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“The algorithm is very opinionated:
the walls have to match the bedsheets.

It does not do what we want; it has its

’

own rules.’

D.B.
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PREFACE AND PUBLICATIONS

The research presented in this thesis was conducted at the Catalonia Institute for Energy Research
(IREC) in the Solar Energy Materials and Systems (SEMS) research group, located in Barcelona,
Spain, between the years 2019 and 2023. The work was carried out as part of the research line
focused on the development and implementation of innovative, high-throughput research methods
for the study of photovoltaic materials and devices, with an emphasis on industrial application of
the results. The primary objective of this thesis was to develop and use Artificial Intelligence based
on Machine Learning algorithms combined with Combinatorial Analysis to provide new tools for
the accelerated research of chalcogenide-based technologies, suitable for thin film photovoltaics
and other emerging technologies applications. Specifically, the research is focused on the
development and implementation of semi-autonomous optoelectronic and spectroscopic data
analysis with Artificial Intelligence methodologies to accelerate the investigation of fundamental
physicochemical properties of photovoltaic materials and devices, and making tools available for
scientific community and photovoltaic industry to use Artificial Intelligence in their research,
workflows and production. The main idea behind the development of such a tools is based on their
possibility to provide deeper understanding of the complex behavior of thin film photovoltaic
devices, and information about the impact of fabrication parameters on the device performance
and efficiency loss/failure mechanisms in a faster way, as well as to reduce the lab-to-market times.

During the course of the doctoral thesis, the performed work and the results obtained have allowed
the publication of 4 articles in peer-reviewed journals, 2 of them in high impact factor Q1 journals
and 2 articles as open-source and open-access software in a peer-review journal. These 4 articles
are a direct result of the work carried out and in alignment with the objectives of this thesis.
Additionally, 2 other articles were published with the participation of Enric Tomas Grau Luque
(ETGL) as coauthor. The full list of the publications in question, and the role of ETGL, is as
follows:

e Grau-Luque, E., Guc, M., Becerril-Romero, 1., [zquierdo-Roca, V., Pérez-Rodriguez, A.,
Bolt, P., Van den Bruele, F., & Ruhle, U. (2022). Thickness evaluation of AlOx barrier
layers for encapsulation of flexible PV modules in industrial environments by normal
reflectance and machine learning. Progress in Photovoltaics: Research and Applications,
30(3), 229-239. https://doi.org/10.1002/PIP.3478

Using the Contributor Role Taxonomy CRediT, ETGL work can be described as:

Conceptualization, Data curation, Formal Analysis, Investigation, Methodology, Software,
Visualization, Writing — original draft.
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Grau-Luque, E., Anefnaf, 1., Benhaddou, N., Fonoll-Rubio, R., Becerril-Romero, I.,
Aazou, S., Saucedo, E., Sekkat, Z., Perez-Rodriguez, A., Izquierdo-Roca, V., & Guc, M.
(2021). Combinatorial and machine learning approaches for the analysis of Cu2ZnGeSes:

influence of the off-stoichiometry on defect formation and solar cell performance. Journal
of Materials Chemistry A, 9 (16), 10466—10476. https://doi.org/10.1039/d1ta01299a

Using the Contributor Role Taxonomy CRediT, ETGL work can be described as: Data
curation, Formal Analysis, Software, Visualization, Writing — original draft.

Grau-Luque, E., Atlan, F., Becerril-Romero, I., Perez-Rodriguez, A., Guc, M., &
Izquierdo-Roca, V. spectrapepper: A Python toolbox for advanced analysis of
spectroscopic data for materials and devices. J. Open Source Software. 6, 3781 (2021).
https://doi.org/10.21105/joss.03781

Using the Contributor Role Taxonomy CRediT, ETGL work can be described as:
Conceptualization, Data curation, Formal Analysis, Methodology, Software, Visualization,
Writing — original draft.

Grau-Luque, E., Becerril-Romero, 1., Perez-Rodriguez, A., Guc, M., & Izquierdo-Roca,
V. pudu: A Python library for agnostic feature selection and explainability of Machine
Learning spectroscopic problems. Journal of Open Source Software, 8(92), 5873,
https://doi.org/10.21105/joss.05873

Using the Contributor Role Taxonomy CRediT, ETGL work can be described as:
Conceptualization, Data curation, Formal Analysis, Methodology, Software, Visualization,
Writing — original draft.

Publications from collaborations:

Fonoll-Rubio, R., Paetel, S., Grau-Luque, E., Becerril-Romero, 1., Mayer, R., Pérez-
Rodriguez, A., Guc, M., & Izquierdo-Roca, V. (2022). Insights into the Effects of RbF-
Post-Deposition Treatments on the Absorber Surface of High Efficiency Cu(In,Ga)Se:
Solar Cells and Development of Analytical and Machine Learning Process Monitoring
Methodologies Based on Combinatorial Analysis. Advanced Energy Materials, 2103163.

Using the Contributor Role Taxonomy CRediT, ETGL work can be described as:
supporting data curation, supporting formal analysis, supporting methodology, Software.
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e Fonoll-Rubio, R., Becerril-Romero, 1., Vidal-Fuentes, P., Grau-Luque, E., Atlan, F.,
Perez-Rodriguez, A., Izquierdo-Roca, V., & Guc, M. (2022). Combinatorial Analysis
Methodologies for Accelerated Research: The Case of Chalcogenide Thin-Film
Photovoltaic Technologies. Solar RRL, 2200235.

Using the Contributor Role Taxonomy CRediT, ETGL work can be described as:
supporting data curation, supporting formal analysis, supporting methodology, Software.

The present doctorate thesis document is structured in 5 chapters including conclusions, and 2
additional sections for references and annexes. These chapters and sections are briefly described
below:

Chapter 1 — Introduction: This chapter provides an overview of the current state of the world in
terms Climate Change and energy production/consumption, including the role of photovoltaic
technologies within this context. An overview of some photovoltaic technologies is presented,
including their degree of maturity, advantages, disadvantages, and their potential for further
development. The chapter provides an examination of thin film technology, including its unique
properties and its alignment with the energy decarbonization roadmap. The chapter is continued
with detailed description of the Combinatorial Analysis concepts and its possibility to be applied
for thin film photovoltaic technologies. Furthermore, the chapter delves into the utilization of
Artificial Intelligence and Machine Learning in photovoltaic materials and devices research,
discussing the current state of the field, as well as its future prospects. The aim of this chapter is
to provide a comprehensive understanding of the current state of the art of photovoltaic technology
with focus on thin film photovoltaics, its potential for future growth, and the role of Combinatorial
Analysis, Artificial Intelligence and Machine Learning in advancing the field. Finally, this chapter
ends by identifying the gaps and needs of the field and explaining how this align with the objectives
of this work.

Chapter 2 — Methodology: This chapter provides a comprehensive overview of the methodology
proposed and used in the current work. These include a detailed workflow for the methodology
with description of all necessary steps for its implementation, details about the combinatorial
samples preparation, and description of the characterization techniques together with the
equipment and apparatus used. The chapter contains information about the work implemented for
the automation of the measurements and data treatment procedures. All the specific steps
performed in the present work related to data conditioning, fusion, and traceability are described
together with details about the data analysis approaches and the specific algorithms and
programming libraries used. Finally, a description for each of the libraries’ structure and working
principles is shown to better highlight the methodology behind their development.
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Chapter 3 — Summary of results through publications: This chapter begins with a
contextualization of the work carried out, providing a general introduction that highlights the
significance and relevance of the research conducted. This introduction provides cohesion and
continuity to the chapter and serves as a valuable reference point for readers to understand the
broader implications of the research. The chapter then presents the four scientific articles published
in peer-review journals, which demonstrate the innovative contributions and advancements made
in the field. Each article is presented in a clear and concise manner, highlighting the key findings
and implications of the research.

The first article, Thickness Evaluation of AlOx Barrier Layers for Encapsulation of Flexible PV
Modules in Industrial Environments using Normal Reflectance and Machine Learning, describes
and demonstrates a novel characterization methodology based on normal reflectance
measurements and Machine Learning algorithms. This methodology enables precise, low-cost, and
scalable assessment of the thickness of AlOx nanometric layers, which are added to flexible
photovoltaic devices based on such materials as Cu(In,Ga)Se> (CIGS) and perovskites, to improve
solar modules protection through their low water vapor transmission rate. This solution is
particularly suitable for roll-to-roll industrial production lines. However, precise control of the
thickness of the AlOx layers is crucial to ensure an effective water barrier performance. Current
methods for evaluating such nanometric layers are costly and complex to implement in industrial
environments. The proposed methodology is applied to determine the thickness of AIOx nanolayers
deposited on three different substrates relevant for the photovoltaic industry: monocrystalline Si,
Cu(In,Ga)Se; flexible modules, and polyethylene terephthalate (PET) flexible encapsulation foil.
The methodology demonstrates sensitivity of <10 nm and acquisition times of <100 ms, making it
compatible with industrial monitoring applications. Additionally, a specific design for in-line
integration of a normal reflectance system into a roll-to-roll production line for thickness control
of nanometric layers is proposed.

The second article, Combinatorial and machine learning approaches for the analysis of
CuzZnGeSey: influence of the off-stoichiometry on defect formation and solar cell performance,
presents a combinatorial approach for the analysis of CZGS (CuxZnGeSes) solar cells. These solar
cells are complex systems where changes in one parameter can result in changes in the entire
system and, as a consequence, in the overall performance of the devices. In order to overcome the
limitations of this promising earth-abundant photovoltaic technology, analyses that take into
account this complexity are necessary. The article describes the analysis of a compositional graded
sample containing almost 200 solar cells with different Zn/Ge compositions using X-ray
fluorescence and Raman spectroscopy. The results are correlated with the optoelectronic
parameters of the different cells, providing a deep understanding of the stoichiometric limits and
point defects formation in the CZGS compound and the influence of these parameters on the
performance of the devices. Intertwined connections between the compositional, vibrational, and
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optoelectronic properties of the cells are revealed using a complex analytical approach. The study
is further extended by using a Machine Learning algorithm, which confirms the correlation
between the properties of the CZGS compound and the optoelectronic parameters, and also allows
proposing a methodology for device performance prediction that is compatible with both research
and industrial process monitoring environments. This work not only provides valuable insights for
understanding and further developing the CZGS photovoltaic technology, but also gives a practical
example of the potential of Combinatorial Analysis and Machine Learning for the study of
complex systems in materials research.

The third article, spectrapepper: A Python toolbox for advanced analysis of spectroscopic data
for materials and devices, introduces spectrapepper, a Python library designed to streamline the
analysis of complex high-tech materials and devices, such as multi-layered thin film solar cells,
using spectroscopy. It integrates several functions for the acquisition, processing, analysis and
visualization of spectroscopic data. Spectrapepper enables the design of automated spectroscopy
systems and big data analysis, significantly reducing development times for new materials. It has
comprehensive documentation and examples are available on online, facilitating its access and
adoption in the material science community.

The fourth, pudu: A Python library for agnostic feature selection and explainability of Machine
Learning spectroscopic problems, introduces pudu, a Python library designed to enhance the
interpretability of Machine Learning models in spectroscopic data analysis, widely applicable in
fields like PV, aiming to increase the transparency and scientific impact of Machine Learning
results. It offers four new methods: Importance, Speed, Synergy, and Re-activations, each
quantifying the impact of spectral feature changes on model predictions. Suitable for both 1D and
2D classification and regression problems, pudu provides flexibility and localized explanations. It
integrates with the main platforms for application of Machine Learning algorithms such as scikit-
learn, keras, and pytorch.

Chapter 4 — Further Exploratory Experiments: In this chapter, side experiments that were not
part of any publication are presented. In particular, experiments that follow the presented papers
are explained and discussed, being a natural follow up and extension of the methodology presented
in Chapter 2 and used in Chapter 3. This section serves as the next steps to be followed in order to
further advance in the development of thin film photovoltaic devices with the aid of Machine
Learning. Multivariate Non-Linear Regressions, Radial Basis Function Networks, Convolutional
Neural Networks, and consequent explanation attempts are discussed in this section.

Chapter 5 — Conclusions: In this final chapter of the thesis, a comprehensive summary of the
research conducted is provided, focusing on the key findings and conclusions drawn from the
study. The chapter begins with an overview of the research objectives and methodology,
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highlighting the major contributions made by the research. The main conclusions of the work are
then presented, with an evaluation of the extent to which the research objectives were achieved.
The significance and implications of the findings are also discussed, placing them in the context
of the existing literature and highlighting their potential impact on the field.

References: This section compiles all the references use in this work.
Annexes: This section contains additional information that was not considered to be vital to
incorporate in the main body of this work. The annexes mainly present screenshot of the software

developed during the doctoral program with the involvement of ETGL and used for different
applications.
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PREFACIO Y PUBLICACIONES

La investigacion presentada en esta tesis se llevo a cabo en el Instituto de Investigacion en Energia
de Catalufia (IREC) en el grupo de investigacion de Materiales y Sistemas de Energia Solar
(SEMS), ubicado en Barcelona, Espafia, entre los anos 2019 y 2023. El trabajo se realizdo como
parte de la linea de investigacion centrada en el desarrollo e implementaciéon de métodos
innovadores de alto rendimiento para el estudio de materiales y dispositivos fotovoltaicos, con
énfasis en la aplicacion industrial. El objetivo principal de esta tesis fue desarrollar y utilizar
Inteligencia Artificial basada en algoritmos de Aprendizaje de Maquinas combinados con Analisis
Combinatorio para proporcionar nuevas herramientas para la investigacion acelerada de
tecnologias basadas en calcogenos, adecuadas para tecnologia fotovoltaica de capa fina y otras
aplicaciones de tecnologias emergentes. Especificamente, el trabajo se enfoca en el desarrollo e
implementacion de andlisis semi-autonomo de datos optoelectronicos y espectroscopicos con
metodologias de Inteligencia Artificial para acelerar la investigacion de propiedades
fisicoquimicas fundamentales de materiales y dispositivos fotovoltaicos, y poner a disposicion
herramientas para la comunidad cientifica y la industria fotovoltaicos para utilizar la Inteligencia
Artificial en sus investigaciones, flujos de trabajo y produccion. La idea principal detras del
desarrollo de una herramienta como esta se basa en la posibilidad de proporcionar una comprension
mas profunda del comportamiento complejo de los dispositivos fotovoltaicos de capa fina, e
informacion sobre el impacto de los parametros de fabricacion en el rendimiento del dispositivo y
los mecanismos de pérdidas de eficiencia de manera mas rapida, ademas de reducir los tiempos de
laboratorio al mercado.

Durante el transcurso de la tesis doctoral, el trabajo realizado y los resultados obtenidos
permitieron la publicacion de 4 articulos en revistas peer-review, 2 de ellos en revistas de alto
factor de impacto Q1 y 2 articulos como software de codigo y acceso abierto en revistas peer-
review. Estos 4 articulos son resultado directo del trabajo realizado y en alineacion con los
objetivos de esta tesis. Ademas, se publicaron 2 otros articulos con la participacion de Enric Tomas
Grau Luque (ETGL) como coautor. La lista completa de las publicaciones en cuestion y el rol de
ETGL es la siguiente:

* Grau-Luque, E., Guc, M., Becerril-Romero, 1., Izquierdo-Roca, V., Pérez-Rodriguez, A.,
Bolt, P., Van den Bruele, F., & Ruhle, U. (2022). Thickness evaluation of AlOx barrier
layers for encapsulation of flexible PV modules in industrial environments by normal
reflectance and machine learning. Progress in Photovoltaics: Research and Applications,
30(3), 229-239. https://doi.org/10.1002/PIP.3478
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Usando la Taxonomia de Roles de Contribuyentes CRediT, el trabajo de ETGL se puede describir
como: Conceptualizacion, Curacion de Datos, Andlisis Formal, Investigacion, Metodologia,
Software, Visualizacion, Escritura - Borrador Original.

* Grau-Luque, E., Anefnaf, 1., Benhaddou, N., Fonoll-Rubio, R., Becerril-Romero, I.,
Aazou, S., Saucedo, E., Sekkat, Z., Perez-Rodriguez, A., Izquierdo-Roca, V., & Guc, M.
(2021). Combinatorial and machine learning approaches for the analysis of Cu2ZnGeSe4:

influence of the off-stoichiometry on defect formation and solar cell performance. Journal
of Materials Chemistry A, 9 (16), 10466—10476. https://doi.org/10.1039/d1ta01299a

Usando la Taxonomia de Roles de Contribuyentes CRediT, el trabajo de ETGL se puede describir
como: Curacion de Datos, Analisis Formal, Software, Visualizacion, Escritura - Borrador Original.

* Grau-Luque, E., Atlan, F., Becerril-Romero, 1., Perez-Rodriguez, A., Guc, M., &
Izquierdo-Roca, V. spectrapepper: A Python toolbox for advanced analysis of
spectroscopic data for materials and devices. J. Open Source Software. 6, 3781 (2021).
https://doi.org/10.21105/j0ss.03781

Usando la Taxonomia de Roles de Contribuyentes CRediT, el trabajo de ETGL se puede describir
como: Conceptualizacion, Curacion de Datos, Analisis Formal, Metodologia, Software,
Visualizacion, Escritura - Borrador Original.

* Grau-Luque, E., Becerril-Romero, 1., Perez-Rodriguez, A., Guc, M., & Izquierdo-Roca,
V. pudu: A Python library for agnostic feature selection and explainability of Machine
Learning spectroscopic problems. Journal of Open Source Software, 8(92), 5873,
https://doi.org/10.21105/joss.05873

Usando la Taxonomia de Roles de Contribuyentes CRediT, el trabajo de ETGL se puede describir
como: Conceptualizacion, Curacion de Datos, Analisis Formal, Metodologia, Software,
Visualizacion, Escritura - Borrador Original.

Publicaciones de colaboraciones:

» Fonoll-Rubio, R., Paetel, S., Grau-Luque, E., Becerril-Romero, 1., Mayer, R., Pérez-
Rodriguez, A., Guc, M., & Izquierdo-Roca, V. (2022). Insights into the Effects of RbF-
Post-Deposition Treatments on the Absorber Surface of High Efficiency Cu(In,Ga)Se2
Solar Cells and Development of Analytical and Machine Learning Process Monitoring
Methodologies Based on Combinatorial Analysis. Advanced Energy Materials, 2103163.
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Usando la Taxonomia de Roles de Contribuyentes CRediT, el trabajo de ETGL se puede describir
como: curacion de datos de apoyo, analisis formal de apoyo, metodologia de apoyo, software de

apoyo.

* Fonoll-Rubio, R., Becerril-Romero, 1., Vidal-Fuentes, P., Grau-Luque, E., Atlan, F.,
Perez-Rodriguez, A., Izquierdo-Roca, V., & Guc, M. (2022). Combinatorial Analysis
Methodologies for Accelerated Research: The Case of Chalcogenide Thin-Film
Photovoltaic Technologies. Solar RRL, 2200235.

Usando la Taxonomia de Roles de Contribuyentes CRediT, el trabajo de ETGL se puede describir
como: curacion de datos de apoyo, analisis formal de apoyo, metodologia de apoyo, software de

apoyo.

El presente documento de tesis doctoral est4 estructurado en 5 capitulos que incluyen conclusiones,
y 2 secciones adicionales para referencias y anexos. Estos capitulos y secciones se describen
brevemente a continuacion:

Capitulo 1 - Introduccion: Este capitulo proporciona una vision general del estado actual del
mundo en términos de Cambio Climatico y produccion y consumo de energia, incluyendo el papel
de las tecnologias fotovoltaicas dentro de este contexto. Se presenta una vision general de algunas
tecnologias PV, incluyendo su grado de madurez, ventajas, desventajas y su potencial para su
desarrollo en el futuro. El capitulo proporciona una descripcion de la tecnologia de capa fina,
incluyendo sus propiedades tnicas y su alineacion con la hoja de ruta de descarbonizacion
energética. El capitulo continua con una descripcion detallada de los conceptos de Analisis
Combinatorio y su posibilidad de ser aplicado a tecnologias fotovoltaica de capa fina. Ademas, el
capitulo profundiza en la utilizacion de Inteligencia Artificial y Aprendizaje de Maquinas en la
investigacion de materiales y dispositivos PV, discutiendo el estado actual del campo, asi como
sus perspectivas futuras. El objetivo de este capitulo es proporcionar una comprension integral del
estado actual de la tecnologia fotovoltaica con un enfoque en materiales de capa fina, su potencial
para un crecimiento futuro y el papel de Analisis Combinatorio, Inteligencia Artificial y
Aprendizaje de Maéquinas en el avance del campo. Finalmente, este capitulo concluye
identificando las brechas y necesidades del campo y explicando como esto se alinea con los
objetivos de este trabajo.

Capitulo 2 - Metodologia: Este capitulo proporciona una vision general de la metodologia
propuesta y utilizada en el trabajo desarrollado. Esto incluye un flujo de trabajo detallado para la
metodologia con una descripcion de todos los pasos necesarios para su implementacion, detalles
sobre la preparacion de muestras combinatorias y descripcion de las técnicas de caracterizacion
junto con los equipos y aparatos utilizados. El capitulo contiene informacion sobre el trabajo
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implementado para la automatizacion de las técnicas de caracterizacion y los procedimientos
preliminares de tratamiento de datos. Se describen todos los pasos especificos realizados
relacionados con el acondicionamiento, fusion y trazabilidad de datos, junto con detalles sobre los
enfoques de andlisis de datos y los algoritmos y librerias de programacion especificos utilizados.
Finalmente, se incluye una descripcion de la estructura y principios de funcionamiento de cada
libreria, para asi destacar de mejor manera la metodologia de desarrollo de cada una.

Capitulo 3 - Resumen de resultados a través de publicaciones: Este capitulo comienza con una
contextualizacion del trabajo realizado, proporcionando una introduccion general que destaca la
importancia y relevancia de la investigacion realizada. Esta introduccion proporciona cohesion y
continuidad al capitulo y sirve como un punto de referencia valioso para que los lectores
comprendan las implicaciones mas amplias de la investigacion. Luego, el capitulo presenta los
cuatro articulos cientificos publicados, que demuestran las contribuciones innovadoras y los
avances realizados en el campo. Cada articulo se presenta de manera clara y concisa, destacando
los hallazgos clave y las implicaciones del trabajo.

El primer articulo, Thickness evaluation of AlOx barrier layers for encapsulation of flexible PV
modules in industrial environments by normal reflectance and machine learning, describe y
demuestra una novedosa metodologia de caracterizacion basada en medidas de reflectancia normal
y algoritmos de Aprendizaje de Maquinas. Esta metodologia permite la evaluacion precisa,
econdmica y escalable del espesor de capas nanométricas de AlOx, que se agregan a dispositivos
fotovoltaicos flexibles basados en materiales como Cu(In,Ga)Se> y perovskitas, para mejorar la
proteccion de los modulos solares a través de su baja tasa de transmision de vapor de agua. Esta
solucion es especialmente adecuada para lineas de produccion industriales de roll-to-roll. Sin
embargo, el control preciso del espesor de las capas de AlOx es crucial para garantizar un
rendimiento efectivo como barrera contra el agua. Los métodos actuales para evaluar dichas capas
nanomeétricas son costosos y complejos de implementar en entornos industriales. La metodologia
propuesta se aplica para determinar el espesor de capas nanométricas de AlOx depositadas en tres
sustratos diferentes relevantes para la industria PV: silicio monocristalino, médulos flexibles de
Cu(In,Ga)Se; y lamina de encapsulacion flexible de tereftalato de polietileno (PET). La
metodologia demuestra una sensibilidad de <10 nm y tiempos de adquisicion de <100 ms, lo que
la hace compatible con aplicaciones de monitoreo industrial. Ademas, se propone un disefio
especifico para la integracion en linea de un sistema de reflectancia normal en una linea de
produccion de roll-to-roll para el control del espesor de capas nanométricas.

El segundo articulo, Combinatorial and machine learning approaches for the analysis of
CuxZnGeSey. influence of the off-stoichiometry on defect formation and solar cell performance,
presenta un enfoque combinatorio para el analisis del material CZGS (CuxZnGeSes). Las celdas
solares, basadas en compuestos quaternarios kesterita como CZGS, son sistemas complejos en los
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que cambios en un pardmetro pueden resultar en cambios en todo el sistema y, como consecuencia,
en el rendimiento general de los dispositivos. Para superar las limitaciones de esta prometedora
tecnologia fotovoltaica abundante en elementos de tierras raras, son necesarios analisis que tengan
en cuenta esta complejidad. El articulo describe el analisis de una muestra que contiene casi 200
celdas solares con diferentes composiciones de Zn/Ge utilizando fluorescencia de rayos X y
espectroscopia Raman. Los resultados se correlacionan con los parametros optoelectronicos de las
diferentes celdas, proporcionando una comprension profunda de los limites estequiométricos y la
formacion de defectos puntuales en el compuesto CZGS y la influencia de estos parametros en el
rendimiento de los dispositivos. Se revelan conexiones entrelazadas entre las propiedades
composicionales, vibracionales y optoelectronicas de las celdas mediante un enfoque analitico
complejo. El estudio se amplia aun mas mediante el uso de un algoritmo de Aprendizaje de
Maiquinas, que confirma la correlacion entre las propiedades del compuesto CZGS y los
parametros optoelectronicos, y también permite proponer una metodologia para la prediccion del
rendimiento del dispositivo compatible tanto con la investigacion como con los entornos de
monitoreo de procesos industriales. Este trabajo no solo proporciona informacion valiosa para
comprender y desarrollar atin mas la tecnologia fotovoltaica CZGS, sino que también da un
ejemplo practico del potencial de Analisis Combinatorio y Aprendizaje de Maquinas para el
estudio de sistemas complejos en la investigacion de materiales.

El tercer articulo, spectrapepper: A Python toolbox for advanced analysis of spectroscopic data
for materials and devices presenta spectrapepper, una libreria para Python disefiada para agilizar
el analisis de materiales y dispositivos, como celdas solares de capa fina, utilizando espectroscopia.
Integra varias funciones para la adquisicion, procesamiento, andlisis y visualizacion de datos
espectroscopicos. Spectrapepper permite el diseiio de sistemas de espectroscopia automatizados y
el andlisis de grandes datos, reduciendo significativamente los tiempos de desarrollo de nuevos
materiales. Tiene documentacion exhaustiva y ejemplos disponibles en linea, lo que facilita su
adopcién en la comunidad cientifica de ciencia de materiales.

El cuarto articulo, pudu: A Python library for agnostic feature selection and explainability of
Machine Learning spectroscopic problems, presenta una libreria para Python disefiada para
mejorar la interpretacion de modelos de Aprendizaje de Mdaquinas en el andlisis de datos
espectroscopicos. Tiene como objetivo aumentar la transparencia e impacto cientifico de los
resultados de Aprendizaje de Maquinas. Ofrece cuatro nuevos métodos: Importancia, Velocidad,
Sinergia y Re-activaciones, cada uno cuantificando el impacto de los cambios en las caracteristicas
espectrales en las predicciones del modelo. Adecuado tanto para problemas de clasificacion y
regresion 1D como 2D, pudu proporciona flexibilidad y explicaciones localizadas. Se integra con
las principales plataformas para la aplicacion de algoritmos de Aprendizaje de Maquinas como
scikit-learn, keras y pytorch.
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Capitulo 4 - Experimentos Exploratorios Adicionales: En este capitulo se presentan
experimentos secundarios que no formaron parte de ninguna publicacion. En particular, se
explican y discuten experimentos que siguen a los articulos presentados, siendo una continuacion
natural y extension de la metodologia presentada en el Capitulo 2 y utilizada en el Capitulo 3. Esta
seccion muestra los siguientes pasos a seguir para avanzar atin mas en el desarrollo de dispositivos
fotovoltaicos de capa fina con la ayuda de Inteligencia Artificial. En esta seccion se discuten
Regresiones no Lineales Multivariadas, Redes de Funcion de Base Radial, Redes Neuronales
Convolucionales y los intentos de explicacion consecuentes.

Capitulo 5 - Conclusiones: En este capitulo final, se proporciona un resumen integral de la
investigacion realizada, centrandose en los hallazgos clave y conclusiones extraidas del trabajo. El
capitulo comienza con una vision general de los objetivos de investigacion y la metodologia,
destacando las principales contribuciones realizadas por la investigacion. Luego se presentan las
principales conclusiones del trabajo, con una evaluacion del grado en que se lograron los objetivos
de investigacion. También se discuten la importancia y las implicaciones de los hallazgos,
situdndolos en el contexto de la literatura existente y resaltando su impacto potencial en el campo.

Referencias: Esta seccion recopila todas las referencias utilizadas en este trabajo.
Anexos: Esta seccion contiene informacion adicional que no se consider6 esencial para incorporar
en el cuerpo principal de este trabajo. Los anexos principalmente presentan capturas de pantalla

del software desarrollado durante el programa de doctorado con la participacion de ETGL y
utilizado para diferentes aplicaciones.
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1. INTRODUCTION

1.1 Motivation

Climate change (CC) has become a critical global issue with far-reaching consequences for the
environment, human society, and the economy. It is primarily driven by the increasing
concentration of greenhouse gases (GHGs), particularly CO», in the atmosphere due to human
activities such as fossil fuel combustion, deforestation, and industrial processes [1]. The average
global temperature has risen by approximately 1.2°C since the pre-industrial era. This is illustrated
in Figure 1-1A where a pronounced spike in temperature is reported between 1850 to 2020. This
rapid temperature increase has caused a wide range of changes in the climate system, including
more frequent and severe extreme weather events, such as heatwaves, droughts, floods, and storms,
as well as sea-level rise, ocean acidification, and alterations in ecosystems and biodiversity
[2][3][4]. Climate models project that global temperatures could rise by 1.5°C to 4.8°C by the end
of the 21* century, depending on future GHG emissions scenarios. These temperature increases
will exacerbate the adverse impacts of CC, including water scarcity, reduced agricultural
productivity, and increased risks to human health and well-being [5][6][7].

Changes in global surface temperature relative to 1850-1900

(a) Change in global surface temperature (decadal average) {b) Change in global surface temperature (annual average) as observed and
as reconstructed (1-2000) and observed (1850-2020) simulated using human & natural and only natural factors (both 1850-2020)
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Figure 1-1: A) Global surface temperature change from years 1 to 2020 and B) Past 170 years of
global surface temperature change as observed compared to simulated cases of natural-only and
humans & natural causes. Figure extracted from [8].

The impacts of CC on the economy are significant and multifaceted, with potential consequences
for productivity, infrastructure, and various economic sectors. CC can lead to substantial economic
costs, particularly if global temperatures rise by more than 2°C above pre-industrial levels. These
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costs can manifest as losses in productivity due to heat stress, reduced agricultural yields, and
disruptions to supply chains [9]. Furthermore, the increased frequency and severity of extreme
weather events can result in considerable infrastructure damage, necessitating costly repairs and
replacements [10]. Economic sectors that are particularly vulnerable to the effects of CC include
agriculture, fisheries, and tourism, which often rely heavily on climate-sensitive natural resources
[7][11]. For instance, crop yields are expected to decline by 10-25% in some regions, with the
most severe reductions occurring in developing countries, where food security is already a pressing
concern [5]. Also, CC has been linked to declines in crop yields and increased risks of crop failure,
threatening food security and the livelihoods of agricultural workers [5][6].

The effects of CC on ecosystems are profound and diverse, with wide-ranging consequences for
species, habitats, and the vital roles they play. As global temperatures continue to rise, ecosystems
are experiencing shifts in their distribution, composition, and function, often with cascading effects
on biodiversity [4][12][8]. One of the most evident impacts of CC on ecosystems is the alteration
of species’ geographic ranges, as they move poleward or to higher elevations in search of more
suitable habitats [4]. This can lead to the fragmentation and loss of habitat for various species,
resulting in declines in their population sizes and increased risks of local or global extinctions [13].
Additionally, CC can exacerbate existing threats to ecosystems, such as habitat loss due to land-
use change, pollution, and the spread of invasive species [14]. Changes in temperature and
precipitation patterns, as well as the increased frequency of extreme weather events, can also
disrupt the timing of key ecological processes, such as flowering, breeding, and migration [3].
These disruptions can cause mismatches between species and their resources, leading to declines
in reproductive success and population viability [15]. Furthermore, CC can alter the structure and
functioning of ecosystems, affecting processes like nutrient cycling, primary productivity, and
decomposition, which in turn can influence ecosystem resilience and the provision of essential
services [16]. The degree of these effects varies between industries, as shown in Figure 1-2, which
also shows the confidence in human contribution to CC. For instance, crop production in Africa
have seen a negative impact due to CC, with high confidence of human contribution.
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Figure 1-2: Observed impacts of climate change on human systems. The impacts are classified
according to the confidence in the attribution to CC (color) and by increasing adverse impact (-
sign), positive impact (+ sign), and adverse and positive impacts (£ sign). Figure extracted from

[1].

Marine ecosystems are particularly vulnerable to the impacts of CC, as rising ocean temperatures,
ocean acidification, and sea level rise pose significant threats to the health and productivity of
these systems [11]. Coral reefs, for instance, are at heightened risk of bleaching events and mass
die-offs due to warming waters, with severe implications for the rich biodiversity they support and
the millions of people who depend on them for food, income, and coastal protection [2]. Given the
myriad impacts of CC on ecosystems, it is crucial to implement adaptive management strategies
that promote the resilience and conservation of these vital natural resources. Investing in
ecosystem-based adaptation measures, such as the restoration and protection of habitats, the
establishment of ecological corridors, and the integration of biodiversity conservation into land-
use planning and decision-making is paramount to mitigate these effects [1][8].

These kind of disruptions in climate patterns and effects in the environment, ecosystems, and
economy, result in job losses, reduced income, and heightened social instability in affected regions
[17]. Moreover, CC is projected to lead to the displacement of millions of people due to the
increased frequency and intensity of natural disasters, as well as the loss of habitable land [9]. An
important factor of the latter is the loss of potable water and increasing sea level that threatens
most of habitable land. Glaciers and polar ice caps are melting at an accelerating rate, contributing
to an increased risk of flooding in coastal areas [10]. Moreover, sea levels have risen by about 20
centimeters since 1900, and the rate of rise has accelerated in recent decades, posing a threat to
coastal communities and ecosystems [3]. Consequently, CC poses significant challenges to
achieving sustainable development and poverty alleviation goals, especially in vulnerable regions
and communities [9]. To address these challenges, it is essential to implement comprehensive
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adaptation and mitigation strategies, such as improving water resource management, promoting
climate-resilient agriculture, and enhancing disaster risk reduction efforts [2].

In response to minimize these CC effects, a quick and robust transition to low-carbon and climate-
resilient economy, industry, and society is paramount. The development of decarbonization
strategies will contribute to society to curb CC, to protect their economies from the negative
impacts of CC while also fostering innovation, creating new job opportunities, and improving
public health [18]. For this to be possible, it is essential to implement policies and strategies aimed
at reducing GHG emissions, fostering resilience, and promoting sustainable development.
Investments in renewable energy technologies, such as solar PV, can help drive the transition to a
low-carbon economy, while simultaneously creating new employment opportunities and
stimulating economic growth [19][20].

The energy sector is a key contributor to CC, as it accounts for approximately 73% of global GHG
emissions [21]. As a consequence of the combustion of fossil fuels, such as coal, oil, and natural
gas, for electricity generation, transportation, and industrial processes [10]. However, demand for
energy has been continuously increasing due to the digitalization of the society, increased demand
for the transport of goods, and an increasing globalized economy [ 1]. Fortunately, social awareness
of the problem has driven significant changes in recent years, with a growing emphasis on
transitioning to cleaner, more sustainable sources of energy to mitigate the impacts of CC and
address energy security concerns [19][22]. Currently, fossil fuels, such as coal, oil, and natural
gas, still make up a significant portion of the global energy mix, accounting for approximately
81% of the total primary energy supply in 2020, as shown in Figure 1-3. However, their share is
gradually declining, as the growth of renewable energy technologies, such as solar PV, wind, and
hydropower, accelerates [23]. Solar PV, in particular, has witnessed remarkable growth in recent
years, with global capacity increasing from 40 GW in 2010 to over 714 GW in 2020 [19].
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Figure 1-3: Share of primary energy supply from 2010 to 2021 and projection to 2050 in order to
accomplish stablished emission goals. Renewables include solar, wind, hydro, and biomass.
Figure extracted from [24].

The electricity generation sector is a critical component of the global energy system, accounting
for around 19% of total final energy consumption in 2020 [20]. The share of renewables in global
electricity generation reached around 29% in that same year, with a continued upward trend
projected to account for almost 50% of global electricity generation by 2030, highlighting the
substantial shift taking place within the energy sector [25]. The ongoing transformation of this
sector, driven by the increased deployment of renewable energy technologies, is essential for
mitigating the impacts of CC, as electricity generation is responsible for approximately 42% of
global CO; emissions [26][27]. The decarbonization of electricity generation, through the
integration of intermittent renewable energy sources like solar and wind, is therefore a crucial
aspect of global mitigation efforts. In countries like Chile, the energy sector has also undergone
significant changes in recent years, with a focus on diversifying the energy mix and promoting the
expansion of renewable energy sources [22]. The share of renewables in Chile’s electricity
generation increased from 6% in 2010 to 25% in 2020, with solar PV and wind energy being the
main drivers of this growth [28]. By 2030, Chile aims to achieve a 70% share of renewable energy
in its electricity generation, demonstrating the country’s commitment to a low-carbon energy
future [17].

The transition to renewable energy sources, particularly solar PV, offers numerous economic,
social, and environmental benefits, such as reduced GHG emissions, improved air quality,
enhanced energy security, and the creation of new job opportunities [23][17]. However, social and
technological challenges remain, including the integration of intermittent renewable energy
sources into electricity grids, the need for energy storage solutions, the development of adequate
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policy frameworks and financing mechanisms to support the large-scale deployment of
renewables, and the improvement of PV module efficiency and integrability [25][29]. Despite
these challenges, the ongoing transformation of the global energy sector and the increasing share
of renewables in electricity generation signify a positive shift toward a more sustainable and low-
carbon future, as they represent a clean, renewable, and abundant source of electricity generation
[30][31].

In response to an increasing demand for energy and sustainable sources, PV technologies have
experienced rapid advancements in recent years, resulting in significant cost reductions and
performance improvements [32][33]. This progress has made PV increasingly competitive with
traditional fossil fuel-based energy sources and facilitated its widespread adoption across the globe
[30]. The deployment of PV systems not only reduces GHG emissions, but also promotes energy
independence, enhances energy security, and creates new job opportunities in the clean energy
sector [34][35]. Moreover, the continued development of advanced PV materials and technologies,
such as thin film solar cells and devices, holds great potential for further increasing the efficiency,
affordability, sustainability, and integrability of solar energy [36][37]. The following subchapter
will explore why thin film technology is important in this scenario and can have big deal of impact
in tackling this CC issue, and thus by investing in research and development, supporting policy
frameworks, and fostering international collaboration, we can accelerate the widespread
deployment of PV technologies and their contribution to mitigating CC [34][35].

1.2 State of the art of PV

1.2.1 Overview of PV technology

Photovoltaics (PV) refers to technologies that can transform sunlight directly into electricity by
the photovoltaic effect. During the XXI century and specially during the last decade, PV
technology has seen remarkable advancements in various aspects, including efficiency
improvements, cost reductions, and material innovations. This is illustrated in Figure 1-4 showing
how efficiency records have become more common over the past decade with several technologies
emerging through the years. This rate of research and innovation has allowed PV technology to
transition from an expensive and niche energy source to a mainstream and cost-competitive option
for electricity generation. This is also reflected in the global PV market which has grown
exponentially, reaching about 750 GW of cumulative installed capacity by the end of 2020 [24].
One of the major drivers for this growth has been the continuous improvement in solar cell
efficiency, particularly for crystalline silicon (c-Si) based solar cells, which currently dominate the
market, accounting for about 90% of global PV production. The efficiency of commercial c-Si
solar cells has reached over 26%, while multicrystalline silicon (or polycrystalline, p-Si) solar cells
have achieved efficiencies above 22% [38]. Innovations such as PERC (Passivated Emitter and
Rear Cell) and HJT (Heterojunction with Intrinsic Thin Layer) have contributed significantly to
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these efficiency improvements. Another development that has increased interest in PV technology
are bifacial solar modules, which can capture sunlight on both sides, increasing their overall energy
yield [39]. Bifacial technology benefits from albedo, the reflectivity of the ground surface, which
can vary depending on factors such as the type of ground cover, season, and location [40]. With
these advantages, bifacial modules can generate up to 30% more energy compared to their
monofacial counterparts under optimal conditions. The adoption of bifacial solar modules is
growing, particularly in utility-scale PV installations, due to their higher energy production and
reduced levelized cost of electricity (LCOE) [41].

Apart of the Si-based technologies, emerging thin film photovoltaic (TFPV) technologies, such as
perovskite solar cells, have shown great potential, with lab-scale efficiencies reaching over 25%,
rivaling those of conventional c-Si solar cells. Perovskites have attracted considerable interest due
to their unique optoelectronic properties, low-cost solution-based processing techniques, and the
rapid progress in their efficiency [42]. However, challenges in terms of stability, scalability, and
potential environmental issues related to lead (Pb) content are still being addressed for these
emerging technologies to become commercially viable [34][35]. In recent years, more mature
TFPV technologies, such as CdTe and CIGS, also have demonstrated potential for further
efficiency improvements and reduced manufacturing costs [34]. The specific interest in thin film
(TF) technologies is based on that they offer the advantage of being lightweight, flexible, and
suitable for building-integrated photovoltaics (BIPV) applications. The market share of TF
technologies, though currently small compared to c-Si, still holds promise due to their unique
properties and potential applications.
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Figure 1-4: Best Research-Cell Efficiencies compiled by the National Renewable Energy Laboratory
(NREL). Figure extracted from [43].
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1.2.2 Thin film photovoltaic technology

TFPV, which consider functional devices with typical layer structure thicknesses < 100 um in the
context of this thesis, have emerged as a promising alternative complimentary to conventional c-
Si solar cells, offering several advantages that make them an attractive option for widening the PV
application by opening the possibility of its integration into new products. Some notable
advantages of TFPV technology that makes them different from conventional c-Si technologies
are:

a) Reduced material usage: These devices are thinner and lighter solar cells compared to their
c-Si counterparts [44]. This materials reduction is because TF materials possess a direct
bandgap, in contrast with c-Si which is an indirect bandgap semiconductor, requiring the
material to be thicker [45].

b) Compatible with lower production costs: TF devices show a reduction in the use of high
value materials as their manufacturing processes often require less material and energy-
intensive methods than those employed for c-Si solar cells [34]. This cost reduction can
help make solar energy more accessible and affordable, contributing to the global transition
towards renewable energy sources [44].

c) Compatibility with curved surfaces: the possibility to reduce the thickness of the device
allows to achieve high flexibility without compromising the mechanical integrability of the
devices. This makes this technology interesting for applications where conventional solar
cells might be impractical due to their rigidity, bulkiness and weight, such as in building-
integrated photovoltaics (BIPV), agrovoltaics (APV), and vehicle integrated photovoltaics
(VIPV) applications [46].

d) Light condition adaptability: Light condition adaptability is significantly enhanced by
employing a solid solution, which facilitates band gap tuning. This adaptability enables the
device to be fine-tuned for various lighting environments, including indirect sunlight, low
irradiance scenarios, or indoor settings illuminated by artificial light sources [47].

e) Monolithically large-scale areas: The growth of TFPV layers through easily scalable
deposition processes, such as Physical Vapor Deposition (PVD) via Sputtering or Chemical
Vapor Deposition (CVD) techniques, enables dimensional scalability restricted by the
physical capability of the systems and the achievable homogeneity [48]. This contrasts with
c-Si technology, which relies on the mechanical integration of various wafer to construct
photovoltaic modules [49].

Despite the numerous advantages of TFPV, challenges still remain in terms of efficiency, stability,
and scalability. Researchers from the PV community have been working on various TF
technologies, such as amorphous silicon (a-Si), CdTe, CIGS, and emerging alternatives like



35

kesterite and perovskite solar cells or more exotic technologies as quantum dots (QD) or low-
dimensionality PV concepts, to overcome these challenges and optimize their performance
[37][44]. As progress continues in the development and optimization of TFPV, their potential to
become a significant contributor to global renewable energy generation increases, offering a viable
and sustainable solution for our growing energy needs.

CIGS solar cells have emerged as a leading TF technology, offering higher efficiencies than both
a-Si and CdTe solar cells [50]. The efficiency of CIGS has been steadily increasing, with some
laboratory-scale cells achieving over 23% efficiency, surpassing the performance of p-Si solar
cells just until the year 2020 [51][38]. The high efficiency of CIGS solar cells can be attributed to
factors such as a high absorption coefficient, which allows for the efficient conversion of sunlight
into electricity, and the tunable bandgap that enables the optimization of the material’s absorption
properties [37]. Despite their promising performance, the complex material system and the
difficulties in scaling up the production process have limited the widespread adoption [48]. Also,
various deposition techniques have been developed for CIGS fabrication, such as co-evaporation,
sputtering, and electrodeposition, each with their own set of advantages and challenges [52].
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Figure 1-5: Generic structure of a TF device based on p-n heterojunction. This shows how this
technology involves multiscale, multilayer, and multiprocess devices with over 20 critical
parameters to control.

One of the main challenges of CIGS-based technology, and extensible in general to TFPV
technologies, lies in the complexity of the system, which makes it difficult to control the
homogeneity in large areas. In the scaling up CIGS production is the need to maintain uniformity
in the material’s composition and structure across large areas, as any deviation can lead to a
significant decrease in the solar cell’s efficiency [53]. Interface engineering plays a crucial role in
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the performance of CIGS solar cells, as the buffer layer, typically composed of cadmium sulfide
(CdS), has a significant impact on the device’s overall efficiency and stability [54]. Researchers
have been exploring alternative buffer layers, such as zinc oxide (ZnO) and zinc magnesium oxide
(ZnMgO), to address concerns related to the use of toxic cadmium (Cd) and to further enhance the
performance of CIGS solar cells [52]. Another challenge for CIGS solar cells development is the
cell-to-module efficiency gap, which arises due to the differences in performance between small-
area laboratory cells and large-area modules produced at a commercial scale. Addressing this gap
requires an understanding of the factors affecting module performance, such as interconnect
design, current matching, and module encapsulation, and the development of strategies to
minimize efficiency losses during the scale-up process [48].

Additionally, another challenge for CIGS-based technologies are supply-chain risks. For instance,
materials such as Gallium (Ga) and Indium (In) are considered to be of high economic importance
and high supply risk, categorizing them as critical resources [55]. In this context, there are 4 main
risk areas were this elements are compromised: supply, demand, concentration, and political risks
[56][57]. Depending on the element, supply reduction risk varies drastically. For example, for In,
depletion times of reserves are calculated to be about 20 years, meanwhile for Ga is 3000 years.
Demand increase risks are 2-fold. The direct increase of demand over rare elements and the
decrease in demand of host materials for by-products. For instance, in the case of Cd, Te, In, Ga,
and Se, it is considered for their dependence on host materials to be 100% as being by-products of
Zn, Cu/Pb, Zn, bauxite (main Aluminum ore), and Cu, in the same order. It is then possible that,
shortages of these elements due to demand can be due to these 2 different unrelated phenomena:
reduced demand for parent materials and increased demand over the small availability of the
materials themselves. Concentration risk is also an important factor, since the production of some
of these materials is highly concentrated in some areas and countries. For instance, in 2014, China
was the main European Union (EU) supplier of several materials, including Ga with 71% of the
supply. The latter is then related to political risks, since conflicts between these regions may lead
to shortages of such materials. For these reasons, an increase interest on recycling has been
observed in the past decade, however, the estimated effect of recycling rare-earth elements in the
supply of such elements is expected to be negligible or at the most complementary [58][59], due
to both technical difficulties and high costs of the needed processes. As such, Ga, In, Se, and Te
are often to be found of high-risk and difficult supply, particularly damaging for CIGS and CdTe
technologies.

In this context, it is important to explore and develop novel technologies based on abundant
materials. Kesterite-based solar cell technology is a class of TFPV technology based on the
quaternary compound copper zinc tin sulfide (CZTS) or copper zinc tin selenide (CZTSe). This
technology has garnered considerable attention due to their attractive properties and potential as
an alternative to CIGS solar cells [60]. One of the most appealing aspects of kesterite-based solar
cells is the earth-abundant nature of their main constituent elements, which addresses the supply
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and environmental concerns associated with other TF materials like CIGS and CdTe [61]. Despite
these advantages, kesterite solar cells currently suffer from lower efficiencies compared to CIGS
solar cells, with the highest reported efficiency for CZTSSe solar cells being 14.9% as confirmed
by the latest version (63) of the “Solar cell efficiency tables” in 2024 [62] . The lower efficiency
can be attributed to several factors, such as the presence of defects, high open-circuit voltage (Voc)
deficit, and challenges related to the material’s complex stoichiometry and phase stability [63][64].
Recent research efforts have focused on improving the performance of kesterite solar cells through
various strategies, including defect engineering, interface engineering, and cation substitution
[65][66]. Defect engineering aims to suppress the formation of harmful defects, such as vacancies,
antisite defects, and secondary phases, which can negatively impact the solar cell’s performance
[65]. Interface engineering, on the other hand, involves optimizing the properties and composition
of the buffer layer, typically CdS or Zn(O,S), to improve the overall device performance [63].
Cation substitution, such as replacing some of the copper with silver or indium, can help stabilize
the kesterite phase, enhance the material’s optoelectronic properties, and reduce the Voc deficit
[64]. Despite the progress made in recent years, further research and development are needed to
address the remaining challenges and optimize the performance of kesterite solar cells. As our
understanding of the material properties, defect formation mechanisms, and interface interactions
in kesterite solar cells continues to improve, these promising earth-abundant and environmentally
friendly TFPV technologies could play a significant role in the global transition towards renewable
energy [60][66].

In summary, TFPV technologies, including CIGS and kesterite based solar cells, have made
significant advancements in recent years, offering a lightweight, flexible, and potentially cost-
effective alternatives to widen the application of PV beyond to traditional c-Si solar cells. CIGS
solar cells have achieved high efficiencies, surpassing p-Si, but face challenges in scaling up
production, maintaining material uniformity, and addressing environmental and supply concerns
related to the use of toxic elements and rare-earth materials. Kesterite solar cells, on the other hand,
offer a promising earth-abundant and more environmentally friendly alternative, but currently
suffer from lower efficiencies due to the presence of defects, high Voc deficit, and complex
stoichiometry. Ongoing research efforts in both CIGS and kesterite solar cells are focused on
addressing these limitations, exploring strategies such as defect engineering, interface engineering,
and alternative buffer layers. As progress continues in the development and optimization of TFPV
technologies, their potential to become a significant contributor to global renewable energy
generation increases. The future prospects TF technologies are promising, with the potential to
revolutionize the solar energy landscape and facilitate the global transition towards a more
sustainable and environmentally friendly energy mix. With the above, this thesis focuses in these
two promising technologies: CIGS and kesterites, performing experiments with these materials in
the first and second publications, respectively. The following subchapter explains how these
technologies work, with both being p-n heterojunction-based devices.
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1.2.3 Basic working principle of PV devices

To generate the PV effect, semiconductor materials with a bandgap energy that aligns with the
energy spectrum of the solar radiation (ranging from 0.5 to 3 eV) are needed. This bandgap energy
represents the minimum energy required to excite an electron to a conductive state. Currently,
silicon stands as the predominant semiconductor used to produce PV materials and devices, also
referred as first-generation technology. It is followed by TF technologies, also known as second-
generation technology, which utilize light-absorbing materials such as a-Si, CdTe and, of course,
CIGS and kesterites. Other emerging technologies include organic and hybrid solar cells, as well
as multi-junction solar cells. These are considered as third-generation technology. All these
different technologies can then directly convert incoming light into electricity. Specifically for the
case of CIGS and kesterite based devices, as well as for several other inorganic absorber materials,
this is possible thanks to the p-n junction formed between two differently doped zones: the p-type
and n-type. The p-type is where the majority charge carriers are holes, and the n-type where the
majority of the carriers are electrons. When in contact, electrons from the n-region will diffuse
towards the p-region, and the holes will diffuse from the p-region to the n-region. The area of this
exchange is called the depletion region. In this zone, the n-region is positively charged, and the p-
region is negatively charged, creating an electric field oriented from n to p. With the p-n junction
formed, incident photons with energy greater than the bandgap of the p-type material will be
absorbed and excite electrons, which move from the valence band to the conduction band, leaving
holes in the process. The electrochemical potential difference between the materials facilitates the
separation of electrons and holes in the depletion region and the movement of the carriers. In quasi-
neutral zones, carriers move by diffusion: only those with sufficient diffusion length will be
collected. Ultimately, holes are collected at the positive pole of the cell and electrons at the
negative pole. This movement is what ultimately generates current. This process is shown in a
schematic representation in Figure 1-6.



39

Depletion
p-type layer n-type
-+
-+
-+
I
Electron diffusion & &  Hole diffusion
— -
Electric field

D ——

Figure 1-6: Schematic of the p-n junction.

The p-n junction can be either the same material (homojunction) or of two different
semiconductors (heterojunction). P-n heterojunctions, first described by Russel Ohl in his 1941
patent “Light-sensitive electric device including silicon” [67], have become an important part for
several electronic devices beyond electricity generation, such as rectifiers, photodetectors, diodes,
and sensors. In solar energy technology, p-n heterojunctions are used with diverse semiconductor
materials to build many different types of devices such as silicone based [68], pervoskites [69],
CISe [70], CIGS [71], and kesterites [66].

The efficiency of a real solar cell will never reach 100% respect to the incoming solar radiation,
due to several types of losses that occur at different stages. For instance, photons with energy lower
than the material’s bandgap are not absorbed, excess energy is lost through thermalization, some
photons are reflected off the material’s surface, and electron-holes may succumb to recombination,
all leading to a reduced efficiency. Furthermore, the theoretical limit for the efficiency of a solar
cell using a single p-n junction is about 30%, what is known as the Shockley-Queisser limit [72].
This limit has been calculated based on the material’s bandgap, assuming an ideal scenario where
all recombinations are radiative, charge carriers have infinite mobility, and all photons with energy
equal to the material’s bandgap are absorbed. To account for these losses, the solar cell is
simplified in a classic model as a circuit with a diode V,, including a series resistance R;
representing contact and connection resistances, and a shunt resistance Ry, representing various
leakage currents from the PV source IL,,, creating the final device voltage potential V, as
represented in Figure 1-7.
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Figure 1-7: Classic circuit model of a photovoltaic cell.

From this classical circuit model of a PV cell, the device can be formulated electrically to
ultimately obtain the main electrical properties, namely open circuit voltage V., short circuit
current Is¢, fill factor FF and efficiency 1. To understand the calculation these characteristics using
the single diode model, we can start with the fundamental circuit equation that encapsulates the
behavior of a solar cell through a combination of the photovoltaic current I,;, diode current I,
series resistance R, and shunt resistance Rgy,. The total current output, I, of the PV cell is described
by the following equations:

V + IR
I=Ly—1I;— Eq. 1-1
Rsh
q(V+IRy)
Iy = I, (e—nkT — 1) Eq. 1-2

Where [ is the final device current, I, the reverse-bias saturation current of the diode, q is the
electron charge constant 1.602 - 10719 C, n is the ideality factor of the diode, k is the Boltzmann
constant 1.638 - 10723 J /K, and T is the temperature in the p-n junction. I; can also be expanded
as a diode current equation as shown in Eq. 1-2. From here, V, occurs when current I = 0, and
Isc 1s then the current flow when V' = 0. Then, to determine the maximum power point (MPP),
we need to find the combination of voltage and current where the product V - I is maximized. This
point is crucial because it represents the most efficient operating point of the PV device. With the
MPP, the FF is defined as the ratio of the maximum power point Bqx = Vinpp Impp to the product

Voc Isu:

Vinpp Impp

FF = P2 PP

Eq. 1-3
Voc Isn d
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And the efficiency 7 of the solar cell is then calculated as the ratio of the maximum power output
Pax to the input solar power Py, :

Eq. 1-4

This efficiency is a key metric for evaluating a solar cell as it encapsulates the combined effects
of all the parameters of the solar cell. Thus, reflecting both its electrical characteristics and its
ability to harness solar energy. Finally, the above characteristics can be graphically illustrated in
the Current-Voltage (I-V) curve, where I is plotted as a function of V, as shown in Figure 1-8. In
this plot, Is¢, Voc, Impp and Vipyp can directly be extracted, and thus FF and efficiency obtained
after.
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Figure 1-8: Current-voltage curve showing its main characteristics.

Finally, a typical structure of TFPV device based on compounds like chalcopyrite or kesterite type
materials is shown in Figure 1-5. Here the p-n heterojunction is formed between absorber (typically
of p-type for studied technologies) and buffer layer (typically of n-type for studied technologies),
and additional layers for the back and front contacts of the solar cell. The latter are usually more
complex due to formation of intermediate layers at the back contacts (e.g. MoS, or MoSe>) and
deposition of an extra layer for better isolation at the front contact (e.g. i-ZnO layer). Additional
to the importance of each of the layer of the TF solar cell, a significant role is also played by
different interphases between the layers, which increases the complexity of the whole structure,
making it much more advanced that a simple circuit. This complexity results in necessity of making
an advanced approach in study and characterization, by combining different characterization
techniques and by making special set of samples, which is covered by a combinatorial approach
in the analysis of complex systems.
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1.3 Combinatorial analysis for materials and devices

Combinatorial Analysis (CA) refers to the process where combinatorial samples or sets of samples
are systematically prepared with a specific property intentionally varied in a controlled manner
either within a single sample or across multiple samples. This allows for the thorough exploration
and understanding of how changes in that property affect outcomes or behaviors. CA has emerged
as a powerful technique in materials science and engineering research, enabling the simultaneous
study of multiple variables and their interactions in complex systems [73]. This approach allows
for a more comprehensive understanding of intricate systems and accelerates the discovery and
optimization of novel materials. CA typically involves generating a large number of samples, or a
single graded sample, with varying combinations of properties, followed by parallel analysis using
a combination of experimental and computational techniques. By investigating the relationship
between these variables and the resulting properties, researchers can gain valuable insights into
how different factors impact the performance of materials or devices [74]. In materials science,
CA has found applications in numerous areas, such as high-throughput screening of catalysts,
discovery of new alloys, and optimization of solar cell materials [75]. By utilizing combinatorial
methods, researchers can efficiently explore vast parameter spaces and identify optimal
combinations that lead to enhanced material properties and performance. The application of CA,
in conjunction with advanced data analysis and Machine Learning (ML) techniques, further
accelerates the material discovery process [76]. Through these integrated approaches, researchers
are not only able to identify correlations, but also uncover underlying mechanisms governing the
system, leading to the development of innovative materials with desired properties and
functionalities [77]. To effectively conduct CA, several crucial considerations must be accounted
for, including sample preparation, characterization techniques, and data analysis approaches.

1.3.1 Samples for combinatorial analysis

Combinatorial samples or sets of samples are those in which a property is deliberately varied in a
controlled way in-sample or sample-to-sample, respectively. The analysis of combinatorial
samples represents an efficient way of obtaining relevant insights that can be used both for
extracting information about fundamental material properties and for technological optimization.
In the case of TF, different physical and chemical deposition techniques can be employed for the
preparation of combinatorial samples and sets of samples which result in discrete or gradient
sample libraries, respectively. A discrete library consists of individual samples in which each of
them has a discrete variation of a property, normally related to composition. On the other hand, a
gradient library is a single sample with a deliberate inhomogeneity consisting in a continuous
variation (gradient) of a property across its surface, e.g. a sample with a graded thickness in one
of its layers. Diagrams and real examples of each type of sample library are presented in Figure
1-9. Despite of both approaches being suitable with CA, the two of them present advantages and
disadvantages that need to be considered for the choice of one or the other.
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When it comes to discrete libraries for materials research, one of its primary benefits is that they
are produced under well-defined and controlled conditions. This ensures that each sample within
the library is homogeneous, providing a consistent baseline. This homogeneity is crucial for
drawing accurate conclusions about the effects of specific variations on material properties and
device performance. Moreover, the specific preparation conditions are known for each sample of
the library, allowing to directly select the optimal ones for further application and to directly
correlate the properties of the samples with the fabrication parameters. However, there are also
drawbacks with discrete libraries. The preparation time of several samples can be extensive,
especially when ensuring that each sample meets the strict criteria required for homogeneity.
Additionally, the resolution for sample-to-sample property variation (i.e., the difference between
consecutive samples) is limited by the characteristics and configurations of the fabrication
equipment. This can limit the range and resolution of conditions that can be studied.

In contrast, graded libraries offer a different set of advantages and challenges. One of the most
significant benefits of graded libraries is their high resolution for property variation. Since graded
samples are intentionally produced with inhomogeneities that smoothly varies a certain property
across the sample, the effects of these variations on performance can be studied with high detail.
Also, a single sample can provide a great deal of information, as it contains a large range of
conditions within itself, which is both time-saving and cost-effective. However, the primary
drawback of graded libraries is the inherent uncertainty in the fabrication conditions. Since the
samples are intentionally inhomogeneous, it can be challenging to pinpoint exact processing
conditions and their effects on material properties or device performance, leading to potential
ambiguities in the research results.
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Figure 1-9: A) Diagram of discrete sample set with process temperature and time variations, B)
diagram of continuous spread sample with 1 graded layer, C) picture of a discrete sample set and
D) picture of a continuous spread graded sample.
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1.3.2 Characterization techniques for combinatorial analysis

In terms of characterization, the process of understanding and quantifying the physical, chemical,
and structural properties of materials, it is essential to employ multiple techniques to maximize the
information gathered about the studied material and increases the chances of uncovering relevant
correlations and valuable insights for enhancing future iterations of the devices. Relying solely on
a single characterization technique often presents limitations, as no single method can provide a
complete picture of a material’s multifaceted nature (Figure 1-10), which becomes more critical
when speaking about the such a complex systems as TFPV devices. Different characterization
techniques focus on different aspects of a material and devices can give a more comprehensive
approach on understanding their properties and limitations. For instance, Raman spectroscopy
(RS) can analyze chemical composition and molecular structures, Photoluminescence (PL) can
deliver optical and electronic information, X-ray fluorescence (XRF) can quantify composition
and current-voltage (IV) measurements can measure the optoelectronic parameters of the devices,
including their efficiency to convert the light into electricity. All the above information is
important for any material being studied but using them all in one study allows for cross-
verification of properties and offers a more holistic understanding with more complex, but also
more accurate, correlations. In other words, combining different methods can compensate for the
limitations of individual techniques and provide a more accurate, comprehensive analysis. By
leveraging the combination of the results extracted from these techniques, it is possible to obtain
a broad picture of the systems and push knowledge to a deep understanding of the material and its
properties. This is crucial for the progress, optimization, and development of novel PV devices
technologies and materials.
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Figure 1-10: Schematic example to illustrate how the combination of different techniques allows
to obtain further insights compared to normal experimentation focused on single techniques. The
more characterized a sample is, the more it is possible to visualize the different aspects of its
nature.

However, to achieve this, the characterization methods must fulfill several requirements, including
non-destructive testing, rapid acquisition times, automation capabilities, compatibility with other
techniques, and high spatial resolution. These requirements are critical to enable characterization
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of samples in bulk that provide relevant statistical data to further understand complex materials
and devices. Overall, a study using a combinatorial sample should aim to measure compositional,
optical, structural, and optoelectronic properties, all in a non-destructive, fast, and automated way
that secures the traceability of the data reliably, as illustrated in Figure 1-11.
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Figure 1-11: Characterization techniques, such as compositional, optical, structural, and
optoelectronic, must comply with requirements to be fit for CA. Figure extracted from [78].

1.3.3 Data analysis for combinatorial approach

Data analysis in combinatorial experiments has traditionally depended on standard approaches like
correlation and statistical methods, which show good results at identifying relationships between
variables in simpler datasets. These conventional methods are valuable for their straightforward
analysis and ease of understanding, building great confidence on their use with researchers.
However, they often fall short when dealing with the complex, high-dimensional data typical in
combinatorial studies. Challenges particularly arise in discerning non-linear relationships and
subtle patterns within large datasets where several variables can be considered. Selecting the
proper analysis tools for these experiments depends on the complexity and nature of the data.
Traditional methodologies are more suitable for experiments with fewer variables and linear
relationships, where the simplicity and interpretability of results are paramount. In contrast,
modern Artificial Intelligence (AI) and ML techniques are preferred for more complex, multi-
dimensional datasets where patterns are not immediately apparent.

Because of this, the field is increasingly moving towards more sophisticated computational
techniques. The development of ML and Al has introduced robust tools capable of handling and
interpreting the vast and intricate datasets generated in combinatorial experiments. These advanced
methodologies excel not only in pattern recognition and predictive modeling but also offer the
advantage of processing and analyzing data at a much higher speed than traditional methods. Their
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adaptive learning capabilities make them especially suitable for CA, where unexpected
relationships and complex interactions may appear. By integrating these technologies, researchers
can dig deeper into data, uncovering insights that were previously inaccessible with conventional
methods.

This evolution from traditional data processing to a more dynamic, Al and ML-driven analysis
represents a significant leap in the field of CA, promising more comprehensive understanding and
innovative discoveries in various scientific domains. Unfortunately, challenges in applying ML in
CA experiments still exist. These include the need for large and well-annotated datasets for
effective training, the complexity of selecting appropriate ML models and features, and the
interpretation of ML outputs in a scientifically meaningful way. Furthermore, the holistic analysis
of data is also not well developed in the field, leading to a slow incorporation of combinatorial
experiments. The development of clear methodologies with accessible tools aiming to simplify the
application of Al and ML into CA can greatly improve combinatorial experiments and make CA
more appealing for researchers.

1.4 Al algorithms as support in the materials research

1.4.1 Introduction and basic principles of AI and ML

Al and ML are rapidly evolving tools that have been gaining significant attention in recent years,
largely due to their capacity to revolutionize a wide range of industries and disciplines [79][77].
They have been used to solve a large number of complex problems and have been applied in
various domains, such as natural language processing, computer vision, and robotics [80][81].
With the increasing availability of large datasets and powerful computational resources, it is now
possible to develop sophisticated models that can perform tasks that were thought to be too difficult
or virtually impossible to accomplish successfully, like natural language interaction, image
recognition, and other tasks [80][82]. This success of ML has led to a renewed interest in the field
that has also expanded to materials science, where ML techniques have been employed to
accelerate the discovery of new materials and optimize existing ones [83][84][85]. The
incorporation of Al and ML into materials research has the potential to significantly expedite the
development of novel energy materials and further advance renewable energy technologies
[86][75]. Additionally to their practical applications, Al and ML have also given rise to a number
of ethical and philosophical questions regarding their implications for society and human decision-
making [87][88]. As these technologies become more widespread and integrated into our daily
lives, it is crucial to ensure that they are transparent, unbiased, and accountable [89][90][91].

Before going further, it is important to define what the Al, ML terms mean. Unfortunately, a
standardized definition of these is not yet available, and many variations can be found in the
literature. However, in general terms, most definitions would agree that Al is any system, normally
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a computer program, that performs a task considered smart or complex in an automated way. With
this, it is possible to define ML as an Al that uses data to make predictions over new information,
and keeps getting better as more data is available, hence it learns and improves over time. Under
this definition, many algorithms and techniques can be mentioned, being the most common and
widely used Linear Regression (LR). Other examples include Principal Component Analysis
(PCA), Linear Component Analysis (LDA), Random Forest (RF), Support Vector Machine
(SVM), and many others. Furthermore, Artificial Neural Networks (ANN) is a subset of ML
algorithms that consist of a series of multiple and iterative transformations that decompose a
complex problem into a sub-set of simpler problems, like Deep Learning algorithms (DL).

There are several ways to classify ML algorithms, but a common approach is to group them based
on their level of supervision, which includes:
. Supervised learning: algorithms that learn from labeled training data and make
predictions about unseen data. Examples include LR and SVM.
. Unsupervised learning: algorithms that learn from unlabeled data and find patterns
or structure in the data. Examples include k-means clustering and PCA.
. Semi-supervised learning: algorithms that learn from a mix of labeled and unlabeled
data. Examples include Label Propagation and Semi-supervised Support Vector Machines.
. Reinforcement learning: algorithms that learn from the consequences of their
actions in an environment. Examples include Q-learning and Policy Gradients.

Another way to classify ML algorithms is by their output type:
. Classification: Algorithms that predict categorical output
. Regression: Algorithms that predict continuous output

During the development of this thesis, Al and ML were used, including supervised, unsupervised,

and classification methods. Regression methods and ANNs where also tested in the Further
Exploratory Experiments.

Artificial Intelligence

Deep Learning

Figure 1-12: General view of the relationship between Al, ML, and DL.
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To explain how ML works it is convenient to start with the most basic form, which has been used
for over a century for several mathematical and research problems: LR. LR works through least-
squares estimation. It takes a basic optimization problem with an objective function of the form:

n
minZ(E X — yl-)z Eq. 1-5
i=1

Where X is the independent variable, y; is the dependent variable to predict, and ﬁ is the vector
containing the model’s parameters. Examples of LR are vast considering its simplicity, low
computational needs, and many decades of diverse applications. A good modern example is in
[92], where researchers find that there is a linear relationship between Voc and the relative OVC-
related Raman peak areas, as illustrated in Figure 1-13.
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Figure 1-13: Linear regression is performed for Voc and OVC relationship for high performance
CIGS solar cells. Colors represent different process temperatures the solar cells were subjet to.
Figure extracted from [92].

Other than LR, there are many other algorithms such as the already mentioned PCA, LDA, RF,
SVM, QDA, and K-means, among many others. Each of these algorithms has unique
characteristics and is best suited for specific types of problems. However, at their core, many of
these algorithms share a fundamental principle with LR: the concept of defining and optimizing
an objective function, often leveraging large datasets. To show this, we can see how some of these
work, in particular PCA and LDA as they have more importance in this thesis. For instance, PCA,
is an unsupervised dimension reduction algorithm that looks for the bits of information that better
explain the difference between the data [93]. It does this by performing orthogonal linear
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transformations of the data to a new coordinate system where the greatest variance between the
data is found. This reduction in dimensions means that the information is not selected or deleted
in the process but rather translated into different axis. In other words, all the original information
is, one way or the other, preserved. This reduction process is performed as many times the user
specifies, being capable of making a reduction to a 1-D system. In a similar way to LR, we can
translate this into an optimization problem as:

n

w= maxZ(xl- - w;)? Eq. 1-6

i=1

Where w is a unit vector of constants w; such that ||w|| = 1, and is equivalent to the transformation
that maximizes the variance. The first iteration will find the first principal component, and a second
principal component can then be found using that same Equation 1-6. After subtracting the first
principal component as

k-1

Xe=X— ) Xwywl, Eq. 1-7

s=1

Where X is the matrix containing the observed data, X, is the data transformed into the new
dimensional space after subtracting the first principal component. This procedure can be repeated
K — 1 times being K the initial dimensionality of the problem.

Similarly, LDA is a supervised technique to analyze the difference between classes in a dataset.
This makes LDA particularly useful in classification tasks, as it can identify the most important
features that discriminate between different classes [94]. In other words, LDA finds the coordinate
system that has the largest distance between different groups and the smallest dispersion within
each group. For example, if there are 2 categories, it is possible to express the objective function
to be optimized when searching for these dimensions as

max {%} Eq. 1-8

Where s is the variance and u is the mean position. This equation above can then be generalized
for n categories.

By combining the feature reduction capabilities of PCA with the class discrimination capabilities
of LDA, an even more powerful tool for data analysis is obtained, known as a cascaded PC-LDA
or simply PC-LDA. While PCA focuses on finding the directions of maximum variance in the
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data, LDA aims to find the directions that maximize the separation between different classes. With
this method, it is possible to identify the most relevant variables for the problem at hand and use
them to train a classifier with high performance. PC-LDA is then a combined form of both
algorithms, arranged in a sequential way. In other words, PCA is first applied to an intermediate
dimension and then transformed by LDA to a final coordinate system. This method is
advantageous for the use of both data variability (PCA) and classification group differences
(LDA), being just as popular as PCA and LDA used alone since they still may produce better
results depending on the specific problem. In particular, these techniques are popular for
spectroscopy related problems, since normally spectroscopic measurements are of high
dimensionality (vectors of length 1000 or more are common) and several properties that can be
extracted that may be difficult to compute are present in spectroscopy data, such as peak position,
peak area, peak convolutions, and peak widths, to name a few. An interesting example of this is
for autofluorescence spectroscopy over blood plasma for tuberculosis diagnosis [95]. Authors find
that PCA is highly effective with 95.2% accuracy to predict tuberculosis through this kind of data,
as illustrated in Figure 1-14. Another common use for PC-LDA is for cancer diagnosis and
classification. A specific example of this is in [96] where they classify RS measurements using
PC-LDA for the diagnosis and distinction of 5 different types of thyroidal tumors, some of them
benign and others malignant. The results show that they are able to accurately distinguish between
types of tumors in 1 vs 1 comparison (79% to 100% accuracy depending on the comparison pair)
and 81% overall accuracy between benign and malignant types. Similar examples are abundant in
the literature, particularly with the use of RS [97].
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Figure 1-14: a) Mean spectra for healthy blood plasma and b) mean spectra for unhealthy
(tuberculosis) blood plasma and c) final 2-D dimensionality after PCA. Figure extracted from
[95].

Other more complex type of algorithms widely used nowadays are Artificial Neural Networks
(ANN or just NN for Neural Network). ANNs are a type of ML algorithm that are inspired by the
structure and function of the human brain [80] and consist of layers of interconnected nodes, called
neurons or units, which are used to process and analyze data. ANNs are particularly useful in tasks
such as image and speech recognition, natural language processing, and predictive modeling [80].
To represent what a NN does, the following equation is needed:
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y=f00,w)=0(x;0)"w Eq. 1-9

Where x is the input, 6 are parameters for ¢ and w parameters for ¢ (x). With this, what a NN
should try to do is to learn 8 such as it gets the best approximation to y as possible asin f = f* =
y, where f* is the original function. To construct a basic NN, then we can use Eq. 1-9 to stack one
after the other as different layers of the NN. As an example, to build a three-layer NN (input layer,
1 hidden layer, and output layer) with an input of two parameters, it is possible to define its
components as:

Wy, W,
W=[ H 12] Egq. 1-10
Wy Wa q
hy =g(xW,+c
h=l 1= 9(Wy + 1) Eq. 1-11
hz - g(sz + Cz)
Wy
=] Eq. 1-12
y =hw Eq. 1-13

Where h is the set of functions for each unit (neuron) in the layer that each holds a common
function called activation function g, and ¢ a bias value. In general aspects, this is the simplest
form of a NN: a feedforward, fully connected network (see an illustration in Figure 1-15), but it
can be extended to as many layers with as many units as desired. In that case, if each layer, with
its respective units, forms a function f,,, then a NN with N layers will have the following shape:

fa < (f3 (. (fl(x))))) Eq. 1-14

The activation function can take many different forms. The most commonly used is Rectified
Linear Unit (ReLU), where g(z) = max{0, z}. This function is used in many applications and
cases; however, it can really be anything that the user desires and as complex as needed. A different
approach is to define the activation functions as a radial basis function, in other words, a function
that outputs a value in function of the distance to some defined point. A typical function to use is
a Gaussian function as

o(r) = e’ Eq. 1-15
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Where 7 is the radius, or distance, to the center. Such NN are defined as Radial Basis Function
Networks [98] (RBFN). Radial basis function networks are particularly useful in applications
where the input data has a non-linear relationship with the output. They are based on the idea of
radial basis functions, which are functions that have a value of 1 at the origin and decrease as the
distance from the origin increases. As mentioned, RBFNs use these functions as activation
functions in their hidden layers, allowing them to capture non-linear relationships in the data. They
are particularly useful in tasks such as function approximation, time-series prediction, and
classification problems with non-linearly separable classes. Additionally, RBFNs are known to be
robust to noise and outliers in the data and require fewer hidden neurons than other NN
architectures. Overall, RBFNs are a powerful tool for solving a variety of ML tasks with non-linear
input-output relationship.

With all this, it is patent that artificial NNs can take several shapes and forms, with virtually
unlimited possibilities in terms of input and output types, number of layers and units per layer, and
how all these elements interact with each other. A (mostly) complete chart of NN structures can
be found in the Neural Network Zoo [99].

Figure 1-15: Representation of a three-layer NN with and input, hidden, and output layer. The
input is a two-parameter variable, and the hidden layer contains two units. This is arguably one
of the simplest forms of a NN.

1.4.2 General use of ML in material science

The utilization of ML in materials science typically adheres to a specific workflow: data selection,
feature engineering, model building, validation, and result analysis, as illustrated in Figure 1-16.
While the exact procedures and details will vary depending on the particular problem at hand,
adhering to this structure is crucial for obtaining accurate outcomes and gaining valuable insights
into the central research questions.

The initial stage in the ML workflow for materials science involves choosing the appropriate
dataset. This step is crucial, as the quality and relevance of the data will significantly impact the
accuracy and effectiveness of the ML model. It is important to carefully consider factors such as
data source reliability, data completeness, and the presence of any noise or inconsistencies. The
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selected data should be representative of the problem being addressed and encompass a wide range
of material properties and conditions to ensure that the developed model is robust and applicable
to various scenarios. Overall, the data should aim to a well-defined problem.

After selecting the appropriate data, the subsequent critical step involves processing and scaling
the data. This phase is essential to prepare the data for effective analysis and model training. Data
processing involves a series of steps to clean and organize the data by handling missing values,
correcting errors, and removing duplicates. Scaling the data is a key part of this process too,
especially for algorithms sensitive to the scale of input features. The goal is to ensure that all
features contribute equally to the analysis and model training.

After, the following step is feature engineering, which involves extracting and selecting the most
relevant features or attributes from the dataset that will be used as input for the ML model. This
process requires domain expertise and a thorough understanding of the materials science problem
being addressed. Feature engineering may involve applying transformations, aggregating data, or
even creating new features that capture important relationships between variables. The goal is to
identify the most informative features that can help the ML model make accurate predictions and
uncover hidden patterns in the data, and also remove those that might create bias when processing,
like noise, inaccurate data, and measure errors.

The modeling stage involves selecting an appropriate ML algorithm and building the model based
on the selected features. Each algorithm has its advantages and drawbacks, and selecting the right
one depends on the specific problem, data characteristics, and desired outcomes. Researchers
should experiment with different algorithms and parameter settings to identify the best-performing
model for their particular problem.

Once the ML model is built, it needs to be tested and validated to ensure that it performs well on
unseen data and can generalize to new situations. This is achieved by splitting the dataset into a
training set, which is used to build the model, and a testing set, which is used to test the model’s
performance. Then, the algorithm can be re-trained with a different, but comparable, training set
and test if it produces equivalent results. This indicates if the performance is due to the model itself
or for a biased training/test set. Common performance metrics include accuracy, precision, recall,
F1 score, and mean squared error. Researchers can also use techniques such as cross-validation to
get a better understanding of the model’s stability and performance across different subsets of data.

The final stage in the ML workflow for materials science is analyzing and interpreting the results
obtained from the model. This step involves understanding the relationships and patterns that the
model has uncovered, assessing the model’s strengths and limitations, and determining how the
findings can be applied to the problem at hand. The insights gained from the ML model can be
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used to guide further research, inform decision-making, or even be integrated into other
computational tools and techniques to accelerate the discovery and development of new materials.
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Figure 1-16: General proper workflow for ML applications in material science. Figure extracted
from [100].

1.4.3 Introduction to XAl

From the last sections, it is clear how complex ML algorithms can get, particularly when using a
combination of algorithms, dividing the problem into a subset of problems with different
algorithms, or when more layers and units are added to a NN model. This complexity makes it
difficult to really understand what the Al is actually doing and to exactly know how and why is
able to make predictions. Explainable Artificial Intelligence (XAI) is an emerging field that aims
to make Al systems more transparent, understandable, and accountable to humans. With the rapid
advancements in Al, there has been a growing concern about the lack of interpretability and
transparency of Al models, especially in critical decision-making scenarios [101][102]. This line
of research, however, is subject to ongoing discussion on the right questions to make, and the
ethics involving the explanation of algorithmic decisions. This is paramount as cases of bias can
be life changing [103], and these biases are difficult to approach [104][88]. Furthermore, this topic
has gain so much importance, that European regulators have stablished the explanation of life
affecting decisions by a computer program a right [87]. To tackle this issue, not only
methodologies are required, but also proper definitions, correct questions, and high ethical
standards [88][91]. Particularly in natural sciences, as mentioned, ML has become increasingly
popular for its ability to quickly and efficiently analyze large amounts of data. Its versatility and
accessibility through various libraries and products have also contributed to its widespread use.
However, without the ability to explain the results obtained from ML algorithms, their scientific
value may be diminished, and the consistency of future research may be affected [90]. XAI is
therefore crucial for ensuring the validity and significance of ML-based results in the field of
natural sciences, and every other field.

One way to perform the latter is to find a function that approximates the algorithm to be analyzed
to a simpler form that can be interpreted by humans. An example of such is LIME [89], or Local
Interpretable Model-Agnostic Explanations, a popular technique that aims to provide interpretable
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and transparent explanations for the predictions made by any black-box model, including NNs.
The technique works by perturbing the input data in a local region around the instance being
explained, and then training a simple linear model on the perturbed data. This allows LIME to
explain the predictions made by the black-box model by approximating the decision boundary in
the vicinity of the instance being explained, and attributing importance to the input features based
on their contribution to the prediction. The output of LIME is a human-understandable explanation
of the model’s decision-making process, which can be used to improve the trustworthiness,
accountability, and interpretability of ML models. The latter can be expressed as

L) = ) M@ (F() - g())’ Eq. 1-16

Z,ZIEZ

Where f(x) is the model to be explained, 11, is a proximity measure between an instance z to x,
and g € G is a model where G is the class of linear models, such that g(z") = wy - z'. Then it is
possible to minimize this function with a complexity measure 2(g) that is low enough that is
interpretable by humans as the loss function expressed like

§(x) = mingeg L(f, 9,1T,) + 2(g) Eq. 1-17
With this is possible to find an approximation L(f, g, I1,.) that humans can understand.

A different approach is to improve the interpretability of ML algorithms is through the use of
sensitivity analysis, which involves systematically varying the input features and measuring the
resulting change in the prediction. By comparing the predictions obtained with the original values
of the features to those obtained with the modified values, it is possible to understand how the
prediction changes as each feature is varied. An example of this is RELIEF [105], a feature
selection method that detects statistical significant features according the change in the target. This
can be modelled as:

0if ye = Vi
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Variable type
kif numerical = A(yy, Vi) =

Eq. 1-18

Where A(yy, Ji.) denotes the difference between the original instance y;, and the perturbed instance
Vi and p; is a normalization parameter to transfer the domain to a relative scale. This method can
successfully identify what features are more important when making a particular prediction and,
in the aggregate, see what features are more relevant on the possible outputs. However, this method
is originally limited to two classification groups and its random perturbation nature yields strictly
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stochastic results. Despite this, the method can be easily generalized to a desired number of
classification groups and the random perturbations can also be replaced with intended and
deterministic changes by considering:

I, = Py(x) — Py (Rj(x)) Eq. 1-19

Where Py, is the probability function of the ML model M, x € X is an array of dimensions h X w,
and R is a function of local perturbation of feature j € J. With this, the value of I will determine
how important a feature is compared to others measured by the probability change in classification.

Finally, XAl can appear in different shapes and forms with vastly different approaches and levels
of complexity. Regardless, the exploration of XAI underscores its critical role in enhancing
transparency, fostering trust, and ensuring ethical Al deployment, thereby bridging the gap
between advanced Al technologies and their practical, understandable, and responsible application
in various domains.

1.4.4 Alin energy, PV devices and materials research

As mentioned, Al and ML have emerged as transformative tools in various fields, including energy
and PV devices and materials. In fact, it is foreseen that the widespread use of this tools, in
conjunction with CA, can shorten development times for novel materials by a factor of 10, from
10 to 20 years to just a few years [75][86][73][106]. Moreover, there is evidence for 1,000 times
acceleration in the rate of the discovery of novel amorphous alloys with the power of combining
high-throughput experiments (HTE) with ML models [87]. In contrast with traditional methods
for discovering new materials, such as the empirical trial and error method and density functional
theory (DFT), that typically require a long research and development cycle, are of high cost with
low efficiency, and have difficulty keeping pace with the development of materials science today
[100], Al and ML have shown great potential for the discovery, optimization, and characterization
of advanced materials for PV devices. ML algorithms can analyze vast amounts of data, identify
patterns, correlations, and optimal material configurations, enabling researchers to focus their
efforts on the most promising candidates [77][81][84]. As such, these tools have the potential to
revolutionize the way we discover, design, optimize, and manufacture devices, enabling faster
innovation and implementation of sustainable technologies.

As so, successful research has been achieved using ML and Al in the field of energy and PV
materials. For example, Mahmood et al. (2021) reviews several examples where ML has been
applied successfully for improvement and discovery of organic solar cells. Ren et al. (2018)
combined ML and HTE iteratively to accelerate the discovery of new metallic glasses for energy
storage applications. In addition to material discovery, ML can be utilized for CA and HTE. For
instance, Fonoll et al. (2022) discussed the importance of sample preparation, characterization
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techniques, and analysis approaches in CA. They highlighted the use of ML in studying the
relationships between material properties, enabling researchers to gain insights into the factors
affecting device performance. Furthermore, ML models can analyze large amounts of data
generated from experiments and simulations, identifying patterns and correlations that can help
optimize device structures and configurations [79][76]. Also, Al can assist in automating the
analysis and interpretation of data from various characterization techniques, enhancing the
efficiency and accuracy of material characterization. Moreover, Al can be employed to study the
relationship between material structure and properties, ultimately guiding the design of novel
materials with tailored functionalities. For example, Vasudevan et al. (2019) explored the use of
Al in materials science, focusing on high-throughput library generation and ML techniques to
discover new materials and understand the underlying physics. Lastly, Al can help improve the
reliability and reproducibility of experimental results by automating data processing and analysis.
This can lead to more robust conclusions and a better understanding of the underlying phenomena
in material systems, ultimately accelerating the development of advanced materials for PV
applications [79].

A key limiting factor of ML models is that, generally, the predictive space is within the input
realm. In other words, predictions and conclusions from these kinds of experiments, in most cases,
can only be used for data that is within the parameters of the experiment. However, in scientific
discoveries, it is generally preferred to predict far outside the training distributions. For instance,
much of materials research aims to identify ways to produce top-performing materials that are, by
definition, beyond the confines of the available data. To overcome this, the common single-
hypothesis experimentation must become obsolete, transferring over to experiments designs that
are combinatorial in nature [107]. The idea that the search for new materials with outstanding
properties and new mechanisms require a broader search through composition- processing-
structure-property space than could be afforded by conventional one-sample-at-a-time techniques,
has been patent for over a century [108]. Far from being a novel idea, there is still paths to pave in
order to reach the full potential of computation in material science and PV technology. Once this
point is reached, where knowledge extraction catches up the HTE synthesis and characterization,
the limit to rate of new materials discovery becomes the decision making, i.e., what materials to
pursue next given the knowledge of materials discovered so far and processing conditions needed
to make them [76].
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Figure 1-17: Leveraging Al can enhance human capabilities and expedite discovery within the
scientific method. Scientific discovery necessitates the integration of various Al techniques
beyond solely data-driven ML. By combining primary Al methods, such as learning, reasoning,
and planning, with human-computer interaction, a comprehensive approach emerges. This
approach facilitates the integration of multiple knowledge sources, including databases, theory,
experiments, and human reasoning, as demonstrated through relevant examples. Figure extracted
from [107].

1.5 Objective of the thesis

TFPV devices hold immense potential to disrupt different industries by bringing cheap and
sustainable energy. This means that, either directly or indirectly, this technology can replace fossil
fuel generated power, with a clean and affordable alternative and, furthermore, it can allow solar
energy to be used in places and applications that other technologies can’t. However, even though
much progress has been made in the past years, a long way ahead of improvement can be foreseen,
with room for improvement in terms of efficiency, material usage, and production scaling. The
evidence suggests that, to achieve better results for TFPV, traditional experiment designs must
step aside to give way for CA experiments driven by Al and ML, that are able to considerably
reduce research and development times. These technologies have been under research with more
interest just over the past few years in the field of PV materials and devices with promising results.
However, despite this notable applications and results obtained so far in the field with Al and ML,
the implementation of these tools, including also CA, even though more common as time passes,
has been rather slow for this research field [81]. This is mainly due to several barriers between
researchers and these tools: the availability of large amounts of data, proper pre-processing of data
sets, lack of multi-disciplinary groups with experts of enough computational knowledge, and more
[85][109]. Additionally, the difficult interpretation of results that decrease trust in ML models, as
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discussed in the previous subsection, also contributes to this issue, even more considering that XAl
is difficult to implement even for experts in the field [110][111]. In other words, the application of
Al tools requires substantial theoretical, statistical, analytical, and programing skills from a
research team. To overcome these barriers and accelerate the implementation of these technologies
and decrease research and development times, it is paramount to achieve the following points:

- Facilitate high-throughput data acquisition: Ensuring the availability of tools that can
handle large-scale data collection efficiently is crucial (from the point of view of time and
human resources consumption). This will streamline the gathering of large datasets
necessary for properly perform CA experiments and training and testing Al models.

- Automate data processing: It's essential to simplify the data processing workflow by
making it generalized and automated. Reliance on specialist knowledge should be reduced
to make the process more accessible and efficient.

- Establish clear ML and CA protocols: The development of straightforward ML and CA
methodologies with predictable outcomes is vital. This will allow for automated research
processes, making Al applications more reliable and easier to replicate.

- Democratize ML result interpretation: Making the interpretation of ML results more
accessible is key. This approach will create greater trust in Al technologies and enhance
the understanding and insights derived from these tools, broadening their application across
various fields.

Accomplishing the above points will significantly streamline the integration of Al in research
settings, paving the way for more efficient, accessible, and reliable technological advancements in
the field of TFPV. As so, the identification of these needs and problems have inspired this thesis,
which proposes as its main goal “the development of innovative CA techniques based on Al and
ML algorithms for the accelerated research and development of relevant chalcogenide-based
TFPV materials, including CIGS, CZTSSe, and other emerging technologies, to reduce their lab-
to-market times and improvement cycles.” To accomplish this main goal, the following three
objectives are also defined:

- Objective 1: “Design and implement autonomous systems to obtain high amounts of data
in large area / large number of samples using different spectroscopic (Raman, PL,
reflectance, transmittance) and optoelectronic (IV, EQE, IQE, CV) techniques, that will
enable innovative big data-based research based on the correlation of physicochemical
properties of the materials with the device performance.”
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- Objective 2: “Develop new methodologies based in AI and ML algorithms for big data
processing. This will include fast-rate data conditioning and processing using CA results
and Al-based strategies.”

- Objective 3: “Make tools available for non-expert scientists for easy implementation of Al
data processing and interpretation of results in an accessible way.”

Through the realization of this work, the experiments, developed tools, and results have aligned
with this objectives and main goal. This is further detailed in the following section and also
reflected in the included articles in this compendium.
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2 METHODOLOGY

The methodology developed and used during this thesis is schematically shown in Figure 2-1.
Overall, the methodology is divided in five steps. It starts with the synthesis and characterization
of a combinatorial sample or of a combinatorial set of samples. These must have a compositional
or process condition variation to allow for the study of its impact in the final performance. Also,
the samples must be comprehensively characterized, using techniques that encompass
compositional, structural, optical, and electrical properties so that there is a holistic view in the
study. The second step is for the characterization data obtained to be divided into features and
targets. This means that the desired property to be studied (i.e. open circuit voltage, efficiency,
etc.) is defined as the target and the feature is all the rest of the data that is used to make a prediction
or classification in terms of the target. In other words, the data must be divided as data to make a
prediction and data to be predicted. In the next step the data is subjected to conditioning and fusion
respecting traceability and preparing it for their input into the ML algorithm. Conditioning refers
to the necessary steps to process the data and remove undesired information that might bias or
interfere with the results. Fusion in this case refers to the process of merging (fusioning) the data
selected as features into one single vector. This is a crucial step for this methodology as it simplifies
in great deal how much processing must be done to the data, as there is no further information that
needs to be directly extracted form spectroscopic data, specifically. Then, traceability is the process
of correctly assigning the measurements to a measured spot by keeping track of which measured
point uses what measurement, as different spots may use the same measurement if the
measurements are of a too large area compared to others. This can be challenging when different
measurement techniques measure over different areas, which is often the case. The fourth stage in
the methodology is to analyze the data by applying ML. The present work proposes the use of, but
not limited to, PCA, LDA, or cascaded PC-LDA classification algorithms as a powerful tool to
process spectroscopic data. The results of such models lead to the classification of the data which
allows making decisions about the most relevant and optimum production parameters and
generates knowledge about the critical properties of the materials and devices. These results,
however, must be evaluated in terms of overfitting and efficacy by studying the training, test, and
validation results. Finally, in the last step, the methodology allows to select critical samples,
techniques, and spectral ranges to generate more solid feedback for further technology
improvement.
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Figure 2-1: General flow of the proposed methodology for accelerated research using CA and
ML.

It should be noted that while the combinatorial sample preparation and the characterization
processes are tailored specifically for TFPV technologies, their direct applicability to other
technological areas may be limited. However, further steps of the methodology are more universal
since they are related to the data manipulation and application of ML and barely depend on the
analyzed materials. This generalization makes it possible to adapt and extend the proposed
methodology to other complex multilayer and multicomponent systems relatively ease.

For the included experimental articles in this compendium (articles 1 and 2), this methodology was
applied, with different needs and complexity levels in each case. For instance, the first article
makes use only one spectroscopic technique, thus data fusion and traceability was a rather simple
process, in contrast to the second article were three spectral vectors were used or each of the
measured points. Regardless of these differences, both cases successfully obtain insightful results,
which are discussed in each article accordingly. The third and fourth articles, in contrast, are open-
access and open-source tools to help implement this methodology. The following subsections
explain in more detail each of these steps, highlighting key considerations and details essential for
its implementation, and the following chapter introduces the articles in question where their
specific details are presented.

2.1 Sample preparation

During this thesis there have been two different sets of samples prepared in collaboration with
colleagues from the SEMS group at IREC, and from the Dutch Organization for Applied Scientific
Research (TNO). Both of these sample sets were developed with graded variations of one of their
components. The combinatorial sample set used in the first study in cooperation with TNO is sub-
divided in three sets with different substrate materials used: Si, PET/CIGS and PET. On top of
these substrates a nanometric layer of AIOx was deposited using a laboratory-scale rotary spatial
atomic layer deposition (ALD) reactor. The nominal thickness of the AlOx layers was changed
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from 15 nm up to 75 nm. Moreover, due to the used technological process, a graded layer of AlOx
was deposited with the gradient in a radial shape, thicker towards the center and thinner towards
the edges (Figure 2-2). This allows to develop a methodology based on normal reflectance (NF)
spectroscopy for monitoring AlOx nanolayer thickness. More details and information about these
samples can be found in the respective published article also presented in Section 3.

15 cm

30x30 point grid

Figure 2-2: Samples used for the AlOx thickness evaluation experiment on A) PET/CIGS, B) Si,
and C) PET substrates. The final diagram is an approximation of the measured points. The inner
radius of the AlOx deposition is 1.2 cm, meanwhile the outer radius is 7.6 cm. Extracted from
[112].

For the sample used in the second study, a CZGSe combinatorial sample was synthesized with a
compositional gradient of [Zn]/[Ge] ratio (Figure 2-3). The sample was made by sputtering of the
metallic precursor and it subsequent selenization. The sputtering was performed on a soda lime
glass substrate covered by a metallic Mo layer. The solar cell devices were then finished with the
standard procedure for SEMS devices, by depositing the CdS layer (using chemical bath
deposition), i-ZnO layer (using sputtering of Zn metal in O atmosphere), and In,03-SnO> layer
(using sputtering of In-Sn alloy in in O atmosphere). With the use of Raman spectra measured
under different excitation conditions, the effects of the graded [Zn]/[Ge] ratio on structural and
compositional properties of the compound and on the performance of the solar cell devices was
explored in detail. More details and information about this sample can be found in the respective
published article also presented Section 3.
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5cm

Figure 2-3: Photo of the CZGSe kesterite sample used in the second article. Change of the color
is directly related to gradient of [Zn]/[Ge] ratio. Extracted from [112].

2.2 Characterization techniques

Given the intrinsic complexity of the compounds and layer structures in TFPV devices, it is crucial
that the characterization of the sample library is thorough and exhaustive. This entails applying
multiple characterization techniques to the same defined small area of the sample, known as the
analysis area or pixel cell. Such a comprehensive approach is necessary to maximize the data
gathered and to uncover potential correlations. The chosen methods for characterization should be
non-destructive, possess a spatial resolution equal to or finer than the pixel cell size, and ideally
offer fast data acquisition times and automation capabilities. The techniques must be non-
destructive, so it is possible to conduct numerous measurements on the same sample without
altering its properties. Additionally, a high spatial resolution is essential to detect and analyze the
variations in properties present in graded combinatorial samples accurately. The techniques
utilized in this study, which are detailed below, meet these criteria.

2.1.1 Raman spectroscopy

Raman measurements have been performed using IREC developed Raman setups optimized for
the UV—Visible spectral region (based on Horiba Jobin Yvon FHR640 monochromator) and NIR—
IR region (based on Horiba Jobin Yvon iHR320 monochromator). The first system is coupled with
an open electrode CCD detector cooled down to -132 °C and the second with NIR enhanced CCD
detector cooled down to -75 °C. Solid state lasers (Aex = 532, 633, 785 nm), and gas He-Cd lasers
(Aex = 442 nm) were used as excitation sources. Different gratings for the light dispersion were
employed to optimize the spectral resolution. The measurements were always performed with laser
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power density in the range 25-150 W c¢cm 2 by using a macrospot with a diameter in the range of
50-70 wm depending on the excitation wavelength. Finally, the use of unpolarized laser beam
allowed to minimize the impact of the crystalline orientation in the Raman spectra.

2.1.2 Spectroscopic Normal Reflectance

A probe with a broad emission (400 — 1000 nm, approximately) halogen lamp as illumination
source was used for the reflectance measurements. The IREC designed probe was coupled to an
XY-crane to enable mapping measurements and the acquired signal was processed through a
compact CCD spectrometer (Thorlabs CCS200). A vacuum chuck table was employed to ensure
the flatness of flexible samples during measurements. A spot size of ~100 um and acquisition
times in the 10-100 ms range (depending on the type of sample analyzed) were employed for the
measurements.

2.1.3 Optoelectronic characterization

[-V measurements were performed under illumination and in dark conditions have been performed
to evaluate the final device performance. I-V characteristics were acquired on complete devices
using a Sun 3000 AAA solar simulator from Abet Technology (uniform illumination area of 15 x
15 cm?) calibrated with a Si reference solar cell under AM1.5 illumination. Sample temperature
around 25 °C was kept during the measurements.

2.1.4 X-ray fluorescence

Compositional measurements and thickness estimation of the different layers were determined
with an X-Ray fluorescence (XRF) equipment (Fischerscope XVD) calibrated by inductively
coupled plasma (ICP). The measurements were done using a 50 kV accelerating voltage, a Ni10
filter to reduce background signal, and an integration time per measuring point of 45 seconds. The
equipment in question comes equipped with a measurement analyzer software that permits the
estimation of compositions and thickness of the layer stacks by calculating attenuations in the
subsequent layers, this required sample calibration that was analyzed by ICP technique.

2.3 Automated measurements

In accordance with the developed methodology described above, the use of fast, automated
mapping measurement procedures is important due to the high number of measurements to be
performed on the sample libraries that, otherwise, could result in extremely high acquisition times
for obtaining the high-statistics that are desirable for Al application. There are significant advances
in automation of the measurement systems, that are self-controlled, do not require significant
sample preparation time or the permanent control and supervision of an operator. In the case that
these systems are not available, standard spectroscopic systems can be automated through the
coupling of measuring probe-heads to programmable motorized XYZ gantry systems or translation
stages combined with the use of optical fibers or with the use of detectors that can be integrated
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within the probe-heads. This approach leads to a significant reduction of the labor and time needed
for acquiring a statistically relevant amount of data and to increase the size of the data sets.
Automation is then a critical component to significantly contribute to the evolution, enhancement,
and development of any research area, including TFPV materials and devices. It enables an
enhanced efficiency and suitability into the research process with fast and consistent data
acquisition and reduced long-term costs that yields better products.

In this thesis work an automated spectroscopic platform was developed and implemented to
streamline the measurements and preliminary analysis of various spectroscopic techniques,
including multiwavelength RS, PL, and NF. This system was designed with a modular approach,
comprising of several components such as a large area and high precision X-Y gantry crane,
multiple modal probe, light excitation source, spectroscopic detector, and a system controller
(consisting of both hardware and software). The centralized control of these modules was achieved
through the implementation of custom software, utilizing LabVIEW for the control of the
equipment and Python for processing the obtained data. LabVIEW, with its robust ability to
interface seamlessly with hardware, is particularly well suited for managing the complex
coordination required among the various components of the system. Also, beyond its intuitive
graphical programming interface, LabVIEW 1is also commonly supported natively on several
commercially available pieces of hardware, making it easy to implement and merge with other
systems. On the other hand, Python brings to the table its advanced data analysis capabilities,
courtesy of several extensive libraries available. Additionally, the customization and scalability
offered by both LabVIEW and Python are important for both research and process monitoring
settings where specific needs and modifications are required. Moreover, the strong community
support and comprehensive documentation available for both languages greatly aid in
troubleshooting. Together, the integration of LabVIEW's hardware-oriented precision with
Python's powerful data handling and analysis proficiency forms a powerful combination, making
them ideal for creating an automated, efficient, and adaptable spectroscopic platform.

More specifically, LabVIEW was used for the automation and coordination of the gantry systems
and spectrometers. In other words, LabVIEW is accountable for the measurement, acquisition, and
movement. This is shown in Figure 2-4 where the block diagram (fundamental way of
programming in LabVIEW) is shown. The figure shows only the section of the program that checks
for the position of the probe to decide whether to perform a measurement or not. Additionally,
some basic pre-processing is done with LabVIEW. For instance, normally more than one
measurement is acquired per point to both smoothen the spectra by performing an average and also
to remove artifacts such as cosmic rays, in the case of RS for example [113][114]. These types of
operations are simple and require little processing resources, so LabVIEW can handle these in
operations right after a measurement and keep reduced acquisition times. Even though it is possible
to easily integrate Python to perform these operations within LabVIEW, it is decided for these to
be performed as mentioned for a leaner code structure.
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Figure 2-4: LabVIEW block diagram for measurement synchronization of the v1 system. The
system constantly checks the location of the probe and performs measurements when they match
the defined points by the user.

Then Python is reserved to handle more complex and resource intensive processing after the
measurements and before the data is used for analysis and for procedures that need the
measurement, or a sub-set of the measurement, to be completed. For example, for RS, pre-
processing steps will include axis calibration and baseline removal. The first one requires for a
reference measurement to be performed either at the beginning or end of a sample measurement.
Both calibration measurements are recommended when the total time is considered too long, since
conditions may change significantly during that time. These references contain well-known
characteristic peaks, such as Si which shows a peak at 520 cm™!, and the peaks are fitted with a
distribution, normally Lorentz distribution in this case. With this, it is possible to more accurately
check how the axis is shifted. When two calibration measurements are performed, the average shift
can be used or the spectras can individually be corrected with the closest calibration measurement
in terms of time. This step normally would require a manual identification and fitting of the peak,
but it is automated in just one single line of code using Python and the spectrapepper library
(spectrapepper is the third article in this compendium). After, the baseline may be removed. For
this, a b-spline is fitted, under the peaks through points in the spectra to remove the baseline below.
For this step, no generalized and fully automated way has been found yet in the literature since is
shows very specific needs and parameters for each problem. Because of this, the points for the
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curve fit must be found manually, but this only needs to be done once, since preserving the code
with the parameters will secure repeatability through any other dataset from the same material.
This 1is still true for normalizing to specific peak areas or peak ratios. This procedure can be
visualized in Code 2-1 as a functional piece of code. As mentioned, this same code secures
consistency and repeatability, as the same “formula” can be used for other measurements of the
same sample or other samples of the same material just by changing the data source file. Another
example is shown in Annex D, where 196 spectras are processed in just 0.1 seconds.

import spectrapepper as spep

# Load the data to be processed and calibrated.
X, y = spep.load('raman_measurement.txt")

# Load the calibration data from Si sample.
x_si, y _si = spep.load('si_calibration.txt")

# This function checks automatically for the peak, fits
# a curve, and extracts the shift of the axis.
x_shift = spep.shiftref(y_si, x_si, ref_peak=520)

# The shift is added to the measurement axis.
X = X + x_shift

# Remove baseline.
y = spep.bspbaseline(y, x, points=[160, 315, 450, 530])

# Normalize the spectra to the maximum value.
y = spep.normtoratio(y, x, rl=[190, 220], r2=[165, 190]

Code 2-1: Example code for processing RS data from data acquired in the LabVIEW system.
Total effective lines of code are seven.

In a first instance, a first version (v1) of the software was used in the first article. This system
consisted in a compact CCD spectrometer (Thorlabs CCS200) coupled to a broad emission (400-
1000 nm, approximately) halogen light source and a NR probe. The probe was attached to a XY
gantry system for the automated movement. Both the spectrometer and the gantry system are
connected to the control unit (PC) and programmed with LabVIEW. This had to be done in such
a way that the movement of the crane and the spectrometer measurement where fully coordinated,
ensuring consistency and repeatability. In this case, the measurements were performed while the
crane was in movement, emulating the conditions in a roll-to-roll environment where the CIGS
sample are produced. A picture and diagram of this system is presented in Figure 2-5A, and the
user interface (U]) is attached in Anex A. An evolved second version (v2) was used for the second
article, mainly improved in the ability of performing multi-technique measurements in a quasi-
simultaneous way and in the same spots. The diagram and photo of this system is shown in Figure
2-5B, and the Ul included in Anex B. The system was also further developed in cooperation with
the SEMS members to use a more advanced version in real process-monitoring conditions. The Ul
of this system is included in Anex C.
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Figure 2-5: Photo and scheme of A) first version of the system used in the article 1 and B)
second version of the system used in article 2.

2.4 Data conditioning, fusion, and traceability

Once the data has been acquired, the next step in the methodology is the conditioning and fusion
for the utilization in ML algorithms considering the necessity of the data to be traceable. In this
process, a critical point is data separation into targets and features. Targets are the properties to
predict or classify by the ML algorithm, while features, also known as descriptors, are the variables
used to make that prediction. Choosing the correct targets and features to be used in Al assisted
methodologies is one of the most critical steps in data analysis, as the input of irrelevant features
or inadequate targets will lead to no or confusing results, but a good selection of these will increase
the possibilities for a successful experiment with insightful and interpretable results
[81][109][115]. In the case of TFPV devices, various targets can be defined such as fabrication
parameters, chemical composition of a specific layer, or, more commonly, optoelectronic data of
the final solar cell (efficiency, open circuit voltage (Voc), short circuit current (Jsc), and fill factor
(FF)). In most cases, the target data will be scalars, each associated with a specific sample of a
discrete library or a specific area of a graded sample. On the other hand, features can be the results
provided by the characterization techniques such as Raman, PL or XRF data as well as the
fabrication parameters as described above. This means that features may have heterogeneous data
of one- (scalars) or high- (vectors, images) dimensionality, which adds additional complexity on
the data treatment related to heterogeneous data fusion. An important remark is that the data
selected for features should not be in the targets in the same workflow.

Data pre-processing can also be required for specific data types or measurement techniques. The
main objective of data pre-processing is avoiding the introduction of non-relevant features that are
not directly related to the sample itself, but rather to the equipment (e.g. instabilities, characteristics
of certain components, design limitations, artifacts...) or to the measuring environment
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(temperature effects, background illumination and shadows...). This is especially critical when
using spectroscopic data in which noise, artifacts, spikes or background signals may add non-
relevant information in the spectra. The data arising from each different characterization technique
have different pre-processing requirements. For example, in the case of RS it is commonly
necessary to calibrate the spectral range and correct peak positions with some reference sample,
remove spikes and subtract the baseline. Figure 2-6 shows an illustrative example of spectroscopic
data (Raman and PL) before and after pre-processing (and fusing, which is explained below).

The data conditioning process should be completed with a data standardization process, which
consists in scaling up the data so that they are numerically comparable among them. For instance,
if a scalar data has a maximum value of 5 and is to be fused with a vector that has a maximum
value of 5,000, normalization may be necessary for the ML algorithm to accurately consider the
scalar feature inside the fused data vector. This could be done by normalizing each technique to
its global maximum, or through other methods such as standardizing or normalizing each step of
the merged vector from 0 to 1, also known as Min-Max scaling. For instance, standardization
transforms the data in the way that it has a mean of zero and a standard deviation of one. It subtracts
the mean value of the data and divides by the standard deviation, effectively re-scaling or
standardizing the range of the data. This approach assumes that the data follow a Gaussian or
normal distribution and scales them accordingly. It maintains the shape of the original distribution
and the outliers remain as outliers. On the other hand, Min-Max scaling scales and translates the
data within a specified range, typically between 0 and 1. This method subtracts the minimum value
from each step of the data series and divides by the range of the data set (i.e., maximum value
minus the minimum value). This technique bounds the data but doesn't change their distribution.
While it is a simple and common scaling method, Min-Max scaling can be significantly influenced
by outliers in the data, causing a majority of the normalized data to be squeezed in a smaller
interval. In this regard, data normalization is not a straightforward procedure, and the best option
needs to be evaluated case by case to ensure that the original information is not altered or that
artifacts do not appear in the process, which could greatly affect the data analysis results.

Once the process of data conditioning is performed, the data of each measured point needs to be
fused into a single vector that can be fed into the ML algorithm. In the case of homogeneous data,
i.e. when all the data are of the same type, either scalar features or vector features can be joined
together in a single vector with higher dimension in a straightforward way. Such a vector then
becomes a part of the input file for the ML algorithm, and specific indicators must be created and
saved for each of these vectors to keep the traceability of the data. Figure 2-6 shows an example
of such a high dimensional spectrum (vector) which is obtained by concatenating Raman and PL
spectrum (after their conditioning).

For the publications in this compendium, the above procedure was used, however for a different
number of characterization techniques. For the first article, only NF was used for the
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characterization technique proposed. These spectra are obtained from the spectrometer on a 0 to 1
scale, and no further processing was necessary other than the subtraction of the bare base material
spectra to the deposited AlOx measurement (as explained in the published article). From there, the
dataset was scaled using standardization (as explained above) before being fed to the ML algorithm
as a full vector, without extracting any features beforehand. On the other hand, for the second
experiment, Raman spectra measured under 442 nm, 532 nm, and 785 nm excitation wavelengths
are used for the characterization of the graded sample. Before being introduced as features into the
PC-LDA, these were processed separately by wavelength and then merged into a single vector. In
this case, the spectras were normalized to the ratios of peaks 172 and 205 cm™ for all wavelengths
and then normalized to the global maximum of each wavelength, effectively taking the scale to a
global maximum of 1 to each wavelength, to finally merge them together by cell.
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Figure 2-6: Example of a high dimensional spectrum combining Raman and PL spectra for a

single measured point. A) shows the raw Raman measurement, B) the PL raw measurement and
C) the fused vectors after processing.

2.5 Data analysis

Data analysis is the process of examining and interpreting the information extracted from
characterization to gain insights and conclusions about the studied samples. In spectroscopic
analysis, this typically involves using specific indicators taken directly from the spectra, like
comparing area ratios in different spectral regions, identifying peak positions or inflection points,
or measuring peak widths, often through spectral or peak fitting. For instance, RS can reveal a
variety of aspects such as crystalline quality, structure type, presence of defects, secondary phases,
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or variations in layer thickness. These aspects are subtly included in the spectra through changes
in the features of the peaks: position, full width at half maximum (FWHM), absolute or relative
intensity, symmetry, etc. However, calculating these properties automatically and without
supervision in a generalized way can be challenging due to the data's complexity. For instance, to
accurately calculate the areas of peaks in a Raman measurement (for example), a detailed
deconvolution of the spectra needs to be performed. This can be illustrated in Figure 2-7, where
the full deconvolution of the measurement is perform to extract more accurate area values of the
peaks at 176 cm™ and 250 cm™ [116]. Even though this approach yields more accurate results, it
implies the deep knowledge of the spectra and the possible peak constitution of the data based on
the present materials and structures in the sample. Additionally, this process requires long
processing times, as normally a combination of manual and automated processes is needed, along
with considerable computational resources for larger data sets. A different approach to perform
such task is to use Mutlivaritae Curve Resolution (MCR), which covers several algorithms for
mixture analysis in spectroscopic data in an automated way [117]. This is performed by making
several peak fittings in known peak locations under an optimization function to minimize the
difference between the sum of the fittings and the analyzed spectra. However, these techniques do
require to be adapted in detail to each problem, which also requires expert knowledge and
familiarity of the possible peaks due to materials and structures present in the studied samples.
Even though the recognition of appearing peaks can be approximated (for example using PCA),
aiming for a more automated process, it still requires deep knowledge of limitations and
restrictions of each problem, which implies larger computational resources needed for each
deconvolution, thus making it difficult to implement in industrial processes and high-throughput
and big data (BD) experiments.

Intensity (arb. units)

140 160 180 200 220 240 260 280

Raman shift (cm™)

Figure 2-7: Deconvolution of a Raman spectra from a CZTSe sample using a 325 nm excitation
source. Extracted from [116].
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With this in mind, traditional methods of spectral analysis have several limitations including:

e They are often slow and may require a large human and computational resources, making
them inefficient for large-scale studies.

e Expert knowledge and experience are necessary for accurate analysis, limiting
accessibility.

e They are not easily adaptable as a universal method, as each experiment needs specific
parameter adjustments.

e Analyzing large datasets is challenging because of the significant computational resources
required.

e The accuracy of the results heavily relies on precise and careful data processing and
conditioning.

To address these issues, the used methodology incorporates ML algorithms, which can handle such
data effectively with minimal need for human oversight, while still providing valuable insights.
This approach uses dimension reduction algorithms that consider all the available information and
simplify it, making it easier to handle and understand. This method leads to more efficient and
effective data analysis for TF materials, improving both the speed and the quality of the analysis.
Specifically, for the first article PC-LDA is used, meanwhile LDA is used for the second article.
These are closely related algorithms, the first one being a cascaded combination of PCA and LDA.
PC-LDA, and its separate parts as PCA and LDA, stand out in data analysis and classification for
their useful characteristics, making them a reliable choice for high-dimensionality data due to their
simplicity, interpretability, and efficiency in handling smaller datasets. These methods, also
notable for their computational speed, are often preferred for analysis when resources, such as data
and computational power, are limited. Additionally, their susceptibility to overfitting is less in
smaller datasets, a common challenge in more complex models, and the PCA aspect of PC-LDA
excels in feature extraction and dimensionality reduction, crucial for high-dimensional data
handling. In contrast, while algorithms like RF, SVM, QDA, and ANNs can also perform well
with high-dimensionality problems, they each have limitations. RF, for instance, is not a dimension
reduction algorithm, discarding information in the process that might be important far ahead, and
lacks the capability for lower-dimensional visual representations, limiting its use in further
validation and physical model development. SVM, although effective, does not maintain the
relationship between classes due to its nature of randomization in its initialization. QDA, although
closer to PCA and LDA in working principle, tends to exhibit poor test and validation performance
and a tendency towards heavy overfitting due to its quadratic nature. ANNs are more difficult to
interpret due to their complexity, are less efficient with smaller datasets, are more computational
demanding, require to be carefully designed by experienced programmers, and do not offer lower-
dimension visualizations. In this regard, it is important to test between these algorithms, specially
LDA and PCA as standalones as they share a lot of the benefits of PC-LDA and may offer better
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results in specific cases, reason why the first article of this thesis uses PC-LDA and the second
uses LDA.

Finally, in order to facilitate the use of the ML by non-experts with a specific focus on
spectroscopic data, the third article describes the spectrapepper Python package that includes
specific tools to conditioning the spectroscopic data and also visualize ML results from dimension
reduction algorithms. Additionally, the fourth article describes the pudu library for gaining insights
into the ML results. With respect to the ML algorithms, other open-source libraries have done
good work simplifying their application. In particular, the library scikit-learn [118] has been used
for the programming of PCA, LDA, and PC-LDA.

2.6 Methodology for spectrapepper library

The Spectrapepper library is built on two key ideas: simplicity and flexibility. Simplicity means
it's easy to use, even if the user is not an expert with coding. It uses a straightforward approach,
offering functions that stand on their own, without requiring knowledge of classes, methods or
other libraries. This makes it more accessible, especially for beginners. The user only deals with
functions that take in parameters and return results, all while working with standard Python lists.
Flexibility means the library can handle different tasks easily. You can use the functions with one
or many spectras without changing the function name or its parameters. It doesn't matter the size
or type of the spectras; the functions are designed to work with any spectral data, as long as it's
formatted correctly. This correct format means having the data in rows, where each row represents
one spectra. This design choice makes Spectrapepper versatile and user-friendly, helping the user
to focus on the experimental and analytical challenges. The syntax structure is also standardized
across the library. This means that functions have straightforward and intuitive names and
consistent parameters. In particular, the first parameter will always be the spectral data, symbolized
with a y. The x-axis is always the second parameter but not mandatory, as sometimes it is irrelevant
for the operation to be performed (i.e. when normalizing to the max value of y). This syntax is
illustrated in Figure 2-8.
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Other function
specific parameters

Library name, normally
Abbreviated as ‘spep’.

: T

spectrapepper.function_name(y, x=x_axis, *params)

| !

X-axis is optional in

Intuitive function name .
most functions

Figure 2-8: Syntax structure that all functions in the library, that accept spectral data as input,
follow. The parameters y and x are only for the functions dedicated to spectral processes, which
is the main focus of the library. However, there are some functions that can work with any kind

of data, but are useful to have in a spectroscopic analysis toolkit (i.e. for the calculation of
Spearman and Pearson correlation coefficients)

One of the goals of the library is to tackle all steps in research and industrial processes, offering at
least a number of functions for data acquisition, processing, analysis, and visualization, as shown
in Table 2-1. For example, for data acquisition, cosmic ray functions are included, which are
essential to clean the raw outputs in Raman spectroscopy [114][113]. For data processing, common
procedures are included, like baseline removal techniques, noise removal, smoothing, and
normalization techniques. For analysis, specrapepper contains functions for calculating common
spectral characteristics, like full width half maximum, areas, averages and standard deviations, and
asymmetry. Finally, some functions help to visualize results and the data, for example with stack
plots, covariance matrices, and confusion matrices. Some functions may be used in multiple steps,
like the “pearson” and “spearman” functions that both calculate the respective correlation
coefficients matrices and also plots them.

Table 2-1: Example functions from the spectrapepper library categorized by their main purpose
according to the experimental step. Full list of the functions and their explanation can be found
in detail in the library’s repository.

Acquisition Processing Analysis Visualization
cosmiccdd bpsbaseline fwhm stackplot
cosmicmed alsbaseline avg confusionmatrix
cosmicmp normtoratio median spearman

normtoglobalmax sdev pearson
normtomax asymmetry

lowpass crosscorrelation

moveavg
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2.7 Methodology for the pudu library

Spectroscopy is all about understanding how light interacts with materials, focusing on changes
observed in spectral data. This data usually presents itself as peaks that differ in shape, symmetry,
intensity, position, and complexity. Even the smallest alterations can indicate significant
differences in the material being studied, although sometimes large changes might not be as
impactful [119]. Therefore, properly analyzing these variations is crucial. The same principle
applies when using ML with spectroscopic data, where detecting changes in spectral features is
key. The pudu library, a direct result of this thesis, introduces four methods designed to assess
such ML models based on the concept of change, namely importance, speed, synergy, and re-
activations. These techniques aim to help scientists delve deeper into their spectroscopic data
analysis, extending beyond just the initial ML findings.

Importance: Importance quantifies the relevance of the features according to the changes in the
prediction according to defined sequential perturbations on the features. Thus, Importance is
measured in probability or target value difference for classification or regression problems,
respectively. In a formal way, let x € X be a 2-D array of dimensions h X w. Let Py, be the
probability function of the model M. Then, Py (x) is the probability of x to belong to a
classification class according to the problem solved by M. Considering j € J the feature in position
(hj, Wj) of x, then the local importance (LI) for said feature j is defined as:

LI = Py(x) = Py (R;(2)) Eq. 2-1

Where R is a function of local perturbation of feature j. Then, the relative importance (RI) can be
denoted as:

pp = L —min@D Eq.2-2
7™ max (L) — min(L])

Where LI contains all the LI; of sample x. Then, importance is the difference in a model’s
classification probability according to change in the features.

Speed: Speed quantifies how fast a prediction changes according to perturbations in the features.
For this, the Importance is calculated at different perturbation levels, and a line is fitted to the
obtained values and the slope is extracted as the Speed value. This is better defined considering
states of R with different set parameters R4, R,, ... . As for Importance for x, LI of feature j using
the different perturbaions would be LI;, LI,, ... . Then, Speed is the slope calculated according to
the linear fit of the LI points as (1, Lljll), (2, Lljlz), ... . Then, the speed is how fast the Importance
changes according to change in the feature, or how sensitive it is. These can have positive or
negative values, depending on the slope. A positive value means that a bigger change will produce
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a bigger change in the prediction. A negative value means that bigger changes produce smaller
changes in the prediction.

Synergy: Peaks in spectral data can change at the same time as other peaks. However, their
relationship can be difficult to pinpoint and understand, especially in more complex mixtures and
materials. Synergy helps to explore these relationships of change by perturbating simultaneously
pairs of areas of interest. For this, consider a feature j* € J and a distinct feature j € J from x;.
Both are perturbated under R obtaining x;- ;. Then, the local importance obtained is LI;- ;. Then,

Ll = (LIjeq, Ll 5, ... ¥j # j* €]) Eq. 2-3

The synergy then indicates how features complement each other in terms of change and the effect
on the prediction.

Activations and re-activation: Convolutional Neural Networks (CNN) can result in highly
complex structures. As such, understanding how the final form of a CNN relates to the input data
can be certainly challenging, but if done correctly can yield great benefits, as shown in [120]. Re-
activation attempts to evaluate this structure in terms of change, thus better understanding how
spectral characteristics affect the final shape of such networks. To do so, consider the following
definitions:

Units: In a convolutional layer [ € L, where L is the group of all convolutional layers in the model
M, the number of units in K is defined by the size of the input (h, w), kernel size (ky, k), strides
(sp, s) and the filters f. Specifically, the number of units can be calculated as:

Ho = (h—kh)/sh+1 Eq 2-4
Wo=W-—ky,)/sy+1 Eq. 2-5
units = f = Hy x W, Eq. 2-6

Where (H,, W,) are the dimensions of the output of layer .

Activation map: As defined in [121], for x, take the activation map Ay (x) for each of the units k.
Then a; is the activation distribution for each individual units for Xg € X, where X; is a subset of
all samples X. Then, all the activations belonging to the p quantile as P(a; > Tj) were T is the
value above which the quantile exists.
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Re-activation map: The above can be evaluated based in feature perturbations considering x, the
original data, and x;, the perturbated input in feature j, and evaluate the difference as By (xj) -
By (x) = ABy,j Vj € ], where B is the pre-activatoin map of unit k. From here we can extract the
distribution Ab;, and then pass the data through the activation function to obtain a;. Finally, select
the p quantile as P(Aa;, > Tj) = p. In this case, X; is the set of perturbed samples derived from.

The latter accounts then for difference in unit activations after perturbation that would account for
are-activation. For example, if unit k has and activation value of u, and after perturbation the same
unit k obtains a value of u* = u = Au = 0, then it is not re-activated considering an activation
function of ReLU or LeakyReLU. In other words, this looks for significant changes in the
activation map according to change, meaning significant a value that would be considered an
activation in Ay (x).
With this, it is possible to obtain the following information:

- How many units are re-activated, in units of change

- What feature produces more unit re-activations, per unit of change

- What unit is re-activated the most, per unit of change

- Which feature re-activates what unit the most times
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3 PUBLICATIONS

This thesis is structured in the shape of article compendium, where the scientific articles in which
this manuscript is founded are collected in this section and will constitute the following
subchapters and are presented chronologically as they were submitted. The first two of these
articles have been published in high impact factor journals under the titles:

e Thickness evaluation of AlOx barrier layers for encapsulation of flexible PV modules in
industrial environments by normal reflectance and machine learning. Progress in
Photovoltaics: Research and Applications, 30 (3), 229-239.
https://doi.org/10.1002/PIP.3478

Using the Contributor Role Taxonomy CRediT, ETGL work can be described as:
Conceptualization, Data curation, Formal Analysis, Investigation, Methodology, Software,
Visualization, Writing — original draft.

e (Combinatorial and machine learning approaches for the analysis of CuxZnGeSes: influence
of the off-stoichiometry on defect formation and solar cell performance. Journal of
Materials Chemistry A, 9 (16), 10466—10476. https://doi.org/10.1039/d1ta01299a

Using the Contributor Role Taxonomy CRediT, ETGL work can be described as: Data
curation, Formal Analysis, Software, Visualization, Writing — original draft.

The third and fourth articles are open-source and open-access software that have been developed
over the past years involved in the program in response to the difficulties found in the literature
and the performed research itself. The detailed guide and explanation of these softwares are
published as the following peer-reviewed articles:

e spectrapepper: A Python toolbox for advanced analysis of spectroscopic data for materials
and devices. Journal of Open  Source Software, 6 (67), 378l.
https://doi.org/10.21105/j0ss.03781

Using the Contributor Role Taxonomy CRediT, ETGL work can be described as:
Conceptualization, Data curation, Formal Analysis, Methodology, Software, Visualization,
Writing — original draft.

e pudu: A Python library for agnostic feature selection and explainability of Machine
Learning spectroscopic problems. Journal of Open Source Software, 8 (92), 5873.
https://doi.org/10.21105/j0ss.05873
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Using the Contributor Role Taxonomy CRediT, ETGL work can be described as:
Conceptualization, Data curation, Formal Analysis, Methodology, Software, Visualization,
Writing — original draft.

The first study acts as a proof of concept of the methodology proposed in Section 2 of the thesis,
demonstrating the efficacy of CA in conjunction with ML for spectroscopy in TF research and as
a valuable tool for monitoring production processes in industrial environment and using an early
version of the automated system. The first functions included in the spectrapepper library where
coded and used during this experiment. The second publication also follows the same
methodology, with ML and CA, focusing on research objectives aimed at enhancing understanding
and gaining deeper insights into material properties. This experiment, however, uses more
spectroscopic measurements than the first, further showing the capabilities and versatility of the
methodology. The third work is the open-access and open-source library spectrapepper, containing
all the functions and procedures used for the spectroscopic processing and analysis performed for
the first two articles and for the subsequent work, allowing for a seamless and simple integration
of Al methodologies for HTE in IREC, from data acquisition to data analysis. Finally, the fourth
article is the open-access and open-source library pudu, which deals with explainability and
interpretability for the results from ML models, allowing for the extraction of deeper insights of
such results from the performed experiments. This library was published and developed after the
publication of the first three articles, but it naturally appeared as a necessity and logical
consequence of the methodology, since further and better interpretation of the ML results were
needed to fully take advantage of CA and ML analysis. However, this library is used in the
posterior exploratory experiments (Section 4), showcasing its potential and usefulness.
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1 | INTRODUCTION

Light weight and flexible photowvoltaic (PV) modules fully exploit the
technological capabilities of thin film PVs since; besides their inherent
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Abstract

Flexible photovoltaic (PV) devices, such as those based on Cu (In,Ga)Se; (CIGS) and
perovskites, use polymeric front sheets for encapsulation that do not provide
sufficient protection against the environment. The addition of nanometric Al O layers
by spatial atomic layer deposition (S-ALD) to these polymeric materials can highly
improve environmental protection due to their low water vapor transmission rate
and is a suitable solution to be applied in roll-to-roll industrial production lines. A
precise control of the thickness of the AlO, layers is crucial to ensure an effective
water barrier performance. However, current thickness evaluation methods of such
nanometric layers are costly and complex to incorporate in industrial environments.
In this context, the present work describes and demonstrates a novel characterization
methodology based on normal reflectance measurements and either on control
parameter-based calibration curves or machine leaming algorithms that enable a
precise, low-cost, and scalable assessment of the thickness of AIO, nanometric
layers. In particular, the proposed methodology is applied for precisely determining
the thickness AlO, nanolayers deposited on three different substrates relevant for
the PV industry: monocrystalline Si, Cu (In,Ga)Se, multistack flexible modules, and
polyethylene terephthalate (PET) flexible encapsulation foil. The proposed methodol-
ogy demonstrates a sensitivity <10 nm and acquisition times <100 ms which makes it
compatible with industrial monitoring applications. Additionally, a specific design for
in-line integration of a normal reflectance system into a roll-to-roll production line for
thickness control of nanometric layers is defined and proposed.

KEYWORDS

AlO;, CIGS, encapsulation, flexible PV, machine learning, normal reflectance, process
monitoring, thickness assessment

advantages such as reduced fragility and adaptation to curved
surfaces that open the way to numerous applications, they can be
fabricated through high throughput roll-to-roll (RtR) processes. This

type of intensive production reduces both the economic and energy

Prog Photovolt Res Appl. 2022;30:229-239.
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costs of PV, leading to devices with an increased energy return on
energy invested (EROI) ratio, key for the expansion of solar energy. A
critical step in the fabrication of flexible PV modules is the
implementation of a suitable encapsulation architecture. Contrarily to
the standard rigid modules that typically employ glass sheets for this
pumpose, the encapsulation of flexible PV modules, like those based
on, for example, Cu (In,Ga)Ses (CIGS) or perovskite absarber materials,
relies on the use of flexible transparent polymeric front sheets.? These
commonly present reduced water vapor barrer properties and
require additional protective layers to ensure a proper environmental
protection and long-term preservation of the modules.®® In this
regard, AlO,-based nanolayers deposited on the polymeric front
sheets by atomic layer deposition (ALD) have been demonstrated to
possess a high conformality and compactness which confer them a
very low water vapor transmission rate.*® However, conventional
ALD is an extremely slow deposition technique (200 mm/h in RtR
configuration to achieve 25- to 30-nm thick layer}* incompatible with
industrial high throughput processing. On the other hand, spatial
ALD (S-ALD) is a technological alternative to standard ALD in
which, in simple terms, the samples move between spatially separated
As a
consequence, the deposition rate is mainly limited by the amount of
deposition areas and the time required to move the samples between
them achieving deposition rates ~1 nm/s which are fully compatible
with RtR web speeds.’®*! In the case of CIGS, on which this work is
focused, it has also been demonstrated that, in addition to the
AlO,
nanolayers can also be directly applied on the top electrode of the

half-reaction zones where the deposition takes place.

employment of AlO,-deposited polymeric front sheets,
devices and still provide high end barrier properties. In this context,
S-ALD-deposited AIO, barriers break ground to low-cost and
RtR-compatible front sheet solutions that represent a step forward
for the production flexible PV devices. Furthermore, the use of AlO,
nanolayers in PV is not limited to encapsulation and AlQy layers have
also been successfully employed for interface engineering and
passivation in thin films solar cells and other devices'? %,

Like with most applications in which nanocoatings are employed,
a precise thickness control of the applied AlO, nanolayers is crucial for
them to function propery and provide the desired effect. In the case
of flexible PV module encapsulation, the water vapor barrier proper-
ties of AlO, nanolayers have been reported to drop dramatically when
their thickness falls below 10 nm2 while their brittleness increases
with layer thickness making it more prone to fracture under bending
stresses on flexible substrates.’” As such, a precise thickness control is
required to ensure an adequate functionality of the AIO, layers for
their use as water vapor barrers in flexible PV devices. Likewise,
precise thickness control is also critical for other uses of AlOy layers
like interface passivationm. In this context, the development of
methodologies and tools that can be implemented at RtR lines for in-
line process monitoring represents a strategic technological advance
for improving and optimizing PV module production at mass scale.

The reduced thickness of nanocoatings commonly requires
the use of very specific characterization techniques like those based
on X-ray photoelectron spectroscopy,?%° and

atomic force

electron microscopy. 2?2 Rutherford backscattering spectroscopy,?
el|ipsometr\«‘,q'u'ls‘m‘w‘y'h s
spectroscopy ®?7?8 among others. These techniques require long
acquisition times, sample destruction, and/or high-energy (deep UV or
X-ray) excitation wavelengths. Moreover, some of the mentioned

techniques suffer from limitations related to the characteristics of the

transmittance-reflectance

nanocoated substrate (high roughness and/or multistack configura-
tion, sensitivity to high excitation energies, etc.) and/or cannot be
applied to large area analyses. All these issues make the implementa-
tion of the existing methods in high throughput preduction lines very
technically challenging and economically costly.

Another critical issue regarding the scaling up of the production
of flexible PV devices is layer homogeneity. In fact, homogeneity is
usually considered one the most important barriers for the transfer-
ence of CIGS PV devices from the laboratory to the industry level.??
In this regard, the implementation of techniques that allow performing
fast large area mappings to monitor layer homogeneity is also of great
relevance for the industry.

In this framework, this work describes and demonstrates a novel
nondestructive, fast, precise, low-cost, and scalable characterization
method for determining the thickness of AlO, nanometric layers (from
a few to around 100 nm) that is compatible with both research and
industrial process monitoring environments. This approach is based
on normal reflectance measurements and takes advantage of the
impact of quantum confinement (QC) effects on the optical properties
of AlO, nanolayers as a consequence of their nanometric thickness:
optical bandgap (E,) and optical constants (n and k).*® The viability
and effectiveness of the technique are demonstrated for precisely
determining the thickness of AIO, nanometric layers deposited by
S-ALD on different relevant materials for the PV industry with differ-
ent characteristics: monocrystalline Si wafers (smooth), a complete
CIGS module (multistack substrate), and polyethylene terephthalate
(PET) polymer encapsulating sheets (rough). We demonstrate that the
slight QC-induced changes in the optical properties of the AlO, layers
can be detected from normal reflectance measurements with a simple
setup and be used for layer thickness determination with resolutions
better than 10 nm through their combination with machine learning
algorithms. The compatibility of the proposed approach with fast
micro (tenths of microns) and macro (up to several m?) mapping
analyses, depending on the application, as well as the possibility of
modifying the system employed, for better compatibility with in-line
industrial process monitoring, is analyzed and discussed.

2 | EXPERIMENTAL

21 | Dataacquisition and sample description

Figure 1 shows the normal reflectance probe that was implemented in
this work and used for the evaluation of the thickness of AlO,
nanolayers with a broad emission (400-1000 nm, approximately)
halogen lamp as illumination source. The probe was coupled to an XY
crane to enable mapping measurements, and the acquired signal was
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FIGURE 1  (A) Schematic of the
normal reflectance probe based in a broad
emission halogen lamp and (B) picture of
the implemented system
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FIGURE 2  Picture of (A) the Cu (In,Ga)Se, (CIGS)-device, (B) Si, and (C) polyethylene terephthalate (PET) samples coated with a 75-nm AIO,
layer. The last is the approximate schematic of the samples and measuring points. Inner and outer radii of the deposition area are 1.2 and 7.6 cm,

respectively

processed through a compact CCD spectrometer (Thordabs CCS200).
A vacuum chuck table was employed to ensure the flatness of flexible
samples during measuring. A spot size of ~100 pm and acquisition
times in the 10- to 100-ms range (depending on the type of sample
analyzed) were employed for the measurements.

The system described above was employed on different sets of
samples for the evaluation of the thickness of nanometric AlO, layers
deposited by means of a laboratory-scale rotary spatial ALD reactor™®
on relevant substrates for the PV industry: (i) three monocrystalline Si
substrates coated with 25-, 50-, and 75-nm AlO, layers; (i) six
15 x 15-cm? complete (nonencapsulated) flexible Cu(ln,Ga)Se, thin
film PV devices (on polyimide foil substrate with Mo back electrode,
CdS buffer layer and Al-doped zinc oxide front electrode) with 15-,
25-, 30-, 50-, 60, and 75-nm AIO, layers (referred to as “CIGS” in the
text and figures); and (jii) six 15 x 15-cm?® PET foil samples with 15-,
25-, 30-, 50-, 60-, and 75-nm AIO, layers. It should be noted that
these thicknesses should be taken only as nominal deposition values.
The AlOy layers were deposited using trimethylaluminum (TMA) and
water as precursors for aluminum and oxygen, respectively. Layers
were deposited at 100°C, at 30 rpm, with 50 sccm TMA/950 sccm
dilution and 750sccm H,0 at 50°C/750 scem dilution. The coated
area had a donut shape (see Figure 2A-C) with slight thickness
variations along the radial direction (decreasing from the center to
the edges) which allowed to test the sensitivity of the proposed
methodology. For the Si and CIGS samples, the normal reflectance

measurements were carried out in a mapping configuration (30 x 30
measuring points grid, approximately) covering the whole area of the
samples (see Figure 2D). In the case of the PET samples, a special
low-reflectance (<5% in the 300- to 700-nm range) holder had to be
employed due to the high transparency of this material to the
excitation wavelengths used for the analysis. In addition, the use of
such holder prevented the use of the XY crane for the acquisition of
large area mappings and the measurements were performed point-
by-point, manually (15 points per sample).

Additional measurements were carried out on the Si-based
samples along the radial direction (2 points per sample) by means of
ellipsometry (Horiba Jobin Yvon, Uvisel) to corroborate that the signal
obtained from the surface of the substrate material varied as a
consequence of the change of the optical properties of AIO, with
layer thickness. The measurements were made with a 70° angle of
incidence.

22 | Methodology

In order to quantify the differences in the normal reflectance
spectra and translate them into thickness data, the following control

parameter (g,) was defined:

=3 JA(X) — Ar(x)] )
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where A.x) is the integrated intensity of the normal reflectance
spectra of the AlO, layer in a selected spectral range x (400-900 nm
in the case of the halogen lamp and 600-700 for the 660 nm LED) for
a specific measuring point and A.fx) is the average integrated
intensity in the same range of all the measuring points corresponding
to the uncoated base (substrate). The use of g; reduces the impact of
potential sample-to-sample fluctuations in the normal reflectance
spectra as a consequence of changes in the reflectivity of the base
material (substrate) not related to the AlO, layers. In this way, the use
of this parameter allows improving the accuracy of the AlOy thickness
evaluation.

In order to provide a useful methodology for the thickness
quantification, the g, parameter was calculated for each measuring
point and, then, all the g; values obtained were averaged for each
sample and plotted versus the nominal deposition thickness for each
type of substrate/AlO, sample. Through the fitting of such data,
calibration curves were subsequently calculated to show the potential
of the proposed methodology for predicting the thickness of an AlO,
layer from normal reflectance measurements.

Alternatively, a machine learning-driven methodology based on
the combination of principal component analysis (PCA) and linear
discriminant analysis (LDA) algorithms was employed to quantify the
normal reflectance spectra and translate them into thickness data.
PCA and LDA are both dimension-reduction algorithms, and their
combination was selected due to its wide-spread use for spectral data
analysis in different methods and fields of application®?-37, The goal
of this algorithm is to learn to dlassify data into distinct groups defined
by the user and make predictions on new input data. In order to test
and implement the machine learning-based PCA-LDA algorithm, the
Python programing environment*® with the Scikit-Learn library®*? was
used. All the experimental data were randomly divided in 70% for
training and 30% for testing, and the input features were the same as
those used to calculate the g parameter using Equation 1. In the case
of the in-sample analysis, the data points were divided in five groups
corresponding to rings in the sample with rings 1 and 5 representing
the outer and inner extremes, respectively (see Figure S1). To evaluate
the performance of the algorithm, training and test scores are used.
These values are calculated as the number of correctly classified
points divided by the total amount; thus, these values range from 0 to
1, being 0 no correct classifications at all and 1 when all points are
correctly classified. The training scores were above 0.8 for the
halogen lamp and above 0.6 for the LED light source (see Figures 7
and 8).

3 | RESULTS

3.1 | Initial validation: Si/AlO, samples

Before employing normal reflectance, preliminary ellipsometry mea-
surements were carried out on Si/AlO, samples with three different
nominal layer thicknesses (25, 50, and 75 nm) and slight in-sample
radial thickness gradient (see Section 2 for further details) in order to

corroborate that the optical properties of the samples change with
the thickness of the AIO, layer. The results are shown in Figure 3B. It
can be observed that the ¥ and A angles of the complex reflectance
ratio present slight in-sample changes along the radial direction within
the different points measured (see Figure 3A) and abrupt sample-
to-sample differences as a consequence of the varying thicknesses.
These changes consist mainly of a blue-shift of the spectra as the
AlO,, layer thickness is reduced. It should be noted that these
variations represent the change of the complex reflectance of the
Si-air structure as a consequence of the presence of an intermediate
AlO, layer with varying thicknesses. Since the optical properties of a
layered structure are strongly intertwined with and can be derived
from its complex reflectance ratio (using an adequate model), it can be
concluded that the variation of the latter indicates a change in the
optical properties of AlO,. Further analysis of the ellipsometry mea-
surements to determine which specific properties are modified when
the thickness of the AlO, layers is varied is beyond the scope of this
work. However, taking into account that the deposition conditions
were identical for the three Si/AlO, samples, the observed thickness-
induced blue-shift can be attributed to QC effects.*®~*? However,
other effects different to QC that may be contributing to the changes
observed in the ellipsometry measurements cannot be discarded. The
results that will be presented throughout this work are based on the
correlation of these slight changes of the optical properties of AlO,
with normal reflectance measurements.

In this way, the Si/AlO, samples were subsequently measured in
similar positions along the radial direction with the nomal reflectance
system described in Section 2 (see Figure 1) in order to make an initial
validation of the technique to detect the small variations observed
by ellipsometry. Figure 3C shows the raw normal reflectance data
acquired on the Si/AlO, samples. A similar shape can be observed for
the spectra measured at different points along the radial direction of
each sample with a broad band having the maximum position in the
620- to 720-nm region, approximately. However, the intensity of this
band is observed to vary from the center (lower) to the edge (higher)
of the sample in consonance with the thickness gradient of the depos-
ited layers. The maximum intensity is reached for the bare uncoated
Si substrate. On the other hand, clear sample-to-sample differences
can be spotted not only as abrupt differences in the intensity of the
reflectance spectra (with higher thickness leading the lower intensity)
but also as a different shape of the reflectance band (with a faster
decrease of the short wavelength part of the band as layer thickness
increases). In addition, a higher in-sample variability is found as the
nominal thickness of the deposited AIO, layer increases. All these
variations correlate well with those observed in the ellipsometry
measurements (Figure 3B) and indicate that normal reflectance is
sensitive both to AlO, thickness variations in the order of tens of nm
(sample-to-sample) and also to the slight nanometric variations
(expected to be well below 10 nm) found within the layers.

Once that the sensitivity of the normal reflectance technique was
proved to be high enough to detect small thickness variations, the
proposed methodology was applied to the same Si samples coated
with 25-, 50-, and 75-nm AIQ, layers but carrying out a mapping
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(A) Color code legend of the different measuring points. (B) Complex reflectance ratio angles of the Si/AlO, samples measured by

ellipsometry in different positions along the radial direction. (C} Raw normal reflectance spectra of the Si/AlOx samples measured in similar

positions

analysis covering the full surface of the sample (Figure 4A). The raw
data (Figure 4A, left) show three different groups of spectra that have
been highlighted with different colors in the figure. The groups with
the highest (purple) and lowest (gray) intensities correspond to the Si
substrate and to the measuring table, respectively. The last group
(green-yellow gradient) encompasses all the AlO,-coated points. As
expected, the AlO, spectra have the same characteristics as those
shown in Figure 3, that is, similar shape, gradual in-sample variations,
and more abrupt sample-to-sample differences with changes in the
reflectance band intensity and shape, with higher variability in the
thicker samples. In order to quantify the differences in the normal
reflectance spectra and translate them into thickness data with high
sensitivity, the g; parameter was calculated for each point measured
in every sample using Equation 1. The obtained values are represen-
ted in the form of mappings in Figure 4A (right) where the bare Si,
measuring table, and donut-shaped AIO, areas can be clearly distin-
guished. Furthermore, differences in g; can be observed in the radial
direction confirming the sensitivity of the technique to slight thick-
ness variations below 10 nm. On the other hand, the mappings further
confirm that in-sample thickness variability increases with the nominal
thickness of the deposited AlO, layer, with distribution limits for the
q; parameter roughly ranging from 50-100, 250-350, and 400-550
for the 25-, 50-, and 75-nm samples, respectively. This indicates that
the developed methodology can also be employed for high-resolution
large area homogeneity control of deposited AlQ, layers.

The data presented in Figure 4A were employed to calculate the
average g; in the donut-shaped AlO,-covered areas. By plotting the
average ¢; versus the nominal thickness of the AIO, layers, a
calibration curve is obtained for correlating the reflectance data with
the thickness of the AlO, layers (Figure 5A). It can be observed that
there appears to exist a quadratic relationship between the nominal
thickness of the AIO, layers and the g; parameter. As such, these data
demonstrate that normal reflectance offers a feasible and precise
method for thickness assessment of AlO, layers deposited on

monocrystalline Si substrate.

3.2 | Application of normal reflectance to AlO,
thickness estimation on CIGS and PET

Once that the proposed methodology was demonstrated for Si-based
samples, it was applied to AlO, layers (15, 25, 30, 50, 60, and 75 nm)
deposited on relevant substrates regarding the encapsulation of thin
film flexible PV devices: CIGS and PET.

In the case of the CIGS modules, a similar mapping to that
described for the Si samples was performed. Three representative
cases (25, 50, and 75 nm) are shown in Figure 4B, while the complete
results for all the different samples can be consulted in Figure S2. The
raw spectra shown in the figures reveal a high degree of similarity to
those obtained on Si samples with a broad band having the maximum
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FIGURE 4 Raw reflectance spectra (left) and mappings of the calculated g¢ parameter (right) for Si/AlOy (A) and Cu (In,Ga)Ses (CIGS)/AIO,
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FIGURE 5 Average g; (red dots) and fitted calibration curves (dashed curves) obtained for AlO, deposited on Si (A), Cu (In,Ga)Se; (CIGS) (B),
and polyethylene terephthalate (PET) (C). The error bars correspond to the standard deviation (o) of the different measured points

position in the 620- to 720-nm region and with similar in-sample and
sample-to-sample variability characteristics. However, a higher vari-
ability of the reflectance signal arising from the base (CIGS substrate)
is detected for thicknesses =50 nm, as well as a lower deviation for
the thin AlO, coatings <30 nm. This is detected despite the fact that
for low AlO, thickness values (330 nm), the intensity and shape of the
spectra from the base and the AlO,-covered areas present similar
values. However, the g; mappings show that the use of this parameter
allows overcoming this issue and distinguishing the bare substrates
from the donut-shaped AlO,-covered areas, showing to be sensitive

to even the small in-sample AlO, thickness changes. The strong varia-
tions detected in the signal of the base material are related to local
inhomogeneities of the CIGS absorber and/or CdS buffer layers of the
devices, which are the main layers that reflect the excitation light
employed (400-200 nm). The possibilities to overcome this obstade
will be discussed later on.

In the case of PET, the need of using a special low-reflectance
holder prevented carrying out large area mappings. The spectra
acquired are shown in Figure S3. Again, the spectra present similar
characteristics as those of Si and CIGS samples. However, due to the
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low reflectivity of the base material (PET), almost no shape changes of
the reflection band are detected which indicates that the sensitivity of
the proposed methodology is lower for this material. Despite the
lower sensitivity, the changes of the band intensity are marked
enough to allow detecting differences between the different samples.

The average q; and calibration curves obtained for AlO, deposited
on CIGS and PET are shown in Figure 5B,C, respectively. These data
demonstrate that normal reflectance can also be employed for deter-
mining the thickness of AlO, encapsulation barrier layers deposited
on multistack CIGS and rough PET substrates with high accuracy.

3.3 | Implementation of machine learning
algorithms: CIGS test case

Although the use of the g; control parameter and calibration curves is
a perfectly suitable methodology for obtaining precise thickness
measurements as demonstrated above, the amount of data generated
in the large area mapping measurements carried out in this work pro-
vides an ideal test environment for the implementation of more
advanced analysis techniques based on machine learning algorithms
that could be suitable for analysis in industrial applications. As a proof
of concept, a machine learning algorithm based on PCA-LDA (see
more details in Section 2) was applied to the experimental data
obtained in the present study for the CIGS samples. These samples
were selected as the most relevant case for the present study since
large area mappings were performed onto them, and they present a
rough surface that makes thickness estimation challenging by other
techniques. Both the capacity to detect sample-to-sample and
in-sample variations were tested. The results are shown in Figure 6.

Regarding the sample-to-sample analysis, it can be observed that
the PCA-LDA algorithm enables a clear dlassification of the samples
with different nominal thicknesses yielding a test score very close to
1 (Figure 6A). This is somehow remarkable taking into account that, as
already mentioned, all the samples present a slight thickness radial
gradient which inevitably produces a broadening in the classification
groups complicating dlassification. For example, it is interesting to
note that although some overlapping is clearly observed for the 50-
and 60-nm samples, the algorithm is still capable of corectly classify-
ing the points according to AlO, nominal layer thickness.

As for the in-sample variability, the 75-nm AlIO, sample was

analyzed by dividing the data points in groups corresponding to five

(A) DA (Train = 0.99 ; Test = 0.98) ) (B)

e

FIGURE 6 PCA-LDA sample-to- 5 el
sample (A) and in-sample (B) thickness Z

classification results for Cu (In,Ga)Se» é 2w

(CIGS) samples. The in-sample variation -5 & 2w
analysis was performed on the 75-nm o

AlO, sample with the data grouped by -10 i"; 5

rings in the radial direction (see Figure 51)

0
D1 {0.56)

rings in the sample with rings 1 and 5 representing the outer and inner
extremes, respectively (see Figure S1). As shown in Figure 6B, the
algorithm enables to effectively classify the points by the different
thickness ring to which they belong proving, again, the high sensitivity
of the proposed normal reflectance methodology to thickness
variations <10 nm. Although some overlapping can be observed
between the different groups, this is mostly due to the thickness
grading existent within the rings.

These results prove the feasibility of employing a machine
learning-driven analysis coupled to the proposed nomal reflectance
approach as a powerful alternative to that based on calibration curves
for process monitoring in an industrial environment enabling measur-
ing nanocoating thicknesses with sensitivities <10 nm. Furthermore, it
should be taken into account that the amount of data employed for
the analysis (~2640 spectra) is far from being considered “big data™
and, as such, that this methodology can be further improved for a
more precise classification using a higher number of training inputs.

4 | DISCUSSION: IMPLEMENTING
NORMAL REFLECTANCE FOR INDUSTRIAL
IN-LINE PROCESS MONITORING

Although normal reflectance has previously been employed for thin
film thickness evaluation at research®>™* and process monitoring?”
levels, this was done through the use of complex and expensive
systems, long acquisition times, and models based on previous
knowledge on the optical properties of the materal and/or for
thicknesses larger than those used in the applications described here.
In this way, the results presented in this work represent a laboratory
proof of concept of a completely different and innovative approach
that demonstrates the feasibility of directly employing normal reflec-
tance data for a precise and fast determination of the thickness of
nanometric AlOy layers deposited on Si, CIGS, and PET employing a
simple and inexpensive system. In this regard, it should be noted that
the main novelty of this work lies in the fact that the methodology
proposed does not require to understand the physical meaning of the
differences observed in the normal reflectance spectra but only to be
able to detect these differences and correlate them to the thickness
of the AIO, nanometric layers. However, the main focus of this
is its

methodology implementation in industrial environments,

especially for process monitoring of AlO, barrier layers deposited by

LDA (Train = 0.9 ; Test = 0.81)
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S-ALD in RtR configuration. In this context, several aspects must be
considered in order to make the normal reflectance methodology
more industrially-friendly.

The first aspect that should be considered is the substitution of
the excitation light source based on a standard halogen lamp by a
more stable, maintenance-free, versatile, and low-cost one. In this
regard, LED-based light sources are more appropriate for the industry.
The feasibility of employing a monochromatic LED light source
(660 nm) was tested for the Si and CIGS samples presented above.
Taking a look at the calibration curves obtained under LED illumina-
tion (Figure 7), it can be seen that a very high dispersion is obtained
for the g; parameter in the case of the Si base. As for CIGS, except for
the 25- and 30-nm samples which seem undistinguishable due to their
similar g; values, the results show that the LED excitation source
works in a fairly similar fashion as the halogen lamp.

Additionally, the same machine learning-based analysis performed
for the halogen lamp measurements in the CIGS samples was applied
to the spectral data acquired with the LED light source (Figure 8).
Regarding sample-to-sample analysis (Figure 8A), the test score for
point classification is significantly lower than in the case of the
halogen lamp. It can be observed that this is due to the fact that the
15- to 30-nm and 50- to 60-nm samples present a high overlapping
leading to misclassification of the groups. This is in accordance with
the results obtained with the calibration curve presented in Figure 7
for these samples. Similarly, the in-sample classification (Figure 8B)
also presents a lower score and higher overlapping than in the case of
the halogen lamp.

All these dispersion/overlapping issues, though, can be resolved
by tailoring the LED excitation employed to the characteristics of the

Si/ AlOy @ 660nm
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sample to maximize the reflectance signal. Furthermore, the use of
several multiplexed LED sources with different wavelengths would
open the way to further optimization of the signal acquisition. Either
way, the results shown in Figures 7 and 8 indicate that the methodol-
ogies presented in this work are versatile in terms of the possibility of
employing different illumination sources tailored to the characteristics
of the material to be analyzed, enabling the optimization of the
system in a simple way.

Another critical aspect that should be taken into account for
industrial implementation of a normal reflection-based monitoring tool
is the methodology employed for calculating g In this work, Awx)
was defined in Equation 1 as the average integrated intensity of all
the spectra corresponding to the base material (see Section 2 for
further details). It was defined in such manner because the samples
were analyzed only after AlO, deposition. Although the use of this
parameter has been shown to be critical for obtaining measurements
with high precision, the high variability of the reflectance signal
throughout the different points of the base material is one of the
reasons why the measurements present a high dispersion hindering
the differentiation of AlO, layers with low thicknesses from the bare
substrate. Nevertheless, in an industrial process monitoring environ-
ment, two optical probes located before and after the AlO, deposition
process and synchronized to measure in the exact same position
would allow calculating A.fx) for each measuring point (instead of
using an average value) minimizing the signal fluctuations related to
the inhomogeneities of the base material and improving the accuracy
and reliability of the methodology. Figure ¢ schematically depicts the
design of such a system. On the other hand, it should be taken into
account that besides the dispersion introduced by the inhomogeneity

CIGS / AlO; @ 660nm
T=- 6.66E-03¢] + 1.48E+00q; + 5.73E+00

FIGURE 7 Example of reflectance calibration
curves obtained with a 660-nm LED source for
Si/AlO, (A) and Cu (In,Ga)Se; (CIGS)/AIO, samples
(B)

FIGURE 8 PCA-LDA sample-to-
sample (A) and in-sample (B) thickness
classification results for Cu (In,Ga)Se»
(CIGS) samples measured with an LED
light source. The in-sample variation
analysis was performed on the 75 nm of
AlO, sample with the data grouped by
rings in the radial direction (see Figure S1)

0 2
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FIGURE 9 Integration of a normal reflectance-based process
monitoring tool in a RtR S-ALD AlO, deposition process

of the base materials, the samples analyzed in this work had an
intentional AlO, thickness gradient along the radial direction which
has introduced additional dispersion. This has also importantly
contributed to the difficulties observed to distinguish the AlO,
deposited areas from the bare substrate for low layer thicknesses.
However, the results presented throughout the work have shown
that the methodology employed is sensitive to these slight thickness
changes of a few nm. As such, if A.4{x) and g; are estimated individu-
ally for each measuring point, the resolution of the measurements
would clearly be well below 10 nm allowing to precisely estimate the
thickness of the AlO, layers and carrying out high-resolution
homogeneity control of deposited AIO, layers in large areas.
Moreover, changing the measuring spot from pm to cm size would
allow performing both micro and macro homogeneity evaluations of
the thickness of the layers.

Finally, as demonstrated in this work for low amount of spectra,
in an industrial environment where an extremely large amount of data
are expected to be obtained continuously, the implementation of
machine learning algorithms for data analysis would also represent an
advantageous strategy for improving the precision of the measure-
ments thanks to its higher resilience to both sample and instrumental
related fluctuations, fast training and classification, continuous self-
improvement, and versatility in comparison to the use of calibration

curves.

5 | CONCLUSIONS

In this work, a novel solution has been proposed and demonstrated
for determining the thickness of AIQ. nanometric coatings using
normal reflectance measurements: a nondestructive, fast, precise,
low-cost, and scalable characterization method that can be
implemented both in research and industrial process monitoring
environments. The approach is based on detecting variations in the
normal reflectance signal of a base/AlO,/air sample originated as a
consequence of the varying nanolayer thickness. The viability of the
proposed solution for the analysis of AIO, layer thickness in PV

devices has been demonstrated employing a self-designed nomal
reflectance system and analyzing AlO, nanolayers deposited on Si,
CIGS, and PET substrates. Large area mappings covering the full
surface of the samples have been performed, and methodologies
based both on control parameter-based calibration curves and
machine learning algorithms have been developed to relate the
reflectance signal to the thickness of the AIO, layers for each type of
sample. These methodologies have been proven to be sensitive to
thickness variations below 10 nm and have been demonstrated to be
reliable for monitoring the AlO, layers thickness in large area industrial
environments with high resolution. Additionally, the limitations of the
technique as well as the most critical aspects that should be regarded
to implement a normal reflectance-based tool for industrial process
monitoring have been discussed. As such, this work paves the way for
developing a novel characterization technology that has direct appli-
cation for monitoring industrial AIO,-based encapsulation processes
for flexible thin film PV modules but that can also be extended to
many other industrial applications that require a predse and simple

way of evaluating the thickness of nanocoatings.
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Solar cells based on quaternary kesterite compounds like Cu,ZnGeSe, are complex systems where the
variation of one parameter can result in changes in the whole system, and, as consequence, in the global
performance of the devices. In this way, analyses that take into account this complexity are necessary in
order to overcome the existing limitations of this promising Earth-abundant photovoltaic technology.
This study presents a combinatorial approach for the analysis of Cu:ZnGeSes based solar cells. A
compositional graded sample containing almost 200 solar cells with different [Zn)/[Ge| compositions is
analyzed by means of X-ray fluorescence and Raman spectroscopy, and the results are correlated with
the optoelectronic parameters of the different cells. The analysis results in a deep understanding of the
stoichiometric limits and point defects formation in the Cu.ZnGeSe; compound, and shows the
influence of these parameters on the performance of the devices. Then, intertwined connections
between the compositional, vibrational and optoelectronic properties of the cells are revealed using
a complex analytical approach. This is further extended using a machine learning algorithm. The latter
confirms the correlation between the properties of the Cu,ZnGeSe, compound and the optoelectronic
parameters, and also allows proposing a methodology for device performance prediction that is
compatible with both research and industrial process monitoring environments. As such, this work not
only provides valuable insights for understanding and further developing the Cu,ZnGeSe, photovoltaic
technology, but also gives a practical example of the potential of combinatorial analysis and machine
learning for the study of complex systems in materials research.
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(CIGS) and CdTe which are based on scarce and/or toxic mate-
rials." Although a considerable amount of progress in the

Introduction

Cu,ZnSn(S,Se); (CZTSSe) based compounds, more widely
known as kesterites, are considered as the natural earth-
abundant and low toxicity successors of the more mature
inorganic thin film photovoltaic (PV) technologies Cu(In,Ga)Se,
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technological development and fundamental understanding of
kesterites has been achieved in the last years, the record power
conversion efficiency at laboratory scale has barely evolved since
2014 and is stagnated at around 13%.? Sn is often regarded as
the main culprit of this stagnation due, mainly, to the volatility
of 8n(8,Se), species® that leads to morphological and composi-
tional problems," and the instability of the Sn oxidation state
that may lead to the formation of deep defects®® ultimately
causing kesterite PV devices to exhibit a high V,,. deficit. In this
regard, the substitution of Sn by Ge is currently regarded as
a promising strategy to improve the kesterite technology. Ge
doping (CZTSSe:Ge) and alloying (CZTGSSe) has been demon-
strated to enhance the performance of kesterite devices signif-
icantly by improving the V. of the devices which is commonly
attributed to the formation of liquid phases and better inter-
mixing during high temperature synthesis, to improvements in
carrier lifetime and to a reduction of band tailing.** In

This journal is © The Royal Society of Chemistry 2021
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addition, the partial substitution of Sn by Ge increases the
bandgap of the kesterite semiconductor material enabling the
creation of a graded bandgap through the development of in-
depth compositional engineering strategies.'***

On the other hand, the total substitution of Sn by Ge
(CZGSSe) appears as an even more promising approach since, in
addition to completely avoiding Sn-related issues, the wider
bandgap of the material (~1.5 eV for CZGSe and ~2.2 eV for
CZGS)'>** opens the door to semi-transparent, tandem and
photocatalytic water splitting applications. Significant advances
have been made in the last years in pure Ge kesterite solar cells
leading to CZGSe devices with efficiencies of up to 8.5%."
Although promising, this value is very far from those of the best
CZTSe devices. The highest efficiency levels reported for CZGSe
are commonly achieved imitating the standard CZTSe and
employing off-stoichiometry Cu-poor Zn-rich absorber compo-
sitions.**” However, this compositional ratio might not be the
optimal one for CZGSe and might be one of the reasons holding
back the development of this technology towards higher effi-
ciencies as compared with the standard CZTSe. As such,
fundamental studies that investigate the formation of CZGSe,
secondary phases and point defects off-stoichiometry represent
a very valuable asset for understanding this material and for
paving the way to the development of strategies that may lead to
a further development of the technology. In this context, Gun-
der et al carried out a detailed investigation of defect formation
in off-stoichiometric CZGSe powder." However, mainly Zn-rich
and Cu-rich powder samples were synthesized, with few Cu-
poor samples.

Finally, solar cells based on quaternary kesterite compounds
and multilayer stacks like CZGSe are complex systems where the
variation of one parameter can result in changes in the whole
system, and, as consequence, in the global performance of the
devices. In this way, analyses that take into account this
complexity are necessary in order to overcome the existing
limitations of this promising Earth-abundant photovoltaic
technology.

In this work, we present a systematic study of a combinato-
rial CZGSe sample comprised by almost 200 individual solar
cells with different [Zn]/[Ge] compositions in the Cu-poor
regime. Structural, compositional and optoelectronic charac-
terization are applied in a combinatorial way. Firstly, a complex
analytical approach allows defining the off-stoichiometric limits
of formation of the CZGSe kesterite phase and the optimum
compositional range to obtain the highest efficiencies (up to
6.3%) in terms of the [Zn]/[Ge] ratio. This includes the study of
solar cell performance dependence on the concentration of
point defects. Secondly, we demonstrate the potential of
applying machine learning (ML) for the analysis of the combi-
natorial sample. The ML methodology proves to enable effective
prediction of cell efficiency based only on Raman spectra and
compositional data, while the resulting discriminants show
a linear correlation with point defect concentration and device
efficiency pointing at a strong fundamental interconnection
between point defects, Raman spectra, composition and cell
performance. This works serves both as a fundamental study
that provides valuable results for the development of the CZGSe

This journal is € The Royal Society of Chemistry 2021
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technology and as a powerful example of how combinatorial
analysis and machine learning can be used to unravel the crit-
ical parameters that govern the performance of complex opto-
electronic devices.

Experimental details and methods
Sample preparation

A CZGSe combinatorial sample was prepared through the
selenization of a compositionally graded Cu/Zn/Ge metallic
stack precursor deposited by DC magnetron sputtering (Alli-
ance AC450) on a 5 % 5 cm” soda-lime glass/Mo substrate. In
order to generate a compositional gradient, the Cu and Zn
precursor layers were homogeneously deposited over the
substrate while the Ge layer was deposited without substrate
rotation generating a thickness gradient and, in turn, a[Zn]/[Ge]
compositional gradient. A 3-zone tubular furnace (Hobersal)
was employed to synthesize the CZGSe absorber. The 3 zones
were kept at the same temperature during the whole process to
ensure spatial homogeneity throughout the entire length of the
furnace. Samples were placed inside a graphite box (69 cm?)
together with crucibles containing 100 mg of Se (Alfa-Aesar
powder, 200 mesh, 99.999%) and 5 mg of GeSe, (American
Elements, power, 99.999%) to perform a 2-step reactive thermal
annealing in a Se + Ge atmosphere. It consisted in a first stage in
which the furnace was kept at 330 °C and 1.5 mbar Ar pressure
for 30 minutes and a second step at 480 °C and 1 bar Ar pressure
for 15 minutes. The heating rate was set to 20 °C min " in both
steps. The samples were let to cool down naturally.

The as-synthesized absorber was submitted to a chemical
etching in diluted KCN (2% w/v, room temperature, 2 min).
Immediately after, a CdS layer was deposited by chemical bath
deposition (the process is detailed in ref. 19). The solar cell
structure was then completed with i-ZnO (50 nm) and ITO
(200 nm, 60 ©Q sq ' sheet resistance) layers deposited by
DC-magnetron sputtering (Alliance Concept CT100). The
sample was then scribed into 196 individual 3 x 3 mm” solar
cells (see Fig. S1f) using a manual microdiamond scriber
(MR200 OEG). Neither anti-reflective coating nor metallic grids
were used in the devices presented in this work.

Characterization techniques

The elemental composition of the different cells of the combi-
natorial sample was determined by X-ray fluorescence (XRF)
using a Fischerscope XDV system with a 1 mm spot diameter,
a 50 kV acceleration voltage, a Ni10 filter and a 45 s acquisition
time. Raman analysis with blue (442 nm) and green (532 nm)
excitation wavelengths were performed on the bare absorber,
while measurements with NIR (785 nm) were performed in
complete devices using Horiba Jobin Yvon FHR640 and iHR320
monochromators coupled with CCD detectors. The first
monochromator is optimized for the UV and visible spectral
ranges and was used with 442 nm (He-Cd gas laser) and 532 nm
(solid state laser) excitation wavelengths. The second mono-
chromator is optimized for the NIR range and was used with
a 785 nm (solid state laser) excitation wavelength. The power
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density of the lasers was kept below 150 W em™* and the spot
size was ~70 pm. The measurements were performed in
a backscattering configuration through a specific probe
designed at IREC.

The J-V characteristics of the devices were obtained under
simulated AM1.5 illumination (1000 W m™* intensity at room
temperature) using a pre-calibrated Class AAA solar simulator
(Abet Technologies Sun 3000).

Machine learning methodology

Amachine learning (ML) driven methodology based on a linear
discriminant analysis (LDA) algorithm was employed to deepen
into the complex dependence of solar cell optoelectronic
parameters and composition on the different parameters found
in the analysis of the Raman spectra. LDA is a dimension-
reduction algorithm, capable of reducing high-dimensionality
problems into a bi-dimensional one, discerning and employ-
ing the most relevant dimensions of the dataset. In order to test
and implement the machine learning based LDA algorithm, the
Python programing environment* with the Scikit-Learn
library** was used. All the Raman spectra measured under
different excitation conditions for each cell were used as input
features (588 spectra, in total), and the data were randomly
divided in 70% for training and 30% for testing. The algorithm
was trained for 3 different classification targets, namely [Zn]/
[Ge] ratio, V. and efficiency. For each trained algorithm, the
data was divided in 4 classification groups of approximately an
equal amount of data. The amount of experimental data
employed for the analysis (196 cells) is far from being consid-
ered “big data” and the results presented below are susceptible
to further improvement for a more precise classification
through the use of a higher number of training inputs. Never-
theless, this approach illustrates the applicability and potential
of this methodology for material analysis by spectroscopic
techniques.

Results and discussions
Off-stoichiometry limits and secondary phases

The chemical composition of every individual solar cell of the
combinatorial samples was obtained by XRF. The mappings of
the cationic ratios are presented in the Fig. 81t and, in Fig. 1,
the obtained values are combined with the different off-
stoichiometry kesterite types (see ref. 22 and 23 for more
details about the off-stoichiometry lines of kesterite type
compounds). It can be observed that the compositions of the
different cells of the combinatorial samples cross the A- (almost
perpendicularly), J- and L-type lines. On the one hand, the [Zn]/
[Ge] ratio covers a wide range from almost 0.7 to 1.4, allowing to
explore not only the typical Zn-rich compositions commonly
used for kesterite type compounds, but also the Zn-poor region.
This allows investigating the origin of the positive effect of Zn-
rich compositions in kesterite PV devices. On the other hand,
the [Cu]/([Zn}[Ge]) ratio was maintained well below 1, ensuring
the Cu-poor condition for all cells. It is worth mentioning that
the non-stoichiometric compositions were quite different from
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previous studies of the same compound,'® where mainly Zn-rich
and Cu-rich powder samples were synthesized and the few Cu-
poor samples contained secondary phases.

Raman spectroscopy was used as the main tool to analyse
phase formation in the CZGSe absorber layer with varying [Zn]/
[Ge] ratio. A multiwavelength analysis allowed to detect possible
secondary phases and variations in the main kesterite phase
(see Fig. 2). The blue excitation wavelength is well-known to be
highly sensitive for detecting the ZnSe secondary phase.**** As
shown in the figure, this secondary phase was found in cells
with Zn-rich composition (see the spectrum of the [Zn]/[Ge] =
1.25 cell in Fig. 2, left). What is more, the cells on which a strong
ZnSe peak was detected, also presented a shift to lower wave-
numbers and an increase of the full width at half maximum
(FWHM) of the main and the second most intense peaks of the
kesterite phase under different excitation wavelengths not
sensitive to ZnSe (see the spectrum of a cell with [Zn]/[Ge] = 1.25
under green excitation wavelength in Fig. 2, middle). This,
according to the previous interpretations of the kesterite type
compounds, can be related with an increased Cu/Zn disorder*
or with a phonon confinement effect due to a low grain size in
the absorber.* Since all the cells of the combinatorial sample
were processed at the exact same temperature, the appearance
of strong variations in the Cu/Zn disordering is unlikely (e.g. see
ref. 27 and 28). In addition, it is hard to envision how the
formation of the ZnSe phase could influence Cu/Zn disordering
in the CZGSe compound. On the other hand, even taking into
account the optimal temperature treatment for the formation of
good crystalline quality CZGSe phase,'** the presence of ZnSe
grains can greatly influence the formation and size of the kes-
terite grains,* leading to a worsening of its crystalline quality
and grain size, and causing the appearance of phonon
confinement in agreement to the observed red shift and
broadening of the kesterite Raman peaks.
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Fig.2 Examples of Raman scattering spectra measured in cells with different compositions under different excitation wavelength.

In addition to the ZnSe phase, the blue excitation wavelength
is also sensitive to the GeSe, phase. This is a 2D compound that
has a direct band gap of ~2.7 eV (close to the energy of the blue
laser line —2.8 eV) and has its main Raman peak at around
210 em '3 The latter is strongly overlapped with the main peak
of CZGSe (A' symmetry peak at 205 cm '), which compromises
the detection of this secondary phase. However, a strong reso-
nance with the blue excitation wavelength should result in the
appearance of, at least, a shoulder at the high wavenumber side
of the main kesterite peak. However, the spectra in Fig. 2 (left)
show no evidence of the presence of GeSe,, even for the lowest
[Zn)/[Ge] ratios (highest Ge-content). Another Ge-based binary
compound is GeSe. The orthorhombic crystalline polymorph of
this binary compound has a direct band gap of about 1.53 eV
and an intense A, symmetry mode at 188 cm *.** This band gap
value is very close to the resonant condition of this secondary
phase under a 785 nm excitation wavelength. Nevertheless, no
clear Raman peak of GeSe phase can be observed in the spectra
acquired (Fig. 2, right). On the other hand, although the prop-
erties of the amorphous Ge,Se, . phase strongly depend on the
xvalue, an intense Raman band close to 200 cm™ ' and assigned
to the stretching mode of the GeSe,, corner-sharing tetrahedra
can be defined as representative for most of the compositional
polymorphs of these amorphous phases.*® Moreover, a GeSeq
liquid phase, recently found as one of the intermediate phases
during the formation of CZGSe,'® might remain at the surface of
the absorber layer. In the spectra measured under the green
excitation wavelength, a slight broadening of the main peak of
CZGSe with the decreasing [Zn]/[Ge] ratio can be observed.
However, it cannot be unequivocally ascribed to the presence of
amorphous Ge,Se; _, or liquid GeSe, secondary phases since it
could also be explained by intrinsic changes in the kesterite
phase, that will be further discussed. Finally, elemental Ge and
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Ge-containing ternary phases (like Cu,GeSe; or Cu,GeSe,) can
be formed in very Zn-poor conditions. Although a good sensi-
tivity of Raman spectroscopy to these phases is expected, their
narrow band gap (below 1 eV, see ref. 34-37 for band gap and
fingerprint Raman spectra) does not allow working in resonant
conditions making the detection of small amounts of elemental
Ge and Ge-containing ternary phases very challenging. In this
way, it can be concluded that no Ge-related secondary phases
are forming even for very Zn-poor compositions, or that the
amount of these secondary phases is negligibly small, as no
strong/sharp changes of the spectra of the cells of the CZGSe
combinatorial sample with different compositions can be
observed (in the [Zn]/[Ge] = 0.7-1.2 range). This differentiates
the pure Ge-based from the pure Sn-based kesterites, where the
formation of Sn-containing secondary phases has been
observed even at Zn-rich compositions.** Finally, it should be
noted that no Cu-containing binary secondary phases are ex-
pected due to Cu-poor composition of all the cells of the
combinatorial sample (see Fig. 1).

According to the phase formation analysis performed by
means of Raman spectroscopy presented above, only a ZnSe
secondary phase was clearly detected in the combinatorial
sample under Zn-rich compositions. ZnSe becomes the domi-
nant phase for [Zn]/[Ge] > 1.2 in some of the cells. This squeezes
the upper limit in which the pure CZGSe kesterite phase can be
formed to [Zn]/[Ge] ratios close to 1.2. On the contrary, the lower
limit for the formation of the pure CZGSe kesterite phase can be
considered close to 0.7, comparable with CZTSSe
compounds.*** However, the presence of small amount of Ge-
based secondary phases is hard to exclude from the data pre-
sented. Nevertheless, taking into account previous studies'*
and the results presented here, it can be concluded that
replacing of Sn with Ge does not lead to a significant shortening
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of the off-stoichiometry range for the formation of the CZGSe
kesterite type structure. Likewise, the stoichiometry flexibility of
CZGSe compounds might be one of the culprits for the existing
limitations of the PV devices in the same way as for other
kesterite-based compounds.*

Point defect formation

As mentioned above (see Fig. 1), the chemical composition of
most of the cells is in the range from J-to A-type kesterite off-
stoichiometric lines. According to this, the main point defect
expected in the combinatorial sample are copper vacancies
(Veu) and zinc or germanium in copper position (Zng, and
Gegy).2*** In order to define the influence of these point
defects on the Raman spectra, specific cells with chemical
compositions close to the three off-stoichiometric lines crossed
by the combinatorial sample (A-, J- and L-type lines) were ana-
lysed. Measurements under different excitation wavelengths
resulted in the detection of the characteristic features that
spectra of the different off-
stoichiometry types of the CZGSe kesterite compound (see
Fig. 3). Here, the spectra of the cells around the J- and L-type
lines present a great similarity with just very subtle changes
in the intensity of the band at 176 cm * and E/B symmetry
peaks in the high wavenumber range (220-300 cm '), which are
mainly observed under 785 nm excitation (Fig. 3, right). In
contrast, strong differences are observed for the spectra of the
cells close to the A-type line with a decrease of the relative
intensity and width of the peaks, except for the band at
176 cm ', In previous works, the change in the intensity of the
second most intense Raman band in the CZTSe compound was
correlated, mainly, with a change of the concentration of Vi,
point defects, and was shown to have a crucial impact on the

differentiate the Raman
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properties of the CZTSe absorber and on device perfor-
mance."* Taking this into account, it can be inferred that in
the combinatorial sample analysed in this work, there is
a higher concentration of V¢, for the cells close to the J- and L-
type lines, and it is reduced for the cells around the A-type line.
This is in line with the observations made above, where an
increase of the intensity of the Raman band at 176 cm ' is
observed with the increasing [Zn]/[Ge] ratio (see Fig. 2).
However, the concomitant increase of the [Cu]/([Zn] + [Ge]) ratio
(see Fig. 1), even if much smaller than the increase of the [Zn]/
[Ge] ratio, is also expected to have a critical influence on the
concentration of Vg,.

Taking a look at Fig. 3, a great similarity between the spectra
corresponding to cells around the J- and L-type lines can be seen
regardless the presence of the Zng, point defect in some cells
and its absence in others. This allows concluding that the Zng,
defect has a low influence on the Raman scattering spectra of
the CZGSe compound. On the other hand, the Geg, substitu-
tional defect presents a more significant influence on the
Raman spectra, but mainly in the high wavenumber range (220-
300 cm '), where the relative intensity of the peaks increases
with the higher Ge content (or lower [Zn}/[Ge] ratio). Neverthe-
less, it is hard to strictly distinguish the influence of the two
substitutional point defects on the intensity of the peaks at the
high frequency range and both of them will be considered in the
analysis of the influence of the point defects on device perfor-
mance presented in the next section.

Finally, it should be borne in mind that, for the analysis
carried out above, only cells without ZnSe were used since the
presence of this phase results in significant changes in the
spectra measured under any excitation condition (e.g see
Fig. 82,1 where spectra of the cells with similar compositions
close to A-type off-stoichiometric line, but with and without
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Fig. 3 Examples of Raman spectra in the vicinity of different off-stoichiometric type lines measured under different excitation wavelength.
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ZnSe phase are presented). This indicates that Raman spec-
troscopy is a critical investigation tool to control the quality and
phase purity of the kesterite type compounds.*

Influence of point defects on device performance

This section studies the influence of the point defects detected
by Raman spectroscopy on solar cell performance. First, the
analysis is focused on the dependence of the optoelectronic
properties of the devices on the relative integrated intensity of
the band at 176 cm ' (calculated as A, 76/(Ay76 + Asps) with Ayze
calculated in the 168-183 cm ™' range and A5 calculated in the
198-211 em™* range from the spectra measured under 532 nm
excitation wavelength), which is inversely related to Ve
concentration as previously reported.”* Fig. 4a, shows a clear
dependence of the efficiency of the solar cells with the
concentration of Vg,, with the highest efficiency achieved for
a certain optimum concentration range of this defect, which
corresponds to a relative integrated intensity of the Raman
band at 176 cm ™' lying in the 0.325-0.350 range. Outside this
optimum range, a deficit (higher band intensity) or excess
(lower band intensity) of V., defect concentration is expected,
both having a negative influence on device performance. As
such, three different regions (deficit, excess and optimum V)
can be distinguished. A more detailed analysis of the evolution
of the optoelectronic properties with defect concentration
(Fig. 4 b-d) reveals that the main driving force behind the
evolution of solar cell efficiency are the changes in the fill factor
(FF) and short circuit current density (J,.). Both parameters
exhibit a similar tendency with defect concentration. Copper
vacancies are a well-known beneficial point defect in kesterite
and chalcopyrite based solar cells, which leads to the formation
of a shallow acceptor level and has a strong influence on the
electrical conductivity of the absorber layer.*** In this way,
a deficit of this beneficial defect leads to a decrease of the
charge carrier concentration. However, an excess results in the
formation of a high amount of scattering centres which signif-
icantly decreases the mobility of the charge carriers. Both
effects, have a direct influence on the electrical conductivity of
the absorber layer and, in turn, on the FF and J,. of the final
devices as observed in Fig. 4. On the other hand, the open
circuit voltage (V.. shows only a slight dependence on Vi,
concentration, with only a sharp increase in the optimum defect
range. These results differ from a previously published analysis
of CZTSe samples, where the V,. was found to depend on the
change of the relative intensity of the second most intense
kesterite band (I, around 170 cm *).*> However, it should be
noted that only cells around the A-type off-stoichiometric line
were selected in the mentioned reference, which strongly
reduces the number of possible parameters that can influence
solar cell performance, at least from the point of view of point
defects.

Then, on a second stage, the influence of Zng, and Gec,
substitutional point defects on the optoelectronic properties of
the devices was analysed. According to previous results, an
increase of the relative intensity of the peaks in the high
wavenumber range correlates with a higher concentration of
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from the relative integrated intensity of the Raman band at 176 cm™%
The colour scale corresponds to the [Zn]/|Ge] ratio.

substitutional defects."** Fig. 5a shows a parabolic depen-
dence of solar cell efficiency with the variation of the relative
integrated intensity of the Raman peaks in the range 235-
300 cm . As in the case of Vi, (see Fig. 4a), this shape is mainly
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cells on the relative integrated intensity of the Raman peaks in the
range 235-300 cm™*. The colour scale corresponds to the [Zn]/[Ge]
ratio.

governed by the changes in FF and J,. (Fig. 831) although in
a less pronounced manner. This can be related to a slightly
lower influence of the substitutional defects on these opto-
electronic parameters. On the other hand, the analysis of the
dependence of the V,. on the relative integrated intensity of the
peaks in the 235-300 cm ' range (Fig. 5b) shows a clearer
influence of the substitutional defects on this parameter.
Similarly to the analysis above, three regions can be distin-
guished: (1) low amount of defects (Azzs—ano < 0.190); (2)
optimum amount of defects (0.190 < A, 3; 390 < 0.215); (3) high
amount of defect (As5 300 > 0.215). A relatively constant V,,,
value can be observed in region 1, followed by a sharp decrease
in the second one, and a gentle decrease in region 3. Taking into
account the [Zn)/[Ge] ratio, it can be seen that region 3 corre-
sponds to Zn-poor conditions, for which Gec, substitutional
defects are expected to prevail over the Zn, defects. The former
defect can form a deep donor defect (based on first principle
calculations of the familiar Sn-containing kesterite
compounds®®) that increases the amount of non-radiative
recombination, which finally decreases the V,.*""

A further analysis of the Raman spectra measured under
different excitation wavelengths allows to establish additional
failure mechanisms that lead to the decrease of the perfor-
mance of the solar cells outside the optimum compositional
range. A deep analysis of the spectra measured under blue and
NIR excitations reveals that the lower efficiency in these ranges
can be explained by two factors: the appearance of the ZnSe
secondary phase and the change of the band gap of the
absorber. The former effect can be seen in Fig. 6a where the

10472 | J Mater Chem. A, 2021, 9,10466-10476

View Article Online

Paper

[Zﬁ [Ge]

0.750.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35
T T T

6f (a) ¢ M. F 3
e ' 5 :

5 o %o P 2 : 1
é‘q_, :{.,J_«&;&’ E; E‘g‘ ]
> * : = :

23 138 54 1
® s 8 P EN ‘BN
% 2l 3 1 ] = k-] J
L . H H
1 w = 2 ; 1
. wp I om0
Ofse e omamman’s i oom | omm = a0 m-
0.03 005 0.1 02 03 0.5
Aznse/(AznsetPaoos)
o (b) ]
& °
S g
I X
> i
2 3 8
& Y
é r band gap decrease r
b - 1d gap }
1t i 1
OF samense oo @ ] ® g '-Ie‘ad <
01 0.2 03 04 05 06 07
Aogal(PogstAgos)

Fig. 6 Dependence of solar cell efficiency with (a) relative integrated
intensity of the ZnSe peak (spectra measured under 442 nm excita-
tion), (b} relative integrated intensity of the peak at 283 cm ™' (spectra
measured under 785 nm excitation). The colour scale corresponds to
the relative integrated intensity of the band at 176 cm™" calculated
from the spectra measured under 532 nm excitation.

relative intensity of the ZnSe peak is presented. The figure
shows a clear decrease of solar cell performance with the
increasing content of the ZnSe phase, proving the strong
detrimental effect of this secondary phase. On the other hand,
the band gap of CZGSe (around 1.5 eV) exhibits a resonant
behaviour under NIR excitation conditions that leads to an
increase of the intensity of the LO components of the E and B
symmetry modes in kesterite type compounds.**** In the
present study, this is observed by a strong enhancement of B
symmetry peak at 283 cm™ ' (see Fig. 2 and 3). However, the
latter is not similar in all the cells, with some of them showing
a rather low intensity of this peak (Fig. 6b). This can be related
to the distancing of the CZGSe band gap from the excitation
laser line. Previously, several works mentioned the effect of
defects in the cations sublattice on the band gap of kesterite
materials, but mainly the disorder of the Cu/Zn cations was
discussed,”** while changes in the concentration of point
defects was just briefly tackled.*** As mentioned above, in the
combinatorial sample analysed in this work, it is not expected to
have a significant difference in Cu/Zn disorder, while a clear
change in the concentration of V¢, Zne, and Geg, is observed.
This implies that the concentration of point defects can lead to
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significant enough changes in the band gap of the CZGSe
material that result in the observed decrease of the resonant
effect in the Raman spectra.

Finally, the complex analysis presented above reveals that
the optimum compositional cationic range that allows
achieving high efficiency devices is [Zn]/[Ge] = 1.05-1.15. This is
in agreement with previously published values for high effi-
ciency solar cells based on CZGSe.'*'"** Furthermore, the effi-
ciency of the devices seems to be less dependent on the [Cu]/
(IZn] + [Sn]) ratio, as long as the Cu-poor condition is respec-
ted (e.g. similar efficiencies were obtained for [Cu)/([Zn] + [Sn])
= 0.67 in ref. 29 and 0.78 in ref. 17). Deviations from this
optimum cationic ratio range towards stoichiometric and Zn-
poor compositions result in an increase of the amount of
both V¢, and substitutional defects. This can be assumed to be
the reason for the slight increase of the FWHM of the Raman
peaks in the spectra measured in the cells with [Zn]/[Ge] = 1.0,
as discussed above (see Section 3.1 and Fig. 2). On the contrary,
an increase of the Zn concentration in the system with [Zn]/[Ge]
> 1.15, results in the decrease of both V., and substitutional
defects, in bandgap narrowing, and in an increase of the
probability of the detrimental ZnSe secondary phase being
formed. Note that the ZnSe phase was found to form also in
cells within the optimum cationic range strongly influencing
device performance and, as such, the formation of this phase
should be controlled during the production process.

Machine learning approach for device performance analysis

The results presented in the previous section clearly indicate
that there is a complex dependence between solar cell perfor-
mance and the different parameters obtained from Raman
spectroscopy, such as Ve, /Zng,/Geg, defect concentration or
the presence of secondary phases. In this regard, the applica-
tion of machine learning to the analysis of the Raman spec-
troscopic data can not only significantly reduce the analysis
time, but also yield methodologies for solar cell efficiency
prediction. For the present study, a LDA dimension-reduction
algorithm was applied. This type of algorithm is widely used
for spectral data analysis in different methods and fields of
application.”** This is because of the high dimensionality
nature of the spectroscopic data analysed in this work and the
ability of LDA to reduce these dimensions to just a few while
preserving most of the information, which allows for feature
extraction rather than feature selection. Using the Raman
spectra of each cell obtained with different wavelengths as
input, the LDA algorithm was used to classify the different cells
of the combinatorial sample according to the following classi-
fication targets: efficiency, V.. and [Zn/Ge] ratio. The 2-dimen-
sional outputs for each classification targets are presented in
Fig. 7 as a function of two discriminants (D1 and D2, with labels
a, b, c for the three mentioned targets, respectively), along with
the classification groups and training/test scores. As already
mentioned above, the amount of data employed for the analysis
(196 cells) is far from being considered “big data” and, as such,
this methodology and the results presented below should be
taken as a first approach and are susceptible to further
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improvement for a more precise classification through the use
of a higher number of training inputs. In the case of the effi-
ciency and V,,. targets, a defined data classification clustering is
observed with comparable scores. In Fig. 7a, it can be observed
that low efficiency (<3.4%] cells are relatively well classified and
separated from the groups with medium (3.4-4.4%) and high
(>4.4%) efficiency. On the contrary, for the V. target, while the
cells with the highest voltages are well differentiated, the rest of
groups show high overlapping (Fig. 7b). However, despite the
relatively low classification score, it is worth noticing that there
is no clear overfitting occurring by comparing the individual
and overall scores of the algorithm, indicating that a larger data
set could greatly improve the classification.

In the case of the [Zn]/[Ge] ratio target shown in Fig. 7c, the
classification resulted in a clear sequential correlation between
the discriminants, from lower to higher ratios. The first 2
groups, cells with 0-0.85 and 0.85-1.05 [Zn]/[Ge] ratios, show
significant overlapping leading to misclassifications in both
training and test data which is reflected in the LDA algorithm
scores. On the other hand, a good clustering is shown for the
1.05 < [Zn]/[Ge] < 1.15 and [Zn]/Ge] > 1.15 groups. Even though
the discriminants in LDA algorithms are of unclear nature and
do not necessarily follow an underlying physical concept (at
least in a straightforward way), the resulting curve in Fig. 7c
shows great resemblance with that obtained from the analytical
analysis of the influence of point defects on device performance
(Fig. 4a). Bearing this in mind, the relative integrated intensity
of the Raman peak at 176 cm ™" and efficiency of the solar cells
in the combinatorial sample were plotted against the classifi-
cation discriminants Dlc and D2c (Fig. 8). The latter were
mainly selected as they show the clearest differentiation
between the different classification groups, and, thus, were ex-
pected to have a more pronounced dependence from the
physical parameters of the solar cell devices. Despite the fact
that none of the analytical parameters (relative integrated
intensity of the Raman peak and solar cell efficiency] was
directly used for the LDA algorithm, a pronounced linear-like
correlation between parameters and the LDA discriminants
can be observed. Moreover, a closer look to the obtained
correlation, allows to define that the points that deviate from
the correlation forming a cloud in Fig. 8a (highlighted with
a dotted oval) correlate with zero efficiency solar cells. In this
way, the behaviour of these cells is probably not related to the
concentration of V¢, defects, but to other critical parameters of
the devices (ie. presence of ZnSe in absorber, or bad absorber/
buffer interface, etc.). Similarly, in case of the correlation of cell
efficiency with the D2c parameter (Fig. 8b), the points that lie far
from the proposed dashed line probably present some addi-
tional issues, not directly related to the absorber layer itself that
is strictly analysed in the present study. These correlations,
however, firstly, allow to get a glimpse of the possible physical
meaning behind the D1c and D2c discriminants, and, secondly,
prove that there exists a strong correlation of the V¢, defects
with the Raman spectra [Zn]/[Ge] ratio and solar cell efficiency.
In this way, the variations of the V¢, parameter are directly re-
flected on the other parameters. These multi-variable correla-
the CZGSe material itself and of

tions are intrinsic to
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tion target. The explanation of the dotted oval line can be found inthe
main text.

importance to derive its properties. Moreover, this finding
makes possible to predict solar cell efficiency using only Raman
spectra and compositional data. This has an enormous poten-
tial both for research and industrial process monitoring appli-
cations. In addition, the results presented here illustrate
a powerful example of why combinatorial analysis should be
established as a standard procedure for the study of complex
systems such as thin film solar cells based on chalcogenide
compounds in order deepen into the critical parameters that
govern their efficiency.

10474 | J Mater Chem A, 2021, 8, 10466-10476

Conclusions

This work has presented a complex analysis of the formation of
secondary phases and point defects under off-stoichiometry
conditions, as well as of their effect on PV performance, in
a combinatorial CZGSe sample comprised by almost 200 indi-
vidual solar cells covering a wide range of [Zn]/[Ge| composi-
tions in the Cu-poor regime. Firstly, an analytical approach
based on Raman spectroscopy and XRF has allowed defining
the off-stoichiometric limits of formation of the CZGSe kesterite
phase: 0.7 < [Zn]/[Ge] < 1.2. It has been observed that, close to
the top limit, the probability of forming ZnSe increases and,
above it, it may become the dominant phase, while the forma-
tion of other secondary phases is almost negligible in the whole
range studied. As for defect formation, the footprint of v, and
substitutional Zng, and Geg, defects on the vibrational prop-
erties of the CZGSe material has been analysed. Strong Vi,
induced variations in the Raman spectra have been found,
especially close to the J- and L-type off-stoichiometry lines,
whereas a softer effect (mainly at high wavenumbers) has been
observed for the substitutional defects. Finally, the complex
analytical correlation of compositional, spectroscopic and
optoelectronic data for each of the 200 solar cells, has allowed
revealing that V¢, controls the /,. and FF of the devices while the
substitutional defects have their main influence on the V.
leading to an optimum cationic compositional range of [Zn]/
[Ge] = 1.05-1.15 for achieving the high efficiency (~6%) solar
cell devices. This has been further explored through the appli-
cation of an LDA machine learning algorithm. Using just
Raman spectra as input, the algorithm employed has been
shown to be able to classify the different cells in terms of
composition and optoelectronic parameters. These results
confirm the deep intrinsic intertwining of the Vg, defect
concentration with the Raman spectra, [Zn]/[Ge] ratio and solar
cell efficiency, and represent a powerful solar cell performance
prediction methodology both for research and industrial
process monitoring environments. As such, this work not only
provides valuable insight for understanding and further devel-
oping the CZGSe photovoltaic technology and but also gives
a practical example of the potential of combinatorial analysis
and machine learning for the study of complex systems in
materials research.

This journal is € The Royal Society of Chemistry 2021
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Statement of need

In recent years, the complexity of novel high-tech materials and devices has increased consider-
ably. This complexity is primarily in the form of increasing numbers of components and broader
ranges of applications. An example of the latter is the last generation of thin-film solar cells,
which comprise several functional micro- and nano- layers including back contact, absorber,
buffer, and transparent front contact. Most of these layers are complex multicomponent com-
pounds (Cu(In,Ga)Se2, Sbh2Se3, CdTe, CdS, Zn(0,S), ZnO:Al, etc.) that require fine-tuning
of their physicochemical properties to ensure functionality and high peformance (Chopra et
al., 2004; Powalla et al., 2018). This embedded complexity means that further development
of such devices requires advanced characterization and methodologies that allow correlating
the physicochemical data of the different layers (chemical composition, structural properties,
defect concentration, etc.) with the performance of the final devices in a fast, precise, and
reliable way. In this regard, non-destructive methodologies based on spectroscopic characteri-
zation techniques (Raman, photoluminescence, X-ray fluorescence, reflectance, transmittance,
etc.) have already been demonstrated to possess a high versatility and potential for this type of
analyses (Dimitrievska et al., 2019; Guc et al., 2017; Oliva et al., 2016). These spectroscopy-
based methodologies can provide deep information that encompasses the complexity of novel
materials and devices in a non-destructive way, providing a profound understanding of their
properties, failure mechanisms, and possible improvements (Grau-Luque et al,, 2021). The
latest advances in the application of spectroscopic methodologies for complex materials and
devices include the implementation of combinatorial analysis (CA), artificial intelligence (Al)
and machine learning (ML), that have been already used in few studies and are slowly be-
coming more common (Chen et al., 2020). Furthermore, the widespread use of this kind of
tools in both laboratory environments and on-line/in-line monitoring of production lines is
predicted to shorten development times by a factor of 10, from 10 to 20 years to just a few
years (Aspuru-Guzik & Persson, 2018; Correa-Baena et al., 2018; Maine & Garnsey, 2006;
Mueller et al., 2016). Unfortunately, several barriers for researchers to implement CA, Al,
and ML remain (Gu et al., 2019; Mahmood & Wang, 2021). One of them is the proper
pre-processing of spectroscopic data that allows not only to emphasize the relevant changes
in the spectra, but also to combine data obtained from different techniques and instruments.
Also, the use of ML requires substantial amounts of high-quality data for a precise analysis
of the physicochemical parameters of new materials and devices, which necessitates the use
of automated systems for massive characterization measurements. In other words, the imple-
mentation of automated high-throughput experiments and the capability to perform big-data
pre-processing to enhance features of spectroscopic data for ML, and subsequent CA, requires
deep theoretical, statistical, analytical, and programming knowledge. Therefore, simple and
practical platforms that help researchers to apply such tools are paramount to accelerate their
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universal adoption and ultimately shorten the development times of new materials and devices
(Butler et al., 2018).

Overview

spectrapepper is a Python package that aims to ease and accelerate the use of advanced
tools such as machine learning and combinatorial analysis, through simple, straightforward,
and intuitive code and functions. This library includes a wide range of tools for spectroscopic
data analysis in every step, including data acquisition, processing, analysis, and visualiza-
tion. Ultimately, spectrapepper enables the design of automated measurement systems for
spectroscopy and the combinatorial analysis of big data through statistics, artificial intelli-
gence, and machine learning. spectrapepper is built in Python 3 (Van Rossum & Drake,
2009), and also uses third-party packages including numpy (Harris et al., 2020), pandas
(Reback et al., 2021), scipy (Virtanen et al., 2020), and matpotlib (Hunter, 2007}, and
encourages the user to use scikit-learn (Pedregosa et al., 2011) for machine learning
applications. spectrapepper comes with full documentation, including quick start, exam-
ples, and contribution guidelines. Source code and documentation can be downloaded from
https://github.com /spectrapepper /spectrapepper.

Features

A brief and non-exhaustive list of features includes:

= Baseline removal functions.

= Normalization methods.

= Noise filters, trimming tools, and despiking methods ( Barton & Hennelly, 2019; Whitaker
& Hayes, 2018).

= Chemometrics algorithms to find peaks, fit curves, and deconvolve spectra.

» Combinatorial analysis tools, such as Spearman, Pearson, and n-dimensional correlation
coefficients.

= Tools for ML applications, such as data merging, randomization, and decision bound-
aries.

= Sample data and examples.
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Statement of need

Spectroscopic techniques (e.g. Raman, photoluminescence, reflectance, transmittance, X-ray
fluorescence) are an important and widely used resource in different fields of science, such
as photovoltaics (Fonoll-Rubio et al., 2022) (Grau-Luque et al., 2021), cancer (Bellisola &
Sorio, 2012), superconductors (Fischer et al., 2007), polymers (Easton et al., 2020), corrosion
(Haruna et al., 2023), forensics (P. V. Bhatt & Rawtani, 2023), and environmental sciences
(Estefany et al., 2023), to name just a few. This is due to the versatile, non-destructive and
fast acquisition nature that provides a wide range of material properties, such as composition,
morphology, molecular structure, optical and electronic properties. As such, machine learning
(ML) has been used to analyze spectral data for several years, elucidating their vast complexity,
and uncovering further potential on the information contained within them (Goodacre, 2003)
(Luo et al., 2022). Unfortunately, most of these ML analyses lack further interpretation of
the derived results due to the complex nature of such algorithms. In this regard, interpreting
the results of ML algorithms has become an increasingly important topic, as concerns about
the lack of interpretability of these models have grown (Burkart & Huber, 2021). In natural
sciences (like materials, physical, chemistry, etc.), as ML becomes more commen, this concern
has gained especial interest, since results obtained from ML analyses may lack scientific value
if they cannot be properly interpreted, which can affect scientific consistency and strongly
diminish the significance and confidence in the results, particularly when tackling scientific
problems (Roscher et al., 2020).

Even though there are methods and libraries available for explaining different types of algorithms
such as SHAP (Lundberg et al., 2017), LIME (Ribeiro et al., 2016), or GradCAM (Selvaraju
et al, 2017), they can be difficult to interpret or understand even for data scientists, leading
to problems such as miss-interpretation, miss-use and over-trust (Kaur et al., n.d.). Adding
this to other human-related issues (Krishnal et al., 2022), researchers with expertise in
natural sciences with little or no data science background may face further issues when using
such methodologies (Zhong et al., 2022). Furthermore, these types of libraries normally aim
for problems composed of image, text, or tabular data, which cannot be associated in a
straightforward way with spectroscopic data. On the other hand, time series (TS) data shares
similarities with spectroscopy, and while still having specific needs and differences, TS dedicated
tools can be a better approach. Unfortunately, despite the existence of several libraries that
aim to explain models for TS with the potential to be applied to spectroscopic data, they
are mostly designed for a specialized audience, and many are model-specific (Rojat et al.,
2021). Moreover, spectral data normally manifests as an array of peaks that are typically
overlapped and can be distinguished by their shape, intensity, and position. Minor shifts in
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these patterns can indicate significant alterations in the fundamental properties of the subject
material. Conversely, pronounced variations in the other case might only indicate negligible
differences. Therefore, comprehending such alterations and their implications is paramount.
This is still true with ML spectroscopic analysis where the spectral variations are still of
primary concern. In this context, a tool with an easy and understandable approach that offers
spectroscopy-aimed functionalities that allow to aim for specific patterns, areas, and variations,
and that is beginner and non-specialist friendly is of high interest. This can help the different
stakeholders to better understand the ML models that they employ and considerably increase
the transparency, comprehensibility, and scientific impact of ML results (U. Bhatt et al., 2020)
(Belle & Papantonis, 2021).

Overview

pudu is a Python library that quantifies the effect of changes in spectral features over the
predictions of ML models and their effect to the target instances. In other words, it perturbates
the features in a predictable and deliberate way and evaluates the features based on how the
final prediction changes. For this, four main methods are included and defined. Importance
quantifies the relevance of the features according to the changes in the prediction. Thus, this
is measured in probability or target value difference for classification or regression problems,
respectively. Speed quantifies how fast a prediction changes according to perturbations in the
features. For this, the importance is calculated at different perturbation levels, and a line is
fitted to the obtained values and the slope, or the rate of change of importance, is extracted
as the speed. Synergy indicates how features complement each other in terms of prediction
change after perturbations. Finally, re-activations account for the number of unit activations
in a Convolutional Neural Network (CNN) that after perturbation, the value goes above the
original activation criteria. The latter is only applicable for CNNs, but the rest can be applied
to any other ML problem, including CNNs. To read in more detail how these techniques work,
please refer to the definitions in the documentation.

pudu is versatile as it can analyze classification and regression algorithms for both 1- and
2-dimensional problems, offering plenty of flexibility with parameters, and the ability to provide
localized explanations by selecting specific areas of interest. To illustrate this, Figure 1 shows
two analysis instances using the same importance method but with different parameters.
Additionally, its other functionalities are shown in examples using scikit-learn (Pedregosa
et al., 2011), keras (Chollet et al., 2018), and localreg (Marholm, 2022) are found in the
documentation, along with XAl methods including LIME and GradCAM.

pudu is built in Python 3 (Van Rossum & Drake, 2009) and uses third-party packages including
numpy (Harris et al., 2020), matplotlib (Caswell et al., 2021), and keras. It is available
in both PyPl and conda, and comes with complete documentation, including quick start,
examples, and contribution guidelines. Source code and documentation are available in
https: //github.com /pudu-py/pudu.
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Figure 1: Two ways of using the same method importance by A) using a sequential change pattern over
all the spectral features and B) selecting peaks of interest. These spectras are measured from thin-film
photovoltaic samples and are correlated to their performance using ML, as explained in (Fonoll-Rubio et
al., 2022). In A), the vector was divided in window sizes of 25 pixels were perturbed individually. The
impact of the peak in the range of 1200-1400 opaques the impact of the rest. In contrast, in B) specific
ranges are defined, so only the first four main peaks are selected to be analyzed and better visualize their
impact in the prediction.
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4. FURTHER EXPLORATORY EXPERIMENTS

4.1 Introduction

After exploring the dimension reduction approach with PCA, LDA and PC-LDA, in the last period
of this thesis two new approaches were explored for Al driven analysis for TFPV materials and
devices as an extension and logical step forward for improvement of the methodology used, as
schematically shown in Figure 4-1. These two techniques are of different nature and tackle two
different problems and questions that derive from ML results and can be used together to gain
further insights from an experiment. The first question is about out-of-distribution (OOD)
properties of TFPV materials. In other words, this first extension of the methodology explores an
Al driven way to detect hypothetical compositional characteristics of TFPV devices for improved
performance. This is done with a combination of the PC-LDA and CNN using explainability
techniques and Multivariate Non-Linear Regressions (MVNLR) for prediction of these OOD
properties. Essentially, a PC-LDA and CNN models are trained to perform the same classification
task and are analyzed to see what features are more important, and this information is crossed
validated between the models to see what features are consistently affecting the results, regardless
of'the model used. This combination is motivated by the objective of enhancing our comprehension
of the combinatorial spectroscopic data at our disposal and facilitating data-informed decisions.
As this kind of research in this particular field is still fresh and largely unpublished, it promises
significant potential for impact. To maximize the utilization of CNNs, two unique networks are
designed: a 1D network that directly interfaces with the existing data, and a 2D network requiring
data transformation into a 2D matrix (an image), a novel process for this kind of data. The
incorporation of a 2D CNN is motivated by the fact that these models more widely used and studied
and also attract more interest from the scientific community. Additionally, 2D CNNs have the
benefit of exploiting other data properties that may be overlooked by a 1D version, such as spatial
correlations among different characterization techniques (8 spectroscopic measurements are used
in this experiment) and the detection of intricate patterns. Upon completion of the CNNs' training
and testing, sensitivity analysis and GradCAM techniques are applied to specific instances. This
allows to gain insights into the algorithms' decision-making processes, yielding useful
explanations that will further facilitate a more thorough dataset analysis.

The second approach explores in more depth the use of CNNss for the classification of TFPV using
a modern technique called dissection. This method studies the structure and behavior of the CNN
with the premise that deeper understanding of such models may allow the user to modify the model
and obtain enhanced and customized results and to obtain deeper insights into the data. This is
motivated by the fact that ML techniques, particularly CNNs, have revolutionized various
scientific disciplines and offer unprecedented capabilities for data analysis, prediction, and even
the discovery of new materials with desirable properties. However, the application of CNNs in the
field of energy materials faces unique challenges and opportunities that warrant focused
investigation. In particular, a critical issue, as discussed in the introduction of this work, is the
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interpretability of these type of models. While CNNs are powerful tools for pattern recognition
and prediction, their 'black-box' nature makes them difficult to interpret, becoming an increasingly
important topic in research and applications [101]. This is particularly problematic in material
science, where understanding the underlying mechanisms is crucial for the development and
optimization of new materials. The lack of interpretability can also affect the trust that researchers
place in the model's results, which is essential for their broader acceptance and application in the
scientific community. The above signifies that even though results from ML models can seem
impactful due to good classifications and logistic regressions, they may lack real scientific value
due to the lack of explanation, diminishing the significance of the results [90]. Therefore, there is
a pressing need to develop and apply methods that not only improve the performance of CNNs but
also make their decision-making processes more transparent. Enhancing interpretability can
increase researchers' trust in these models, ensuring that they are not just statistically accurate but
also scientifically meaningful. To tackle this problem, several tools have raised in the past years,
including techniques such as SHAP [122], LIME [89], and GradCAM [123]. However, it is well
documented that different explainability methods show disagreement in metrics such as feature
importance rank and sign agreement (weather or not a feature has a positive or negative impact in
the output), highlighting this important problem with post-hoc explanations [110]. A way to
improve this is to use methods that not only aim to explain decisions of models but also try to
reason their inner workings. Furthermore, understanding the intricacies of a CNN model can
facilitate its manipulation and improvement, thereby increasing its reliability and efficacy. This
can be performed with techniques such as dissection [121], which attempts to align individual units
of a CNN with local features in the data. This allows the model to become more interpretable by
assigning specific roles to individual units. For instance, researchers have been able to observe that
there are units that are activated by specific concepts in images, such as objects, parts, materials,
and colors [124]. This allows to deliberately and intentionally manipulate models to achieve
desired results, such as removing or including specific objects in images, aiming to increase the
interpretability, completeness, reliability and efficacy. This technique, in this case, is adapted to
work with spectroscopic data and, therefore, spectroscopic features.

This section shows these two expansions of the methodology with a combinatorial CZTSe-based
sample divided in 225 cells, each measured 8 times under different conditions, 4 with PL and 4
with Raman using 785 nm, 532 nm, 442 nm and 325 nm excitation wavelengths each, along with
XRF and IV measurements. Thus, the same data derived from the same sample and processing are
used for both approaches, which is explained below. Both approaches are natural next steps from
the methodology described in this thesis (Section 2), and this section introduces the preliminary
results obtained in the explorative work using them. A more developed technique of this kind may
be used for synthetic experiments to skip and avoid physical ones, reducing research and
development times further beyond what automatization in experiments can achieve.
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Figure 4-1: Modified workflow of the methodology to include 1D and 2D CNNs along with
respective explainability techniques.

4.2 Methodology

4.2.1 Sample

The samples chosen for this experiment consist of 225 solar cells, sourced from a 15x15
combinatorial CZTSe-based sample. The absorbers' composition (Figure 4-2) presents noticeable
variability in terms of Copper, Tin, and Zinc, resulting in significant in-sample diversity across all
optoelectronics. The highest Voc values typically emerge in proximity to the central and upper
regions of the sample, exhibiting middle [Zn]/[Sn] ratio values and leaning towards a mid-low to
low [Cu]/[Zn] ratio. On the contrary, the peak Jsc values are usually found on the lower side of the
sample, coinciding with medium and mid-low [Zn]/[Sn] ratios and medium [Cu]/[Sn] ratios.
Highest efficiencies are detected closer to the sample's center, with diminishing values in a radial
pattern. An important observation is that several cells appear devoid of any optoelectronic
properties, mainly in the right edge and bottom and left-bottom edges. These samples, despite their
seeming lack of utility, are preserved in the analysis for potential spectral property exploration if
deemed necessary.
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Figure 4-2: Voc, Jsc, and Efficiency optoelectronic for the combinatorial sample (upper row) and
Fill Factor and Compositional ratios of Zn/Sn and Cu/Sn (lower row).

4.2.2 Sample characterization

Each cell is measured using XRF, IV, Raman, and PL techniques, with the latter two employed
under four distinct wavelengths: 325 nm, 442 nm, 532 nm, and 785 nm. Consequently, when all
spectra are fusioned, a 1-D vector of length 15,344 is produced. Information regarding laser power,
acquisition times, and averages for each of the techniques can be found in Table 4-1. Additionally
displayed in the same table, the total acquisition time represents the collective minutes of
acquisition throughout the entire sample, that is, taking into consideration all of the 225 cells,
culminating in a grand total of 40 hours and 20 minutes. The time recorded does not factor in
elements such as sample preparation, equipment calibration, processing, or movement times. It is
worth noticing, that in the current study the main focus was on the research objectives and on
testing of the methodologies, thus the used timings were selected to obtained relatively high quality
of the spectra (with low signal to noise ratio), and these values can be further decreased for the
more specific applications.
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Table 4-1: Experimental setup and parameters of the spectroscopic techniques. Total Aq. Times
is the amount in minutes of the total time needed to perform the measurement considering all the

225 cells.
Raman PL

Wavelength (nm) 785 532 442 325 785 532 442 325
Power (mW) 3.9 3.5 5.5 3.6 3.75 5.2 1.2 3.2
Acquisition time (s) 40 20 20 120 1 0.2 0.1 0.3
Acquisitions (n°) 3 5 3 3 3 5 3 3
Total Aq. Time (m) | 450 375 225 1350 11.3 3.75 1.13 3.34
Spectra length 2000 | 1024 | 1024 984 1210 512 5076 3514

4.2.3 Data processing

Following the methodology, the eight spectra were fusioned into a single vector for each cell, as
has been performed in past studies [125][92]. This approach allows our algorithm to discern
between techniques and concurrently incorporate their respective benefits for the classification
process. For this merge to be effective, the techniques were scaled to a comparable scale. The
Raman spectras were normalized to their main peak ratios for each of the wavelengths, meanwhile
for the PL measurements were normalized to the global maximum of each of the wavelengths.
With this, the maximum value is restrained to 1 for all of the techniques, and thus remain
comparable when fusion is performed. For all measured points, the spectra were merged in
descending source wavelength with Raman first followed by PL. In other words, first Raman 785,
532,442, and 325 nm followed by PL 785, 532, 442, and 325 nm. The resulting vector of 15,344
is then reduced to a final it is of length 14,640 after deleting small ranges at the beginning and end
of each spectra that normally contain artifacts left over from data processing, which focuses on the
main ranges of this kind of data, normally on more central regions (Figure 4-3).

For the 2D CNN a final step is performed to transform the is represented as images of 120x120
pixels, which contains a total of 14,400 values. To match the obtained vector of length 14,640 after
data processing, 240 additional pixels are removed from the end of the vector, without affecting
any of the relevant areas.
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Figure 4-3: Schematic of the transformation of the vector of length 14,640 to an image of
120x120 pixels. As 120*120 = 14,400, 240 pixels have to be deleted in order be reshaped. In this
case, the last 240 pixels were deleted as the offer little information and is the easiest way to
accomplish this. Other approaches are possible, such as interpolating or deleting smaller sections
across the spectras.

4.2.4 PC-LDA

In the PC-LDA model, the chosen target is Voc, which is intended for the classification objective.
The feature selection is carried out using the 1D vector of length 15,344. This approach is expected
to enhance observation of the methodologies that optimally inform the analyses of Voc. With Voc
designated as the target, the PC-LDA model undergoes training for four classification groups:
259<Voc, 259<Voc<353, 353<Voc<391, and 391<Voc. Upon completion of the initial iteration,
a sensitivity analysis is initiated to identify the sections of the spectra that are most relevant to the
algorithm. This permits the elimination of spectra sections that hinder processing, ending with a
feature length of 14,640. Consequently, this enables a further iteration to secure more faithful
results and ultimately the selection of crucial sections for performing logistic regression over Voc.

4.2.5 1D and 2D CNN

For the OOD procedure, the architecture of the 1D CNN is composed of three distinctive 1D
convolutional layers, each followed by batch normalization, max pooling, and a dropout layers.
Initially, a 1D convolutional layer utilizes 4 filters with a 2-unit kernel and 1-unit stride in the
14640x1 input vector. This layer's output undergoes a sequence of normalization, max pooling
with a 16-unit pool size, and dropout at a rate of 0.20. A second 1-D convolutional layer with 8
filters and a 4-unit kernel followed by batch normalization, max pooling with an 8-unit pool size,
and dropout with rate of 0.20. The convolutional layers used ReLLU as activation. Following these
layers, a 1-D Global Average Pooling layer links to the final dense layer with four neurons and a
softmax activation function, which provides a probability distribution over four classes. In contrast
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with the 1D CNN, the 2D CNN shows 2 convolutional layers (1 input, 1 hidden) and one output
dense layer. The first convolutional layer utilizes 2 filters with a 2x2 kernel and 1x1 stride,
followed by a dropout layer with 0.3 rate. The second layer utilizes 4 filters with a 4x4 kernel and
2x2 stride, followed by a dropout layer with the same 0.3 rate. Both layers use LeakyReLLU with a
-0.01 coefficient. These are followed by a Flatten layer and then the final dense layer of 4 units
and a softmax activation. Just as the PC-LDA, the 1D and 2D CNNs are trained to classify Voc in
four classification groups: 259<Voc, 259<Voc<353, 353<Voc<391, and 391<Voc.

For performing dissection, however, a slightly different CNN architecture was used. This is due to
the fact that this CNN was design in a later time with the goal of improving results observed in
previous attempts. Specifically, the constructed CNN is designed to classify the same data 4 classes
according to the Voc value of the cell as measured in the IV curve: Voc < 303, 303 < Voc < 363,
363 < Voc < 396, and 396 < Voc. The resulting CNN is composed of three distinctive 1-D
convolutional layers, each followed by batch normalization, max pooling, and a dropout layer.
Initially, a 1-D convolutional layer utilizes 4 filters with an 8-unit kernel and 2-unit stride in the
14640x1 input vector. This layer's output undergoes a sequence of normalization, max pooling
with a 16-unit pool size, and dropout at a rate of 0.25. A second 1-D convolutional layer with 8
filters and a 4-unit kernel followed by batch normalization, max pooling with an 8-unit pool size,
and dropout with rate of 0.25. Lastly, a third 1-D convolutional layer with 16 filters of 16-unit
kernel follow too by batch normalization, 8-unit max pooling, and dropout with 0.25 rate. All
convolutional layers used LeakyReL U as activation function with a threshold of 0.05. Following
these layers, a 1-D Global Average Pooling layer links to the final dense layer with four neurons
and a softmax activation function, which provides a probability distribution over four classes.

4.2.6 Explainability

For the PC-LDA, sensitivity analysis is performed using the pudu library. For both of the 1D CNN
and 2D CNN, sensitivity analysis along with GradCAM are used. This last one is applied for each
of the convolutional layers of the networks. This allows comparing their results for more insightful
information about the classification processes.

For the last CNN analysis, the pudu library was also used. In this case, the sensitivity analysis was
performed to quantify not only the probability impact of feature changes but also the activation
values of the units of the last convolutional layer.

4.3 Results

4.3.1 Exploration of OOD properties

Scores for the PC-LDA are exhibited in Figure 4-4 in the confusion matrices of A) and B). High
training and test scores are evident, with a floor value of 0.82 for the 259 — 353 mV range in the
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training set. The test set indicates a lower score of 0.73 for the cells performing at the lowest level;
nonetheless, overfitting is discernible in the highest-performing data points, which achieve 100%
accuracy. Sensitivity analysis (SA) reveals a significant influence of artifacts within the spectra.
In other words, peaks and valleys in negligible zones of the spectra, especially at the start and tail
sections, yield a relatively large impact on the classification of specific instances, as demonstrated
in Figure 4-5. This information allows for the removal of these spectra zones and the training of
an alternate PC-LDA model. As shown in the figure, the resultant vector is more concise, now
measuring 14,640 in length. Figure 4-4C and D also displays how scores change following this
process, with marked enhancements in both the training and test set. The mitigation of overfitting
is clear, indicated by closer scores within groups and between training and test scores. This
suggests a more equitable evaluation and comparison of the data. The established clusters are
depicted in jError! No se encuentra el origen de la referencia. (left), exhibiting clear separation
and continuity.
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Figure 4-4: Scores in a confusion matrix for training (A) and test sets (B). The new scores of the
new model after SA for training (C) and test (D).



Figure 4-5: Comparison between the first PC-LDA (left) and the second training (right) for each
of the classes (from class 1 to 4 from top to bottom) in terms of importance according to
sensitivity analysis. This shows how the vector changes in length after cutting off some of the
sections. The importance is the average of the 10 closest spectra to the center of each of the
clusters. Removing these sections appears to enhance some of the more important features.

With the newly derived dimensions D1 and D2, a MVNLR can be performed in the shape of
f(D1,D2) =y, with y representing the Voc. A 2" degree polynomial is selected due to the
enhanced results compared to degree 1 and superior interpretability and visual representation
relative to degree 3 and beyond, where results see only marginal improvements. Nonetheless, D1
and D2 represent an already uninterpretable combination of thousands of higher dimensions,
making it challenging, if not impossible, to derive insights beyond the fact that Voc can be
predicted from this data. The regression, represented by Eq. 4-1, exhibits good correlation with R2
scores of 0.85 as shown in Figure 4-9;Error! No se encuentra el origen de la referencia. (center).
The visual mapping of the resulting equation in an expanded solution space, seen in Figure 4-9
(right), highlights continuity and also mathematically suggests a higher-performing cluster with
elevated D1 and D2 values of the ranges 6-8 and 2-5, respectively.

y =328+29.3-D; —19.4-D, —2.89-D? + 6.95 - Ag - Ay, — 2.45- A2,  Eq.4-1
y =489 —22.5- A + 1.17 - Ay, Eq. 4-2
y =520+420.0Ag — 2.77 - Ay, — 344+ A2 — 0.40 - Ag - A,, — 0.007 - A2, Eq.4-3

The utilization of CNNs takes a comparable methodology applied to discern crucial elements
within the data. The performance of this model is favorable, displaying scores that are comparable
with the PC-LDA technique, as shown in Figure 4-6. With the employment of CNN, however, we
gain access to additional explainability tools such as Grad-CAM, along with more in-depth
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potential analysis of the algorithm via the intersection of activation patterns in units and layers. In
light of this, the average activation map of the ten nearest spectra, as previously deduced with the
PC-LDA algorithm, for the top-performing cells (391<Voc) for each convolutional layer is
portrayed in Figure 4-7. Figure 4-8 compiles the results for the four classification groups and the
three convolutional layers. A distinctive common characteristic, consistent across all classes and
layers, is the total lack of focus directed towards the final segment of the vector, belonging to the
325 nm PL measurement. Additionally, for the second layer, dispersed attention is primarily
allocated to Raman 532, 442, 325 and PL 785, 532, and 442, while the final convolution layer
assigns markedly more importance to the Raman 532 nm spectra, and notably to PL 442 for the
highest performance cells, as well as for the second-best classification. However, for the bottom
groups, attention pivots towards PL 442 in the worst performance cells and towards the 785, 532,
and 442 Raman spectra for the second-worst. This indicates, in line with PC-LDA, that the
different classification groups stimulate the algorithm in quite dissimilar ways. Nonetheless, in
general terms, it appears that local patterns are scarce, while macro patterns exert a greater
influence on the final decision of the CNN.
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Figure 4-6: Confusion matrices for Training (A) and Test (B) data sets for the CNN, with a
averages of 84% and 80%, respectively. Despite the good scores, some overfitting is appreciated,
but highly biased by the best performing class, where accuracy is just above 71% with about
29% misclassified as second to first. For the 2D CNN, slightly lower scores are shown, with 0.82
and 0.76 for training and validation.
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Figure 4-7: Average Grad-CAM visualization of the closest 10 spectra to the center of the cluster
from the top performing classification group of 391 < Voc. From top to bottom, is the first
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Figure 4-8: GradCAM results for the 3 convolutional layers (left to right) and the 4 classification
groups (top to bottom)
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Figure 4-9: D1 v D2 plot of the final PC-LDA model (left), MVNLR as f(D1,D2) against Voc
(center) and the obtained equation mapped along with the scatter plot of D1 v D2 color graded
with the Voc (right).

For the 2D CNN, the GradCAM mappings are assembled in Figure 4-10. These mappings,
originally presented in the form of images, have been flattened into 1D vector format for ease of
visualization. In this instance, a slightly different behavior is observed compared to the first case,
as anticipated due to the inherent differences between the algorithms. Specifically, attention
appears to be directed to the PL 325 vector, especially for the second group (259 < Voc < 353).
Aside from this peculiarity, the remaining activations bear resemblance to those from the 1-D case,
with the exception of the fourth group in the first layer, which yields no activations at all for
GradCAM. This can be explained in a two-fold manner: firstly, the classification of this group
primarily relies on more “general” patterns detected by the final convolutional layer. Secondly,
this layer appears to solely account for negative impacts in the classification, given its use of
LeakyReLU activations instead of ReLU, in contrast to the 1D CNN.
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Figure 4-10: GradCAM heatmaps for the average of the 10 closest spectras to the center of each
of the clusters according to PC-LDA for each of the classification groups (top to bottom) for both
convolutional layers (right and left).
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Following the analysis conducted, we were able to more accurately pinpoint potentially significant
areas within the spectra. Due to this process, several considerations were taken into account: 1) the
full area of the peaks did not necessarily need to be utilized, 2) varying impacts were observed in
different sections of the peaks, potentially suggesting the presence of smaller peaks, 3) areas of
utmost significance were commonly found on or near the peaks, and 4) despite their theoretical
lack of interest, some sections still displayed activations and significance. However, caution should
be exercised due to the fact that the models, despite their high accuracy, did not reach full
generalization, potentially leading to the erroneous use of these sections. Moreover, the preceding
analysis should be interpreted with caution, and prioritizing good criteria for area selection is
paramount. Hence, the sections deemed unimportant but are highlighted by the methodologies,
which are more likely to complicate subsequent analysis and divert attention from impactful areas,
were omitted. Following these guidelines, 21 areas were selected, as shown in Table 4-2,and the
correlation between them is examined with both Pearson and Spearman coefficients. Separately,
the correlation with Voc was examined using a quadratic regression independently for each area
in the form of f(4,) = Cy + C; - A, + C, - A% =y, with the results represented as R2 scores in
Figure 4-11. Areas Al14, A16, and A3 stood out as the most predictive, while areas A8, A2, and
A1 were the least. Given the high correlation between these areas, they are presumed to contain
the same, or similar, information, limiting their combined predictive power due to data
redundancy. Therefore, the next highest scoring, yet unrelated, area to A14 was determined to be
A5 (Figure 4-11). With these two areas, interpretable correlations can be further investigated. As
they can be visualized in 2D due to their limited variable count, the results are more accessible for
human interpretation. Quadratic polynomial regression (PR) and radial basis function network
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(RBFN) were applied, with the outcomes depicted alongside Multivariate Linear Regression in
Figure 4-12. Good linearity was observed for voltages of 250 mV and above, although correlation
was poor for lower voltages, mirroring the findings in [125]. However, this issue was resolved
with non-linear regression, yielding improved agreement with lower voltages and an overall R2
score of 0.76. This model, shown in Eq. 4-3, presents a digestible equation comprising only six
terms. The equation allows for the existence of high-performing cells not accomplished in the
investigated sample, both with elevated and decreased A5 and A14 areas, although the latter
possibility lies beyond the established parameter range but is theoretically plausible due to
symmetry. The feasibility of achieving these values is subject to further investigation and presents
an intriguing research question.

Table 4-2: Selected areas and their respective pixel ranges from the 14,640-long vector. In
addition, the areas are labeled with the corresponding measurement technique and the axis values
in the respective units of that measurement (Shift for Raman and Wavenumber for PL).

Area Measurement Pixel range Shift range (cm™)
Al Raman 785 90 — 145 159 — 180
A2 Raman 785 145 —200 180 — 207
A3 Raman 785 250 -320 231 —-262
A4 Raman 532 1950-1985 262 —343
AS Raman 532 1985 —2030 529 - 653
Ab Raman 442 3020 - 3070 272 332
A7 Raman 442 3070 — 3200 417 -516
A8 Raman 442 3500 — 3700 516 — 665
A9 Raman 325 3915 — 3960 630-913

Al0 Raman 325 4025 —4100 346 — 430

All Raman 325 4100 —4215 464 — 537

Al2 Raman 325 4400 —4510 901 —1039

Al3 Raman 325 4510 — 4680 1039 — 1250

Area Measurement Pixel range Wavelength (nm)

Al4 PL 785 5060 — 5560 1126 — 1365

AlS PL 785 5560 — 5775 1365 — 1468

Alb6 PL 532 6000 — 6150 1077 — 1326

Al7 PL 442 6440 — 7000 462 — 546

Al8 PL 442 7000 — 10000 546 — 994

Al9 PL 325 11470 — 12090 358 —451

A20 PL 325 12090 — 12660 451 - 537

A21 PL 325 12660 — 14510 537-816
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Figure 4-11: Individual R2 for each of the areas when performing regression against Voc (left),
Person (center left) and Spearman (center right) correlation matrices for all the selected areas,
and area 4 (a4) versus area 10 (al0) scatter plot graded with Voc (right).

RBFN, unlike the initial two, is incapable of deriving a specific equation due to its nature as an
NN. As such, the fundamental processes through which it predicts are inherently opaque to human
understanding, even when expandability techniques are employed, as discussed in section 11.4.3.
This opaqueness is to be expected, as a trade-off typically exists between interpretability and
accuracy. Nevertheless, the best scores are achieved by RBFN, at 0.83. As a result, a notably more
complex surface is revealed, with two peaks evident for the optimal voltages (around 200 and 350
of A14). Despite the differences in these mappings, certain commonalities are identifiable. Firstly,
consensus is reached that the least effective cells exhibit equally large A5 and small A14 areas.
Secondly, it appears that the majority of the importance is held by Al4, meaning that the
performance is more dependent on this area for the measured space. However, all agree that it
might be mathematically possible for AS to exert more influence, though this does not hold true
for the first case. Thirdly, they also seem to concur that increasing performance becomes more
challenging as the quality of the sample improves. This can be observed in the enlarging step size,
which grows with Voc. In spectral terms, this implies that it is easier to enhance a poor performing
cell than it is to improve a cell that already performs well.
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Figure 4-12: Regression (top row) and prediction mapping (bottom) for multi linear (left),
polynomial quadratic (center) and RBFN (right).

4.3.2 Sensitivity analysis of activations and model improvement

It is observed that, overall, the highest absolute values of importance are focused on the crucial
peaks of the spectroscopic measurements, however with much more attention to PL data than to
Raman. For instance, the main PL curve for 442 nm appears to have the most absolute importance
across all classes (Figure 4-13A and C). When analyzing the evolution of classification to the next
best-performing class (Figure 4-13B and D), importance is attributed also to sections of PL 442
nm with more protagonism of PL 785 nm and 532 nm compared to the inner-class case. All Raman
spectras though show some activity, but it is small compared to these PL numbers. The latter is
consistent with the nature of this methodologies, since PL is normally associated with the band
gap, meanwhile Raman with more related to structural and defect properties, which is indirectly
related to the band gap. Overall, most importance is attributed to features in the ranges of 5000-
6000, 6000-6500, 8000-11000, and 11000-13000.

For the re-activations, there are specific units related to specific features, as expected to such 1D
CNN. In particular, more defined relationships exist between activation-feature pairs 464-76, 288-
35, 480-77, 464-77, and 510-76. This means that PL with 442 nm, belonging to feature 76 and 77,
is closely related with activations in units 464, 480, and 510, meanwhile PL 785 nm, belonging to
feature 35, is tethered with unit 288. Furthermore, when diving by classification, this last
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relationship is dominated by the first classification group of Voc <303 mV, and the other pairs are
more related with the top 2 classes. Overall, for correctly classified vectors, most activations are
related to features in window range between 34-43 and 75-79.

A) Importance - Correct classifications — 10% perturbation B) Evolution — Correct classifications — 10% perturbation
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Figure 4-13: Importance for spectroscopic features according to the change in inner-class
probability change and next best-performing probability change.

By identifying the critical units’ re-activations that perform good and bad classifications, it is
possible to individually check how these activations affect the overall performance of the model.
These re-activations are shown in Figure 4-14 by class and overall. In general, it is clear to see that
sets of units focus on different classes, presumably according to where each class contains its most
characteristic features. For instance, overall correct prediction seems to be driven mostly by units
464, 288, 480, 44, and 510. In more detail, for correct predictions of Class 1 shows more
activations in units 288 and 304, meanwhile Class 2 activate more units 510 and 542. In contrast
Classes 3 and 4 show similar units being activated, namely 463 and 480, with difference in the
bottom part of their respective lists. When analyzing incorrect classification, several units appear
as having influence in this miss-classifications. Overall, units 558, 128, and 46 seem to have the
most influence in these errors. With this information, and considering the class-specific re-
activations, we can try deactivating by setting to 0, each of these activations and see how they
affect the final prediction. After try and error, it is detected that by deactivating units 128, 208, and
522, an improvement in the overall scores, going from 0.87 to 0.88 is achieved, as shown in Figure
4-15 . Even though the difference of only 1 percentage point, it does represent the correct
classification of around 17% of the incorrect classifications, or 4 out of 23, as shown in Table 4-3.
Furthermore, five other samples show statistical improvement out of the probability function,
though not enough change to correct their classification, which translates to that 39%, or 9 out of
23, perceived benefits on the changes to the activations. As consequence, however, there was 1
sample that switched from correctly classified to incorrectly classified.
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Figure 4-14: Reactivation values for units in the last convolutional layer for correct
classifications (Top in green) and incorrect classifications (bottom in brown). Arrows indicate
the units deactivated in the new model and their color indicate the same unit as in red for unit

128, yellow for unit 208, and blue for unit 522.

Table 4-3: Changes in class classification probability p for each of the incorrectly classified
samples (s) after modification of activation values of activations 128, 208 and 522. In bold are
the samples that corrected their classification after modification, four in total (samples 12, 56, 58,
and 62). Five other samples show statistical benefit but not enough to correct their prediction
(samples 26, 140, 45, 122, and 107).
Voc < 303 303 < V,y < 363 363 <V, < 396 396 < Vo

s | 78 | 144 | 38 | 105] 12 | 26 | 140 | 89 | 127 | 146 | 173 ]| 56 | 45 [ 122|107 | 109 [ 113 | 134 | 58 | 63 | 99 | 124 | 138
Ap, |-0.02| 0 0 0 |-0.12(-0.01| O 0 0 0 0 0 0 0 0 0 0 0 |0.01-0.01| 0 0 0
Ap,(0.02| 0 0 0 |0.16|0.02(0.001| O 0 0 0 |-0.08(-0.05{-0.03|-0.02| 0 0 0 |-0.09]0.03| 0 0 0
Ap, | 0 0 0 0 [-0.06/-0.02(-0.01| 0 0 0 0 |0.08/0.05(0.03(0.01| 0 0 0 ]-0.06(-0.06| 0 0 0
Aps| 0 0 0 0 jo.01| 0 0 0 0 0 0 0 0 0 0 0 0 0 |0.14|0.04| © 0 0
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Figure 4-15: Overall confusion matrices showing the scores of A) the original CNN, B) the
modified CNN after analysis of activations, C) the incorrect classifications of the original CNN
and D) the incorrect classifications of the improved CNN.

4.4 Conclusions of exploratory experiments

In this study, various ML and XAI techniques are leveraged to conduct a comprehensive analysis
of spectroscopic measurements obtained from a combinatorial sample and to better understand the
mechanisms of CNNs using this data. The sample is synthesized with varying ratios of Copper,
Tin, and Zinc elements, and segmented into a 15x15 grid, for a total of 225 cells. These cells
undergo thorough characterization via optoelectronic and compositional techniques, supplemented
by Raman and PL spectroscopy measured under wavelengths of 785, 532, 442, and 325 nm. In a
first stage, the study commences with the application of PC-LDA, which facilitates the refinement
of the vector feature by omitting irrelevant sections of the spectra. The algorithm demonstrates
good classification capabilities, yielding an average accuracy of 0.86 for both training and
validation sets. Subsequently, a 1D CNN is configured for the same classification task, producing
comparable results with average accuracy scores of 0.84 for both the training and testing sets. A
2D CNN is then designed for the same classification problem but with a reconfigured version of
the features transformed into 120x120 images as opposed to a 14,640 vector, resulting in accuracy
scores of 0.81 and 0.75 for the training and test sets, respectively. Application of explainability
methodologies elucidates how specific sections, along with local and macro patterns, influence the
decisions of the algorithms. With this knowledge, specific areas are chosen to perform Pearson
and Spearman correlation matrices. At the same time, quadratic regression is done with each of
the selected areas to predict Voc. The obtained R2 scores are cross-referenced with the correlation
matrices to identify the optimal pair of areas (A5 and A14) that exhibit high individual
predictability but low intercorrelation. Different regression techniques are then implemented to
predict Voc using these areas. Radial Basis Function Networks (RBFN) yield the best result with
an R2 coefficient of 0.86, whereas MVNLR obtains 0.76. Despite the superior performance of
RBFN, MVNLR is preferred due to the readability of the equation, facilitating a more thorough
comprehension of the outcomes. These outcomes suggest the potential for higher Voc with
increasing A5 and A14 areas under the MVNLR model. However, the feasibility of this prediction
remains questionable. In contrast, the more accurate RBFN model presents a clear Voc limitation
based on the provided solution space.
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On a second stage of the exploratory experiments, a shift of focus is turned into the detailed
analysis and explanation of a third CNN for better understanding the failure of classification of
these TFPV cells according to their performance. This is achieved by measuring the change in unit
activations (re-activations) in the last convolutional layer of the achieved model and associating
them with specific features and correct or incorrect classifications. It is shown that is it possible to
better explore the structure of CNN in the context of advanced characterization of PV materials
and devices, achieving better understanding on their reasoning, innerworkings, and results. This is
achieved by being able to associate activations and specific features, protecting clues on how
exactly the model is making decisions in each instance. Furthermore, by better understanding the
latter, it is possible to modify the CNN to improve its performance, achieving a successful
improvement by correctly classifying 4 additional cells after the modification of the CNN.

Overall, these findings highlight the potential impact of future research, emphasizing the
significance of improving our understanding of ML and AI models in the field of materials
research. The advancement of this kind of research may mean not only the gain of deeper insights
into TFPV materials but also to the better comprehension of ML models. The latter is paramount
to further leverage Al in research and may lead to create computational experiments that may
replace physical in-lab experiment, further shortening material discovery and improvement beyond
the current capabilities of Al
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5. CONCLUSIONS AND OUTLOOK

This thesis aimed to leverage cutting-edge analysis techniques based on CA and Al to investigate
the physicochemical and optoelectronic attributes of chalcogenide-based TFPV materials and
other emerging technologies. The primary objective was to develop innovative CA approaches
based on Al and ML to accelerate research and development of TFPV materials, including but not
limited to chalcopyrite and kesterite compounds, and reduce their lab-to-market times. This main
goal was subject to three objectives, namely the design and implementation of automated, high-
throughput, multi-technique characterization systems, the creation of ML methodologies for CA
data processing, and create approachable and accessible tools to implement all the above in a
seamless and straightforward way.

For this, the work began with the development and implementation of an automated spectroscopic
platform, facilitating automated measurements and preliminary analysis of multitechnique
spectroscopy, including RS, PL, and NF. A subsequent study demonstrated the effectiveness of
PC-LDA algorithm in assessing the thickness of AlOx barrier layers in flexible PV combinatorial
samples deposited on top of industrially relevant substrates. The model provided accurate and
reliable thickness measurements using NF spectroscopy data, proving to be non-destructive, fast,
and cost-effective. This study revealed the CA and ML combination potential in quality control
and process optimization in the PV industry.

In a second stage, an evaluation of the Al strategy led to a proposed methodology workflow based
on dimension reduction algorithms, mainly PCA, LDA and PC-LDA, that simplifies the
preprocessing of spectroscopic data and offers deeper insights into relevant material and PV device
processes. To streamline this methodology, the Python library "spectrapeper" was developed,
covering procedures from data acquisition to analysis. A subsequent study examined the influence
of off-stoichiometry on defect formation and solar cell performance in CZGSe TFs using the
methodology based on CA and LDA. The analysis revealed that variations in Ge content
significantly impacted defect formation and device performance, and allowed to define the optimal
composition ranges of the CZGSe compound to produce the high efficiency solar cells.

At a final stage of the doctorate program, the need to further explore the derived results from the
methodology, in particular the ML results from the dimension reduction, raised as a natural
consequence of the performed work. This was also sustained by an abundance of evidence in the
literature and also by the lack of tools for explainability in spectroscopic data. Thus, to facilitate
deep data-driven analysis of such outcomes the "pudu" library was created for sensitivity analysis,
helping identify crucial spectra parts for algorithmic classification.

With the above it is possible to affirm that the objectives stablished for this thesis are fulfilled as
follows:
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- Objective 1: The first objective, focusing on the development of autonomous systems for
high-throughput data collection using various spectroscopic and optoelectronic techniques,
is effectively met by the capabilities of the developed measuring system and the
spectrapepper library. The automated system was developed in IREC for HTE of
spectroscopic characterization. The first article uses an early version for automated single
measurement, meanwhile the second article uses a second version where multiple
techniques can be performed quasi-simultaneously in the same spot. On the other hand,
spectrapepper facilitates the efficient collection and processing of large-scale data, and it
is partially used in the automated system. The ability to rapidly acquire and process a vast
amount of data from different instruments ensures a comprehensive dataset, essential for
in-depth analysis and understanding of the physicochemical and optoelectronic properties
of TFPV materials.

- Objective 2: The second objective involves the development of Al algorithms for efficient
spectroscopic data processing, a task crucial for handling the extensive data generated in
future TFPV research. This objective is tackled two-fold. First, the use of dimension
reduction algorithms in the proposed methodology, namely PCA, LDA, and PC-LDA,
allows for a simplification of spectral processing since no specific features need to be
extracted. Second, the spectrapepper library addresses this need by offering automated and
generalized tools for the processing of large datasets of spectroscopic data. This automation
not only streamlines the workflow but also reduces the requirement for specialized
expertise, making the process more accessible and efficient.

- Objetive 3: Fulfilling the third objective entails the creation of tools that are easy to use
and implement in scientific and industrial settings. This is achieved with the two libraries
spectrapeper and pudu, currently accessible as open-access and open-source. These
libraries contain a broad spectrum of tools that researchers can easily implement in their
data processing and analysis. Most of these tools are aimed to be single-line commands
with clear names, purposes, and parameters so they can fit any kind of demand or needs
and can be implemented in custom systems due to their open-source nature.

In summary, the integration of these solutions directly supports the main goal. The comprehensive
data collection and processing capabilities of the automated system coupled with the spectrapepper
functions, the clear and user-friendly ML framework, and the availability of deeper insights for
spectroscopic problems with pudu allow for a fast experimental analysis cycle and may help to
better understand TFPV materials and devices. This is pivotal for advancing the field of TFPV
technologies, enabling more efficient, reliable, and optimized TFPV materials and devices.

Finally, 2 follow-up experiments that employ the ML framework, both libraries, and other XAl
techniques to analyze spectroscopic measurements from a combinatorial CZTSe sample are
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presented. These are two approaches that naturally follow the proposed methodology used in this
thesis, extending it towards better interpretability and deeper insights into the data. The first,
performs an analysis using PC-LDA with promising classification results. Further analysis using
1D and 2D CNN also achieves high accuracy scores. The application of XAl reveals how specific
sections and patterns influence algorithmic decisions. Specific areas are chosen to perform
correlation matrices and regression, predicting hypothetical compositions for enhanced Voc using
areas with high individual predictability and low intercorrelation. Predicting Voc using these areas
with different regression techniques highlights RBFN as superior. However, MVNR is favored
due to its interpretability. The study emphasizes the importance of understanding ML and Al
models in materials research, promising to positively impact future research. The second uses a
more advanced technique, namely re-activation and dissection analysis, to better explore how
incorrect predictions are formed and how to use this knowledge to improve the performance of
CNN models. The approach successfully analyzes how activations relate to specific features in the
data, which allows to modify the CNN to improve its classification performance. Both of these
approaches are then presented as a natural extension of the methodology used in the published
articles and contains great potential for further development and research.

In short, the culmination of this thesis includes the development of Al procedures for the analysis
of advanced characterization data of PV materials and devices, and the development of open-
source software designed for researchers with little coding experience. These results have
positioned the IREC-SEMS research group at the forefront of next-generation PV technologies by
providing a robust and versatile CA and Al methodology and tools that has benefited various
projects, including Solar-Win (H2020, GN 870004), In4CIS (Proyectos de I+D+I Programacion
Conjunta Internacional 2019, GN PCI2019-111837-2), SUNRISE (H2020, GN 958243), and
Platform-ZERO (H2020, GN 101058459). Moreover, the results of the thesis allowed to strongly
consolidate two research lines of the SEMS group: “Advanced characterization of the PV materials
and devices” and “Development, methodologies and prototyping of sensors for photovoltaics and
process monitoring”. This was possible by providing new tools and possibilities for the advanced
analysis of spectroscopic data for TFPV.

After the development of this work, and after all these years, it is clear to me, and hopefully to the
reader as well, that we stand at the forefront of a new era in scientific discovery and technological
advancement. Al continues to reshape the landscape of research and the content of our daily lives,
transcending every boundary and seeping into virtually every field and application. These
technologies, just as have done with me, will inspire and empower researchers to dig deeper into
the unknown, find solutions to some of the most pressing challenges faced by humanity and,
hopefully, reveal the mysteries of our universe. As our knowledge grows, so too will our ability to
harness Al to improve the quality of life for people around the world. However, it is essential to
maintain a sense of humility and responsibility as we unleash this power. We must not forget the
human element at the heart of our endeavors, as our progress will be judged not only by the
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sophistication of our algorithms but also by our commitment to collaboration, empathy, and ethical
considerations. Let us embrace the possibilities that Al offers, fostering a future where technology
and human ingenuity work hand in hand to create a more sustainable, equitable, and compassionate
world for all. I firmly hold the conviction that, by preserving our curiosity and strengthening our
human values, there will be no limit to what we can achieve, no questions we cannot answer, and
no algorithm we cannot explain.

QGracias totales.
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Annex A

User interface (UI) of the software developed using LabVIEW and used in the first article. This
first version (vl) makes NF measurements and allows flexibility in several variables and
parameters as shown in the UL This version was developed solely by E.T.G.L.
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Annex B

User interface (UI) of the software developed using LabVIEW and used in the second article and
exploratory experiments. This second version (v2) can perform multiple techniques quasi-
simultaneously, including Raman and Photoluminescence. This version used the v1 as a starting
point and is the result of cooperation with members of the SEMS teams in IREC.
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Annex C

User interface (UI) of the software in production version for the Solar-Win project, based on the
v1 and v2 softwares and greatly improved and optimized by the SEMS team in IREC. This version
is further designed to be used in real process monitoring on industrial environments.
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Annex D

Example python code for processing Raman data as received from the LabVIEW software. For
196 measurements, it takes 0.1 seconds to perform all the basic processing, including area
calculations of the main peaks. The output plots are also shown below.

import matplotlib.pyplot as pls
import spectrapepper as spep
import numpy

import time

start = time.time()

# Load data set.
X, y = spep.load_spectras()

# Plot the raw data
for i in y:

plt.plot(x, i)
plt.x1lim(100, 600)
plt.title('Raw data')
plt.show()

# Remove baseline.
y = spep.bspbaseline(y, x, points=[160, 315, 450, 530])

# Normalize the spectra to the maximum value.
y = spep.normtoratio(y, x, rl=[190, 220], r2=[165, 190])

# Calculate areas.
areas = spep.areacalculator(y, x, limits=[[165, 190], [190, 220], [230, 260], [370, 420],
[420, 470], [470, 530]])

# Plot processed data
for i in y:

plt.plot(x, i)
plt.x1lim(100, 600)
plt.title('Processed data')
plt.show()

print('6 areas calculated for each spectras: ', numpy.shape(areas))

print('Total time (no plots): ', (time.time()-start), ' s.')

>> 6 areas calculated for each spectras: (196, 6)
>> Total time (no plots): 0.09651398658752441 s.
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