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Abstract

The main goal of this work is to discuss the most relevant aspects regarding
single-object auction theory. In particular, principal types of single-object aucti-
ons, equilibrium strategies for each type, and variations on the proposed model
are disclosed. In order to accomplish these aims, a brief summary of basic terms
on game theory is provided in first place so as to set the foundations of auction
theory. This preliminary summary includes a series of key results on game theory,
allowing to use them as a tool to apply into auction theory and thus understand
the second part of the document.

Finally, a real example of an auction type is provided: the U.S Treasury Bill
auction. Definitions, mechanisms and bidding behaviour are provided, along with
a brief introduction to multi-object auctions.

Resum

L’objectiu principal d’aquest treball és presentar els temes més rellevants sobre
la teoria de subhastes d’objecte únic. En particular, s’exposen els tipus de subhas-
tes, estratègies d’equilibri per a cada tipus i variacions sobre el model proposat.
Per a poder arribar als resultats sobre subhastes, en primer lloc s’exposa un breu
resum dels principals conceptes de la teoria de jocs. Aquest resum preliminar cul-
mina amb un conjunt de resultats importants per a utilitzar com a eina durant el
document en l’anàlisi de la teoria de subhastes.

En segon lloc, s’exposa un exemple real d’un tipus de subhasta: la subhasta
de deute públic a curt termini a càrrec de la Tresoreria dels Estats Units (T-bill
auction). S’expliquen definicions, mecanisme de la subhasta i comportament dels
jugadors, per a finalment introduir de manera breu el concepte de subhastes d’ob-
jecte múltiple.

2020 Mathematics Subject Classification: 91B26, 91A06, 91A10, 91A80



Acknowledgements

Firstly, I would like to thank my university tutor Dr. Josep Vives, who has
taken a crucial part in advising me during all of this long journey. Initially I had
two tutors, one for Mathematics topics and one for Business Administration mat-
ters, but one of them unfortunately became unavailable. However, Dr. Vives has
a profound knowledge in both areas and has helped me a lot in correcting and
perfecting this work through numerous meetings and revisions.

Secondly, I want to express my gratitude to my family, they have been the fun-
damental pillar to my motivation. They have supported me during these 5 years
and a half that I have spent studying in university, both emotionally and econom-
ically.

Last but not least, I am grateful for the friendships that I have made while
studying in Universitat de Barcelona, which have all indirectly have supported
my learnings. After all the twists and turns of the degree, most friends have been
resilient in supporting me and vice-versa, even when not having classes in com-
mon. I am sure these relationships will last for a long time.

Agraïments

En primer lloc, m’agradaria donar les gràcies al meu tutor del treball Dr. Josep
Vives, que ha assumit un rol crucial en aconsellar-me durant tot el treball. En un
principi tenia dos tutors, un per a cada àrea del treball (Matemàtiques i ADE),
però un dels tutors es va quedar indisponible. No obstant això, en Josep té un
ampli coneixement en les dues àrees i m’ha ajudat molt a revisar i corregir aquest
document mitjançant reunions i revisions.

També vull agrair a la meva família el suport que m’han donat durant els 5
anys i mig d’estudi a la universitat, tant emocionalment com econòmicament. Ells
han estat el pilar fonamental de la meva motivació i resiliència.

Per últim, estic molt orgullós de totes les amistats que he fet a la Universitat
de Barcelona, les quals han recolzat el meu aprenentatge. Tot i que s’han donat
molts moments difícils, la majoria d’amics hem estat molt units per a donar-nos
suport mutu. Estic segur que aquestes relacions perduraran molt temps.



Contents

1 Preliminary 1
1.1 Introduction to Game theory . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Preliminary definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Types of games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Domination and equilibrium . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Auction theory 11
2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Types of auctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Formal definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Equilibrium bids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Revenue and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Further considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6.1 Reserve prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6.2 Entry fees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6.3 Budget constraints . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6.4 Uncertain number of bidders . . . . . . . . . . . . . . . . . . . 31
2.6.5 Asymmetric valuations . . . . . . . . . . . . . . . . . . . . . . 33

3 Bill Auctions 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Mechanism of the auction . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Competitive bidding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Uniform-price and Discriminatory-price auctions . . . . . . . . . . . 41

Bibliography 43

i





Chapter 1

Preliminary

This introductory chapter eases into the main concepts regarding game theory,
explaining its historic origins, main definitions and strong results with the objec-
tive to further comprehend the framework used to study auction theory. Notions
like dominant strategies, equilibria and game types are defined.

1.1 Introduction to Game theory

Game theory is a branch of applied mathematics that attempts to model inter-
actions between competing agents (players) who have the power to choose actions
(strategies) that influence each other, all in a battle to maximize their own re-
wards (payoff). The main objective of this theoretical framework is to produce
optimal decision-making for every agent participating in the conflict (game), and
ultimately extract these results to real-world scenarios to maximize efficiency of
transactions and operations.

Game theory reduces complex situations into a simple concept defined as a
Game. Two or more players have strategic actions in a given situation containing
a set of rules and payouts for each player. The key is that one player’s payout is
influenced by other player’s decisions. Game theory identifies all of each player’s
possible decisions, how they affect each other’s payout and studies these inter-
actions in an attempt to dictate how rational players should behave to maximize
their payout.

The two main pioneers of game theory were John von-Neumann (1930s) and
John Nash (1950s). They successfully started a field of economic behaviour study,
always with a mathematical background. Initially, John von-Neumann published
the paper On the theory of games and strategy in 1928. His best work was shown in
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1.2 Preliminary definitions

his book Theory of Games and Economic Behaviour, describing a solid method to find
solutions to two player zero-sum games, which are a basic type of games defined
in the upcoming sections. Later on, in the 1950s, John Nash developed a tool to
determine mutual consistency of strategies, called after himself Nash Equilibrium.
John Nash won the Economics Nobel Prize in 1994 for his contributions to game
theory.

Regarding practical matters, game theory can be applied to many fields, from
economics and business to computer science or politics. It is indeed a break-
through in the study of negotiation and bargaining situations, which is still evolv-
ing rapidly nowadays.

A well known class of games are auctions, which have special theoretical in-
terest because of the vast real-life applications of the results that game theory
dictates. Areas like politics bargaining, public goods allocation or even bonds and
finance are subject to auction theory.

1.2 Preliminary definitions

This section provides the basic concepts and results needed to understand the
upcoming chapter on auction theory.

Definition 1.1. Player: A player (Pl) is an agent that participates in the game.

Every player has some decisions to make (strategies) and some benefit or loss
from those decisions (payoff). Normally, games involve more than one player. For
example, auctions can have any amount of players (minimum of 2), often referred
to as bidders. We will assume a game has N players, N ∈ N.

Notation: A generic player is referred to as player i, with i = 1, ..., N

Definition 1.2. Strategy: A player’s strategy (β) is any of the options which is chosen
in a setting where the optimal outcome depends not only on their own actions but on the
actions of others.

Every player must submit a strategy βi for i = 1, ..., N, which is their way of
participating in the game. The set of all possible strategies for a player is called
the strategy set (Si), which can be finite or not.

Notation: The set of every strategy set i = 1, ..., N is defined as the strategy
profile S = S1 × ... × SN , so a profile of strategies is (β1, ..., βN) ∈ S with βi ∈ Si

2



1.2 Preliminary definitions

for all i = 1, ..., N.

In an auction, the strategies for every player are called bids, which are a nu-
merical value bi ∈ [0, ∞) so for i = 1, ..., N , thus player i’s bid (bi) is defined.
Bidding will be discussed further on.

Depending if the strategy is played according to a probability distribution or
not, a strategy can be pure or mixed:

Definition 1.3. Pure strategy: A strategy β is said to be pure when it is played with full
probability.

A pure strategy is a complete and detailed decision-making rule that dictates
a particular action for every possible situation. The strategy set for player i (Si)
could have also been defined as the set of all possible pure strategies.

Definition 1.4. Mixed strategy: A strategy βi, is said to be mixed if the strategy is
βi = (ηi

1, ..., ηi
mi
), with a probability of playing ηi

j is P(ηi
j) = pj, for some pj ∈ R such

that pj ≥ 0 and ∑mi
j=1 pj = 1 (mi denotes the cardinality of Si).

A pure strategy can be regarded as a mixed strategy with a certain pj = 1 and
all other pk = 0 for k ̸= j. Normally, mixed strategies are based on probability
distributions. This document focuses solely on pure strategies.

Definition 1.5. Payoff: A player’s payoff is a function πi : S −→ R which assigns a
numerical value to each player for every strategy combination chosen by the players.

The payoff quantifies the benefit (or loss) that the player gets from having
played the game, once everybody has chosen their strategy. Notice that the pay-
off not only depends on the player’s strategy set Si (his decisions), but on all of
the player’s strategies (strategy portfolio S). For every different combination of
strategies of the players (β1, ..., βN) ∈ S, there is a payoff defined for each player
πi(β1, ..., βN), i = 1, ..., N.

These three basic notions are the main agents of what is called a game, the
main starting point for analyzing and modelling conflict situations.

Definition 1.6. Game: A game is a triplet G = (I, (Si)i∈I , (πi)i∈I) where:

1. I = {1, ..., N} is the number of players.

2. For every i ∈ I, Si is player i’s strategy set.

3. For every i ∈ I, πi : S −→ R is the payoff of player i, where S = S1 × ... × SN is
the strategy profile

3



1.3 Types of games

1.3 Types of games

There are several classifications of games, this section puts focus in the most
relevant classifications for the purposes of this document.

• Symmetric or assymetric games

A game is called symmetric if every player has the same payoff function
(transposed). Every player has the same strategies available and each player
earns the same payoff when playing the same move. If not, it is called asym-
metric. Classic examples of symmetric games include 1v1 "Matching Pen-
nies" or "Rock, Paper Scissors". Both players have the same strategy set and
payoff functions regarding each of them.

Table 1.1: 1v1 Rock, Paper, Scissors
Rock Paper Scissors

Rock (0,0) (-1,1) (1,-1)
Paper (1,-1) (0,0) (-1,1)
Scissors (-1,1) (1,-1) (0,0)

Example 1.7. This table is called payoff matrix, and it is how a game with
two players and finite pure strategies is normally pictured. Each row is a
pure strategy for player 1, and each column is a pure strategy for player 2.
The payoffs for player 1 are the first numbers on each cell, and the second
numbers are player 2’s payoffs. For example, if player 1 plays Paper and
player 2 plays Rock, the payoff is (1,-1), so 1 for player 1 (win) and -1 for
player 2 (loss). A payoff of (0,0) means a tie. Because the payoffs are the
same but switched between the two players (when we change the order of
the payoff numbers in each cell, we get the transposed payoff matrix), this
game is symmetric.

It will be assumed that auctions are a symmetric game when modelling, as
it is the most basic and relevant case, where all the players have the same in-
formation (their valuation) and can play the same moves (bid anything they
want).
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1.4 Domination and equilibrium

• Perfect or imperfect information

A game has perfect information if every player knows, before playing the
game, all the information that would be available at the end of the game.
Some examples include Chess or Go. Games without that type of informa-
tion are called imperfect information games. A typical example is Poker or
most card games.

Private value auctions are imperfect information games, as only each of the
players knows their own valuation of the item they are bidding for.

• Zero-sum games

A game is called zero-sum game if the net change in players’ wealth is 0. This
means that if one player loses, another player (or a set of players sharing
the win) win the same amount that the first player loses, making all the
payoffs sum to 0. Otherwise, the game is a nonzero-sum game. Auctions
are normally a nonzero-sum game, meaning the wealth net change of the
players is not zero.

• Simultaneous or sequential

A game is simultaneous when all players execute their plays at the same
time. If players take turns when playing, the game is sequential. This last
type makes a player aware of other players’ decisions before playing their
move. For example, "Rock, Paper, Scissors" is simultaneous, while Chess
is sequential. Depending on their type, auctions can be simultaneous or
sequential.

Having stated the types of games, it is useful to remember that auctions in this
work will be supposed as symmetric and non-zero sum game, unless another type
of auction is specifically stated.

1.4 Domination and equilibrium

Domination is a concept which must be introduced in order to classify strate-
gies in a way that we can distinguish if one strategy is better than others. Like
this, a strategy can be classified as "good" or in some cases optimal.
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1.4 Domination and equilibrium

Definition 1.8. Dominated strategy: A strategy βA
i is said to be strictly dominated by

another strategy βB
i (for player i, i ∈ {1, ...N}) if the payoff of playing βB

i is bigger than
the payoff of playing βA

i regardless of what other players do.

Strict domination means, with the last notation,

πi((β1, ..., βB
i , ..., βN)) > πi((β1, ..., βA

i , ..., βN)) ∀β j ∈ Sj j ̸= i

Remark 1.9. The strategy βA
i is said to be weakly dominated by βB

i if we allow

πi((β1, ..., βB
i , ..., βN)) ≥ πi((β1, ..., βA

i , ..., βN)) ∀β j ∈ Sj j ̸= i

A strictly dominated strategy βA
i should never be played, as there is always a

better strategy which will yield more payoff in every possible case than playing
βA

i . A weakly dominated strategy is "advised" not to play, as the payoff will be
lower or equal than the dominant strategy.

Notation: A strategy for player i (βi) is strictly dominant when it strictly dom-
inates all other strategies. Analogously, a strategy is weakly dominant when it
weakly dominates all other strategies

Remark 1.10. There is a simple process to discard some dominated strategies for a
player, it is called Iterated Elimination of Strictly Dominated Strategies (IESDS).

This algorithm consists of eliminating the strictly dominated strategies for a
player, thus restricting the game to a "new" game with fewer possible strategies
for every player, called a subgame. Iterating this process for all the players until
no more strategies are eliminated, the final subgame might end up being a single
strategy for every player. In that case we say the game is solvable by IESDS.

The order of elimination of strategies does not affect the outcome of IESDS.
When we allow weakly IEDS (IEWDS), outcomes may differ. Let’s illustrate how
domination works.

Example 1.11. A simple yet surprising example of IESDS is Guess the 2/3 of the
average game. This example illustrates how domination works and, although it is
a simple concept, outcomes might not be trivial.

In this game, N players must choose any number bi ∈ [0, 100], the one that gets
closest to 2/3 of the average of the bi wins the game.

avg =
2
3

∑N
i=1 bi

N
.
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1.5 Main results

The possible strategies for each of the N players are Si = [0, 100]. By being a
symmetric game, all dominated strategies apply for all players. Because avg is the
average of the numbers chosen times 2/3, avg ∈ [0, 100 2

3 ]. By knowing this, no
player would play bi ∈ (100 2

3 , 100) because all these strategies are strictly domi-
nated by playing bi = 100 2

3 . The new subgame restricted to this domination has
Si ∈ [0, 100 2

3 ]. Applying IESDS again, no player is going to play bi ∈ (100 4
9 , 100),

leading to a new subgame with Si ∈ [0, 100 4
9 ]. Applying IESDS infinitely, we get

to the symmetric equilibrium bi = 0 ∀i = 1, ..., N. This game is then solvable by
IESDS because the only strategy surviving after IESDS is Si = 0 for all i = 1, ..., N.

Once domination is established, one can think of defining an equilibrium strat-
egy between all the players in a game.

Definition 1.12. Best response: Given N-1 strategies β j with j ̸= i, the best response of
player i is the strategy β∗

i that maximizes his payoff πi when the other N-1 players choose
β j.

πi(β j1, ..., β∗
i , ..., β jN) ≥ πi(β j1, ..., βi, ..., β jN) ∀βi ∈ Si

Remark 1.13. A best response is not necessarily unique. For example, a best
response strategy that is mixed has infinite possibilities of maximizing payoff,
thus allowing infinite best responses. On the other hand, if the best response is a
pure strategy, it might be unique.

Applying this definition for every possible strategy of every player, it is now
possible to define a notion of equilibrium.

Definition 1.14. Nash equilibrium: We say that a set of N strategies (β∗
1, ..., β∗

N) ∈ S
is a Nash Equilibrium when every βi is a best response for all β j with j ̸= i, for all
i = 1, ..., N.

In a Nash Equilibrium, the N strategies of each player are mutual best re-
sponses between them. No player wants to deviate from their chosen strategy β∗

i ,
as it maximizes their payoff with respect to all the other N − 1 strategies. Chang-
ing a player’s strategy will result in the same or less payoff. We will refer to a
Nash Equilibrium simply as an equilibrium to simplify notation.

1.5 Main results

This section provides some general game theory results to use as a tool to
understand and prove more easily some further results on auction theory.

7



1.5 Main results

Definition 1.15. Principle of rationality: This principle assumes that players’ decisions
are the result of maximising their own selfish payoff functions conditional on their beliefs
about the other players’ optimal behaviour.

By applying the principle of rationality, every player wants to maximise their
own payoff, regardless of all other factors. If two strategies yield the same payoff,
the player is indifferent on which one to choose, having no interest in other players’
payoff functions.

Theorem 1.16. Nash’s Theorem (1950): Any game with a finite number of players and
actions has a mixed-strategy Nash Equilibrium.

Proof. The proof of this theorem relies on a vast amount of lemmas and previous
definitions that are not relevant for this work. The complete proof is quoted in [1].
The procedure consists of finding a fixed point of a continuous function f : S −→ S
defined in the strategy portfolio by using contraction theorems. That fixed point
is the equilibrium seeked.

This strong theorem defines an equilibrium (mixed) for almost any standard
game, including auctions. This equilibrium might not be pure in the sense that all
the players strategies might not be pure, but the result assures the existence of at
least one equilibrium.

Theorem 1.17. If one player of a game employs a fixed strategy, then the opponent has an
optimal counterstrategy that is pure.

Proof. Proof and in-depth explanation are quoted in [2].

This result helps understand the idea of best response to a set of strategies.
The result is phrased for N = 2 players, but can be extended to N players by
supposing N − 1 players employ a fixed strategy.

Theorem 1.18. In a game, if one player employs a fixed strategy, then any mixture of the
opponent’s pure optimal counterstrategies is itself a mixed optimal counterstrategy.

Proof. Proof and in-depth explanation are quoted in [2].

[1]: A tutorial on the proof of the existence of Nash Equilibria, University of British Columbia
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1.5 Main results

This result can also be extended to N players by reasoning the same way as in
the previous theorem. It illustrates the possibility of infinite mixed-strategy best
responses when the player has more than one pure best-response strategy.

For example, if βA
i and βB

i are optimal pure counterstrategies (best responses)
for player i to a set of N − 1 strategies β j with j ̸= i, then the mixed strategy
βi = (βA

i , βB
i ) with probability of playing βA

i , p(βA
i ) = p and p(βB

i ) = 1 − p is an
optimal mixed counterstrategy for all p ∈ [0, 1]. In other words, any combination
of pure-strategy best responses is a mixed-strategy best response.

Proposition 1.19. If a game is solvable by IESDS, the only remaining strategy (β∗
1, ..., β∗

N)

forms an equilibrium. [3]

Proof. The argument is quite simple, as on each iteration we are discarding domi-
nated strategies for a player, thus always maximizing his profit with respect to all
other existing strategies. Applying this for every player, in the event of one only
strategy remaining, this one maximizes every player’s payoff with respect to the
other N − 1 payoffs and possible stratgies.

Corollary 1.20. If a game is solvable by IESDS, the solution is unique and does not
depend on the order of elimination of strategies. [3]

[2]: A gentle introduction to Game Theory, Saul Stahl, (1999)
[3]: Iterated Elimination and Nash Equilibria, University of Illinois, Chicago
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Chapter 2

Auction theory

This chapter addresses the main matter of the document, explaining in full
context single-object auctions. For the majority of this section, the main source of
information consulted is the book Auction Theory, Second Edition by Vijay Krishna
(2010) [4].

2.1 History

Auctions have been used for a long period of time for the sale of a variety of ob-
jects, being the most early reports in Babylon around 500 B.C, where women were
auctioned for marriage. Later on, during the Roman Empire, spears from the vic-
torious warriors were auctioned, along with slaves from the defeated side. Also,
romans auctioned assets from people whose property had been confiscated. In
other parts of the world auctions mechanisms were also implemented. For exam-
ple, in China, personal belongings of deceased monks were auctioned. Nowadays,
auctions are widely spread throughout the planet with many variations. From
fine art pieces and collectables, auctions evolved and today are used to sell a wide
range of commodities, like fish, tobacco, real estate or livestock. Even short and
long-term securities are sold in weekly auctions in most countries. One of the lat-
est and most influential uses of auctions is to transfer assets from public to private
hands, for example sale of enterprises to the public. Also, thanks to the Internet,
there are auction websites where people can auction any item online.

The word auction comes from the Latin augere, which means “to increase”, mir-
roring the rise in the price of the desired object caused by the inherent competition
of the players participating in the auction.

11
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2.2 Types of auctions

Auctions can be single-object (bidders compete for one object), which is the
topic of the document, or multiple-object (more than one object in a single auc-
tion).

Regarding single-object auctions, the classic types of auctions are the following:

• English Auction

The English Auction (often called open ascending price auction) is the oldest
and most common type of auction. The auctioneer (conductor of the sale)
calls out a low price. Then, players start bidding in small increments, until
there is only one interested player left. In that moment the auction ends and
the object goes to the only interested bidder. In other words, the highest
bidder wins the auctioned object.

When modelling an English auction, the object’s price starts from 0 and rises
continuously, and each player indicates an interest to purchase at the current
price. Once the price is high enough to only get one player interested, the
auction ends. Last bidder wins the object. This type of auction is the most
theatrical and common one in the movies.

• Dutch Auction

The Dutch Auction (also called open descending price auction) is the coun-
terpart to the English Auction. The auction begins with the object being
called at a high price so that no player is interested in buying the object,
then the price gets gradually lowered until the first player bids. Object is
sold to the first bidder at the according price.

This auction is generally used when fisherman sell the fish they have caught
every day in what is called the Fish Market. Although it might not be so
dramatic as the English, it has some theoretical interest.

• Sealed-bid first-price auction

Players enter their bids simultaneously in sealed envelopes, the highest bid
wins the object and pays the price written in their bid. This is the other most
common type of auction.

12



2.2 Types of auctions

• Sealed-bid second-price auction

Players bid simultaneously in sealed envelopes, the highest bid wins the ob-
ject but, instead of paying their own bid, the winner pays the second highest
bid.

• Other

Many selling formats fall under the scope of being defined as an "auction".
For example, there are mixed Dutch-English formats, where price gets low-
ered until somebody bids, then with the possibility of bidding upwards. The
Internet’s common type of auction is called "deadline", where a bidder wins
the object when he has the highest bid when a fixed time period ends. There
are "candle" auctions, which are random "deadline" auctions. The candle
auction was introduced in England during the 17th century, and it ended
whenever the flame of the candle expired. When more objects are included,
many more possibilities open up as a multi-object auction. All of these are
less common and do not have much theoretical interest.

Remark 2.1. One can think of the occurrence of a tie, where 2 or more players bid
the same. If the auction format allows ties, then the auctioned object goes to one
of the winning bids with probability p, where p = 1/m with m being the number
of winning bids.

Four main different types of auctions have been pointed out. The interest is
in studying what is the optimal behaviour of the bidders for each type of auction.
This job cam be cut in half, as there is an equivalence between the Dutch and first-
price auctions, and another equivalence between the English and the second-price
auctions, despite being different formats at a first glance.

Proposition 2.2. The Ducth open descending price auction is strategically equivalent to
the first-price sealed-bid auction.

Proof. The only information available to bidders in the Dutch auction is that one
player has agreed to buy the object at the current price, which does not come in
handy as the auction has already ended when the information is revealed. In the
first-price sealed-bid auction, the player reflects their private information into a
bid. Placing a bid in the first-price sealed-bid auction is equivalent to offering to
buy at that bid in the Dutch, if the object has not been already bought.

13



2.3 Formal definitions

This proposition tells us that strategic behaviour and optimal strategies are the
same in both types of auctions. For every strategy in a first-price auction there is
an equivalent strategy in the Dutch auction and vice versa.

Proposition 2.3. The English open ascending price auction is equivalent to the second-
price sealed-bid auction with privative values.

Proof. In an English auction, a player gets information when other players "drop
out", meaning they are not willing to bid higher than the current price. But with
privative values, this does not help. We can argue it by reasoning that, in an
English auction, it is not optimal to stay in the auction if the price rises further
than our valuation, only causing a potential loss. In the second-price auction, it is
best to bid one’s valuation (demonstrated later).

It is concluded that, with privative values, the optimal strategy for a player is
bidding up to one’s valuation. Privative values are defined in the next section,
they refer to privacy among each player’s monetary valuation of the object.

Remark 2.4. This equivalence is "weaker" than the first one because it is not a
strategic equivalence and the hypothesis of privative values is required, while the
Dutch - First-price equivalence does not rely on privative values.

Thanks to these equivalences, our study will be mainly focused on the first-
price (I) and second-price (I I) auctions from now on.

2.3 Formal definitions

Definition 2.5. Auction: An auction is a game A = (I, (Si)i∈I , (πi)i∈I) with:

1. I = [1, ..., N] being the number of players, referred to as bidders.

2. Si = [0, ∞) where bi ∈ Si for i = 1, ..., N are called bids, which is a monetary
amount agreed to pay for the object by each player.

3. πi : S −→ R, i = 1, ..., N, payoff which reflects the monetary gain or loss of each
player resulting of buying (or not) the object.

Auctions are used because the seller is unsure about the valuations that each
player attaches to the object being sold. This uncertainty, from both the buyer’s
and seller’s point of view is an inherent characteristic of auctions.
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Definition 2.6. Valuation: Maximum price each player is willing to pay for the auc-
tioned object (vi).

After having introduced valuations, it is fairly logical to conclude that no
player would ever want to bid above their own valuation. In first-price auctions, if
the bid is higher than the player’s valuation, in the event of winning the auction,
the player pays more than their valuation, resulting in a monetary loss (negative
payoff). On the other hand, if losing, the payoff is 0. However, by bidding their
own valuation, the payoff is always 0 no matter if the player wins or loses. We
have just demonstrated that bidding one’s valuation weakly dominates bidding
above the valuation (in first-price auctions), but should nobody bid above their
valuation in all auction formats?

This is not entirely true, as for example, suppose we have a second-price sealed
bid auction. Suppose player i bids bi > vi and suppose all other bids bj with j ̸= i
are such that bj < vi < bi. This causes that the player to win the object with a
positive payoff vi − bk, where bk = maxj ̸=i bj. If the player had bid bi ∈ (bk, ∞)

he would have had the same positive payoff vi − bk. So the strategy of bidding
bi > vi is not "entirely wrong", despite the fact that it is weakly dominated by
other strategies.

Definition 2.7. Privative values: Situation where every player knows their own val-
uation vi but does not know with certainty other players valuations vj with j ̸= i, and
knowledge of other bidders’ valuations will not affect their own valuation.

Remark 2.8. Privative values will be assumed for the majority of the cases, as
it is the most common situation. This leads to assuming that the valuations of
the other players are identically and independently distributed (iid) in an interval
[0, W], according to a continuous distribution function F with density f = F′. It is
supposed that players know the distribution function F of the valuations vi with
i = 1, ...N.

Sometimes, even the does not know their own valuation vi, so the player must
estimate it and may be affected by other players’ valuations and information.

Definition 2.9. Interdependent valuations: Situation where a player’s valuation is
estimated based on other players’ valuations.

Interdependent valuations are often correlated with the true value of the object
because other players have more information available, causing a big influence on
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players decisions.

A special case is when every player has the same valuation, called common
valuation. This situation does not have much theoretical interest.

2.4 Equilibrium bids

This section presents and studies the optimal behaviours for the two main
types of auctions, the First-price Auction (I) and the Second-price Auction (I I).
Because of the equivalence with the Dutch and the English auctions, it is sufficient
to study (I) and (I I). In order to model the uncertainty regarding valuations and
other aspects that could affect the outcome, the following symmetrical model of
an auction is defined.

Definition 2.10. Symmetrical model of an auction A:

• Single-object auction (A) with N players.

• Players know their own valuations of the object vi, realizations of Vi with i = 1, ..., N
are iid (independent and identically distributed) on some interval [0, W] according
to a distribution function F, which admits a continuous density f = F′.

• It is required that E[Vi] < ∞ for i = 1, ..., N.

• Privative values are supposed.

Remark 2.11. Some clarifications for the symmetrical model. Each bidder knows
their own vi and that others vj with j ̸= i are iid according to F. Bidders seek to
maximize expected profit (risk-neutral). It is also assumed that each bidder does
not have a budget constraint (they can pay up any amount), and all bidders want
is to maximize their own selfish profit (principle of rationality).

Definition 2.12. A strategy for a player (bidder) in an auction is a function

βi : [0, W] −→ R+

that determines a bid bi for any given valuation vi.

Notation: βi(vi) = bi notes the bid of player i when his valuation is vi.

An equilibrium between all the players is searched, a set of bids that no person
would want to move from their decision (mutual best response). Because of the
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symmetric model, the equilibrium will be a symmetric equilibrium strategy for
each player. To study equilibriums, it is first required to model the two types of
auctions: first-price (I) and second-price (I I).

• Second-price auction equilibrium

Each player submits a bid bi with i = 1, ..., N according to a given valuation vi,
and their payoffs are:

πi(bi) =

{
vi − maxbj ̸=bi bj i f bi > maxbj ̸=bi bj

0 i f bi < maxbj ̸=bi bj
.

(2.1)

If bi = maxbj ̸=bi bj, there is a tie and the object goes to each winning bid with
equal probability. If the winning bid is made by m players, m = #{j|bj = bi}, then
the expected payoff of a winning bidder is:

(vi − maxbj ̸=bi bj)

m
.

Proposition 2.13. In a second-price sealed-bid auction, bidding one’s own valuation

βI I
i (vi) = vi

for i = 1, ..., N, is a weakly dominant strategy for every player.

Proof. Consider player 1 with a valuation v1, and suppose m1 = maxj ̸=1bj is the
highest of the other players bids. By bidding b1, player 1 wins if b1 > m1 with
payoff v1 − m1 and loses the auction if b1 < m1 with payoff 0, (if b1 = m1, the
player does not care if he wins or he loses, as payoff is 0 in both cases).

Suppose now player 1 bids b1 < v1. If v1 > b1 ≥ m1, player 1 wins the auc-
tion and the payoff is still v1 − m1. If m1 > v1 > b1, player still loses. But if
v1 > m1 > b1, then player loses, whereas if he had bid v1, he would have won and
made a positive payoff v1 − m1, thus bidding b1 = v1 weakly dominates bidding
b1 < v1.
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Suppose now player 1 bids b1 > v1. If b1 > v1 ≥ m1, the player wins the
auction, with payoff v1 − m1. If m1 > b1 > v1, player loses the auction with payoff
0. But if b1 > m1 > v1, the player wins the auction with payoff v1 − m1 < 0, so
the player is better off by bidding v1 and making 0 payoff, thus bidding b1 = v1

weakly dominates bidding b1 > v1.

Following this argument for every player, a symmetric equilibrium of the
Second-price auction is for every player to bid their own valuation βI I

i (vi) = vi.

• First-price auction equilibrium

Each player submits a bid bi and their payoffs are:

πi(bi) =

{
vi − bi i f bi > maxj ̸=ibj

0 i f bi < maxj ̸=ibj
.

(2.2)

If bi = maxj ̸=ibj, there is a tie and object goes to each winning bid with equal
probability. If the winning bid is made by m players, m = #{j|bj = bi}, then the
expected payoff of a winning bidder is:

(vi − bi)

m
.

Clearly, no bidder would bid an amount equal to vi, as their payoff would be
guaranteed to be 0. Also, no player would bid higher than vi as it would guarantee
negative or zero payoff. We can conclude that bidding bi < vi weakly dominates
bidding bi ≥ vi, as it yields 0 payoff or a positive payoff if a win is achieved.

In this type of auction, bidders face a trade-off between increasing the proba-
bility of winning the auction while reducing their potential gain.

We now know that the distribution function satisfies bi ≤ β(V) and β(0) = 0,
meaning that a player with valuation 0 will bid 0. Player 1 wins if

maxi ̸=1β(vi) < b1

Because β is an increasing function,

maxi ̸=1β(vi) = β(maxi ̸=1vi) = β(Y1)
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being Y1 the highest of N − 1 values iid in [0, W]. G will note the distribution
function of Y1. Player 1 wins if β(Y1) < b1, same as Y1 < β−1(b1). The expected
payoff for player 1 is the probability of winning times the payoff if winning (if he
loses, the payoff is 0 so we do not need to add it):

G(β−1(b1))× (v1 − b1)

The player wants to maximize this payoff, so we differentiate the last expression
with respect to his bid b1, resulting in:

g(β−1(b1))

β′(β−1(b1))
(v1 − b1)− G(β−1(b1)) = 0

where g = G′ is the density of Y1, which exist because it is the maximum of N-1
values of a continuous distribution function with density.

Supposing a symmetric equilibrium, bi = β(vi), so β−1(bi) = vi. To simplify
notation, we will refer to a valuation as v and to a bid as b:

g(β−1(b1))

β′(β−1(b1))
(v1 − b1)− G(β−1(b1)) = 0

⇔ g(v)
β′(v)

(v − b) = G(v)

⇔ g(v)v = G(v)β′(v) + g(v)β(v) .

This results in the following differential equation:

d
dv

G(v)β(v) = vg(v) .

and by applying β(0) = 0 we can specifically solve the differential equation:

β(v) =
1

G(v)

∫ v

0
yg(y) dy = E[Y1|Y1 < v] .

Notation: For the rest of the chapter, F indicates the distribution function of
the valuations, iid in an interval [0, W]. G is the distribution function of Y1, which
is the highest of N-1 iid valuations in [0, W]. In particular, G = FN−1. Both F and
G accept densities f = F′ and g = G′.

This clarification of the strategy will help us prove the following result.
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Proposition 2.14. Symmetric equilibrium strategies in a first-price auction are given by

βI
i (vi) = E[Y1|Y1 < vi]

for i = 1, ..., N, where Y1 is the highest of N-1 iid values in [0, W].

Proof. We are going to show that following the strategy in the proposition is opti-
mal.

Because β is increasing and continuous, in equilibrium the player with the
highest valuation will bid the highest and win the auction. Bidding b > β(W) is
not optimal as shown earlier in the chapter.

The expected payoff of a player when bidding b ≤ β(W) is the following.
Naming z = β−1(b) the value for which b is an equilibrium bid, bidding β(z) will
yield an expected payoff (Notation: Π(b, v) is the expected payoff of a bidder with
valuation v that bids b):

Π(b, v) = G(z)[v − β(z)]

= G(z)v − G(z)E[Y1|Y1 < z]

= G(z)v −
∫ z

0
yg(y) dy

= G(z)v − G(z)z +
∫ z

0
G(y) dy

= G(z)(v − z) +
∫ z

0
G(y) dy .

We have obtained that

Π(β(v), v)− Π(β(z), v) = G(z)(z − v)−
∫ z

v
G(y) dy ≥ 0 .

for all z ≥ v and all z ≤ v.

This shows that if all bidders follow the strategy β, a bidder with valuation vi

cannot benefit from bidding anything different than β(vi) = bi, implying a sym-
metric equilibrium.

Corollary 2.15. The optimal bid βI
i (vi) can be expressed as:

βI
i (vi) = vi −

∫ vi

0

G(y)
G(vi)

dy

20



2.4 Equilibrium bids

Proof. The conditional expectation E[Y1|Y1 < v] is:

βI(v) = E[Y1|Y1 < v] =
1

G(v)

∫ v

0
yg(y) dy

⇔ G(v)E[Y1|Y1 < v] =
∫ v

0
yg(y) dy

⇔ G(v)E[Y1|Y1 < v] = vG(v)−
∫ v

0
G(y) dy

⇔ E[Y1|Y1 < v] = v −
∫ v

0

G(y)
G(v)

dy .

This remark is really useful to easily calculate equilibrium strategies.

This section has shown symmetric equilibrium strategies for both types of auc-
tions. Because of the equivalence of the Dutch auction to the first-price, and the
English auction to the second-price, these equilibria are the same for the strate-
gically equivalent formats (with the assumptions made: symmetrical model, no
budget constraint, attempt to maximize profit, valuations are IID).

Example 2.16. A classic example of studying a first-price auction is the uniform
distribution vi ∼ U(0, W) with IID valuations and N ≥ 2 players.

The distribution function of the valuations is:

F(v) =
v

W

G(v) = (
v

W
)N−1

is then the distribution function of the maximum of N-1 IID values in [0,W]. This
models the probability of all the other N-1 bids are lower than the bid bi

The optimal bid is, applying the last remark:

βI
i (v) = v −

∫ v

0

G(y)
G(v)

dy

= v −
∫ v

0
(

y
v
)N−1 dy

= v − v
N

=
N − 1

N
v
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resulting in the equilibrium strategy

βI(v) =
N − 1

N
v

Makes sense that every player wants to bid just a little lower than their valuation,
to try to win the object keeping a competitive bid, while attempting to make a
strictly positive profit by not bidding vi or more. Notice that this bid does not
depend on W, so this result is valid for any uniform distribution of the valuations
in any interval [0, W]. Also notice that when the number of players is increased,
the bids bi tend to vi, minimizing every player’s payoff in case of winning.

On the other hand, an equilibrium in the second-price auction with uniform
valuations is straightforward: βI I(v) = v for every player.

Corollary 2.17. Equilibrium bids in second-price auctions are higher than in first-price
auctions.

βI I(v) > βI(v)

Proof. This result is fairly simple, but crucial observation. βI I(v) = v is the optimal
bid for I I, while βI(v) = E[Y1|Y1 < v] < v is the optimal bid for I, hence proved.

2.5 Revenue and efficiency

There are two main different ways to measure the degree of performance of
an auction. From the point of view of the seller, the revenue, or expected selling
price, is the main tool to compare different auction formats. From the society’s
point of view (players), efficiency, meaning that the object goes to the player that
values it the most, is the way to determine how good the auction format performs
by what is called the expected payment. This efficiency takes an important role
when in public held asset auctions. The government must choose the most "effi-
cient" auction format so the object gets allocated in the most optimal way, although
the revenue for the government might be higher in another format. In the optimal
situation, the auctioned object should be won by the player who values it the most
(has the biggest valuation vi).

However, should efficiency be questioned, or should we leave the market to
reallocate the object efficiently even after the auction takes place? Post-auction
transactions (reselling) typically involve less agents and bargaining, thus getting
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far from efficiency. Also, resales might carry higher transaction costs, which leads
to concluding that resale operations are not efficient.

• Revenue and efficiency comparison between second-price and first-price
auctions

The expected payment of the first-price auction for a bidder with value v is
their bid times the chance of winning:

mI(v) = P(Win)× Bid = G(v)× E[Y1|Y1 < v] .

This expected payment is the same as in the second-price auction. Suppose a
player bids bi = vi in the second-price auction, then the expected payment of the
player is:

mI I(v) = P(Win)× E[2nd highest bid | bi is the highest bid] .

and because of the equilibrium βI I
i = vi,

mI I(v) = P(Win)× E[2nd highest valuation | vi is the highest valuation]

= G(v)× E[Y1|Y1 < vi]

with G and Y1 being the same as in the last chapter.

Notation: The expected payment of a player in both auctions with valuation v
is then defined as:

mI(v) = mI I(v) = m(v) .

Proposition 2.18. The expected revenues of a first-price auction and a second-price auc-
tion are the same when valuations vi are iid and privative i = 1, ..., N

Proof. The expected revenue of the seller is the sum of the expected payments of
each bidder before knowing their values (ex ante).

The ex-ante expected payment of a bidder (for both auctions because mI(v) =
mI I(v) = m(v)) is:

E[m(v)] =
∫ W

0
m(v) f (v) dv =

∫ W

0
(
∫ v

0
yg(y) dy) f (v) dv

=
∫ W

0
(
∫ W

y
f (v) dv)yg(y) dy =

∫ W

0
y(1 − F(y))g(y) dy .
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The distribution functions F, G, and their densities f = F′ and g = G′ are the
same as in the previous sections. The expected revenue of the seller E[Rs] is N
times (number of players) the ex-ante expected payment of a bidder:

E[Rs] = N × E[m(v)] = N ×
∫ W

0
y(1 − F(y))g(y) dy .

Now, we can spot that the density of YN
2 (second highest of N values) is

f N
2 = N(1 − F(y)) f N−1

1 (y)

and because f N−1
1 (y) = g(y), we get the following:

E[Rs] =
∫ W

0
y f N

2 (y) dy = E[YN
2 ]

for both types of auctions.

This proposition concludes that, on average, the expected revenue of both auc-
tions are the same, but this does not mean that the two formats are indifferent to
the seller. Let’s illustrate this case with a familiar example.

Example 2.19. Suppose N = 2 (2 bidders) and values are uniformly distributed. In
the last section we demonstrated that the symmetrical equilibrium strategy for the
first-price auction (for uniformly distributed values, see Example 2.11) is βI = 1

2 v.
If the realized values are such that 1

2 v1 > v2, we will have RI
s > RI I

s . If 1
2 v1 < v2,

then RI
s < RI I

s .

We can go a bit more in depth to compare price distributions.

Remark 2.20. Revenues of the second-price auction are more variable than rev-
enues of the first-price auction

This is quite a simple observation, but helps to understand the next results.
Supposing players behave optimally, bids in the second-price auction can go from
0 to W (all valuations are in [0, W], and a player behaving optimally would never
bid above their valuation). On the other hand, bids in the first-price auction can
go from 0 to E[Y1] < W (equilibrium bids), thus giving more variation in revenue
for the seller in the second-price.

This observation is reflected in the following more general result, but first let’s
introduce a simple concept:

Definition 2.21. Mean-preserving spread: Let F and G be distribution functions, we
say G is a mean-preserving spread (MPS) of F, if G is formed spreading out one or more
portions of F’s density function and their expected value is the same.

24



2.5 Revenue and efficiency

Proposition 2.22. Let LI and LI I be the distributions of prices (bids) in both auctions,
then LI I is a mean-preserving spread of LI .

The last result shows us that from the point of view of the seller, the second-
price is riskier than the first-price auction. If the seller is risk-averse, he is going to
opt for the first-price auction in an attempt to raise an assured amount of money
(assuming bidders are risk-neutral). On the other hand, if the seller is not risk-
averse, he will prefer the second-price to try to gain more money (although he
could also lose more. The following result applies for equilibrium prices, being LI

∗
and LI I

∗ equilibrium distribution of prices:

Proposition 2.23. Assuming iid and privative values, LI I
∗ is a mean-preserving spread of

LI
∗, being the distribution of equilibrium prices of second and first-price auctions respec-

tively.

Proof. The revenue in a second-price auction is RI I
s = YN

2 , while in the first-price
it is RI

s = β(YN
1 ) with β = βI . We have that

E[RI I
s |RI

s = p] = E[YN
2 |YN

1 = β−1(p)]

and now for all y,
E[YN

2 |YN
1 = y] = E[YN−1

1 |YN−1
1 < y] .

Using this equality, we have

E[RI I
s |RI

s = p] = E[YN−1
1 |YN−1

1 < β−1(p)] = β(β−1(p)) = p .

Because E[RI I
s |RI

s = p] = p, there exists a random variable Z such that the
distribution of RI I

s is the same as the distribution of RI
s + Z and E[Z|RI

s = p] = 0.
Like this, we have that LI I

∗ is a mean-preserving spread of LI
∗.

Let’s now focus on explaining the equality of expected revenues of the two
types of auctions.

Definition 2.24. Standard auction: An auction is said to be standard if the person who
bids the highest wins the auction (gets the auctioned object).

Standard auctions can have many formats. For example, first-price and second-
price are obviously standard. Even third-price, fourth-price... are standard. An
example of a nonstandard auction is lottery, where the chance of winning is the
ratio of the amount bid by the player between the total amount bid by all players.
The person who bids the most (buys more lottery tickets) has more chance to win,
but might not win the prize in the end.
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Theorem 2.25. Revenue-equivalence principle: Suppose valuations are iid and bidders
are risk-neutral. Any symmetric and increasing equilibrium βA of any standard auction
A, such as mA(0) = 0 (equilibrium expected payment of a bidder with value 0 is 0), yields
the same expected revenue to the seller.

Proof. Consider a standard auction A, its symmetric equilibrium βA and mA(v)
the equilibrium expected payment of a player with value v. Suppose mA(0) = 0.
Suppose all players but player 1 follow βA. Let’s consider player 1’s expected
payoff (with value v) when he bids β(z) instead of β(v) (equilibrium). Player 1
wins if β(z) > β(Y1), so wins if z > Y1. His expected payoff is:

π(z, v) = G(z)x − mA(z)

with G(z) = F(z)N−1 distribution function of Y1. Maximizing the payoff with
respect to z, we get:

d
dz

π(z, v) = g(z)x − d
dz

mA(z) .

and applying that in equilibrium z = v, we get that for all y

d
dy

mA(y) = g(y)y

so we can obtain the following:

mA(v) = mA(0) +
∫ v

0
yg(y) dy

=
∫ v

0
yg(y) dy = G(x)× E[Y1|Y1 < v] .

where we have used our hypothesis of mA(0) = 0. We can see that the right hand
side of the equality does not depend on A (the auction form), hence proved.

Example 2.26. Let’s work on the familiar example, with values uniformly dis-
tributed on [0, W], to find out the expected revenue.

We know F(v) = v
W , then G(v) = ( v

W )N−1 (calculated earlier). Now, by ap-
plying the revenue-equivalence principle, if we have a standard auction A with
mA(0) = 0, then

mA(v) =
N − 1

N
v(

v
W

)N−1

and applying expected values we get the expected payment of each player:

E[mA(v)] =
N − 1

N(N + 1)
W

26



2.5 Revenue and efficiency

Now, the expected revenue of the seller is the sum of each expected payment, but
since they are the same for the N players,

E[RA] = E[mA(v)]× N =
N − 1
N + 1

W

The revenue-equivalence principle shows the reason why the expected selling
prices of symmetric first-price and second-price are the same. This powerful result
can also help to point out equilibrium strategies in auctions that seem a bit strange
and that, at first glance, seem difficult to decipher. Let’s discuss an example of a
different auction format:

Example 2.27. All-pay auction: An all-pay auction is a first-price sealed bid auc-
tion, but with an extra rule: all players pay what they bid, no matter they win
or lose. It is a quite effective way of modelling lobbying activities, so it has a
lot of theoretical interest. Lobbying activities consist on different parties (play-
ers) spending money (bids) to influence the government into selecting or directing
some specific policies into a specific way (winning the "auction").

This type of auction is indeed standard, as the highest bidder wins the object
(policy in favor of the highest bidder). Also, a bidder with value 0 is not interested
in bidding, so m(0) = 0. Searching for a symmetric equilibrium strategy with IID
and privative values, we can apply the Revenue-Equivalence principle to find a
symmetric, increasing equilibrium of the All-pay auction. By observing that, in
this specific type of auction, the expected payment of a bidder with value m(v) is
the same as his bid, the following equality stands:

βAllPay(v) = mAllPay(v) =
∫ v

0
yg(y) dy

Let’s prove that this strategy is a symmetric equilibrium. Suppose all players but
one employ the strategy βAllPay. By bidding β(z) and having value v, is expected
payoff is:

G(z)v − β(z) = G(z)v −
∫ v

0
yg(y) dy = G(z)(v − z) +

∫ z

0
G(y) dy

where G and g = G′ are the same as in the last chapter and integration by parts is
used in the second equality.

This expected payoff is the same situation as in the first-price auction equilib-
rium proof (stated earlier in this document), so by reasoning in the same way, the
expected payoff is maximized when z = v, giving the symmetric equilibrium of
the all-pay auction:

β
AllPay
i (vi) = E[Y1|Y1 < vi]
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for i = 1, ..., N.

Remark 2.28. Because of the revenue-equivalence principle, any single-object auc-
tion which allocates the object to the highest bidder (standard auction) and mA(0) =
0, will have the same expected revenue for the seller. These include firs-price,
second-price, all-pay, third-price, n-th price... but not lottery, as it is not standard.

The seller might think of ways of raising the expected revenue, this can be
done by establishing entry fees or reserve prices, which are discussed in the next
section. These modifications might break the revenue-equivalence principle and
might not give the object to the party valuing it the most, thus breaking efficiency.

2.6 Further considerations

This section takes on some specific notions in auction theory that affect bidder
behaviour and expected revenues in both first-price and second price auctions.
Symmetric model assumptions are questioned and the consequence of elliminat-
ing some of them are studied.

2.6.1 Reserve prices

Definition 2.29. A reserve price r > 0 is a fixed monetary amount set by the selling
party so that the object auctioned will not be sold if the price determined after the auction
is lower than r.

Reserve prices are a useful tool for the seller when searching for a minimum
gain. This concept changes the expected payment of each bidder thus the expected
revenue for the seller. One can ask if symmetric equilibrium bids depend on the
introduction of a reserve price.

In a second-price auction, any bidder with valuation vi < r will not be able to
earn a positive payoff, as the object is sold at a minimum price r. Like this, the
optimal bidding strategy for the second-price auction still holds βI I

i (vi, r) = vi. On
the other hand, the expected payment of a bidder when vi ≥ r is:

mI I(vi, r) = rG(r) +
∫ vi

r
yg(y) dy .

Notice that if vi = r, then mI I(vi, r) = rG(r). Also notice that it is necessary that
vi ≥ r because of the impossibility of obtaining a gain when vi < r.
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In a first-price auction, the same reasoning about bidders with vi < r stands:
they cannot make a positive payoff. Also, a bidder with vi = r will win the
auction only if all other vj < r, j ̸= i. Then this bidder can win the auction
bidding βI

i (r) = r. The equilibrium strategy remains unaltered regarding other
aspects, so the symmetric equilibrium strategy when vi ≥ r is the following:

βI
i (vi, r) = E[maxY1, r|Y1 < vi] = r

G(r)
G(vi)

+
1

G(vi)

∫ vi

r
yg(y) dy .

As a consequence, the expected payment when vi ≥ r is:

mI(vi, r) = G(vi)βI
i (vi, r) = rG(r) +

∫ vi

r
yg(y) dy .

To sum up, a reserve price r > 0 eliminates all bidders with valuations vi < r,
as they are indifferent in participating in the auction or not.

Remark 2.30. The expected payments of both auctions are the same when intro-
ducing a reserve price r, just as in the previous sections when no reserve price was
introduced (mI(v, r) = mI I(v, r)).

2.6.2 Entry fees

Definition 2.31. An entry fee t > 0 is a fixed monetary amount set by the selling party
which bidders must pay if they want to submit any bid.

One can picture an entry fee as a ticket for participating in the auction.

This entry fee also leaves out all bidders with valuation vi < t, as they will not
be able to make a positive payoff by any means in the event of participating in the
auction.

Remark 2.32. By choosing a reserve price of r, the effect on bidder behaviour
(strategy and expected payment) is the same than by setting an entry fee t = G(r)r.
The same set of bidders will be excluded.

This remark is easily proven by substituting t = G(r)r in the expected payment
function stated earlier.

It is concluded that introducing an entry fee has an equivalent effect of a re-
serve price (although they may not be the same monetary amount).
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Remark 2.33. When in absence of entry fees (or an equivalent reserve price), the
object is always sold to the highest bidder, which is, in the symmetric model of
both auctions, the bidder with the highest valuation. This shows that both formats
(I and I I) are efficient because they allocate the object to the party that values it
the most. On the other hand, efficiency when introducing entry fees (or reserve
prices) is often questioned. Suppose the value of the object for the seller is vs > 0
and sets a reserve price of r > vs (same for entry fee). If all valuations are such
that vi < r but one valuation is such that vk > vs, then the object will stay in hands
of the bidder, meaning inefficiency because there was a bidder that valued it more.
This observation causes a trade-off between efficiency and revenue.

2.6.3 Budget constraints

During all this document, it has been assumed that all bidders can pay up to
their valuation vi, but this may not always be the case.

Definition 2.34. A budget constraint for bidder i is a monetary amount ci which indi-
cates the maximum quantity that the player can pay for the auctioned object.

Supposing every bidder i = 1, ..., N has a pair of valuation and budget con-
straint (vi, ci), one can ask which is the best strategy to follow on the two main
types of auctions (Ic and I Ic noting c for budget constraint), supposing the sym-
metrical model.

• Budget constraints in second-price auctions

Proposition 2.35. Budget constraints in second-price auctions induce a (weakly) domi-
nant strategy which is to bid:

βI Ic
i (vi, ci) = min{vi, ci}

for i = 1, ...N

Proof. Two simple observations can discard some cases. Firstly, bidding bi > ci is
dominated by bidding bi = ci. If a player wins by bidding bi > ci and the second
highest bid is below ci, bidding bi = ci would have also resulted in a win and
same payoff. But, if the second highest bid is above ci, the payoff is negative thus
it is better to bid bi = ci.

Also, if vi ≤ ci the budget constraint does not affect the behaviour of the bid-
der, so it is the same case as without constraints: the (weakly) dominant strategy
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is to bid one’s valuation bi = vi. So the only case missing is when vi > ci, that is
when the budget constraint affects a bidder’s behaviour.

Notice that if vi > ci, applying that bidding bi = ci dominates bidding bi > ci,
the only possible dominating strategies are those with bi ≤ ci, but applying the
same argument, bi = ci weakly dominates bi < ci, thus resulting in the strategy
bi = ci.

• Budget constraints in second-price auctions

Proposition 2.36. Budget constraints in first-price auctions produce a symmetric equi-
librium strategy of:

βIc
i (vi, ci) = min{γ(vi), ci}

for some increasing function γ(vi) and all i = 1, ...N.

It is obvious that if ci ≥ γ(vi), the budget constraint makes no effect, so the
function γ(vi) is the equilibrium strategy in the standard first-price auction case.
Also, it is required that γ(vi) < vi, because a bidder with vi < ci would then make
more profit by bidding less. The only case where the function γ is not specified is
when ci < γ(vi), which the most that can be said is that the equilibrium strategy
exists by the assumptions of the model.

2.6.4 Uncertain number of bidders

In the majority of real-life held auctions, bidders can usually determine how
many other bidders they are facing by counting people in the room or by check-
ing invites. However, the number of bidders in online auctions or auctions with
massive demand is virtually impossible to determine, making bidders uncertain
on how to bid (if the equilibrium bids depend on the number of attendees). All
other assumptions from the symmetrical model still hold (iid valuations, risk neu-
trality...)

Notation: The set Ω = {1, ..., N} refers to the potential bidders of the auction.
The subset Θ ⊆ Ω denotes the actual bidders of the auction.

An actual bidder i ∈ Θ assigns a probability of facing n bidders (pn), which
is their belief that there is n + 1 actual bidders in the auction. This process will
be supposed to be symmetrical, so every symmetrical bidder has the same beliefs.
This causes each pn for n = 1, ..., N − 1 to be independent of the bidder and the
valuations.
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Proposition 2.37. The revenue equivalence principle is valid with uncertain number of
bidders.

Proof. The notation used for this proof is the one defined above and in earlier
chapters. Having shown earlier the principle holds when certainty on the number
of participants, suppose now a standard auction A and its symmetric equilibrium
β with uncertain number of actual bidders. Because of this, bidders equilibrium
bids β do not depend on n.

If v is a bidder’s valuation and β(v) his equilibrium bid, suppose they bid β(z).
He will win if Y1,n < z with probability Gn(z) = F(z)n, where Y1,n is the maximum
of n values iid along a distribution function F. Doing this for each n = 0, ..., N − 1,
the probability of winning when bidding β(z) is:

P(z) =
N−1

∑
n=0

pn × Gn(z) .

As a consequence, the expected payoff of a bidder with value v and bid β(z)
is:

π(z, v) = P(z)v − m(z)

with m(z) being the expected payment. This reasoning is applicable for any stan-
dard auction, and since this equality is the same as in the proof of the revenue
equivalence principle, following the same steps the result stands.

• Uncertain number of bidders in second-price auctions

Uncertainty in the number of bidders in (I I) does not affect the equilibrium
bids, leaving the dominant strategy unaltered βI I,uncertain

i (vi) = vi for every actual
bidder.

The expected payment of an actual bidder with value v is:

mI I(v) =
N−1

∑
n=0

pn × Gn(v)× E[Y1,n|Y1,n < v] .

• Uncertain number of bidders in first-price auctions

In a first-price auction, the expected payment of an actual bidder with value v
is:

mI(v) = P(v)× β(v)

with P being defined in the last proposition.
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Because of the revenue equivalence principle, mI(v) = mI I(v) for all v:

P(v)× βI,uncertain(v) =
N−1

∑
n=0

pn × Gn(v)× E[Y1,n|Y1,n < v]

⇔ βI,uncertain(v) =
N−1

∑
n=0

pn × Gn(v)
P(v)

× E[Y1,n|Y1,n < v]

⇔ βI,uncertain(v) =
N−1

∑
n=0

pn × Gn(v)
P(v)

× βI
n(v) .

being βI
n(v) = E[Y1,n|Y1,n < v] the symmetric equilibrium strategy of a first-price

auction with n + 1 actual bidders.

This shows that the symmetric equilibrium strategy in a first-price auction
with uncertain number of bidders is the weighted average of the equilibrium bids
where the number of bidders are certain.

2.6.5 Asymmetric valuations

During all this document, it has been supposed that all valuations vi are iid
from the same distribution function F. Let’s suppose now that bidders are asym-
metric in the sense that their valuations are obtained from different distribution
functions F1, ..., FN .

• Asymmetries in second-price auctions

The equilibrium bids for asymmetric bidders still hols, it is (weakly) dominant
to bid one’s valuation β

I I,asymmetric
i (vi) = vi

• Asymmetries in first-price auctions

It can be shown that in asymmetric first-price auction an equilibrium situation
exists, but a specific universal expression of the equilibrium bid cannot be found,
thus making comparisons between both formats impossible in the majority of
the cases. Proof of these results with further explanations can be found in the
bibliography [6].

Also, I I with asymmetries is still efficient, but I is not. This breaks the revenue
equivalence principle in the case of asymmetries among bidders.

[6]: Bernard Lebrun, Université Laval, Canada, First-price auctions in the asymmetric N bidder case
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Chapter 3

Bill Auctions

This chapter discusses a particular type of auction which is carried out by most
public administrations on a regular basis, the bill auction. This auction format is
mainly used by the governments to raise money from the public by promising
some returns in a short period of time. Definitions, mechanisms and bidder be-
haviour will be presented. The section will be focused on the U.S Treasury, and all
monetary quantities are expressed in U.S. dollars ($). Because of its complexity,
some assumptions are made in order to model the auction with the tools showed
in past chapters. The main sources of information consulted are [7], [8] and [9].

3.1 Introduction

Bill auctions are the main way of publicly selling securities by the U.S. Trea-
sury (and most government treasuries in other countries). Security selling by the
U.S. government started around the 1930s. Securities sold at short-term are called
Treasury bills (T-bills), which are federal debt obligations with maturities rang-
ing from one month to one year (although securities for 5, 10 or 30 years called
notes/bonds may also be auctioned as mid-term or long-term securities). T-bills
are sold at a discount (with face value $1000) every week in an electronic bill auc-
tion, resembling a Dutch format. T-bills are considered to be one of the safest
investments because of the low maturity and the backing from the government
treasury (lowest risk). Because of this, they tend to have low returns, which range
around 5%.

[7]: Bill Auction basics, https://www.investopedia.com
[8]: U.S. Treasury Bill Auctions, https://www.treasurydirect.gov/auctions/
[9]: Auction theory: a summary with applications to treasury markets, Sanjiv Ranjan Das, Rangarajan

K. Sundaram
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When buying debt, the price the bidder pays is lower than the face value of
the bill (below par) to gain some interest at the maturity date. For example, if a
52-week T-bill is bought at a 5% discount rate, the buyer will pay $950 (price) and
then receive $1000 (face value) at maturity, which is after 52 weeks. The return for
the buyer will be 100−95

95 = 5.26% approximately. The formula to easily calculate a
T-bill price is:

P = FV ∗ (1 − d × r
360

)

Where P is the price paid, FV is the face value (normally $1000), d is the dis-
count rate (divided by 100) and r is the maturity of the bill in days. Note that
this formula is for T-bills only, which are coupon-zero (only payment the buyer
receives is at the end of the maturity). For notes and bonds (>1 year), a different
formula must be applied.

Bidders (players) in the bill auction are divided in two categories, and bid in
increments of $1000:

• Competitive bids: They determine the discount rate at which the T-bill will
be paid. These are institutional investors, limited to bid 35% each of the total
amount auctioned. 24 primary dealers (including financial institutions and
brokerages) are required to participate for the auction to be valid.

• Non-competitive bids: They are guaranteed to get the securities they bid,
but at the discount rate decided by the competitive bids. These are normally
smaller investors. Non-competitive bids cannot surpass $10 million each.

Competitive bidders are not guaranteed to receive any T-bills, as they depend
on the amount of non-competitive bids and the interest rate proposed by the other
competitive bids.

3.2 Mechanism of the auction

Firstly, the government releases an announcement stating that a bill auction is
going to be held. This announcement includes the type of securities, the date of
the auction, the issuing date, participation eligibility... but most importantly, how
much debt is going to be auctioned (how many T-bills with face value $1000).

Notation: The total amount of debt auctioned is D (in $ million).
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Once the auction starts, competitive bids are made, part of them by the pri-
mary dealers, who are authorized and obliged to participate. This bids contain
an amount of money bC

i ≤ 0.35D and a discount rate di with i = 1, ..., N, stating
how much debt and at what interest yield each player would like to buy debt. For
notation, (bC

i , di) will be a competitive bid.

At the same time, non-competitive bids are also made, which only include an
amount of debt desired to buy bNC

i lower than $10 million for i = 1, ..., M.

After all bids have been made, to make sure all non-competitive bids get their
securities, the total amount of non-competitive bids is subtracted from the total
debt offered:

D1 = D −
M

∑
i=1

bNC
j

Then, all competitive bids (bC
i , di) are ranked from lower discount rates (higher

price) to higher discount rates (lower price). The bids with lower discount rates
(thus higher price) will be accepted first because the government will prefer to
pay lower yields. T-bills are allocated starting from the higher price in descending
order (in ascending order of interest yield) until an amount of D1 has been cov-
ered, where the auction finishes because there is no more debt to be auctioned.
The discount rate of the last accepted bid d∗ is applied to all players whose bid
has been accepted. This format is called the uniform-price bill auction.

Competitive parties offering a higher discount yield di > d∗ will not get any
debt, whereas all non-competitive bids and competitive bids with di < d∗ will get
allocated the amount requested at the discount rate d∗. In an event of having more
amount of non-competitive money bid than the amount offered (D1 ≤ 0), then a
sufficient amount of competitive bids are accepted to determine the discount rate,
but this is an unusual situation.

Example 3.1. Let’s illustrate how a bill auction works with a simple example. Sup-
pose the government wants to raise $10 million in one-year T-bills at 5% discount
rate. They decide to conduct a bill auction.

The total amount of non-competitive bids adds up to $2 million.

Competitive bids (ranked by ascending rates) are the following:

Bid 1: ($2 million, 4.79%)
Bid 2: ($1.5 million, 4.87%)
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Bid 3: ($1 million, 4.96%)
Bid 4: ($0.5 million, 5.02%)
Bid 5: ($1 million, 5.06%)

Bid 6: ($2.5 million, 5.16%)
Bid 7: ($2 million, 5.20%)
Bid 8: ($2 million, 5.45%)

Note that maybe more than one bidder wants the same discount rate, so they
are jointly counted as one.

The allocation of the D = 10 million in debt is $2 million for the non-competitive
bids, so D1 = 8 million for the competitive bids. Bid 1 gets $2 million, bid 2 gets
$1.5 million... until bid 6 gets $2 million out of $2.5 million requested, because
D1 = 8 million cannot be surpassed. The best discount rate is then d∗ = 5.16%
which is the discount rate requested by bid 6.

Bid 7 and bid 8 will not get any money because they bid a price that was too
low (a discount rate too high). Meanwhile, all the competitive bids ($2 million) will
get the discount rate d∗ = 5.16%. The government will gain 10 ∗ (1− 5.16

100 ) = $9.484
million, and in 52 weeks will have to pay back D = $10 million, thus the interest
being D× d∗ = 10× 5.16% = 516, 000 for the buyers. The government had initially
planned for the bills to be at a discount rate of 5%, thus ideally getting $9.5 million,
but they ended up raising a bit less than expected because d∗ > 5%.

It has been shown that in the T-bill auction, competitive bidders face a trade-
off between biding a high discount yield (paying less for the same return after 52
weeks, thus more gain), and the chance of getting their bid accepted. If a player
bids a discount rate that is too high, it is less probable for him to get the debt
allocated. On the other hand, players do not want to bid too low because of lower
gains mixed with cost of capital, inflation...

From now on, the section will be centered in competitive bidders, particularly
in behavior regarding discount rate bidding, as the non-competitive bidders can
be left out by simply subtracting their bid, playing more of a passive role in the
T-bill auction.

3.3 Competitive bidding

This section discusses how competitive bidders (institutional parties) should
behave in terms of what discount rate should they bid.
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T-bill auctions are common value auctions, where bidders can be assumed to
be symmetric and risk-neutral, with no budget constraint and seeking to maxi-
mize expected payoff.

Suppose, after non-competitive players have been allocated their requested
money, the remaining amount of debt to allocate is D1 > 0. N competitive players
participate in the auction, so their bids will be Bi = (bi, di) for i = 1, ..., N. The
payoff of player i (at the maturity of the bill) will be:

πi(bi, di) =

{
bi × d∗ × r

360 i f di < d∗

0 i f di > d∗
.

Recall that d∗ is the highest discount rate of a winning competitive bidder.

This payoff illustrates the difference between the payment P at the moment of
the auction and the return of the face value at the maturity date. If di = d∗, payoff
will be c ∗ bi × d∗ × r

360 , with c ∈ [0, 1] depending on how much debt is left to
allocate when arriving to d∗ by the mechanism shown in the last section.

It will be supposed that all competitive bidders bid the same amount bi = b
and D1

b = M ∈ N (m is the number of players that get allocated debt), so the study
is centered in the discount rate di.

Two cases are derived from this assumption:

1. If b × N ≤ D1, the number of winners M = D1
b ≥ N, then all competitive

players (and the non-competitive) will be awarded to buy debt b at the highest
discount rate proposed by a player (d∗). This would never happen in practice as
players would tend to bid more quantity or more players would join the auction.

2. If b × N > D1, the number of winners M = D1
b < N, then some competitive

players do not get allocated debt. This case is the most common situation and the
one with theoretical interest, as there is more demand than supply, causing prices
to raise thus the discount rates bid to be lower. However, institutional parties that
invest in T-bills do not want to bid a really low discount rate because of inflation,
cost of capital...

Supposing M < N (more debt demanded than offered), players must bid the
discount rate di competitively if they want to maximize their payoff. Using the
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equation from the last section:

Pi = FV ∗ (1 − di ×
r

360
) ⇔ di = (1 − Pi

FV
)× 360

r
.

Because the face value ($1000) and the maturity of the T-bill (r days) are al-
ready determined in the auction rules, they are fixed and common for all N play-
ers, causing the discount rate to depend solely on the valuation of the price of the
bill for each player at the moment of the auction.

A good estimation of the bill price is known publicly as a common value (noted
as Pv or dv if focusing on the equivalent discount rate) taking as a guide past auc-
tions and economical situation, but analysts from institutional parties may try to
forecast its fluctuation, giving valuations which will be assumed to be distributed
in an interval [Pv − k, Pv + k] according to a distribution function F. Like this, val-
uations of the price are distributed in an interval vP

i ∈ [Pv − k, Pv + k] so equiva-
lently, valuations of the discount rate vd

i ∈ [dv − l, dv + l]. As a conclusion, bidding
a discount rate di is equivalent to bidding a price of the T-bill Pi.

Applying auction theory, this type of bill auction is in fact a uniform-price
multi-object auction with M winners and N − M losers (regarding competitive
bidders). In other words, the T-bill auction has M competitive players that get
allocated debt at the same price as the highest winning competitive bidder (d∗),
and N − M competitive players that do not get allocated debt, so their payoff will
be 0.

When M = 1, there is only one winner and N − 1 losers, which is indeed a
first-price auction. In this case, the optimal bid for a competitive player is:

βi(vP
i ) = E[Y1|Y1 < vP

i ]

where Y1 is the maximum of N − 1 iid values in [Pv − k, Pv + k].

For M ≥ 2, the auction has more than one winner, so it is not possible with the
tools shown on single-object auction theory to derive the optimal behaviour. T-bill
auctions with M ≥ fall under the scope of what are called multiunit auctions.
If there was only one winner, the uniform-price auction would be an "n-th price
auction"

Definition 3.2. A multiunit auction (or multi-object) is an auction game where two or
more homogeneous objects are auctioned simultaneously.
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In multiunit auctions, bidders bid two quantities: The amount of homogeneous
goods they want and at what price. This is exactly how players bid in the T-bill
auction, (bi, di). However, there is another format of bill auctions carried out by
other governments, which was more popular in the last century.

3.4 Uniform-price and Discriminatory-price auctions

This section briefly explains the two most important types of multiunit auc-
tions: the Uniform-price and the Discriminatory-price auctions.

In the Uniform-price auction, multiple identical goods are sold at the same
price (p∗). This is the case of T-bill auctions in the U.S., where it has been shown
that all debt allocated is "sold" at a discount rate d∗, thus at the same price p∗.

On the other hand, the Discriminatory-price auction sells multiple identical
goods at different prices to each winning bid. In the T-bill auction case, the payoff
of a winning competitive bid would be:

πi(bi, di) =

{
bi × di × r

360 i f di < d∗

0 i f di > d∗
.

Notice that the payoff still depends on having di < d∗ as before, but in the
event of winning, the discount rate proposed by the own player applies to their
payoff function, instead of every winner having the same discount d∗. If di = d∗,
it works the same way as in the Uniform-price auction. A real example of a
Discriminatory-price auction is the Dutch Flower Auction, the largest flower auc-
tion worldwide.

These two auction formats are more complex to model and study their equilib-
rium strategies, but it is still possible with multiunit auction theory. Thanks to the
works of Sushil Bikhchandani and Chi-fu Huang ([10], [11]), a result shows that
Uniform-price auction is superior (in terms of efficiency) to the Discriminatiry-
price auction, even with forward/resale markets (secondary pre or post-auction
markets). Nevertheless, this result is broken when the goods auctioned are divisi-
ble, meaning they can be partitioned in smaller amounts. Securities auctions allow
this division of goods, so the result does not stand.

[10]: The Economics of Treasury Securities Markets, Sushil Bikhchandani and Chi-fu Huang, UCLA,
MIT

[11]: Auctions with Resale Markets: An Exploratory Model of Treasury Bill Markets, Sushil Bikhchan-
dani and Chi-fu Huang, UCLA, MIT
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