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ABSTRACT

Artificial intelligence (AI) generative models driven by the integration of AI and natural language processing technologies, such 
as OpenAI’s chatbot generative pre-trained transformer large language model (LLM), are receiving much public attention and 
have the potential to transform personalized medicine. Dialysis patients are highly dependent on technology and their treatment 
generates a challenging large volume of data that has to be analyzed for knowledge extraction. We argue that, by integrating 
the data acquired from hemodialysis treatments with the powerful conversational capabilities of LLMs, nephrologists could 
personalize treatments adapted to patients’ lifestyles and preferences. We also argue that this new conversational AI inte-
grated with a personalized patient-computer interface will enhance patients’ engagement and self-care by providing them with 
a more personalized experience. However, generative AI models require continuous and accurate updates of data, and expert 
supervision and must address potential biases and limitations. Dialysis patients can also benefit from other new emerging 
technologies such as Digital Twins with which patients’ care can also be addressed from a personalized medicine perspective. 
In this paper, we will revise LLMs potential strengths in terms of their contribution to personalized medicine, and, in particular, 
their potential impact, and limitations in nephrology. Nephrologists’ collaboration with AI academia and companies, to develop 
algorithms and models that are more transparent, understandable, and trustworthy, will be crucial for the next generation of 
dialysis patients. The combination of technology, patient-specific data, and AI should contribute to create a more personalized 
and interactive dialysis process, improving patients’ quality of life. (REV INVEST CLIN. 2023;75(6):309-17)
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INTRODUCTION

Intradialytic hypotension (IDH), the most frequent 
complication of hemodialysis treatments, is a serious 
complication associated with ischemic stress to vital 
organs, poor quality of life, and increased mortality1. 
Accurate prediction of IDH is a significant challenge 
for nephrologists because large volumes of data are 
continuously generated and routinely acquired, includ-
ing dialysis treatment parameters, hemodynamic fac-
tors, and vital signs during the dialysis session. In 
addition, patient multiple medications, dietary restric-
tions, lifestyle modifications, and other variables of 
complex nature contribute to individual variation dur-
ing the dialysis treatment2. Thus, the effective man-
agement of individual patients undergoing dialysis 
requires novel tools to perform real-time analysis and 
visualization of large data volumes in a secure, reli-
able, and efficient way. Artificial intelligence (AI) and, 
particularly, machine learning (ML) have already been 
demonstrated to be useful to dialysis patients in the 
adjustment of the erythropoiesis-stimulating agent 
dosage for renal anemia3, prediction of the occur-
rence of IDH4, and evaluation of fluid volume for pa-
tients undergoing dialysis5 among other tasks6.

AI technology is advancing rapidly, and new and in-
novative tools are continuously emerging. In figure 1, 
we provide a comprehensive overview, illustrating the 
remarkable contributions of AI to healthcare. As part 
of these breakthroughs, the advent of generative AI 
holds the potential to improve patient care with a 
personalized approach based on real-time monitoring 
and increase efficiency through automated-guided 
dialysis sessions to detect eventual anomalies from 
dialysis-related data. These models can also play a 
role as assistants in the design of personalized edu-
cational materials for dialysis patients.

Generative AI is instantiated on ML techniques such 
as generative adversarial networks (GANs) and large 
language models (LLMs). LLMs have demonstrated a 
remarkable performance in natural language process-
ing (NLP) tasks since can be adapted to capture the 
nuances of the complexity of medical language and 
the diversity of medical contexts. Considering the ex-
ponential growth in electronic health records (EHRs) 
deployment, LLMs are bound to transform medical 
practice7. The integration of generative AI tools in 
hemodialysis poses significant challenges, though. 

This position paper aims to provide a comprehensive 
overview of the potential benefits and challenges of 
using generative AI in nephrology and to identify key 
considerations for their successful implementation.

UNDERSTANDING GENERATIVE 
ARTIFICIAL INTELLIGENCE

From a general point of view, AI systems can be di-
vided into discriminative AI and generative AI. Dis-
criminative AI focuses on learning the boundaries that 
separate different classes or categories of data. Dis-
criminative models aim at solving tasks such as clas-
sification, regression, and object recognition. On the 
other hand, generative AI models aim to understand 
and replicate the underlying distribution of the train-
ing data. They focus on learning the joint probability 
distribution of the input features and the correspond-
ing labels. For this reason, generative models can cre-
ate new instances that resemble the original data and 
enable tasks such as data synthesis, text generation, 
or image generation. 

Generative AI must be distinguished from two com-
plementary concepts: (i) Artificial general intelligence 
or strong AI refers to a type of AI that possess the 
ability to understand, learn, and apply knowledge 
across a wide range of tasks, which remains a still 
theoretical objective. On the contrary, generative AI 
is a more specific and limited application of AI. (ii) 
General purpose AI (GPAI) refers to AI systems and 
algorithms that can be applied to a wide range of 
tasks and problems without being specifically de-
signed for a particular application. An example of 
GPAI is transformer-based LLMs like GPT-4. Genera-
tive AI can be considered a form of GPAI.

Unlike other AI tools that are primarily focused on 
classification and prediction tasks, generative AI goes 
beyond that to generate something new, rather than 
just making decisions on the basis of existing infor-
mation. Generative AI systems have more autonomy 
in making sense of medical data without significant 
guidance from human operators, allowing it to pro-
cess vast quantities of relevant data to achieve more 
versatile machine intelligence expressed mostly so far 
in linguistic form. These models leverage complex al-
gorithms, often based on deep learning neural net-
works, to learn patterns and derive meaning out of a 
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vast amount of high-quality structured and unstruc-
tured data. However, generative AI models require 
continuous and accurate data updates, expert super-
vision, and address potential biases and limitations. 

There are different approaches to generative AI8, such 
as (i) Variational Autoencoders, which are models 
that generate new samples by learning from a low 
dimensional representation, known as latent space, of 
the training data and decoding it back into the original 
data domain. (ii) GANs consisting of two neural net-
works, a generator and a discriminator that compete 
against each other. The generator generates new 
samples, while the discriminator tries to distinguish 
between real and generated samples. (iii) Autoregres-
sive models that generate data by modeling the con-
ditional probability of each data point given the previ-
ous ones. They generate sequences of data, one 
element at a time, considering the dependences on 
previous elements.

METHODS FOR ADAPTING LARGE 
LANGUAGE MODELS TO DIVERSE 
MEDICAL DOMAINS: TRANSFER 
LEARNING AND DOMAIN ADAPTATION

Transfer learning allows LLMs to leverage pre-trained 
models as a starting point for further training and 
adaptation to medical domains, such as dialysis. We 
can ensure that the models are updated and capable 
of delivering accurate medical knowledge by apply-
ing a domain-specific fine-tuning, which involves 
training over pre-trained LLMs on relevant medicine-
specific data such as a dialysis session7. In addition, 
through domain adaptation developing models 
trained in one domain can be adapted to other dif-
ferent contexts to work effectively without requiring 
extensive retraining. One example of a successful 
domain-specific model is clinical BERT, which has 
been fine-tuned on the MIMIC-III dataset, which con-
sists of EHRs from intensive care unit patients, 

Figure 1. Diagram of artificial intelligence (AI)-driven healthcare design. This image shows the various approaches and levels at 
which AI can contribute to healthcare. (1) mHealth: health-care services through mobile devices, enabling individuals to access 
healthcare resources, track their health, and receive personalized recommendations. (2) Personal health Assistants: AI-powered 
technologies designed to provide personalized support and guidance empowering individuals to manage their health effectively. 
(3) Clinical assistant: AI systems that assist healthcare professionals in clinical settings, providing real-time decision support, 
streamlining workflows, and enhancing patient care. (4) Robotics: Utilizing advanced robotic systems and AI algorithms to 
enhance medical procedures assist health-care providers, patient rehabilitation or medication delivery. (5) Personalized Medicine: 
by considering factors such as an individual’s genetic profile, lifestyle, and environmental influences, personalized medicine aims 
to optimize treatment selection, dosage, and preventive measures.
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demonstrating enhanced performance in clinical NLP 
tasks, including patient mortality prediction, de-
identification, and diagnosis classification8. Another 
example is BlueBERT, also based on a BERT architec-
ture, which has achieved state-of-the-art perfor-
mance on various biomedical NLP tasks, including 
named entity recognition, relation extraction, and 
biomedical question-answering9.

Alternative methods for scenarios in which domain-
specific training data are scarce or unavailable include, 
for instance, few-shot learning and zero-shot learning, 
that allow LLMs to adapt to new medical domains 
more efficiently. Few-shot learning aims to train mod-
els to perform well on new tasks with very limited 
labeled data by leveraging knowledge learned from 
another tasks10. On the other hand, zero-shot learn-
ing focuses on training models to perform tasks with-
out any labeled data for the target task, relying sole-
ly on knowledge learned from other tasks11.

CHAT-BASED GENERATIVE PRE-TRAINED 
TRANSFORMERS (CHATGPT), A USEFUL 
LARGE LANGUAGE MODEL

The recently developed and deployed LLM named 
ChatGPT can perform a broad range of natural lan-
guage tasks12. ChatGPT is powered by GPT3.5, an 
OpenAI 175 billion parameter model that is trained 
on a large corpus of text data from the Internet 
through reinforcement and supervised deep learning 
algorithms. To the purpose of the scope of this paper, 
it is important to note that ChatGPT can cover all 
topics of medical knowledge from basic science, clin-
ical knowledge, and management to bioethics12. How-
ever, the performance of ChatGPT in answering spe-
cific questions about nephrology is still limited. When 
assessing the accuracy of ChatGPT on 183 core ques-
tions in glomerular diseases, the model only achieved 
a rate of 45% on the first run and 41% on the second 
run, that is, far below the passing threshold of 75% 
and 76% required for nephrologists by nephrology 
self-assessment program and kidney self-assessment 
program of the American Society of Nephrology, re-
spectively. However, ChatGPT’s performance will con-
tinue to improve in real-world clinical situations, as 
the underlying AI models become more sophisticated 
and trained with a more specialized data corpus. 
Consequently, generative AI may improve medical 

treatment planning offering a new opportunity to per-
sonalize hemodialysis treatments.

ChatGPT can serve as a virtual assistant, providing 
patients with personalized information about their 
condition, treatment options, and self-care strate-
gies. This AI-driven support can help patients to bet-
ter understand their disease and improve adherence 
to their treatment plans, ultimately improving their 
quality of life. Moreover, from the medical expert 
standpoint, ChatGPT and alternative LLMs can ana-
lyze individual patient’s data, identify the risk of com-
plications, or make a checklist of their main problems 
requiring a solution by nephrologists (a schematic 
illustration of the process in Fig. 2).

LARGE LANGUAGE MODELS CAN USE 
REINFORCEMENT LEARNING FOR  
FINE-TUNING AND TRANSFER LEARNING

Reinforcement learning (RL) is an ML approach where 
an agent learns to make optimal decisions through a 
process of trial and error, based on interactions with 
the environment, without requiring prior knowledge 
of optimal performance13. During this interaction, the 
agent receives feedback in the form of rewards or 
penalties, based on its actions, to guide, and refine its 
decision-making process. ChatGPT uses a method 
known as RL from human feedback as a fine-tuning 
tool. To apply RL for fine-tuning LLMs, the problem 
needs to be formulated as an Agent-Environment set-
ting where the agent can interact with the environ-
ment to get reward for its action. In the context of 
chat-based models, the environment represents the 
dialog with a user. The model takes actions (generat-
ing responses) and receives a reward based on the 
quality or desired outcome of those actions. These 
rewards are then used as feedback to train the model.

In clinical practice, the treatment of chronic conditions 
often takes the form of a recurrent trial-and-error pro-
cess. For example, to find an adequate therapeutic 
approach, an initial medical intervention is performed 
first, and the patient is observed for a specific response. 
Subsequently, the treatment is adjusted to either im-
prove the response or eliminate potential side effect. 
Thus, there are many potential applications of RL in 
nephrology just starting to make inroads into real 
clinical settings. For example, RL can be used to 
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individualize dialysis adequacy14, management of IDH15, 
and management of therapies for chronic kidney dis-
ease (CKD) and its complications such as anemia16, 
bone mineral disease17, and in the use of medications 
such as sodium-glucose cotransporter-2 inhibitors, 
renin-angiotensin system inhibitors, glucagon-like 
peptide-1 receptor agonists, non-steroidal mineralo-
corticoid receptor antagonists, and combination ther-
apies to slow the progression of CKD. In addition, RL 
can be used to individualize the management of fluid 
balance, electrolytes, and hemodynamic support. RL 
can be used to learn the optimal dosing of erythropoi-
etin (EPO)18 and fluids based on each patient’s indi-
vidual characteristics and response to treatment19.

We illustrate how RL can be applied in practice in more 
detail using the case of a computer-based system for 
decision support in EPO dosing for anemia manage-
ment20. The authors formulated the model in terms 
of a Markov Decision Process and simulated the esti-
mation of EPO dosing strategy using the on-policy RL 
method, SARSA. The fundamental idea behind this 

model was to minimize a cost, defined as the sum of 
the square differences between desired responses 
and the response predicted by the model over a time 
period after administering a dose. The dose that min-
imized the cost function was administered to the pa-
tient, and this process was repeated at the next dos-
ing interval. This model’s most useful feature is its 
ability to handle non-linear control problems with 
time delays. The authors demonstrated that the pro-
posed algorithm performed as well as the clinical pro-
tocol for anemia management in terms of mean he-
moglobin levels. In addition, the algorithm improved 
the protocol by reducing hemoglobin variability.

A PERSONALIZED PATIENT-COMPUTER 
INTERFACE TO ENHANCE PATIENT 
ENGAGEMENT AND SELF-CARE

Since patients and dialysis machines work together, 
there is an unavoidable connection between them. In 
addition, data from wearables technology (including 

Figure 2. Schematic illustration of large language model use in an artificial intelligence (AI)-driven personalized dialysis model. 
This image shows the different elements needed for the model, grouped in different steps: (A) Agents: fundamental components 
collaborating to medical dialysis therapy. (B) Tools: innovative strategy for personalized dialysis approach based on generative 
AI models powered by cloud computing. (C) Modeling: model training for personalization of dialysis treatment using in silico 
methods, including the utilization of Digital Twins, to ensure their accuracy and efficacy before their practical implementation 
in real-life settings. (D) Output: real time patient status data analysis, data visualization to improve data comprehension by 
clinician and patient. Explicability of the output of the model, enhancing the interpretability of the results.
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variables such as heart rate, sleep, physical activity, 
electrocardiography, oxygen saturation, and glucose 
monitoring) and smartphone-enabled self-reported 
questionnaires, in the context of user-centered design 
technologies and the development of the internet of 
things, have provided insights into the usefulness, us-
ability, and fit of technology into daily human life and 
can also play a significant role in personalized medi-
cine21. Thus, the development of patient-computer 
interface (PPCI) in dialysis would aim to integrate 
computer technology and patient-specific data in the 
management of dialysis treatments to enhance pa-
tients’ experience by providing them with a personal-
ized and interactive interface. The interface would 
allow patients to have a more active role in their di-
alysis treatment since updated information about 
their health status, symptoms, and preferences can 
be used to tailor the dialysis treatment to their spe-
cific needs. A personalized approach can help opti-
mize treatment outcomes and improve patient satis-
faction. Moreover, PPCI can provide educational 
materials, and interactive tools to monitor their treat-
ment progress and receive real-time feedback on their 
health to enhance patient engagement and self-care. 
The most common human-computer interaction 
technologies currently applied are those under the 
umbrella concept of mHealth. The potential of data 
from wearable sensors to predict laboratory results22 
and in remote patient monitoring21 has been high-
lighted. For example, the combination of ambient sen-
sors (such as depth cameras and microphones) with 
wearables data has the potential to improve the reli-
ability of fall detection systems, while keeping a low 
false alarm rate23. Consequently, the number of stud-
ies using digital products is growing rapidly24.

In this situation, the integration of a conversational AI 
LLMs such ChatGPT with PPCI should help to further 
enhance the patient experience by providing a natural 
language interaction, since patients could ask ques-
tions about dialysis, receive personalized recommen-
dations, and get support for any concerns about 
treatments; all of it without requiring any specific 
technical skills. However, virtual health assistants 
(digital AI-enabled coaches that could advise people 
on their health needs, have not been developed wide-
ly to date21. However, considering the rapid advances 
in conversational AI and the concurrent development 
of increasingly sophisticated multimodal learning ap-
proaches, we anticipate that future digital health 

applications will fully embrace the potential of AI to 
deliver precise and personalize medicine.

PERSONALIZED DIALYSIS AND DIGITAL 
TWINS

Another emerging technology further enabling the 
concept of personalized medicine is that known as 
digital twins (DT). A DT is a virtual model of a physical 
entity, with dynamic, bidirectional links between the 
physical entity and its corresponding twin in the digital 
domain25. This virtual model dynamically pairs the 
physical and digital world and leverages innovative 
technologies in smart sensors, data analytics, and AI 
to detect and prevent system failures, improve system 
performance, and explore innovative opportunities. 
Conceptual models involve three components, namely, 
(i) the physical (source) product in the physical space, 
(ii) the digital representation in the virtual environ-
ment, and (iii) connections between the two: data and 
information flowing between the physical and digital 
products. In dialysis, the goal is to iteratively model, 
test, and optimize a dialysis treatment in the virtual 
space until that model meets the expected perfor-
mance. In this context, LLMs such as ChatGPT could 
enhance data analysis and interactive monitoring from 
DT, providing real-time updates, interpreting complex 
data, and presenting data in a graphical and under-
standable format, thus fulfilling the promise of making 
complex ML models interpretable and, to some ex-
tent, self-explaining26. Thus, nephrologists can obtain 
insights, decision-supported recommendations, and 
predictions based on the information extracted from 
the DT and ask questions about the status, perfor-
mance, or behavior of the simulation. In addition, the 
nephrologist could explore alternatives through simu-
lation of what-if scenarios and obtain predictions on 
the future behavior of the dialysis.

GENERATIVE AI AND MHEALTH

The integration of smartphones into the current clin-
ical practice has increased the networking possibilities 
between patients and clinicians. Over recent years, 
efforts have been made to develop this technology to 
improve the effectiveness and efficiency of health-
care through innovative approaches and strengthen 
the opportunities for self-care, self-management, and 
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patient participation27. Mobile apps are being increas-
ingly used in nephrology, most of those currently 
available provide information on the complex treat-
ment of kidney diseases28, drug or food interactions, 
adverse reactions, and patients’ education29. To pro-
vide a more detailed illustration of mHealth in hemo-
dialysis, we show a case of a customized app named 
Di Care for improving dietary and fluid adherence in 
dialysis patients30. This app offers educational mate-
rial, self-tests to assess levels of adherence to recom-
mendations, and the ability to record medications for 
reminders. In this study, it was compared to a face-
to-face training. The authors observed significant im-
provements with Di Care app, including a decrease in 
interdialytic weight gain, and in the levels of potas-
sium, phosphorus, cholesterol, triglycerides, and fer-
ritin. However, the study also identified several tech-
nical limitations and barriers. For example, some 
features of the app did not work properly due to 
compatibility issues with the Android operating sys-
tem. In addition, problems with the app’s connection 
were detected, which impacted its overall usability. 
Furthermore, some participants faced challenges due 
to the lack of digital abilities and others declined to 
participate in the study. Nevertheless, recent clinical 
trials using mobile electronic devices have been prov-
en successful in real-world and real-time monitoring 
and have been proposed to improve treatment adher-
ence31. This technology has predominately targeted 
younger patients, but there is also a need to develop 
mHealth for older dialysis patients and their care 
partners32. The intersection of generative AI and 
mHealth has several potential applications that in-
clude providing personalized health recommenda-
tions, answering patients’ queries, assisting in medica-
tion management, and offering emotional support. In 
addition, they can enhance patient engagement, im-
prove access to healthcare information, and provide 
real-time assistance.

CHALLENGES AND LIMITATIONS

Generative AI models require continuous and accurate 
updates of data, and expert supervision and must 
address potential biases and limitations. Recent evi-
dence stresses that the importance of the validation 
of their results in real clinical contexts suggests that 
it is paramount to test newly developed algorithms 
before trying to deploy them33. Despite the potential 

benefits and promising results, clinical translation is 
not always guaranteed and presents several issues, 
namely, fairness, model, and results interpretability34 

and the lack of validated models. As an example, 
when studying the feasibility of providing an auto-
mated electronic alarm for AKI in different clinical 
settings, substantial heterogeneity in the findings 
among hospitals was described, with the worrying 
results of a significant increased risk of death for 
some hospitals35. Thus, there is a concern about re-
sult interpretability for models that could have a sig-
nificant impact on patients’ health that reflects the 
inability to explain which aspects of the dataset used 
in the training phase led to a predicted result36. It has 
been suggested that AI models should be reported 
using best practice reporting guidelines such as the 
Transparent Reporting of a Multivariate Prediction 
Model for Individual Prognosis or Diagnosis (TRI-
POD)37 or Minimum Information for Medical AI Re-
porting (MINIMAR)38. Continuously updating LLMs 
with new data by means of a dynamic model training 
process is necessary for a clinical decision support 
system model to remain up-to-date and relevant.

ETHICAL AND LEGAL CONSIDERATIONS

The new wave of generative AI LLMs has generated a 
perhaps unprecedented wave of attention from mass 
media and its impact has reverberated throughout 
society. In doing so, it has become yet another ele-
ment of contention about the societal impact of AI-
based technologies as harbingers of data-centered 
sciences. Unsurprisingly, health and medicine are do-
mains in which societal impact is undeniable and ne-
phrology is nothing but part of it39. The medical do-
main has a well-honed systematic management of 
ethical issues, but data-centric medical science and 
point-of-care decision-making are still in their infancy 
in terms of implementation, and Hospital Ethical 
Committees are not yet prepared to handle issues 
stemming from the use of AI-assisted, data-based 
decision support systems. As very expressively stated 
in40, “in the long term, we will need transdisciplinary 
training programs that teach computer science along-
side health science […] These degrees should also 
require coursework in medical ethics.”

Generative AI and LLMs only exacerbate ethical risks 
due to their combination of seamless linguistic 
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capabilities and lack of inherent trustworthiness since 
we do not have a complete understanding of their 
inner workings and limitations, with concerns to be 
broadened to include privacy issues and potential and 
varied biases. Ethics though are only the tip of the 
iceberg of a less subjective concern, which is the po-
tential collision between LLMs and law and regula-
tions, both in general and indeed in the particular case 
of clinical medicine and nephrology as part of it. This 
problem has been discussed in detail in26, at two lev-
els: general laws and domain-specific regulations. A 
general law such as GDPR, for instance, mandates a 
“right to explanation” of decisions made on citizens 
(and in the case of health systems, patients) based 
on “automated or artificially intelligent algorithmic 
systems.” This has a straightforward impact on any 
dialysis decision support system based on AI and ML. 
The forthcoming European AI Act (AIA) makes it even 
more explicit, as it veers from general algorithmic 
models to obligations ranked by the potential risks of 
particular application areas. At the time of writing, on 
June 14, 2023, the AIA just moved from draft June 
14, 2023, to a “parliament negotiating position on 
the AI Act,” which should lead to EU countries talks in 
the Council with a target of finalizing the text within 
2023. Concerning Generative AI, its use would have 
to comply with transparency requirements: including 
disclosing that the content was generated by AI; de-
signing the model to prevent it from generating illegal 
content; and publishing summaries of copyrighted 
data used for training. The amendments from the 
original draft include, for instance, that, in recital 27, 
“In order to ensure alignment with sectoral legislation 
and avoid duplications, requirements for high-risk AI 
systems should take into account sectoral legislation 
laying down requirements for high-risk AI systems 
included in the scope of this Regulation, such as Reg-
ulation (EU) 2017/745 on Medical Devices and Reg-
ulation (EU) 2017/746 on in vitro Diagnostic Devices 
[…] AI systems identified as high-risk should be lim-
ited to those that have a significant harmful impact 
on the health […] of persons in the Union.” Note also 
that Amendment 724 of Annex III (referring to high-
risk AI applications) now includes amongst them 
“emergency healthcare patient triage systems.”

Overall, these ethical and regulatory considerations 
aim to raise awareness about the fact that technolo-
gies such as the new Generative AI-based methods 
are less of a technical problem than a societal one, 

about which medical practitioners should be made 
aware due to its impact in the foreseeable future.

CONCLUSIONS

Generative AI has the potential to contribute to per-
sonalized dialysis treatment and increase the quality 
of life of patients. The combination of technology, 
patient-specific data, and AI will contribute to creat-
ing a more personalized and interactive dialysis pro-
cess, improving patients’ quality of life. Nephrologists’ 
collaboration with AI academia and companies to de-
velop algorithms and models that are more transpar-
ent, understandable, and trustworthy will be crucial 
for the next generation of dialysis patients.

ACKNOWLEDGMENTS

We would like to thank the CERCA program/Generali-
tat de Catalunya (Barcelona, Spain) for their institu-
tional support.

REFERENCES

	 1.	 Keane DF, Raimann JG, Zhang H, Willetts J, Thijssen S, Kotanko 
P. The time of onset of intradialytic hypotension during a he-
modialysis session associates with clinical parameters and mor-
tality. Kidney Int. 2021;99:1408-17.

	 2.	 Hueso M, de Haro L, Calabia J, Dal-Ré R, TebÈ C, Gibert K, et al. 
Leveraging data science for a personalized haemodialysis. Kid-
ney Dis (Basel). 2020;6:385-94.

	 3.	 Barbieri C, Molina M, Ponce P, Tothova M, Cattinelli I, Titapicco-
lo J, et al. An international observational study suggests that 
artificial intelligence for clinical decision support optimizes ane-
mia management in hemodialysis patients. Kidney Int. 2016; 
90:422-9.

	 4.	 Zhang H, Wang LC, Chaudhuri S, Pickering A, Usvyat L, Larkin J, 
et al. Real-time prediction of intradialytic hypotension using 
machine learning and cloud computing infrastructure. Nephrol 
Dial Transplant. 2023;38:1761-9.

	 5.	 Chiu JS, Chong CF, Lin YF, Wu CC, Wang YF, Li YC. Applying an 
artificial neural network to predict total body water in hemodi-
alysis patients. Am J Nephrol. 2005;25:507-13.

	 6.	 Hueso M, Vellido A. Artificial intelligence and dialysis. Kidney Dis 
(Basel). 2019;5:1-2.

	 7.	 Karabacak M, Margetis K. Embracing large language models for 
medical applications: opportunities and challenges. Cureus. 2023; 
15:e39305.

	 8.	 Huang K, Altosaar J, Ranganath R. ClinicalBERT: Modeling clinical 
notes and predicting hospital readmission. arXiv:1904.05342;2019.

	 9.	 Peng Y, Yan S, Lu Z. Transfer Learning in Biomedical Natural 
Language Processing: An Evaluation of BERT and ELMo on ten 
Benchmarking Datasets. In: Proceedings of the 18th BioNLP 
Workshop and Shared Task; 2019.

	 10.	 Parnami A, Lee M. Learning from Few Examples: A Summary of 
Approaches to Few-Shot Learning. ArXiv./abs/2203.04291;2022.

	 11.	 Xian Y, Lampert CH, Schiele B, Akata Z. Zero-shot learning-a 
comprehensive evaluation of the good, the bad and the ugly. 
IEEE Trans Pattern Anal Mach Intell. 2019;41:2251-65.

	 12.	 Miao J, Thongprayoon C, Cheungpasitporn W. Assessing the 
Accuracy of ChatGPT on Core Questions in Glomerular Disease. 
Kidney Int Rep. 2023 May 26;8:1657-59.



317

M. Hueso et al. ARTIFICIAL INTELLIGENCE IN HEMODIALYSIS

	 13.	 Jonsson A. Deep reinforcement learning in medicine. Kidney Dis 
(Basel). 2019;5:18-22.

	 14.	 Kim HW, Heo SJ, Kim JY, Kim A, Nam CM, Kim BS. Dialysis ad-
equacy predictions using a machine learning method. Sci Rep. 
2021;11:15417.

	 15.	 Kang MW, Kim S, Kim YC, Kim DK, Oh KH, Joo KW, et al. Machine 
learning model to predict hypotension after starting continuous 
renal replacement therapy. Sci Rep. 2021;11:17169.

	 16.	 Malof JM, Gaweda AE. Optimizing Drug Therapy with Reinforce-
ment Learning: The Case of Anemia Management. In: The 2011 
International Joint Conference on Neural Networks, San Jose, 
CA, USA; 2011. p. 2088-92.

	 17.	 Gaweda AE, Lederer ED, Brier ME. Artificial intelligence-guided 
precision treatment of chronic kidney disease-mineral bone dis-
order. CPT Pharmacometrics Syst Pharmacol. 2022;11:1305-15.

	 18.	 Martín-Guerrero JD, Gomez F, Soria-Olivas E, Schmidhuber J, 
Climente-Martí M, Jiménez-Torres V. A reinforcement learning 
approach for individualizing erythropoietin dosages in hemodi-
alysis patients. Expert Syst Appl. 2009;36:9737-42.

	 19.	 Zhang Z, Ho KM, Hong Y. Machine learning for the prediction of 
volume responsiveness in patients with oliguric acute kidney 
injury in critical care. Crit Care. 2019;23:112.

	 20.	 Gaweda AE, Muezzinoglu MK, Jacobs AA, Aronoff GR, Brier ME. 
Model predictive control with reinforcement learning for drug 
delivery in renal anemia management. Conf Proc IEEE Eng Med 
Biol Soc. 2006;2006:5177-80.

	 21.	 Acosta JN, Falcone GJ, Rajpurkar P, Topol EJ. Multimodal bio-
medical AI. Nat Med. 2022;28:1773-84.

	 22.	 Dunn J, Kidzinski L, Runge R, Witt D, Hicks JL, Schüssler-Fioren-
za Rose SM, et al. Wearable sensors enable personalized predic-
tions of clinical laboratory measurements. Nat Med. 2021; 
27:1105-12.

	 23.	 Kwolek B, Kepski M. Human fall detection on embedded plat-
form using depth maps and wireless accelerometer. Comput 
Methods Programs Biomed. 2014;117:489-501.

	 24.	 Marra C, Chen JL, Coravos A, Stern AD. Quantifying the use of 
connected digital products in clinical research. NPJ Digit Med. 
2020;3:50.

	 25.	 Kamel Boulos MN, Zhang P. Digital twins: from personalised 
medicine to precision public health. J Pers Med. 2021;11:745.

	 26.	 Lisboa PJ, Saralajew S, Vellido A, Fernández-Domenech R, 
Villmann T. The coming of age of interpretable and explainable 
machine learning models. Neurocomputing. 2023;535:25-39.

	 27.	 Hägglund M, Cajander A, Rexhepi H, Kane B. Editorial: personal-
ized digital health and patient-centric services. Front Comput 
Sci. 2022;4:862358.

	 28.	 Roddy MK, Mayberry LS, Nair D, Cavanaugh KL. Exploring 
mHealth potential to improve kidney function: secondary analy-
sis of a randomized trial of diabetes self-care in diverse adults. 
BMC Nephrol. 2022;23:280.

	 29.	 Schultz AN, Kampmann JD, Kidholm K, Moos C, Hayes-Bauer E. 
mHealth education for patients with chronic kidney disease: 
protocol for a scoping review. BMJ Open. 2022;12:e061226.

	 30.	 Torabikhah M, Farsi Z, Sajadi SA. Comparing the effects of 
mHealth app use and face-to-face training on the clinical and 
laboratory parameters of dietary and fluid intake adherence in 
hemodialysis patients: a randomized clinical trial. BMC Nephrol. 
2023;24:194.

	 31.	 Leiz M, Pfeuffer N, Rehner L, Stentzel U, van den Berg N. Tele-
medicine as a tool to improve medicine adherence in patients 
with affective disorders - a systematic literature review. Patient 
Prefer Adherence. 2022;16:3441-63.

	 32.	 Burrows B, DePasquale N, Ma, J, Bowling B. The potential of 
mHealth for older adults on dialysis and their care partners: 
what’s been done and where do we go from here? Front Nephrol. 
2023;2:1068395. 

	 33.	 Connell A, Black G, Montgomery H, Martin P, Nightingale C, King 
D, et al. Implementation of a digitally enabled care pathway 
(Part 2): qualitative analysis of experiences of health care pro-
fessionals. J Med Internet Res. 2019;21:e13143.

	 34.	 Röösli E, Bozkurt S, Hernandez-Boussard T. Peeking into a black 
box, the fairness and generalizability of a MIMIC-III benchmark-
ing model. Sci Data. 2022;9:24.

	 35.	 Wilson FP, Martin M, Yamamoto Y, Partridge C, Moreira E, Arora 
T, et al. Electronic health record alerts for acute kidney injury: 
multicenter, randomized clinical trial. BMJ. 2021;372:m4786.

	 36.	 Linardatos P, Papastefanopoulos V, Kotsiantis S. Explainable AI: 
a review of machine learning interpretability methods. Entropy 
(Basel). 2020;23:18.

	 37.	 Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent re-
porting of a multivariable prediction model for individual prog-
nosis or diagnosis (TRIPOD): the TRIPOD Statement. BMC Med. 
2015;13:1.

	 38.	 Hernandez-Boussard T, Bozkurt S, Ioannidis JP, Shah NH. MINI-
MAR (MINimum Information for Medical AI Reporting): develop-
ing reporting standards for artificial intelligence in health care. 
J Am Med Inform Assoc. 2020;27:2011-5.

	 39.	 Vellido A. Societal issues concerning the application of artificial 
intelligence in medicine. Kidney Dis (Basel). 2019;5:11-7.

	 40.	 Quinn TP, Senadeera M, Jacobs S, Coghlan S, Le V. Trust and 
medical AI: the challenges we face and the expertise needed to 
overcome them. J Am Med Inform Assoc. 2021;28:890-4.


