision rule (𝑁 (𝑀, 𝛼), 𝑑 (𝑀, 𝛼)) corresponding
to an arbitrary user (𝑀, 𝛼). The relative efficiency of the test at (𝑀, 𝛼) is

𝜑(𝑀, 𝛼) = inf
𝛿∗∈Δ(𝑀,𝛼)

inf
𝜃≠0

𝜌(𝜃)
𝜌(𝜃; 𝑀, 𝛼)

where Δ(𝑀, 𝛼) = {𝛿∗(𝛼) : 𝑁∗ ≤ 𝑀, P0(𝑑∗ = 1) ≤ 𝛼, ∀ 𝜃 ≠ 0 𝜈(𝜃) ≥
𝜈(𝜃; 𝑀, 𝛼)}.

Observe that this definition of efficiency makes a comparison (as a function of
every user (𝑀, 𝛼)) of the worst-case scenario of the relative run-length of an open-
ended test from a particular family with that of all the open-ended tests that provide
at least the same power for all 𝜃 ≠ 0.

Under this definition, our main result then shows that when 𝑀 ∼ log(1/𝛼), the
relative efficiency of the mSPRT with any mixing distribution approaches one in the
limit.

Theorem 2.11. Let 𝜑(𝑀, 𝛼) be the relative efficiency of the mSPRT with mixing dis-
tribution 𝜋, 𝛿𝜋 = (𝑁𝜋 (𝛼), 𝑑𝜋 (𝛼)). If 𝛼 → 0, 𝑀 → ∞ such that 𝑀 = 𝑂 (log(1/𝛼)),
we have 𝜑(𝑀, 𝛼) → 1.

Proof. To establish asymptotic efficiency, given (𝑀, 𝛼), it is sufficient to find some
𝜃1, where for every feasible test 𝛿∗ = (𝑁∗, 𝑑∗) with 𝜈∗(𝜃1) ≥ 𝜈(𝜃1; 𝑀, 𝛼), we have
that 𝜌∗(𝜃1) ≥ 𝜌(𝜃1; 𝑀, 𝛼) (1 + 𝑜(1)).

By [9], a normal approximation holds asymptotically for P𝜃 (𝑑 (𝑀, 𝛼) = 0); in
particular, if we fix any 𝜃,

P𝜃 (𝑑 (𝑀, 𝛼) = 0) = Φ

(
log(1/𝛼)1/2𝐵(𝑀, 𝛼, 𝜃)

)
(1 + 𝑜(1))
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with 𝐵(𝑀, 𝛼, 𝜃) =

(
2𝜎2𝐼 (𝜃)3

𝜃2

)1/2 (
𝑀

log(1/𝛼) − 𝐼 (𝜃)−1
)
, and Φ denoting the standard

normal distribution cdf. On the other hand, standard results on the log partition
function 𝜓 imply that for fixed (𝑀, 𝛼),

log(1/𝛼)1/2𝐵(𝑀, 𝛼, 𝜃) ∼ 𝜂2 log(1/2)1/2
(

𝑀𝜃2

log(1/𝛼) − 𝜂3

)
as 𝜃 → 0

with 𝜂2, 𝜂3 > 0. Combining the two results, for

𝜃1 =

√√√
log(1/𝛼)

𝑀

(√︄
2
𝜂2

+ 𝜂3

)
we can see that eventually

P𝜃1 (𝛿(𝑀, 𝛼) = 0) ≤ Φ

(√︁
2 log(1/𝛼)

)
C 𝛽1,

in other words, that the mSPRT has power at least 1 − 𝛽1 at 𝜃1 in the limit.

Suppose now that 𝛿∗ = (𝑁∗, 𝑑∗) is another test that achieves 1 − 𝛽1 power at
𝜃1. If 𝛼 is sufficiently small such that 0 < 𝛼 + 𝛽 < 1, making use of a lower bound
of the ESS described in [5], we can show that for any 𝜃 ∈ (0, 𝜃1),

E𝜃 (𝑁∗) ≥
|log(𝛼 + 𝛽1) | − 1

4𝜎2 𝜃
2
1 |log(𝛼 + 𝛽1) |1/2

max{𝐼 (𝜃), 𝐼 (𝜃, 𝜃1)}
= 𝐼 (𝜃)−1 log(1/𝛼) (1 + 𝑜(1)).

(2.5)

By continuity, the result holds at 𝜃1 aswell. Comparing expression (2.5) with (2.4)
gives the desired inequality on the relative run-times at 𝜃1. □

2.4 Empirics and comparison to fixed-horizon testing
In this last section we seek to simulate the mSPRT with arbitrary parameters in

order to verify some of the properties described during this work. Moreover, we
expose an empirical comparison of this procedure with its fixed-horizon alternative
in A/B testing, following the methodology described in Johari et al. [6, Section 5.6]
and Stenberg [18, Section 3.1].

The simulations are performed in the framework of The R Programming Language
[12] for the purpose of reproducible research, and using the package mixtureSPRT
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by Stenberg [17]. This package provides an implementation of the mSPRT as a func-
tion of arbitrary control and treatment group samples, as well as parameters like the
significance level or the mixing distribution variance. The backend of the function
is implemented in C++ for a significant speed-up in computation, specially towards
averaging values across multiple simulations. Moreover, our code is adapted to the
Future package by Bengtsson [1] to allow concurrency in R. The code can be found
attached to the thesis in the repository.

As described in Section 2.1, the control and treatment data consists of two indepen-
dent sequences of i.i.d. observations (𝑋𝑛)𝑛∈𝐼 and (𝑌𝑛)𝑛∈𝐼 , with 𝑋𝑛 ∼ N (𝜇0, 𝜎2)
and 𝑌𝑛 ∼ N (𝜇1, 𝜎

2), leading to the difference 𝑍𝑛 B 𝑌𝑛 − 𝑋𝑛, with 𝑍𝑛 ∼ N (𝜃, 2𝜎2)
(𝜃 unknown and 𝜎2 known). For our simulations, we simplify to 𝜇0 = 0 and 𝜇1 = 𝜃,
and let the population variance be fixed to 𝜎2 = 1/2. To account for variability,
we propose a normal prior distribution over the effect size 𝜃 ∼ N (𝜇𝜃 , 𝜎2

𝜃
), which

in principle is different from the mixing distribution. This way, and as Figure 2.1
represents, sampling a single instance of our experiment data requires to sample first
𝜃 from the normal prior.

𝑍𝑛

-

𝑋𝑛 𝑌𝑛

𝜃

𝜇𝜃 𝜎𝜃

𝜇0 𝜎

N 𝜎

N

N

𝑀

Figure 2.1: Plate notation representation of the data-generating process
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Formally, we define a single simulation to require only the following parameters:

• (𝑀, 𝛼), a user with maximum sample size 𝑀 and significance level 𝛼

• 𝜇𝜃 , the mean of the normal prior over the effect size 𝜃

• 𝜎𝜃 , the standard deviation of the normal prior over the effect size 𝜃

Providing these parameters, the script first generates a sequence of 𝑀 i.i.d. observa-
tions (𝑍𝑛)𝑀𝑛=1 which will be used by the mSPRT. In this case, we choose our mixing
distribution 𝜋 to be N (0, 𝜏2), since in that case, the mLR has a closed analytical
form ([18, Equation 10]):

Λ̄𝜋
𝑛 =

√︂
2𝜎2

2𝜎2 + 𝑛𝜏2 exp
{

𝜏2𝑛2(𝑍𝑛)2

4𝜎2(2𝜎2 + 𝑛𝜏2)

}
(2.6)

where 𝑍𝑛 =
1
𝑛

∑𝑛
𝑖=1 𝑍𝑖. The mixing distribution variance 𝜏2 is not a parameter of the

simulation since it is chosen to be optimal following [6, Theorem 3].

Our objective with these simulation parameters is to provide a reference for the
power profile 𝜈(𝜃; 𝑀, 𝛼) and relative run-length profile 𝜌(𝜃; 𝑀, 𝛼) of an arbi-
trary user (𝑀, 𝛼), while also being able to control the distribution of the true effect
size 𝜃. We choose to estimate their mean, or expected value over the values of
𝜃 ∼ N (𝜇𝜃 , 𝜎2

𝜃
), which can be approximated via Monte Carlo simulation: we per-

form 𝐵 independent simulations with the same parameters (𝑀, 𝛼, 𝜇𝜃 , 𝜎𝜃) and then
estimate these quantities by their sample average:

�̂�(𝑀, 𝛼) B E𝜃∼N (𝜇𝜃 ,𝜎
2
𝜃
) (𝜈(𝜃; 𝑀, 𝛼)) ≈ 1

𝐵

𝐵∑︁
𝑛=1
1{𝑁≤𝑀}

�̂�(𝑀, 𝛼) B E𝜃∼N (𝜇𝜃 ,𝜎
2
𝜃
) (𝜌(𝜃; 𝑀, 𝛼)) ≈ 1

𝑀

1
𝐵

𝐵∑︁
𝑛=1

min{𝑁, 𝑀}

By the Law of Large Numbers, a larger value of 𝐵 will yield more confident point
estimates. Hence, for our computations we fix 𝐵 = 10000. Typical, real-word
scenarios give values of 𝛼 ∈ {0.1, 0.05, 0.01} for the significance level, and expect
small effect effect sizes of the 5%, 1% and 0.5%; we focus on 𝜇𝜃 = 0.05. Moreover,
we experiment with values for the prior variance 𝜎2

𝜃
∈ {0.1, 0.01, 0.001}.

We first study the average power profile �̂�(𝑀, 𝛼) and the average run-length pro-
file �̂�(𝑀, 𝛼) as a function of 𝑀 , for different fixed values of the parameters𝛼 and𝜎𝜃:
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Figure 2.2: �̂�(𝑀, 𝛼), �̂�(𝑀, 𝛼) as a function of 𝑀 (𝛼 = 0.1, 0.05, 0.01)

We can clearly observe that power increases as the user’s willingness to wait longer
increases, as it leaves room for the mLR to make more rejections, and hence, the
run-length decreases as a consequence. Moreover, we observe that the steepness of
the power function (and hence, of the run-length profile) is inversely proportional to
the magnitude of 𝛼, as expected by the nestedness property of open-ended tests.

Figure 2.3: �̂�(𝑀, 𝛼), �̂�(𝑀, 𝛼) as a function of 𝑀 (𝜎2
𝜃
= 0.001, 0.01, 0.1)

When it comes to the prior variance 𝜎2
𝜃
, we can observe that a higher variability

around 𝜇𝜃 increases significantly the test’s detection and hence, decreases the overall
run-length.

We now present the real-world scenario where sequential methods shine over their
fixed-horizon counterparts. As described in Section 2.2, fixed-horizon testing forces
us to fix a sample size prior to the execution of our experiment. Standard methods
provide calculators for this sample size as a function of the desired test power and
a MDE, among other parameters. This MDE, which represents a prior estimate of
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the magnitude of the true effect size, remains crucial in the actual run-length of
the experiment, since a miss-specification of its value can turn out in a insufficient
sample size in the higher setting, or else in a waste of time (or even cost) in the other
case. Our sequential method then oversees the specification of this parameter, and
moreover, adapts our run-length to the true effect size.

For the following simulations, we focus in the casuistry where our MDE estimate
for our fixed-horizon test is smaller than the actual true effect: in particular, we fix
this MDE value to be 50%, 80% and 100% of the true effect. For each case, we
perform 𝐵 simulations with specific values of our parameters (𝑀, 𝛼, 𝜇𝜃 , 𝜎𝜃) that we
know yield a particular average power profile value �̂�(𝑀, 𝛼). Moreover, given the
values for (MDE, 𝜎, 𝛼, �̂�(𝑀, 𝛼)) we can compute the fixed-horizon sample size 𝑛∗

such that the one-sample, UMP 𝑡-test of size 𝛼 achieves �̂�(𝑀, 𝛼) power when testing
𝐻0 : 𝜃 = 0 against 𝐻1 : 𝜃 ≠ 0, given that we estimate 𝜃 = MDE. To do so, we
use the sample size calculator included in the stats standard package of R. We then
study the distribution of �̂�(𝑀, 𝛼)/�̂� 𝑓 (𝑀, 𝛼), where �̂� 𝑓 (𝑀, 𝛼) B 𝑛∗/𝑀 .

The following plots correspond to an approximate power profile of �̂� ≈ 0.7536,
achieved by the parameters (𝑀, 𝛼, 𝜇𝜃 , 𝜎𝜃) = (5500, 0.05, 0.05, 0.1):

Figure 2.4: �̂�(𝑀, 𝛼)/�̂� 𝑓 (𝑀, 𝛼) distribution (MDE % = 50, 80, 100)

It easy to see that the mSPRT can save, in real-time, any MDE underestimation
that we may have committed in a fixed-horizon setting: when our MDE is 50% of
the true effect size, all sequential tests that provide detection take less observations
than fixed-horizon. This efficiency decreases as we set the MDE closer to the actual
true effect size; however, in all three cases, the run-length ratio is less than 1 in at
least half of all rejected tests.



Chapter 3

Conclusions and further research

To conclude this body of work I would like to look back on everything achieved
before and during its development; and I would also like to give a glimpse into what
this thesis means for my future personal research.

Back in 2022 I already had the idea of applying hypothesis testing in what could
be the calibration process of a sensor, focusing on the aspect that observations are
gathered in a sequential fashion; however, I had no clue on the existence of sequential
analysis as a field. Then, on June 2023, I stumbled upon Philip B. Stark’s excellent
“Notes on Applied Statistics” repository ([16]), where I was first introduced to the
SPRT. Further research led me to a Spotify Engineering blog-post discussing the
importance of the application of sequential testing to online controlled experimen-
tation ([13]), where I discovered the Always Valid Inference paper ([6]) that makes
up the second chapter of this work.

Writing this thesis has been a nourishing yet challenging experience. Indeed, being
able to research something of my personal interest like sequential hypothesis testing
to make up my Bachelor’s thesis has been an honour to me. This work has displayed
the potential of the sequential paradigm for testing hypotheses, which is rather un-
known to most people educated on statistics. For that same reason, research on this
field has been quite difficult. The initial work by Wald dates back to the 1940s,
and the more modern literature concerning open-ended tests was only developed in
the 1970s. There hasn’t been any major wide-spread of this field nor well-known
literature that summarizes the most important advances in this theory. In addi-
tion to that, some of the proofs and concepts developed rely on advanced topics in
the theory of stochastic processes, like renewal theory or optimal stopping theory,
which I hadn’t been introduced during my degree. Nonetheless, sequential testing
is now considered state-of-the-art in the online experimentation industry, with most
experimentation engines adopting this framework in their product ([13], [19], [20]),
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specially the mSPRT via Always Valid Inference. Therefore, the difficulties found
during the writing of this work are paid-off by seeing how relevant these techniques
are.

The development of this project has already provided me a solid foundation on the
theory of sequential analysis. Nonetheless, I look forward to learn more advanced
and modern topics, like the extension to continuous-time stochastic processes or a
fully Bayesian treatment; but most importantly, research other applications. Indeed,
I remain interested in the employment of sequential hypothesis testing in online
change-point detection, which has found its own subset of literature in statistical
quality control. This already has its successful applications in industrial settings;
however, I look forward to investigate other potential use-cases in data science.
With the advent of streaming data, I anticipate the sequential analysis literature
to flourish in the following decades, driven by the necessity to perform efficient
decision-making while maintaining statistical rigour.
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