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“The algorithm is very opinionated: 

the walls have to match the bedsheets. 

It does not do what we want; it has its 

own rules.” 

D.B. 
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PREFACE AND PUBLICATIONS 

The research presented in this thesis was conducted at the Catalonia Institute for Energy Research 
(IREC) in the Solar Energy Materials and Systems (SEMS) research group, located in Barcelona, 
Spain, between the years 2019 and 2023. The work was carried out as part of the research line 
focused on the development and implementation of innovative, high-throughput research methods 
for the study of photovoltaic materials and devices, with an emphasis on industrial application of 
the results. The primary objective of this thesis was to develop and use Artificial Intelligence based 
on Machine Learning algorithms combined with Combinatorial Analysis to provide new tools for 
the accelerated research of chalcogenide-based technologies, suitable for thin film photovoltaics 
and other emerging technologies applications. Specifically, the research is focused on the 
development and implementation of semi-autonomous optoelectronic and spectroscopic data 
analysis with Artificial Intelligence methodologies to accelerate the investigation of fundamental 
physicochemical properties of photovoltaic materials and devices, and making tools available for 
scientific community and photovoltaic industry to use Artificial Intelligence in their research, 
workflows and production. The main idea behind the development of such a tools is based on their 
possibility to provide deeper understanding of the complex behavior of thin film photovoltaic 
devices, and information about the impact of fabrication parameters on the device performance 
and efficiency loss/failure mechanisms in a faster way, as well as to reduce the lab-to-market times. 
 
During the course of the doctoral thesis, the performed work and the results obtained have allowed 
the publication of 4 articles in peer-reviewed journals, 2 of them in high impact factor Q1 journals 
and 2 articles as open-source and open-access software in a peer-review journal. These 4 articles 
are a direct result of the work carried out and in alignment with the objectives of this thesis. 
Additionally, 2 other articles were published with the participation of Enric Tomás Grau Luque 
(ETGL) as coauthor. The full list of the publications in question, and the role of ETGL, is as 
follows: 
 

 Grau-Luque, E., Guc, M., Becerril-Romero, I., Izquierdo-Roca, V., Pérez-Rodríguez, A., 
Bolt, P., Van den Bruele, F., & Ruhle, U. (2022). Thickness evaluation of AlOx barrier 
layers for encapsulation of flexible PV modules in industrial environments by normal 
reflectance and machine learning. Progress in Photovoltaics: Research and Applications, 
30(3), 229–239. https://doi.org/10.1002/PIP.3478 

 
Using the Contributor Role Taxonomy CRediT, ETGL work can be described as: 
Conceptualization, Data curation, Formal Analysis, Investigation, Methodology, Software, 
Visualization, Writing – original draft. 
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 Grau-Luque, E., Anefnaf, I., Benhaddou, N., Fonoll-Rubio, R., Becerril-Romero, I., 
Aazou, S., Saucedo, E., Sekkat, Z., Perez-Rodriguez, A., Izquierdo-Roca, V., & Guc, M. 
(2021). Combinatorial and machine learning approaches for the analysis of Cu2ZnGeSe4: 
influence of the off-stoichiometry on defect formation and solar cell performance. Journal 
of Materials Chemistry A, 9 (16), 10466–10476. https://doi.org/10.1039/d1ta01299a 

 
Using the Contributor Role Taxonomy CRediT, ETGL work can be described as: Data 
curation, Formal Analysis, Software, Visualization, Writing – original draft. 

 

 Grau-Luque, E., Atlan, F., Becerril-Romero, I., Perez-Rodriguez, A., Guc, M., & 
Izquierdo-Roca, V. spectrapepper: A Python toolbox for advanced analysis of 
spectroscopic data for materials and devices. J. Open Source Software. 6, 3781 (2021). 
https://doi.org/10.21105/joss.03781 

 
Using the Contributor Role Taxonomy CRediT, ETGL work can be described as: 
Conceptualization, Data curation, Formal Analysis, Methodology, Software, Visualization, 
Writing – original draft. 

 

 Grau-Luque, E., Becerril-Romero, I., Perez-Rodriguez, A., Guc, M., & Izquierdo-Roca, 
V. pudu: A Python library for agnostic feature selection and explainability of Machine 
Learning spectroscopic problems. Journal of Open Source Software, 8(92), 5873, 
https://doi.org/10.21105/joss.05873 

 
Using the Contributor Role Taxonomy CRediT, ETGL work can be described as: 
Conceptualization, Data curation, Formal Analysis, Methodology, Software, Visualization, 
Writing – original draft. 

 
Publications from collaborations: 
 

 Fonoll-Rubio, R., Paetel, S., Grau-Luque, E., Becerril-Romero, I., Mayer, R., Pérez-
Rodríguez, A., Guc, M., & Izquierdo-Roca, V. (2022). Insights into the Effects of RbF-
Post-Deposition Treatments on the Absorber Surface of High Efficiency Cu(In,Ga)Se2 
Solar Cells and Development of Analytical and Machine Learning Process Monitoring 
Methodologies Based on Combinatorial Analysis. Advanced Energy Materials, 2103163. 

 
Using the Contributor Role Taxonomy CRediT, ETGL work can be described as: 
supporting data curation, supporting formal analysis, supporting methodology, Software. 
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 Fonoll-Rubio, R., Becerril-Romero, I., Vidal-Fuentes, P., Grau-Luque, E., Atlan, F., 
Perez-Rodriguez, A., Izquierdo-Roca, V., & Guc, M. (2022). Combinatorial Analysis 
Methodologies for Accelerated Research: The Case of Chalcogenide Thin-Film 
Photovoltaic Technologies. Solar RRL, 2200235. 

 
Using the Contributor Role Taxonomy CRediT, ETGL work can be described as: 
supporting data curation, supporting formal analysis, supporting methodology, Software. 

 
The present doctorate thesis document is structured in 5 chapters including conclusions, and 2 
additional sections for references and annexes. These chapters and sections are briefly described 
below: 
 
Chapter 1 – Introduction: This chapter provides an overview of the current state of the world in 
terms Climate Change and energy production/consumption, including the role of photovoltaic 
technologies within this context. An overview of some photovoltaic technologies is presented, 
including their degree of maturity, advantages, disadvantages, and their potential for further 
development. The chapter provides an examination of thin film technology, including its unique 
properties and its alignment with the energy decarbonization roadmap. The chapter is continued 
with detailed description of the Combinatorial Analysis concepts and its possibility to be applied 
for thin film photovoltaic technologies. Furthermore, the chapter delves into the utilization of 
Artificial Intelligence and Machine Learning in photovoltaic materials and devices research, 
discussing the current state of the field, as well as its future prospects. The aim of this chapter is 
to provide a comprehensive understanding of the current state of the art of photovoltaic technology 
with focus on thin film photovoltaics, its potential for future growth, and the role of Combinatorial 
Analysis, Artificial Intelligence and Machine Learning in advancing the field. Finally, this chapter 
ends by identifying the gaps and needs of the field and explaining how this align with the objectives 
of this work. 
 
Chapter 2 – Methodology: This chapter provides a comprehensive overview of the methodology 
proposed and used in the current work. These include a detailed workflow for the methodology 
with description of all necessary steps for its implementation, details about the combinatorial 
samples preparation, and description of the characterization techniques together with the 
equipment and apparatus used. The chapter contains information about the work implemented for 
the automation of the measurements and data treatment procedures. All the specific steps 
performed in the present work related to data conditioning, fusion, and traceability are described 
together with details about the data analysis approaches and the specific algorithms and 
programming libraries used. Finally, a description for each of the libraries’ structure and working 
principles is shown to better highlight the methodology behind their development.  
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Chapter 3 – Summary of results through publications: This chapter begins with a 
contextualization of the work carried out, providing a general introduction that highlights the 
significance and relevance of the research conducted. This introduction provides cohesion and 
continuity to the chapter and serves as a valuable reference point for readers to understand the 
broader implications of the research. The chapter then presents the four scientific articles published 
in peer-review journals, which demonstrate the innovative contributions and advancements made 
in the field. Each article is presented in a clear and concise manner, highlighting the key findings 
and implications of the research. 
 
The first article, Thickness Evaluation of AlOx Barrier Layers for Encapsulation of Flexible PV 
Modules in Industrial Environments using Normal Reflectance and Machine Learning, describes 
and demonstrates a novel characterization methodology based on normal reflectance 
measurements and Machine Learning algorithms. This methodology enables precise, low-cost, and 
scalable assessment of the thickness of AlOx nanometric layers, which are added to flexible 
photovoltaic devices based on such materials as Cu(In,Ga)Se2 (CIGS) and perovskites, to improve 
solar modules protection through their low water vapor transmission rate. This solution is 
particularly suitable for roll-to-roll industrial production lines. However, precise control of the 
thickness of the AlOx layers is crucial to ensure an effective water barrier performance. Current 
methods for evaluating such nanometric layers are costly and complex to implement in industrial 
environments. The proposed methodology is applied to determine the thickness of AlOx nanolayers 
deposited on three different substrates relevant for the photovoltaic industry: monocrystalline Si, 
Cu(In,Ga)Se2 flexible modules, and polyethylene terephthalate (PET) flexible encapsulation foil. 
The methodology demonstrates sensitivity of <10 nm and acquisition times of ≤100 ms, making it 
compatible with industrial monitoring applications. Additionally, a specific design for in-line 
integration of a normal reflectance system into a roll-to-roll production line for thickness control 
of nanometric layers is proposed. 
 
The second article, Combinatorial and machine learning approaches for the analysis of 
Cu2ZnGeSe4: influence of the off-stoichiometry on defect formation and solar cell performance, 
presents a combinatorial approach for the analysis of CZGS (Cu2ZnGeSe4) solar cells. These solar 
cells are complex systems where changes in one parameter can result in changes in the entire 
system and, as a consequence, in the overall performance of the devices. In order to overcome the 
limitations of this promising earth-abundant photovoltaic technology, analyses that take into 
account this complexity are necessary. The article describes the analysis of a compositional graded 
sample containing almost 200 solar cells with different Zn/Ge compositions using X-ray 
fluorescence and Raman spectroscopy. The results are correlated with the optoelectronic 
parameters of the different cells, providing a deep understanding of the stoichiometric limits and 
point defects formation in the CZGS compound and the influence of these parameters on the 
performance of the devices. Intertwined connections between the compositional, vibrational, and 
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optoelectronic properties of the cells are revealed using a complex analytical approach. The study 
is further extended by using a Machine Learning algorithm, which confirms the correlation 
between the properties of the CZGS compound and the optoelectronic parameters, and also allows 
proposing a methodology for device performance prediction that is compatible with both research 
and industrial process monitoring environments. This work not only provides valuable insights for 
understanding and further developing the CZGS photovoltaic technology, but also gives a practical 
example of the potential of Combinatorial Analysis and Machine Learning for the study of 
complex systems in materials research. 
 
The third article, spectrapepper: A Python toolbox for advanced analysis of spectroscopic data 
for materials and devices, introduces spectrapepper, a Python library designed to streamline the 
analysis of complex high-tech materials and devices, such as multi-layered thin film solar cells, 
using spectroscopy. It integrates several functions for the acquisition, processing, analysis and 
visualization of spectroscopic data. Spectrapepper enables the design of automated spectroscopy 
systems and big data analysis, significantly reducing development times for new materials. It has 
comprehensive documentation and examples are available on online, facilitating its access and 
adoption in the material science community. 
 
The fourth, pudu: A Python library for agnostic feature selection and explainability of Machine 
Learning spectroscopic problems, introduces pudu, a Python library designed to enhance the 
interpretability of Machine Learning models in spectroscopic data analysis, widely applicable in 
fields like PV, aiming to increase the transparency and scientific impact of Machine Learning 
results. It offers four new methods: Importance, Speed, Synergy, and Re-activations, each 
quantifying the impact of spectral feature changes on model predictions. Suitable for both 1D and 
2D classification and regression problems, pudu provides flexibility and localized explanations. It 
integrates with the main platforms for application of Machine Learning algorithms such as scikit-
learn, keras, and pytorch. 
 
Chapter 4 – Further Exploratory Experiments: In this chapter, side experiments that were not 
part of any publication are presented. In particular, experiments that follow the presented papers 
are explained and discussed, being a natural follow up and extension of the methodology presented 
in Chapter 2 and used in Chapter 3. This section serves as the next steps to be followed in order to 
further advance in the development of thin film photovoltaic devices with the aid of Machine 
Learning. Multivariate Non-Linear Regressions, Radial Basis Function Networks, Convolutional 
Neural Networks, and consequent explanation attempts are discussed in this section. 
 
Chapter 5 – Conclusions: In this final chapter of the thesis, a comprehensive summary of the 
research conducted is provided, focusing on the key findings and conclusions drawn from the 
study. The chapter begins with an overview of the research objectives and methodology, 
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highlighting the major contributions made by the research. The main conclusions of the work are 
then presented, with an evaluation of the extent to which the research objectives were achieved. 
The significance and implications of the findings are also discussed, placing them in the context 
of the existing literature and highlighting their potential impact on the field. 
 
References: This section compiles all the references use in this work. 
 
Annexes: This section contains additional information that was not considered to be vital to 
incorporate in the main body of this work. The annexes mainly present screenshot of the software 
developed during the doctoral program with the involvement of ETGL and used for different 
applications. 
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PREFACIO Y PUBLICACIONES 

 
La investigación presentada en esta tesis se llevó a cabo en el Instituto de Investigación en Energía 
de Cataluña (IREC) en el grupo de investigación de Materiales y Sistemas de Energía Solar 
(SEMS), ubicado en Barcelona, España, entre los años 2019 y 2023. El trabajo se realizó como 
parte de la línea de investigación centrada en el desarrollo e implementación de métodos 
innovadores de alto rendimiento para el estudio de materiales y dispositivos fotovoltaicos, con 
énfasis en la aplicación industrial. El objetivo principal de esta tesis fue desarrollar y utilizar 
Inteligencia Artificial basada en algoritmos de Aprendizaje de Máquinas combinados con Análisis 
Combinatorio para proporcionar nuevas herramientas para la investigación acelerada de 
tecnologías basadas en calcógenos, adecuadas para tecnología fotovoltaica de capa fina y otras 
aplicaciones de tecnologías emergentes. Específicamente, el trabajo se enfoca en el desarrollo e 
implementación de análisis semi-autónomo de datos optoelectrónicos y espectroscópicos con 
metodologías de Inteligencia Artificial para acelerar la investigación de propiedades 
fisicoquímicas fundamentales de materiales y dispositivos fotovoltaicos, y poner a disposición 
herramientas para la comunidad científica y la industria fotovoltaicos para utilizar la Inteligencia 
Artificial en sus investigaciones, flujos de trabajo y producción. La idea principal detrás del 
desarrollo de una herramienta como esta se basa en la posibilidad de proporcionar una comprensión 
más profunda del comportamiento complejo de los dispositivos fotovoltaicos de capa fina, e 
información sobre el impacto de los parámetros de fabricación en el rendimiento del dispositivo y 
los mecanismos de pérdidas de eficiencia de manera más rápida, además de reducir los tiempos de 
laboratorio al mercado. 
 
Durante el transcurso de la tesis doctoral, el trabajo realizado y los resultados obtenidos 
permitieron la publicación de 4 artículos en revistas peer-review, 2 de ellos en revistas de alto 
factor de impacto Q1 y 2 artículos como software de código y acceso abierto en revistas peer-
review. Estos 4 artículos son resultado directo del trabajo realizado y en alineación con los 
objetivos de esta tesis. Además, se publicaron 2 otros artículos con la participación de Enric Tomás 
Grau Luque (ETGL) como coautor. La lista completa de las publicaciones en cuestión y el rol de 
ETGL es la siguiente: 
 

• Grau-Luque, E., Guc, M., Becerril-Romero, I., Izquierdo-Roca, V., Pérez-Rodríguez, A., 
Bolt, P., Van den Bruele, F., & Ruhle, U. (2022). Thickness evaluation of AlOx barrier 
layers for encapsulation of flexible PV modules in industrial environments by normal 
reflectance and machine learning. Progress in Photovoltaics: Research and Applications, 
30(3), 229–239. https://doi.org/10.1002/PIP.3478 

 



xxii  

Usando la Taxonomía de Roles de Contribuyentes CRediT, el trabajo de ETGL se puede describir 
como: Conceptualización, Curación de Datos, Análisis Formal, Investigación, Metodología, 
Software, Visualización, Escritura - Borrador Original. 
 

• Grau-Luque, E., Anefnaf, I., Benhaddou, N., Fonoll-Rubio, R., Becerril-Romero, I., 
Aazou, S., Saucedo, E., Sekkat, Z., Perez-Rodriguez, A., Izquierdo-Roca, V., & Guc, M. 
(2021). Combinatorial and machine learning approaches for the analysis of Cu2ZnGeSe4: 
influence of the off-stoichiometry on defect formation and solar cell performance. Journal 
of Materials Chemistry A, 9 (16), 10466–10476. https://doi.org/10.1039/d1ta01299a 

 
Usando la Taxonomía de Roles de Contribuyentes CRediT, el trabajo de ETGL se puede describir 
como: Curación de Datos, Análisis Formal, Software, Visualización, Escritura - Borrador Original. 
 

• Grau-Luque, E., Atlan, F., Becerril-Romero, I., Perez-Rodriguez, A., Guc, M., & 
Izquierdo-Roca, V. spectrapepper: A Python toolbox for advanced analysis of 
spectroscopic data for materials and devices. J. Open Source Software. 6, 3781 (2021). 
https://doi.org/10.21105/joss.03781 

 
Usando la Taxonomía de Roles de Contribuyentes CRediT, el trabajo de ETGL se puede describir 
como: Conceptualización, Curación de Datos, Análisis Formal, Metodología, Software, 
Visualización, Escritura - Borrador Original. 
 

• Grau-Luque, E., Becerril-Romero, I., Perez-Rodriguez, A., Guc, M., & Izquierdo-Roca, 
V. pudu: A Python library for agnostic feature selection and explainability of Machine 
Learning spectroscopic problems. Journal of Open Source Software, 8(92), 5873, 
https://doi.org/10.21105/joss.05873 

 
Usando la Taxonomía de Roles de Contribuyentes CRediT, el trabajo de ETGL se puede describir 
como: Conceptualización, Curación de Datos, Análisis Formal, Metodología, Software, 
Visualización, Escritura - Borrador Original. 
 
Publicaciones de colaboraciones: 
 

• Fonoll-Rubio, R., Paetel, S., Grau-Luque, E., Becerril-Romero, I., Mayer, R., Pérez-
Rodríguez, A., Guc, M., & Izquierdo-Roca, V. (2022). Insights into the Effects of RbF-
Post-Deposition Treatments on the Absorber Surface of High Efficiency Cu(In,Ga)Se2 
Solar Cells and Development of Analytical and Machine Learning Process Monitoring 
Methodologies Based on Combinatorial Analysis. Advanced Energy Materials, 2103163. 
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Usando la Taxonomía de Roles de Contribuyentes CRediT, el trabajo de ETGL se puede describir 
como: curación de datos de apoyo, análisis formal de apoyo, metodología de apoyo, software de 
apoyo. 
 

• Fonoll-Rubio, R., Becerril-Romero, I., Vidal-Fuentes, P., Grau-Luque, E., Atlan, F., 
Perez-Rodriguez, A., Izquierdo-Roca, V., & Guc, M. (2022). Combinatorial Analysis 
Methodologies for Accelerated Research: The Case of Chalcogenide Thin-Film 
Photovoltaic Technologies. Solar RRL, 2200235. 

 
Usando la Taxonomía de Roles de Contribuyentes CRediT, el trabajo de ETGL se puede describir 
como: curación de datos de apoyo, análisis formal de apoyo, metodología de apoyo, software de 
apoyo. 
 
El presente documento de tesis doctoral está estructurado en 5 capítulos que incluyen conclusiones, 
y 2 secciones adicionales para referencias y anexos. Estos capítulos y secciones se describen 
brevemente a continuación: 
 
Capítulo 1 - Introducción: Este capítulo proporciona una visión general del estado actual del 
mundo en términos de Cambio Climático y producción y consumo de energía, incluyendo el papel 
de las tecnologías fotovoltaicas dentro de este contexto. Se presenta una visión general de algunas 
tecnologías PV, incluyendo su grado de madurez, ventajas, desventajas y su potencial para su 
desarrollo en el futuro. El capítulo proporciona una descripción de la tecnología de capa fina, 
incluyendo sus propiedades únicas y su alineación con la hoja de ruta de descarbonización 
energética. El capítulo continúa con una descripción detallada de los conceptos de Análisis 
Combinatorio y su posibilidad de ser aplicado a tecnologías fotovoltaica de capa fina. Además, el 
capítulo profundiza en la utilización de Inteligencia Artificial y Aprendizaje de Máquinas en la 
investigación de materiales y dispositivos PV, discutiendo el estado actual del campo, así como 
sus perspectivas futuras. El objetivo de este capítulo es proporcionar una comprensión integral del 
estado actual de la tecnología fotovoltaica con un enfoque en materiales de capa fina, su potencial 
para un crecimiento futuro y el papel de Análisis Combinatorio, Inteligencia Artificial y 
Aprendizaje de Máquinas en el avance del campo. Finalmente, este capítulo concluye 
identificando las brechas y necesidades del campo y explicando cómo esto se alinea con los 
objetivos de este trabajo. 
 
Capítulo 2 - Metodología: Este capítulo proporciona una visión general de la metodología 
propuesta y utilizada en el trabajo desarrollado. Esto incluye un flujo de trabajo detallado para la 
metodología con una descripción de todos los pasos necesarios para su implementación, detalles 
sobre la preparación de muestras combinatorias y descripción de las técnicas de caracterización 
junto con los equipos y aparatos utilizados. El capítulo contiene información sobre el trabajo 
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implementado para la automatización de las técnicas de caracterización y los procedimientos 
preliminares de tratamiento de datos. Se describen todos los pasos específicos realizados 
relacionados con el acondicionamiento, fusión y trazabilidad de datos, junto con detalles sobre los 
enfoques de análisis de datos y los algoritmos y librerías de programación específicos utilizados. 
Finalmente, se incluye una descripción de la estructura y principios de funcionamiento de cada 
librería, para así destacar de mejor manera la metodología de desarrollo de cada una. 
 
Capítulo 3 - Resumen de resultados a través de publicaciones: Este capítulo comienza con una 
contextualización del trabajo realizado, proporcionando una introducción general que destaca la 
importancia y relevancia de la investigación realizada. Esta introducción proporciona cohesión y 
continuidad al capítulo y sirve como un punto de referencia valioso para que los lectores 
comprendan las implicaciones más amplias de la investigación. Luego, el capítulo presenta los 
cuatro artículos científicos publicados, que demuestran las contribuciones innovadoras y los 
avances realizados en el campo. Cada artículo se presenta de manera clara y concisa, destacando 
los hallazgos clave y las implicaciones del trabajo. 
 
El primer artículo, Thickness evaluation of AlOx barrier layers for encapsulation of flexible PV 
modules in industrial environments by normal reflectance and machine learning, describe y 
demuestra una novedosa metodología de caracterización basada en medidas de reflectancia normal 
y algoritmos de Aprendizaje de Máquinas. Esta metodología permite la evaluación precisa, 
económica y escalable del espesor de capas nanométricas de AlOx, que se agregan a dispositivos 
fotovoltaicos flexibles basados en materiales como Cu(In,Ga)Se2 y perovskitas, para mejorar la 
protección de los módulos solares a través de su baja tasa de transmisión de vapor de agua. Esta 
solución es especialmente adecuada para líneas de producción industriales de roll-to-roll. Sin 
embargo, el control preciso del espesor de las capas de AlOx es crucial para garantizar un 
rendimiento efectivo como barrera contra el agua. Los métodos actuales para evaluar dichas capas 
nanométricas son costosos y complejos de implementar en entornos industriales. La metodología 
propuesta se aplica para determinar el espesor de capas nanométricas de AlOx depositadas en tres 
sustratos diferentes relevantes para la industria PV: silicio monocristalino, módulos flexibles de 
Cu(In,Ga)Se2 y lámina de encapsulación flexible de tereftalato de polietileno (PET). La 
metodología demuestra una sensibilidad de <10 nm y tiempos de adquisición de ≤100 ms, lo que 
la hace compatible con aplicaciones de monitoreo industrial. Además, se propone un diseño 
específico para la integración en línea de un sistema de reflectancia normal en una línea de 
producción de roll-to-roll para el control del espesor de capas nanométricas. 
 
El segundo artículo, Combinatorial and machine learning approaches for the analysis of 
Cu2ZnGeSe4: influence of the off-stoichiometry on defect formation and solar cell performance, 
presenta un enfoque combinatorio para el análisis del material CZGS (Cu2ZnGeSe4). Las celdas 
solares, basadas en compuestos quaternarios kesterita como CZGS, son sistemas complejos en los 
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que cambios en un parámetro pueden resultar en cambios en todo el sistema y, como consecuencia, 
en el rendimiento general de los dispositivos. Para superar las limitaciones de esta prometedora 
tecnología fotovoltaica abundante en elementos de tierras raras, son necesarios análisis que tengan 
en cuenta esta complejidad. El artículo describe el análisis de una muestra que contiene casi 200 
celdas solares con diferentes composiciones de Zn/Ge utilizando fluorescencia de rayos X y 
espectroscopía Raman. Los resultados se correlacionan con los parámetros optoelectrónicos de las 
diferentes celdas, proporcionando una comprensión profunda de los límites estequiométricos y la 
formación de defectos puntuales en el compuesto CZGS y la influencia de estos parámetros en el 
rendimiento de los dispositivos. Se revelan conexiones entrelazadas entre las propiedades 
composicionales, vibracionales y optoelectrónicas de las celdas mediante un enfoque analítico 
complejo. El estudio se amplía aún más mediante el uso de un algoritmo de Aprendizaje de 
Máquinas, que confirma la correlación entre las propiedades del compuesto CZGS y los 
parámetros optoelectrónicos, y también permite proponer una metodología para la predicción del 
rendimiento del dispositivo compatible tanto con la investigación como con los entornos de 
monitoreo de procesos industriales. Este trabajo no solo proporciona información valiosa para 
comprender y desarrollar aún más la tecnología fotovoltaica CZGS, sino que también da un 
ejemplo práctico del potencial de Análisis Combinatorio y Aprendizaje de Máquinas para el 
estudio de sistemas complejos en la investigación de materiales. 
 
El tercer artículo, spectrapepper: A Python toolbox for advanced analysis of spectroscopic data 
for materials and devices presenta spectrapepper, una librería para Python diseñada para agilizar 
el análisis de materiales y dispositivos, como celdas solares de capa fina, utilizando espectroscopía. 
Integra varias funciones para la adquisición, procesamiento, análisis y visualización de datos 
espectroscópicos. Spectrapepper permite el diseño de sistemas de espectroscopía automatizados y 
el análisis de grandes datos, reduciendo significativamente los tiempos de desarrollo de nuevos 
materiales. Tiene documentación exhaustiva y ejemplos disponibles en línea, lo que facilita su 
adopción en la comunidad científica de ciencia de materiales. 
 
El cuarto artículo, pudu: A Python library for agnostic feature selection and explainability of 
Machine Learning spectroscopic problems, presenta una librería para Python diseñada para 
mejorar la interpretación de modelos de Aprendizaje de Máquinas en el análisis de datos 
espectroscópicos. Tiene como objetivo aumentar la transparencia e impacto científico de los 
resultados de Aprendizaje de Máquinas. Ofrece cuatro nuevos métodos: Importancia, Velocidad, 
Sinergia y Re-activaciones, cada uno cuantificando el impacto de los cambios en las características 
espectrales en las predicciones del modelo. Adecuado tanto para problemas de clasificación y 
regresión 1D como 2D, pudu proporciona flexibilidad y explicaciones localizadas. Se integra con 
las principales plataformas para la aplicación de algoritmos de Aprendizaje de Máquinas como 
scikit-learn, keras y pytorch. 
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Capítulo 4 - Experimentos Exploratorios Adicionales: En este capítulo se presentan 
experimentos secundarios que no formaron parte de ninguna publicación. En particular, se 
explican y discuten experimentos que siguen a los artículos presentados, siendo una continuación 
natural y extensión de la metodología presentada en el Capítulo 2 y utilizada en el Capítulo 3. Esta 
sección muestra los siguientes pasos a seguir para avanzar aún más en el desarrollo de dispositivos 
fotovoltaicos de capa fina con la ayuda de Inteligencia Artificial. En esta sección se discuten 
Regresiones no Lineales Multivariadas, Redes de Función de Base Radial, Redes Neuronales 
Convolucionales y los intentos de explicación consecuentes. 
 
Capítulo 5 - Conclusiones: En este capítulo final, se proporciona un resumen integral de la 
investigación realizada, centrándose en los hallazgos clave y conclusiones extraídas del trabajo. El 
capítulo comienza con una visión general de los objetivos de investigación y la metodología, 
destacando las principales contribuciones realizadas por la investigación. Luego se presentan las 
principales conclusiones del trabajo, con una evaluación del grado en que se lograron los objetivos 
de investigación. También se discuten la importancia y las implicaciones de los hallazgos, 
situándolos en el contexto de la literatura existente y resaltando su impacto potencial en el campo. 
 
Referencias: Esta sección recopila todas las referencias utilizadas en este trabajo. 
 
Anexos: Esta sección contiene información adicional que no se consideró esencial para incorporar 
en el cuerpo principal de este trabajo. Los anexos principalmente presentan capturas de pantalla 
del software desarrollado durante el programa de doctorado con la participación de ETGL y 
utilizado para diferentes aplicaciones. 
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1. INTRODUCTION 

1.1 Motivation 

Climate change (CC) has become a critical global issue with far-reaching consequences for the 
environment, human society, and the economy. It is primarily driven by the increasing 
concentration of greenhouse gases (GHGs), particularly CO2, in the atmosphere due to human 
activities such as fossil fuel combustion, deforestation, and industrial processes [1]. The average 
global temperature has risen by approximately 1.2°C since the pre-industrial era. This is illustrated 
in Figure 1-1A where a pronounced spike in temperature is reported between 1850 to 2020. This 
rapid temperature increase has caused a wide range of changes in the climate system, including 
more frequent and severe extreme weather events, such as heatwaves, droughts, floods, and storms, 
as well as sea-level rise, ocean acidification, and alterations in ecosystems and biodiversity 
[2][3][4]. Climate models project that global temperatures could rise by 1.5°C to 4.8°C by the end 
of the 21st century, depending on future GHG emissions scenarios. These temperature increases 
will exacerbate the adverse impacts of CC, including water scarcity, reduced agricultural 
productivity, and increased risks to human health and well-being [5][6][7]. 
 

 
Figure 1-1: A) Global surface temperature change from years 1 to 2020 and B) Past 170 years of 
global surface temperature change as observed compared to simulated cases of natural-only and 

humans & natural causes. Figure extracted from [8]. 
 
The impacts of CC on the economy are significant and multifaceted, with potential consequences 
for productivity, infrastructure, and various economic sectors. CC can lead to substantial economic 
costs, particularly if global temperatures rise by more than 2°C above pre-industrial levels. These 
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costs can manifest as losses in productivity due to heat stress, reduced agricultural yields, and 
disruptions to supply chains [9]. Furthermore, the increased frequency and severity of extreme 
weather events can result in considerable infrastructure damage, necessitating costly repairs and 
replacements [10]. Economic sectors that are particularly vulnerable to the effects of CC include 
agriculture, fisheries, and tourism, which often rely heavily on climate-sensitive natural resources 
[7][11]. For instance, crop yields are expected to decline by 10-25% in some regions, with the 
most severe reductions occurring in developing countries, where food security is already a pressing 
concern [5]. Also, CC has been linked to declines in crop yields and increased risks of crop failure, 
threatening food security and the livelihoods of agricultural workers [5][6]. 
 
The effects of CC on ecosystems are profound and diverse, with wide-ranging consequences for 
species, habitats, and the vital roles they play. As global temperatures continue to rise, ecosystems 
are experiencing shifts in their distribution, composition, and function, often with cascading effects 
on biodiversity [4][12][8]. One of the most evident impacts of CC on ecosystems is the alteration 
of species’ geographic ranges, as they move poleward or to higher elevations in search of more 
suitable habitats [4]. This can lead to the fragmentation and loss of habitat for various species, 
resulting in declines in their population sizes and increased risks of local or global extinctions [13]. 
Additionally, CC can exacerbate existing threats to ecosystems, such as habitat loss due to land-
use change, pollution, and the spread of invasive species [14]. Changes in temperature and 
precipitation patterns, as well as the increased frequency of extreme weather events, can also 
disrupt the timing of key ecological processes, such as flowering, breeding, and migration [3]. 
These disruptions can cause mismatches between species and their resources, leading to declines 
in reproductive success and population viability [15]. Furthermore, CC can alter the structure and 
functioning of ecosystems, affecting processes like nutrient cycling, primary productivity, and 
decomposition, which in turn can influence ecosystem resilience and the provision of essential 
services [16]. The degree of these effects varies between industries, as shown in Figure 1-2, which 
also shows the confidence in human contribution to CC. For instance, crop production in Africa 
have seen a negative impact due to CC, with high confidence of human contribution. 
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Figure 1-2: Observed impacts of climate change on human systems. The impacts are classified 
according to the confidence in the attribution to CC (color) and by increasing adverse impact (- 
sign), positive impact (+ sign), and adverse and positive impacts (± sign). Figure extracted from 

[1]. 
 
Marine ecosystems are particularly vulnerable to the impacts of CC, as rising ocean temperatures, 
ocean acidification, and sea level rise pose significant threats to the health and productivity of 
these systems [11]. Coral reefs, for instance, are at heightened risk of bleaching events and mass 
die-offs due to warming waters, with severe implications for the rich biodiversity they support and 
the millions of people who depend on them for food, income, and coastal protection [2]. Given the 
myriad impacts of CC on ecosystems, it is crucial to implement adaptive management strategies 
that promote the resilience and conservation of these vital natural resources. Investing in 
ecosystem-based adaptation measures, such as the restoration and protection of habitats, the 
establishment of ecological corridors, and the integration of biodiversity conservation into land-
use planning and decision-making is paramount to mitigate these effects [1][8]. 
 
These kind of disruptions in climate patterns and effects in the environment, ecosystems, and 
economy, result in job losses, reduced income, and heightened social instability in affected regions 
[17]. Moreover, CC is projected to lead to the displacement of millions of people due to the 
increased frequency and intensity of natural disasters, as well as the loss of habitable land [9]. An 
important factor of the latter is the loss of potable water and increasing sea level that threatens 
most of habitable land. Glaciers and polar ice caps are melting at an accelerating rate, contributing 
to an increased risk of flooding in coastal areas [10]. Moreover, sea levels have risen by about 20 
centimeters since 1900, and the rate of rise has accelerated in recent decades, posing a threat to 
coastal communities and ecosystems [3]. Consequently, CC poses significant challenges to 
achieving sustainable development and poverty alleviation goals, especially in vulnerable regions 
and communities [9]. To address these challenges, it is essential to implement comprehensive 
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adaptation and mitigation strategies, such as improving water resource management, promoting 
climate-resilient agriculture, and enhancing disaster risk reduction efforts [2]. 
 
In response to minimize these CC effects, a quick and robust transition to low-carbon and climate-
resilient economy, industry, and society is paramount. The development of decarbonization 
strategies will contribute to society to curb CC, to protect their economies from the negative 
impacts of CC while also fostering innovation, creating new job opportunities, and improving 
public health [18]. For this to be possible, it is essential to implement policies and strategies aimed 
at reducing GHG emissions, fostering resilience, and promoting sustainable development. 
Investments in renewable energy technologies, such as solar PV, can help drive the transition to a 
low-carbon economy, while simultaneously creating new employment opportunities and 
stimulating economic growth [19][20]. 
 
The energy sector is a key contributor to CC, as it accounts for approximately 73% of global GHG 
emissions [21]. As a consequence of the combustion of fossil fuels, such as coal, oil, and natural 
gas, for electricity generation, transportation, and industrial processes [10]. However, demand for 
energy has been continuously increasing due to the digitalization of the society, increased demand 
for the transport of goods, and an increasing globalized economy [1]. Fortunately, social awareness 
of the problem has driven significant changes in recent years, with a growing emphasis on 
transitioning to cleaner, more sustainable sources of energy to mitigate the impacts of CC and 
address energy security concerns [19][22]. Currently, fossil fuels, such as coal, oil, and natural 
gas, still make up a significant portion of the global energy mix, accounting for approximately 
81% of the total primary energy supply in 2020, as shown in Figure 1-3. However, their share is 
gradually declining, as the growth of renewable energy technologies, such as solar PV, wind, and 
hydropower, accelerates [23]. Solar PV, in particular, has witnessed remarkable growth in recent 
years, with global capacity increasing from 40 GW in 2010 to over 714 GW in 2020 [19]. 
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Figure 1-3: Share of primary energy supply from 2010 to 2021 and projection to 2050 in order to 

accomplish stablished emission goals. Renewables include solar, wind, hydro, and biomass. 
Figure extracted from [24]. 

 
The electricity generation sector is a critical component of the global energy system, accounting 
for around 19% of total final energy consumption in 2020 [20]. The share of renewables in global 
electricity generation reached around 29% in that same year, with a continued upward trend 
projected to account for almost 50% of global electricity generation by 2030, highlighting the 
substantial shift taking place within the energy sector [25]. The ongoing transformation of this 
sector, driven by the increased deployment of renewable energy technologies, is essential for 
mitigating the impacts of CC, as electricity generation is responsible for approximately 42% of 
global CO2 emissions [26][27]. The decarbonization of electricity generation, through the 
integration of intermittent renewable energy sources like solar and wind, is therefore a crucial 
aspect of global mitigation efforts. In countries like Chile, the energy sector has also undergone 
significant changes in recent years, with a focus on diversifying the energy mix and promoting the 
expansion of renewable energy sources [22]. The share of renewables in Chile’s electricity 
generation increased from 6% in 2010 to 25% in 2020, with solar PV and wind energy being the 
main drivers of this growth [28]. By 2030, Chile aims to achieve a 70% share of renewable energy 
in its electricity generation, demonstrating the country’s commitment to a low-carbon energy 
future [17]. 
 
The transition to renewable energy sources, particularly solar PV, offers numerous economic, 
social, and environmental benefits, such as reduced GHG emissions, improved air quality, 
enhanced energy security, and the creation of new job opportunities [23][17]. However, social and 
technological challenges remain, including the integration of intermittent renewable energy 
sources into electricity grids, the need for energy storage solutions, the development of adequate 
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policy frameworks and financing mechanisms to support the large-scale deployment of 
renewables, and the improvement of PV module efficiency and integrability [25][29]. Despite 
these challenges, the ongoing transformation of the global energy sector and the increasing share 
of renewables in electricity generation signify a positive shift toward a more sustainable and low-
carbon future, as they represent a clean, renewable, and abundant source of electricity generation 
[30][31]. 
 
In response to an increasing demand for energy and sustainable sources, PV technologies have 
experienced rapid advancements in recent years, resulting in significant cost reductions and 
performance improvements [32][33]. This progress has made PV increasingly competitive with 
traditional fossil fuel-based energy sources and facilitated its widespread adoption across the globe 
[30]. The deployment of PV systems not only reduces GHG emissions, but also promotes energy 
independence, enhances energy security, and creates new job opportunities in the clean energy 
sector [34][35]. Moreover, the continued development of advanced PV materials and technologies, 
such as thin film solar cells and devices, holds great potential for further increasing the efficiency, 
affordability, sustainability, and integrability of solar energy [36][37]. The following subchapter 
will explore why thin film technology is important in this scenario and can have big deal of impact 
in tackling this CC issue, and thus by investing in research and development, supporting policy 
frameworks, and fostering international collaboration, we can accelerate the widespread 
deployment of PV technologies and their contribution to mitigating CC [34][35]. 
 

1.2 State of the art of PV 

1.2.1 Overview of PV technology 

Photovoltaics (PV) refers to technologies that can transform sunlight directly into electricity by 
the photovoltaic effect. During the XXI century and specially during the last decade, PV 
technology has seen remarkable advancements in various aspects, including efficiency 
improvements, cost reductions, and material innovations. This is illustrated in Figure 1-4 showing 
how efficiency records have become more common over the past decade with several technologies 
emerging through the years. This rate of research and innovation has allowed PV technology to 
transition from an expensive and niche energy source to a mainstream and cost-competitive option 
for electricity generation. This is also reflected in the global PV market which has grown 
exponentially, reaching about 750 GW of cumulative installed capacity by the end of 2020 [24]. 
One of the major drivers for this growth has been the continuous improvement in solar cell 
efficiency, particularly for crystalline silicon (c-Si) based solar cells, which currently dominate the 
market, accounting for about 90% of global PV production. The efficiency of commercial c-Si 
solar cells has reached over 26%, while multicrystalline silicon (or polycrystalline, p-Si) solar cells 
have achieved efficiencies above 22% [38]. Innovations such as PERC (Passivated Emitter and 
Rear Cell) and HJT (Heterojunction with Intrinsic Thin Layer) have contributed significantly to 
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these efficiency improvements. Another development that has increased interest in PV technology 
are bifacial solar modules, which can capture sunlight on both sides, increasing their overall energy 
yield [39]. Bifacial technology benefits from albedo, the reflectivity of the ground surface, which 
can vary depending on factors such as the type of ground cover, season, and location [40]. With 
these advantages, bifacial modules can generate up to 30% more energy compared to their 
monofacial counterparts under optimal conditions. The adoption of bifacial solar modules is 
growing, particularly in utility-scale PV installations, due to their higher energy production and 
reduced levelized cost of electricity (LCOE) [41]. 
 
Apart of the Si-based technologies, emerging thin film photovoltaic (TFPV) technologies, such as 
perovskite solar cells, have shown great potential, with lab-scale efficiencies reaching over 25%, 
rivaling those of conventional c-Si solar cells. Perovskites have attracted considerable interest due 
to their unique optoelectronic properties, low-cost solution-based processing techniques, and the 
rapid progress in their efficiency [42]. However, challenges in terms of stability, scalability, and 
potential environmental issues related to lead (Pb) content are still being addressed for these 
emerging technologies to become commercially viable [34][35]. In recent years, more mature 
TFPV technologies, such as CdTe and CIGS, also have demonstrated potential for further 
efficiency improvements and reduced manufacturing costs [34]. The specific interest in thin film 
(TF) technologies is based on that they offer the advantage of being lightweight, flexible, and 
suitable for building-integrated photovoltaics (BIPV) applications. The market share of TF 
technologies, though currently small compared to c-Si, still holds promise due to their unique 
properties and potential applications. 
 

 
Figure 1-4: Best Research-Cell Efficiencies compiled by the National Renewable Energy Laboratory 

(NREL). Figure extracted from [43]. 
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1.2.2 Thin film photovoltaic technology 

TFPV, which consider functional devices with typical layer structure thicknesses < 100 𝜇𝑚 in the 
context of this thesis, have emerged as a promising alternative complimentary to conventional c-
Si solar cells, offering several advantages that make them an attractive option for widening the PV 
application by opening the possibility of its integration into new products. Some notable 
advantages of TFPV technology that makes them different from conventional c-Si technologies 
are: 
 

a) Reduced material usage: These devices are thinner and lighter solar cells compared to their 
c-Si counterparts [44]. This materials reduction is because TF materials possess a direct 
bandgap, in contrast with c-Si which is an indirect bandgap semiconductor, requiring the 
material to be thicker [45]. 

b) Compatible with lower production costs: TF devices show a reduction in the use of high 
value materials as their manufacturing processes often require less material and energy-
intensive methods than those employed for c-Si solar cells [34]. This cost reduction can 
help make solar energy more accessible and affordable, contributing to the global transition 
towards renewable energy sources [44]. 

c) Compatibility with curved surfaces: the possibility to reduce the thickness of the device 
allows to achieve high flexibility without compromising the mechanical integrability of the 
devices. This makes this technology interesting for applications where conventional solar 
cells might be impractical due to their rigidity, bulkiness and weight, such as in building-
integrated photovoltaics (BIPV), agrovoltaics (APV), and vehicle integrated photovoltaics 
(VIPV) applications [46]. 

d) Light condition adaptability: Light condition adaptability is significantly enhanced by 
employing a solid solution, which facilitates band gap tuning. This adaptability enables the 
device to be fine-tuned for various lighting environments, including indirect sunlight, low 
irradiance scenarios, or indoor settings illuminated by artificial light sources [47]. 

e) Monolithically large-scale areas: The growth of TFPV layers through easily scalable 
deposition processes, such as Physical Vapor Deposition (PVD) via Sputtering or Chemical 
Vapor Deposition (CVD) techniques, enables dimensional scalability restricted by the 
physical capability of the systems and the achievable homogeneity [48]. This contrasts with 
c-Si technology, which relies on the mechanical integration of various wafer to construct 
photovoltaic modules [49]. 

 
Despite the numerous advantages of TFPV, challenges still remain in terms of efficiency, stability, 
and scalability. Researchers from the PV community have been working on various TF 
technologies, such as amorphous silicon (a-Si), CdTe, CIGS, and emerging alternatives like 
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kesterite and perovskite solar cells or more exotic technologies as quantum dots (QD) or low-
dimensionality PV concepts, to overcome these challenges and optimize their performance 
[37][44]. As progress continues in the development and optimization of TFPV, their potential to 
become a significant contributor to global renewable energy generation increases, offering a viable 
and sustainable solution for our growing energy needs. 
 
CIGS solar cells have emerged as a leading TF technology, offering higher efficiencies than both 
a-Si and CdTe solar cells [50]. The efficiency of CIGS has been steadily increasing, with some 
laboratory-scale cells achieving over 23% efficiency, surpassing the performance of p-Si solar 
cells just until the year 2020 [51][38]. The high efficiency of CIGS solar cells can be attributed to 
factors such as a high absorption coefficient, which allows for the efficient conversion of sunlight 
into electricity, and the tunable bandgap that enables the optimization of the material’s absorption 
properties [37]. Despite their promising performance, the complex material system and the 
difficulties in scaling up the production process have limited the widespread adoption [48]. Also, 
various deposition techniques have been developed for CIGS fabrication, such as co-evaporation, 
sputtering, and electrodeposition, each with their own set of advantages and challenges [52]. 
 

 
Figure 1-5: Generic structure of a TF device based on p-n heterojunction. This shows how this 

technology involves multiscale, multilayer, and multiprocess devices with over 20 critical 
parameters to control. 

 
One of the main challenges of CIGS-based technology, and extensible in general to TFPV 
technologies, lies in the complexity of the system, which makes it difficult to control the 
homogeneity in large areas. In the scaling up CIGS production is the need to maintain uniformity 
in the material’s composition and structure across large areas, as any deviation can lead to a 
significant decrease in the solar cell’s efficiency [53]. Interface engineering plays a crucial role in 
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the performance of CIGS solar cells, as the buffer layer, typically composed of cadmium sulfide 
(CdS), has a significant impact on the device’s overall efficiency and stability [54]. Researchers 
have been exploring alternative buffer layers, such as zinc oxide (ZnO) and zinc magnesium oxide 
(ZnMgO), to address concerns related to the use of toxic cadmium (Cd) and to further enhance the 
performance of CIGS solar cells [52]. Another challenge for CIGS solar cells development is the 
cell-to-module efficiency gap, which arises due to the differences in performance between small-
area laboratory cells and large-area modules produced at a commercial scale. Addressing this gap 
requires an understanding of the factors affecting module performance, such as interconnect 
design, current matching, and module encapsulation, and the development of strategies to 
minimize efficiency losses during the scale-up process [48]. 
 
Additionally, another challenge for CIGS-based technologies are supply-chain risks. For instance, 
materials such as Gallium (Ga) and Indium (In) are considered to be of high economic importance 
and high supply risk, categorizing them as critical resources [55]. In this context, there are 4 main 
risk areas were this elements are compromised: supply, demand, concentration, and political risks 
[56][57]. Depending on the element, supply reduction risk varies drastically. For example, for In, 
depletion times of reserves are calculated to be about 20 years, meanwhile for Ga is 3000 years. 
Demand increase risks are 2-fold. The direct increase of demand over rare elements and the 
decrease in demand of host materials for by-products. For instance, in the case of Cd, Te, In, Ga, 
and Se, it is considered for their dependence on host materials to be 100% as being by-products of 
Zn, Cu/Pb, Zn, bauxite (main Aluminum ore), and Cu, in the same order. It is then possible that, 
shortages of these elements due to demand can be due to these 2 different unrelated phenomena: 
reduced demand for parent materials and increased demand over the small availability of the 
materials themselves. Concentration risk is also an important factor, since the production of some 
of these materials is highly concentrated in some areas and countries. For instance, in 2014, China 
was the main European Union (EU) supplier of several materials, including Ga with 71% of the 
supply. The latter is then related to political risks, since conflicts between these regions may lead 
to shortages of such materials. For these reasons, an increase interest on recycling has been 
observed in the past decade, however, the estimated effect of recycling rare-earth elements in the 
supply of such elements is expected to be negligible or at the most complementary [58][59], due 
to both technical difficulties and high costs of the needed processes. As such, Ga, In, Se, and Te 
are often to be found of high-risk and difficult supply, particularly damaging for CIGS and CdTe 
technologies. 
 
In this context, it is important to explore and develop novel technologies based on abundant 
materials. Kesterite-based solar cell technology is a class of TFPV technology based on the 
quaternary compound copper zinc tin sulfide (CZTS) or copper zinc tin selenide (CZTSe). This 
technology has garnered considerable attention due to their attractive properties and potential as 
an alternative to CIGS solar cells [60]. One of the most appealing aspects of kesterite-based solar 
cells is the earth-abundant nature of their main constituent elements, which addresses the supply 
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and environmental concerns associated with other TF materials like CIGS and CdTe [61]. Despite 
these advantages, kesterite solar cells currently suffer from lower efficiencies compared to CIGS 
solar cells, with the highest reported efficiency for CZTSSe solar cells being 14.9% as confirmed 
by the latest version (63) of the “Solar cell efficiency tables” in 2024 [62] . The lower efficiency 
can be attributed to several factors, such as the presence of defects, high open-circuit voltage (VOC) 
deficit, and challenges related to the material’s complex stoichiometry and phase stability [63][64]. 
Recent research efforts have focused on improving the performance of kesterite solar cells through 
various strategies, including defect engineering, interface engineering, and cation substitution 
[65][66]. Defect engineering aims to suppress the formation of harmful defects, such as vacancies, 
antisite defects, and secondary phases, which can negatively impact the solar cell’s performance 
[65]. Interface engineering, on the other hand, involves optimizing the properties and composition 
of the buffer layer, typically CdS or Zn(O,S), to improve the overall device performance [63]. 
Cation substitution, such as replacing some of the copper with silver or indium, can help stabilize 
the kesterite phase, enhance the material’s optoelectronic properties, and reduce the VOC deficit 
[64]. Despite the progress made in recent years, further research and development are needed to 
address the remaining challenges and optimize the performance of kesterite solar cells. As our 
understanding of the material properties, defect formation mechanisms, and interface interactions 
in kesterite solar cells continues to improve, these promising earth-abundant and environmentally 
friendly TFPV technologies could play a significant role in the global transition towards renewable 
energy [60][66]. 
 
In summary, TFPV technologies, including CIGS and kesterite based solar cells, have made 
significant advancements in recent years, offering a lightweight, flexible, and potentially cost-
effective alternatives to widen the application of PV beyond to traditional c-Si solar cells. CIGS 
solar cells have achieved high efficiencies, surpassing p-Si, but face challenges in scaling up 
production, maintaining material uniformity, and addressing environmental and supply concerns 
related to the use of toxic elements and rare-earth materials. Kesterite solar cells, on the other hand, 
offer a promising earth-abundant and more environmentally friendly alternative, but currently 
suffer from lower efficiencies due to the presence of defects, high VOC deficit, and complex 
stoichiometry. Ongoing research efforts in both CIGS and kesterite solar cells are focused on 
addressing these limitations, exploring strategies such as defect engineering, interface engineering, 
and alternative buffer layers. As progress continues in the development and optimization of TFPV 
technologies, their potential to become a significant contributor to global renewable energy 
generation increases. The future prospects TF technologies are promising, with the potential to 
revolutionize the solar energy landscape and facilitate the global transition towards a more 
sustainable and environmentally friendly energy mix. With the above, this thesis focuses in these 
two promising technologies: CIGS and kesterites, performing experiments with these materials in 
the first and second publications, respectively. The following subchapter explains how these 
technologies work, with both being p-n heterojunction-based devices. 
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1.2.3 Basic working principle of PV devices 

To generate the PV effect, semiconductor materials with a bandgap energy that aligns with the 
energy spectrum of the solar radiation (ranging from 0.5 to 3 eV) are needed. This bandgap energy 
represents the minimum energy required to excite an electron to a conductive state. Currently, 
silicon stands as the predominant semiconductor used to produce PV materials and devices, also 
referred as first-generation technology. It is followed by TF technologies, also known as second-
generation technology, which utilize light-absorbing materials such as a-Si, CdTe and, of course, 
CIGS and kesterites. Other emerging technologies include organic and hybrid solar cells, as well 
as multi-junction solar cells. These are considered as third-generation technology. All these 
different technologies can then directly convert incoming light into electricity. Specifically for the 
case of CIGS and kesterite based devices, as well as for several other inorganic absorber materials, 
this is possible thanks to the p-n junction formed between two differently doped zones: the p-type 
and n-type. The p-type is where the majority charge carriers are holes, and the n-type where the 
majority of the carriers are electrons. When in contact, electrons from the n-region will diffuse 
towards the p-region, and the holes will diffuse from the p-region to the n-region. The area of this 
exchange is called the depletion region. In this zone, the n-region is positively charged, and the p-
region is negatively charged, creating an electric field oriented from n to p. With the p-n junction 
formed, incident photons with energy greater than the bandgap of the p-type material will be 
absorbed and excite electrons, which move from the valence band to the conduction band, leaving 
holes in the process. The electrochemical potential difference between the materials facilitates the 
separation of electrons and holes in the depletion region and the movement of the carriers. In quasi-
neutral zones, carriers move by diffusion: only those with sufficient diffusion length will be 
collected. Ultimately, holes are collected at the positive pole of the cell and electrons at the 
negative pole. This movement is what ultimately generates current. This process is shown in a 
schematic representation in Figure 1-6.  
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Figure 1-6: Schematic of the p-n junction. 

 
The p-n junction can be either the same material (homojunction) or of two different 
semiconductors (heterojunction). P-n heterojunctions, first described by Russel Ohl in his 1941 
patent “Light-sensitive electric device including silicon” [67], have become an important part for 
several electronic devices beyond electricity generation, such as rectifiers, photodetectors, diodes, 
and sensors. In solar energy technology, p-n heterojunctions are used with diverse semiconductor 
materials to build many different types of devices such as silicone based [68], pervoskites [69], 
CISe [70], CIGS [71], and kesterites [66]. 
 
The efficiency of a real solar cell will never reach 100% respect to the incoming solar radiation, 
due to several types of losses that occur at different stages. For instance, photons with energy lower 
than the material’s bandgap are not absorbed, excess energy is lost through thermalization, some 
photons are reflected off the material’s surface, and electron-holes may succumb to recombination, 
all leading to a reduced efficiency. Furthermore, the theoretical limit for the efficiency of a solar 
cell using a single p-n junction is about 30%, what is known as the Shockley-Queisser limit [72]. 
This limit has been calculated based on the material’s bandgap, assuming an ideal scenario where 
all recombinations are radiative, charge carriers have infinite mobility, and all photons with energy 
equal to the material’s bandgap are absorbed. To account for these losses, the solar cell is 
simplified in a classic model as a circuit with a diode 𝑉ௗ, including a series resistance 𝑅௦ 
representing contact and connection resistances, and a shunt resistance 𝑅௦௛ representing various 
leakage currents from the PV source 𝐼௣௛, creating the final device voltage potential 𝑉, as 

represented in Figure 1-7.  
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Figure 1-7: Classic circuit model of a photovoltaic cell. 

 
From this classical circuit model of a PV cell, the device can be formulated electrically to 
ultimately obtain the main electrical properties, namely open circuit voltage 𝑉ை஼, short circuit 
current 𝐼ௌ஼ , fill factor 𝐹𝐹 and efficiency 𝜂. To understand the calculation these characteristics using 
the single diode model, we can start with the fundamental circuit equation that encapsulates the 
behavior of a solar cell through a combination of the photovoltaic current 𝐼௣௛, diode current 𝐼ௗ, 

series resistance 𝑅௦, and shunt resistance 𝑅௦௛. The total current output, 𝐼, of the PV cell is described 
by the following equations: 
 
 

𝐼 =  𝐼௣௛ − 𝐼ௗ −
𝑉 + 𝐼𝑅௦

𝑅௦௛
 Eq. 1-1 

 
 

𝐼ௗ =  𝐼଴ ൬𝑒
௤(௏ାூோೞ)

௡௞் − 1൰ Eq. 1-2 

 
Where 𝐼 is the final device current,  𝐼଴ the reverse-bias saturation current of the diode, 𝑞 is the 
electron charge constant 1.602 ∙ 10ିଵଽ 𝐶, 𝑛 is the ideality factor of the diode, 𝑘 is the Boltzmann 
constant 1.638 ∙ 10ିଶଷ  𝐽 𝐾⁄ , and 𝑇 is the temperature in the p-n junction. 𝐼ௗ can also be expanded 
as a diode current equation as shown in Eq. 1-2. From here, 𝑉ை஼ occurs when current 𝐼 =  0, and 
 𝐼ௌ஼ is then the current flow when 𝑉 =  0. Then, to determine the maximum power point (MPP), 
we need to find the combination of voltage and current where the product 𝑉 ∙ 𝐼 is maximized. This 
point is crucial because it represents the most efficient operating point of the PV device. With the 
MPP, the FF is defined as the ratio of the maximum power point 𝑃௠௔௫ = 𝑉௠௣௣ 𝐼௠௣௣ to the product 

𝑉ை஼  𝐼ௌு: 
 
 

𝐹𝐹 =  
𝑉௠௣௣ 𝐼௠௣௣

𝑉ை஼  𝐼ௌு
 Eq. 1-3 
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And the efficiency 𝜂 of the solar cell is then calculated as the ratio of the maximum power output 
𝑃௠௔௫ to the input solar power 𝑃௜௡:  
 
 

𝜂 =  
𝑃௠௔௫

𝑃௜௡
 Eq. 1-4 

 
This efficiency is a key metric for evaluating a solar cell as it encapsulates the combined effects 
of all the parameters of the solar cell. Thus, reflecting both its electrical characteristics and its 
ability to harness solar energy. Finally, the above characteristics can be graphically illustrated in 
the Current-Voltage (I-V) curve, where 𝐼 is plotted as a function of 𝑉, as shown in Figure 1-8. In 
this plot, 𝐼ௌ஼ , 𝑉ை஼, 𝐼௠௣௣ and 𝑉௠௣௣ can directly be extracted, and thus 𝐹𝐹 and efficiency obtained 

after. 
 

 
Figure 1-8: Current-voltage curve showing its main characteristics. 

 
Finally, a typical structure of TFPV device based on compounds like chalcopyrite or kesterite type 
materials is shown in Figure 1-5. Here the p-n heterojunction is formed between absorber (typically 
of p-type for studied technologies) and buffer layer (typically of n-type for studied technologies), 
and additional layers for the back and front contacts of the solar cell. The latter are usually more 
complex due to formation of intermediate layers at the back contacts (e.g. MoS2 or MoSe2) and 
deposition of an extra layer for better isolation at the front contact (e.g. i-ZnO layer). Additional 
to the importance of each of the layer of the TF solar cell, a significant role is also played by 
different interphases between the layers, which increases the complexity of the whole structure, 
making it much more advanced that a simple circuit. This complexity results in necessity of making 
an advanced approach in study and characterization, by combining different characterization 
techniques and by making special set of samples, which is covered by a combinatorial approach 
in the analysis of complex systems. 
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1.3 Combinatorial analysis for materials and devices 

Combinatorial Analysis (CA) refers to the process where combinatorial samples or sets of samples 
are systematically prepared with a specific property intentionally varied in a controlled manner 
either within a single sample or across multiple samples. This allows for the thorough exploration 
and understanding of how changes in that property affect outcomes or behaviors. CA has emerged 
as a powerful technique in materials science and engineering research, enabling the simultaneous 
study of multiple variables and their interactions in complex systems [73]. This approach allows 
for a more comprehensive understanding of intricate systems and accelerates the discovery and 
optimization of novel materials. CA typically involves generating a large number of samples, or a 
single graded sample, with varying combinations of properties, followed by parallel analysis using 
a combination of experimental and computational techniques. By investigating the relationship 
between these variables and the resulting properties, researchers can gain valuable insights into 
how different factors impact the performance of materials or devices [74]. In materials science, 
CA has found applications in numerous areas, such as high-throughput screening of catalysts, 
discovery of new alloys, and optimization of solar cell materials [75]. By utilizing combinatorial 
methods, researchers can efficiently explore vast parameter spaces and identify optimal 
combinations that lead to enhanced material properties and performance. The application of CA, 
in conjunction with advanced data analysis and Machine Learning (ML) techniques, further 
accelerates the material discovery process [76]. Through these integrated approaches, researchers 
are not only able to identify correlations, but also uncover underlying mechanisms governing the 
system, leading to the development of innovative materials with desired properties and 
functionalities [77]. To effectively conduct CA, several crucial considerations must be accounted 
for, including sample preparation, characterization techniques, and data analysis approaches. 
 

1.3.1 Samples for combinatorial analysis 

Combinatorial samples or sets of samples are those in which a property is deliberately varied in a 
controlled way in-sample or sample-to-sample, respectively. The analysis of combinatorial 
samples represents an efficient way of obtaining relevant insights that can be used both for 
extracting information about fundamental material properties and for technological optimization. 
In the case of TF, different physical and chemical deposition techniques can be employed for the 
preparation of combinatorial samples and sets of samples which result in discrete or gradient 
sample libraries, respectively. A discrete library consists of individual samples in which each of 
them has a discrete variation of a property, normally related to composition. On the other hand, a 
gradient library is a single sample with a deliberate inhomogeneity consisting in a continuous 
variation (gradient) of a property across its surface, e.g. a sample with a graded thickness in one 
of its layers. Diagrams and real examples of each type of sample library are presented in Figure 
1-9. Despite of both approaches being suitable with CA, the two of them present advantages and 
disadvantages that need to be considered for the choice of one or the other. 
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When it comes to discrete libraries for materials research, one of its primary benefits is that they 
are produced under well-defined and controlled conditions. This ensures that each sample within 
the library is homogeneous, providing a consistent baseline. This homogeneity is crucial for 
drawing accurate conclusions about the effects of specific variations on material properties and 
device performance. Moreover, the specific preparation conditions are known for each sample of 
the library, allowing to directly select the optimal ones for further application and to directly 
correlate the properties of the samples with the fabrication parameters. However, there are also 
drawbacks with discrete libraries. The preparation time of several samples can be extensive, 
especially when ensuring that each sample meets the strict criteria required for homogeneity. 
Additionally, the resolution for sample-to-sample property variation (i.e., the difference between 
consecutive samples) is limited by the characteristics and configurations of the fabrication 
equipment. This can limit the range and resolution of conditions that can be studied. 
 
In contrast, graded libraries offer a different set of advantages and challenges. One of the most 
significant benefits of graded libraries is their high resolution for property variation. Since graded 
samples are intentionally produced with inhomogeneities that smoothly varies a certain property 
across the sample, the effects of these variations on performance can be studied with high detail. 
Also, a single sample can provide a great deal of information, as it contains a large range of 
conditions within itself, which is both time-saving and cost-effective. However, the primary 
drawback of graded libraries is the inherent uncertainty in the fabrication conditions. Since the 
samples are intentionally inhomogeneous, it can be challenging to pinpoint exact processing 
conditions and their effects on material properties or device performance, leading to potential 
ambiguities in the research results. 
 

 
Figure 1-9: A) Diagram of discrete sample set with process temperature and time variations, B) 

diagram of continuous spread sample with 1 graded layer, C) picture of a discrete sample set and 
D) picture of a continuous spread graded sample. 
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1.3.2 Characterization techniques for combinatorial analysis 

In terms of characterization, the process of understanding and quantifying the physical, chemical, 
and structural properties of materials, it is essential to employ multiple techniques to maximize the 
information gathered about the studied material and increases the chances of uncovering relevant 
correlations and valuable insights for enhancing future iterations of the devices. Relying solely on 
a single characterization technique often presents limitations, as no single method can provide a 
complete picture of a material’s multifaceted nature (Figure 1-10), which becomes more critical 
when speaking about the such a complex systems as TFPV devices. Different characterization 
techniques focus on different aspects of a material and devices can give a more comprehensive 
approach on understanding their properties and limitations. For instance, Raman spectroscopy 
(RS) can analyze chemical composition and molecular structures, Photoluminescence (PL) can 
deliver optical and electronic information, X-ray fluorescence (XRF) can quantify composition 
and current-voltage (IV) measurements can measure the optoelectronic parameters of the devices, 
including their efficiency to convert the light into electricity. All the above information is 
important for any material being studied but using them all in one study allows for cross-
verification of properties and offers a more holistic understanding with more complex, but also 
more accurate, correlations. In other words, combining different methods can compensate for the 
limitations of individual techniques and provide a more accurate, comprehensive analysis. By 
leveraging the combination of the results extracted from these techniques, it is possible to obtain 
a broad picture of the systems and push knowledge to a deep understanding of the material and its 
properties. This is crucial for the progress, optimization, and development of novel PV devices 
technologies and materials. 
 

 
Figure 1-10: Schematic example to illustrate how the combination of different techniques allows 
to obtain further insights compared to normal experimentation focused on single techniques. The 

more characterized a sample is, the more it is possible to visualize the different aspects of its 
nature. 

 
However, to achieve this, the characterization methods must fulfill several requirements, including 
non-destructive testing, rapid acquisition times, automation capabilities, compatibility with other 
techniques, and high spatial resolution. These requirements are critical to enable characterization 
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of samples in bulk that provide relevant statistical data to further understand complex materials 
and devices. Overall, a study using a combinatorial sample should aim to measure compositional, 
optical, structural, and optoelectronic properties, all in a non-destructive, fast, and automated way 
that secures the traceability of the data reliably, as illustrated in Figure 1-11. 
 

 
Figure 1-11: Characterization techniques, such as compositional, optical, structural, and 

optoelectronic, must comply with requirements to be fit for CA. Figure extracted from [78]. 
 

1.3.3 Data analysis for combinatorial approach 

Data analysis in combinatorial experiments has traditionally depended on standard approaches like 
correlation and statistical methods, which show good results at identifying relationships between 
variables in simpler datasets. These conventional methods are valuable for their straightforward 
analysis and ease of understanding, building great confidence on their use with researchers. 
However, they often fall short when dealing with the complex, high-dimensional data typical in 
combinatorial studies. Challenges particularly arise in discerning non-linear relationships and 
subtle patterns within large datasets where several variables can be considered. Selecting the 
proper analysis tools for these experiments depends on the complexity and nature of the data. 
Traditional methodologies are more suitable for experiments with fewer variables and linear 
relationships, where the simplicity and interpretability of results are paramount. In contrast, 
modern Artificial Intelligence (AI) and ML techniques are preferred for more complex, multi-
dimensional datasets where patterns are not immediately apparent. 
 
Because of this, the field is increasingly moving towards more sophisticated computational 
techniques. The development of ML and AI has introduced robust tools capable of handling and 
interpreting the vast and intricate datasets generated in combinatorial experiments. These advanced 
methodologies excel not only in pattern recognition and predictive modeling but also offer the 
advantage of processing and analyzing data at a much higher speed than traditional methods. Their 
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adaptive learning capabilities make them especially suitable for CA, where unexpected 
relationships and complex interactions may appear. By integrating these technologies, researchers 
can dig deeper into data, uncovering insights that were previously inaccessible with conventional 
methods. 
 
This evolution from traditional data processing to a more dynamic, AI and ML-driven analysis 
represents a significant leap in the field of CA, promising more comprehensive understanding and 
innovative discoveries in various scientific domains. Unfortunately, challenges in applying ML in 
CA experiments still exist. These include the need for large and well-annotated datasets for 
effective training, the complexity of selecting appropriate ML models and features, and the 
interpretation of ML outputs in a scientifically meaningful way. Furthermore, the holistic analysis 
of data is also not well developed in the field, leading to a slow incorporation of combinatorial 
experiments. The development of clear methodologies with accessible tools aiming to simplify the 
application of AI and ML into CA can greatly improve combinatorial experiments and make CA 
more appealing for researchers. 
 

1.4 AI algorithms as support in the materials research 

1.4.1 Introduction and basic principles of AI and ML 

AI and ML are rapidly evolving tools that have been gaining significant attention in recent years, 
largely due to their capacity to revolutionize a wide range of industries and disciplines [79][77]. 
They have been used to solve a large number of complex problems and have been applied in 
various domains, such as natural language processing, computer vision, and robotics [80][81]. 
With the increasing availability of large datasets and powerful computational resources, it is now 
possible to develop sophisticated models that can perform tasks that were thought to be too difficult 
or virtually impossible to accomplish successfully, like natural language interaction, image 
recognition, and other tasks [80][82]. This success of ML has led to a renewed interest in the field 
that has also expanded to materials science, where ML techniques have been employed to 
accelerate the discovery of new materials and optimize existing ones [83][84][85]. The 
incorporation of AI and ML into materials research has the potential to significantly expedite the 
development of novel energy materials and further advance renewable energy technologies 
[86][75]. Additionally to their practical applications, AI and ML have also given rise to a number 
of ethical and philosophical questions regarding their implications for society and human decision-
making [87][88]. As these technologies become more widespread and integrated into our daily 
lives, it is crucial to ensure that they are transparent, unbiased, and accountable [89][90][91]. 
 
Before going further, it is important to define what the AI, ML terms mean. Unfortunately, a 
standardized definition of these is not yet available, and many variations can be found in the 
literature. However, in general terms, most definitions would agree that AI is any system, normally 
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a computer program, that performs a task considered smart or complex in an automated way. With 
this, it is possible to define ML as an AI that uses data to make predictions over new information, 
and keeps getting better as more data is available, hence it learns and improves over time. Under 
this definition, many algorithms and techniques can be mentioned, being the most common and 
widely used Linear Regression (LR). Other examples include Principal Component Analysis 
(PCA), Linear Component Analysis (LDA), Random Forest (RF), Support Vector Machine 
(SVM), and many others. Furthermore, Artificial Neural Networks (ANN) is a subset of ML 
algorithms that consist of a series of multiple and iterative transformations that decompose a 
complex problem into a sub-set of simpler problems, like Deep Learning algorithms (DL). 
 
There are several ways to classify ML algorithms, but a common approach is to group them based 
on their level of supervision, which includes: 

• Supervised learning: algorithms that learn from labeled training data and make 
predictions about unseen data. Examples include LR and SVM. 
• Unsupervised learning: algorithms that learn from unlabeled data and find patterns 
or structure in the data. Examples include k-means clustering and PCA. 
• Semi-supervised learning: algorithms that learn from a mix of labeled and unlabeled 
data. Examples include Label Propagation and Semi-supervised Support Vector Machines. 
• Reinforcement learning: algorithms that learn from the consequences of their 
actions in an environment. Examples include Q-learning and Policy Gradients. 
 

Another way to classify ML algorithms is by their output type: 
• Classification: Algorithms that predict categorical output 
• Regression: Algorithms that predict continuous output 

 
During the development of this thesis, AI and ML were used, including supervised, unsupervised, 
and classification methods. Regression methods and ANNs where also tested in the Further 
Exploratory Experiments. 
 

 
Figure 1-12: General view of the relationship between AI, ML, and DL. 
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To explain how ML works it is convenient to start with the most basic form, which has been used 
for over a century for several mathematical and research problems: LR. LR works through least-
squares estimation. It takes a basic optimization problem with an objective function of the form: 
 
 

min ෍൫�⃗� · �⃗�௜ − 𝑦௜൯
ଶ

௡

௜ୀଵ

 Eq. 1-5 

 

Where �⃗� is the independent variable, 𝑦௜ is the dependent variable to predict, and �⃗� is the vector 
containing the model’s parameters. Examples of LR are vast considering its simplicity, low 
computational needs, and many decades of diverse applications. A good modern example is in 
[92], where researchers find that there is a linear relationship between VOC and the relative OVC-
related Raman peak areas, as illustrated in Figure 1-13. 
 

 
Figure 1-13: Linear regression is performed for VOC and OVC relationship for high performance 
CIGS solar cells. Colors represent different process temperatures the solar cells were subjet to. 

Figure extracted from [92]. 
 
Other than LR, there are many other algorithms such as the already mentioned PCA, LDA, RF, 
SVM, QDA, and K-means, among many others. Each of these algorithms has unique 
characteristics and is best suited for specific types of problems. However, at their core, many of 
these algorithms share a fundamental principle with LR: the concept of defining and optimizing 
an objective function, often leveraging large datasets. To show this, we can see how some of these 
work, in particular PCA and LDA as they have more importance in this thesis. For instance, PCA, 
is an unsupervised dimension reduction algorithm that looks for the bits of information that better 
explain the difference between the data [93]. It does this by performing orthogonal linear 
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transformations of the data to a new coordinate system where the greatest variance between the 
data is found. This reduction in dimensions means that the information is not selected or deleted 
in the process but rather translated into different axis. In other words, all the original information 
is, one way or the other, preserved. This reduction process is performed as many times the user 
specifies, being capable of making a reduction to a 1-D system. In a similar way to LR, we can 
translate this into an optimization problem as: 
 
 

𝑤 = 𝑚𝑎𝑥 ෍(𝑥௜ · 𝑤௜)
ଶ

௡

௜ୀଵ

 Eq. 1-6 

 
Where 𝑤 is a unit vector of constants 𝑤௜ such that ‖𝑤‖ = 1, and is equivalent to the transformation 
that maximizes the variance. The first iteration will find the first principal component, and a second 
principal component can then be found using that same Equation 1-6. After subtracting the first 
principal component as 
 
 

𝑋෠௞ = 𝑋 − ෍ 𝑋𝑤(௦)𝑤(௦)
்

௞ିଵ

௦ୀଵ

 Eq. 1-7 

 

Where 𝑋 is the matrix containing the observed data, 𝑋෠௞ is the data transformed into the new 
dimensional space after subtracting the first principal component. This procedure can be repeated 
𝐾 − 1 times being 𝐾 the initial dimensionality of the problem. 
 
Similarly, LDA is a supervised technique to analyze the difference between classes in a dataset. 
This makes LDA particularly useful in classification tasks, as it can identify the most important 
features that discriminate between different classes [94]. In other words, LDA finds the coordinate 
system that has the largest distance between different groups and the smallest dispersion within 
each group. For example, if there are 2 categories, it is possible to express the objective function 
to be optimized when searching for these dimensions as  
 
 

𝑚𝑎𝑥 ቊ
𝜇ଵ − 𝜇ଶ

𝑠ଵ
ଶ + 𝑠ଶ

ଶቋ Eq. 1-8 

 
Where 𝑠 is the variance and 𝜇 is the mean position. This equation above can then be generalized 
for 𝑛 categories. 
 
By combining the feature reduction capabilities of PCA with the class discrimination capabilities 
of LDA, an even more powerful tool for data analysis is obtained, known as a cascaded PC-LDA 
or simply PC-LDA. While PCA focuses on finding the directions of maximum variance in the 
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data, LDA aims to find the directions that maximize the separation between different classes. With 
this method, it is possible to identify the most relevant variables for the problem at hand and use 
them to train a classifier with high performance. PC-LDA is then a combined form of both 
algorithms, arranged in a sequential way. In other words, PCA is first applied to an intermediate 
dimension and then transformed by LDA to a final coordinate system. This method is 
advantageous for the use of both data variability (PCA) and classification group differences 
(LDA), being just as popular as PCA and LDA used alone since they still may produce better 
results depending on the specific problem. In particular, these techniques are popular for 
spectroscopy related problems, since normally spectroscopic measurements are of high 
dimensionality (vectors of length 1000 or more are common) and several properties that can be 
extracted that may be difficult to compute are present in spectroscopy data, such as peak position, 
peak area, peak convolutions, and peak widths, to name a few. An interesting example of this is 
for autofluorescence spectroscopy over blood plasma for tuberculosis diagnosis [95]. Authors find 
that PCA is highly effective with 95.2% accuracy to predict tuberculosis through this kind of data, 
as illustrated in Figure 1-14. Another common use for PC-LDA is for cancer diagnosis and 
classification. A specific example of this is in [96] where they classify RS measurements using 
PC-LDA for the diagnosis and distinction of 5 different types of thyroidal tumors, some of them 
benign and others malignant. The results show that they are able to accurately distinguish between 
types of tumors in 1 vs 1 comparison (79% to 100% accuracy depending on the comparison pair) 
and 81% overall accuracy between benign and malignant types. Similar examples are abundant in 
the literature, particularly with the use of RS [97]. 
 

 
Figure 1-14: a) Mean spectra for healthy blood plasma and b) mean spectra for unhealthy 

(tuberculosis) blood plasma and c) final 2-D dimensionality after PCA. Figure extracted from 
[95]. 

 
Other more complex type of algorithms widely used nowadays are Artificial Neural Networks 
(ANN or just NN for Neural Network). ANNs are a type of ML algorithm that are inspired by the 
structure and function of the human brain [80] and consist of layers of interconnected nodes, called 
neurons or units, which are used to process and analyze data. ANNs are particularly useful in tasks 
such as image and speech recognition, natural language processing, and predictive modeling [80]. 
To represent what a NN does, the following equation is needed: 
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 𝑦 = 𝑓(𝑥; 𝜃, 𝑤) = 𝜑(𝑥; 𝜃)்𝑤 Eq. 1-9 

 
Where 𝑥 is the input, 𝜃 are parameters for 𝜑 and 𝑤 parameters for 𝜑(𝑥). With this, what a NN 
should try to do is to learn 𝜃 such as it gets the best approximation to 𝑦 as possible as in 𝑓 ≈ 𝑓∗ =

𝑦, where 𝑓∗ is the original function. To construct a basic NN, then we can use Eq. 1-9 to stack one 
after the other as different layers of the NN. As an example, to build a three-layer NN (input layer, 
1 hidden layer, and output layer) with an input of two parameters, it is possible to define its 
components as: 
 
 

𝑊 = ൤
𝑊ଵଵ 𝑊ଵଶ

𝑊ଶଵ 𝑊ଶଶ
൨       Eq. 1-10 

 
 

ℎ = ቈ
ℎଵ = 𝑔൫𝑥𝑊,ଵ + 𝑐ଵ൯

ℎଶ = 𝑔൫𝑥𝑊,ଶ + 𝑐ଶ൯
቉      Eq. 1-11 

 
 𝑤 = ቂ

𝑤ଵ

𝑤ଶ
ቃ      Eq. 1-12 

 
  𝑦 = ℎ𝑤 Eq. 1-13 

 
Where ℎ is the set of functions for each unit (neuron) in the layer that each holds a common 
function called activation function 𝑔, and 𝑐 a bias value. In general aspects, this is the simplest 
form of a NN: a feedforward, fully connected network (see an illustration in Figure 1-15), but it 
can be extended to as many layers with as many units as desired. In that case, if each layer, with 
its respective units, forms a function 𝑓௡, then a NN with 𝑁 layers will have the following shape: 
 
 

𝑓௡ ቆ… ൬𝑓ଷ ቀ𝑓ଶ൫𝑓ଵ(𝑥)൯ቁ൰ቇ  Eq. 1-14 

 
The activation function can take many different forms. The most commonly used is Rectified 
Linear Unit (ReLU), where 𝑔(𝑧)  =  𝑚𝑎𝑥{0, 𝑧}. This function is used in many applications and 
cases; however, it can really be anything that the user desires and as complex as needed. A different 
approach is to define the activation functions as a radial basis function, in other words, a function 
that outputs a value in function of the distance to some defined point. A typical function to use is 
a Gaussian function as 
 
 𝜑(𝑟) = 𝑒ି(ఌ௥)మ

 Eq. 1-15 
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Where 𝑟 is the radius, or distance, to the center. Such NN are defined as Radial Basis Function 
Networks [98] (RBFN). Radial basis function networks are particularly useful in applications 
where the input data has a non-linear relationship with the output. They are based on the idea of 
radial basis functions, which are functions that have a value of 1 at the origin and decrease as the 
distance from the origin increases. As mentioned, RBFNs use these functions as activation 
functions in their hidden layers, allowing them to capture non-linear relationships in the data. They 
are particularly useful in tasks such as function approximation, time-series prediction, and 
classification problems with non-linearly separable classes. Additionally, RBFNs are known to be 
robust to noise and outliers in the data and require fewer hidden neurons than other NN 
architectures. Overall, RBFNs are a powerful tool for solving a variety of ML tasks with non-linear 
input-output relationship. 
 
With all this, it is patent that artificial NNs can take several shapes and forms, with virtually 
unlimited possibilities in terms of input and output types, number of layers and units per layer, and 
how all these elements interact with each other. A (mostly) complete chart of NN structures can 
be found in the Neural Network Zoo [99]. 
 

 
Figure 1-15: Representation of a three-layer NN with and input, hidden, and output layer. The 
input is a two-parameter variable, and the hidden layer contains two units. This is arguably one 

of the simplest forms of a NN. 
 

1.4.2 General use of ML in material science 

The utilization of ML in materials science typically adheres to a specific workflow: data selection, 
feature engineering, model building, validation, and result analysis, as illustrated in Figure 1-16. 
While the exact procedures and details will vary depending on the particular problem at hand, 
adhering to this structure is crucial for obtaining accurate outcomes and gaining valuable insights 
into the central research questions. 
 
The initial stage in the ML workflow for materials science involves choosing the appropriate 
dataset. This step is crucial, as the quality and relevance of the data will significantly impact the 
accuracy and effectiveness of the ML model. It is important to carefully consider factors such as 
data source reliability, data completeness, and the presence of any noise or inconsistencies. The 
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selected data should be representative of the problem being addressed and encompass a wide range 
of material properties and conditions to ensure that the developed model is robust and applicable 
to various scenarios. Overall, the data should aim to a well-defined problem. 
 
After selecting the appropriate data, the subsequent critical step involves processing and scaling 
the data. This phase is essential to prepare the data for effective analysis and model training. Data 
processing involves a series of steps to clean and organize the data by handling missing values, 
correcting errors, and removing duplicates. Scaling the data is a key part of this process too, 
especially for algorithms sensitive to the scale of input features. The goal is to ensure that all 
features contribute equally to the analysis and model training. 
 
After, the following step is feature engineering, which involves extracting and selecting the most 
relevant features or attributes from the dataset that will be used as input for the ML model. This 
process requires domain expertise and a thorough understanding of the materials science problem 
being addressed. Feature engineering may involve applying transformations, aggregating data, or 
even creating new features that capture important relationships between variables. The goal is to 
identify the most informative features that can help the ML model make accurate predictions and 
uncover hidden patterns in the data, and also remove those that might create bias when processing, 
like noise, inaccurate data, and measure errors. 
 
The modeling stage involves selecting an appropriate ML algorithm and building the model based 
on the selected features. Each algorithm has its advantages and drawbacks, and selecting the right 
one depends on the specific problem, data characteristics, and desired outcomes. Researchers 
should experiment with different algorithms and parameter settings to identify the best-performing 
model for their particular problem. 
 
Once the ML model is built, it needs to be tested and validated to ensure that it performs well on 
unseen data and can generalize to new situations. This is achieved by splitting the dataset into a 
training set, which is used to build the model, and a testing set, which is used to test the model’s 
performance. Then, the algorithm can be re-trained with a different, but comparable, training set 
and test if it produces equivalent results. This indicates if the performance is due to the model itself 
or for a biased training/test set. Common performance metrics include accuracy, precision, recall, 
F1 score, and mean squared error. Researchers can also use techniques such as cross-validation to 
get a better understanding of the model’s stability and performance across different subsets of data. 
 
The final stage in the ML workflow for materials science is analyzing and interpreting the results 
obtained from the model. This step involves understanding the relationships and patterns that the 
model has uncovered, assessing the model’s strengths and limitations, and determining how the 
findings can be applied to the problem at hand. The insights gained from the ML model can be 
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used to guide further research, inform decision-making, or even be integrated into other 
computational tools and techniques to accelerate the discovery and development of new materials. 
 

 
Figure 1-16: General proper workflow for ML applications in material science. Figure extracted 
from [100]. 
 

1.4.3 Introduction to XAI 

From the last sections, it is clear how complex ML algorithms can get, particularly when using a 
combination of algorithms, dividing the problem into a subset of problems with different 
algorithms, or when more layers and units are added to a NN model. This complexity makes it 
difficult to really understand what the AI is actually doing and to exactly know how and why is 
able to make predictions. Explainable Artificial Intelligence (XAI) is an emerging field that aims 
to make AI systems more transparent, understandable, and accountable to humans. With the rapid 
advancements in AI, there has been a growing concern about the lack of interpretability and 
transparency of AI models, especially in critical decision-making scenarios [101][102]. This line 
of research, however, is subject to ongoing discussion on the right questions to make, and the 
ethics involving the explanation of algorithmic decisions. This is paramount as cases of bias can 
be life changing [103], and these biases are difficult to approach [104][88]. Furthermore, this topic 
has gain so much importance, that European regulators have stablished the explanation of life 
affecting decisions by a computer program a right [87]. To tackle this issue, not only 
methodologies are required, but also proper definitions, correct questions, and high ethical 
standards [88][91]. Particularly in natural sciences, as mentioned, ML has become increasingly 
popular for its ability to quickly and efficiently analyze large amounts of data. Its versatility and 
accessibility through various libraries and products have also contributed to its widespread use. 
However, without the ability to explain the results obtained from ML algorithms, their scientific 
value may be diminished, and the consistency of future research may be affected [90]. XAI is 
therefore crucial for ensuring the validity and significance of ML-based results in the field of 
natural sciences, and every other field. 
 
One way to perform the latter is to find a function that approximates the algorithm to be analyzed 
to a simpler form that can be interpreted by humans. An example of such is LIME [89], or Local 
Interpretable Model-Agnostic Explanations, a popular technique that aims to provide interpretable 
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and transparent explanations for the predictions made by any black-box model, including NNs. 
The technique works by perturbing the input data in a local region around the instance being 
explained, and then training a simple linear model on the perturbed data. This allows LIME to 
explain the predictions made by the black-box model by approximating the decision boundary in 
the vicinity of the instance being explained, and attributing importance to the input features based 
on their contribution to the prediction. The output of LIME is a human-understandable explanation 
of the model’s decision-making process, which can be used to improve the trustworthiness, 
accountability, and interpretability of ML models. The latter can be expressed as 
 

 ℒ(𝑓, 𝑔, 𝛱௫) = ෍ 𝛱௫(𝑧)

௭,௭ᇱ∈௓

൫𝑓(𝑧) − 𝑔(𝑧′)൯
ଶ
 Eq. 1-16 

 
Where 𝑓(𝑥) is the model to be explained, 𝛱௫ is a proximity measure between an instance z to x, 
and 𝑔 ∈ 𝐺 is a model where 𝐺 is the class of linear models, such that 𝑔(𝑧ᇱ) = 𝑤௚ · 𝑧′. Then it is 

possible to minimize this function with a complexity measure 𝛺(𝑔) that is low enough that is 
interpretable by humans as the loss function expressed like 
 

 𝜉(𝑥) = 𝑚𝑖𝑛௚∈ீ  ℒ(𝑓, 𝑔, 𝛱௫) + 𝛺(𝑔) Eq. 1-17 
 
With this is possible to find an approximation ℒ(𝑓, 𝑔, 𝛱௫) that humans can understand. 
 
A different approach is to improve the interpretability of ML algorithms is through the use of 
sensitivity analysis, which involves systematically varying the input features and measuring the 
resulting change in the prediction. By comparing the predictions obtained with the original values 
of the features to those obtained with the modified values, it is possible to understand how the 
prediction changes as each feature is varied. An example of this is RELIEF [105], a feature 
selection method that detects statistical significant features according the change in the target. This 
can be modelled as: 
 

 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑡𝑦𝑝𝑒

⎩
⎨

⎧𝑖𝑓 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 → ∆(𝑦௞ , 𝑦ො௞) =  ൜
0 𝑖𝑓 𝑦௞ = 𝑦ො௞  
1 𝑖𝑓 𝑦௞ ≠ 𝑦ො௞  

𝑖𝑓 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 → ∆(𝑦௞, 𝑦ො௞) =
(𝑦௞ − 𝑦௞)

𝜇௞
    

 Eq. 1-18 

 
Where ∆(𝑦௞ , 𝑦ො௞) denotes the difference between the original instance 𝑦௞ and the perturbed instance 
𝑦ො௞ and 𝜇௞ is a normalization parameter to transfer the domain to a relative scale. This method can 
successfully identify what features are more important when making a particular prediction and, 
in the aggregate, see what features are more relevant on the possible outputs. However, this method 
is originally limited to two classification groups and its random perturbation nature yields strictly 
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stochastic results. Despite this, the method can be easily generalized to a desired number of 
classification groups and the random perturbations can also be replaced with intended and 
deterministic changes by considering: 
 

 𝐼௝ = 𝑃ெ(𝑥) − 𝑃ெ ቀ𝑅௝(𝑥)ቁ Eq. 1-19 

 
Where 𝑃ெis the probability function of the ML model M,  𝑥 ∈ 𝑋 is an array of dimensions ℎ × 𝑤, 
and 𝑅 is a function of local perturbation of feature 𝑗 ∈ 𝐽. With this, the value of 𝐼 will determine 
how important a feature is compared to others measured by the probability change in classification. 
 
Finally, XAI can appear in different shapes and forms with vastly different approaches and levels 
of complexity. Regardless, the exploration of XAI underscores its critical role in enhancing 
transparency, fostering trust, and ensuring ethical AI deployment, thereby bridging the gap 
between advanced AI technologies and their practical, understandable, and responsible application 
in various domains. 

1.4.4 AI in energy, PV devices and materials research 

As mentioned, AI and ML have emerged as transformative tools in various fields, including energy 
and PV devices and materials. In fact, it is foreseen that the widespread use of this tools, in 
conjunction with CA, can shorten development times for novel materials by a factor of 10, from 
10 to 20 years to just a few years [75][86][73][106]. Moreover, there is evidence for 1,000 times 
acceleration in the rate of the discovery of novel amorphous alloys with the power of combining 
high-throughput experiments (HTE) with ML models [87]. In contrast with traditional methods 
for discovering new materials, such as the empirical trial and error method and density functional 
theory (DFT), that typically require a long research and development cycle, are of high cost with 
low efficiency, and have difficulty keeping pace with the development of materials science today 
[100], AI and ML have shown great potential for the discovery, optimization, and characterization 
of advanced materials for PV devices. ML algorithms can analyze vast amounts of data, identify 
patterns, correlations, and optimal material configurations, enabling researchers to focus their 
efforts on the most promising candidates [77][81][84]. As such, these tools have the potential to 
revolutionize the way we discover, design, optimize, and manufacture devices, enabling faster 
innovation and implementation of sustainable technologies. 
 
As so, successful research has been achieved using ML and AI in the field of energy and PV 
materials. For example, Mahmood et al. (2021) reviews several examples where ML has been 
applied successfully for improvement and discovery of organic solar cells. Ren et al. (2018) 
combined ML and HTE iteratively to accelerate the discovery of new metallic glasses for energy 
storage applications. In addition to material discovery, ML can be utilized for CA and HTE. For 
instance, Fonoll et al. (2022) discussed the importance of sample preparation, characterization 
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techniques, and analysis approaches in CA. They highlighted the use of ML in studying the 
relationships between material properties, enabling researchers to gain insights into the factors 
affecting device performance. Furthermore, ML models can analyze large amounts of data 
generated from experiments and simulations, identifying patterns and correlations that can help 
optimize device structures and configurations [79][76]. Also, AI can assist in automating the 
analysis and interpretation of data from various characterization techniques, enhancing the 
efficiency and accuracy of material characterization. Moreover, AI can be employed to study the 
relationship between material structure and properties, ultimately guiding the design of novel 
materials with tailored functionalities. For example, Vasudevan et al. (2019) explored the use of 
AI in materials science, focusing on high-throughput library generation and ML techniques to 
discover new materials and understand the underlying physics. Lastly, AI can help improve the 
reliability and reproducibility of experimental results by automating data processing and analysis. 
This can lead to more robust conclusions and a better understanding of the underlying phenomena 
in material systems, ultimately accelerating the development of advanced materials for PV 
applications [79]. 
 
A key limiting factor of ML models is that, generally, the predictive space is within the input 
realm. In other words, predictions and conclusions from these kinds of experiments, in most cases, 
can only be used for data that is within the parameters of the experiment. However, in scientific 
discoveries, it is generally preferred to predict far outside the training distributions. For instance, 
much of materials research aims to identify ways to produce top-performing materials that are, by 
definition, beyond the confines of the available data. To overcome this, the common single-
hypothesis experimentation must become obsolete, transferring over to experiments designs that 
are combinatorial in nature [107]. The idea that the search for new materials with outstanding 
properties and new mechanisms require a broader search through composition- processing-
structure-property space than could be afforded by conventional one-sample-at-a-time techniques, 
has been patent for over a century [108]. Far from being a novel idea, there is still paths to pave in 
order to reach the full potential of computation in material science and PV technology. Once this 
point is reached, where knowledge extraction catches up the HTE synthesis and characterization, 
the limit to rate of new materials discovery becomes the decision making, i.e., what materials to 
pursue next given the knowledge of materials discovered so far and processing conditions needed 
to make them [76]. 
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Figure 1-17: Leveraging AI can enhance human capabilities and expedite discovery within the 

scientific method. Scientific discovery necessitates the integration of various AI techniques 
beyond solely data-driven ML. By combining primary AI methods, such as learning, reasoning, 

and planning, with human-computer interaction, a comprehensive approach emerges. This 
approach facilitates the integration of multiple knowledge sources, including databases, theory, 

experiments, and human reasoning, as demonstrated through relevant examples. Figure extracted 
from [107]. 

 

1.5 Objective of the thesis 

TFPV devices hold immense potential to disrupt different industries by bringing cheap and 
sustainable energy. This means that, either directly or indirectly, this technology can replace fossil 
fuel generated power, with a clean and affordable alternative and, furthermore, it can allow solar 
energy to be used in places and applications that other technologies can’t. However, even though 
much progress has been made in the past years, a long way ahead of improvement can be foreseen, 
with room for improvement in terms of efficiency, material usage, and production scaling. The 
evidence suggests that, to achieve better results for TFPV, traditional experiment designs must 
step aside to give way for CA experiments driven by AI and ML, that are able to considerably 
reduce research and development times. These technologies have been under research with more 
interest just over the past few years in the field of PV materials and devices with promising results. 
However, despite this notable applications and results obtained so far in the field with AI and ML, 
the implementation of these tools, including also CA, even though more common as time passes, 
has been rather slow for this research field [81]. This is mainly due to several barriers between 
researchers and these tools: the availability of large amounts of data, proper pre-processing of data 
sets, lack of multi-disciplinary groups with experts of enough computational knowledge, and more 
[85][109]. Additionally, the difficult interpretation of results that decrease trust in ML models, as 
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discussed in the previous subsection, also contributes to this issue, even more considering that XAI 
is difficult to implement even for experts in the field [110][111]. In other words, the application of 
AI tools requires substantial theoretical, statistical, analytical, and programing skills from a 
research team. To overcome these barriers and accelerate the implementation of these technologies 
and decrease research and development times, it is paramount to achieve the following points: 
 

- Facilitate high-throughput data acquisition: Ensuring the availability of tools that can 
handle large-scale data collection efficiently is crucial (from the point of view of time and 
human resources consumption). This will streamline the gathering of large datasets 
necessary for properly perform CA experiments and training and testing AI models. 
 

- Automate data processing: It's essential to simplify the data processing workflow by 
making it generalized and automated. Reliance on specialist knowledge should be reduced 
to make the process more accessible and efficient. 

 
- Establish clear ML and CA protocols: The development of straightforward ML and CA 

methodologies with predictable outcomes is vital. This will allow for automated research 
processes, making AI applications more reliable and easier to replicate. 

 
- Democratize ML result interpretation: Making the interpretation of ML results more 

accessible is key. This approach will create greater trust in AI technologies and enhance 
the understanding and insights derived from these tools, broadening their application across 
various fields. 

 
Accomplishing the above points will significantly streamline the integration of AI in research 
settings, paving the way for more efficient, accessible, and reliable technological advancements in 
the field of TFPV. As so, the identification of these needs and problems have inspired this thesis, 
which proposes as its main goal “the development of innovative CA techniques based on AI and 
ML algorithms for the accelerated research and development of relevant chalcogenide-based 
TFPV materials, including CIGS, CZTSSe, and other emerging technologies, to reduce their lab-
to-market times and improvement cycles.” To accomplish this main goal, the following three 
objectives are also defined: 
  

- Objective 1: “Design and implement autonomous systems to obtain high amounts of data 
in large area / large number of samples using different spectroscopic (Raman, PL, 
reflectance, transmittance) and optoelectronic (IV, EQE, IQE, CV) techniques, that will 
enable innovative big data-based research based on the correlation of physicochemical 
properties of the materials with the device performance.” 
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- Objective 2: “Develop new methodologies based in AI and ML algorithms for big data 
processing. This will include fast-rate data conditioning and processing using CA results 
and AI-based strategies.”  
 

- Objective 3: “Make tools available for non-expert scientists for easy implementation of AI 
data processing and interpretation of results in an accessible way.” 

 
Through the realization of this work, the experiments, developed tools, and results have aligned 
with this objectives and main goal. This is further detailed in the following section and also 
reflected in the included articles in this compendium.    
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2 METHODOLOGY 

The methodology developed and used during this thesis is schematically shown in Figure 2-1. 
Overall, the methodology is divided in five steps. It starts with the synthesis and characterization 
of a combinatorial sample or of a combinatorial set of samples. These must have a compositional 
or process condition variation to allow for the study of its impact in the final performance. Also, 
the samples must be comprehensively characterized, using techniques that encompass 
compositional, structural, optical, and electrical properties so that there is a holistic view in the 
study. The second step is for the characterization data obtained to be divided into features and 
targets. This means that the desired property to be studied (i.e. open circuit voltage, efficiency, 
etc.) is defined as the target and the feature is all the rest of the data that is used to make a prediction 
or classification in terms of the target. In other words, the data must be divided as data to make a 
prediction and data to be predicted. In the next step the data is subjected to conditioning and fusion 
respecting traceability and preparing it for their input into the ML algorithm. Conditioning refers 
to the necessary steps to process the data and remove undesired information that might bias or 
interfere with the results. Fusion in this case refers to the process of merging (fusioning) the data 
selected as features into one single vector. This is a crucial step for this methodology as it simplifies 
in great deal how much processing must be done to the data, as there is no further information that 
needs to be directly extracted form spectroscopic data, specifically. Then, traceability is the process 
of correctly assigning the measurements to a measured spot by keeping track of which measured 
point uses what measurement, as different spots may use the same measurement if the 
measurements are of a too large area compared to others. This can be challenging when different 
measurement techniques measure over different areas, which is often the case. The fourth stage in 
the methodology is to analyze the data by applying ML. The present work proposes the use of, but 
not limited to, PCA, LDA, or cascaded PC-LDA classification algorithms as a powerful tool to 
process spectroscopic data. The results of such models lead to the classification of the data which 
allows making decisions about the most relevant and optimum production parameters and 
generates knowledge about the critical properties of the materials and devices. These results, 
however, must be evaluated in terms of overfitting and efficacy by studying the training, test, and 
validation results. Finally, in the last step, the methodology allows to select critical samples, 
techniques, and spectral ranges to generate more solid feedback for further technology 
improvement. 
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Figure 2-1: General flow of the proposed methodology for accelerated research using CA and 

ML.  
 
It should be noted that while the combinatorial sample preparation and the characterization 
processes are tailored specifically for TFPV technologies, their direct applicability to other 
technological areas may be limited. However, further steps of the methodology are more universal 
since they are related to the data manipulation and application of ML and barely depend on the 
analyzed materials. This generalization makes it possible to adapt and extend the proposed 
methodology to other complex multilayer and multicomponent systems relatively ease. 
 
For the included experimental articles in this compendium (articles 1 and 2), this methodology was 
applied, with different needs and complexity levels in each case. For instance, the first article 
makes use only one spectroscopic technique, thus data fusion and traceability was a rather simple 
process, in contrast to the second article were three spectral vectors were used or each of the 
measured points. Regardless of these differences, both cases successfully obtain insightful results, 
which are discussed in each article accordingly. The third and fourth articles, in contrast, are open-
access and open-source tools to help implement this methodology. The following subsections 
explain in more detail each of these steps, highlighting key considerations and details essential for 
its implementation, and the following chapter introduces the articles in question where their 
specific details are presented. 
 

2.1 Sample preparation 

During this thesis there have been two different sets of samples prepared in collaboration with 
colleagues from the SEMS group at IREC, and from the Dutch Organization for Applied Scientific 
Research (TNO). Both of these sample sets were developed with graded variations of one of their 
components. The combinatorial sample set used in the first study in cooperation with TNO is sub-
divided in three sets with different substrate materials used: Si, PET/CIGS and PET. On top of 
these substrates a nanometric layer of AlOx was deposited using a laboratory-scale rotary spatial 
atomic layer deposition (ALD) reactor. The nominal thickness of the AlOx layers was changed 



63 

  

from 15 nm up to 75 nm. Moreover, due to the used technological process, a graded layer of AlOx 
was deposited with the gradient in a radial shape, thicker towards the center and thinner towards 
the edges (Figure 2-2). This allows to develop a methodology based on normal reflectance (NF) 
spectroscopy for monitoring AlOx nanolayer thickness. More details and information about these 
samples can be found in the respective published article also presented in Section 3. 
 

 
Figure 2-2: Samples used for the AlOx thickness evaluation experiment on A) PET/CIGS, B) Si, 
and C) PET substrates. The final diagram is an approximation of the measured points. The inner 

radius of the AlOx deposition is 1.2 cm, meanwhile the outer radius is 7.6 cm. Extracted from 
[112]. 

 
For the sample used in the second study, a CZGSe combinatorial sample was synthesized with a 
compositional gradient of [Zn]/[Ge] ratio (Figure 2-3). The sample was made by sputtering of the 
metallic precursor and it subsequent selenization. The sputtering was performed on a soda lime 
glass substrate covered by a metallic Mo layer. The solar cell devices were then finished with the 
standard procedure for SEMS devices, by depositing the CdS layer (using chemical bath 
deposition), i-ZnO layer (using sputtering of Zn metal in O atmosphere), and In2O3-SnO2 layer 
(using sputtering of In-Sn alloy in in O atmosphere). With the use of Raman spectra measured 
under different excitation conditions, the effects of the graded [Zn]/[Ge] ratio on structural and 
compositional properties of the compound and on the performance of the solar cell devices was 
explored in detail. More details and information about this sample can be found in the respective 
published article also presented Section 3. 
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Figure 2-3: Photo of the CZGSe kesterite sample used in the second article. Change of the color 
is directly related to gradient of [Zn]/[Ge] ratio. Extracted from [112]. 

 

2.2 Characterization techniques 

Given the intrinsic complexity of the compounds and layer structures in TFPV devices, it is crucial 
that the characterization of the sample library is thorough and exhaustive. This entails applying 
multiple characterization techniques to the same defined small area of the sample, known as the 
analysis area or pixel cell. Such a comprehensive approach is necessary to maximize the data 
gathered and to uncover potential correlations. The chosen methods for characterization should be 
non-destructive, possess a spatial resolution equal to or finer than the pixel cell size, and ideally 
offer fast data acquisition times and automation capabilities. The techniques must be non-
destructive, so it is possible to conduct numerous measurements on the same sample without 
altering its properties. Additionally, a high spatial resolution is essential to detect and analyze the 
variations in properties present in graded combinatorial samples accurately. The techniques 
utilized in this study, which are detailed below, meet these criteria. 
 

2.1.1 Raman spectroscopy 

Raman measurements have been performed using IREC developed Raman setups optimized for 
the UV–Visible spectral region (based on Horiba Jobin Yvon FHR640 monochromator) and NIR–
IR region (based on Horiba Jobin Yvon iHR320 monochromator). The first system is coupled with 
an open electrode CCD detector cooled down to -132 °C and the second with NIR enhanced CCD 
detector cooled down to -75 °C. Solid state lasers (λex = 532, 633, 785 nm), and gas He-Cd lasers 
(λex = 442 nm) were used as excitation sources. Different gratings for the light dispersion were 
employed to optimize the spectral resolution. The measurements were always performed with laser 
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power density in the range 25-150 W cm−2 by using a macrospot with a diameter in the range of 
50–70 μm depending on the excitation wavelength. Finally, the use of unpolarized laser beam 
allowed to minimize the impact of the crystalline orientation in the Raman spectra. 

2.1.2 Spectroscopic Normal Reflectance 

A probe with a broad emission (400 – 1000 nm, approximately) halogen lamp as illumination 
source was used for the reflectance measurements. The IREC designed probe was coupled to an 
XY-crane to enable mapping measurements and the acquired signal was processed through a 
compact CCD spectrometer (Thorlabs CCS200). A vacuum chuck table was employed to ensure 
the flatness of flexible samples during measurements. A spot size of ~100 µm and acquisition 
times in the 10-100 ms range (depending on the type of sample analyzed) were employed for the 
measurements. 

2.1.3 Optoelectronic characterization 

I-V measurements were performed under illumination and in dark conditions have been performed 
to evaluate the final device performance. I-V characteristics were acquired on complete devices 
using a Sun 3000 AAA solar simulator from Abet Technology (uniform illumination area of 15 x 
15 cm2) calibrated with a Si reference solar cell under AM1.5 illumination. Sample temperature 
around 25 °C was kept during the measurements. 

2.1.4 X-ray fluorescence 

Compositional measurements and thickness estimation of the different layers were determined 
with an X-Ray fluorescence (XRF) equipment (Fischerscope XVD) calibrated by inductively 
coupled plasma (ICP). The measurements were done using a 50 kV accelerating voltage, a Ni10 
filter to reduce background signal, and an integration time per measuring point of 45 seconds. The 
equipment in question comes equipped with a measurement analyzer software that permits the 
estimation of compositions and thickness of the layer stacks by calculating attenuations in the 
subsequent layers, this required sample calibration that was analyzed by ICP technique. 

2.3 Automated measurements 

In accordance with the developed methodology described above, the use of fast, automated 
mapping measurement procedures is important due to the high number of measurements to be 
performed on the sample libraries that, otherwise, could result in extremely high acquisition times 
for obtaining the high-statistics that are desirable for AI application. There are significant advances 
in automation of the measurement systems, that are self-controlled, do not require significant 
sample preparation time or the permanent control and supervision of an operator. In the case that 
these systems are not available, standard spectroscopic systems can be automated through the 
coupling of measuring probe-heads to programmable motorized XYZ gantry systems or translation 
stages combined with the use of optical fibers or with the use of detectors that can be integrated 
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within the probe-heads. This approach leads to a significant reduction of the labor and time needed 
for acquiring a statistically relevant amount of data and to increase the size of the data sets. 
Automation is then a critical component to significantly contribute to the evolution, enhancement, 
and development of any research area, including TFPV materials and devices. It enables an 
enhanced efficiency and suitability into the research process with fast and consistent data 
acquisition and reduced long-term costs that yields better products. 
 
In this thesis work an automated spectroscopic platform was developed and implemented to 
streamline the measurements and preliminary analysis of various spectroscopic techniques, 
including multiwavelength RS, PL, and NF. This system was designed with a modular approach, 
comprising of several components such as a large area and high precision X-Y gantry crane, 
multiple modal probe, light excitation source, spectroscopic detector, and a system controller 
(consisting of both hardware and software). The centralized control of these modules was achieved 
through the implementation of custom software, utilizing LabVIEW for the control of the 
equipment and Python for processing the obtained data. LabVIEW, with its robust ability to 
interface seamlessly with hardware, is particularly well suited for managing the complex 
coordination required among the various components of the system. Also, beyond its intuitive 
graphical programming interface, LabVIEW is also commonly supported natively on several 
commercially available pieces of hardware, making it easy to implement and merge with other 
systems. On the other hand, Python brings to the table its advanced data analysis capabilities, 
courtesy of several extensive libraries available. Additionally, the customization and scalability 
offered by both LabVIEW and Python are important for both research and process monitoring 
settings where specific needs and modifications are required. Moreover, the strong community 
support and comprehensive documentation available for both languages greatly aid in 
troubleshooting. Together, the integration of LabVIEW's hardware-oriented precision with 
Python's powerful data handling and analysis proficiency forms a powerful combination, making 
them ideal for creating an automated, efficient, and adaptable spectroscopic platform. 
 
More specifically, LabVIEW was used for the automation and coordination of the gantry systems 
and spectrometers. In other words, LabVIEW is accountable for the measurement, acquisition, and 
movement. This is shown in Figure 2-4 where the block diagram (fundamental way of 
programming in LabVIEW) is shown. The figure shows only the section of the program that checks 
for the position of the probe to decide whether to perform a measurement or not. Additionally, 
some basic pre-processing is done with LabVIEW. For instance, normally more than one 
measurement is acquired per point to both smoothen the spectra by performing an average and also 
to remove artifacts such as cosmic rays, in the case of RS for example [113][114]. These types of 
operations are simple and require little processing resources, so LabVIEW can handle these in 
operations right after a measurement and keep reduced acquisition times. Even though it is possible 
to easily integrate Python to perform these operations within LabVIEW, it is decided for these to 
be performed as mentioned for a leaner code structure.  
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Figure 2-4: LabVIEW block diagram for measurement synchronization of the v1 system. The 

system constantly checks the location of the probe and performs measurements when they match 
the defined points by the user. 

 
Then Python is reserved to handle more complex and resource intensive processing after the 
measurements and before the data is used for analysis and for procedures that need the 
measurement, or a sub-set of the measurement, to be completed. For example, for RS, pre-
processing steps will include axis calibration and baseline removal. The first one requires for a 
reference measurement to be performed either at the beginning or end of a sample measurement. 
Both calibration measurements are recommended when the total time is considered too long, since 
conditions may change significantly during that time. These references contain well-known 
characteristic peaks, such as Si which shows a peak at 520 cm-1, and the peaks are fitted with a 
distribution, normally Lorentz distribution in this case. With this, it is possible to more accurately 
check how the axis is shifted. When two calibration measurements are performed, the average shift 
can be used or the spectras can individually be corrected with the closest calibration measurement 
in terms of time. This step normally would require a manual identification and fitting of the peak, 
but it is automated in just one single line of code using Python and the spectrapepper library 
(spectrapepper is the third article in this compendium). After, the baseline may be removed. For 
this, a b-spline is fitted, under the peaks through points in the spectra to remove the baseline below. 
For this step, no generalized and fully automated way has been found yet in the literature since is 
shows very specific needs and parameters for each problem. Because of this, the points for the 
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curve fit must be found manually, but this only needs to be done once, since preserving the code 
with the parameters will secure repeatability through any other dataset from the same material. 
This is still true for normalizing to specific peak areas or peak ratios. This procedure can be 
visualized in Code 2-1 as a functional piece of code. As mentioned, this same code secures 
consistency and repeatability, as the same “formula” can be used for other measurements of the 
same sample or other samples of the same material just by changing the data source file. Another 
example is shown in Annex D, where 196 spectras are processed in just 0.1 seconds. 
 
import spectrapepper as spep 
 
# Load the data to be processed and calibrated. 
x, y = spep.load('raman_measurement.txt') 
 
# Load the calibration data from Si sample. 
x_si, y_si = spep.load('si_calibration.txt') 
 
# This function checks automatically for the peak, fits 
# a curve, and extracts the shift of the axis. 
x_shift = spep.shiftref(y_si, x_si, ref_peak=520) 
 
# The shift is added to the measurement axis. 
x = x + x_shift 
 
# Remove baseline. 
y = spep.bspbaseline(y, x, points=[160, 315, 450, 530]) 
 
# Normalize the spectra to the maximum value. 
y = spep.normtoratio(y, x, r1=[190, 220], r2=[165, 190] 
 
Code 2-1: Example code for processing RS data from data acquired in the LabVIEW system. 

Total effective lines of code are seven. 
 
In a first instance, a first version (v1) of the software was used in the first article. This system 
consisted in a compact CCD spectrometer (Thorlabs CCS200) coupled to a broad emission (400-
1000 nm, approximately) halogen light source and a NR probe. The probe was attached to a XY 
gantry system for the automated movement. Both the spectrometer and the gantry system are 
connected to the control unit (PC) and programmed with LabVIEW. This had to be done in such 
a way that the movement of the crane and the spectrometer measurement where fully coordinated, 
ensuring consistency and repeatability. In this case, the measurements were performed while the 
crane was in movement, emulating the conditions in a roll-to-roll environment where the CIGS 
sample are produced. A picture and diagram of this system is presented in Figure 2-5A, and the 
user interface (UI) is attached in Anex A. An evolved second version (v2) was used for the second 
article, mainly improved in the ability of performing multi-technique measurements in a quasi-
simultaneous way and in the same spots. The diagram and photo of this system is shown in Figure 
2-5B, and the UI included in Anex B. The system was also further developed in cooperation with 
the SEMS members to use a more advanced version in real process-monitoring conditions. The UI 
of this system is included in Anex C. 
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Figure 2-5: Photo and scheme of A) first version of the system used in the article 1 and B) 

second version of the system used in article 2. 
 

2.4 Data conditioning, fusion, and traceability 

Once the data has been acquired, the next step in the methodology is the conditioning and fusion 
for the utilization in ML algorithms considering the necessity of the data to be traceable. In this 
process, a critical point is data separation into targets and features. Targets are the properties to 
predict or classify by the ML algorithm, while features, also known as descriptors, are the variables 
used to make that prediction. Choosing the correct targets and features to be used in AI assisted 
methodologies is one of the most critical steps in data analysis, as the input of irrelevant features 
or inadequate targets will lead to no or confusing results, but a good selection of these will increase 
the possibilities for a successful experiment with insightful and interpretable results 
[81][109][115]. In the case of TFPV devices, various targets can be defined such as fabrication 
parameters, chemical composition of a specific layer, or, more commonly, optoelectronic data of 
the final solar cell (efficiency, open circuit voltage (VOC), short circuit current (JSC), and fill factor 
(FF)). In most cases, the target data will be scalars, each associated with a specific sample of a 
discrete library or a specific area of a graded sample. On the other hand, features can be the results 
provided by the characterization techniques such as Raman, PL or XRF data as well as the 
fabrication parameters as described above. This means that features may have heterogeneous data 
of one- (scalars) or high- (vectors, images) dimensionality, which adds additional complexity on 
the data treatment related to heterogeneous data fusion. An important remark is that the data 
selected for features should not be in the targets in the same workflow. 
 
Data pre-processing can also be required for specific data types or measurement techniques. The 
main objective of data pre-processing is avoiding the introduction of non-relevant features that are 
not directly related to the sample itself, but rather to the equipment (e.g. instabilities, characteristics 
of certain components, design limitations, artifacts…) or to the measuring environment 
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(temperature effects, background illumination and shadows…). This is especially critical when 
using spectroscopic data in which noise, artifacts, spikes or background signals may add non-
relevant information in the spectra. The data arising from each different characterization technique 
have different pre-processing requirements. For example, in the case of RS it is commonly 
necessary to calibrate the spectral range and correct peak positions with some reference sample, 
remove spikes and subtract the baseline. Figure 2-6 shows an illustrative example of spectroscopic 
data (Raman and PL) before and after pre-processing (and fusing, which is explained below). 
 
The data conditioning process should be completed with a data standardization process, which 
consists in scaling up the data so that they are numerically comparable among them. For instance, 
if a scalar data has a maximum value of 5 and is to be fused with a vector that has a maximum 
value of 5,000, normalization may be necessary for the ML algorithm to accurately consider the 
scalar feature inside the fused data vector. This could be done by normalizing each technique to 
its global maximum, or through other methods such as standardizing or normalizing each step of 
the merged vector from 0 to 1, also known as Min-Max scaling. For instance, standardization 
transforms the data in the way that it has a mean of zero and a standard deviation of one. It subtracts 
the mean value of the data and divides by the standard deviation, effectively re-scaling or 
standardizing the range of the data. This approach assumes that the data follow a Gaussian or 
normal distribution and scales them accordingly. It maintains the shape of the original distribution 
and the outliers remain as outliers. On the other hand, Min-Max scaling scales and translates the 
data within a specified range, typically between 0 and 1. This method subtracts the minimum value 
from each step of the data series and divides by the range of the data set (i.e., maximum value 
minus the minimum value). This technique bounds the data but doesn't change their distribution. 
While it is a simple and common scaling method, Min-Max scaling can be significantly influenced 
by outliers in the data, causing a majority of the normalized data to be squeezed in a smaller 
interval. In this regard, data normalization is not a straightforward procedure, and the best option 
needs to be evaluated case by case to ensure that the original information is not altered or that 
artifacts do not appear in the process, which could greatly affect the data analysis results. 
 
Once the process of data conditioning is performed, the data of each measured point needs to be 
fused into a single vector that can be fed into the ML algorithm. In the case of homogeneous data, 
i.e. when all the data are of the same type, either scalar features or vector features can be joined 
together in a single vector with higher dimension in a straightforward way. Such a vector then 
becomes a part of the input file for the ML algorithm, and specific indicators must be created and 
saved for each of these vectors to keep the traceability of the data. Figure 2-6 shows an example 
of such a high dimensional spectrum (vector) which is obtained by concatenating Raman and PL 
spectrum (after their conditioning). 
 
For the publications in this compendium, the above procedure was used, however for a different 
number of characterization techniques. For the first article, only NF was used for the 
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characterization technique proposed. These spectra are obtained from the spectrometer on a 0 to 1 
scale, and no further processing was necessary other than the subtraction of the bare base material 
spectra to the deposited AlOx measurement (as explained in the published article). From there, the 
dataset was scaled using standardization (as explained above) before being fed to the ML algorithm 
as a full vector, without extracting any features beforehand. On the other hand, for the second 
experiment, Raman spectra measured under 442 nm, 532 nm, and 785 nm excitation wavelengths 
are used for the characterization of the graded sample. Before being introduced as features into the 
PC-LDA, these were processed separately by wavelength and then merged into a single vector. In 
this case, the spectras were normalized to the ratios of peaks 172 and 205 cm-1 for all wavelengths 
and then normalized to the global maximum of each wavelength, effectively taking the scale to a 
global maximum of 1 to each wavelength, to finally merge them together by cell. 
 

 
Figure 2-6: Example of a high dimensional spectrum combining Raman and PL spectra for a 

single measured point. A) shows the raw Raman measurement, B) the PL raw measurement and 
C) the fused vectors after processing. 

 

2.5 Data analysis 

Data analysis is the process of examining and interpreting the information extracted from 
characterization to gain insights and conclusions about the studied samples. In spectroscopic 
analysis, this typically involves using specific indicators taken directly from the spectra, like 
comparing area ratios in different spectral regions, identifying peak positions or inflection points, 
or measuring peak widths, often through spectral or peak fitting. For instance, RS can reveal a 
variety of aspects such as crystalline quality, structure type, presence of defects, secondary phases, 
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or variations in layer thickness. These aspects are subtly included in the spectra through changes 
in the features of the peaks: position, full width at half maximum (FWHM), absolute or relative 
intensity, symmetry, etc. However, calculating these properties automatically and without 
supervision in a generalized way can be challenging due to the data's complexity. For instance, to 
accurately calculate the areas of peaks in a Raman measurement (for example), a detailed 
deconvolution of the spectra needs to be performed. This can be illustrated in Figure 2-7, where 
the full deconvolution of the measurement is perform to extract more accurate area values of the 
peaks at 176 cm-1 and 250 cm-1 [116]. Even though this approach yields more accurate results, it 
implies the deep knowledge of the spectra and the possible peak constitution of the data based on 
the present materials and structures in the sample. Additionally, this process requires long 
processing times, as normally a combination of manual and automated processes is needed, along 
with considerable computational resources for larger data sets. A different approach to perform 
such task is to use Mutlivaritae Curve Resolution (MCR), which covers several algorithms for 
mixture analysis in spectroscopic data in an automated way [117]. This is performed by making 
several peak fittings in known peak locations under an optimization function to minimize the 
difference between the sum of the fittings and the analyzed spectra. However, these techniques do 
require to be adapted in detail to each problem, which also requires expert knowledge and 
familiarity of the possible peaks due to materials and structures present in the studied samples. 
Even though the recognition of appearing peaks can be approximated (for example using PCA), 
aiming for a more automated process, it still requires deep knowledge of limitations and 
restrictions of each problem, which implies larger computational resources needed for each 
deconvolution, thus making it difficult to implement in industrial processes and high-throughput 
and big data (BD) experiments. 
 

 
Figure 2-7: Deconvolution of a Raman spectra from a CZTSe sample using a 325 nm excitation 

source. Extracted from [116]. 
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With this in mind, traditional methods of spectral analysis have several limitations including: 
 

 They are often slow and may require a large human and computational resources, making 
them inefficient for large-scale studies. 

 Expert knowledge and experience are necessary for accurate analysis, limiting 
accessibility. 

 They are not easily adaptable as a universal method, as each experiment needs specific 
parameter adjustments. 

 Analyzing large datasets is challenging because of the significant computational resources 
required. 

 The accuracy of the results heavily relies on precise and careful data processing and 
conditioning. 

 
To address these issues, the used methodology incorporates ML algorithms, which can handle such 
data effectively with minimal need for human oversight, while still providing valuable insights. 
This approach uses dimension reduction algorithms that consider all the available information and 
simplify it, making it easier to handle and understand. This method leads to more efficient and 
effective data analysis for TF materials, improving both the speed and the quality of the analysis. 
Specifically, for the first article PC-LDA is used, meanwhile LDA is used for the second article. 
These are closely related algorithms, the first one being a cascaded combination of PCA and LDA. 
PC-LDA, and its separate parts as PCA and LDA, stand out in data analysis and classification for 
their useful characteristics, making them a reliable choice for high-dimensionality data due to their 
simplicity, interpretability, and efficiency in handling smaller datasets. These methods, also 
notable for their computational speed, are often preferred for analysis when resources, such as data 
and computational power, are limited. Additionally, their susceptibility to overfitting is less in 
smaller datasets, a common challenge in more complex models, and the PCA aspect of PC-LDA 
excels in feature extraction and dimensionality reduction, crucial for high-dimensional data 
handling. In contrast, while algorithms like RF, SVM, QDA, and ANNs can also perform well 
with high-dimensionality problems, they each have limitations. RF, for instance, is not a dimension 
reduction algorithm, discarding information in the process that might be important far ahead, and 
lacks the capability for lower-dimensional visual representations, limiting its use in further 
validation and physical model development. SVM, although effective, does not maintain the 
relationship between classes due to its nature of randomization in its initialization. QDA, although 
closer to PCA and LDA in working principle, tends to exhibit poor test and validation performance 
and a tendency towards heavy overfitting due to its quadratic nature. ANNs are more difficult to 
interpret due to their complexity, are less efficient with smaller datasets, are more computational 
demanding, require to be carefully designed by experienced programmers, and do not offer lower-
dimension visualizations. In this regard, it is important to test between these algorithms, specially 
LDA and PCA as standalones as they share a lot of the benefits of PC-LDA and may offer better 
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results in specific cases, reason why the first article of this thesis uses PC-LDA and the second 
uses LDA. 
 
Finally, in order to facilitate the use of the ML by non-experts with a specific focus on 
spectroscopic data, the third article describes the spectrapepper Python package that includes 
specific tools to conditioning the spectroscopic data and also visualize ML results from dimension 
reduction algorithms. Additionally, the fourth article describes the pudu library for gaining insights 
into the ML results. With respect to the ML algorithms, other open-source libraries have done 
good work simplifying their application. In particular, the library scikit-learn [118] has been used 
for the programming of PCA, LDA, and PC-LDA. 
 

2.6 Methodology for spectrapepper library 

The Spectrapepper library is built on two key ideas: simplicity and flexibility. Simplicity means 
it's easy to use, even if the user is not an expert with coding. It uses a straightforward approach, 
offering functions that stand on their own, without requiring knowledge of classes, methods or 
other libraries. This makes it more accessible, especially for beginners. The user only deals with 
functions that take in parameters and return results, all while working with standard Python lists. 
Flexibility means the library can handle different tasks easily. You can use the functions with one 
or many spectras without changing the function name or its parameters. It doesn't matter the size 
or type of the spectras; the functions are designed to work with any spectral data, as long as it's 
formatted correctly. This correct format means having the data in rows, where each row represents 
one spectra. This design choice makes Spectrapepper versatile and user-friendly, helping the user 
to focus on the experimental and analytical challenges. The syntax structure is also standardized 
across the library. This means that functions have straightforward and intuitive names and 
consistent parameters. In particular, the first parameter will always be the spectral data, symbolized 
with a 𝑦. The x-axis is always the second parameter but not mandatory, as sometimes it is irrelevant 
for the operation to be performed (i.e. when normalizing to the max value of 𝑦). This syntax is 
illustrated in Figure 2-8. 
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Figure 2-8: Syntax structure that all functions in the library, that accept spectral data as input, 

follow. The parameters 𝒚 and 𝒙 are only for the functions dedicated to spectral processes, which 
is the main focus of the library. However, there are some functions that can work with any kind 

of data, but are useful to have in a spectroscopic analysis toolkit (i.e. for the calculation of 
Spearman and Pearson correlation coefficients)  

 
One of the goals of the library is to tackle all steps in research and industrial processes, offering at 
least a number of functions for data acquisition, processing, analysis, and visualization, as shown 
in Table 2-1. For example, for data acquisition, cosmic ray functions are included, which are 
essential to clean the raw outputs in Raman spectroscopy [114][113]. For data processing, common 
procedures are included, like baseline removal techniques, noise removal, smoothing, and 
normalization techniques. For analysis, specrapepper contains functions for calculating common 
spectral characteristics, like full width half maximum, areas, averages and standard deviations, and 
asymmetry. Finally, some functions help to visualize results and the data, for example with stack 
plots, covariance matrices, and confusion matrices. Some functions may be used in multiple steps, 
like the “pearson” and “spearman” functions that both calculate the respective correlation 
coefficients matrices and also plots them. 
 
Table 2-1: Example functions from the spectrapepper library categorized by their main purpose 
according to the experimental step. Full list of the functions and their explanation can be found 

in detail in the library’s repository. 

Acquisition Processing Analysis Visualization 

cosmiccdd 
cosmicmed 
cosmicmp 

bpsbaseline 
alsbaseline 
normtoratio 
normtoglobalmax 
normtomax 
lowpass 
moveavg 

fwhm 
avg 
median 
sdev 
asymmetry 
crosscorrelation 
 

stackplot 
confusionmatrix 
spearman 
pearson 
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2.7 Methodology for the pudu library 

Spectroscopy is all about understanding how light interacts with materials, focusing on changes 
observed in spectral data. This data usually presents itself as peaks that differ in shape, symmetry, 
intensity, position, and complexity. Even the smallest alterations can indicate significant 
differences in the material being studied, although sometimes large changes might not be as 
impactful [119]. Therefore, properly analyzing these variations is crucial. The same principle 
applies when using ML with spectroscopic data, where detecting changes in spectral features is 
key. The pudu library, a direct result of this thesis, introduces four methods designed to assess 
such ML models based on the concept of change, namely importance, speed, synergy, and re-
activations. These techniques aim to help scientists delve deeper into their spectroscopic data 
analysis, extending beyond just the initial ML findings. 
 
Importance: Importance quantifies the relevance of the features according to the changes in the 
prediction according to defined sequential perturbations on the features. Thus, Importance is 
measured in probability or target value difference for classification or regression problems, 
respectively. In a formal way, let 𝑥 ∈ 𝑋 be a 2-D array of dimensions ℎ × 𝑤. Let 𝑃ெ be the 
probability function of the model 𝑀. Then, 𝑃ெ(𝑥) is the probability of 𝑥 to belong to a 
classification class according to the problem solved by 𝑀. Considering 𝑗 ∈ 𝐽 the feature in position 

൫ℎ௝ , 𝑤௝൯ of 𝑥, then the local importance (𝐿𝐼) for said feature 𝑗 is defined as: 
 
 𝐿𝐼௝ = 𝑃ெ(𝑥) − 𝑃ெ ቀ𝑅௝(𝑥)ቁ Eq. 2-1 

 
Where 𝑅 is a function of local perturbation of feature 𝑗. Then, the relative importance (𝑅𝐼) can be 
denoted as: 
 
 

𝑅𝐼௝ =
𝐿𝐼௝ − 𝑚𝑖𝑛(𝐿𝐼)

𝑚𝑎𝑥(𝐿𝐼) − 𝑚𝑖𝑛(𝐿𝐼)
 

Eq. 2-2 

 
Where 𝐿𝐼 contains all the 𝐿𝐼௝ of sample 𝑥. Then, importance is the difference in a model’s 

classification probability according to change in the features. 
 
Speed: Speed quantifies how fast a prediction changes according to perturbations in the features. 
For this, the Importance is calculated at different perturbation levels, and a line is fitted to the 
obtained values and the slope is extracted as the Speed value. This is better defined considering 
states of 𝑅 with different set parameters 𝑅ଵ, 𝑅ଶ, … . As for Importance for 𝑥, 𝐿𝐼 of feature 𝑗 using 
the different perturbaions would be 𝐿𝐼ଵ, 𝐿𝐼ଶ, … . Then, Speed is the slope calculated according to 

the linear fit of the 𝐿𝐼 points as ൫1, 𝐿𝐼௝,ଵ൯, ൫2, 𝐿𝐼௝,ଶ൯, … . Then, the speed is how fast the Importance 

changes according to change in the feature, or how sensitive it is. These can have positive or 
negative values, depending on the slope. A positive value means that a bigger change will produce 



77 

  

a bigger change in the prediction. A negative value means that bigger changes produce smaller 
changes in the prediction. 
 
Synergy: Peaks in spectral data can change at the same time as other peaks. However, their 
relationship can be difficult to pinpoint and understand, especially in more complex mixtures and 
materials. Synergy helps to explore these relationships of change by perturbating simultaneously 
pairs of areas of interest. For this, consider a feature 𝑗∗ ∈ 𝐽 and a distinct feature 𝑗 ∈ 𝐽 from 𝑥௜ . 
Both are perturbated under 𝑅 obtaining 𝑥௝∗,௝. Then, the local importance obtained is 𝐿𝐼௝∗,௝. Then, 

 
 𝐿𝐼௝∗ = ൫𝐿𝐼௝∗,ଵ, 𝐿𝐼௝∗,ଶ, … ∀j ≠ 𝑗∗ ∈ 𝐽൯ Eq. 2-3 

 
The synergy then indicates how features complement each other in terms of change and the effect 
on the prediction. 
 
Activations and re-activation: Convolutional Neural Networks (CNN) can result in highly 
complex structures. As such, understanding how the final form of a CNN relates to the input data 
can be certainly challenging, but if done correctly can yield great benefits, as shown in [120]. Re-
activation attempts to evaluate this structure in terms of change, thus better understanding how 
spectral characteristics affect the final shape of such networks. To do so, consider the following 
definitions: 
 
Units: In a convolutional layer 𝑙 ∈ 𝐿, where 𝐿 is the group of all convolutional layers in the model 
𝑀, the number of units in 𝐾 is defined by the size of the input (ℎ, 𝑤), kernel size (𝑘௛ , 𝑘௪), strides 
(𝑠௛, 𝑠) and the filters 𝑓. Specifically, the number of units can be calculated as: 
 
 𝐻଴ = (ℎ − 𝑘௛) 𝑠௛ + 1⁄  Eq. 2-4 

 
 𝑊଴ = (𝑤 − 𝑘௪) 𝑠௪ + 1⁄  Eq. 2-5 

 
 𝑢𝑛𝑖𝑡𝑠 = 𝑓 ∗ 𝐻଴ ∗ 𝑊଴ Eq. 2-6 

 
Where (𝐻଴, 𝑊଴) are the dimensions of the output of layer 𝑙. 
 
Activation map: As defined in [121], for 𝑥, take the activation map 𝐴௞(𝑥) for each of the units 𝑘. 
Then 𝑎௞ is the activation distribution for each individual units for 𝑋௦ ∈ 𝑋, where  𝑋௦ is a subset of 
all samples 𝑋. Then, all the activations belonging to the 𝑝 quantile as 𝑃(𝑎௞ > 𝑇௞) were 𝑇௞ is the 
value above which the quantile exists. 
 



78 

  

Re-activation map: The above can be evaluated based in feature perturbations considering 𝑥, the 

original data, and 𝑥௝, the perturbated input in feature 𝑗, and evaluate the difference as 𝐵௞൫𝑥௝൯ −

𝐵௞(𝑥) = ∆𝐵௞,௝ ∀𝑗 ∈ 𝐽, where 𝐵 is the pre-activatoin map of unit 𝑘. From here we can extract the 

distribution ∆𝑏௞ and then pass the data through the activation function to obtain 𝑎௞. Finally, select 
the 𝑝 quantile as 𝑃(∆𝑎௞ > 𝑇௞) = 𝑝. In this case, 𝑋௦ is the set of perturbed samples derived from. 
 
The latter accounts then for difference in unit activations after perturbation that would account for 
a re-activation. For example, if unit 𝑘 has and activation value of 𝑢, and after perturbation the same 
unit 𝑘 obtains a value of 𝑢∗ = 𝑢 → ∆𝑢 = 0, then it is not re-activated considering an activation 
function of ReLU or LeakyReLU. In other words, this looks for significant changes in the 
activation map according to change, meaning significant a value that would be considered an 
activation in 𝐴௞(𝑥). 
 
With this, it is possible to obtain the following information: 
 

- How many units are re-activated, in units of change 
 

- What feature produces more unit re-activations, per unit of change 
 

- What unit is re-activated the most, per unit of change 
 

- Which feature re-activates what unit the most times 
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3 PUBLICATIONS 

This thesis is structured in the shape of article compendium, where the scientific articles in which 
this manuscript is founded are collected in this section and will constitute the following 
subchapters and are presented chronologically as they were submitted. The first two of these 
articles have been published in high impact factor journals under the titles: 
 

 Thickness evaluation of AlOx barrier layers for encapsulation of flexible PV modules in 
industrial environments by normal reflectance and machine learning. Progress in 
Photovoltaics: Research and Applications, 30 (3), 229–239. 
https://doi.org/10.1002/PIP.3478 

 
Using the Contributor Role Taxonomy CRediT, ETGL work can be described as: 
Conceptualization, Data curation, Formal Analysis, Investigation, Methodology, Software, 
Visualization, Writing – original draft. 

 

 Combinatorial and machine learning approaches for the analysis of Cu2ZnGeSe4: influence 
of the off-stoichiometry on defect formation and solar cell performance. Journal of 
Materials Chemistry A, 9 (16), 10466–10476. https://doi.org/10.1039/d1ta01299a 

 
Using the Contributor Role Taxonomy CRediT, ETGL work can be described as: Data 
curation, Formal Analysis, Software, Visualization, Writing – original draft. 

 
The third and fourth articles are open-source and open-access software that have been developed 
over the past years involved in the program in response to the difficulties found in the literature 
and the performed research itself. The detailed guide and explanation of these softwares are 
published as the following peer-reviewed articles: 
 

 spectrapepper: A Python toolbox for advanced analysis of spectroscopic data for materials 
and devices. Journal of Open Source Software, 6 (67), 3781. 
https://doi.org/10.21105/joss.03781 

 
Using the Contributor Role Taxonomy CRediT, ETGL work can be described as: 
Conceptualization, Data curation, Formal Analysis, Methodology, Software, Visualization, 
Writing – original draft. 

 

 pudu: A Python library for agnostic feature selection and explainability of Machine 
Learning spectroscopic problems. Journal of Open Source Software, 8 (92), 5873. 
https://doi.org/10.21105/joss.05873 
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Using the Contributor Role Taxonomy CRediT, ETGL work can be described as: 
Conceptualization, Data curation, Formal Analysis, Methodology, Software, Visualization, 
Writing – original draft. 

 
The first study acts as a proof of concept of the methodology proposed in Section 2 of the thesis, 
demonstrating the efficacy of CA in conjunction with ML for spectroscopy in TF research and as 
a valuable tool for monitoring production processes in industrial environment and using an early 
version of the automated system. The first functions included in the spectrapepper library where 
coded and used during this experiment. The second publication also follows the same 
methodology, with ML and CA, focusing on research objectives aimed at enhancing understanding 
and gaining deeper insights into material properties. This experiment, however, uses more 
spectroscopic measurements than the first, further showing the capabilities and versatility of the 
methodology. The third work is the open-access and open-source library spectrapepper, containing 
all the functions and procedures used for the spectroscopic processing and analysis performed for 
the first two articles and for the subsequent work, allowing for a seamless and simple integration 
of AI methodologies for HTE in IREC, from data acquisition to data analysis. Finally, the fourth 
article is the open-access and open-source library pudu, which deals with explainability and 
interpretability for the results from ML models, allowing for the extraction of deeper insights of 
such results from the performed experiments. This library was published and developed after the 
publication of the first three articles, but it naturally appeared as a necessity and logical 
consequence of the methodology, since further and better interpretation of the ML results were 
needed to fully take advantage of CA and ML analysis. However, this library is used in the 
posterior exploratory experiments (Section 4), showcasing its potential and usefulness. 
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4. FURTHER EXPLORATORY EXPERIMENTS 

4.1 Introduction 

After exploring the dimension reduction approach with PCA, LDA and PC-LDA, in the last period 
of this thesis two new approaches were explored for AI driven analysis for TFPV materials and 
devices as an extension and logical step forward for improvement of the methodology used, as 
schematically shown in Figure 4-1. These two techniques are of different nature and tackle two 
different problems and questions that derive from ML results and can be used together to gain 
further insights from an experiment. The first question is about out-of-distribution (OOD) 
properties of TFPV materials. In other words, this first extension of the methodology explores an 
AI driven way to detect hypothetical compositional characteristics of TFPV devices for improved 
performance. This is done with a combination of the PC-LDA and CNN using explainability 
techniques and Multivariate Non-Linear Regressions (MVNLR) for prediction of these OOD 
properties. Essentially, a PC-LDA and CNN models are trained to perform the same classification 
task and are analyzed to see what features are more important, and this information is crossed 
validated between the models to see what features are consistently affecting the results, regardless 
of the model used. This combination is motivated by the objective of enhancing our comprehension 
of the combinatorial spectroscopic data at our disposal and facilitating data-informed decisions. 
As this kind of research in this particular field is still fresh and largely unpublished, it promises 
significant potential for impact. To maximize the utilization of CNNs, two unique networks are 
designed: a 1D network that directly interfaces with the existing data, and a 2D network requiring 
data transformation into a 2D matrix (an image), a novel process for this kind of data. The 
incorporation of a 2D CNN is motivated by the fact that these models more widely used and studied 
and also attract more interest from the scientific community. Additionally, 2D CNNs have the 
benefit of exploiting other data properties that may be overlooked by a 1D version, such as spatial 
correlations among different characterization techniques (8 spectroscopic measurements are used 
in this experiment) and the detection of intricate patterns. Upon completion of the CNNs' training 
and testing, sensitivity analysis and GradCAM techniques are applied to specific instances. This 
allows to gain insights into the algorithms' decision-making processes, yielding useful 
explanations that will further facilitate a more thorough dataset analysis. 
 
The second approach explores in more depth the use of CNNs for the classification of TFPV using 
a modern technique called dissection. This method studies the structure and behavior of the CNN 
with the premise that deeper understanding of such models may allow the user to modify the model 
and obtain enhanced and customized results and to obtain deeper insights into the data. This is 
motivated by the fact that ML techniques, particularly CNNs, have revolutionized various 
scientific disciplines and offer unprecedented capabilities for data analysis, prediction, and even 
the discovery of new materials with desirable properties. However, the application of CNNs in the 
field of energy materials faces unique challenges and opportunities that warrant focused 
investigation. In particular, a critical issue, as discussed in the introduction of this work, is the 
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interpretability of these type of models. While CNNs are powerful tools for pattern recognition 
and prediction, their 'black-box' nature makes them difficult to interpret, becoming an increasingly 
important topic in research and applications [101]. This is particularly problematic in material 
science, where understanding the underlying mechanisms is crucial for the development and 
optimization of new materials. The lack of interpretability can also affect the trust that researchers 
place in the model's results, which is essential for their broader acceptance and application in the 
scientific community. The above signifies that even though results from ML models can seem 
impactful due to good classifications and logistic regressions, they may lack real scientific value 
due to the lack of explanation, diminishing the significance of the results [90]. Therefore, there is 
a pressing need to develop and apply methods that not only improve the performance of CNNs but 
also make their decision-making processes more transparent. Enhancing interpretability can 
increase researchers' trust in these models, ensuring that they are not just statistically accurate but 
also scientifically meaningful. To tackle this problem, several tools have raised in the past years, 
including techniques such as SHAP [122], LIME [89], and GradCAM [123]. However, it is well 
documented that different explainability methods show disagreement in metrics such as feature 
importance rank and sign agreement (weather or not a feature has a positive or negative impact in 
the output), highlighting this important problem with post-hoc explanations [110]. A way to 
improve this is to use methods that not only aim to explain decisions of models but also try to 
reason their inner workings. Furthermore, understanding the intricacies of a CNN model can 
facilitate its manipulation and improvement, thereby increasing its reliability and efficacy. This 
can be performed with techniques such as dissection [121], which attempts to align individual units 
of a CNN with local features in the data. This allows the model to become more interpretable by 
assigning specific roles to individual units. For instance, researchers have been able to observe that 
there are units that are activated by specific concepts in images, such as objects, parts, materials, 
and colors [124]. This allows to deliberately and intentionally manipulate models to achieve 
desired results, such as removing or including specific objects in images, aiming to increase the 
interpretability, completeness, reliability and efficacy. This technique, in this case, is adapted to 
work with spectroscopic data and, therefore, spectroscopic features. 
 
This section shows these two expansions of the methodology with a combinatorial CZTSe-based 
sample divided in 225 cells, each measured 8 times under different conditions, 4 with PL and 4 
with Raman using 785 nm, 532 nm, 442 nm and 325 nm excitation wavelengths each, along with 
XRF and IV measurements. Thus, the same data derived from the same sample and processing are 
used for both approaches, which is explained below. Both approaches are natural next steps from 
the methodology described in this thesis (Section 2), and this section introduces the preliminary 
results obtained in the explorative work using them. A more developed technique of this kind may 
be used for synthetic experiments to skip and avoid physical ones, reducing research and 
development times further beyond what automatization in experiments can achieve. 
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Figure 4-1: Modified workflow of the methodology to include 1D and 2D CNNs along with 

respective explainability techniques. 
 

4.2 Methodology 

4.2.1 Sample 

The samples chosen for this experiment consist of 225 solar cells, sourced from a 15x15 
combinatorial CZTSe-based sample. The absorbers' composition (Figure 4-2) presents noticeable 
variability in terms of Copper, Tin, and Zinc, resulting in significant in-sample diversity across all 
optoelectronics. The highest VOC values typically emerge in proximity to the central and upper 
regions of the sample, exhibiting middle [Zn]/[Sn] ratio values and leaning towards a mid-low to 
low [Cu]/[Zn] ratio. On the contrary, the peak JSC values are usually found on the lower side of the 
sample, coinciding with medium and mid-low [Zn]/[Sn] ratios and medium [Cu]/[Sn] ratios. 
Highest efficiencies are detected closer to the sample's center, with diminishing values in a radial 
pattern. An important observation is that several cells appear devoid of any optoelectronic 
properties, mainly in the right edge and bottom and left-bottom edges. These samples, despite their 
seeming lack of utility, are preserved in the analysis for potential spectral property exploration if 
deemed necessary. 
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Figure 4-2: VOC, JSC, and Efficiency optoelectronic for the combinatorial sample (upper row) and 

Fill Factor and Compositional ratios of Zn/Sn and Cu/Sn (lower row). 
 

4.2.2 Sample characterization 

Each cell is measured using XRF, IV, Raman, and PL techniques, with the latter two employed 
under four distinct wavelengths: 325 nm, 442 nm, 532 nm, and 785 nm. Consequently, when all 
spectra are fusioned, a 1-D vector of length 15,344 is produced. Information regarding laser power, 
acquisition times, and averages for each of the techniques can be found in Table 4-1. Additionally 
displayed in the same table, the total acquisition time represents the collective minutes of 
acquisition throughout the entire sample, that is, taking into consideration all of the 225 cells, 
culminating in a grand total of 40 hours and 20 minutes. The time recorded does not factor in 
elements such as sample preparation, equipment calibration, processing, or movement times. It is 
worth noticing, that in the current study the main focus was on the research objectives and on 
testing of the methodologies, thus the used timings were selected to obtained relatively high quality 
of the spectra (with low signal to noise ratio), and these values can be further decreased for the 
more specific applications. 
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Table 4-1: Experimental setup and parameters of the spectroscopic techniques. Total Aq. Times 
is the amount in minutes of the total time needed to perform the measurement considering all the 

225 cells. 
 Raman PL 
Wavelength (nm) 785 532 442 325 785 532 442 325 
Power (mW) 3.9 3.5 5.5 3.6 3.75 5.2 1.2 3.2 
Acquisition time (s) 40 20 20 120 1 0.2 0.1 0.3 
Acquisitions (nº) 3 5 3 3 3 5 3 3 
Total Aq. Time (m) 450 375 225 1350 11.3 3.75 1.13 3.34 
Spectra length 2000 1024 1024 984 1210 512 5076 3514 

 

4.2.3 Data processing 

Following the methodology, the eight spectra were fusioned into a single vector for each cell, as 
has been performed in past studies [125][92]. This approach allows our algorithm to discern 
between techniques and concurrently incorporate their respective benefits for the classification 
process. For this merge to be effective, the techniques were scaled to a comparable scale. The 
Raman spectras were normalized to their main peak ratios for each of the wavelengths, meanwhile 
for the PL measurements were normalized to the global maximum of each of the wavelengths. 
With this, the maximum value is restrained to 1 for all of the techniques, and thus remain 
comparable when fusion is performed. For all measured points, the spectra were merged in 
descending source wavelength with Raman first followed by PL. In other words, first Raman 785, 
532, 442, and 325 nm followed by PL 785, 532, 442, and 325 nm. The resulting vector of 15,344 
is then reduced to a final it is of length 14,640 after deleting small ranges at the beginning and end 
of each spectra that normally contain artifacts left over from data processing, which focuses on the 
main ranges of this kind of data, normally on more central regions (Figure 4-3). 
 
For the 2D CNN a final step is performed to transform the is represented as images of 120x120 
pixels, which contains a total of 14,400 values. To match the obtained vector of length 14,640 after 
data processing, 240 additional pixels are removed from the end of the vector, without affecting 
any of the relevant areas. 
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Figure 4-3: Schematic of the transformation of the vector of length 14,640 to an image of 

120x120 pixels. As 120*120 = 14,400, 240 pixels have to be deleted in order be reshaped. In this 
case, the last 240 pixels were deleted as the offer little information and is the easiest way to 

accomplish this. Other approaches are possible, such as interpolating or deleting smaller sections 
across the spectras. 

 

4.2.4 PC-LDA 

In the PC-LDA model, the chosen target is VOC, which is intended for the classification objective. 
The feature selection is carried out using the 1D vector of length 15,344. This approach is expected 
to enhance observation of the methodologies that optimally inform the analyses of VOC. With VOC 
designated as the target, the PC-LDA model undergoes training for four classification groups: 
259<VOC, 259≤VOC<353, 353≤VOC<391, and 391≤VOC. Upon completion of the initial iteration, 
a sensitivity analysis is initiated to identify the sections of the spectra that are most relevant to the 
algorithm. This permits the elimination of spectra sections that hinder processing, ending with a 
feature length of 14,640. Consequently, this enables a further iteration to secure more faithful 
results and ultimately the selection of crucial sections for performing logistic regression over VOC.  
 

4.2.5 1D and 2D CNN 

For the OOD procedure, the architecture of the 1D CNN is composed of three distinctive 1D 
convolutional layers, each followed by batch normalization, max pooling, and a dropout layers. 
Initially, a 1D convolutional layer utilizes 4 filters with a 2-unit kernel and 1-unit stride in the 
14640x1 input vector. This layer's output undergoes a sequence of normalization, max pooling 
with a 16-unit pool size, and dropout at a rate of 0.20. A second 1-D convolutional layer with 8 
filters and a 4-unit kernel followed by batch normalization, max pooling with an 8-unit pool size, 
and dropout with rate of 0.20. The convolutional layers used ReLU as activation. Following these 
layers, a 1-D Global Average Pooling layer links to the final dense layer with four neurons and a 
softmax activation function, which provides a probability distribution over four classes. In contrast 
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with the 1D CNN, the 2D CNN shows 2 convolutional layers (1 input, 1 hidden) and one output 
dense layer. The first convolutional layer utilizes 2 filters with a 2x2 kernel and 1x1 stride, 
followed by a dropout layer with 0.3 rate. The second layer utilizes 4 filters with a 4x4 kernel and 
2x2 stride, followed by a dropout layer with the same 0.3 rate. Both layers use LeakyReLU with a 
-0.01 coefficient. These are followed by a Flatten layer and then the final dense layer of 4 units 
and a softmax activation. Just as the PC-LDA, the 1D and 2D CNNs are trained to classify VOC in 
four classification groups: 259<VOC, 259≤VOC<353, 353≤VOC<391, and 391≤VOC. 
 
For performing dissection, however, a slightly different CNN architecture was used. This is due to 
the fact that this CNN was design in a later time with the goal of improving results observed in 
previous attempts. Specifically, the constructed CNN is designed to classify the same data 4 classes 
according to the VOC value of the cell as measured in the IV curve: VOC < 303, 303 ≤ VOC < 363, 
363 ≤ VOC < 396, and 396 ≤ VOC. The resulting CNN is composed of three distinctive 1-D 
convolutional layers, each followed by batch normalization, max pooling, and a dropout layer. 
Initially, a 1-D convolutional layer utilizes 4 filters with an 8-unit kernel and 2-unit stride in the 
14640x1 input vector. This layer's output undergoes a sequence of normalization, max pooling 
with a 16-unit pool size, and dropout at a rate of 0.25. A second 1-D convolutional layer with 8 
filters and a 4-unit kernel followed by batch normalization, max pooling with an 8-unit pool size, 
and dropout with rate of 0.25. Lastly, a third 1-D convolutional layer with 16 filters of 16-unit 
kernel follow too by batch normalization, 8-unit max pooling, and dropout with 0.25 rate. All 
convolutional layers used LeakyReLU as activation function with a threshold of 0.05. Following 
these layers, a 1-D Global Average Pooling layer links to the final dense layer with four neurons 
and a softmax activation function, which provides a probability distribution over four classes. 
 

4.2.6 Explainability 

For the PC-LDA, sensitivity analysis is performed using the pudu library. For both of the 1D CNN 
and 2D CNN, sensitivity analysis along with GradCAM are used. This last one is applied for each 
of the convolutional layers of the networks. This allows comparing their results for more insightful 
information about the classification processes. 
 
For the last CNN analysis, the pudu library was also used. In this case, the sensitivity analysis was 
performed to quantify not only the probability impact of feature changes but also the activation 
values of the units of the last convolutional layer. 
 

4.3 Results 

4.3.1 Exploration of OOD properties 

Scores for the PC-LDA are exhibited in Figure 4-4 in the confusion matrices of A) and B). High 
training and test scores are evident, with a floor value of 0.82 for the 259 – 353 mV range in the 
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training set. The test set indicates a lower score of 0.73 for the cells performing at the lowest level; 
nonetheless, overfitting is discernible in the highest-performing data points, which achieve 100% 
accuracy. Sensitivity analysis (SA) reveals a significant influence of artifacts within the spectra. 
In other words, peaks and valleys in negligible zones of the spectra, especially at the start and tail 
sections, yield a relatively large impact on the classification of specific instances, as demonstrated 
in Figure 4-5. This information allows for the removal of these spectra zones and the training of 
an alternate PC-LDA model. As shown in the figure, the resultant vector is more concise, now 
measuring 14,640 in length. Figure 4-4C and D also displays how scores change following this 
process, with marked enhancements in both the training and test set. The mitigation of overfitting 
is clear, indicated by closer scores within groups and between training and test scores. This 
suggests a more equitable evaluation and comparison of the data. The established clusters are 
depicted in ¡Error! No se encuentra el origen de la referencia. (left), exhibiting clear separation 
and continuity.  
 

 
Figure 4-4: Scores in a confusion matrix for training (A) and test sets (B). The new scores of the 

new model after SA for training (C) and test (D). 
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Figure 4-5: Comparison between the first PC-LDA (left) and the second training (right) for each 

of the classes (from class 1 to 4 from top to bottom) in terms of importance according to 
sensitivity analysis. This shows how the vector changes in length after cutting off some of the 
sections. The importance is the average of the 10 closest spectra to the center of each of the 
clusters. Removing these sections appears to enhance some of the more important features. 

 
With the newly derived dimensions D1 and D2, a MVNLR can be performed in the shape of 
𝑓(𝐷1, 𝐷2) = 𝑦, with 𝑦 representing the VOC. A 2nd degree polynomial is selected due to the 
enhanced results compared to degree 1 and superior interpretability and visual representation 
relative to degree 3 and beyond, where results see only marginal improvements. Nonetheless, D1 
and D2 represent an already uninterpretable combination of thousands of higher dimensions, 
making it challenging, if not impossible, to derive insights beyond the fact that VOC can be 
predicted from this data. The regression, represented by Eq. 4-1, exhibits good correlation with R2 
scores of 0.85 as shown in Figure 4-9¡Error! No se encuentra el origen de la referencia. (center). 
The visual mapping of the resulting equation in an expanded solution space, seen in Figure 4-9 
(right), highlights continuity and also mathematically suggests a higher-performing cluster with 
elevated D1 and D2 values of the ranges 6-8 and 2-5, respectively. 
 
 𝑦 = 328 + 29.3 ∙ 𝐷ଵ − 19.4 ∙ 𝐷ଶ − 2.89 ∙ 𝐷ଵ

ଶ + 6.95 ∙ 𝐴ହ ∙ 𝐴ଵସ − 2.45 ∙ 𝐴ଵସ
ଶ  Eq. 4-1 

 𝑦 = 489 − 22.5 ∙ 𝐴ହ + 1.17 ∙ 𝐴ଵସ Eq. 4-2 
 𝑦 = 520 + 20.0 ∙ 𝐴ହ − 2.77 ∙ 𝐴ଵସ − 3.44 ∙ 𝐴ହ

ଶ − 0.40 ∙ 𝐴ହ ∙ 𝐴ଵସ − 0.007 ∙ 𝐴ଵସ
ଶ  Eq. 4-3 

 
The utilization of CNNs takes a comparable methodology applied to discern crucial elements 
within the data. The performance of this model is favorable, displaying scores that are comparable 
with the PC-LDA technique, as shown in Figure 4-6. With the employment of CNN, however, we 
gain access to additional explainability tools such as Grad-CAM, along with more in-depth 
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potential analysis of the algorithm via the intersection of activation patterns in units and layers. In 
light of this, the average activation map of the ten nearest spectra, as previously deduced with the 
PC-LDA algorithm, for the top-performing cells (391≤VOC) for each convolutional layer is 
portrayed in Figure 4-7. Figure 4-8 compiles the results for the four classification groups and the 
three convolutional layers. A distinctive common characteristic, consistent across all classes and 
layers, is the total lack of focus directed towards the final segment of the vector, belonging to the 
325 nm PL measurement. Additionally, for the second layer, dispersed attention is primarily 
allocated to Raman 532, 442, 325 and PL 785, 532, and 442, while the final convolution layer 
assigns markedly more importance to the Raman 532 nm spectra, and notably to PL 442 for the 
highest performance cells, as well as for the second-best classification. However, for the bottom 
groups, attention pivots towards PL 442 in the worst performance cells and towards the 785, 532, 
and 442 Raman spectra for the second-worst. This indicates, in line with PC-LDA, that the 
different classification groups stimulate the algorithm in quite dissimilar ways. Nonetheless, in 
general terms, it appears that local patterns are scarce, while macro patterns exert a greater 
influence on the final decision of the CNN. 
 

 
Figure 4-6: Confusion matrices for Training (A) and Test (B) data sets for the CNN, with a 

averages of 84% and 80%, respectively. Despite the good scores, some overfitting is appreciated, 
but highly biased by the best performing class, where accuracy is just above 71% with about 

29% misclassified as second to first. For the 2D CNN, slightly lower scores are shown, with 0.82 
and 0.76 for training and validation. 
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Figure 4-7: Average Grad-CAM visualization of the closest 10 spectra to the center of the cluster 

from the top performing classification group of 391 < VOC. From top to bottom, is the first 
convolutional layer, the second, and third convolutional layer from the CNN. Importance is 

normalized to 1 for each case. 
 

 
Figure 4-8: GradCAM results for the 3 convolutional layers (left to right) and the 4 classification 

groups (top to bottom) 
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Figure 4-9: D1 v D2 plot of the final PC-LDA model (left), MVNLR as f(D1,D2) against VOC 
(center) and the obtained equation mapped along with the scatter plot of D1 v D2 color graded 

with the VOC (right). 
 
For the 2D CNN, the GradCAM mappings are assembled in Figure 4-10. These mappings, 
originally presented in the form of images, have been flattened into 1D vector format for ease of 
visualization. In this instance, a slightly different behavior is observed compared to the first case, 
as anticipated due to the inherent differences between the algorithms. Specifically, attention 
appears to be directed to the PL 325 vector, especially for the second group (259 ≤ VOC < 353). 
Aside from this peculiarity, the remaining activations bear resemblance to those from the 1-D case, 
with the exception of the fourth group in the first layer, which yields no activations at all for 
GradCAM. This can be explained in a two-fold manner: firstly, the classification of this group 
primarily relies on more “general” patterns detected by the final convolutional layer. Secondly, 
this layer appears to solely account for negative impacts in the classification, given its use of 
LeakyReLU activations instead of ReLU, in contrast to the 1D CNN. 
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Figure 4-10: GradCAM heatmaps for the average of the 10 closest spectras to the center of each 

of the clusters according to PC-LDA for each of the classification groups (top to bottom) for both 
convolutional layers (right and left). 

 
Following the analysis conducted, we were able to more accurately pinpoint potentially significant 
areas within the spectra. Due to this process, several considerations were taken into account: 1) the 
full area of the peaks did not necessarily need to be utilized, 2) varying impacts were observed in 
different sections of the peaks, potentially suggesting the presence of smaller peaks, 3) areas of 
utmost significance were commonly found on or near the peaks, and 4) despite their theoretical 
lack of interest, some sections still displayed activations and significance. However, caution should 
be exercised due to the fact that the models, despite their high accuracy, did not reach full 
generalization, potentially leading to the erroneous use of these sections. Moreover, the preceding 
analysis should be interpreted with caution, and prioritizing good criteria for area selection is 
paramount. Hence, the sections deemed unimportant but are highlighted by the methodologies, 
which are more likely to complicate subsequent analysis and divert attention from impactful areas, 
were omitted. Following these guidelines, 21 areas were selected, as shown in Table 4-2,and the 
correlation between them is examined with both Pearson and Spearman coefficients. Separately, 
the correlation with VOC was examined using a quadratic regression independently for each area 
in the form of 𝑓(𝐴௡) = 𝐶଴ + 𝐶ଵ ∙ 𝐴௡ + 𝐶ଶ ∙ 𝐴௡

ଶ = 𝑦, with the results represented as R2 scores in 
Figure 4-11. Areas A14, A16, and A3 stood out as the most predictive, while areas A8, A2, and 
A1 were the least. Given the high correlation between these areas, they are presumed to contain 
the same, or similar, information, limiting their combined predictive power due to data 
redundancy. Therefore, the next highest scoring, yet unrelated, area to A14 was determined to be 
A5 (Figure 4-11). With these two areas, interpretable correlations can be further investigated. As 
they can be visualized in 2D due to their limited variable count, the results are more accessible for 
human interpretation. Quadratic polynomial regression (PR) and radial basis function network 
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(RBFN) were applied, with the outcomes depicted alongside Multivariate Linear Regression in 
Figure 4-12. Good linearity was observed for voltages of 250 mV and above, although correlation 
was poor for lower voltages, mirroring the findings in [125]. However, this issue was resolved 
with non-linear regression, yielding improved agreement with lower voltages and an overall R2 
score of 0.76. This model, shown in Eq. 4-3, presents a digestible equation comprising only six 
terms. The equation allows for the existence of high-performing cells not accomplished in the 
investigated sample, both with elevated and decreased A5 and A14 areas, although the latter 
possibility lies beyond the established parameter range but is theoretically plausible due to 
symmetry. The feasibility of achieving these values is subject to further investigation and presents 
an intriguing research question. 
 

Table 4-2: Selected areas and their respective pixel ranges from the 14,640-long vector. In 
addition, the areas are labeled with the corresponding measurement technique and the axis values 

in the respective units of that measurement (Shift for Raman and Wavenumber for PL). 
Area Measurement Pixel range Shift range (cm-1) 
A1 Raman 785 90 – 145 159 – 180 
A2 Raman 785 145 – 200 180 – 207 
A3 Raman 785 250 – 320 231 – 262 
A4 Raman 532 1950-1985 262 – 343 
A5 Raman 532 1985 – 2030 529 – 653 
A6 Raman 442 3020 – 3070 272 – 332 
A7 Raman 442 3070 – 3200 417 – 516 
A8 Raman 442 3500 – 3700 516 – 665 
A9 Raman 325 3915 – 3960 630 – 913 
A10 Raman 325 4025 – 4100 346 – 430 
A11 Raman 325 4100 – 4215 464 – 537 
A12 Raman 325 4400 – 4510 901 – 1039 
A13 Raman 325 4510 – 4680 1039 – 1250 
Area Measurement Pixel range Wavelength (nm) 
A14 PL 785 5060 – 5560 1126 – 1365 
A15 PL 785 5560 – 5775 1365 – 1468 
A16 PL 532 6000 – 6150 1077 – 1326 
A17 PL 442 6440 – 7000 462 – 546 
A18 PL 442 7000 – 10000 546 – 994 
A19 PL 325 11470 – 12090 358 – 451 
A20 PL 325 12090 – 12660 451 – 537 
A21 PL 325 12660 – 14510 537 – 816 
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Figure 4-11: Individual R2 for each of the areas when performing regression against VOC (left), 
Person (center left) and Spearman (center right) correlation matrices for all the selected areas, 

and area 4 (a4) versus area 10 (a10) scatter plot graded with VOC (right). 
 
RBFN, unlike the initial two, is incapable of deriving a specific equation due to its nature as an 
NN. As such, the fundamental processes through which it predicts are inherently opaque to human 
understanding, even when expandability techniques are employed, as discussed in section 11.4.3. 
This opaqueness is to be expected, as a trade-off typically exists between interpretability and 
accuracy. Nevertheless, the best scores are achieved by RBFN, at 0.83. As a result, a notably more 
complex surface is revealed, with two peaks evident for the optimal voltages (around 200 and 350 
of A14). Despite the differences in these mappings, certain commonalities are identifiable. Firstly, 
consensus is reached that the least effective cells exhibit equally large A5 and small A14 areas. 
Secondly, it appears that the majority of the importance is held by A14, meaning that the 
performance is more dependent on this area for the measured space. However, all agree that it 
might be mathematically possible for A5 to exert more influence, though this does not hold true 
for the first case. Thirdly, they also seem to concur that increasing performance becomes more 
challenging as the quality of the sample improves. This can be observed in the enlarging step size, 
which grows with VOC. In spectral terms, this implies that it is easier to enhance a poor performing 
cell than it is to improve a cell that already performs well. 
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Figure 4-12: Regression (top row) and prediction mapping (bottom) for multi linear (left), 

polynomial quadratic (center) and RBFN (right). 
 

4.3.2 Sensitivity analysis of activations and model improvement 

It is observed that, overall, the highest absolute values of importance are focused on the crucial 
peaks of the spectroscopic measurements, however with much more attention to PL data than to 
Raman. For instance, the main PL curve for 442 nm appears to have the most absolute importance 
across all classes (Figure 4-13A and C). When analyzing the evolution of classification to the next 
best-performing class (Figure 4-13B and D), importance is attributed also to sections of PL 442 
nm with more protagonism of PL 785 nm and 532 nm compared to the inner-class case. All Raman 
spectras though show some activity, but it is small compared to these PL numbers. The latter is 
consistent with the nature of this methodologies, since PL is normally associated with the band 
gap, meanwhile Raman with more related to structural and defect properties, which is indirectly 
related to the band gap. Overall, most importance is attributed to features in the ranges of 5000-
6000, 6000-6500, 8000-11000, and 11000-13000. 
 
For the re-activations, there are specific units related to specific features, as expected to such 1D 
CNN. In particular, more defined relationships exist between activation-feature pairs 464-76, 288-
35, 480-77, 464-77, and 510-76. This means that PL with 442 nm, belonging to feature 76 and 77, 
is closely related with activations in units 464, 480, and 510, meanwhile PL 785 nm, belonging to 
feature 35, is tethered with unit 288.  Furthermore, when diving by classification, this last 
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relationship is dominated by the first classification group of VOC < 303 mV, and the other pairs are 
more related with the top 2 classes. Overall, for correctly classified vectors, most activations are 
related to features in window range between 34-43 and 75-79. 
 

 
Figure 4-13: Importance for spectroscopic features according to the change in inner-class 

probability change and next best-performing probability change. 
 
By identifying the critical units’ re-activations that perform good and bad classifications, it is 
possible to individually check how these activations affect the overall performance of the model. 
These re-activations are shown in Figure 4-14 by class and overall. In general, it is clear to see that 
sets of units focus on different classes, presumably according to where each class contains its most 
characteristic features. For instance, overall correct prediction seems to be driven mostly by units 
464, 288, 480, 44, and 510. In more detail, for correct predictions of Class 1 shows more 
activations in units 288 and 304, meanwhile Class 2 activate more units 510 and 542. In contrast 
Classes 3 and 4 show similar units being activated, namely 463 and 480, with difference in the 
bottom part of their respective lists. When analyzing incorrect classification, several units appear 
as having influence in this miss-classifications. Overall, units 558, 128, and 46 seem to have the 
most influence in these errors. With this information, and considering the class-specific re-
activations, we can try deactivating by setting to 0, each of these activations and see how they 
affect the final prediction. After try and error, it is detected that by deactivating units 128, 208, and 
522, an improvement in the overall scores, going from 0.87 to 0.88 is achieved, as shown in Figure 
4-15 . Even though the difference of only 1 percentage point, it does represent the correct 
classification of around 17% of the incorrect classifications, or 4 out of 23, as shown in Table 4-3. 
Furthermore, five other samples show statistical improvement out of the probability function, 
though not enough change to correct their classification, which translates to that 39%, or 9 out of 
23, perceived benefits on the changes to the activations. As consequence, however, there was 1 
sample that switched from correctly classified to incorrectly classified. 
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Figure 4-14: Reactivation values for units in the last convolutional layer for correct 

classifications (Top in green) and incorrect classifications (bottom in brown). Arrows indicate 
the units deactivated in the new model and their color indicate the same unit as in red for unit 

128, yellow for unit 208, and blue for unit 522. 
 

Table 4-3: Changes in class classification probability p for each of the incorrectly classified 
samples (s) after modification of activation values of activations 128, 208 and 522. In bold are 

the samples that corrected their classification after modification, four in total (samples 12, 56, 58, 
and 62). Five other samples show statistical benefit but not enough to correct their prediction 

(samples 26, 140, 45, 122, and 107). 
 𝑽𝑶𝑪 < 𝟑𝟎𝟑 𝟑𝟎𝟑 ≤ 𝑽𝑶𝑽 < 𝟑𝟔𝟑 𝟑𝟔𝟑 ≤ 𝑽𝑶𝑽 < 𝟑𝟗𝟔 𝟑𝟗𝟔 ≤ 𝑽𝑶𝑽 

s 78 144 38 105 12 26 140 89 127 146 173 56 45 122 107 109 113 134 58 63 99 124 138 

∆𝒑𝟎 -0.02 0 0 0 -0.12 -0.01 0 0 0 0 0 0 0 0 0 0 0 0 0.01 -0.01 0 0 0 

∆𝒑𝟏 0.02 0 0 0 0.16 0.02 0.01 0 0 0 0 -0.08 -0.05 -0.03 -0.02 0 0 0 -0.09 0.03 0 0 0 

∆𝒑𝟐 0 0 0 0 -0.06 -0.02 -0.01 0 0 0 0 0.08 0.05 0.03 0.01 0 0 0 -0.06 -0.06 0 0 0 

∆𝒑𝟑 0 0 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0.14 0.04 0 0 0 
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Figure 4-15: Overall confusion matrices showing the scores of A) the original CNN, B) the 

modified CNN after analysis of activations, C) the incorrect classifications of the original CNN 
and D) the incorrect classifications of the improved CNN. 

4.4 Conclusions of exploratory experiments 

In this study, various ML and XAI techniques are leveraged to conduct a comprehensive analysis 
of spectroscopic measurements obtained from a combinatorial sample and to better understand the 
mechanisms of CNNs using this data. The sample is synthesized with varying ratios of Copper, 
Tin, and Zinc elements, and segmented into a 15x15 grid, for a total of 225 cells. These cells 
undergo thorough characterization via optoelectronic and compositional techniques, supplemented 
by Raman and PL spectroscopy measured under wavelengths of 785, 532, 442, and 325 nm. In a 
first stage, the study commences with the application of PC-LDA, which facilitates the refinement 
of the vector feature by omitting irrelevant sections of the spectra. The algorithm demonstrates 
good classification capabilities, yielding an average accuracy of 0.86 for both training and 
validation sets. Subsequently, a 1D CNN is configured for the same classification task, producing 
comparable results with average accuracy scores of 0.84 for both the training and testing sets. A 
2D CNN is then designed for the same classification problem but with a reconfigured version of 
the features transformed into 120x120 images as opposed to a 14,640 vector, resulting in accuracy 
scores of 0.81 and 0.75 for the training and test sets, respectively. Application of explainability 
methodologies elucidates how specific sections, along with local and macro patterns, influence the 
decisions of the algorithms. With this knowledge, specific areas are chosen to perform Pearson 
and Spearman correlation matrices. At the same time, quadratic regression is done with each of 
the selected areas to predict VOC. The obtained R2 scores are cross-referenced with the correlation 
matrices to identify the optimal pair of areas (A5 and A14) that exhibit high individual 
predictability but low intercorrelation. Different regression techniques are then implemented to 
predict VOC using these areas. Radial Basis Function Networks (RBFN) yield the best result with 
an R2 coefficient of 0.86, whereas MVNLR obtains 0.76. Despite the superior performance of 
RBFN, MVNLR is preferred due to the readability of the equation, facilitating a more thorough 
comprehension of the outcomes. These outcomes suggest the potential for higher VOC with 
increasing A5 and A14 areas under the MVNLR model. However, the feasibility of this prediction 
remains questionable. In contrast, the more accurate RBFN model presents a clear VOC limitation 
based on the provided solution space.  
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On a second stage of the exploratory experiments, a shift of focus is turned into the detailed 
analysis and explanation of a third CNN for better understanding the failure of classification of 
these TFPV cells according to their performance. This is achieved by measuring the change in unit 
activations (re-activations) in the last convolutional layer of the achieved model and associating 
them with specific features and correct or incorrect classifications. It is shown that is it possible to 
better explore the structure of CNN in the context of advanced characterization of PV materials 
and devices, achieving better understanding on their reasoning, innerworkings, and results. This is 
achieved by being able to associate activations and specific features, protecting clues on how 
exactly the model is making decisions in each instance. Furthermore, by better understanding the 
latter, it is possible to modify the CNN to improve its performance, achieving a successful 
improvement by correctly classifying 4 additional cells after the modification of the CNN. 
 
Overall, these findings highlight the potential impact of future research, emphasizing the 
significance of improving our understanding of ML and AI models in the field of materials 
research. The advancement of this kind of research may mean not only the gain of deeper insights 
into TFPV materials but also to the better comprehension of ML models. The latter is paramount 
to further leverage AI in research and may lead to create computational experiments that may 
replace physical in-lab experiment, further shortening material discovery and improvement beyond 
the current capabilities of AI. 
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5. CONCLUSIONS AND OUTLOOK 

This thesis aimed to leverage cutting-edge analysis techniques based on CA and AI to investigate 
the physicochemical and optoelectronic attributes of chalcogenide-based TFPV materials and 
other emerging technologies. The primary objective was to develop innovative CA approaches 
based on AI and ML to accelerate research and development of TFPV materials, including but not 
limited to chalcopyrite and kesterite compounds, and reduce their lab-to-market times. This main 
goal was subject to three objectives, namely the design and implementation of automated, high-
throughput, multi-technique characterization systems, the creation of ML methodologies for CA 
data processing, and create approachable and accessible tools to implement all the above in a 
seamless and straightforward way. 

For this, the work began with the development and implementation of an automated spectroscopic 
platform, facilitating automated measurements and preliminary analysis of multitechnique 
spectroscopy, including RS, PL, and NF. A subsequent study demonstrated the effectiveness of 
PC-LDA algorithm in assessing the thickness of AlOx barrier layers in flexible PV combinatorial 
samples deposited on top of industrially relevant substrates. The model provided accurate and 
reliable thickness measurements using NF spectroscopy data, proving to be non-destructive, fast, 
and cost-effective. This study revealed the CA and ML combination potential in quality control 
and process optimization in the PV industry. 

In a second stage, an evaluation of the AI strategy led to a proposed methodology workflow based 
on dimension reduction algorithms, mainly PCA, LDA and PC-LDA, that simplifies the 
preprocessing of spectroscopic data and offers deeper insights into relevant material and PV device 
processes. To streamline this methodology, the Python library "spectrapeper" was developed, 
covering procedures from data acquisition to analysis. A subsequent study examined the influence 
of off-stoichiometry on defect formation and solar cell performance in CZGSe TFs using the 
methodology based on CA and LDA. The analysis revealed that variations in Ge content 
significantly impacted defect formation and device performance, and allowed to define the optimal 
composition ranges of the CZGSe compound to produce the high efficiency solar cells. 

At a final stage of the doctorate program, the need to further explore the derived results from the 
methodology, in particular the ML results from the dimension reduction, raised as a natural 
consequence of the performed work. This was also sustained by an abundance of evidence in the 
literature and also by the lack of tools for explainability in spectroscopic data. Thus, to facilitate 
deep data-driven analysis of such outcomes the "pudu" library was created for sensitivity analysis, 
helping identify crucial spectra parts for algorithmic classification. 

With the above it is possible to affirm that the objectives stablished for this thesis are fulfilled as 
follows: 
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- Objective 1: The first objective, focusing on the development of autonomous systems for 
high-throughput data collection using various spectroscopic and optoelectronic techniques, 
is effectively met by the capabilities of the developed measuring system and the 
spectrapepper library. The automated system was developed in IREC for HTE of 
spectroscopic characterization. The first article uses an early version for automated single 
measurement, meanwhile the second article uses a second version where multiple 
techniques can be performed quasi-simultaneously in the same spot. On the other hand, 
spectrapepper facilitates the efficient collection and processing of large-scale data, and it 
is partially used in the automated system. The ability to rapidly acquire and process a vast 
amount of data from different instruments ensures a comprehensive dataset, essential for 
in-depth analysis and understanding of the physicochemical and optoelectronic properties 
of TFPV materials. 
 

- Objective 2: The second objective involves the development of AI algorithms for efficient 
spectroscopic data processing, a task crucial for handling the extensive data generated in 
future TFPV research. This objective is tackled two-fold. First, the use of dimension 
reduction algorithms in the proposed methodology, namely PCA, LDA, and PC-LDA, 
allows for a simplification of spectral processing since no specific features need to be 
extracted. Second, the spectrapepper library addresses this need by offering automated and 
generalized tools for the processing of large datasets of spectroscopic data. This automation 
not only streamlines the workflow but also reduces the requirement for specialized 
expertise, making the process more accessible and efficient. 
 

- Objetive 3: Fulfilling the third objective entails the creation of tools that are easy to use 
and implement in scientific and industrial settings. This is achieved with the two libraries 
spectrapeper and pudu, currently accessible as open-access and open-source. These 
libraries contain a broad spectrum of tools that researchers can easily implement in their 
data processing and analysis. Most of these tools are aimed to be single-line commands 
with clear names, purposes, and parameters so they can fit any kind of demand or needs 
and can be implemented in custom systems due to their open-source nature. 

 

In summary, the integration of these solutions directly supports the main goal. The comprehensive 
data collection and processing capabilities of the automated system coupled with the spectrapepper 
functions, the clear and user-friendly ML framework, and the availability of deeper insights for 
spectroscopic problems with pudu allow for a fast experimental analysis cycle and may help to 
better understand TFPV materials and devices. This is pivotal for advancing the field of TFPV 
technologies, enabling more efficient, reliable, and optimized TFPV materials and devices. 

Finally, 2 follow-up experiments that employ the ML framework, both libraries, and other XAI 
techniques to analyze spectroscopic measurements from a combinatorial CZTSe sample are 
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presented. These are two approaches that naturally follow the proposed methodology used in this 
thesis, extending it towards better interpretability and deeper insights into the data. The first, 
performs an analysis using PC-LDA with promising classification results. Further analysis using 
1D and 2D CNN also achieves high accuracy scores. The application of XAI reveals how specific 
sections and patterns influence algorithmic decisions. Specific areas are chosen to perform 
correlation matrices and regression, predicting hypothetical compositions for enhanced VOC using 
areas with high individual predictability and low intercorrelation. Predicting VOC using these areas 
with different regression techniques highlights RBFN as superior. However, MVNR is favored 
due to its interpretability. The study emphasizes the importance of understanding ML and AI 
models in materials research, promising to positively impact future research. The second uses a 
more advanced technique, namely re-activation and dissection analysis, to better explore how 
incorrect predictions are formed and how to use this knowledge to improve the performance of 
CNN models. The approach successfully analyzes how activations relate to specific features in the 
data, which allows to modify the CNN to improve its classification performance. Both of these 
approaches are then presented as a natural extension of the methodology used in the published 
articles and contains great potential for further development and research. 

In short, the culmination of this thesis includes the development of AI procedures for the analysis 
of advanced characterization data of PV materials and devices, and the development of open-
source software designed for researchers with little coding experience. These results have 
positioned the IREC-SEMS research group at the forefront of next-generation PV technologies by 
providing a robust and versatile CA and AI methodology and tools that has benefited various 
projects, including Solar-Win (H2020, GN 870004), In4CIS (Proyectos de I+D+I Programación 
Conjunta Internacional 2019, GN PCI2019-111837-2), SUNRISE (H2020, GN 958243), and 
Platform-ZERO (H2020, GN 101058459). Moreover, the results of the thesis allowed to strongly 
consolidate two research lines of the SEMS group: “Advanced characterization of the PV materials 
and devices” and “Development, methodologies and prototyping of sensors for photovoltaics and 
process monitoring”. This was possible by providing new tools and possibilities for the advanced 
analysis of spectroscopic data for TFPV. 

After the development of this work, and after all these years, it is clear to me, and hopefully to the 
reader as well, that we stand at the forefront of a new era in scientific discovery and technological 
advancement. AI continues to reshape the landscape of research and the content of our daily lives, 
transcending every boundary and seeping into virtually every field and application. These 
technologies, just as have done with me, will inspire and empower researchers to dig deeper into 
the unknown, find solutions to some of the most pressing challenges faced by humanity and, 
hopefully, reveal the mysteries of our universe. As our knowledge grows, so too will our ability to 
harness AI to improve the quality of life for people around the world. However, it is essential to 
maintain a sense of humility and responsibility as we unleash this power. We must not forget the 
human element at the heart of our endeavors, as our progress will be judged not only by the 
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sophistication of our algorithms but also by our commitment to collaboration, empathy, and ethical 
considerations. Let us embrace the possibilities that AI offers, fostering a future where technology 
and human ingenuity work hand in hand to create a more sustainable, equitable, and compassionate 
world for all. I firmly hold the conviction that, by preserving our curiosity and strengthening our 
human values, there will be no limit to what we can achieve, no questions we cannot answer, and 
no algorithm we cannot explain. 

Gracias totales. 
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Annex A 

User interface (UI) of the software developed using LabVIEW and used in the first article. This 
first version (v1) makes NF measurements and allows flexibility in several variables and 
parameters as shown in the UI. This version was developed solely by E.T.G.L. 
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Annex B 

User interface (UI) of the software developed using LabVIEW and used in the second article and 
exploratory experiments. This second version (v2) can perform multiple techniques quasi-
simultaneously, including Raman and Photoluminescence. This version used the v1 as a starting 
point and is the result of cooperation with members of the SEMS teams in IREC. 
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Annex C 

User interface (UI) of the software in production version for the Solar-Win project, based on the 
v1 and v2 softwares and greatly improved and optimized by the SEMS team in IREC. This version 
is further designed to be used in real process monitoring on industrial environments. 
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Annex D 

Example python code for processing Raman data as received from the LabVIEW software. For 
196 measurements, it takes 0.1 seconds to perform all the basic processing, including area 

calculations of the main peaks. The output plots are also shown below. 
 
import matplotlib.pyplot as pls 
import spectrapepper as spep 
import numpy 
import time 
 
start = time.time() 
 
# Load data set. 
x, y = spep.load_spectras() 
 
# Plot the raw data 
for i in y: 
    plt.plot(x, i) 
plt.xlim(100, 600) 
plt.title('Raw data') 
plt.show() 
 
# Remove baseline. 
y = spep.bspbaseline(y, x, points=[160, 315, 450, 530]) 
 
# Normalize the spectra to the maximum value. 
y = spep.normtoratio(y, x, r1=[190, 220], r2=[165, 190]) 
 
# Calculate areas. 
areas = spep.areacalculator(y, x, limits=[[165, 190], [190, 220], [230, 260], [370, 420], 
[420, 470], [470, 530]]) 
 
# Plot processed data 
for i in y: 
    plt.plot(x, i) 
plt.xlim(100, 600) 
plt.title('Processed data') 
plt.show() 
 
print('6 areas calculated for each spectras: ', numpy.shape(areas)) 
 
print('Total time (no plots): ', (time.time()-start), ' s.') 
 
 
 
>> 6 areas calculated for each spectras: (196, 6) 
>> Total time (no plots):  0.09651398658752441  s. 
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