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Abstract

This thesis will present a body of articles on the research topic of soft matter.
The emphasis is put on the computational modelling of driven soft matter
at length scales of micrometers and nanometers. We classify the presented
works in two parts, the scientific approach of which differ notorously. In the
first part, experiments were available and the objective was to understand
emergent responses reported in the lab. Since the outcome was already known,
we used simple simulation methodologies that delved into the fundamental
mechanisms that lead to the response of interest. The focus of the subjects,
althought diverse, was centered around dynamics of colloidal suspensions, hence
a mixture of a majoritary liquid phase with a minoritary solid phase. In the
second part of the thesis, we employed simulations that rigorously solved the
hydrodynamics coupled to the physics of the free energy of interest. The
goal was to investigate novel experimental setups, the outcome of which was
unknown due to the early stage of the subject. With the simulation results,
we built theories that explained the observed phenomena, setting the basis for
future experimental explorations. This last part focused on two independent
topics, namely, capillary driven spontaneous in lubricant infused surfaces and
electrolites in charge-patterned confined nanochannels.
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Resumen

En esta tesis se presentarán una serie de artículos en el área de investigación de
la materia blanda. La materia blanda es un subcampo de la materia condensada,
en el que la energía típica de los sistemas es del orden de magnitud del de las
fluctuaciones térmicas. Las escalas en las que se trabaja la materia blanda
suelen ser la escala micrométrica (μm) y la nanométrica (nm), y en estas
escalas la física de fluidos convive con la física de la vida y la de la materia
interacuante. Esta mezcla de interacciones puede resultar en un alto grado
de complejidad y en un sín fin de respuestas emergentes que aún quedan por
entender. En estos últimos años, gracias al avanze del poder computacional,
se han desarrollado en la materia blanda muchas metodologías de simulación
que ahora se pueden utilizar para estudiar muchas de las preguntas que aun
quedan sin respuesta en la materia blanda. En esta tesis, haremos énfasis
en la modelizacion computacional en este tipo de materia. Presentaremos un
compendio de publicaciones, en las que hemos utilizado diferentes métodos
de simulación para explicar experimentos y para postular nuevos desafíos
experimentales. La tesis se divide en dos partes donde el enfoque científico
varía: En la primera parte, mas centrada en coloides y micronadadores, se
utilizan modelos computacionales simples para explicar efectos emergentes en
experimentos de materia blanda. En la segunda parte, centrada en dinámica
de fluidos, capilaridad y electrolitos se utilizan métodos mas sofisticados para
intentar predecir, esta vez sin evidencia experimental alguna, los posíbles
escenarios a los que podría llevar una realización experimental. Tomada en su
totalidad, esta tesis se puede entender como un enfoque práctico a la hora de
escoger métodos de simulación en la micro y nanoescala.
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0.1. Soft matter in a nutshell

0.1 Soft matter in a nutshell

In the last decade, soft matter has become one of the most important subfields of
condensed matter, and its applications and research areas cover a broad range of
topics. In colloidal and interfacial science, soft matter can benefit from classical
methods of fluid dynamics to delve into the characteristic properties of emulsions
and suspensions [1–4]. In capillaries, the energetic cost associated to increasing
a surface area results in surface tension phenomena. Surface tension is the
reason why drops, in equilibrium and in the absence of forces adopt a spherical
shape. When subjected to external forces, drops can dynamically change their
shape and deform depending on the nature and magnitude of the force. The
physics of equilibrium and non-equilibrium drops have been a topic of research
in soft matter for many years, and there are many books and a relevant body
of articles [5–9] that delve into their properties, and highlight their importance.
The interaction of a drop with a solid interface also gives rise to many responses
of interest. The shape and dynamics of a drop are modified by the physical
and chemical properties of the solid surface in which the drop lies [10]. In a
solid micro-channel, surface tension can be used to spontaneously produce the
invasion of a fluid into the channel without any use of external pumps [11–13].
When combined with electrokinetic and electroestatic models, flow equations
are an important tool to understand ionic currents taking place across cells [14],
activating cell mechanisms [15] and neuron communication [16]. Understanding
such currents can, at the same time, lead to techonological developments that
imitate these biological responses, and apply them for harvesting energy from
salinity gradients [17], or to build a transistor that relies solely in transport
properties of electrolites in confined nanochannels [18]. The latter are only a
few examples of the promising technologies soft matter could contribute to by
controlling the micro and nanoscales.

Closely related to biology, in soft matter there are many interacting systems
that result in the emergence of complex responses, like self-organisation [19] or
phase transitions [20]. The scales at which this phenomena take place is very
close to the scale of biological matter, such as proteins, cells, bacteria and virus.
However, this type of matter escapes the rules followed by conventional soft
matter, since they are intrinsically out of equilibrium. The energy consumed
by sub-units forming these systems can be transformed to motility and lead
to spontaneous ordering, result in persistent defects and even in more complex
degrees of organisation of matter. Soft matter has advanced towards the
characterisation of these systems, studying biological matter in controlled
environments to gain insight about this complexity observed in living matter.
This topic of soft matter receives the name of active matter. By exploiting simple
interaction rules, complex emergent behaviours can be modelled to investigate
bacteria motility [21–23], cellular filaments inside the cell [24], birds [25], school
of fishes [26] and more. Efforts are being made to generalise fluid models to
approximate the behaviour and transport properties of motile cancer cells [27],
and distinguish healthy cells from cancerigenous cells. When combined with
chemistry and biology, cell organoids can be simulated with a realistic cell
media to underpin the role of a precise biological structure and understand
how it is integrated in the vast majority of processes that a cell can do [28]. In
summary, the latter examples exhibit the capability to invert energy in motion or
deformation, which can result in self-propulsion, self-assembly and aggregation

2



0.1. Soft matter in a nutshell

phenomena [29]. Active matter can be synthetised too in a laboratory benefiting
from chemical interactions, in order to design experimental realisations that
simplify the complexity found in nature. Particularly important are Janus
particles, which exploits an asymmetry in the surface of the sphere to produce
diffusio-phoretic flux that self-propells the particle [30].

As the reader might have noted, it seems quite difficult to enclose soft matter
in a simple definition. The usual definition fails to capture the complexity of the
situations in which soft matter is focused and the emergent behaviours it can
give rise to. The mentioned studies contain both alive and inert matter, micro
and macro sized systems, systems where fluid dynamics is important and systems
where fluid dynamics is irrelevant. This heterogeneity of topics in soft matter is
precisely one of its core values, and the most powerful one: Multidisciplinarity.
In soft matter, physicists work together with chemists. Engineers and biologists,
both in its theoretical and experimental aspects, collaborate to understand
principles, design devices and create new methodologies that can help overcome
the challenges of this century.

However, there is a common ground for the mentioned research topics
in soft matter. First, the ability of the media to deform in the presence of
external forces, compared to other subfields of condensed matter. Second, the
components of soft matter systems are tipically in the micro/nano scale, where
quantum effects are not determinant, but thermal fluctuations might influence
the system behaviour, since the energy scale is comparable to that of room
temperature energy, kBT . However, soft matter does not focus solely in matter
at the micro and nano-scales. Some matter composed by macrososcopic units
such as birds or fish schools are also a subject of study for soft matter. In
these systems, similar methodologies can be used, and phenomenology can be
similar compared to its microscopic counterparts, like bacteria. The microscopic
emergence of a macroscopic temperature is also modelled in these systems as
a noise contribution, similarly to other models of colloidal suspensions [31],
capturing random contributions to the motion in living organisms. Such
properties make soft matter systems particularly appealing to some of the
classical statistical mechanics approaches. These systems can be surrounded by a
fluid media, and hydrodynamic interactions might be relevant in some situations,
which might lead to consider the Navier-Stokes equations from hydrodynamics.
Distinguishing between equilibrium processes and non-equilibrium processes is
also important in order to accurately consider the phenomenology involved in
the behaviour of interest. Driven soft matter is often out of equilibrium, which
can complicate the modelling of the phenomena involved in the area of research
. Continuum models can help modelling non-equilibrium phenomena from
thermodynamic principles. The standard Cahn-Hilliard equation is an example
of the latter which models phase separation of a binary mixture. This equation
is based in a free energy that depends on a concentration c that has two minima.
By means of introducing a term of the type ∇c the increase of surface area is
penalised, resulting in surface tension. Hence, if the initial configuration at a
certain domain consists of a random distribution of concentrations, the system
will phase separate in two phases, corresponding to the two minima configured
by the bulk. In conclusion, there are a set of tools that are susceptible to be
applied to soft matter systems, which have been a source of novel and interesting
results in the recent years.

Due to the complexity of some of the phenomena of interest in soft matter
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0.2. Aims and structure

systems, computational approaches have become extensively used in the field.
In the last decades, the increasing computational capacity of modern computers
multiplied the amount of simulation methodologies to model fluids in the micro
and nanoscale [32–34] for fluid mixtures [35–37], reallistic models of water
interacting with complex proteins [38–40], nucleation [41], overdamped colloidal
aggregates [42] and microswimmers [43–46], just to quote some examples.
Many advances in this research areas have benefited from such computational
approaches to explore some experimentally inaccessible measurements and to test
and validate hypothesis to understand the responses of complex media. While a
lot of research is still being conveyed to develop new simulation methodologies,
a lot of standarised simulation procedures already exist for soft matter research,
and rarely one needs to start from scratch to focus on a problem of interest.
The rising of standardised versions of codes based on simulation methodologies
has also lead to different approaches to model phenomena. For example, one
could seek to include all the possible existing effects to model a behaviour in
the most realistically rigorous way possible. This approach can be useful to test
whether the simplifications leading to an analytical result could hold in a more
realistical situation. The objective could be to determine what are the role of
other contributions that can come at play. For example, in one of the works
presented in this thesis, we derived a simple analytical model to predict the
spontaneous imbibition of a front in a lubricant coated channel. This simple
model neglected some contributions that could rise due to the lubricant covering
the solid channel, like the varying lubricant thickness near the front, or the
lubricant ridge arising at the triple contact line. The simulations considered
in detail hydrodynamics of all three phases, along with the surface tension
interactions. We were able to determine that the dynamic regimes identified in
the analytical model still held.

A different approach to simulations can be summed up in a quote attributed
to Einstein: Everything should be made as simple as possible, but not simpler.
By using simple computational methodologies, the path towards the minimum
ingredients to derive an analytical model are clearer, and a deep fundamental
understanding of the problem can be achieved. Of course, these two approaches
are complementary to describe a broad view of a phenomena. When there are
experimental results and the goal is to understand the principles governing an
emergent response, then a simple computational approach is a good idea. For
example, clogging of particles through a bottleneck is an emergent response,
which arise from the steric interactions between particles when forced through a
narrow constriction. By modelling some aspects of this transition and comparing
them to the experimental results, we can understand which combination of
interactions leads to the emergent response. We will benefit from this two
approaches depending on the goal of our research and the starting point of the
investigation.

0.2 Aims and structure

In this thesis, we have used different simulation methodologies, which differ
in complexity and computational performance. There are two main parts
constituting this work. Both have computational and theoretical components.
The first part is focused on non-equilibrium colloidal suspensions and active
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0.2. Aims and structure

matter, and is more aligned towards the keep it simple principle. It benefited
from experimental results obtained in Prof. Pietro Tierno’s group. With
our simulation modelling and theoretical analysis we wanted to determine
the principles leading to the emergent responses observed in experiments.
The methodologies used in this part are simple to implement in codes, like
Brownian Dynamics (BD) and Molecular Dynamics (MD), and have been
programmed from scratch to simulate colloidal suspensions of spherical objects.
Some additions had to be made in some cases compared to the standard
algorithms. For instance, Ref. [47] incorporated far-field hydrodynamic
interactions, leading to the conclusion that these interactions were responsible
for the resynchronization of particles with the moving landscape. We will delve
deeper into the particularities of each simulation methodology in the following
sections.

The second part pursued completely different challenges. We focus on
understanding different scenarios in the context of a different kind of mesoscopic
simulations. The absence of experimental and theoretical results was overcome
by means of well-established simulation methodologies, based on the Lattice-
Boltzmann (LB) method. The first chapter is dedicated to a series of simulations
that delve into accurate capillary flows in lubricant-coated surfaces, and use
this simulations to build an analytical framework. On one side, spontaneous
imbibition is a classical problem, the first theoretical solution of which was
reported a century ago [11]. Experimental results are also very common, and a
large amount of simulation methodologies have been devoloped to understand its
origin both microscopically [48–50] and mesoscopically [51–53], reproducing the
well known classical results. On the other side, there is an increasingly popular
experimental approach to eliminate surface roughness and thus hysteresis in
the contact angle of a drop [54–56]. The solid surface is tipically treated to
be imbibed by a lubricant, which always stays attached to the solid surface
due to its preferential wetability. What would be the properties of a front
moving in a confined channel where the walls are covered by such a lubricant?
Neither experimental results nor theoretical calculations were available for this
realisation. We built up from a Lattice-Boltzmann (LB) open source code [57]
to incorporate a three-phase fluid with tunable contact angles. We used this
methodology to probe different scenarios and build a theoretical model that
reproduced our observations and provided a framework to understand the
mechanism that changed the dynamics of the front. Some properties related to
the dissipation due to the interface deformation were not clearly understood,
which lead us to compare the lubricant-coated scenario to a conventional dry
surface. The second chapter of this part is dedicated to a publication where
we combined the Lattice-Boltzmann method with an electrokinetic model to
simulate the effect of a charge pattern in electrolites confined in nanochannels.
The results showed a flow transition as a function of the pressure gradient,
which we complimented with a Dissipative Particle Dynamics (DPD) explicit
ion methodology. Both simulation results agreed with the predicted onset of
the transition obtained by means of a mean-field model.

To conclude this introduction, I will briefly sum up the content of the
chapters and sections of this thesis. The different subsections will serve as
a build up to a series of publications presented in the last part. The reader
will be introduced to the context and novelty of the results by providing and
commenting the relevant literature. The computational and theoretical details
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will be sketched, in order to facilitate the reading of the published works. In
the publications the reader will find the bulk of the scientific work, the place
it occupies in the present research topic, the precise goals of each and the
conclusions. We will avoid repeating content that is already present in the
article. We will elaborate on the simulation methodologies and in the main
research field concepts when the article lacks comprehensive information about
the prior research leading to the publication.

The two aforementioned parts are independent, so that any ordering of
these two might look arbitrary. However, we have decided to start with the
part where MD and BD simulations have been used, since these computational
approaches are more intuitive. In part II, we will start in Sec. 1.1 introducing the
peculiarities of the hydrodynamic equations and suspensions in the microscale,
where objects are tipically of the order of 1μm. Most of the presented
publications here are combined with experimental results, or are motivated by
previous experiments. In Sec. 1.2 we present Pub. 4.1, a publication consisting
in MD simulations of a triangular microswimmer modelled by three beads linked
together, which can swim due to friction anysotropy present in the vicinity
of a solid wall. In Sec. 1.3, we will introduce Pub. 4.2, a paper where we
aim to study the colloidal transport in modulated ratchet potentials and the
far-field hydrodynamic contribution to the dynamics. In section 1.4 we will
present Pub. 4.3, a work where we investigate the local clogging properties of
ratcheted motion of colloidal particles, where bottlenecks are configured by a
distribution of pinned spherical particles. After this, we will present a general
characterisation of clogging of particles driven by a constant force in section 1.5.
This new approach, explained in Pub. 4.4 characterises clogging in arbitrary
landscapes and allows to identify a new flowing regime that will be explained
in detail in the paper, and will help us to probe active matter moving through
arbitrary disordered landscape. Finally, in section 1.6 we will present Pub. 4.5,
a work where we investigated the motion of an active raft, configured by an
apolar active particle interacting with sillica particles through diffusio-phoretic
means.

In the second part, called Driving fluids at the microscale we will deal with
the research that benefited from the LB methodology. The main goal of this first
chapter of the second part has been to investigate capillary driven spontaneous
imbibition of fronts in lubricant coated channels. In the introduction, Sec. 2.1,
we will explain basic concepts of surface tension. In order to understand
the novelty of the work, we will build up on these basic concepts to briefly
summarise the famous results obtained by Washburn, which have been observed
experimentally multiple times. We will also dedicate a chapter to describe the
basis of the LB method in Sec. 2.2. The ternary free energy mixture model
we used to simulate surface tension with tunable solid-liquid contact angles is
introduced in Sec. 2.3. We will end this chapter presenting Pub 4.6, the work on
capillary driven spontaneous imbibition in lubricant coated surfaces. A second
section of this chapter will deal with the deformation of an interface between
two fluids, 2.5. The theory for this latter topic when the interface moves on
top of solid surface has been already stablished [58,59] We will introduce the
results of this theory to the reader, and highlight how it can be extended to
capture the deformation of an interface between two fluids when the interface
moves on top of a thin lubricant layer.

In chapter 3, we will present Pub. 4.7, a contribution to the field of
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electrolytes in confinement. First we will introduce some basic results from the
literature in section 3.1 to provide intuition about characteristic lengthscales of
electrolyte fluids near a charged wall. We will also introduced briefly how the
LB methdod is coupled to an electrokinetic free energy model in section 3.2. In
Sec. 3.4 we summarise the context of the presented publication and the results.

Part IV will present all the publications in the same order as they have
been presented in the index of contents. Finally, part V will summarise the
conclusions of this thesis from a broad perspective.
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Driving colloids at the microscale
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CHAPTER 1

Modelling colloidal particles

The term colloid is of broad use in soft matter science. In general, colloidal
matter can refer to any mixture of two or more phases of matter. One phase
is in a larger proportion, and is defined to be the continuous phase, while the
other phase is in smaller proportion and is referred to as dispersed phase. Here
we will model colloidal systems comprised of a fluid continuous phase, and
a suspension of solid particles as the dispersed phase. The size of the solid
particles of the dispersed phase considered here will be of the order of the
micrometer (10−6 m) size. However, in fluid-solid suspensions the solid particles
might be as small as a nanometer nm (10−9 m). The characteristic scales of
the solid particles impact significantly the behaviour of the dispersed phase and
its physical properties. In the nanoscale, solid particles are subjected to larger
thermal fluctuations, which can hinder emergent collective responses of the solid
subunits. Additionally, in the nanoscale the no-slip boundary condition, which
imposes that the fluid velocity at a solid boundary is stricly zero, does not hold
anymore. Instead, a slip velocity emerges at the solid interface, which will also
impact the dynamics of colloidal suspensions near solid walls [60]. There is no
need to worry about these effects here, since the typical size of the colloidal
particles considered in this part are of the order of 1 μm. Hence, the no-slip
boundary condition holds and thermal fluctuations will not be determinant,
though they still exist in such a scale, and we will account them in the models.

When solid particles in a suspension move due to the action of external forces
they perturb the flow around them, which will also affect other surrounding solid
particles. Fully solving the Navier-Stokes equation numerically in the general
case is a difficult task that requires vast computational resources. However,
some simplifications can be made from the particular scale we are using. In
the Navier-Stokes equation, there is a dimensionless parameter that accounts
for the ratio of inertial force to viscous forces. This number can be written as
Re = ρu/Lη, where ρ is the fluid density, u is the characteristic flow velocity,
η is the viscosity of the fluid, and L the characteristic length of the system.
In a system of a characteristic size of L ∼ 1μm, considering water as the
characteristic fluid, we obtain that Re ∼ 11.23v, where v is given in SI units.
Bacteria are among the fatest microswimmers in the microscale, moving at
speeds of the order of 10μm, which means that the tipical Re number in colloidal
suspensions will not grow over Re ∼ 10−4, and inertia will be negligible. This
means that the equation for hydrodynamics in colloidal suspensions will be the
Stokes equation
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1.1. Modelling particles at low Re number

ρ
du
dt

= −∇p + η∇2u + ρF, (1.1)

where u(r, t) is the solvent velocity field, t is time, p is pressure, ρ is
the fluid density and F is the external force. In the next section, we will
explain the general approach to model colloidal particles. We will seek and
develop simulation models that compromise computational cost with an accurate
description of the responses we have encountered in experimental realisations.

1.1 Modelling particles at low Re number

The Stokes equation has some peculiarities we are not used to in our macroscopic
world, where tipically Re � 1. An important feature is the time reversibility
of Stokes flows . This implies, for example, that a mixing of two immiscible
phases of fluids at Re � 1 by a force F(r, t) is reversible by means of reverting
the applied force for the same amount of time −F(r, t). In a viscous media
where Re � 1, friction is all there is. If one imagines himself throwing a tennis
ball in such a medium, the ball would immediately stop at the same exact time
our racket stops touching the ball due to the inability to sustain inertia. This
has important implications for biological entities that are known to swim in the
microscale and to any effort of moving particles at such scale.

One needs to seriously consider the implications of Eq. 1.1. When a particle
moves in a viscous medium, it generates a flow that will act on other particles
due to the fluid drag. Additionally, the microscopic motion of the molecules
of the liquid induce a random fluctuation of the particle position in time. We
start by describing the general equation for particles in a fluid medium that
considers all these effects, including inertia. This fundamental equation is the
Langevin equation

md2r
dt2 = FH + FI + FP (1.2)

where m is the generalised mass/moment of inertia matrix, of dimension 6Nx6N,
being N the number of particles considered. The first term on the right, FH is
the drag exerted in the particles due to their motion relative to the fluid. Its
expression is

FH = −ν(v − vf (r)) (1.3)

where ν = μ−1 is the resistance matrix, which is the inverse of the mobility
matrix ??. The terms of this matrix depend on the spatial configuration of
particles, which generally changes in a simulation. This implies calculating the
resistance matrix each time-step.

The second term on the right, Fi represents all the internal and external
forces of the particles, like interparticle potential, dipolar interactions, or the
force due to a magnetic field. The last term represents a stochastic force. It is
a noise term that includes the motion of the particle due to the collision of fluid
molecules with the solid particle, leading to fluctuations of the particle position.
Thus, it is the term that explains the random motion of a colloidal particle
in a fluid, which is typically referred to as Brownian motion. The Brownian
contribution is generally characterised by

〈FB〉 = 0 and 〈FB(0)FB(t)〉 = 2kBTμδ(t). (1.4)
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1.1. Modelling particles at low Re number

where μ is the configuration dependent resistance matrix that gives the
hydrodynamic force due to their motion relative to the fluid [61]. The amplitude
of the noise in Eq. 1.4 can be derived from the fluctuation-dissipation theorem
for a N-body system. It is important to note that the Langevin equation is valid
as long as the spatial configuration of the particles does not change drastically
during the time scale of the Brownian fluctuations, which is satisfied by all the
cases of interests presented in this thesis. Otherwise it would mean that the
characteristic time of the collisions between liquid molecules and the relaxationt
time of the colloidal particle are comparable. In such cases, other simulation
methodologies that explicitly consider the solvent such as Molecular Dynamics,
would be more appropiate.

Fully solving this stochastic differential equations numerically, even when
the solvent is considered implicitly through the drag exerted on the particles by
the fluid, is still very expensive computationally. There are different reasons
for this. First, one needs to consider the lubrication between the surface of the
particles. Due to the no-slip boundary condition, when two particles come close
enough, the relative motion between them tends to stop due to the drag that
rises from this condition. Furthermore, the long-range hydrodynamic interaction
between two particles go as 1/r2, meaning that no cutt-off distances can be
imposed to sum the drag forces of all particles in the system. However, the most
expensive computation is due to the many body hydrodynamic interactions,
since calculating its contribution to the motion requires inverting the mobility
matrix, a computational bottleneck that requires O(N3).

In the models we will present in this chapter, when hydrodynamics are
considered, we will overcome this computational bottleneck by considering
simplified versions of the mobility matrices. We will consider that particles
induce a flow at the Oseen level, while the thermal fluctuations will be
sampled from a Gaussian distribution, as it is the case for an isolated particle.
Additionally, we will consider the Langevin equation in the overdamped limit,
neglecting the inertial term. The latter limit is often known as the Brownian
dynamic limit. In this limit Eq. 1.2 reads

FH + Fi = −γ
dr
dt

+ ξ(t), (1.5)

where FH will be the hydrodinamic drag calculated using far field hdyrodynamics
at the Oseen level, or at the Blake level if a solid boundary is present. The term
boldsymbolξ represents the force due to the random fluctuations for a single
particle

〈ξ(t)ξ(t′)〉 = 2kBTγδ(t − t′)I, (1.6)

where I is the identity matrix. In the following sections, we will describe a
series of simulations the purpose of which was to understand the underlying
mechanism of a experimental emergent response. For each publication, the
simulation methodology has been tailored carefully to imitate in the most
straightforward manner the experiments, when available, while keeping as low
as possible the computational cost. We will introduce the topic of research and
justify how we modelled the system in order to obtain realistic outcomes that
represent the relevant physics. The publications we show use either Brownian
Dynamics or Molecular Dynamics in the limit where acceleration is negligible,
reducing the dynamics to that of the Brownian methodology. This latter method
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1.2. Magnetic triangles near a solid boundary and friction anysotropy

can be useful when one needs to impose constrictions on the distance between
two particles by means of some computational algorithm [62]. Hence, our
objective will be to sketch how we approach the challenge of modelling different
experimental systems, trying to reduce the complexity of the problem as much
as possible in order to rationalise the results.

1.2 Magnetic triangles near a solid boundary and friction
anysotropy

This publication pertains to the topic of the physics of swimmers in the
microscale, a fascinating topic that highlights how some organism have adapted
to swim at small Re. By a swimmer we mean an object or an organism
that is able self-propel in a fluid medium, whatever the mechanism might be.
This research topic was born because of a striking consequence of the laws of
hydrodynamics at low Re in the micro and nanoscale: The scallop theorem.
This theorem states that at Re � 1, in a fluid bulk, no motion is possible by
means of periodic oscillations of a single degree of freedom of a swimmer. In
other words, a scallop cannot swim at Re � 1 in the bulk of a fluid, since it has
only one degree of freedom, namely, the aperture angle between the shells, which
oscillates periodically in time [63]. At least two degrees of freedom are required,
in order to describe a closed trajectory in phase space that avoids reciprocity.
This means that the swimming mechanisms developed in the sea by fish and
aquatic mammals are rendered useless, along with all the knowledge of friction
reduction we have gathered in aerodynamics. Their mechanisms of locomotion
have evolved to overcome very efficiently the limitations of the scallop theorem
and achieve fast swimming speeds without relying on inertia. Exemples of this
are spermatozoa, which can move due to long flexible tails [64]. The specific
swimming locomotion of bacteria can differ between different species. For
example, there are bacteria that swim with flagellums, which consists on long
filaments attached to some part of the bacteria. Different species can differ on
the number of this flagellums and where they are attached to, and can have
different swimming modes, like pull or push the fluid araound them, or tumbling
motion to change direction [65].

The physics of microswimmers have been subject of study for almost fifty
years now, since E.M Purcell stated the scallop theorem [63]. One of the
challenges associated to this discovery has been, since that time, to be able to
design synthetic microswimmers, to understand better which designs can lead to
propulsion and which ones could potentially be used for medical applications. A
plethora of simple designs of syntethic microswimmers which can move freely in
a fluid bulk have been proposed and tested experimentally. Relevant examples
include the corkscrew magnetic swimmer, which relies in the chirality of an
object that moves in a corskcrew fashion [66], or magnetic swimmers consisting
of a head and a non-flexible tail, which can move due to the friction assymetry
between the head and the tail in a periodic cycle [67].

The presence of a solid boundary introduces an additional degree of freedom,
which facilitates locomotion and results in new swimming modes. For example,
a stick rotating with a constant angular velocity, with an angular momentum
pointing towards one direction inside the solid plane will move, similarly to
a wheel. This is a consequence of the no-slip boundary condition at the wall,
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1.2. Magnetic triangles near a solid boundary and friction anysotropy

Figure 1.1: Some examples of synthetic microswimmers, classified by their
swimming mechanism, with their corresponding characteristic speed. Figure
extracted from Soft Matter, 2011 7, 8169

which produces an additional degree of freedom, namely, the motion parallel
and perpendicular to the wall, due to the difference between friction in these two
directions. This leads to locomotion near a boundary [68]. On Shun Pak et al
summarised and classified accurately some of the synthetic micrswimmers that
have been realised in the last decades, emphasising the swimming mechanism
and the characteristic speed [69]. Fig. 1.1, show a rich variety of mechanisms
that can be used borh in nature and sinthethycally in the lab to break the
scallop theorem.

Here we will focus on a particular implementation of a surface walker actuated
by a time dependent magnetic field. Fig.1.2 shows a scheme of a experimental
realisation of a magnetically actuated rotor. This microswimmer has certain
similarities to the one we will study in this section. Two paramagnetic particles
are attached with a DNA bridge, and when an oscillating magnetic field is
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1.2. Magnetic triangles near a solid boundary and friction anysotropy

Figure 1.2: Experimental realisation of a colloidal rotor, showing the relevant
degrees of freedom, the angle θ and the height h. The rotation of θ is rectified
into a translation motion thanks to the presence of the boundary. Figure
extracted from Phys. Rev. Lett. 101, 218304

applied, the pair aligns with the magnetic field and oscillates. The vector linking
the two particles describes a circular motion, which is rectified into a translation
due to the additional degree of freedom introduced by the boundary. Since
there is only two degrees of freedom, namely the motion perpendicular and
parallel to the wall, the magnetic actuated rotor results only in two directions
of motion, namely, forward and backward, depending on the chirality of the
magnetic field. Upon invertion of the y component of the magnetic field, the
direction does not change.

The magnetic swimmer we will characterise moves when actuated with the
same type of magnetic field as that shown in Fig. 1.2. However, this magnetic
microswimmer has the particularity of a swimming mode in which the triangle
dues not describe full rotations in relation the solid plane. Instead, it slides
along the solid plane with the lower surface of the triangle laying close to
the solid boundary. By switching the magnetic field chirality (clockwise and
counterclockwise) and the sign of the y component of the magnetic field, we
demonstrate that friction anisotropy can produce four different directions of
motion, allowing full control of the swimmer directionality.

The goal of this publication was to understand the experimentally-reported
propulsion mechanisms of a magnetic triangle. In particular, the sliding
propulsion mechanism, skectched in Fig 1.3 seemed to differ to the other
two, which were in essence closer to that of magnetic actuated rotors [68].
The experimental triangles were formed by magnetised nanobeads, which
were molded into a triangular shape. The shape was typically isosceles, but
some defects in the shape existed, since the nanobeads added rugosity to the
surface. The triangle had a permanent moment contained pointing towards some
direction inside the triangle planar surface. Additionally, different experimental
realisations of the triangles had different moments pointing towards different
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1.2. Magnetic triangles near a solid boundary and friction anysotropy

Figure 1.3: Scheme showing the sliding motion observed in experiments and
simulations. The permanent magnetic moment m in this scheme points towards
one of the tips of the triangle. However, in experiments the magnetic moment
could point anywhere inside the plane of the triangle. In the simulations, we
also varied systematically the orientation of the magnetic moment inside the
triangle plane.

directions, leading to a distribution of magnetic moment orientations.
We wanted to a model the minimum ingredients that would account for the

different propulsion mechanisms, and in particular, for the aforementioned novel
propulsion mechanism where the triangle was observed to swim in four directions,
making it suitable for surface exploration in the micro-scale. Thus, we proposed
a coarse-grained model of a triangle formed by three beads, and introduced
hydrodynamics in a simplified way that accounted for the solid boundary, and
determined if such a simple model could reproduce the experimental observations.
The algorithm we used was Molecular Dynamics, since we needed to keep fixed
the distances between the beads by means of a constraint algorithm [62]. We
will now present the algorithm and the conclusions of the work.

The Molecular Simulations model used was similar to that to simulate a
filament of beads interacting hydrodynamically [70]. The simplest version of
Molecular Dynamics consists on solving Newton’s equation of motion for a set
of particles that interact through different forces. These forces may arise from
external fields, or from the repulsion when two particles come and interact
closely enough. In our case, we will also introduce hydrodynamic interactions
in a simplified way, as the force friction exerted by the particles due to the wall
interaction, and due to the fluid flow that a bead generates in other beads when
it moves. The algorithm consists in the following steps

1. Update positions:

ri(t + Δt) = ri(t) + vi(t)Δt +
1
2

ai(t)(Δt)2

2. Calculate forces based on new positions:

ai(t + Δt) =
Fi(r(t + Δt))

mi
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1.2. Magnetic triangles near a solid boundary and friction anysotropy

3. Update velocities:

vi(t + Δt) = vi(t) +
1
2

(ai(t) + ai(t + Δt)) Δt

Given the initial conditions of the position and velocity for each particle,
at each new time step we will need to compute all the forces exerted on each
particle in order to update the acceleration, and then update the velocity we
will need or the following step. We will now highlight which forces we chose to
simulate the magnetic triangle.

For the sake of simplicity, we proposed a three bead model. The beads are
connected by means of a MILC SHAKE algorithm [62] that ensures that the
distance between beads is kept constant. The equation of motion for each bead
is

m
d2ri

dt2 = Fm
i + Fg

i + FLJ
i + FH

i (1.7)

where subindex i = 1, 2, 3 refers to a bead. The first term Fm
ij is the force

due to the interaction of the triangle magnetic moment with the magnetic field.
Distributing the forces on the beads to generate a torque implies taking into
account the geometric constrains involved in the triangle. In our model the
torque applied to the center of mass is

τ = (r1 − rCM) × Fc
1 + (r2 − rCM) × Fc

2 + (r3 − rCM) × Fc
3 (1.8)

where rCM is the center of mass of the triangle, and Fc
i refers to the force

of constraint of particle i, in order to exert the torque τ . As the torque does
not induce any net force in the three-bead system, there is the extra constraint
Fc

1 + Fc
2 + Fc

3 = 0, that allows to rewrite Eq 1.8 as

τ = (r1 − r3) × Fc
1 + (r2 − r3) × Fc

2 (1.9)

There is 3 equations, one of each component x, y and z, and 6 variables left,
corresponding to the components of Fc

1 and Fc
2. The rest of constrains can be

obtained imposing that the torque does not produce any local tensions along
lines joining i and j between beads in the triangle, hence

(r1 − r2) · (Fc
1 − F1) = 0 (1.10a)

(r1 − r3) · (Fc
1 − F3) = 0 (1.10b)

(r2 − r3) · (Fc
2 − F3) = 0 (1.10c)

Note that Fc
3 can be rewritten in terms of Fc

1 and Fc
2 so that we are left

with 3 equations, and the linear system can be solved. The system of equations
1.9 and 1.10 was solved numerically performing a LU decomposition combined
with a backward and a forward substitution algorithm [71].

The second rhs in Eq. 1.7, FLJ
i (zi) accounts for the steric interactions

between the beads and a wall placed at zi = 0, which is of the Lennard-Jones
type. This interaction is required for avoiding the triangle beads to keep falling
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1.2. Magnetic triangles near a solid boundary and friction anysotropy

forever in the absence of gravity. The LJ interaction keeps zi > 0, and is of the
form

FLJ
i (zi) =

u0
r13 ez (1.11)

The last term FH
i takes into account the hydrodynamic interactions. In

the vicinity of a stationary wall, a bead moving in a viscous fluid creates a
velocity field that interacts with with its own image respect the wall, the other
moving particles, and the images of the moving particles. The hydrodynamic
velocity produced by a point-like bead subject to a force Fi in the presence
of a stationary wall is given by the Blake tensor [72]. The expression for the
hydrodynamic force in this case is

viH = ΔνiFi +
∑
j �=i

G(ri, rj)Fj , (1.12)

where Fi = Fm
i + Fg

i + FLJ
i is the total force acting on a particle. The

first term in the right side of Eq. 1.12 gives the self interaction contribution
of the particle with its own image on the stationary wall. The tensor Δν
captures this interaction Δν = ν(1 − ẑẑ) + 2νẑẑ, where ν = − 3

16
a
zi

, a is
the hydrodynamic radius of the bead, and zi its z coordinate distance to
the stationary wall [73]. The second term in the right side provides the cross
hydrodynamic interactions between different beads: G(ri, rj) ≡ Gij which takes
into account the hydrodynamic flux contribution between a bead j, its image,
and bead i. Due to this velocity field, particles experience a hydrodynamic drag
that can be approximated, to lowest order as FiH = −γ(ṙi − viH), so that the
final expression for the force is

FiH = −γ
‖
0

(
n̂n̂γ⊥

0

γ
‖
0

+ p̂p̂
) ⎡

⎣ṙi − ΔνiFi − 1
8πη

∑
j

FjGij

⎤
⎦ (1.13)

The first right hand term in brackets in Eq. 1.13 is the asymmetric friction
tensor γ̂, which takes into account the difference in friction of beads when
they move parallel to the plane containing the three beads, or perpendicular
to it. The terms n̂n and p̂p are tensors that determine the hydrodynamic
friction normal (n̂) or perpendicular (p̂) to the triangle plane. The scalars γ⊥

0 ,
γ

‖
0 denote the bead friction perpendicular and parallel to the triangle plane.

This difference in friction accounts for the planar geometry of the triangle. By
comparing with experiments, we determined that this friction difference had
to be accounted to reproduce accurately the different swimming modes. The
explanation for this is very intuitive, since it is reasonable to imagine that the
triangle experiences a smaller friction when its a p vector that rotates while n
is constant.

Now we will rewrite the dynamic equations in rescaled units to reduce the
number of independent parameters. We address the equation in scalar form for
simplicity. Rewriting Eq. 1.13 in terms of a characteristic length of the triangle,
rc, and characteristic time τ = γ0

‖r2
c /|m||B| leads to

ta

τ
¨̃ri = −γ̂ ˙̃ri + (F̃m

i − ξêz)(1 + γ̂Δνi) +
3
4

a

rc

∑
j

F̃jG̃ij (1.14)
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1.3. Hydrodynamic synchronisation in ratcheting colloidal matter

Here, ta=m
γ is the inertial time. Since the motion is overdamped, we will

use ta ∼ 0. The magnetic field has the expression

Brot = Bx sin(2πft)x̂ + Byŷ + Bz cos(2πft)ẑ, (1.15)

where Bx, By, Bz refers to each coordinate in space and f is the applied frequency
to the magnetic field. The relation between the modulus of the rotating magnetic
field Brot and the constant component By also have a profound impact on
the dynamics. Adimensional ξ ≡ rcmg/|m||B| accounts for the relative gravity
compared with the torque. A large torque compared to the triangle weight,
induced by | �B||�m|/rc � mg implies a negligible ξ. Experimentally this scalar
can only be controlled through the applied magnetic field.

In the Blake tensor there is another characteristic length, a, which comes from
rewriting the contribution 1/8πη in terms of the Stokes drag force expression
γ = 6πηa, and hence is a length associated to the bead hydrodynamic radius.
The factor a/rc is associated to the non-dimensional thickness of the triangular
swimmer. In the simulations define τ ≡ 1 and rc ≡ 1.

To sum up: The parameters of the model are a/rc, γ⊥
0

γ
‖
0

, By/| �Brot|, ξ, f . The
three first parameters are to be tuned in the simulations. As characteristic values,
we take the hydrodynamic radius to be close to triangle thickness,a 	 0.15
,γ‖

0 = 1 and γ⊥
0

γ
‖
0

= 2. The rest of the parameters, By/| �Brot|, ξ, fτ will be varied
to characterise the different dynamic regimes in simulations. The force due to
the magnetic torque F̃m ≡ ‖Fm||r|/|m||B| has no dimensions, and we set this
parameters to |�m| = | �B| = rc = 1 in simulations for simplicity, and will vary
the ratio between the magnetic field components.

For integrating Eq. 1.14 we use an implicit, two step Velocity-Verlet algorithm
in matrix notation to deal with different tensorial elements. With this simple
simulation methodology, we were able to observe the three swimming modes
of the magnetic triangle. Furthermore, we also observed the synchronous-
asynchronous rotational dynamics of the triangle, obtaining a quantitative
agreement. The underlying mechanism was observed to be anysotropic motion
of the triangle due to the misalignement of the magnetic moment of the triangle
respect the symmetric axis. The results and details of the work and comparisons
with experiments are shown in Pub.4.1.

1.3 Hydrodynamic synchronisation in ratcheting colloidal
matter

Transport of matter at the micro and nanoscale is complex and can give rise to
emergent responses. If the goal is to collectively move particles in the presence of
a solid boundary, hydrodynamic interactions might alter both the dynamics and
the resulting pattern morphology observed in experiments [74]. In this section,
we present a publication that delved in the dynamical and morphological
properties of a suspension of colloidal particles driven by a magnetic field.
The system consisted of paramagnetic colloidal particles moving above a solid
substrate, composed by a garnet film of periodically inverted magnetisation.
It can be proven theoretically and experimentally that a single paramagnetic
particle in such a substrate, in the presence of an oscillating magnetic field, is
transported by a energy landscape that corresponds to a travelling periodic
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wave [75]. These particles have diameters close to 1 μm and are embedded in a
viscous fluid, which means that they move in a highly viscous medium where
acceleration does not play any relevant role. The velocity of the travelling wave
can be tuned by increasing the frequency of the external magnetic field, which
should translate into a faster velocity of the paramagnetic particle. However,
increasing the particle speed also means increasing the friction exerted by the
viscous medium, which follows the Stoke’s law ν = 6πηrv. Eventually, the
friction force overcomes the force exerted by the minima of the energy landscape,
which translates into complex sliding dynamics, where particles jump between
minima of the travelling potential in the opposite direction to that of the
travelling wave. Thus, there is a frequency threshold fc, refered as the critical
frequency, below which individual particles translate with the same speed as
the energy potential travelling wave, and above which particles move slower
compared to the travelling wave speed. The critical frequency fc was already
analytically calculated in [75] and compared to the experiments. In Fig. 1.4 we
reproduce a summary of the described dynamics of these paramagnetic particles.

Strikingly, experiments showed that when the density of paramagnetic
particles increased, the critical frequency increased too, suggesting a collective
speed-up effect. Furthermore, particles arranged forming local rhomboidal
shapes, suggesting that the speed up could be correlated to a morphological
change. Since the initial theory was written only for a single particle, no
influence of the colloidal density on fc could be expected [75]. Explicitly
simulating the solvent and the paramagnetic particles at the same time would
be computationally very expensive. In these case, we develop a computational
model that carefully picked which aspect of the experiment wants to be
understood. We accounted for the solvent by means of Brownian Dynamics
simulations, in order to account for the different collective effects that can
emerge between these paramagnetic particles embedded in a fluid due to its
interactions.

Thus, we take the Langevin equation in the overdamped limit, Eq. 1.5. The
forces will now be different compared to the previous section. Here, three main
forces contribute to the motion and morphology of the particles. First, the
magnetic force Fext

i that results in the travelling ratchet, which was already
obtained in previous works [75]. In the presence of a magnetic field, paramagnetic
particles have a magnetic moment directed towards the instantaneous magnetic
field, and this magnetic dipoles will result in dipolar interactions between the
particles, accounted by a pair force interaction Fdip

ij . A third contribution is
the flow perturbation induced by the motion of a particle in the rest of the
particles. These are what we refer to as the hydrodynamic interactions, which
we account by means of a velocity contribution to the particle i due to the
motion of the rest of the particles, Fh = γvH

i . This velocity is given, again, by
the Blake-Green tensor, j, to particle i, thus vH

i =
∑

j �=i G(ri, rj)Fj . Compared
to the previously presented publication, in this experimental realisation there
is no need to include an asymmetry in the friction tensor since the motion is
purely 2D and contained inside a plane parallel to that of the solid surface.

Aditionally, we introduce a repulsive steric force to avoid overlapping of the
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1.3. Hydrodynamic synchronisation in ratcheting colloidal matter

Figure 1.4: Summary of the behaviour of an isolated paramagnetic particle
moving atop a garnet film with periodically inverted magnetisation. Figure
extracted from our publication Sci. Adv, 2022 8. A) shows the experimental
setup, consisting of paramagnetic particles on a film of periodically inverted
magnetisation, in the presence of an oscillating eliptical magnetic field. The red
line represents the racther potential, which moves with speed wave νm = fλ.
B) Experimental observation of the potential landscape. C) Behaviour of an
isolated paramagnetic particle moving upon actuation of an oscillating magnetic
field. First, the particle is trapped at a minima of the potential and moves at
a speed vx = νm. At a certain frequency threeshole, the viscous friction force,
which is proportional to the velocity, overcomes the potential force, and the
particle diminishes its velocity respect the travelling wave. D) Trajectory of a
syncronous and asynchronous particles.

particles, Fint
ij . The final Brownian Dynamics equation is

γ
dri

dt
= Fext

i +
∑
j �=i

Fdip
ij +

∑
j �=i

Fint
ij + γvH

i + ξ (1.16)

which we integrate by means of the Euler algorithm

ri(t + dt) = ri(t) + dt
Fi(t)

γ
(1.17)

More details of the forces for the integration algorithm and results of this
study are shown in Pub. 4.2. The simulations demonstrated that the re-
synchronisation of the particles with the travelling wave was purely induced by
far field hydrodynamics. This resulted from comparisons between simulations
where far field hydrodynamics was introduced, observing the corresponding
speed-up, with simulations where there was no far-field hydrodynamics. In
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1.4. Local clogging in ratcheting colloidal matter

the latter case, both including and neglecting dipolar interactions lead to a
decrease in the particle speed with increasing density in the asynchronous region.
By turning on far field hydrodynamics, we observed a quantiative agreement
between simulations and experiments considering the velocity as a function of
the frequency. However, the characteristic morphology of rhombic clusters was
not observed with hydrodynamic interactions alone. Dipolar interactions need
to be included to observe this rhombical structures. The reason for this was
due to the attraction induced by two nearby magnetic moments, which tends to
alineate particles one in front of the other. However, the distance between two
minima of the ratchet potential was smaller than the diameter of the particle,
resulting in diagonal resynchronised clusters all along the garnet film.

1.4 Local clogging in ratcheting colloidal matter

In this section, we use the same experimental setup of the previous section,
namely, the paramagnetic particles in the film with periodically inverted
magnetisation. However, here we focus in their motion through an heterogenous
medium. When a bunch of particles move through a narrow constriction, it
might happen that a certain geometric arrangement of the particles results in
a clog. For a certain time, no flow takes place through the constriction, and
the clog could remain for an indefinite period of time. This phenomena does
not belong to any particular length-scale. Clogging takes place in our daily life,
when we use a salt shaker and whenever granular media is forced through a
racked texture. It takes place too whenever a silo containing rice or any granular
media is discharged. Understanding clogging is relevant beyond soft matter and
it can be observed in larger scales, e.g sheep [76,77] and pedestrians [78].

In micro-scale systems, clogging is particularly important, since particles in
colloidal suspensions can clog microfluidic circuits and difficult lab-on-a-chip
implementations. In the presented publication, we investigated clogging of
particles driven by a modulated ratchet potential through narrow constrictions.
These constrictions were experimentally designed by attaching a random
distribution of spherical solid silica particles to the substrate. The particles
configured an obstacle landscape, and some random placement of several
obstacles could constitute a bottleneck where clogging could be observed
for certain frequencies. We use the same Brownian Dynamics methodology
described in the previous section for the simulations. Additionally, we included
a second different kind of particles, corresponding to the silica particles,
which remained pinned through the simulation, and mimicked the same exact
experimental geometries, obtained in experiments by image processing.

To characterise the clogging transition, we followed the standard proccedure
published by Zuriguel et al [79]. This procedure is based on the fact that
the complementary cumulative distribution function of passing time between
particles in the constriction follows a power-law distribution t−α. If α < 2, the
average passing time between particle diverges, which states that there is a finite
probability that the clog persists at an arbitrary large time. This notion is used
to say that, for an experimental or simulation time-series with a certain election
of parameters, the system is clogged if α < 2, and unclogged if α > 2. Using
this procedure, it has been shown that clogging is a very local phenomena that
strongly depends on the interactions involved and the geometrical properties of
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1.4. Local clogging in ratcheting colloidal matter

Figure 1.5: Example of a clogging transition for the passing of sheep through a
bottleneck. A) Shows an image of the obstacle placed in front of the bottleneck.
B) Shows an image of the recording used to characterise the power law exponent.
C) Imaging as a function of time, showing how different events were separated.
D) Number of sheep that pass the bottleneck as a function of time, with
and without obstacle. E) Complementary (CDF) used for computation of the
clogging characteristic exponent. F) Histogram of burst sizes of sheep. For
more details see original text. Figure extracted from Sci. Rep, 2014, 4, 7325

the constriction. For example, in Fig. 1.5 it is shown that placing an obstacle
in front of the bottleneck drastically changes the clogging exponent, and results
in enhanced flow.

In the experiments, we observed two main features we were interested in
understanding: First, the complementary cumulative distribution function
exhibited periodic plateaus that seemed to be correlated to the external
magnetic field frequency. Second, for increasing frequency of the magnetic
field, the cumulative distribution function collapsed in a clogged state where
α∼2, meaning that larger exponents were never observed. To eludicate this
mechanisms, we systematically compared the simulations of three different
important factors to clogging, namely, the presence of hydrodynamic interactions,
the capability of obstacles to move a certain distance from the equilibrium
position and vibrate, and the distance between obstacles in the constriction,
which could not be precisely determined due to the resolution of the microscope.
Additionally, we also characterised the correlation of clogging events when two
constrictions where placed together. The results showed that hydrodynamics
tend to enhance clogging processes, while vibration of the obstacles were
responsible for the saturation of the clogging exponent. The results can be read
in Pub. 4.3.
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1.5. Anomalous flows in disordered landscapes

1.5 Anomalous flows in disordered landscapes

In the previous section, we focused on the local aspects of clogging for a particular
driving potential and a geometrical configuration of particles that constituted a
bottleneck. The main goal was to compare the experimental realisations with a
minimum simulation model that captured the relevant interactions inducing
the clogging transition in experiments. In the publication introduced in this
section, we moved our scope to a broader point of view. We considered a general,
arbitrary landscape of obstacles, with no particular or defined bottleneck. This
random distribution of pinned particles in a region of space has an area fraction
of φpin. If moving particles are randomly initialised with a certain density φmov,
carefully avoiding overlap with the obstacles, and are then driven by an external
force in a viscous overdamped suspension, they interact with the obstacles. At
small φpin ∼ 0, the average velocity of moving particles will be the same of
free moving individual particles. As φpin increases, some particles might get
trapped for a while, decreasing the average velocity of the system. This decrease
of particle velocity is gradual, and eventually, when φpin is large enough the
average velocity becomes zero.

This is a standard problem the interest of which lays in moving matter
across porous media, as it happens in filtration processes [80]. The φpin at which
the average velocity becomes zero is tipically referred to as the clogging density
φc

pin [81], since most particles remain trapped in arrangements of obstacles.
However, this notion of clogging across porous media must not be confused with
the local notion of clogging considered in the previous section. The approach is
different to the local constriction one, since no precise bottleneck locations can
be defined. For a given obstacle configuration, it consists in determining the
concentration of pinned colloids, φc

pin, above which the system will be in a fully
clogged state characterised by a null average velocity [81,82]. In contrast, when
looking at the detailed dynamics of particles between φpin = 0 and φc

pin, a rich
mixture of dynamical states is observed. For example, the velocity distribution
at small and intermediate densities shows a double peak, one centered around
zero, the other around the characteristic velocity of the particles, which suggests
the idea of a separation between arrested particles, and free flow particles.
Looking at visualisation of simulations, it can be seen for intermediate φpin
that clogging is also observed locally, even when the average velocity is not
fully zero, suggesting the idea of an anomalous notion of flow, where the flux of
particles is only allowed through certain regions of the landscape.

The focus of this work was to relate the observed clogging taking place
locally, at some regions of space crowded with obstacles, to dynamical properties
such as the the velocity distributions of particles, and geometrical properties like
the cluster distribution. It was already stated that φc

pin remains mostly constant
regarding the total area fraction φ = φpin + φmov, which indicates that the
average spacing of obstacles, lc is the relevant lengthscale that impedes the flow
of moving particles through the system [81]. Is there a similar length-scale that
sets the appearance of local clogs, while there is still flow across the landscape
in the system?

To describe this dynamical properties, we propose a measurement method
in the simulations, which is the time τ required for a particle to move its own
diameter d. Each time a particle move its own radius, it will be considered
an event of the random variable τi. If all particles are moving in a landscape
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1.6. Self-propelled active rafts by diffusiophoretic and diffusioosmotic flows

with no obstacles, at small φmov all events will correspond to τi = d/vd. If
obstacles are introduced, then larger measures of τi will be observed. If the
same procedure as in local clogging is followed [79] and the complementary
cumulative distribution function of this measurement is computed, one finds
that this distributions follow a power law, t−α, analogous to the local case.
By means of computing the exponent α, the same criteria can be used to
determine whether the time particles remain clogged in obstacles diverge or
not. When α > 2, particles flow and clogs do not form peristently, and we
refer to this dynamical state as normal flow. When α < 2, clogs form in the
landscape, some of which can persist for most of the simulation time, coexisting
with regions where flow takes place freely. We define this dynamical state of
the system as an anomalous flow, since a general notion of flow is not well
defined. Furthermore, we defined a local notion of clogging, similar to the local
measurements performed in bottlenecks, in order to determine the relation
between clogging mesured in local regions of the landscape and clogging looking
through the passing time of particles τ .

In summary, in this work we wanted to model a suspension of colloidal
particles driven across an heterogeneous landscape. We wanted to imitate
a feasible experimental realisation, such as that from Pub. 4.3, in order to
develop a methodology to bridge concepts between local clogging and particles
driven through porous media. However, since in this case there was no
experimental realisation, we chose to study particles driven by a constant
force, since this facilitated the understanding of the observed responses and
velocity distributions. The motivation for such a study was to find a standard,
comprehensive methodology of characterising clogging given a certain force
and a certain geometrical configuration consisting of an indefinite number of
bottlenecks. We found that local clogging and clogging defined as we have briefly
described in this section follow the same qualitative trends and even coincide
qualitatively in the limit of large densities. This confirms the apparently intuitive
observation that abnormal flow is dominated by local clogging events, which
influence the morphology and velocity distribution of the colloidal particles.. We
hope the presented work in Pub. 4.4 will be useful to perform comparative studies
quantitatively, between different type of driven colloidal particles, including
active matter, and its ability to hinder or enhance clogging of the porous media.

1.6 Self-propelled active rafts by diffusiophoretic and
diffusioosmotic flows

We end this chapter with an incursion to a different topic, the interest of which
has increased exponentially in the last decade. Active matter systems are
composed by units that can consume energy, which can be extracted form the
the media, or due to internal metabolic processes of a living organism, in order
to self-propel or deform [83]. This has striking consequences for their theoretical
understanding: Detailed balance is broken locally [84], which means that active
matter is intrinsically out of equilibrium. This challenges the use and utility
of most statistical tools. Furthermore, the active nature of these forces can
result in non-reciprocity between different types of particles or interactions,
breaking the 3rd Newton’s law of physics. The interest on this type of matter,
while proceeding from different research fields and areas, such as cell motility in
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Figure 1.6: Example of a Janus particle. a) Shows a scanning electron microscopy
image of a colloidal particle with a 20 nm thick gold cap (highlighted). b)
Represents the trajectory of the particle after being actuated with light. Figure
extracted from Soft Matter, 2011, 7, 8810-8815

biology, self-assembly of herds like schools of fish or birds, and colloidal science,
has resulted in a common framework to think, simulate, and model this systems.
This diverse body of knowledge has evolved into a distinct field of study in its
own right. It represents a collaborative effort across various disciplines, working
together to unravel the underlying causes of complex behaviors observed in
nature.

The most famous colloidal synthetic active system consists of a suspension of
particles called Janus particles [85]. As shown in Fig. 1.6a, asymmetric coating
of a sphere can result in a self-propelled persistent motion, in Fig 1.6b. In
general, these synthetic particles have two faces with two different chemical
properties, one of which can catalyse a reaction of a substance in the media
when the sample is homogeneously illuminated. These particles, when isolated,
self-propel following a persistent random walk [86]

〈Δr2〉 = 4D0t +
v2

2Dr

[
2Drt + e−2Drt − 1

]
, (1.18)

where the first term corresponds to the conventional diffusion coefficient D0
and the second term is the active contribution. The velocity v is the colloid
swimming speed and Dr its rotational diffusion coefficient. At short times, this
persistent random walk follows 〈Δr2〉 ∼ 4D0t+(vt)2, which results in a ballistic
motion at small times. When a suspension of such particles is illuminated the
system can phase-separate in a large density phase and small density phase [86],
in agreement with theoretical predictions [87].

The previous active particles are polar, since they have a fixed persistent
direction of motion. Active apolar particles, on the other hand, do not directly
transform activity into motion [88]. These active apolar matter, like hematite
particles, when iluminated with a blue light, produce a concentration field
that induces diffusiphoretic interactions on the surfaces of other particles. An
isolated active apolar particle will not move upon light actuation, since the
diffusio-phoretic flow generated at the surface of the particle is symmetric
respect the particle center. However, in the presence of a passive silica particle,
non-reciprocal interactions in the surface of both particles will lead to a pair
formation that will self-propel. The hematite, in a mixture of water and
hydrogen peroxide (H2O2), decomposes the peroxide in oxigen and water, which
produce a gradient in the chemical concentration around the particle and induces
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diffusiophoretic flows [88]. In order to consider the dynamical mechanism that
drives the particles, let us write the decomposition of H2O2 in water. The
diffusion of the chemical field of the products of the raction in the surface of a
particle can be well described by the Laplace equation

∇c(r, θ, ψ) = 0. (1.19)

The production/consumption of chemicals enters the equations through
parameter α in the Neumann boundary conditions

Dc∂rc(r)|σ ∝ α, (1.20)

where Dc is the diffusion constant of c, and σ the surface of the particle. The
solution to Eq. 1.19 of an active colloid i in the presence of a second colloid j,
in spherical coordinates, is described by the expression

ci(r, d, θ) =
αiσ

2
i

4Dc

1
r

+ ci,j(r, d, θ) (1.21)

where d is the distance between the particles d = |ri − rj|,σi is the radius of
particle i, and ci,j are the terms coming from the disturbance of the chemical
field due to the presence of a second particle j. This terms can be obtained, e,g,
from a multipolar expansion, and differ depending on whether the interaction
is between two active particles, or an active and a passive pair. A sphere in
the presence of a chemical field gradient experiences a tangential diffusiphoretic
velocity v = μd∇||c(r), where μd is the diffusiophoretic velocity. Momentum
conservation on the sphere leads to

V = − 1
πσ2

∫
σ

dSv(r, θ) = (πσ2)−1μd

∫
σ

dS∇||c(r, θ) (1.22)

where the integral is over the surface of the sphere σ. Combining this expressions
together, one finds that an active particle imposes a velocity in the passive
particle

va→p = −αμpd

12Dc

(σa

d

)2
, (1.23)

where μp is the diffusiophoretic mobility. On the other hand, passive particle
imposes the following velocity on the active

vp→a =
αμad

12Dc

(
σp

σa

)3 (σa

d

)5
. (1.24)

where μa is the diffusiophoretic mobility. Interestingly, this two velocities have
two qualitatively different dependence as a function of the distance. Passive
particles are attracted towards an active particle following v ∝ 1/d2, while active
particles are attracted towards the passive ones following a weaker velocity
v ∝ 1/d5. Hence, action-reaction is broken, and this expression predicts that
a pair of an active and a passive particle will move with the active particle at
the front, since the passive interaction will be typically stronger and directed
towards the passive particle.

In the work presented in this section, Pub. 4.5, we were interested in the
response of a single active particle in the presence of a bath of passive particles.
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In the experiments, it was observed that the active hematite particle nucleated a
dense packed raft, which moved with a large persistent length lc, while sweeping
particles in its motion. We implemented the non-reciprocal interactions from
Eq. 1.23 and Eq. 1.24 in a Brownian-Dynamic model. Besides these velocitites,
particles interact with a WLCA potential to avoid overlap when passive particles
get attracted towards the active ones. In experiments, the active particles had
an ellipsoidal shape. To simulate an ellipsoid, we consider a dumbell model,
where two particles were linked with an strong harmonic spring to constitute
one active particle. As in the experiments, the active particle got surrounded by
passive particles that constituted a raft. However, comparing the simulations
and the experiments reveals that in the simulations, the active raft moved
towards the opposite direction compared to the experiments. In the simulations,
the raft moved towards the direction where angularly a smaller number of
particles where accumulated, since the regions of larger passive particle density
pushed the raft following Eq. 1.23. Eventually, the raft swept enough particles
to change its direction again, resulting in a small persistence length. This is in
accordance with the behaviour of a dimer formed by an active and a passive
particle, which was observed in experiments. The pair is observed to move with
the active particle at the front. However, experiments predicted that the raft
direction of motion correlated towards the direction in which an angular larger
accumulation of particles was present. In the presented work, we will show
that this contradiction is solved when we consider theoretically the role of the
diffusio-osmotic flow taking place at the solid boundary below the active raft.
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PART III

Driving fluids at the microscale
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CHAPTER 2

Capillary driven multiphase fluids

2.1 Introduction

In this third part of the thesis, we will focus on a different type of transport. In
the previous sections, the particular details of the hydrodynamic coupling to the
embedding fluid was not determinant. When required, far-field hydrodynamics
were introduced in BD and MD simulations to account for the flow contribution
in a specific point of space by a force singularity.

Here we will study fluids under confinement. Confinement will refer to a
fluid or a combination of fluids in a channel of width of the order of w∼50 μm.
The fluid equations that govern the dynamics of the liquids inside these channels
are, again, Stokes equations, also referred to as creeping flow equations

η∇2v = ∇p,

∇ · v = 0,
(2.1)

where the first equation is the simplified Navier-Stokes equation for Re � 1,
when advective terms are negligible, and the second equation states the
flow incompressibility. Besides the time reversibility already mentioned at
the beggining of the last part, these equations have some other interesting
peculiarities. In the microscale the no-slip boundary condition in solid interfaces
has a strong impact in the flow profile, in contrast to our daily life experience
with fluids. This condition strongly affects the velocity field of the embedded
fluid. Furthermore, flows in confined microchannels and drops are very sensitive
to interfacial phenomena, since the bulk of the fluid is comparable to the fluid
area. Surface tension is one of the most important interfacial phenomena in the
microscale and will be the focus of this chapter.

Surface tension is responsible for the Lucas-Washburn law, which states that
a viscous fluid can spontaneously invade a channel occupied by a gas without
any external energy supply. According to the Lucas-Washburn law, the front
position will follow a dependence h∼t1/2. The Lucas-Washburn law has been
the start point for a plethora of works where different effects are included to
increase the accuracy of the predictions. In the early stages of the imibibition,
when the channel is filled with air, the friction forces of the invading fluid are
negligible and inertial effects dominate the dynamics, following l ∝ t in the early
stage [89]. The effect of viscosity in the displaced fluid has also been subject of
study [90]. An important contribution can be explained by the contact angle
dynamics: When the channel starts to invade the front, the measured contact
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angle as a function of time does not exactly coincide with the equilibrium angle
θe, since the balance at the contact line is not zero. The interface deformation
depends on the speed of the front by means of the Cox-Voinov equations [58],
which quantifies the dissipation involved in the interface deformation. These
effects can be studied altogether numerically and compared with the simulations
to obtain high accuracy comparisons with experiments [12]. Furthermore, some
works have analysed how the long-time diffusive exponent, tα, changes with
the geometrical and physical properties of the channel. Channels with axial
variations have been characterised [91] to determine the optimum shape that
allows a faster invasion speed. Capillary advance between elastic sheets have
also been subject of study [92–94].

One of the experimental limitations of spontaneous capillary imbibition in
solid surfaces is the roughness of the surface. Solid surfaces are not completely
smooth, but have a certain rugosity that can pin the interface of drops [95], and
make them resistant to motion. This additional friction can be quantified by
means of the hysteresis of the equilibrium contact angle. Indeed, in regular solid
surfaces, drops do not immediately start to flow. Instead, it is observed that the
static contact angle reaches a maximum value, above which the drop starts to
move. The difference between the minimum and maximum equilibrium contact
angle is referred to as contact angle hysteresis [96] and quantifies the resistance
to the onset of drop motion. This pinning effect also affects fronts in spontanous
imbibition and modifies the front speed [97, 98]. The surface roughness can
suddenly stop the spontaneous imbibition and pin the front, drastically stoping
the invasion. Efforts have been made to avoid the pinning effects of conventional
solids. There are superhydrophobic surfaces that benefit from a texturised
structure and a dynamic state of drops where between pillars of the texture, air
bags are formed, reducing the friction. These superhydrophobic surfaces reduce
pinning effects, but they cannot withstand pressure [99], seriously limitating
their capabilities in real situations. Other solid surfaces such as slippery
omniphobic covalently attached liquid-like (SOCAL) consist in microbrushes
that can prevent pressure to destroy the surface hydrophobicity in order to
repel drops [100]. However, these surfaces are designed to repel drops and
spontaneous imbibition requires that the surface is hydrophylic.

A different strategy consists in designing surfaces that are prone to be
spontaneously imbibed by a lubricant that covers the whole surface. Slippery
Liquid Porous Surfaces (SLIPS) [55] and Liquid Infused Surfaces (LIS) [56] are
lubricant coated surfaces inspired by the plant Nepenthes [101]. The texturised
surface of this plant, when wet, is inescapable to insects, which fall inside the
pitch and get digested. SLIPS and LIS also make use of texturisation to favour
the embedding of a lubricant film. These surfaces are resistant to applied
pressures, and when the layer of lubricant is disrupted, it heals due to the
combined wetting properties of the solid and the lubricant. Furthermore, the
election of the lubricant allows tunning of the wetting and viscous properties
with respect the target fluid. The lubricant viscosity also plays a determinant
role on drop dynamics, as shown in Fig. 2.1. It has been determined that when
the viscosity of the lubricant (ηs) is larger than that of the drop (η), the drop
follows a velocity law v ∝ (sin α)3/2 as a function of the tilted angle α for small
inclinations, and v ∝ (sin α)3 for larger inclinations. In the opposite case, when
η � ηs the velocity law changes the exponent and follows v ∝ (sin α)1 [56].
We this results from the original paper in Fig. 2.1. The explanation for this
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Figure 2.1: Dynamics of drops in lubricant-infused surfaces. a) Shows a scheme
of a drop sliding in a surface inclined an angle α . b) and c) show highlight the
meniscus of the drop. Figure d) shows the velocity of the drop as a function of
sinα when the viscosity of the drop is 50 times larger than that of the lubricant,
which follows a linear behaviour, and is independent of the fraction of pillars
in the texturised surface (φ). e) Shows the opposite case, where the lubricant
viscosity is 50 times larger than than that of the drop. In this case, for small
values of sin α the velocity follows V ∼ sinα2/3, and for large values V ∼ sinα3.
In the first regime, the fraction of pillars quantitatively influence the velocity.
Soft Matter, 2017, 13, 6981-6987

change of the drop dynamics can be found in the dissipation mechanism of the
drop, which changes depending on the viscosity contrast η/ηs. These results
suggests that a lubricant-coated channel could also trigger a different dissipation
mechanism depending on the lubricant viscosity, unveiling new dynamics of
spontaneous imbibition. The first publication of this part, Pub. 4.6 consists
in simulations of spontaneous imbibition in lubricant coated channels. The
goal was to probe different dynamical regimes by systematically changing the
lubricant viscosity. Since this problem is theoretically very complex to treat
in a fully analytical way we developed a simulation methodology to study the
properties of lubricant coated surfaces. In the next subsections, we briefly
introduce the reader to surface tension phenomena. Later we describe the basis
for the simulation methodology we used, the Lattice-Boltzmann method, the
ternary fluid free energy model we used to simulate surface tensions and how
we coupled together these two approached to simulate lubricant coated surfaces.
After presenting this publication, we will introduce the dynamics of contact line
for interfaces moving atop of solids. This introduction will serve as a build-up
to a section where we will explore the role of the lubricant viscosity in in the
contact line dynamics of a drop.
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Surface Tension

Surface tension is one of the dominant interfacial phenomena existing in the
microscale, exploited by nature and industrial applications. In a water-air
interface, water minimises its surface area by acquiring a spherical shape. In
this spherical geometry, water molecules in the interface will maximise the
neighboring particles of water, while minimising the neighbouring air molecules,
minimising the surface energy. In general, increasing the area of an interface
between two liquids requires an energy per unit area γ which needs to be
supplied [9]

δW = γdA. (2.2)

Surface tension is also the reason why bubbles and drops experience an a
pressure drop across the interface. The Young-Laplace equation states that an
increase in hydrostatic pressure takes places across any interface between two
fluids

Δp = γ

(
1
R

+
1
R′

)
(2.3)

where R and R′ are the principal radii of curvature of the interface. This
equation is the reason why smaller drops get adsorbed by larger drops: Smaller
drops have a larger curvature, which results in a larger pressure inside. The
resulting pressure gradient drives the fluid inside the smaller drop to the biggest
one [9].

When an interface between two liquids is in contact with a solid surface,
additional contributions to the surface tension need to be considered. Indeed,
each of the two liquid-solid interfaces will also have a different interfacial tension,
which will quantify the affinity of each liquid to the solid surface. These different
contributions result in the phenomena of wettability and spreading of drops
and fronts in contact with solid surfaces. We consider three interfaces, which
we will refer to as liquid (l), gas (g) and solid (s), as shown in Fig. 2.2. Each
interface will have a surface tension, and we will refer to γsl for the solid-liquid
interface, γsg for the solid-gas interface, and γlg for the liquid-gas interface. The
spreading parameter, s, characterises whether a drop will wet and expand all
over a solid surface or not

S = γsg − (γsl + γlg). (2.4)

This parameter quantifies the difference between surface energy when the
substrate is dry, which corresponds to the first term in the rhs of Eq. 2.4, and
the energy when there is no gas around, which are the terms inside brackets.
If S > 0, the liquid spreads completely to minimise the surface energy, since
the gas-solid interface has a larger energy cost. If S < 0, it is said that the
drop is in partial wetting. The drop does not spread, but instead it forms an
equilibrium contact angle with the solid surface. Since the surface tension can
also be interpreted as a force per unit length, we can write down the equations
to find the equilibrium contact angle. As drawn in the schematic diagram in
Fig. 2.2, in the presence of a solid, equating the forces leads to the Young
equation

γlg cos θe = γsg − γsl (2.5)

The contact angle θe = 90◦ is a special limit case, referred to as neutral wetting
condition. In this case, both fluids, liquid and gas, have the same affinity to
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Figure 2.2: Schematic drawing of the Young law

the solid γsg=γsl. If θe > 90◦ it is said that the liquid fluid is hydrophobic
with respect to that surface, since the larger γsl > γsg implies a preferential
wetability of the gas phase for the solid to minimise the surface energy. If
θe < 90◦, the liquid phase is said to be hydrophylic, since γsl < γsg implies
a preferential wetability of the liquid for the solid respect the gas phase to
minimise the surface energy.

Dinstinguishing between hydrophobic and hydrophylic contact angles
becomes extremely important when considering the effect of introducing a
solid surface in a bath of liquid. As we show in Fig. 2.3a), a hydropholic contact
angle produces a spontaneous invasion of the liquid phase in the channel, which is
compensated by the gravity. Oppositely, an hydrophobic contact angle produces
an invasion of the gas phase in the channel, lowering the water level below the
reservoir level. Let’s write down the equations at equilibrium conditions by
looking at Fig. 2.3. First, we relate the curvature to the contact angle using
the Young-Laplace equations Eq. 2.3. Considering that the channel consists in
two parallel plates, the liquid-gas interface will form a meniscus which will be a
portion of a sphere. In this case, the curvature will correspond to the radius of
the sphere, which can be computed using the simple trigonometrical relation
cos θe = H/2R. Here, H is the distance between the two plates. The pressure
change across the solid-gas interface will be

Δp =
2γlg cos θe

H
(2.6)

On the other hand, the hydrostatic pressure of a column h of liquid with density
ρ is ph = p0 + ρgh, where g is gravity. By equating this two terms, we get
Jurin’s law, which relates the height of the column with the surface tension and
contact angle,

h =
2 cos θeγlg

Hρgh
(2.7)

Hence, when placing a hydrophylic tube in a water reservoir, we will observe how
initially a water front starts to invade the channel, and eventually it equilibrates
at a certain height h and equilibrium angle θe.

What would happen in the absence of gravity? In this case, since the
pressure drop cannot be compensated, the fluid front will continue to advance
and eventually fill the channel. This is what we refer to as an spontaneous
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Figure 2.3: Schematic drawing of hydrophilic vs hydrophobic surface

imbibition. Let us consider the dynamical equation to predict the position of
the front as a function of time. We know that the driving force corresponds
to the pressure gradient across the interface in Eq. 2.6. We need to find the
friction exerted by the channel on the fluid.

To find this friction, the Stokes equation Eq.2.1 must be solved for the
considered geometry. In our case, this geometry will consist in two infinite,
parallel plates. The viscous contribution by the gas phase will be neglected in
this derivation. We will consider that the liquid invades the channel generating a
laminar flow between the two infinite parallel plates, with the same cross section
as depicted in Fig. 2.3. We consider that the front moves in the x direction,
while the plates are placed at y=0 and y=H. We make the approximation that
the velocity profile does not depend on x, hence v = vx(y)ex, where ex is the
unit vector in the x direction. To calculate the friction imparted by the solid,
we need to evaluate the shear stress at the wall τxy = dv/dx|y=0 and integrate
it from the start of the channel to the front position l(t). We start with the
solution to the first differential equation Eqs. 2.1

vx(y) =
1
η

∂p

∂x
y2 + Ay + C. (2.8)

The constants can be determined with the no-slip boundary conditions, vx(0) = 0
and vx(H) = 0. The solution for the flow profile in this case is

vx(y) =
1
η

∂p

∂y
(y2 − Hy) (2.9)

We will now write the pressure gradient in terms of the mean velocity of the
fluid. The mean velocity over a width w is computed as

u =
1
A

∫ w

0
dz

∫ H

0
vx(y) =

∂p

∂y

H2

12η
(2.10)

Where A corresponds to the integral surface area, A = Hw. Note that we
integrate in z over an arbitrary width w for units rigurosity, but this arbitrary
width is cancelled after integration. After the pressure gradient in Eq. 2.10 in
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terms of u, we evaluate the shear stress and compute the force exerted by the
solid surface

Fv =
∫ l

0
dx

12uη

H
=

12uηl

H
(2.11)

This is the friction resulting from the no-slip boundary condition, exerted
by the solid on the fluid. The dynamic equation of imbibition is a balance
between the force in Eq. 2.11 and the force resulting from the Young pressure
drop, Fc = ΔpH = 2γlg cos θe. Note that both Fc and Fv are forces per unit
length, since this forces do not depend on the z coordinate. The last step to
obtain the dynamical equation consists in assuming that the average velocity u
corresponds to the front velocity u = dl/dt. Equating the two forces, we get to
the differential equation

l
dl

dt
=

γlg cos θeH

6η
, (2.12)

Integration of the latter equation leads to the imbibition law

l(t) =

√
γlg cos θeH

3η
t. (2.13)

The latter equation states that since the pressure gradient is constant and the
most viscous phase invades the channel increasing the dissipation, front advance
slows down with the front penetration following diffusive dynamics. This result
is widely known in imbibition dynamics as the Lucas-Washburn (LW) law [11].
The derived law in this section is an idealised situation, where the surface is
smooth and has a constant cross section, the gas phase has negligible viscosity,
the contact angle is constant and equal to the equilibrium contact angle and no
inertial effects are considered. In a real imbibition experiment, none of these
simplifications are exact, which typically causes deviations and other exponents
different to the predicted by the Lucas-Washburn law, l ∝ t1/2.

2.2 The Lattice-Boltzmann method

We will start describing the fundamentals of the LB method. We will introduce
the kinetic approach that serves as a basis for LB simulations, in order to grasp
why the LB method can accurately capture the Navier-Stokes equation. This
approach is based in the Boltzmann equation, a kinetic equation derived in
statistical physics that describes microscopically out-of-equilibrium processes. It
is possible to derive analytically macroscopic properties of a fluid, like thermal
conductivity and viscosity, from the microscopic description of the Boltzmann
equation. This analysis is referred to as the Chapman-Enskog theory [102],
and provides the basis for utilisation of a discretised version of the Boltzmann
equation to simulate fluids accurately. We will present the discrete version of
the Boltzmann equation for a lattice, the Lattice-Boltzmann equation, and
we will comment on some general aspects of the implementation. To properly
describe in detail the LB method would require an entire thesis dedicated to it.
There are already many books and papers about the LB method, how to derive
it analytically and how to implement it [57, 103,104], so we will skip a detailed
discussion on these technicalities. Instead, we will focus on a broad view of the
concepts of the method and why it is advantageous.
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The LB method has many advantages over other fluid simulation imple-
mentations. Computationally, it is a method that can be implemented at local
level, which facilitates parallel implementation for high performance. From
the physics point of view, it allows to implement solid boundaries in arbitrary
geometries in a very straightforward manner. This solid boundaries can fulfil
the no-slip boundary condition, or can be relaxed to allow for a slip length.
More importantly for our purposes, this simulation methodology allows the
coupling of the LB equation to a thermodynamic free-energy that contains ad-
ditional physics of interest. For characterising lubricant-coated surfaces, the LB
method will be coupled to a free energy that derives from a Ginzburg-Landau
approximation. This free energy accurately captures the physics of surface
tension. Furthermore, it can be extended for analytically setting the solid-liquid
equilibrium contact angles as a boundary condition with a solid.

We will introduce the viscosity model used to impose a different viscosity in
each phase, which is essential to capture Lucas-Washburn law. The criteria to
compute the interfaces will also be commented and the methodology to extract
the contact angle from locating the interface. Benchmarking tests will be shown
prior to presenting the publications. We will also show some other previous
simulations that paved the way towards the final spontaneous imbibition results
in lubricant-coated surfaces. For example, the equilibrium properties of the
drops and the comparison with the quantities analitically derived from the free
energy framework.

The Boltzmann equation

As we have already mentioned, the core of the LB method lays in microscopic
statistical analysis tools to describe macroscopic properties of matter. We will
highlight here the fundamentals before describing the LB equation. The reader
interested in the details is redirected to the reference [103]. The Boltzmann
equation describes the evolution of the particle distribution function f(x, ξ, t).
This function represents at time t, the density of particles with velocity (ξx, ξy, ξz)
at position x. A remarkable property of this microscopic function is that it
allows to recover the macroscopic physical quantities of a fluid composed by
microscopic particles, such as the macroscopic local density

ρ(x, t) =
∫ ∫ ∫

f(x, ξ, t)dξxdξydξz, (2.14)

and the momentum density

ρ(x, t)u(x, t) =
∫ ∫ ∫

ξf(x, ξ, t)dξxdξydξz. (2.15)

Other physical quantities can be obtained from upper moments of the
distribution function. The evolution of the distribution function depends
on how particles collide, and how they exchange momentum. In dilute gases,
one typically assumes that collisions happen on a one to one basis, and for
monoatomic gases, that such collisions are elastic, so that translational energy
is conserved. The collisions tend to even out angular distribution of particle
velocity around the mean velocity value u. Therefore, at large times the
distribution function will equilibrate and reach the equilibrium distribution
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function feq(x, ξ, t). The Boltzmann equation describes how the distribution
function is advected in the presence of a source term, Ω(f), that represents the
collisions. Considering the total diferential leads to

∂f

∂t
+ ξβ

∂f

∂xβ
+

Fβ

ρ

∂f

∂ξβ
= Ω(f). (2.16)

The first two terms describe the advection of the particles with velocity ξ. The
third term represents velocities being advected by the forces. The term on the
rhs is a source term that accounts for the collision between particles. There are
many different collision operators depending on the type and outcome of collision
between particles. The collision operator must satisfy a set of conservation
rules in order to reproduce physical constrains. We will not dig further into the
details of obtaining and analysing collision operators.

In the LB method, the Bhatnagar, Gross and Krook (BGK) collision operator
is tipically used

Ω(f) = − 1
τ

(f − feq) (2.17)

which simply relaxes the distribution function towards the equilibrium one at
a relaxation time τ . The expression of this equlibrium distribution function
feq can be analytically determined by means of some arguments, like isotropy
and assuming a separated variable type of function [103]. It can be proved
theoretically that this equilibrium distribution function is unique, and hence,
is the only state to which particles can relax to in equilibrium. Here we have
presented the BGK collision operator to highlight how the most simple version
of the collision operator looks like. However, we will not use the BGK operator.
Instead, we will use a multi-relaxation time (MRT) collision operator that
enhance the stability of fluid phases with different viscosities in binary and
ternary mixtures .

The Lattice-Boltzmann method

The basis for using the Boltzmann equation for fluid dynamics simulations
lies in the fact that the same conservation laws as in fluid dynamics can be
analytically found on a macroscopic scale. However, obtaining a numerical
expression for the Boltzmann equation is not trivial and straightforward. The
equation needs to be discretised in velocity space first, and then in space and
time. The velocity discretisation is done through Hermitian series expansion,
and in space and time through the method of characteristics. This discretisation
introduces a set of weighted scalars that need to be computed in order to recover
physical behaviours and conserved quantities. The discretisation of the velocities
introduces a choice for the set of directions to which the distribution function
can be advected. This discretisation is referred to as a velocity set, {ci}. Each
velocity set has a name, depending on the number of dimensions and the number
of velocities it has been computed to work for. These are typically refered to
as DkQl, where k is the spatial dimension of the lattice, and l the number of
discretised velocities in a set {ci}, which corresponds to the lattice connectivity.
The possible sets one can construct via discretisation of the Boltzmann equation
are D1Q3, D2Q7, D2Q9, D3Q15, D3Q19 and D3Q27. A larger number of
discretised velocities in a set will result in a larger computational cost. The
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2.2. The Lattice-Boltzmann method

D3Q19 is a good compromise between accuracy and computational performance
for laminar flows, and it is the set we use in our simulations.

After dicretisation of the Boltzmann equation, the Lattice-Boltzmann
equation is

fi(r + ciΔt; t + Δt) = fi(r; t) +
∑

j

Lij(fi(r; t) − feq
i (r; t)) (2.18)

where Δt is the discrete time step, and Lij is the collision operator that provides
the way by which the distribution function evolves towards its equilibrium value.
The Eq. 2.18 is solved at each position of a lattice, referred to as fluid nodes. At
each time step, the collision operator is computed and the particle distribution is
advected according to the discretisation of the velocity set. Our implementation
of the LB method is based in the open source code "Ludwig" [57]. This
implementation uses a multiple relaxation time algorithm (MRT) in moment
space, to relax each moment towards its equilibrium distribution. Compared to
the BGK algorithm, where all moments are relaxed using the same relaxation
time, the MRT algorithm is more stable and accurate, although it is more
complex to implement. However, this algorithm was already implemented in
"Ludwig". Physical quantities can be obtained by computing moments of the
distribution function, similar to Eqs. 2.14 and 2.15, but summing over the
discretised velocity set

ρ(r; t) =
∑

i

fi(r; t), ρuα(r; t) =
∑

i

fi(r; t)ciα, Παβ(r; t) =
∑

i

fi(r; t)ciαciβ

(2.19)
where ρ corresponds to the local density, ρuα to the local momentum, and Παβ

to the stress tensor. The non-slip boundary conditions are implemented by
means of the bounce-back algorithm [103]. This algorithm identifies, locally
at each fluid node, if there is a neighbouring solid node. If there is, it reflects
every distribution in the direction where the solid node is. This results in the
the no-slip boundary condition. The bounce-back algorithm allows to define
solid nodes locally, to define solid channels with arbitrary shapes.

As already mentioned, the most important property of the LB method is
that it can be proven using the Chapman-Enskog analysis that the NS equation
is recovered in the macroscopic limit. A legimitate question to be asked is:
Why should we use a method based in the Boltzmann equation to simulate
the NS equation? There are several different reasons. The first one is that
solving numerically the LB equation is much more easier than solving the NS
equations. Interaction between nodes in the LB equation are linear, while the
non-linearities are accounted for in the collision operator. Hence, it is a highly
efficient parallelizable algorithm. The bounce-back algorithm allows for arbitrary
geometries that can be defined just by choosing the solid nodes at which the
velocities will be reflected. This, together with the fact that any free energy is
relatively easy to couple with the LB equation makes it a very competitive and
efficient algorithm for solving the NS equations with high accuracy and a variety
of different physical problems where hydrodynamics need to be accounted for.
There are some details that need to be considered when programming the LB
methodology. Here we only wanted to sketch and revisit the basics of the
method. For additional details, like force implementation, specific calculations

38



2.3. Ternary free energy model

of velocity sets, rigorous demonstrations and implementation of the bounce-back
algorithm, the reader is refered to [103].

2.3 Ternary free energy model

Here we will describe the free energy we have used to couple to the LB method
and obtain accurate simulations of ternary mixtures for lubricant coated surfaces.
Following a general Landau expansion for a binary free-energy functional, it
is possible to generalise its form adding an additional phase to reproduce a
ternary mixture [105]

F =
∫

Ω

{κ1
2

C2
1 (1 − C1)2 +

κ2
2

C2
2 (1 − C2)2 +

κ3
2

C2
3 (1 − C3)2

+
κ′

1
2

(∇C1)2 +
κ′

2
2

(∇C2)2 +
κ′

3
2

(∇C3)2
}

dV

(2.20)

where C1, C2 and C3 are the concentrations of the three fluids, and the integral
takes place over the volume Ω. In this free energy functional, we want to have
three minima, each of which will correspond to a fluid phase. The terms with
κ1, κ2 and κ3 can describe the three required minima. However, to ensure that
only these minima exist, a hard constraint has to be imposed C1 + C2 + C3 = 1.
The terms with κ′

1, κ′
2 and κ′

3 penalise the existence of a liquid-liquid interface,
such that the free energy is minimised when the surface area between fluids is
minimal. Hence, the gradient terms are responsible for the emergence of surface
tension in the model. Further insight about the properties of this free-energy
functional can be obtained if one of the fluids concentrations is set to 0, and we
focus on the coexistence of two fluids, Cm and Cn. Since in this case Cn +Cm=1,
the chemical potential of specie m can be defined as as

μm =
δF

δCm
(2.21)

Imposing thermodynamical equilibrium ∇μm = 0 and locating the interface
between fluid n and m in x=0, we can obtain the interfacial profile along the x
axis

Cm =
1 + tanh x

2α

2
(2.22)

where α is a parameter that depends on the free-energy coefficients

α =
√

(κ′
m + κ′

n)/(κm + κn) (2.23)

Parameters κ and κ′ can be arbitrarily tuned to achieve the desired surface
tensions. The two coexisting minima at Cm = 0 and Cm = 1 however require
that km > 0 and k′

m + k′
n > 0. In order to reduce the degrees of freedom of the

system, we follow [106] and define κ′ = α2κ. Using this constrain the surface
tension now has the expression

γmn =
α

6
(κm + κn) (2.24)
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Surface thermodynamics

Modelling lubricant-coated surfaces require an additional boundary for the
components on the fluid that interact with solid nodes. Such additional
boundaries have to account for the different affinities of the fluids to the
walls and reproduce the physics of contact angles, characterised by the contact
angles and the surface tensions. In other words we want this free energy model
to reproduce the Young equation 2.5. The surface free energy contributions can
be described by ∫

∂Ω
[Ψ1]s + [Ψ2]s + [Ψ3]s (2.25)

where ∂Ω is the solid bounday in which the fluid is embedded. The surface
free-energy density for each component corresponds to

Ψm|s = −hmCm|s (2.26)

where Cm|s is the value of the order parameter at the surface. Functional
minimization for the component m at the solid boundary leads to

α2κm∇⊥Cm|a =
dΨm

dCm

∣∣∣∣
s

= −hm (2.27)

The contribution from the majority phase m, and the contributions form the
minority phases n can be calculated separately using Noether’s theorem to
obtain an analytical expression of the interfacial tension γsm. To sum up, in
the simulations the parameters h1,h2 and h3 are an input in the simulation
that are used as a Neumann boundary condition, and such condition allows to
calculate analytically the surface tensions, which at the same time allows to
obtain the contact angles θ12, θ23 and θ31.

Auxiliary variables

From the computational point of view it is much more easier to work with the
following auxiliary variables

ρ = C1 + C2 + C3, φ = C1 − C2, Ψ = C3 (2.28)

Such variables allow us to work straightforward with the mass density ρ,
since Navier-Stokes equation can be also written in terms of such mass density
as usual. With this change of variables, the wetting boundary conditions take
the form

∇⊥ρ|s = − h1
α2κ1

− h2
α2κ2

− h3
α2κ3

(2.29)

∇⊥φ|s = − h1
α2κ1

+
h2

α2κ2
(2.30)

∇⊥Ψ|s = − h3
α2κ3

. (2.31)
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There is a redundancy in these parameters. A good requirement is that the
gradient of the density has to be zero at the surface, ∇⊥ρ|s = 0 such that

h1
κ1

+
h2
κ2

+
h3
κ3

= 0. (2.32)

Following this constraint h1,h2 and h3 can be uniquely determined for a
prescribed set of contact angles.

The simulations use the auxiliary variables ρ, φ and ψ. However, for
determining the position of the interface between the different fluids its more
intuitive to work with the original concentrations Ci. The auxiliary variables
can be related to the concentrations inverting the relations in Eq 2.28 and
follows

C1 =
ρ + φ − ψ

2
, C2 =

ρ − φ − ψ

2
, C3 = ψ (2.33)

Determining the contact angles

Following [107], to obtain the angle between the three fluids in absence of a
solid boundary, from mechanical equilibrium in the triple contact line between
the fluids, we can write the two following equations

γ12 + γ23 cos θ2 + γ31 cos(θ2 + θ3) = 0 (2.34)

γ31 + γ23 cos θ3 + γ12 cos(θ2 + θ3) = 0 (2.35)

whose solution leads to the cosine rule

cos θ2 =
γ2

13 − γ2
23 − γ2

12
2γ23γ12

(2.36)

which can also be applied also to obtain angles θ1 and θ2.
The contact angle relations θmn with the solid surface depending on hn, hm

and κm and κn can be derived analytically [106] to give

cos θmn =
(ακn + 4hn)3/2 − (ακn − 4hn)3/2

2(κm + κn)(ακn)1/2 − (ακm + 4hm)3/2 − (ακm − 4hm)3/2

2(κm + κn)(ακm)1/2

(2.37)
The three contact angles from this calculations are not actually independent,

since

γ12 cos θ12 = γ2s − γ1s (2.38)

γ23 cos θ23 = γ3s − γ2s (2.39)

γ31 cos θ31 = γ1s − γ3s (2.40)

Summing the three equations the Grifalco-Good relation is obtained

γ12 cos θ12 + γ23 cos θ23 + γ31 cos θ31 = 0 (2.41)
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Figure 2.4: Results showing all six existing contact angles in the ternary free
energy model, all of which can be tunned by means of κ1,κ2 and κ3 parameters,
along with h1 and h2 wetting parameters.

LB method coupled to the Cahn-Hilliard equations

To couple the ternary free energy with the Lattice-Boltzmann method, two
additional ingredients are required. First, the order parameters φ and ψ have to
be evolved in time, according to the diffusion of each phase, and the advenction
by the fluid velocity. This temporal evolution is introduced by means of the
Cahn-Hilliard equation for each order parameter

∂φ

∂t
+ ∂β(φvβ) = Mφ∇2μφ (2.42)

∂ψ

∂t
+ ∂β(ψvβ) = Mψ∇2μψ (2.43)

where Mφ and Mψ are the mobility parameters for the φ and ψ order parameters,
respectively. The Cahn-Hilliard equations allow to locally couple the order
parameters to the velocity fields at each node. However, we still need to couple
the order parameters with the fluid flow, since existence of an interface will
also modify the velocity field. In our implementation of the ternary free energy
we use a forcing approach. A force at each node resulting from the chemical
gradient derived from the ternary free energy is introduced. We employ the
standard forcing algorithm by Guo [108] to introduce the force in the LB
algorithm. There are two different equivalent ways to introduce the external
forcing, since the ternary free energy satisfies

∂βσαβ = ∂αp + ρ∂αμρ + φ∂αμφ + ψ∂αμψ. (2.44)

wehre σαβ is the pressure tensor. The right side of the equation computes the
force as the divergence of the stress tensor, while the left side computes the
force through the gradients of the chemical potential [106]. In simulations,
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these two methodologies are not entirely equivalent since the choice between
divergence or the gradient will result in different discretisation errors. Here we
will stick to the gradient of the chemical potential for each phase, F φ

β = μ∂βφ

and F ψ
β = μ∂βψ, where β = x, y, z.

In our implementation, the Laplacian in the Cahn-Hilliard model is
discretised by means of a 27 point stencil in 3 dimensions and gradients are
approximated in each direction by a central difference scheme.

Viscosity model

In this subsection we discuss how to introduce tunable viscosities for each
fluid phase. Two different viscosity models are compared and discussed to
apply to the LB algorithm coupled to the ternary free energy. The viscosity
models in this work pursue to produce a viscosity contrast between the three
immiscible fluid phases, as would happen generally in a experimental system.
The most straightforward way to achieve this viscosity contrast is to assume
the viscosity to be a function of the bulk phases η(c1, c2, c3), where the
concentrations Ci are taken locally. The models should fullfil the condition
η(c1, 0, 0) = η1,η(0, c2, 0) = η2 and η(0, 0, c3) = η3. As the order parameter
already has a dependence when changing from one fluid to another that
approximately follows an hyperbolic tangential function, a legitimate election
could be a linear function

η(c1, c2, c3) = c1η1 + c2η2 + c3η3 (2.45)

Another feasible equation to model the viscosity contrast consists in assuming
an exponential, factorised expression

η(c1, c2, c3) = ηc1
1 · ηc2

2 · ηc3
3 (2.46)

referred to as the Arrhenius viscosity model. To test the different viscosity
models we solve the equation of motion for a mixture of three fluids. The
system is considered to be infinite in the x direction, and have a certain width,
b, in the y direction. The fluid phases are placed such that initially c1 = 1 for
y < b/3, c2 = 1 for b/3 < y < 2b/3 and c3 = 1 for y > 2b/3. As the flow is
considered to be laminar and inertial effects not important, we will consider
the creeping flow equations 2.47, in which we approximate that the problem
only depends on the y direction ux(y)

ηi
∂2ux

∂y2 + fx = 0 (2.47)

where i=1,2,3 depending on which phase of the fluid we solve the equation. In
general, the velocity field in this geometry can be obtained form Eq 2.47 and is
a parabola

ui = −fxc2
x

2ηi
+ ci,1x + ci,2 (2.48)

To solve the equations in the mentioned geometry, the six coefficients in the
previous equation have to be determined and hence six boundary conditions are
required. These conditions are the non-slip boundary condition at the solid walls
positioned at the bottom yb and top yt of the system, hence u1(yb) = u3(yt) = 0.
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Furthermore, the velocity field must be continuous in the interface between
liquids, thus, interface between first and second phase located at y12 and second
and third phase, at y23. Hence, u1(y12) = u2(y12),u2(y23) = u3(y23). Finally,
the tangential stresses in the interface between the two fluids must also be
the same η1∂u1/∂y = η2∂u2/∂y in y12 and η2∂u2/∂y = η3∂u3/∂y in y23. The
resulting system is tedious but linear and can be exactly solved using linear
algebra algorithms. The simulation results, comparing with the analytical
results for two different sets of viscosities are shown in Fig 2.5 The results show

0

0.2

0.4

0.6

0.8

1

1.2

1.4

a

u x
(y

)/
u m

id

LB, linear model
LB, arrhenius model

Analytical

b

LB, linear model
LB, arrhenius model

Analytical

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40

c

u x
(y

)/
u m

id

y (LB units) 

LB, linear model
LB, arrhenius model

Analytical

0 10 20 30 40 50 60 70 80

cd

y (LB units) 

LB, linear model
LB, arrhenius model

Analytical

Figure 2.5: Comparison between analytical result and simulations for different
contrast of viscosities and widths of the system. Figures a and b use a set of
viscosities η1 = 1, η2 = 0.5 and η3 = 0.3 for a channel width of 45 and 80 LB
units respectively. Figures c and d use a set of viscosities η1 = 2, η2 = 0.3 and
η3 = 1 for a channel width of 45 and 80 LB units respectively.

quantitative agreement between the simulation and the analytical result. It
is seen that when the viscosities are comparable both linear and Arrhenius
viscosity models are equivalent as the jump of viscosity in the interface is
small. Widening the length of the system improves relevantly the quantitative
agreement. However, as the viscosity contrast increases, the Arrhenius model
seems to produce a better agreement, both for b=45 and b=80. The velocity
profile for figure 2.5c is shown in 2.6. We observe that in the Arrhenius model,
from η1 to η2, and from η3 to η2 the viscosity changes faster towards the η2
value. Hence, the Arrhenius model basically reduces the distance from two bulk
faces where the viscosity have an intermediate value, following more accurately
the conditions imposed in the analytical solution.

Defining the interface

At some point in the interface following Eq 2.22 the concentrations between
C1 and C3 coincide such that C1 = C3 = 0.5 and that point were both
concentrations are the same can be defined as the interface position. In Fig. 2.7
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2.3. Ternary free energy model

Figure 2.6: Viscosity profile as a function of the concentration of phases

we show the concentration profiles along the direction x, where there is a
change from a majoritary phase of concentration c1 to a majoritary phase of
concentration c3. However, there is the interface of fluid c2 nearby, since we
observe that this concentration is not zero, and remains constant. The question
is how to find an algorithm that correctly identifies in each direction each
interface. As imposed in the model, the total sum of the three components is 1

Figure 2.7: Concentration of each phase in x direction from Fig ??, near the
lubricant contact line

and does not vary. The concentration profile for the lubricant, C2, is constant
along the x axis, and also the sum of the components C1 and C3. Moreover,
it can be seen that in this case C1 and C3 have the same concentration for a
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2.4. Imbibition in lubricant coated surfaces

certain x coordenate x in which the concentration equals C∗ = (C1 + C3) · 0.5.
Hence, we will define the interface of fluid 1-3 as the exact x position where the
concentration profiles for both C1 and C3 equals C∗. We can extend this for a
certain node, in all directions of the node, to find the interface in every possible
direction. This same criteria can also be used to determine the position of the
interface between fluid 2 and fluid 1, and 2 and 3, hence the lubricant contact
lines.

Measuring the contact angle

Once the interface profile is obtained, a systematic measurement method for
obtaining the contact angle between fluids is required to characterise the
properties of the moving interface. In geometries such as liquid lenses with three
phases, fitting spheres using a least-squared algorithm for each fluid interphase
yields to accurate results. Each interface is fitted to a circle and then the
intersection between interfaces in analytically calculated. From this intersection
point the implicit derivative of a circle is used to calculate the contact angle.

Benchmarking tests

Using the described methodology, we obtain Fig. 2.4, as reproduced originally
in Ref. [106]. In the figure, we show the order parameter φ, which is correspond
to C1 phase when φ = 1, C2 phase when φ = −1, and C3 phase when φ = 0
following Eqs. 2.33. We observe six different angles: θ1,θ2 and θ3 are the contact
angles between the fluids, which are independent of the wetting potential, h,
and are determined by the surface tensions, using Eq 2.36 for each contact angle
(only two are independent). The other three contact angles, θ12,θ23 and θ31
account for the affinity of the fluids to the solid boundary and are determined by
the surface tensions and the h wetting boundary via Eq 2.37. In Fig. 2.8 we show
the benchmarking tests, comparing the theoretical and measured contact angles,
both for fluid-fluid (left) and fluid-solid (right) interfaces. The high accuracy
on the predictions validate the ternary free energy model as an accurate model
to simulate three fluids with tunable contact angles.

2.4 Imbibition in lubricant coated surfaces

In this section we finally introduce the results from Pub. 4.6. During the first
sections of this chapter we have introduced a series of concepts to highlight
that surface tension related phenomena is still an active research area. Deeper
understanding of the properties of solid surfaces leads to industrial innovations,
which results in constant critical revisions of the theory to design new ways
of dealing with drops in solid surfaces and transport of fluids. After the last
sections, the reader should be aware that the simulation of capillary surface
tension phenomena is not straightforward, and requires of a solid machinery to
tackle the coupling between hydrodynamic equations and interfacial stress. In
our case, we have chosen the Lattice-Boltzmann method and a thermodynamic
free energy which allows to tune contact angles. Our goal when working with
this computational approach has been to develop a technique by which we could
simulate spontaneous invasion of fronts by capillarity effects in lubricant coated
surfaces. A reason to use this approach lies in the fact that in a binary mixture,
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2.4. Imbibition in lubricant coated surfaces

Figure 2.8: Benchmark tests for contact angles. The figure on the left compares
the theoretical angles (θt) with the measured contact angles in the interface
(θm) in a liquid lense geometry when systematically varying the surface tensions.
The figure on the right compares measure the solid-liquid contact angle for a
fixed value of h1, when systematically varying the h2 wetting potential. Both
graphs together show the high accuracy of the ternary free energy model.

the long-stage Lucas-Washburn law has been shown to be reproduced very
easily [109]. The most interesting possible outcome of spontaneous imbibition
in lubricant-coated surfaces would be a change in the exponent h ∼ t1/2.
Hence, our first step was to reproduce the Lucas-Washburn law from Eq. 2.13,
initialising to 0 the lubricant concentration phase Cl = 0.

To explore the outcome of the spotaneous imbibition, we set a geometry
consisting in two reservoirs, one of invading liquid on the left, and one of
displaced fluid on the right. Each reservoir has a length Lr larger than the solid
channel length L, Lr = 2L. The two reservoirs are connected by the channel, of
length L, and the interface between the fluids is placed at l(0) = 0.05L. We have
to take into account that it takes some time for the interface to relax towards a
curved shape by capillarity effects. Indeed, initially the interface is a straight
line with contact angle θ = 90◦. The gradients of the chemical potential induce
flows which deform the interface in accordance to the combination of surface
tensions, curving the interface, which at the same time induce a pressure drop.
During this time, where the interface is being deformed by capillary forces, the
front initially moves a distance l∼H/2 before starting to move following the
Lucas-Washburn. This distance has to be subtracted from the simulation results
to compare with the Lucas-Washburn law. In Fig. 2.9 we show the comparison
between a simulation and the Eq. 2.13, demonstrating that the ternary model
captures very accurately the spontaneous imbibition of a viscous front.

For spontaneous imbibition simulations in lubricant coated surfaces, we
use the same geometry as the described for reproducing the Lucas-Washburn
law. But this time we introduce a third phase, the lubricant, which covers
the solid surface. Simulations show that indeed, if the invading fluid has
hydrophylic properties with respect the solid lubricant and the solid channel, it
will spontaneously invade the channel. Some important considerations need to
be accounted for succesful simulations of lubricant-coated surfaces. As in the
LW law, the pressure drop in the interface between invading and displaced phase
sets a velocity field that forces the hydrophylic liquid to invade the channel.
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Figure 2.9: Simulation of a capillary spontaneous imbibition process using a
ternary free energy, in the limit where one of the concentrations is set to 0 (no
lubricant). The parameters correspond to a measured dynamic contact angle
θd = 73.5, invading fluid viscosity η1 = 1, displaced fluid viscosity η2 = 0.01,
γ12 = 1.033 · 10−3 and channel width H=42. The simulations accurately follow
the Lucas-Washburn law.

Figure 2.10: Simulation snapshot showing all the parameters to be considered
in SLIPS simulations The blue color is the phase associated to the invading
fluid, red to the displaced fluid and yellow to the lubricant. H̄1 and H̄2 refer to
the widths of phase blue and red phase, respectively. H refers to the width of
the channel. L is the length of the solid channel. l(t) the instantaneous position
of the front. θ is the dynamic contact angle.

However, in this case the velocity field drags the lubricant. The dragging
of lubricant can eventually lead to the breaking of the lubricant layer, and
consequent drop formation of the lubricant, stopping the spontaneous imbibition.
Two important conditions can be imposed to avoid this failure of the lubricant
layer. First, the spreading parameter S has to be positive for both the invading
fluid and lubricant, S1l > 0 and lubricand and displaced fluid S2l > 0, so that
the equilibrium contact angle with the lubricant is θe = 0, and it preferentially
wets the whole solid surface. This is not only a simulation requirement, but also
a requirement of SLIPS and LIS in experiments. The second condition consists
in placing pillars at the start and end of the solid channel, as can be observed in
Fig. 2.10. The corners prevent the lubricant to get out of the channel, but more
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important, they impose an average lubricant viscosity ul = 0. This condition
is also important for SLIPS and LIS, since experiments show that flows on
lubricant coated surfaces do not erode the lubricant width. The strong wetting
properties of the lubricant keeps the lubricant width constant even after many
experimental realisations. Thus, by placing the pillars and avoiding lubricant
loss we are closer to experimental realisations of SLIPS and LIS surfaces.

We comment also on the measurement of the contact angle. Fig. 2.10 shows
a snapshot of the simulation, where all the characteristic parameters of the
model are defined. The width of the invading fluid and displaced phase are
H̄1 and H̄2, respectively, while the channel width is H. The lubricant width
at each phase away from the interface is h1 = H − H̄1 and h2 = H − H̄2 for
the invading and displaced phase, respectively. The lubricant width is initially
uniform. However, the fluid-fluid surface tensions lead to the appearance of a
small ridge in the triple fluid contact line. The combination of this ridge with
the motion of the front leads h1 and h2 to not be uniform, specially close to
the triple contact line. However, from the interface, these two lubricant widths
are very similar. Comparing the theoretical model we derive in Pub. 4.6 with
the simulations we observe that the asymmetries near the ridge do not affect
significantly the quantitative comparison.

Finally, we comment on the the driving force in the capillary imbibition.
This driving force, as in the Lucas-Washburn law, is caused by the pressure
drop due to the curvature of the interface. To calculate this pressure drop, we
use

Δp =
2γ12 cos θs

H
(2.49)

where θs is extracted from fitting the interface to a circle, and interpolating
the circle shape to the solid, calculating the contact angle at the intersection
between the fitted circle and the solid surface. By measuring the contact angle
in this way, we can use the channel width H, instead of the width of the
displacing fluid H1. Note that the pressure drop depends on the curvature of
the interface, which do not depend on where the contact angle is computed.
The same pressure drop would be obtained if H̄1 and θt were to be used in
Eq. 2.49, where θt is the contact angle computed at the triple contact line.

Our results, presented in Pub. 4.6 show that indeed, the lubricant coated
surface qualitatievly changes the dynamics of imbibition. In the limit of large
lubricant viscosities, we recover the LW result, where h ∼ t1/2. In the limit
of small lubricant viscosity, we observe a new dynamic regime where h ∼ t1,
suggesting a qualitatively different dissipation mechanism. We demonstrate
with a simple theoretical model, based in the same derivation of the LW equation
sketched in this thesis, that this qualitative change can be explained by the
change of the velocity flow profile in the bulk of the fluid phases. In the LW,
the flow profile follows a Poiseuille flow, while in the linear regime, the flow
profile approximates a plug flow, where all the dissipation takes place in the
lubricant layer. We use the theoretical model to predict that in the presence of
an external forcing, the invasion of the front will take place exponentially in time,
and validate this results with the simulations, obtaining good agreement. Our
results sets a framework to characterise experimental spontaneous imbibition of
lubricant coated surfaces.
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2.5 Dynamic contact angles in lubricant coated surfaces

The work described in the previous chapter was focused on the dynamical
properties of a front invading a lubricant coated channel spontaneously due to
capillary forces. Since we were mainly interested in the overall invasion dynamics
and the possible scenarios for the imbibition exponent, our model considered
only the minimal ingredients to reproduce qualitatively and quantitatively the
imbibition curves. Some important questions were left for follow-up studies.
For example, the contact angle dynamics of the front can play a significant
role in the dynamics of the front. It has been mentioned that when the front
invades the channel, the measured contact angle does not exactly coincide with
the equilibrium contact angle. In fact, it is larger. This is not surprising: If
the dynamic contact angle was the equilibrium one, the front would not move.
In this case, the forces at the contact line would be balanced and no invasion
could take place. To improve the accuracy of prediction of the model, a full
description should delve into how the dynamic contact angle depends on the
equilibrium contact angle and the contact line speed when invading the channel.

When the lubricant is absent, a rigorous mathematical model exists which
explains how the contact angle depends on the capillary number, the surface
tension, and the equilibrium contact angle. The Cox-Voinov theory [58] describes
how dissipation in the liquid-liquid interface relates to the deformation of the
contact line in the presence of a solid wall, as a function of the capillary number.
The main goal of this section was to determine if the Cox-Voinov model could
capture the deformation of the liquid-liquid interface, when moving atop of a
lubricant. More specifically, we were interested in systematically measuring the
dynamic contact angle from the simulations, for a range of Ca, and for a set
of different viscosities, and compare the obtained curves of θd(Ca) with the
Cox-Voinov model. Capturing how the liquid-liquid interface deforms with the
Ca allows to quantify the dissipation associated to that dynamic contact angle,
which can later be included in the equation of imbibition dynamics. However,
the influence of this dissipation on the dynamics of imbibition is still to be
analysed. Here we will only focus on determining the dynamic contact angle
when the contact line moves on top of a lubricant.

In this section, we briefly summarise the Cox-Voinov theory, what does
it predict, and the obtained curves of θd(Ca). Then we will present the
simulations results comparing the Cox-Voinov equations with the deformation
of the interface in lubricant-coated channels. Simulations show that the Cox-
Voinov theory captures accurately the interface deformation. Finally, we will
derive a semyanalitical model that allows to predict the deformation of the
interface as a function of the lubricant viscosity.

The Cox-Voinov theory: Moving contact line on top of a solid

The dynamics of the contact line is a classical hydrodynamic problem, that
involves the breakdown of the no-slip boundary condition in solid channels.
Solving the creeping flow equations with the no slip boundary condition produce
stresses and viscous dissipation that diverges at the contact line [110]. In other
words, if the no slip boundary condition holds then there can be no contact line
motion. Yet such motion takes place physically. Such problem is intrinsic to any
sharp interface mathematical model. Experimentally, the problem was studied
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by Hoffman et al [111], and they determined that the dynamic contact angle
was correlated to the Ca number plus a shift factor. Moreover, this shift factor
was determined solely by the static contact angle, θ0. Mathematically, some
intuitive arguments were given to reproduce the behaviour observed by Hoffman
in the particular case of complete wetting θeq 	 0 and negligible displaced
fluid viscosity [10]. The problem was studied for an arbitrary viscosity contrast
and static angle by Cox [58], who used matching asymptotic expansions to
solve for each region of the interface. The derived equations are refered to as
the Cox-Voinov equations, as the results were also shown independently by
Voinov [59].

More recently, some other works focused on a computational characterisation
comparing the results obtained by Cox, solving the Navier-Stokes equation
numerically, and obtaining good agreements [112]. Such studies have provided
a further understanding of the break-down of the no slip boundary condition.
Other computational approaches, as the Lattice-Boltzmann method [113], have
become increasingly popular to study this problem as they provide accurate
description of the hydrodynamic behaviour combined with a natural solution to
the divergence problem at the contact line. The free energy employed earlier in
this chapter is a diffusive-interface model, that does not require of an explicit
slip length, since the order parameters can diffuse along the interface, giving
rise to an effective slip at the contact line.

In the context of the LB simulations, it has been stated that the Cox-Voinov
equations are fulfilled with these diffusive models [114]. Also the mechanisms
for the motion of the contact line in such cases have been studied and the
slipping mechanism falls into the general-class of Navier slip models [115].

The main mathematical expressions obtained by Cox [58] can be written as

g(θ) = g(θ0) + Ca ln(Ly/ls) (2.50)

where Ly is a characteristic macroscopic length, ls is a microscopic length, Ca is
the capillary number that depends on the viscosity η and the surface tension γ

g(θ) =
∫ θ

0
dφ[f(φ)]−1 (2.51)

where

f(φ) =
2 sin φ[q2(φ2 − sin2 φ) + 2q[φ(π − φ) + sin2 φ] + (π − φ)2 − sin2 φ]

q(φ2 − sin2 φ)[(π − φ) + sin φ cos φ] + (φ − sin φ cos φ[(π − φ)2 − sin2 φ])
(2.52)

where q = η2/η1 is the contrast viscosity, and η2, η1 the viscosities of the
displaced and displacing fluid, respectively.

Figure 2.11 on the following page shows the integral function in Equation
2.51 plotted for three different values of the contrast viscosity, q, matching the
results in [58]. Note that from this figure, given any static angle θ0 we can
estimate graphically the dynamic angle using Equation 2.50 by adding the term
Ca ln(Ly/ls) in the x-axis and seeking where the curve g(θ) falls for the given
added term. It is possible to obtain an approximated analytical expression.
Expanding the function f(q, φ)−1 in power series for small angles, hence θ 	 0 it
can be seen that the first non zero term is second order f(φ)−1 	 θ2/3 + O[x]3.
Hence, Equation 2.50 in this case can be expressed as

θ3 = θ3
0 + 9Ca ln(δ−1), (2.53)
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Figure 2.11: Representation of function g(θ) in Equation Equation (2.51) on
the preceding page using numerical integration.

where δ−1 = L/ls is the ratio between the characteristic macroscopic length
of the system and ls a microscopic length. Note that for this expression to
hold, not only θ has to be small, but also θ0 to provide an accurate value of the
integral expresion 2.51. The latter equations corresponds to a simplification
of the Cox-Voinov model widely used in experiments. Furthermore, Eq.2.53
is very similar to the equation derived considering that the dissipation in the
wedge of a liquid is employed in deforming the interface, in the limit θ0 	 0 [10].
To validate the range of application of this approximation we have obtained
numerically the angle θ using Eq. 2.50 and compared to Eq. 2.53, benchmarking
the numerical expression.

Figure 2.12: Dynamical angle as a function of Ca for the exact expression and
analytical approximation for three viscosity contrasts.

The results in Figure 2.12 show that expression 2.53 only holds for a large
range of Ca if the viscosity contrast q is approximately 0. Increasing the static
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angle still produces an accurate description of Equation 2.50. However, for
increasing q and increasing static angle Equation 2.53 breaks down and doesn’t
produce an accurate description of the dynamic angle.

Figure 2.13: Dynamical angle as a function of Ca for LB simulations with
different parameters. The dotted lines correspond to simulations extracted
from the paper by Kusumaatmaja et al Journal of Fluid Mechanics, 2016, 788,
209-227

We now show the results of the dynamic contact angle, as a function of
the Ca obtained with our LB in the solid case. We use the ternary free energy
but restrict the initial state to only two liquids, without a lubricant, effectively
reducing the equations to the binary mixture model. We compare our results to
those obtained for the binary mixture model [116], benchmarking our simulation
methodology in this problem. It has been shown that the moving of the contact
line in the binary mixture model is controlled by a slip length ls that arises
from the diffusive model. This slip length can be defined in many ways. A
possible definition is to use the term v∇φ = M∇2u to estimate this slip length,
where M is the mobility of the order parameter [116]. Specifically, the slip
length can be defined to be the distance from the wall to the local maxima of
the previously defined quantity. The slip length mainly is controlled by the
viscosities, the mobilities and the interfacial width of the fluids. The scaling
of the slip length is observed to behave differently depending on the value of
this three parameters. Two regimes can be encountered: First, the diffusive
regime when Mη/l2 � 1. In this case it is observed that the slip length scales
with the interfacial width l and the diffusive length scale ld = (Mη)1/2. The
slip length follows łs ∼ (ldl)1/2. Second, the sharp interface regime can be
found when Mη/l2 � 1 and they find ls ∼ Mη/l2. In all regimes the general
Cox-Voinov relation Eq.2.50 is satisfied. A smaller slip length translates in
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Figure 2.14: Left: Velocity field of a moving drop on top a of a solid Right:
Velocity field of a moving drop on top a of a lubricant

a larger dissipation according to the Cox-Voinov model, leading to a larger
angle deformation at smaller Ca. In Fig. 2.13 we compare one of the simulation
results from Kusumaatmaja et al [116] with simulations we obtained with our
LB methodology and observe the same trends when varying the mobility and
the viscosity.

In the results we will present now we will show parameters in the sharp
interface limit, which is the most similar to experimental conditions. We will
show how the lubricant viscosity affects the deformation of the contact angle
with the Ca and provide a framework for experiments to predict the microscopic
lengthscale as a function of the lubricant viscosity.

Moving contact line in lubricant-coated surfaces

We first start by comparing the fluid profiles inside the drop when there is a
drop moving on top of a solid, and a drop moving on top of a lubricant Fig. 2.14.
We observe that both velocity profiles follow the same trends, already shown
by Briant et al [113]. Hence, we expect that the deformation of the contact
angle will not deviate much from the Cox-Voinov results, when the contact
angle is measured at the top of the ridge, respect the horizontal solid channel.
In Fig. 2.14b) we note the existence of a ridge in the contact line between the
lubricant (yellow), the blue fluid (drop), and the white fluid (gas). This ridge is
a consequence of the Neumann angles of the liquids, controlled by the surface
tensions of the fluids. It is characterised by the angle of the lubricant θl at the
triple contact line. In Fig. 2.15 we show the morphological difference between a
small ridge and a large ridge. In Fig. 2.15a), the small ridge translates into an
almost constant width of the lubricant layer. Instead, in Fig. 2.15b) we observe
that the large ridge results in a accumulation of fluid near the contact line, and
a thin layer of lubricant near the bulk of the drops.

An interesting question we will explore here is whether the ridge affects
qualitatively the apparent dynamic contact angle. For this reason we will
characterise the measured contact angle θ as a function of the Ca, for three
different ridges: A large ridge θl = 80, a medium ridge θl = 134 and a small
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Figure 2.15: Simulations showing a drop in equilibrium a lubricant-coated
surface. Both simulations were performed with a uniform lubricant layer, with
the same thickness. We show the equilibrium profiles of the drops for (a) a
small ridge θl = 163 b) a large ridge θl = 80

ridge θl = 160. The final motivation was to compare the outcome with the
Cox-Voinov theory, and test if it holds in lubricant-coated surfaces.

We first show the results of the LB simulations. We systematically vary
the lubricant viscosity for different sizes of the ridge, and compare it to the
case where the drop contacts directly the solid surface. We define the ratio of
viscosities λ = ηs/η1, which will be the main parameter to vary. Our first results
consist on fitting the Cox-Voinov equations to the lubricant-coated simulations
results. More specifically, we fit the paramater δ−1 = Ly/ls in Eq. 2.50 to the
measured contact angles as a function of Ca. In Fig. 2.16 we summarise the
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Figure 2.16: (a) Matching Cox-Voinov when θl = 163, q=1, advancing contact
angle. (b) Matching Cox-Voinov when θl = 163, q=0.05 receding contact angle.
(c) Matching Cox-Voinov when θl = 80, q=1,advancing contact angle. (d)
Matching Cox-Voinov when θl = 80, q=0.05,receding contact angle.

comparisons for advancing and receeding contact angles, for small (θl=163) and
large (θl=80) wetting ridge. For each case, we have systematically varied the
lubricant viscosity while fixing the viscosity contrast of the other two liquids
and the angle of the ridge θl. Values larger than 90◦ correspond to advancing
angles, while smaller ones correspond to receding angles. Fig 2.16a and b shows
the contact angle dynamics for two viscosity contrasts q = 1 and q = 0.05 when
θl = 163, while Fig 2.16c and d) show θl = 80 for q = 1 and q = 0.05 respectively.
We observe that fitting δ−1 using Eq. 2.50 in general captures the behaviour
of the dynamic contact angle as a function of Ca for more than three orders of
magnitude. Interestingly, in Fig. 2.16 we observe for a large lubricant viscosity,
the lubricant-coated case approaches the case in which lubricant is absent.
Thus, effectively the lubricant layer acts as a solid. In q = 0.05, increasing ηs

also approaches the points to the solid case, but eventually the most viscous
lubricant surpasses the solid, suggesting a larger dissipation in large viscosity
lubricant layer. We observe that the larger deviation from the Cox-Voinov
theory corresponds to Fig. 2.16d), λ = 20, to a viscosity mismatch between
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Figure 2.17: (a) Velocity as a function of the arc length (b) Normalised velocity
as a function of the arc length.

drops when the lubricant ridge is large. Another interesting result is that
decreasing the lubricant viscosity is correlated to deformations of the dynamic
angle at larger Ca. In other words, decreasing the lubricant viscosity makes
the interface of the drop less prone to deform. Since δ−1 is inversely correlated
to the microscopic slip length, ls, this result indicates that the lubricant can
effectively act as a slip length that reduces the deformation of the interface.

To test this hypothesis, we track the velocity at the interface close to the
fluid triple contact line, as a function of the integrated arc length s =

∫
Ω(s)ds,

where Ω is the interface contour, and ds2 = dx2 + dy2. We observe that the
width of the peak, ξ, of the velocity across the interface arc length is close to
the solid case for large λ, which explains why large λ tends to the solid case.
From Figs. 2.17a and 2.17b we learn that decreasing λ does not only decreases
the peak, but additionally, the velocity does not decrease to zero. Instead,
the whole layer is increasing its speed, moving at a rather constant velocity.
By normalising the speeds by its maximum value, we can observe in further
detail how the peak broadens as λ is decreased. We observe that the width of
this peak correlates to ls, which indicates that our hypothesis goes in the right
direction.
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Theoretical model for contact angles in lubricant-coated surfaces

Now we know that the Cox-Voinov equations are fulfiled in lubricant-coated
surfaces. We also know that the lubricant layer has an impact in the slip
length that determines the deformation of the contact angle in the Cox-Voinov
relation. Now we will derive a simple model to predict some aspects of the
dynamic contact angle, as a function of the lubricant viscosity. We follow
a similar argument to that used by De Gennes to obtain an estimate of the
dynamic contact angle behaviour as a function of Ca [10]. We note that the
expression obtained by this method only recovers the correct dependence in the
limit where the dynamic contact angle tends to zero. However, this expression
contains useful information about the dependence of Ca with the contact angle.
Therefore, this theoretical model will provide physical insight on the impact of a
lubricant layer on the dependence of the dynamic contact angle. Following [10],
the dissipation at the wedge of the fluid is equated to the dissipation resulting
from the mismatch between the equilibrium contact angle and the dynamic
contact angle, thus

T Ṡ =
∫ Lx

x0

dx

∫ h

0
ηs

(
dvl(y)

dy

)2
dy +

∫ l(x)

h

η

(
dv(y)

dy

)2
dy (2.54)

where ηs, η corresponds to the lubricant and drop viscosities, and vs(y), v(y)
to the lubricant and drop velocity profiles, respectively. As shown in Fig. 2.18
the velocity profile can be approximated to a straight line at the lubricant
and a parabola in the liquid wedge, to simplify the calculations, similar to the
calculation shown in the supplementary material from 4.6. After solving the
flow profile, and integrating Eq. 2.54 we find

T Ṡ =
3ηU2

tan θ
ln

λ(Ly − h) + 3h

ελ + 3h
(2.55)

where h is the lubricant width and ε is a microscopic parameter that recovers
the solid case when h = 0 and prevents the divergence when there is no lubricant.
The force associated to the contact line can be written as F = γ(cos θ − cos θe).
The rate of energy associated to the moving of the contact line, can be equated
to the rate of dissipation previously calculated FU = T Ṡ, to obtain

Uγ(cos θ − cos θe) =
3ηU2

tan θ
ln

λ(Ly − h) + 3h

ελ + 3h
(2.56)

In the limit of small θ, for θe = 0 we get the final relation

θ3 = 6Ca ln
λ(Ly − h) + 3h

ελ + 3h
(2.57)

which is very similar to Eq. 2.53, but now

δ−1 =
λ(Ly − h) + 3h

ελ + 3h
(2.58)

It is interesting to take the limits of Eq. 2.58 to understand the dependence
of the term inside the logarithm. In the limit where ε → 0, the lubricant
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2.5. Dynamic contact angles in lubricant coated surfaces

regularise the slip length from Eq. 2.53 1 such that there is no divergence when
ε → 0. In other words, there is no need of a cutoff distance to regularise
the dissipation since it is well defined. When the lubricant viscosity is large
compared to the drop, ηs/η1 → ∞, we find the expected expression for the
solid, δ−1 = (Ly − h)/ε, where in this particular case ε = ls. In the opposite
limit, ηs/η1 → 0, we find δ−1 → 1, which means that the effective slip length
becomes comparable to the length of the wedge. As a consequence, a wedge can
move at much more larger capillary numbers without further deformation of
the interface. Furthermore, this expression predicts that δ−1 goes as η/ηs = λ
in the limit of small ε.

In the next section we will compare the δ−1 fitted factors to the theory
prediction as a function of λ. Although the relation here has been derived in
the limit θe = 0 and θ ∼ 0, we assume that the relation inside the logarithm
should still hold in the general case, for arbitrary viscosity contrasts of the drop
and surrounding liquid.

Figure 2.18: Scheme corresponding to the geometrical configuration we use to
relate the dissipation to the interface deformation.

Comparisons between the theory and the simulations

To test the derived model, we now use Eq. 2.58 to find whether its possible to
predict δ−1. We approximate ε ∼ 0, and use Ly as a fitting parameter. The
results are shown in Fig. 2.19. The theory captures quite well the qualitative
trend in all the cases, for receding and advancing angles, and both viscosity
contrasts q. We observe some interesting features between the different cases.
First, in the insets we observe that all cases follow accurately the dependence
2.58 when λ is small. The small ridge, θs = 160, seems to accurately follow
the expression in Figs.2.19a), b), and c), while q = 0.5 and receding angles in
Fig. 2.19d) seem to have the larger deviations even for a quasi-planar ridge.
Another consistent trend is the following: The angles with larger ridge deviate

1Note that we now rename ls as ε, since these quantities are not equivalent in the lubricant
coated setup.
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2.5. Dynamic contact angles in lubricant coated surfaces

Figure 2.19: (a) δ dependence on λ, for advancing angles and q=1 (b) δ
dependence on λ, for advancing angles and q=0.05 (c) δ dependence on λ, for
receding angles and q=1 (d) δ dependence on λ, for receding angles and q=0.05

for smaller λ and a larger deviation is observed, suggesting that the ridge has
an important contribution to the dissipation.

To conclude, we observe that Cox-Voinov captures the essence of the contact
angle dynamics in lubricant coated faces. Interestingly, a good model can be
obtained from very simple assumptions. This model qualitatively reproduces
the trends, but fails quantitatively for large viscosities and for large bridges.
The reason for this deviations are still subject of scientific consideration.
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CHAPTER 3

Electrokinetically driven fluids in
the nanoscale

3.1 Introduction

In the previous chapter we have described a surface driven phenomena, namely
surface tension, which dominates capillary flows. This is only one possibility
available in the broad range of interactions that can exist in micro and nanoscales.
Here we will focus on a different venue. We will explore electrolytes, hence, fluids
that contain ionic species that are coupled hydrodynamically. This topic is of
fundamental interest across many fields. In biology and neuroscience, electrolite
fluids are a key ingredient to trigger signals, control the salinity concentration
inside cells and counter-act any possible source of external pressure, just to
quote some examples. In engineering, controlling the transport of electrolites is
a key ingredient to design new renewable energy sources [17] and even replicate
neuronal behaviors [18]. The fact that electrolites play a determinant role in
controlling the behaviour of cells, resulting in chemical and mechanical responses
has been known since the last century [117], when Huxley and Hodkins studied
the giant axon of a species of squid at different salinities. Here the goal will
be to determine the properties of a electrolyte embedded charge-patterned
nanochannel. We will explain how this patterned channels can be used to
control electrolyte flows and result in responses similar to complex emergent
responses found in nature [117].

Before this, we need to present some of the fundamental results of electrolytes
in the presence of charged surfaces. In electrolytes, one of the fundamental
equations that controls the local distribution of ions in equilibrium is the Poisson
equation

∇2ψ = −ρe

ε
, (3.1)

which relates the electrostatic potential φ to the local charge ρe and the
permitivity of the medium ε. When integrated, the Poisson equation determines
how a charge distribution sets the electric potential. At the same time, a electric
potential gradient sets an electric field that will act on every charged specie

E = −∇ψ. (3.2)

Finally, if a ionic charge distribution in a medium is not in equilibrium,
ionic fluxes will inevitably appear. The equation for the transport of ions
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3.2. Lattice-Boltzmann coupled to electrokinetics

is fundamental to any non-equilibrium process, as the one we studied in the
publication we will present in this chapter. The transport equations can
be written by considering the local continuity equations. Three different
contributions are generally to be considered, namely, diffusion, advection and
migration due to electric fields. This transport equation is often referred to as
the Nernst-Planck equation, and follows

∂c

∂t
= ∇ ·

[
D∇c − cv +

Dze

kBT
cE

]
. (3.3)

The terms on the rhs correspond to diffusion, advection and electromigration,
respectively. Note that the advection term relates the ion transport to the local
velocity, such that a velocity field will result ionic transport.

3.2 Lattice-Boltzmann coupled to electrokinetics

Coupling the Lattice-Boltzmann method to an electrokinetic model is not trivial
and requires a combination of different computational techniques [118]. For
solving electrokinetic problems we use "Ludwig" open source code [57]. The
core of the LB method remains the same as explained in Sec. 2.2. However,
now the LB method will be coupled to the eletrokinetic model by means of the
Maxwell tensor. The force will be calculated as the divergence of this tensor,
and at each step will be included in in the streaming of the distribution function
following the standard method by Guo [108]. At each time step, the Poission
equation will be solved in order to determine the instantaneous potential. The
Nernst-Planck equations will be used to calculate the flux of ions and update the
concentrations of each specie at each node. To update the ionic concentration
following the Nernst-Planck equations require evaluating at every step each
of the the three contributions from Eq. 3.3, namely the diffusive contribution,
the advection by the fluid velocity and the electromigration produced by the
internal and external electric field. The fluid velocity obtained from the first
moment of the distribution in the advection term of the Nernst-Planck equation,
coupling the electrokinetic model hydrodynamically to the LB method.

We have also used an implementation that allow for a slip length, since
in the nanoscale the no-slip boundary condition does not hold, leading to a
slip velocity that depends on the interaction between molecules and the solid
surface. The existence of a slip length can strongly alter the flow when a
pressure gradient or an electric field is applied, as we will see in the presented
publication.

3.3 Electrostatics in the presence of a charged wall

We will now study some of the most famous solution to the equilibrium
distribution of a symmetric charge electrolyte in presence of an infinite
charged plate. This problem is known as the electric double layer. By a
symmetrical charge electrolyte we mean that each ionic specie has the same
charge z− = z+ = z. From thermodynamics it is possible to derive an expression
for the chemical potential μ(r) of ions and counter-ions,

μ(r) = μ0 + kBT ln
(

c±(r)
c0

)
±Zeψ(r). (3.4)
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3.3. Electrostatics in the presence of a charged wall

The thermodynamic equilibrium implies that there is no chemical potential
gradient. This, together with the condition that away from the surface the
concentration is constant c±(∞) = c±,0 and the electric potential at infinity is
constant and defined to be 0, ψ(∞) = 0, leads to the following equation for the
charge distribution

c±(r) = c±,0 exp
(

ψ(r)Ze

kBT

)
(3.5)

Note that to this point, the shape of the electric potential is not specified, and
the problem is not solved. However from this equation, we can extract the
electric local density, ρe, which we can use to compute the potential. The electric
density can be obtained as the difference between ions c+ and counter-ions c−,

ρe(r) = Ze[c+(r) − c−(r)] = −2Zec0 sinh
[

ψ(r)Ze

kBT

]
(3.6)

In the limit of strong thermal fluctuations, ψ(r)Ze/kBT ∼ 0, the hyperbolic
sine function can be expanded around zero, so that sinh [ψ(r)Ze/kBT ] ∼
ψ(r)Ze/kBT . This approximation is often referred to as the Debye-Hückel
approximation. With this approximation, we can easily solve the Poission
equation 3.1. Since the charged plate is infinite, the electrostatic potential will
only depend on one dimension, the coordinate of which we will refer to as x.
The differential equation is

−2c0
ψ(r)(Ze)2

εkBT
=

d2ψ

dx2 . (3.7)

The solution to this differential equation is an exponential function. As a
boundary condition, we define the electrostatic potential at the surface, x = 0,
to be ψ(0) = ξ, and we finally obtain

ψ(x) = ξ exp(− x

λD
), (3.8)

where

λD =

√
εkBT

2(Ze)2c0
, (3.9)

is the Debye length, and is one of the most important characteristic lengths
in problems of electrolytes in confined media. The Debye length can be
related by means of the the electrolyte concentration to the Bjerrum length
lB = e2/(4πεkBT ). This a complementary important characteristic length in
electrokinetics, which quantifies at which distance the attraction force between
two ions is comparable to the thermal energy. Its importance lies in relating
the physical properties of the electrolyte solution to the screening length at
which thermal fluctuations blur the influence of the charged plate.

When an external field is applied parallel to the plate, in the presence of a
charged plate that follows Eq. 3.8, we can compute the flow profile using the
Stokes equation. In the absence of a pressure gradient, the only force will be
that of the external electric field. Hence

η
d2ux

dx2 = −ρe(x)Ez (3.10)
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3.3. Electrostatics in the presence of a charged wall

Figure 3.1: Electric potential when a) the screening length is small compared
to the size of the system, so that the Debbye-Huckel is a good approximation
and b) in the case where the screening length is large compared to the size of
the system.

Subsituting Eq. 3.6 and Eq. 3.8 in the latter equation we obtain

v(x) = veoe
−x
λD (3.11)

where veo = εξEz/η is the electroosmotic velocity. This phenomena is refered
to as electroosmotic flow, and it is an important result of electrokinetic theory.
In contrast to a typical Poiseuille flow, electroosmotic flows are forced near the
wall, where local charge electroneutrality is broken due to the charged surface.
Hence, most of the shear takes places near the charged boundary, while there is
esentially no shear at the center.

The order of magnitude of the Debye length in a standard electrolyte
solutions is around d10 nm. If two equal charged plates are faced against each
other at a distance d � λD, then the problem can be approximated with the
Debye-Hückel approximation applying the corresponding boundary conditions,
and analytical solutions can be found.

However, if these two characteristic distances are of the same order of
magnitude, or the Debye length is larger, d ≤ λD, the two screening lengths
overlap and there is no screening layer. Instead, counterions can accumulate in
the charged region due to the strong electric confinement. In the general case,
for inhomogeneous channels, finding analytical solutions can be very difficult.
Computational approaches can help to determine which mechanisms come
at play and set the electric potential and ion concentrations. The solutions
discussed in this section correspond to the simplified situation od the Debye-
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3.3. Electrostatics in the presence of a charged wall

Figure 3.2: a) Comparison between the electric potential predicted by the
Debye-Hückel and the one obtained with LB simulations. b) Comparison
between the electrokinetic flow in a electrolyte confined by two equally charged
plates, for two different charge densities σ each the solid plate. All units are in
written in LB units, which are explained in the publication.

Hückel approximation, but is very useful to build intuition about electrostatic
and eletrokinetics of ionic solutions.

We now compare the obtained analytical expressions with simulations
obtained with the model described in the previous section. Fig. 3.2a) shows
a simulation where parameters have been chosen in the Debye-Hückel limit.
The walls, defined at x = 0 and x = L have a uniform, constant surface charge
σ. We chose L large enough, L=100 so that we can approximate each plate
as an infinite plate the electric double layer of which has fully developed. The
electrolyte is initialised at a certain uniform concentration c±,0 that ensures
that the whole system is electroneutral, hence that the sumation of all the
charges in the bulk of the fluid and surface plate is zero. The surface charge in
this case was σ = 0.0006. Simulations are run until a steady state is reached.
We look at the equilibrium potential from the plate located at z=0 and compare
the analytical solution, obtaining an excellent agreement.

For benchmarking purposes, we introduce the general solution for the
electrosmotic flow, without assuming the Debye-Hückel approximation, which
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3.4. Electrolyte flows in charge-patterned channels nanochannels

can be obtained in the case of two parallel plates with uniform and constant
surface charge. In the following solution, only counter-ions are considered. The
electrostatic potential in this case can be solved analytically [119]

c(x) =
c0

cos2(Kx)
, (3.12)

where ρ0 = K2/2πlb, K is the solution of the transcendental equation,

KL

2
tan

(
KL

2

)
= πLbσ, (3.13)

The electroosmotic flow can then be obtained

vy(x) =
eEzc0
ηK2 log

[
cos(Kx)
cos

(
KL

2
)

]
(3.14)

where L is the width of the channel. In Fig. 3.2b) we compare the simulation
results for two different surface charges and obtain a quantitative agreement in
both cases. Hence, we validate that the developed LB method also works far
from the Debye-Hückel regime.

3.4 Electrolyte flows in charge-patterned channels
nanochannels

The last section has been dedicated to create a framework to understand the
context of electrokinetic problems. Many promising technologies, such as blue
energy [17] or iontronics [18] rely on controlling electroosmotic flows at the
nanoscale level. Knowing the response of the flow in advance to a pressure
gradient or an electric field is a difficult task and experiments and simulations
are mandatory, specially when theoretical models are not available. Particularly
appealing are the channels that have the ability to response asymetrically
to either a pressure gradient or an electric field. In the case of the pressure
gradient assymetry, this is known as gating mechanism, and is essential to cells.
The lipidic membrane of cells are plagued with ionic channels that selectively
let ions pass. Furthermore, this asymmetric, selective response can result in
a hysteresic loop when a oscillating electric field is applied. This hysteresic
loop, often refered to as the memristor effect, is a key ingredient to fabricate
electrolyte based transistors. Hence, ionic channels can result in a response that
is analogous to the electronic transistor, but purely based in ionic transport.
The framework to building such devices based in ionic responses is referred to
iontronics, and is a promising research topic, since it would allow computational
operations with a high energetic efficiency.

Channels that exhibit rectification have existed for quite a long time
[120–126], and those with a conical shape are one of the most popular [127].
The surface charge tipically is held constant and uniform. Interestingly, the
assymetry shape introduces an assymetry in the response of the fluid depending
on the side of the applied electric field or pressure gradient [123]. This is because
more counter ions are accumulated around the small tip of the cone, resulting
in a force upon action of an external field.

66



3.4. Electrolyte flows in charge-patterned channels nanochannels

In the publication introduced in this section, we identify a different
mechanism that also leads to rectification. We explore the flow response
to pressure gradients in a straight charge-patterned nanochannel. The charge-
patterned is symmetric, meaning that two patches of equal length but opposite
signs are put in the channel, one next to the other. Hence, the electrolyte inside
the channel is electroneutral, as opposed to the conical geometry. We observe
a discontinuos flow transition as a function of the pressure gradient. At low
pressure gradients, a small diffusive flow is observed. At a certain threshole, the
order of magnitude of the flow increases orders of magnitude, and the velocity
profile transitions to a pousielle flow. The details are explained in the presented
publication Pub. 4.7.
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ABSTRACT: In viscous fluids, motile microentities such as
bacteria or artificial swimmers often display different transport
modes than macroscopic ones. A current challenge in the field aims
at using friction asymmetry to steer the motion of microscopic
particles. Here we show that lithographically shaped magnetic
microtriangles undergo a series of complex transport modes when
driven by a precessing magnetic field, including a surfing-like drift
close to the bottom plane. In this regime, we exploit the triangle
asymmetric shape to obtain a transversal drift which is later used to
transport the microtriangle in any direction along the plane. We
explain this friction-induced anisotropic sliding with a minimal
numerical model capable to reproduce the experimental results.
Due to the flexibility offered by soft-lithographic sculpturing, our
method to guide anisotropic-shaped magnetic microcomposites can be potentially extended to many other field responsive structures
operating in fluid media.
KEYWORDS: Active Colloids, Micromotors, Magnetism, Soft-lithography, Shape-anisotropy

Shape anisotropy plays an important role in magnetic
systems, since it creates a demagnetizing field and a

preferred direction for magnetization.1 Anisotropy is also an
intrinsic property of many biological systems, from elongated
bacteria2 to epithelial cells in tissue sheets3 and vertebrate
bodies,4 while being of crucial importance for the behavior of
nanoscale systems.5−9 In colloidal science, shape anisotropy
affects the fundamental behavior of microscopic particles
dispersed in liquid media, from Brownian motion10 to crystal
frustration,11 packing12,13 and glassy behavior.14,15 Anisotropic
colloids can be easily manipulated via external fields,16 and their
controlled motion has been used in several applications to date,
such as probing the viscoelastic properties of complex
fluids,17−19 or stirring and mixing liquids in confined micro-
fluidic systems.20−22 For self-propelling particles systems,23

where injected or environmental energy is directly converted
into directed motion, the anisotropic shape may induce curved
trajectories,24,25 or be responsible for emergent collective
behaviors different from those of isotropic ones.26−28

Here we realize isosceles magnetic microtriangles and
demonstrate their propulsion in a viscous fluid when subjected
to a time-dependent, conical precessing field. Depending on the
field parameters, i.e. the amplitudes and driving frequency, we
observe three distinct regimes of motion, where the triangles
perform rolling or tumbling-like dynamics, and a sliding mode
characterized by an average static planar orientation. In the latter

case, the triangles hold their surface quasi parallel to the
bounding wall and we show that, when the direction of the
magnetic moment does not coincide with the long side of the
triangle, friction asymmetry between the two short sides induces
a nonzero transversal drift. Under such conditions, one can
transport the triangle along different directions across the plane,
even performing closed orbits. In contrast, such trajectory
reduces to a line when the magnetic moment is aligned with the
long side. We explain these observations with a minimal
simulation scheme which considers three linked ferromagnetic
particles close to a stationary bounding wall, avoiding the
complexity of considering a continuous triangular shape. We
demonstrate with our simulation model that such transverse
drifts take place due to the coupling of the shape anisotropy and
magnetic misalignment of the triangle moment with respect to
the symmetric axes. Thus, our results show how magnetic
misalignment can lead to new microswimmers capabilities
including the realization of very specific trajectories and their
operations near solid surfaces.
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The ferromagnetic microtriangles are realized by filling
polydimethylsiloxane molds with a suspension of silica magnetic
nanoparticles (400 nm diameter) dispersed in a monomer
matrix, see Figure 1a,b and Section S1 in the Supporting
Information (SI) for more details. The triangles are ∼1 μm thick
and isosceles, with two equal sides of length 5.1 μm, and a longer
one equal to 6.1 μm. After cross-linking the monomer and
extracting the triangles from themold, Figure 1c, we disperse the
obtained particles in highly deionized water, and insert the
solution in a glass microchannel of height 100 μm and width ∼2
mm. The triangles sediment close to the bottom of the channel
due to density mismatch, and there they display small thermal
fluctuations in both the translational and orientational degrees
of freedoms.
Free triangles display magnetic attraction due to the presence

of a permanent magnetic momentm. To measure the amplitude
and direction of m within these structures, we investigate the
triangle reorientation under a static field By = 1 mT. First, the
field is applied along one direction (ŷ-axis) and then is suddenly
switched along the perpendicular one (x̂-axis), see Figure 1d and
SI Video S1. One can describe this reorientation in terms of a
balance between the applied magnetic torque τm = |m× B| =mB
sin θ with the viscous one v r= . Here θ describes the angle
between the direction of m within the triangle and the applied
field, and ζr is the rotational friction coefficient. In the
overdamped limit, τm + τv = 0 and the resulting solution,
tan(θ/2) = exp(−t/τr) determines the relaxation time, τr = ζr
/(mB). As shown in Figure 1e, after studying the reorientation of
73 triangles, we find that the distribution of relaxation times P
(τr) is nearly Gaussian, centered around a mean value of ⟨τr⟩ =
60 ms with a standard deviation 27

r
= ms. Using ζr ∼ 8πηVt,

with η = 10−3 Pa·s the viscosity of water and Vt = 1.22 ×
10−17μm3 the triangle volume, we obtain a permanent moment
of m = 6.4 × 10−21 A m2.
Further, the reorientation experiments provide information

on the direction θr ∈ [−π/2, π/2] subtended by the magnetic
moment with the long side of the triangle, which in turn allows
to identify the corresponding direction of m within the triangle.
As shown in Figure 1f, the permanent moment is oriented along
three main directions, θr = −45°, 45° and 90°, see also the

schematic at the bottom of Figure 1f. As we show below,
depending on the location ofm one can obtain different types of
trajectories by changing the field parameters.
The magnetic properties of the microtriangles can alter-

natively be characterized by monitoring its response to a
circularly polarized, in plane rotating magnetic field,

x yB B ft ft(cos(2 ) sin(2 ) )0= being f the driving frequency
and B0 = Bx = By the field amplitude. The rotating field applies a
magnetic torque τm which induces a rotational motion around a
central axis. One can identify two dynamic regimes that emerge
when tracking the position of one tip of the triangle as a function
of time, Figure 1g. Below a critical frequency fc the triangle
rotates synchronously with the driving field, the phase-lag angle
φ betweenm and B is constant and the rotational frequency f p =
f. In contrast, for higher frequencies, f > fc the motion becomes
asynchronous and the spatiotemporal plot displays small kinks
where m loses its phase with B and fp decreases as f increases.
Such regime can be described in terms of the Adler equation,29

which gives in the deterministic limit f f f f/ 1 1 ( / )p c
2=

. Here fc = fc(ζr,m, B) and thus triangles with different magnetic
moments m will be characterized by a different critical
frequencies. However, all data can be rescaled by plotting f p/f
versus the driving frequency measured in terms of a reduced
time, τ = 1/(2πfc ). This reduced time compares the magnetic
torque with the viscous one. When f (1/τ) ≳ (2π)−1, the viscous
torque resistance is larger than the magnetic one, which gives
rise to the asynchronous regime. Figure 1h shows fp /f against f
/τ for two different types of triangles (circles and triangles) and
at two amplitudes of the rotating field, B0 = 1.4 and 4 mT. This
scaling also leads to excellent quantitative agreement with
numerical simulations of a minimal model of the microtriangles,
more details will be given later.
We induce propulsion of the microtriangle in water by

applying a magnetic modulation that precesses with frequency f
around an axis parallel to the glass substrate x y( , ). A field that
precesses around the ŷ -axis is given by

B B ft x B y B ft zsin(2 ) cos(2 )x y z= + + (1)

Figure 1. (a) Schematic of a ferromagnetic microtriangle with the corresponding sizes. (b) Scanning electron microscope image showing the
embedded ferromagnetic nanoparticles (size 400 nm), scale bar is 2 μm. (c) Optical microscope image of an array of microtriangles before its
extraction, lattice constant is a = 12.4 μm. (d) Microscope images showing the reorientation when a static field along the ŷ-direction (By = 1 mT) is
suddenly switched along the x̂ direction (Bx = 1 mT). See also SI Video S1. (e) Distribution P (τr) of the relaxation time τr of the microtriangles
measured respect to the x-axis. Symbols are experimental data, continuous line is a Gausan function with mean ⟨ τr ⟩ = 60 ms. (f) Top: Angular
distribution P (θr) of the reorientation angle θr . Bottom: schematic showing the three main directions ofm within a microtriangle. (g) Position in the
x y( , ) plane versus time (vertical axis) of the tip of one magnetic triangle under a rotating magnetic field (amplitude B0 = 1.4 mT) in the synchronous
(left, driving frequency f = 1 Hz) and asynchronous (right, f = 7 Hz) regimes. (h) Normalized rotational frequency of the triangle f p /f versus f for two
different triangles (circles and triangles) and field amplitudes (black and orange). The frequency is measured with respect to the reduced time τ (see
text), the continuous line results from numerical simulations.
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This type of magnetic modulation has been used in the past as a
convenient means to transport other types of anisotropic
objects, including paramagnetic doublets,30 ribbons,31 or
composite particles.32,33 When this modulation is applied to a
microtriangle, it tries to align its moment with the precessing
field, which would induce a conical rotation, similar to a
gyroscope spinning. However, due to the complex shape of the
triangle, the relative large aspect ratio (area to thickness) and the
steric interaction with the bounding wall, we find three types of
transport modes, depending on the different field parameters,
Figure 2a. For low amplitude of the static, in-plane component

By , (B ≲ 0.5 mT), Figure 2a left, middle, and right, the
microtriangle rotates perpendicularly to the bounding wall, and
it moves as amicroscopic wheel, see first row of Figure 2b, Figure
2c and the SI Video S2. This transport mode is observed for a
wide range of frequencies ( f ∈ [10, 60] Hz). The triangle
transport is induced by the rotational-translational coupling,
resulting from the dependence of the friction with the fluid on
the distance to the bounding wall.34 Due to the relative small
thickness of the triangles, the wheel motion is usually

characterized by a small translational speed of the order of ⟨v⟩
∈ [0.5, 2]μm/s.
Increasing the static component By, forces the triangle to lay

parallel to the bounding wall. However, for larger values of By (By
≳ 0.5 mT) the triangle still tries to follow as a whole the field
modulation, and the resulting mode is a tumbling-like
translation where the triangle continuously flips, second row
of Figure 2b and Figure 2c. In this situation, increasing By
destabilizes the in-plane rotation, and the permanent moment
follows the field modulation but it features some wobbling of the
microtriangle, see the SI Video S3. As shown in Figure 2a left and
middle, this transport mode usually displays an higher average
translational speed, ⟨v⟩ ∈ [2, 6]μm/s.
At high frequencies ( f = 60 Hz) and large values of By (By ≳

0.5 mT) and for an elliptically polarized field (Bx ≠ Bz), we find
that the tumbling mode transits to a surfing like propulsion,
where themicrotriangle is observed to translate without flipping,
with an intermediate speed of ⟨v⟩ ∈ [2, 4] μm s−1, third row of
Figure 2b and Figure 2c. By carefully analyzing the experimental
videos, we observed that in this mode the microtriangle shape
laid almost parallel to the bounding plane while displaying a fast
rotational movement of the tips. These rotations have a very
small amplitude, that impede to characterize them experimen-
tally and resolve the full three-dimensional dynamics of the tips.
Instead, we have used numerical simulations (details are given
later) to clarify the mechanism of motion in this regime. We
found that the rotations of the tips produce unequal displace-
ments along and perpendicular to the bounding wall, which
induce asymmetric dissipations capable to break the time
reciprocity of the fluid flow at low Reynolds number.35 As shown
in the SI Video S4, the microtriangles literally surf on top of the
plane displaying a small wobbling. The orientation θr of the
magnetic momentm with respect to the long triangle side varies
from triangle to triangle and so does the orientation of the long
triangle side with respect to the transverse direction (ŷ-axis). In
particular, when θr = 0°, x̂ is an axis of symmetry of the triangle
whereas when θr ≠ 0° it is not. Thanks to these three modes, a
triangle can adapt its locomotion to the environment. In an open
environment, one can use the fastest mode (tumbling).
However, when required to pass through a small orifice or
pore, one can easily switch to the wheel or sliding modes which
could enable the triangle to pass through these constrictions.
To confirm the experimental observations, we have developed

a numerical model to gain insight in the mechanisms of the
different transport modes. We represent the microtriangle as
three beads, i = 1, ..., 3 of equal mass m and located at a fixed
distance away from each other. The equation of motion for each
particle follows

r
F F F Fm

t
d
d

i
i i i i

2

2
m g LJ H= + + +

(2)

The first term on the right side, Fim, accounts for the net force
acting on bead i as a result of the constraint that keeps the three
beads at constant separation from each other, and to the torque
due to the coupling between the magnetic moment of the
microtriangle m (aligned with a prescribed axis rigidly fixed to
the triangular plane) and the external magnetic field B. Fig
corresponds to the gravitational force, while FiLJ accounts for the
steric interactions between the beads and the solid bounding
wall. Finally, FiH denotes the force acting on the bead i due to
hydrodynamic interactions. These forces are described in detail
in the Section S2 in SI. This minimal model captures the

Figure 2. (a) Mean speed ⟨v⟩ with v v v( )x y
2 2= + versus static

component By of the precessing field for two different frequencies f = 10
Hz and f = 60 Hz at Bx = Bz = 1.6 mT (first and second panel) and at
amplitudes Bx = 1.4 mT and Bz = 1.27 mT (third panel). (b,c)
Schematic (b) and sequence of images (c) taken at three different
instants of times of a propelling microtriangle in the three regimes:
wheel (top, Bx = Bz = 1.6 mT, By = 0 mT, f = 10 Hz), tumbling (middle,
Bx = Bz = 1.6mT, By = 0.32mT, f = 10Hz) and sliding (bottom, Bx = 1.4
mT, Bz = 1.27 mT, By = 1.2 mT and f = 60 Hz). The scale bar in the top
image is 5 μm, the number of observed events are 33 for the wheel, 37
for the tumbling and 30 for the sliding mode. The corresponding videos
illustrating these experimental situations are deposited as Supporting
Information (Videos S2, S3, and S4). (d) Results from numerical
simulations: normal (θn) and vector (θs) angles versus rescaled time for
three situations corresponding to the experimentally observed regimes
of motion. The small schematic in the bottom panel shows the modeled
three particle system with the unit vectors n and s.
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essential mechanisms leading to rectification and thus net
transport, which emerges from the coupling between the object
geometry, the symmetry of the external driving and the plane
mediated hydrodynamic interactions.
As shown in the small scheme at the bottom of Figure 2d, to

characterize the three regimes of motion we define two unit
vectors, n̂ and s ̂ which define the direction perpendicular to
plane of the triangle and from the center to one of the three
particles, respectively. Thus, we describe the three translating
modes in terms of the angles n zarcsin( )n = · and

s zarcsin( )s = · . For the wheel motion (top panel in Figure
2d) θn remains constant and the three-particle system performs
rolling only in the x z( , ) plane, with θs periodically varying
within the range [−π, π] similar to the propulsion of magnetic
rollers.36 The tumbling transport (middle panel in Figure 2d)
features periodic oscillations of both angles θn and θs: The θs
conical precession produces a slow rotation of θn, which
periodically flips themicrotriangle. The propulsion by flipping of
the microtriangle is analogous to the motion of actuated rotors
under the effect of a conical precessing field.37 Finally, the last
panel of Figure 2d corresponds to the surfing like transport. The
simulations show that the ratio between the gravitational
attraction and the magnetic force plays a key role in avoiding the
flipping of θn, stabilizing the average planar oscillations when the
triangle slides. This motion is characterized by almost constant
values of both angles with small oscillations. The simulations
allow to visualize the bead trajectories which represents the
triangle tips. Small and fast asymmetric oscillations are observed
for each tip in each period, resulting in a net propulsion, see SI
Video 9.
The model also allows a deep exploration of the parameter

space which unveils the different degrees of freedom that allow
propulsion in the sliding mode. In particular, for a microtriangle
with θr = 90°, Figure 3 displays how θs varies parametrically as a
function of s yarcsin( )l = · , which corresponds to the trajectory
where the vertex s ̂ points to. As the static field component By
increases, both the rectification velocity of the sliding triangle
and the area contained by the corresponding trajectory decrease,
and eventually the trajectory does not contain a finite area,

corresponding to the regime where the triangle does not slide.
Now the tips’ oscillations are parallel to the boundary wall
surface with a vanishing area. Hence, the parallel and
perpendicular motion of the triangle vertex in the presence of
the solid bounding wall provide the two independent degrees of
freedom required by Purcell scallop theorem to break the time
reversal symmetry and produce a translational motion.35
We now focus on the sliding mode, where the microtriangle

translates almost parallel to the close bounding wall. In this
regime we find that microtriangles characterized by a permanent
moment θr ≠ 0, exhibit a net propulsion along the axis of
precession (y axis) in addition to the motion along the
perpendicular direction. As shown in Figure 4a, see also

VideoS5 in the Supporting Information, this effect is robust,
and reproducible, and can be used to rectify the motion of
sliding triangles to bring them to any point of the plane by simply
switching the chirality of the rotating field (here inverting Bx)
and the static field By. In contrast, microtriangles whose
magnetization is parallel to their long side (θr = 0°) do not
display such asymmetric friction and the corresponding
transversal drag, Figure 4b. Consequently, those triangles can
only be driven along a line (here the x̂-axis). As shown in Figure
4c, we observe the same behavior in simulation i.e triangles
exhibit transversal motion only when θr ≠ 0. Magnetic
misalignment allows for each set of magnetic field configurations
to produce a different orientation of the tips’ oscillations with
respect to the laboratory frame, leading to the four transversal

Figure 3. Trajectories of the angle θs as a function of θl, for a simulated
microtriangle with θr = 90°. Here By refers to the constant component
of the magnetic field normalized by the radius of the rotating field,
B B B B/( )y y x z= + . The inset shows the average translational velocity
of each trajectory. The frequency is set to f = 2.56 Hz. In this specific set
of simulations, s ̂ is parallel to the magnetization.

Figure 4. (a) Sequence of images showing a two-dimensional trajectory
of a microtriangle in the sliding regime when the permanent moment is
inclined with respect to its long side (θr = −17°). The change in the
horizontal transport direction (vx → − vx) is realized by inverting the
chirality of the rotating field (Bx → − Bx), while the change in the
vertical direction is obtained by inverting the static component (By → −
By). The corresponding video is SI Video S3. (b) One dimensional
trajectory showing the back and forward motion of a sliding
microtriangle with symmetric orientation of the two short sides along
the transport direction (θr = 0°). (c) Corresponding results from
numerical simulations of a sliding microtriangle for θr = −13° (left) and
θr = 0° (right).
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directions, as can be observed in SI Video S6. The sliding
propulsion mode that we report does not involve complete
rotations of the micro-object. In this case, the rectification of its
motion into net displacement requires both the anisotropy of
friction due to the presence of the solid wall and, at least, two
degrees of freedom to define the particle configuration. Hence,
we expect that any anisotropic object will, generically, be able to
slide under the appropriate external actuating field. For example,
a disk can exhibit wheel, tumbling and sliding. However, the
sliding propulsion will have the same direction as the wheel and
tumbling motion, depending only on the chirality of the
magnetic field. This is because there cannot bemisalignment in a
planar magnetic moment contained in a disk. Hence, the degree
of anisotropy has a strong impact in the possibility to manipulate
and control the direction of motion of the object.
At large area fractions, our ferromagnetic microtriangles can

interact and assemble due to dipolar forces. As shown in the top
inset of Figure 5a, already in the absence of any applied field, the

particles tend to aggregate forming linear chains where the
internal orientation of the individual triangles depends on the
orientation of their permanent moments. Once they adopt an
elongated structure, the triangles display weak thermal
fluctuations and the structure is practically fixed, but they can
be readily transported and redispersed in the water via an
external field. For example, Figure 5a and the corresponding SI
Video S7, shows the propulsion of the chain when it is subjected
to a precessing field. The particles show a relative displacement
advancing one with respect to the other during a field cycle,
which lead to fluctuations along the y-position. In contrast, they

tend to keep their separation distance constant, as shown by the
bottom inset (x-position). Thus, one can translate the magnetic
chain at a constant speed, and their collective motion could be
used to transport other non magnetic cargoes dispersed in the
fluid medium.
Apart from collective transport, the magnetic triangles could

be assembled in more compact structures, starting from a linear
aggregate. This feature is demonstrated in Figure 5b, where the
microtriangles are subjected to an in-plane, circularly polarized
rotating field. The rotating field creates a torque on the particles
and induce time-averaged attractive dipolar interactions.38 Such
compact structure forms due to the competition between
dipolar forces and excluded volume, while assemble the particles
to reduce the free space thus maximizing packing. We note that
the assembly of few microtriangles is the starting point to
investigate the field-induced aggregation of more complex
structures that can be easily designed with our lithographic
technique.
In conclusion, we have demonstrated that lithographically

made soft magnetic microtriangles display a rich series of
transport modes when subjected to a conically precessing
magnetic field. We find that, depending on the field parameters,
these complex particles may either translate as microwheel,
tumble or even display a surfing like dynamics where they slide
close to the bounding wall. In the sliding mode, we find that
anisotropy in friction and magnetic misalignment may be used
to generate a transversal particle motion, and the microtriangle
can be driven across the full plane by switching the static
component of the applied field and the field chirality. Those
different modes enable the triangle to adapt its locomotion to
different situations, giving the triangle an advantage with respect
to more simple isotropic particles. All these dynamical modes
can be explained by considering a simple model of three linked
ferromagnetic spheres interacting with a bounding plane. We
finally stress that transport of isotropic magnetic colloids and
their collective dynamics have been matter of much research so
far. However, using particles with complex shapes may further
unveil novel transport modes which could be used to create
more complex functional operations in fluid based applications.
We have demonstrated this concept with a microtriangle, but
our results are rather general, as any anisotropic shaped object
with a magnetic misalignment could result in a sliding
propulsion with different transversal motions.

■ ASSOCIATED CONTENT
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The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.nanolett.2c02295.

More details on experimental system and numerical
simulation (PDF)
Videoclip illustrating the reorientation dynamics of two
magnetic microtriangles initially aligned by a static field of
amplitude 1 mT along the vertical (y) direction which is
subsequently switched along the horizontal (x) direction
(AVI)
Videoclip illustrating the wheel motion of a magnetic
microtriangle which is driven first towards top and later
towards bottom by inverting the chirality of the precessing
field (AVI)
Tumbling motion of a magnetic microtriangle which is
driven first toward top and later toward bottom by
inverting the chirality of the precessing field (AVI)

Figure 5. (a) Position versus time of the center of mass of 6 triangles
that collectively translate via the tumblingmode at a constant speed ⟨vy⟩
= 3.1 μms−1. The applied precessing field has amplitudes Bz = Bx = 1.6
mT and By = 1.22 mT (static field) and frequency f = 10 Hz. Top inset
displays a microscope image of the initial assembly (B = 0), see also SI
Video S7. Bottom inset shows the transversal trajectory with a constant
separation distance between the particles. (b) Microscope image
showing the initial (0s) and final (70s) configuration of 8 triangles that
are assembled in a compact structure due to an in-plane rotating
magnetic field with f = 10 Hz and Bx = By = 1 mT.
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Video showing the surfing-like propulsion of a magnetic
microtriangle which is driven first toward top and later
toward bottom by inverting the chirality of the precessig
field (AVI)
Videoclip showing how a microtriangle performs a close
trajectory by acquiring a transversal speed due to friction
anisotropy (AVI)
Video showing position of the three tips of a microtriangle
in the sliding mode obtained from numerical simulation
(AVI)
Videoclip showing collective transport of six micro-
triangles initially assembled to form a chain AVI)

■ AUTHOR INFORMATION

Corresponding Author

Pietro Tierno − Departament de Física de la Mater̀ia
Condensada, Institut de Nanociéncia i Nanotecnologia, and
Universitat de Barcelona Institute of Complex Systems
(UBICS), Universitat de Barcelona, 08028 Barcelona, Spain;
orcid.org/0000-0002-0813-8683; Email: ptierno@

ub.edu

Authors

Gaspard Junot − Departament de Física de la Mater̀ia
Condensada, Universitat de Barcelona, 08028 Barcelona,
Spain

Sergi G. Leyva − Departament de Física de la Mater̀ia
Condensada, Universitat de Barcelona, 08028 Barcelona,
Spain; Universitat de Barcelona Institute of Complex Systems
(UBICS), Universitat de Barcelona, 08028 Barcelona, Spain

Christoph Pauer − Faculty of Physics and Center for Nano
Science, Ludwig-Maximilians-Universität, München 80539,
Germany

Carles Calero − Departament de Física de la Mater̀ia
Condensada, Universitat de Barcelona, 08028 Barcelona,
Spain; Institut de Nanociéncia i Nanotecnologia, Universitat
de Barcelona, 08028 Barcelona, Spain; orcid.org/0000-
0002-1977-1724

Ignacio Pagonabarraga − Departament de Física de la Mater̀ia
Condensada, Universitat de Barcelona, 08028 Barcelona,
Spain; Universitat de Barcelona Institute of Complex Systems
(UBICS), Universitat de Barcelona, 08028 Barcelona, Spain;
CECAM, Centre Européen de Calcul Atomique et Moléculaire,
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Hydrodynamic synchronization and clustering 
in ratcheting colloidal matter
Sergi G. Leyva1,2†, Ralph L. Stoop1†, Ignacio Pagonabarraga1,2,3, Pietro Tierno1,2,4*

Ratchet transport systems are widespread in physics and biology; however, the effect of the dispersing medium 
in the collective dynamics of these out-of-equilibrium systems has been often overlooked. We show that, in a 
traveling wave magnetic ratchet, long-range hydrodynamic interactions (HIs) produce a series of remarkable 
phenomena on the transport and assembly of interacting Brownian particles. We demonstrate that HIs induce the 
resynchronization with the traveling wave that emerges as a “speed-up” effect, characterized by a net raise of the 
translational speed, which doubles that of single particles. When competing with dipolar forces and the underlying 
substrate symmetry, HIs promote the formation of clusters that grow perpendicular to the driving direction. We 
support our findings both with Langevin dynamics and with a theoretical model that accounts for the fluid-mediated 
interactions. Our work illustrates the role of the dispersing medium on the dynamics of driven colloidal matter and 
unveils the growing process and cluster morphologies above a periodic substrate.

INTRODUCTION
The directional transport of microscopic entities in fluid media 
occurs in several physical and biological processes ranging from the 
nanoparticle delivery in a microfluidic network (1, 2) to liquid slid-
ing across topographic surfaces (3, 4), translocation of proteins (5), 
molecular motors (6, 7), or enzymes (8). At the microscale, thermal 
fluctuations can be converted into directed motion via the ratchet 
effect, which uses spatial or temporal asymmetries in the system to 
generate a preferred direction of motion (9, 10). Technological prog-
resses in engineering external potentials have shown that colloidal 
particles represent an experimentally accessible model system to 
investigate ratchet transport effects (11–16). Beyond the colloidal 
domain, realizing particle-based ratchets may also be of interest for 
other research fields, since a similar transport scheme can be ex-
tended to other systems on different length scales (17–20). However, 
many experimental realizations have focused on proposing scheme 
for single particles, or few interacting ones, neglecting the effect of 
the dispersing medium. Such effect may become important in 
many-body systems, affecting the particle transport and also lead-
ing to unexpected emergent phenomena.

The dynamics of microscopic particles in liquid media often occurs 
at low Reynolds number (Re), where inertial forces are negligible 
and fluid mechanic laws become time reversible. Under such condi-
tions, hydrodynamic interactions (HIs), namely, fluid-mediated 
long-range interactions, may become important since they are 
excited by the diffusive or driven motion of the dispersed particles. 
These interactions have been invoked as essential in many physical 
and biological systems and lead to several fascinating phenomena 
from the spontaneous formation of vortex colonies (21) or the cir-
cular path of the bacteria Escherichia coli (21), to the synchronized 
beating of cilia (22). Apart from biological systems, there are several 

examples where HIs play a crucial role in the organization (23–25) 
and dynamics (26–28) of micrometer-scale particles. When consid-
ering particles driven via a ratchet effect, the role of HIs has been 
often overlooked, giving more emphasis on other types of interactions 
such as steric (29), optic (30), electrostatic (31), or geometric (32) 
ones. Thus, understanding the role of HIs often hidden in such 
systems, although challenging, will shed light on novel physical ef-
fects that could occur in other soft or biological systems on similar 
length scales.

Here, we investigate the collective dynamics and the effect of HIs 
in a ratcheting colloidal system based on a magnetic traveling wave. 
We show that, by raising the particle density, these interactions modify 
the particle dynamics, leading to a series of emerging phenomena. 
These include a “speed-up” effect characterized by a substantial raise 
of the particle speed due to the resynchronization with the translating 
potential and a synchronized clustering during transport. In the latter 
case, we find a novel mechanism for cluster growth and morphology 
originated by the underlying symmetry of the substrate.

To elucidate the fundamental physical mechanisms in our system, 
we complement the experimental results with theory and numerical 
simulations.

RESULTS
The magnetic ratchet
Our driven colloidal system is based on a ferrite garnet film (FGF), 
which displays at zero applied field a pattern of parallel ferromag-
netic domains with alternating up and down magnetization, and a 
spatial periodicity of l = 2.6 mm (Fig. 1A). On the surface of the 
FGF, the stray field generates a sinusoidal-like magnetic potential 
composed of a series of equispaced minima located at a distance l. 
Above this platform, we deposit paramagnetic polystyrene micro-
spheres with diameter d = 2.8 mm and magnetic volume susceptibility 
c ∼ 0.4 (Dynabeads M-270, Invitrogen). These particles are doped 
with nanoscale iron oxide grains, and they feature a paramagnetic 
behaviour acquiring an induced moment m = VcHtot under an 
external field Htot, where V = (pd3)/6 . Once above the film, the 
particles form a two-dimensional (2D) monolayer with negligible 
out-of-plane motion due to the magnetic attraction toward the Bloch 
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walls. Further details on the preparation of the FGF film are given in 
Materials and Methods.

We manipulate and transport the particles above the FGF by 
applying an external rotating field elliptically polarized in the (x, z) 
plane with frequency f

  H(t ) ≡ [H  x   cos (2pft )  e  x   −  H  z   sin (2pft )  e  z  ]   (1)

Here, Hx, Hz are the amplitudes along the x, z axis, where 

  H  0   =  √
___________

(Hx  2  +  Hz  
2  ) /2    is the total amplitude. The elliptical polarization 

of the applied field is controlled by the parameter b = (Hx  2  −  Hz  
2  )/

(Hx  2  +  Hz  
2), which will be used to tune the dipolar interactions. Here, 

b > 0 (b < 0) corresponds to Hx > Hz (Hx < Hz), i.e., a higher in- 
plane (out-of-plane) field component. This time-dependent field 
modulates the stray magnetic field on the FGF surface and leads 
to a translating spatially periodic magnetic energy landscape, 

   U  m   = −  U  0   cos [    2p_l (x −  v  m   t)]     as shown in Fig. 1B. Here, U0 is the 

potential amplitude (see later) and vm = lf is the speed of the traveling 
wave. As a consequence of this modulation, the magnetic landscape 
transports colloidal particles that are trapped in its energy minima.

Figure 1C illustrates the main feature of the single-particle trans-
port and combines experiments and simulation data (see later), 
demonstrating the quantitative agreement between both. By raising 
the driving frequency, we find two dynamic regimes, separated by a 

critical frequency fc = 6.7 Hz. The first regime is a phase-locked mo-
tion (f < fc) where the particle moves with the speed of the travel-
ing wave, vx = vm. For f > fc, the particle desynchronizes with the 
traveling wave (sliding regime), and its average speed decreases as 

  v  x   =  v  m  (1 −  √
_

1 −  f c  
2  /  f    2    ) <  v  m    (Fig. 1C). In the latter regime, the 

traveling wave becomes too fast and the loss of synchronization re-
sults from the viscous drag that overcomes the magnetic driving. As 
we are interested in the collective resynchronization effect due to 
HIs, we drive our particles above fc, fix for all experiments the total 
amplitude H0 = 850 A m−1, and vary mainly b and the normalized 
surface density    ~r  = Np  (d/2)   2  /A, where N is the number of parti-
cles located in area A. An illustrative example of the difference be-
tween synchronous and asynchronous regimes is shown in Fig. 1D 
(see also movie S1), which shows the evolution of the position along 
the driving direction for a single particle and a particle in a rhombic- 
like cluster. In both cases, the driving frequency is f = 8 Hz (b = − 0.4) 
so that the position of the individual particle (image at the bottom) 
displays a series of characteristic oscillations due to the loss of syn-
chronization with the traveling wave. These small delay leads to a 
reduction of the mean speed and thus of the slope. As we will dis-
cuss in the next section, we find that a particle in a cluster displays a 
speed-up effect for frequencies f > fc that enhances synchronization 
with the traveling wave, reaching a maximum speed equal to vm.

Particle interaction and speed-up
Above the FGF, the paramagnetic colloids interact mainly via di-
polar forces and HIs. The first types of interactions (we come back 
to HIs later) can be tuned by varying the parameter b (33). For 
two particles above the FGF plane, the threshold ellipticity that sepa-
rates the dipolar interactions from attractive to repulsive is given by 
  b  c   = −1 + 2/(3 cos  2   ϑ), where ϑ is the polar angle that connects the 
x axis with the distance r between the particle centers. As shown in 
Fig. 2A, when particles are aligned along the x axis (ϑ = 0), magnetic 
attraction (repulsion) arises for b > − 1/3 (b < − 1/3), and close to 
bc = − 1/3, such interactions are minimized. This dependence of 
dipolar interactions on b allows to manifest the effect of HIs in both 
attractive and repulsive scenarios.

Figure 2B shows the results of a series of experiments where we 
systematically vary the surface density    ~r   and measure the collective 
particle speed along the driving direction (x),    v ̄    x   , for different values 
of b, all in the asynchronous regime (f = 8 Hz > fc). We find that 
for    ~r  > 0.2, the colloidal particles resynchronize with the traveling 
wave reaching the maximum speed of vm = 20.8 mm s−1, much higher 
than that of a single particle, for example, vx = 7 mm s−1 for all b > 0. 
This remarkable speed-up effect is rather robust, spanning a wide 
range of densities    ~r  ∈ [0.2,0.65]. Further, this speed-up is observed 
for both attractive and repulsive dipolar interactions b ∈ [ − 0.6,0.6], 
which leads us to exclude magnetic dipolar interactions as the main 
reason for the observed resynchronization. Collective velocities of 
the order    v ̄    x   ∈ [6,20.8] mm s   −1   correspond to relatively large Péclet 
numbers Pe ∈ [84,291]; thus, the generated hydrodynamic flow be-
comes progressively more important and must inevitably affect the 
particle motion. Here, we calculate the Péclet number Pe as the ratio 
between the Brownian time tB required by the particle to diffuse its 
own radius and the driven time tD required to move its radius due to 
the magnetic landscape. Here, tD = d2/(4Deff), where Deff = 0.14 mm2 s−1

is the effective diffusion coefficient of the paramagnetic colloid, and 
tD = d/(2vx). We further note that for b > 0.2, the collective speed 

Fig. 1. The magnetic ratchet system. (A) Schematic of the magnetic traveling wave: 

A sinusoidal potential (wavelength l = 2.6 mm) is generated above the surface of an 

FGF. The potential translates at a speed vm = lf under the action of an elliptically 

polarized rotating field H with frequency f and ellipticity b. (B) Calculated energy 

landscape of one driven particle showing the time evolution of low (high) energy 

corridors in blue (white). (C) Normalized single-particle speed vx versus frequency f
from experiments (open symbols) and numerical simulation (filled symbols). 

Continuous lines are fit to the synchronous (blue) and sliding (red) regimes. (D) Nor-

malized position (x − x0)/l versus time t of a single particle (red line, bottom image) 

and a particle in a rhombic cluster (blue line, top image). In both cases, f = 8 Hz and 

b = −0.4, which corresponds to asynchronous regime for the individual particle, 

and x0 is the position at time t = 0 s. The movement of pair of particles in the asyn-

chronous regime is shown in movie S1.
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decreases at large densities,    ~r  > 0.5 (Fig. 2B). In this situation, the 
strong dipolar forces induce the formation of elongated and com-
pact trains (Fig. 2A, right), where HIs are weakened because of 
the reduced space between the particles. In this situation, the chains 
recover the asynchronous regime and the system displays an overall 
reduction of the average speed. We note that in our system, we never 
observe a reverse of the particle current due to the spatial symmetry 
of the translating periodic potential. However, a current reversal 
could be realized by either preparing a special magnetic modulation 
that would produce a spatially asymmetric potential (34) or adding 
a bias force against the flow that would tilt the potential.

DISCUSSION
Numerical simulation
The emerging dynamics observed in our driven colloidal system 
result from the combined action of different interactions, including 
magnetic dipolar and hydrodynamics ones. To understand their 
relative role in the system, we perform Brownian dynamic simula-
tions (see Fig. 1C). For each particle i at position ri, we integrate the 
overdamped equation of motion

  g   
d  r  i  
─
dt   =  Fi  

ext  +  ∑j≠i      Fi  
dip  +  ∑j≠i      Fi  

int  + g  vi  
H  + x  (2)

where g is the friction coefficient,   Fi  
ext   is the external driving force re-

sulting from the traveling wave,   Fi  
dip   is the total force due to mag-

netic dipolar interactions,   Fi  
int   accounts for the steric force with the 

rest of the particles, and x is a Gaussian white noise. These forces 

reproduce the isolated particle experimental speed, as shown in 
Fig. 1C. More details on   Fi  

ext  ,   Fi  
dip  , and   Fi  

int   and the parameters used 
are given in Materials and Methods. To model HIs, we assume that 
the particles are embedded in a solvent and dragged by the fluid 
flow of velocity   vi  

H  , generated by the net force acting on the rest of 
the suspended particles,   F  i  (r  i   ) =  Fi  

ext(r  i   ) +  ∑j≠i     [  Fij  
dip(r  ij   ) +  Fij  

int(r  ij   ) ]. 
We account for this effect with

  vi  
H  =  ∑j≠i

N     G  ij  (r  i  ,  r  j   )  F  j  (r  j  )  (3)

where Gij(ri, rj) stands for the Blake-Oseen mobility tensor (35), which 
considers the effect of the close proximity of the substrate in the far-field 
approximation. Last, x represents a random force due to thermal 
fluctuation, with zero mean, ⟨x⟩ = 0, and delta correlated, ⟨x(t)x(t′)⟩ = 
2kBTgd(t − t′).

By integrating Eq. 2, we find that the quantitative agreement with 
the experimental data can be obtained only by including HIs, even 
in the absence of dipolar forces. As a representative case, we show in 
Fig. 3A the collective speed    v ̄    x    for b = − 0.3, where dipolar interac-
tions are slightly repulsive. If we disregard the induced flow,   vi  

H  ≃ 0, 
and account only for steric and/or magnetic dipolar interactions, 
the average colloidal speed decreases with the particle density,    ~r  , in 
contrast to the experimental observations. We note that at large 
densities, we identify numerically the transition to the asynchronous 
regime when    v ̄    x   ∼ 0.95  v  m   . When magnetic interactions are weak 
(b = − 0.3), increasing    ~r   raises the speed-up effect and thus fc due to 
the hydrodynamic coupling between the particles. The effect is 
such that at    ~r  = 0.6, the new critical frequency fc = 10.3 Hz almost 
doubles that of a single particle (see Fig. 3B, bottom line). Increasing 
the magnetic coupling instead reduces the speed-up effect: For 
attractive interactions (b > −0.3), the formation of chain weakens 
HIs, reducing the net particle speed. In the repulsive case (b < − 0.3), 
particles are forced to span a larger region and this reduces both the 
hydrodynamic coupling and fc, as shown in Fig. 3B (top line). We 
also note that commensurability between the particle size and the 
wavelength of the underlying pattern in 1D is also important for the 
synchronization with the moving landscape. By running the simu-
lation along 1D with particles larger than l, we find that full syn-
chronization was not achieved in opposition to our 2D experimental 
setup. Thus, a smaller diameter allows the particles to be accommo-
dated in consecutive minima and to be more easily driven by the 
magnetic landscape.

Theoretical model
To explain the observed synchronization effect, we consider a pair 
of aligned colloids displacing perpendicular to the FGF and take into 
account the interplay between the external potential and the HIs. 
We assume negligible thermal noise and start from the overdamped 
equation of motion of one particle i
  g   ẋ    i   =  F   e(x, t ) +g  vi  

H   (4)

where the force due to the magnetic potential on such particle at 
position xi is

    F   e(x  i  , t ) = −16   
U  0  
─
l

    H─M  s  
    e   −2pz  0/l  sin [2p(    

x  i  
─
l

  − ft)  ]   (5)

Here, z0 is the particle elevation fixed by the balance between grav-
ity and steric repulsion from the solid substrate,   U  0   = p  d   3  c  m  0    Ms  

2  /6
is the characteristic magnetic energy, m0 is the vacuum permeability, 

Fig. 2. Experimental current density diagram. (A) Experimental images showing 

translating repulsive particles (b = −0.9 < 1/3) and chains (b = 0.9 > 1/3) in the 

sliding regime with f = 8 Hz. Scale bar, 20 mm (left). See also corresponding movies 

S2 and S3. (B) Collective particle speed    v ̄  x    versus normalized surface density   ~r   for 

different values of b. Dashed line corresponds to vm = 20.8 mm s
−1

. Inset shows the 

corresponding linear raise of the particle flux j =  ~r    v ̄  x    versus   ~r  .
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and Ms = 1.3 · 104 A m−1 is the saturation magnetization of the FGF 
film (36). We rewrite the equation of motion by rescaling length 
and time with l and gl2/U0, respectively, and moving to the 
reference frame of the traveling wave via the change of variables 
q(t) = −x(t)/l + ft

     q̇    i  (t ) =   
~f   −    

~f    c   [  sin [2p  q  i   ]+    3d
─
8l

   ∑j≠i
N    Ḡ   (  q  i  ,  q  j   )  sin [2p  q  j   ]  ]     (6)

where   Ḡ  (q  i  ,  q  j   ) = 8phl  e  x   · G(q  i  ,  q  j   ) ·e  x   , and we have introduced the 
dimensionless parameters     

~f    c   ≡ 16  H  0    e   −2pz  0    /  M  s    and    
~f   ≡ fg  l   2  /  U  0   , 

where g = 3phd is the viscous friction in a medium of viscosity h. 
We note that the essence of the role played by the hydrodynamic 
coupling is captured already with the Oseen tensor; the substrate con-
tributes quantitatively to the ratio     

~f    h   /    
~f    c   . For the Oseen-Blake tensor

   Ḡ  (q  i  ,  q  j   ) =   2─
D  ij  

   [  1 −   
1 +    ij   +  3_

4
   ij  

2  
─

(1 +    ij  )   5/2
   ]     (7)

where Dij ≡ ∣qi − qj∣ and     ij   ≡   (    2h_
D  ij  

  )     
2

  , while for the Oseen tensor,   

Ḡ  (q  i  ,  q  j   ) =   2_D  ij  
  . In Eq. 6, the contribution of the HIs appears from the 

second term in the right hand side, while in the absence of HIs, we 
obtain the single-particle behavior characterized in Fig. 1C. In 
this case, the solution   q̇   = 0 is only possible when    

~f   <    
~f    c   , where the 

particle is synchronized with the traveling wave. To analyze the im-
pact of HIs, for simplicity, we assume that the particles are equidis-
tantly distributed above the traveling wave with periodicity l, which 
allows factorizing Eq. 6 as

     q̇    i  (t ) =   
~f   −    

~f    c   sin [2p  q  i   ]  [  1 +   3d
─
8l

   ∑j≠i
N    Ḡ  (q  i  ,  q  j   )  ]     (8)

Synchronous motion,   q̇   = 0, occurs when   sin [2p  q  i   ]=   
~f   /    

~f    c   [  1 +  

3d_
8l   ∑j≠i

N    Ḡ  (q  i  ,  q  j   )  ]    , which is allowed for frequencies     
~f   <    

~f    h   ≡    
~f    c   [  1 +  

3d_
8l   ∑j≠N/2

N    Ḡ  (q  N/2  ,  q  j   )  ]    . Since   Ḡ  (q  i  ,  q  j   ) > 0,     
~f    h   >    

~f    c   , HIs increase the 

frequency range where the synchrony with the traveling wave is 
sustained. In particular, HIs displace the critical frequency of an 
amount d  

~f   =    
~f    h   −    

~f    c   , which increases with the number N of colloidal 
particles. The confinement due the solid substrate decreases     

~f    h   
monotonously as the colloids approach the wall; at contact, d  

~f   = 0.
We further note that the momentum exchange with the substrate 

can alter qualitatively the range of frequencies over which the syn-
chronization is sustained. For example,     

~f    h    doubles its magnitude 
when the colloids come into contact with a slip substrate with 
respect to its magnitude in an unbounded medium. For a slip 
planar interface, we find that the Oseen-Blake tensor is given by 

   Ḡ  (q  i  ,  q  j   ) =   2_D  ij  
  [  1 +   1_

(1 +    ij  )   1/2]    .

Colloidal synchronization and assembly
The hydrodynamic-induced synchronization is due to the net drag 
generated by the flow of the rest of the colloidal particles as they are 
propelled by the magnetic traveling wave. The underlying mecha-
nism is already apparent when analyzing the motion of a pair of 
driven colloids, where Eq. 8 reduces to

    q  i   ̇   =   f ̄   −    
~f    c   sin [2p  q  i   ]−    

~f    c     
F  h   sin [2p  q  j  ]
─

∣q  i   −  q  j  ∣
  , i, j = 1, 2(i ≠ j) (9)

with Fh = 3d/4l the normalized strength of the HIs, and where, for 
simplicity, we disregard the effect of the substrate. Accordingly, in 

this case,   Ḡ  (q  i  ,  q  j   ) =   2_
∣q  i   −  q  j  ∣

   and a pair of particles a distance D away 

will displace synchronously up to     
~f    h   =    

~f    c  (1 +  F  h   /D). Figure 3C shows 
the trajectories for two colloids initially at a distance equal to D = l, 
for which     

~f    h   /    
~f    c   = 3/2. Above     

~f    c   , the colloids slip with respect to the 
underlying moving substrate in the absence of HI, while they move 
synchronously due to the additional hydrodynamic drag until     

~f    h   .
Equation 9 not only shows that already a pair of particles pro-

duces hydrodynamic synchronization but also suggests a growing 
mechanism for colloidal clusters. Aggregates formed by synchronized 
particles travel faster than asynchronous colloids. After a collision, 
the particles attach to the synchronous cluster and increase their 
velocity to lock with the traveling wave. We can also apply our model 
to other driven colloidal systems that display HIs. For example, 
Lutz et al. (37) reported that optically trapped colloids subjected to 
a constant force on a toroidal potential display a speed enhancement 
due to HIs. As shown in the Supplementary Materials, if we apply 
our model to such situation, we find that HIs lead to an increase of 
the particle velocity, but only when the particles surmount the ener-
getic barrier of the optical potential.

HIs also play a determinant role in the emerging colloidal mor-
phologies. When b > −1/3, attractive dipolar interactions induce 

Fig. 3. Experiment and simulation results. (A) Normalized collective speed    v ̄  x   

versus surface density   ~r   from experiments, empty squares (b = − 0.3 and f = 8 Hz > fc), 

and numerical simulation (Eq. 2) with HIs (filled circles), hydrodynamic and dipolar 

interactions (upper triangles), only dipolar interactions (lower triangles), and only 

steric interactions (diamonds). (B) Simulations: Critical frequency fc versus surface 

density   ~r   (squares) field ellipticity b (cirles) for b = −0.3 (  ~r  = 0.6). (C) Numerical 

integration of Eq. 9 with and without hydrodynamics for   
~f   = 1.2.
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chain formation along the direction of motion, x, due to the effective 
repulsion that the particles experience when moving transversally. 
However, we experimentally observe that, up to b∼ 0.7, the particles 
self-assemble into traveling clusters with a characteristic rhombic- 
like ordering spanning both directions; a typical case is shown in 
Fig. 4A with b = 0.4.

We characterize the aggregation process in terms of the cluster 
variance along the driving direction,   s  x   =   1_N  c  

   ∑i=1
N  c       (x  cm   −  x  i  )   2  , where 

xcm is the center of mass and Nc is the number of particles in the 
cluster. Figure 4C displays sx, normalized by st, the latter being the 
variance of a perfect chain, when Nc particles are in close contact 
moving along a straight line. In the absence of HIs, sx/st ∼ 1 for 
most of the cluster length, which corresponds to the situation de-
picted in Fig. 4D. Similarly, as shown in the inset of Fig. 4B, the 
cluster anisotropy parameter f = ∣sx − sy∣ /(sx + sy) is maximal in 
absence of HIs, while it vanishes by increasing Nc with HIs. These 
results highlight that, in the presence of a periodic substrate, HIs 
and dipolar forces promote the formation of colloidal aggregates, 
with sizes and symmetries not allowed on a simple plane.

The rhombic-like ordering results from the competition between 
the size of the colloidal particles and the periodicity of the magnetic 
landscape, in the presence of dipolar and HIs. Dipolar interactions 
attract particles and set them in contact at a distance d. HIs synchronize 

the particles at a distance l along the driving direction (x). Thus, par-

ticles at close contact have a transverse distance   l  d   =  √
_

d   2  −  l   2     (see 

small inset in Fig. 4B). Thus, the contribution of HIs to the cluster 
morphology consists of a drag force that synchronizes particles, 
placing them at a characteristic distance l along the x direction. In 
the experimental system, we find that the ratio d/l = 0.92, which 
sets a transversal length between particles in the cluster of ld ≃ 0.28. 
Now, decreasing the ratio d/l gives a larger transversal length and a 
larger area covered by the clusters along the transverse direction. In 
contrast, increasing d/l to unity leads to the formation of synchronized 
particles that travel in the form of trains of particles. In such case, 
even at large b > 0, the synchronicity with the traveling wave is not lost 
due to the presence of HIs. We further note that rhombic ordering 
is reminiscent of the equilibrium structure predicted for 2D colloidal 
systems, with interactions that compete with the symmetry of an 
underlying substrate (38). However, the morphologies we observe 
develop from the interplay between the ratchet potential coupled to 
HIs and the magnetic dipolar interactions, as unveiled by our numer-
ical simulations in Fig. 4B. The exclusion of HIs by setting   vi  

H  = 0
leads to the formation of traveling chains, as shown in Fig. 4C.

To conclude, we have investigated the role of HIs on the collective 
dynamics of microscopic particles driven above a translating magnetic 

Fig. 4. Collective propulsion and assembly. Experimental (A) and simulation (B and D) snapshots of anisotropic clusters propelled by a rotating field with b = 0.4. 

Scale bar, 20 mm (A). Bottom scheme in (B) illustrates the transverse distance ld. See movie S4. In (B) [(D)], the simulation was run with [without] HIs. (C) Simulations: 

Relative cluster dispersion sx/st versus number of particles in the cluster Nc with (blue) and without (orange) HIs. Inset shows the corresponding cluster anisotropy ratio 

f = ∣sx − sy/(sx + sy)∣ versus Nc.
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potential. We find that such interactions lead to a substantial raise 
of the particle speed and favor colloidal arrangements congruent 
with the periodicity of the underlying substrate. We experimentally 
observe that such arrangement promotes the emergence of compact 
rhombic clusters along the potential domains. We rationalize the 
experimental observations with both theory and numerical simula-
tions. Thus, our system leads to a variability of the morphology 
of synchronized clusters due to the interplay between the substrate 
symmetry, hydrodynamic, and dipolar interactions.

Traveling wave ratchets where directed transport is achieved via 
a sliding periodic potential are present in several soft and condensed 
matter systems. Examples with microscopic colloids, apart from our 
garnet film, include electrophoretic (39) or magnetically (40) driven 
particles above patterned substrates, and in other field include ac-
tive particles (41), chemotactic fronts (42), defects and asperities in 
frictional sliding (43), or magnetic flux quanta (44). Thus, with our 
work, we investigate the role of the dispersing media on the collec-
tive particle dynamics and show that it can lead to unexpected 
phenomena, which could have been overlooked in similar ratchet 
systems at high density. We also mention that recently, Belovs et al.
(45) reported numerically the synchronization of puller type mag-
netotactic bacteria under a rotating magnetic field. This work con-
firms the general nature of the phenomena of synchronization due 
to HIs (46, 47), which we have experimentally observed here with a 
driven ratchet system.

Ratchet transport schemes have been invoked as simplified models 
to explain the complex dynamics that occur in many physical and 
biological systems (48), including micro- and nanomachines (49–52), 
intracellular transport (53, 54), and even as a way to rectify active 
matter (55–58). With our colloidal model system, we show the im-
portance of considering HIs and their crucial role in the collective 
organization of driven microscopic matter.

MATERIALS AND METHODS
Magnetic film and coating
The FGF was grown by dipping liquid-phase epitaxy on a gadolinium 
gallium garnet substrate; more details can be found in a previous 
work (59). Before the experiments, we coat the FGF film with a 
1-mm-thick layer of a photoresist (AZ-1512 Microchem, Newton, MA) 
to prevent adhesion of the paramagnetic particles on the substrate. 
This process was performed via combination of spin coating and 
backing, following previous work (60). We wash the FGF in highly 
deionized water (MilliQ, Millipore) before each experiment.

Details of the numerical simulation
In our simulation scheme, we integrate the set of Eq. 2 where the 
remaining terms on the right hand side, apart from the fourth one 
(HIs), are described below. The external driving force that is produced 
by the traveling wave (36) is given by

    F   ext(x, t) =  F  M   [  u  1  (t ) sin (    2px
─
l

  )   −  u  2  (t ) cos (    2px
─
l

  )   ]  e  x     (10)

where    u  1  (b, t) =  √
_
1 + b   cos (2pft),   u  2  (b, t) =  √

_
1 − b   cos (2pft), and 

FM = 16H0e−2pzU0/Msl.
  Fi  

dip   is the dipolar interaction between the paramagnetic parti-
cles. For two point dipoles (mi, mj) located at position (i, j), it is 
given by

  
F   dip(r  ij   ) =   

3  m  0  
─

4p  ∣r  ij  ∣   4
  ((   ̂e    ij   × m  i  ) × m  j   + (   ̂e    ij   × m  j  ) × m  i  )

    

−2    ̂e    ij  (m  i   ·  m  j   ) +5    ̂e    ij  ((   ̂e    ij   × m  i   ) ·(   ̂e    ij   × m  j   ))  )   

    (11)

where     ̂e    ij    is the unitary vector between particle i and j, rij = ri − rj, 
and m0 = 4p · 10−7 H m. Further, we consider induced point dipoles; 
thus, for a particle i, the magnetic moment is given by mi = VcHtot(ri), 
where the instantaneous total magnetic field is given by the sum of 
the external magnetic field and the contribution from the FGF film, 
Htot = H + Hsub, i.e.

   
H   tot  = (H  x   cos (2pft ) ,0, −  H  z   sin (2pft ))

   
+    

4  M  s  
─p    e   −2pz/l(cos (    2pxt

─
l

  )  , 0, −sin (    2pxt
─
l

  )  )
   (12)

Further,   Fi  
int   is the interaction force between the particles that we 

derive from a Yukawa-like potential, which accounts for both a 
short-range repulsion due to electrostatic interactions and the finite 
particle size. The force between two particles at positions ri and rj
can be written as

    F   int(r  ij   ) =   
U  Y  
─
l  Y  

    ∑i≠j
N    [     s─r  ij  

   (    s─r  ij  
   +   s─
l  Y  

    e   −
r  ij  _
l  Y    )   − B]    e  ij     (13)

The parameter UY quantifies the strength, and lY the character-
istic decay length of the Yukawa potential between the interaction 
of a pair of particles, and s = d/2 denotes the radius of the particles. 
The parameter B is a constant ensuring that the force is zero at the 
cutoff interaction radius rc

  B =   s─r  c  
    e   −  

r  c  _
l  Y    (    s─
l  Y  

   +   s─r  c  
   )     (14)

Last, x represents a random force due to thermal fluctuation, with 
zero mean, ⟨x⟩ = 0, and delta correlated, ⟨x(t)x(t′)⟩ = 2kBTgd(t − t′).

To minimize the number of parameters used in the numerical 
simulation, we rescale length in terms of the radius of the particles 
s = d/2, time in terms of tD = gd/(2FM), and the magnetic field com-
ponents in terms of the amplitude H0. Thus, Eq. 2 can be divided by 
the characteristic velocity FM/g, and Eq. 11 in this dimensional units 
reduces to

   F ̄     dip  =   F   d
─

∣  r ̄    ij  ∣   4
  f(  r ̄    ij  ,  h   tot(  r  i   ̄   ) ,  h   tot(  r  j   ̄   ))  (15)

where Fd is the dipolar strength   F   d  =   
3  m  0_

F  M   m4p (Vc)   2   and f(  r ̄    ij  ,  h   tot(  r  i   ̄   ),

h   tot(  r ̄    j  )) is a function that contains the dependences in Eq. 11 in-
volving only the total magnetic field contributions on each particle 
and the unit vector between two particles. Further, we use a radius 
of rd ≃ 4.5s as dipolar cutoff radius is defined, which corresponds to 
a distance large enough so that contributions of the dipolar interac-
tions are of the order ∣  F ̄     dip∣≃ 0.05. As the dipolar force depends 
not only on distance but also on the joining direction between two 
particles, the force is imposed to be 0 at rd using

    F ̄     dip  =  F   d  (    
f(   ̂r    ij  ,  h  i  ,  h  j  )
─

∣  r ̄    ij  ∣   4
   −   

f(r̂  ij   ,  h  i  ,  h  j  )
─

∣r  d  ∣   4
   )     (16)
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Equation 2 can be finally rewritten in reduced units as

  

  
d  r  i   ̄  
─
dt   =   

U  Y  
─
l  Y    F  M  

    ∑j≠i     ȳ  (  r ̄    ij   ) +   F ̄     ext(  x̄    i  ,  t ̄   ) +   F ̄     dip(  r ̄    ij  ,  h  i  ,  h  j   ) +

    

  1
─F  M  

     3─
4

    ∑j≠i
N      G ̄    ij  (  r ̄    i  ,   r  j   ̄   )  F ̄  (  r ̄    j   ) +  √

_

  2─
Pe

     
t  D  
─
dt     x ̄  

    (17)

Here,   r ̄   = r/s, G(r  i  ,  r  j   ) =   3_
4g  G ̄  (  r ̄    i  ,   r ̄    j  ), and Pe is the Péclet number. 

In turn,   ȳ   =  ȳ  (  r ̄    ij  ) is the dimensionless Yukawa force between par-
ticles i and j.

As typical experimental values, we use g = 2.6 × 10−8 m N−1 s−1

and FM = 0.1 pN. The simulation parameters are estimated to be 
hsub = 15.3, Fd = 56.1, Yukawa force strength U0/lFM = 300, Pe = 150, 
and lY = 1. Further, comparing the simulations for a single particle 
and the experiments (Fig. 1C) as a function of the frequency, we can 
estimate the characteristic time as tD = 0.075 s.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/

sciadv.abo4546
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Dynamics and clogging of colloidal monolayers
magnetically driven through a heterogeneous
landscape†

Sergi Granados Leyva,a Ralph Lukas Stoop,a Pietro Tierno abc and
Ignacio Pagonabarraga *abd

We combine experiments and numerical simulations to investigate the emergence of clogging in a system of

interacting paramagnetic colloidal particles driven against a disordered landscape of larger obstacles. We

consider a single aperture in a landscape of immobile silica particles which are irreversibly attached to the

substrate. We use an external rotating magnetic field to generate a traveling wave potential which drives

the magnetic particles against these obstacles at a constant and frequency tunable speed. Experimentally we

find that the particles display an intermittent dynamics with power law distributions at high frequencies. We

reproduce these results by using numerical simulations and show that clogging in our system arises at large

frequency, when the particles desynchronize with the moving landscape. Further, we use the model to

explore the hidden role of flexibility in the obstacle displacements and the effect of hydrodynamic

interactions between the particles. We also consider numerically the situation of a straight wall and

investigate the range of parameters where clogging emerges in such case. Our work provides a soft

matter test-bed system to investigate the effect of clogging in driven microscale matter.

Introduction

Understanding the transport properties of microscopic particles
trough heterogeneous media1,2 is important for several techno-
logical processes, including filtration,3,4 particle sorting,5,6 micro-
fluidics7,8 and many others across materials and engineering
science. From a fundamental point of view, the are several
fascinating nonequilibrium phenomena that emerge when
such particles are driven across disordered landscapes such
as depinning, jamming, plastic flow and rectification effects.9

These phenomena are also common to other physical systems
across different length scales, from vortex matter driven across
type II superconductors,10 to electrons on liquid helium,11

active matter12,13 and skyrmions.14 The simple case of an

ensemble of particles forced to pass through a single constric-
tion may give rise to different complex effects, such as inter-
mittency in the particle flow, clogging and complete blockage
via formation of arches and particle bridges.15 This effect has
been investigated in the past on different length scales,16 from
humans,17 to sheeps,18 granular particles19,20 and biological
systems.21–23 While most of the works have been focused on
clogging in macroscopic systems, only few studies have
addressed the case of microscopic particles dispersed in fluid
media.16,24,25 At such length scale the presence of thermal
fluctuations and hydrodynamic interactions between the parti-
cles may alter the system dynamics reducing or favoring the
effect of clogging.

In this context, some of us26 investigated recently the collective
dynamics of paramagnetic colloidal particles that were driven
across a disordered landscape of obstacles, namely non magnetic
particles fixed at random positions above a substrate. While this
work focused on the global transport properties in the presence of
several obstacles, it did not include the detailed study of a single
aperture, where the particle flow is not perturbed by the presence
of several openings. Moreover, investigating a single aperture
could provide many insight toward understanding the occurrence
of clogging in microscale matter, and has a direct connection to
the systems mentioned previously. Thus, in this work, we inves-
tigate the emergence of clogging when colloidal particles are
forced to pass through a single, narrow opening. Starting from
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de Lausanne (EPFL), Batochime, Avenue Forel 2, Lausanne, Switzerland

† Electronic supplementary information (ESI) available: Two videoclips, one from
the experiments and the other from numerical simulation illustrating the
dynamics of the driven magnetic colloids. See DOI: 10.1039/d0sm00904k

Received 16th May 2020,
Accepted 3rd July 2020

DOI: 10.1039/d0sm00904k

rsc.li/soft-matter-journal

Soft Matter

PAPER

Pu
bl

is
he

d 
on

 0
6 

Ju
ly

 2
02

0.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f E
di

nb
ur

gh
 o

n 
1/

5/
20

24
 3

:0
6:

13
 P

M
. 

View Article Online
View Journal  | View Issue



6986 | Soft Matter, 2020, 16, 6985--6992 This journal is © The Royal Society of Chemistry 2020

our experimental system, we demonstrate the occurrence of
clogging, characterized by a power-law decay of the statistical
distribution of the passage time of the particles. We comple-
ment our experimental findings with Brownian dynamic simu-
lations which unveil relevant mechanisms that determine the
anomalous flow of the forced colloids. In particular, we analyze
the role of hydrodynamic interactions and the flexibility of the
obstacles at the opening. Finally, we extend the numerical
simulations to consider also the situation of a narrow opening
in a planar wall of non magnetic particles. While such case is
difficult to realize experimentally via direct particle sedimenta-
tion, it is similar to many other situations present in e.g.
microfluidics systems, which are characterized by fixed and
straight PDMS channels.

Methods
Experimental system

We use commercially available paramagnetic colloidal particles
(Dynabeads, M-270, Thermo Fisher Scientific) characterized by
a diameter of d = 2.8 mm and a magnetic volume susceptibility
of w B 0.4. The particles are composed of a polystyrene matrix
with surface carboxylic groups, and are doped with nanoscale
iron oxide grains. The particles are dispersed in highly de-
ionized water (MilliQ, Millipore) and deposited above the surface
of a uniaxial ferrite garnet film (FGF). The FGF was previously
synthesized via dipping liquid phase epithaxy27 and it is char-
acterized by parallel stripes of ferromagnetic domains with
alternating up and down magnetization. In the absence of an
external field, the wavelength of the FGF pattern is l = 2.6 mm,
and the saturation magnetization Ms = 1.3 � 104 A m�1, see
Fig. 1(a). Before the experiments, the FGF is coated with a thin
layer (B1 mm thick) of a photoresist (AZ-1512 Microchem,
Newton, MA) using spin coating and backing procedures.28

The particles are transported against fixed obstacles made of
silica dioxide microspheres (44054-5ML-F, Sigma-Aldrich) with
diameter d = 5 mm (standard deviation st 0.35 mm). Before the
experiments, the silica particles are irreversibly attached above
the FGF surface with the following procedure. First, the silica
particles are diluted in highly deionized water at different
concentrations and deposited above the FGF surface. After
their sedimentation which lasts few minutes, the particles float
above the FGF due to their negative surface charge. Sticking on
the substrate is induced by the addition of a salt, namely a
solution of 10 mM NaCl in water. The NaCl ions of the salt
screen the electrostatic interactions favoring permanent link-
age of the silica particles to the FGF via attractive van der Waals
interactions. After that, the salt solution was removed and was
replaced by a water dispersion containing the paramagnetic
colloids. As a result, the magnetic particles float on a substrate
composed of a quenched disorder of silica obstacles, Fig. 1(b).

Transport mechanism

We start by describing the particle motion in the absence of
obstacles. Once placed above the FGF surface, the particles are

attracted by the magnetic domain walls, and form a two-
dimensional monolayer above the (x̂,ŷ) plane. We induce direc-
ted particle transport by using an external rotating magnetic
field elliptically polarized in a perpendicular plane (x̂,ẑ), see
Fig. 1(a). The applied field, with amplitude H0 and angular
frequency o is given by, H � (Hx cos(ot),0,Hz sin(ot)), where

H0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðHx

2 þHz
2Þ=2p

, and (Hx,Hz) are the two field compo-
nents. Since the field is elliptically polarized, it can be char-
acterized also by the ellipticity b = (Hx

2 � Hz
2)/(Hx

2 + Hz
2), where

b A [�1,1] and b = 0 corresponds to the circular polarization.
For all the experiments we keep fixed the amplitude to H0 =
800 A m�1 and the ellipticity parameter to b = �0.4. The latter
choice ensures that dipolar interactions are negligible along the
propulsion direction29 and the particles can be considered, in
first approximation, as hard-spheres.

The external magnetic field modulates the stray field of the
FGF surface, and it generates a two-dimensional sinusoidal-like
potential which continuously translates along one direction (x̂)
perpendicular to the magnetic stripes. The potential moves at a
constant and frequency tunable speed vp = ol/(2p), and drags
with it the paramagnetic colloids located in its minima. As
shown in Fig. 1(d), depending on the driving frequency one can
identify two dynamic regimes.30 Below a critical frequency oc,
the particles are trapped in the potential minima and move
with these minima (synchronous regime) at a constant average

Fig. 1 (a) Schematic showing the experimental system composed of a
monolayer of paramagnetic colloids (blue) driven against larger silica particles
(orange) and arranged to form one opening of width d. The particles are
located above a ferrite garnet film of wavelength l and are driven toward right
by a rotating magnetic field elliptically polarized in the (x̂,ẑ) plane. (b and c)
Experimental (b) and simulation (c) images showing a portion of the whole
system where the silica particles (larger colloids) form a constriction of width
d. The direction of motion is indicated by a green arrow. See Videos S1 and S2
in the ESI.† (d) Mean particle speed hvxi along the direction of motion versus
angular frequency o in the absence of obstacles. Scattered circles are
experimental data, while continuous magenta line are results from numerical
simulation. The continuous blue line at oc = 68.8 rad s�1 separates the
synchronous (left) and the asynchronous (right) regimes. Dashed lines are fit
following the equations in the text.
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speed hvxi = vp. When o 4 oc, the motion of the particles
desynchronizes with the moving landscape, and the average speed

decreases as hvxi ¼ vpð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðoc=oÞ2

p Þ (asynchronous regime).
As shown in Fig. 1(d), we findoc = 68.8 rad s�1 for the experimental
parameters used here, a value which is in excellent agreement with
the numerical simulations (see later) for an obstacle free system.
Further, in the synchronous regime the particles acquire a transla-
tional speed hvxi A [2,23] mm s�1 which corresponds to a Péclet
number Pe A [20,230]. We estimate the latter by considering
the ratio between the Brownian time tB = d2/(4Deff) required by
the particle to diffuse its own radius (d/2), and the driven time tD =
d/(2hvxi) required tomove its radius due to themagnetic landscape.
Here we use the value of the effective diffusion coefficient Deff =
0.14 mm2 s�1 which was estimated in a previous work.31

Simulation scheme

We complement the experimental results by using Brownian
dynamic simulation with periodic boundary conditions. We
consider a system composed of moving paramagnetic colloids,
of size rp, and silica obstacles, of size ro. All particles are
characterized by their positions, ri with i = 1. . .Np + No. Initially,
we consider obstacles fixed on the substrate, ri = ri,eq, i =
Np,. . .,Np + No, while the magnetic particles evolve following
the overdamped dynamics:

1

m
dri

dt
¼

X
j

F intðrijÞ þ FextðriÞ þ FTðriÞ; (1)

where i = 1,. . .,Np, m is the particle mobility, F int is the pair
interaction between the colloids, F ext the external driving force
and FT accounts for the force exerted by the thermal bath. The
interparticle forces derive from a Yukawa potential, and account
effectively for the colloidal electrostatic short range repulsion and
finite particle size. The force between a particle i of type a, of
radius ra, and a particle j of type b, of radius rb, can be written as:

F intðrijÞ ¼ Uab

lab

XN
iaj

sab
rij

sab
rij

þ sab
lab

e
� rij
lab

� �
� Bab

� �
erij ; (2)

where erij a unit vector along the two considered particles, and
rij = ri � rj. The parameter Uab quantifies the strength, and lab the
characteristic decay length, of the Yukawa potential between the
interaction of a particle of type a and one of type b, sab = (ra + rb)/2
denotes the radius of the interaction between the pair. The
parameter Bab is a constant ensuring that the force is zero at
the cutoff interaction radius rc,

Bab ¼ sab
rc

e
� rc
lab

sab
lab

þ sab
rc

� �
: (3)

We neglect themagnetic dipolar interactions since it was previously
shown29 that these interactions become negligibly small along the
propulsion direction for applied fields with b = �1/3, similar to
our case. The external force results from the magnetically modu-
lated landscape and it is given by29

Fextðx; tÞ ¼ FM u1ðtÞ sin 2px
l

� �
� u2ðtÞ cos 2px

l

� �� �
x̂ (4)

where u1ðb; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p
cosðotÞ, u2ðb; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
1� b

p
cosðotÞ and

FM = 16H0e
�2pz/l/(lMs) is a prefactor that considers the particle

elevation (z) from the substrate. The last term in eqn (1) is a
random force associated to the temperature. Integration of
this term over one time step, Dt, gives a random displacement
Drr characterized by a Gaussian distribution, of magnitude Drr =
mFTi Dt and h(Drr)2i = 4D0Dt, being D0 the particle diffusion
coefficient.

For computational convenience, we make eqn (1) adimen-
sional using the magnitude of the external force FM, the colloid
radius rp, the characteristic speed vc = FMm and the time tD =
d/2mFM scales, which identify the relevant Péclet number, Pe =
vcrp/D0 = mFMs/D0. Accordingly, we can rewrite eqn (1) as:

dri

dt
¼ Uab

labFM

X
jai

cðrijÞ þ Fextð�x; �tÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
4

Pe

tD
Dt

r
x (5)

where %r = r/rp, �o = otD, �Dt = Dt/tp. In turn, �w = �w(%r)ij is the
dimensionless Yukawa force between particles i and j,

cðrijÞ ¼ �sab
�rij

�sab
�rij

þ �sab
�lab

e
� �rij
�lab

� �
� Bab

� �
erij (6)

where �sab = sab/rp, and �lab = lab/rp. Finally, %F
ext(%x,%t) corresponds

to the dimensionless form of the external, driving force, eqn (4).
We integrate eqn (5) using a time step Dt/tD = 1 � 10�4,

rp = 1, ro = 1.78, lp = 1, lop = 1.39, Upp/lppFM = 300, Uop/lopFM = 150
and Pe = 150. Further parameters were extracted by fitting the
results from the experimental data to the one obtained from
numerical simulation of an obstacle free system, see Fig. 1(d).
From this benchmarking, we estimate themobility mC 1/6pZra of
the paramagnetic particles in water as m = 3.79 � 107 N s m�1

and the magnitude of the force of the traveling wave potential as
FM = 0.1 pN. With these values we calculate the characteristic
time of the particle motion as tD = 0.04 s. Having demonstrated
a good agreement between the simulations and the experiments
in the absence of obstacles, we introduce the obstacles to our
simulations. As shown in Fig. 1(c), we map the experimental
situation (Fig. 1(b)) to our simulations by using the same spatial
distribution of the obstacles.

In the numerical simulations, the obstacles are considered
as rigidly attached to the substrate, and N runs only over the
paramagnetic colloids. Careful inspection of the experimental
videos reveals very small oscillations of the silica particles
around their equilibrium position upon collisions. These oscil-
lations may result from a combination between steric inter-
actions of the silica particles with the polymer coated film and
weak van der Waals attractions. Quantifying these interactions
is a difficult task, and we consider them as an effective spring
constant which accounts for the fact that the silica particles are
not pulled away when subjected to forces coming from the
driven colloids. Experimentally, it is difficult to quantify these
oscillations since they are very small, and their amplitude is
smaller than the error bars associated to the tracking. To
account for this effect, we take into account the possibility that
the obstacles are slightly displaced due to the forces exerted
by the moving paramagnetic colloids. In this case we include
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the obstacles as part of the N moving particles, which evolve
according to the equation:

dri

dt
¼

X
jai

Uab

labFMm
cðrijÞ þ krp

mFM
ð�ri � �ri;eqÞ; (7)

with i = Np + 1,. . ., Np + No. The particles are subject to a spring
of strength k when the obstacle is displaced from its equili-
brium position, %ri,eq. The competition between the external
driving frequency and the frequency related with the elastically
displaced particles can lead to different and significant results.

Since the colloids are embedded in a solvent, we have also
generalize the Brownian dynamics of the paramagnetic colloids
to accounts for the impact that hydrodynamic interactions
mediated by the solvent have in the clogging kinetics. Each
particle is dragged by the fluid flow, vHi , generated by the rest of
the colloids due to the forces they are subject to, an effect that
can be captured generalizing eqn (1) to

1

m
dri

dt
¼

X
j

F intðrijÞ þ FextðriÞ þ FTðriÞ þ vHi
m
; (8)

where we take into account the impact that the close proximity
of the wall, and express the induced velocity in the point
particle approximation as:

vHi ¼
XN
jai

GðrijÞF intðrijÞ: (9)

Here G(rij) stands for the Blake-Oseen mobility tensor32 which
considers the effect of the close proximity of the substrate in a
far field approximation. We note that a sample with finite size
could produce a screening of the hydrodynamic interactions
between the particles. However, in our case, the experimental
cell is wide enough that this screening develops over length
scales that are long compared with the distances over which the
particles interact and move through the obstacles.

Discussion
Clogging: experimental results

Introducing obstacles to the substrate completely changes the
behavior of the driven particles as they are now forced to
interact with the silica spheres which induces a deviation of
their trajectories. As shown in Fig. 1(b) and (c), we consider the
case of obstacles which create a narrow gap of width d. We find
that the presence of the opening strongly reduces the average
speed of the monolayer eventually even leading to complete
blockage, hvxi = 0, for d o 3 mm. For larger values of the
distance, 3 mm o d o 4 mm, we find an intermittent flow of the
magnetic colloids which arises from the simultaneous arrival of
the particles at the aperture, and their accumulation in a close
packed state, which is locally jammed.

The appearance of clogging, namely the blockage of the
particle flow, can be characterized by measuring the distribu-
tion P(tp), that quantifies when the time lapse between the
passage of consecutive particles through the aperture is larger
than a given time tp. This distribution is also known as the

complementary cumulative distribution function. It has been
previously shown that in the presence of an intermittent flow
such distribution is expected to display asymptotically an
universal behavior, i.e. a power law decay at high values of tp
(P B tp

�a) as a function of its exponent, a.19,33 This exponent
can be used to distinguish the regime of normal flow, a4 2, i.e.
when the average flow rate is finite, from intermittency and
clogging, a o 2, i.e. when the average time lapse between
consecutive passing elements trough the aperture diverges.
Hence, we can use a = 2 to identify the transition to clogging,
where it cannot be specified whether or not there is flow at a
give time.16 Indeed a clogged state it is not fully blocked, as
some material can be briefly released.

We use video microscopy to precisely track the positions
of the particles and to calculate the corresponding distribu-
tions. Fig. 2 shows P(tp) measured for different values of the
driving frequency o and keeping constant the amplitude of the
applied field. We find two different types of behaviour depend-
ing on o which reflect the presence in the system of the
underlying magnetic domain walls. For small frequencies,
namely o o 6.3 rad s�1, clogging events are rare, and the
distribution P displays an exponential decay. This effect can be
understood by considering the particle trajectories which are
characterized by a sequence of discrete jumps between the
domain walls during each driving period. These jumps emerge
in the system as periodic oscillations of the particles which are
superimposed to the net drift velocity. The presence of such
vibrations significantly reduces the clogging probability and
the eventual formation of particle bridges. Such effect can be
considered as an additional AC signal superimposed to the DC
drift and allows to break the formation of a close packed
monolayer of particles close to the constriction.19 We note that
a similar strategy, namely the use of an additional AC field to
fluidized the system, was recently introduced in numerical

Fig. 2 Experiments: the distribution function P(tp) of time lapses t4 tp for
magnetic particles passing through a single constriction and at different
driving frequencies. The continuous black line indicates the slope a = 2 of
the power-law P B tp

�a which is used to distinguish clogged state (a o 2)
and unclogged ones (a 4 2).
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simulations to maximize flow in a random array of obstacles.23

In contrast, at high frequencies, the particles still move across
the domain walls but their trajectories are continuous and the
discrete jump are smeared out. As a consequence, the vibra-
tions of the domain walls are not influencing the particle
movement and cannot fluidize the system close to the constric-
tion. Thus, we find that P becomes a power law, P B tp

�a and
the system is more prone to display clogging behavior. For
these situations, we determine a common exponent a = 1.8 for
the tails of the high frequency distributions.34 Such value is
slightly higher as compared to pedestrian or granular systems
that display stable arches at the constriction.15,20 The specificity
of the colloidal system, and the role that the hydrodynamic
interactions may have among the relative motion of the colloids
close to the constriction may explain that the observed clogged
stated are more fragile than those observed on systems composed
by larger constituents. Moreover, we find that all curves above o =
6.3 rad s�1 collapse, and clogging becomes independent on the
particle speed. We note that experimental limitations impeded us
to have enough statistical data, and thus to precisely determine
the exponent of the distribution tails. Such limitations result from
the unavoidable sticking of the particles to the FGF film after
relatively long recording periods.

Simulation results: fixed obstacles

Fig. 3(a) and (b) display the results from the numerical simula-
tions for fixed obstacles. In Fig. 3(a) we show how the distribu-
tion function P(tp) changes by varying the distance between the
obstacles forming the constriction, at fixed driving frequency.
As expected, a narrower constriction increases the particle
mean passing time. Similar to the experimental data, we also
observe a periodic decrease of the distributions followed by a
series of characteristic plateaus which result from the external
sinusoidal forcing. Indeed the time between two consecutive
decays is proportional to the period of the applied field, T = 1/f.
These plateaus are more evident in the simulations than in the
experiments (Fig. 2), due to the higher temporal resolution
achieved numerically. In the plateaus, the colloids have a
higher probability to pass through the constriction, since they
are located in a place where the potential is steeper, and thus
feel a maximum positive force along the direction of motion. As
the opening associated to a pair of obstacles decreases, these
plateaus become narrow and the corresponding distributions
smoother. Further, we find that for all the cases considered
here, the system never develops a power law decay. Thus, no
clogged states are present in the synchronous regime, in
contrast to the experimental case where a = 1.8 was observed
for large o but still slightly lower than oc.

As shown in Fig. 3(b), the speed of the paramagnetic
particles, proportional to the driving frequency o in the syn-
chronous regime, strongly influences the distribution of tp. In
fact, increasing o shifts the time lapse distribution towards
shorter times, with a decay that may be characterized by an
exponential law similar to the experimental results in Fig. 2.
Interestingly, this trend reverses after o = 37.7 rad s�1 as the
tails of the distributions flatten and become power law but with

no signature of clogging, a 4 2. Above o = 85.7 rad s�1, as the
particles reach the asynchronous region, the P(tp) develop
power law tails with a B 1.8 signaling clogging. This results
shows that losing synchrony promotes clogging.

Simulation results: harmonic spring and hydrodynamic
interactions

The results obtained by fixing the positions of the obstacles
show the emergence of clogging at high frequencies, however
they did not capture all the effects observed in the experiments
as, for example, the collapse of the distributions at high
frequencies in the synchronous regime. In order to analyze
the origin of such discrepancy, we consider the impact that
moving obstacles and hydrodynamic interactions have on the
system dynamics. To this end, we first introduce a small
flexibility in the obstacle location and show in Fig. 4(a) the
corresponding results. The presence of another vibration fre-
quency resulting from the obstacle mobility can have relevant
effects and contribute directly to clogging. To find the optimal
spring constant k, we have performed different simulations and
compare them directly with the experimental results in order to
optimize the comparison. We find very similar distributions for

Fig. 3 (a and b) Numerical simulation results: (a) Distribution functions
P(tp) of time lapses tp for different values of the constriction width d in the
synchronous regime (o = 37.7 rad s�1). (b) Distribution functions P(tp) of
time lapses tp for different values of driving frequency o, with d = 2.98 mm.
The results are shown with filled symbols for particles driven in the
synchronous regime for o r 71.4 rad s�1, and with empty symbols in
the asynchronous regime.
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a spring constant k = 0.593 mN m�1. Moreover, in agreement
with the experiments we also observe the collapse of the
distributions at high frequencies by keeping fixed k and varying
o, Fig. 4(a). Thus, the presence of slightly mobile obstacles
favors clogging, while using the same constriction width with
no harmonic spring gives a completely unclogged state and a
large exponent a 4 2 in the distribution P(tp). Further, as
shown in Fig. 4(a), we find that there are no visible plateaus as
in Fig. 3. Moreover, smaller spring constants can lead to states
that are more prone to clogging than higher ones. The latter
effect is unexpected, since smaller frequencies could induce
longer period of time when the obstacles are more deformed
and the width of the opening wider, which should favor
unclogging. However, the results obtained in Fig. 4(a) point out
to an interplay between the frequency of the external magnetic
field and the frequency of oscillation of the obstacles which favor
clogging. Thus, the obstacle mobility leads to an interaction with
other constrictions because of particles passing through nearby

openings, see Fig. 1(b), can also indirectly exert additional pres-
sure on the obstacles of the opening of interest, affecting the
passage times of the particles.

Experimentally, the paramagnetic colloids move above the
FGF film generating a net flux between them and close to the
constriction. We use the extended Brownian dynamics model
described in the Method section to analyze the impact that
hydrodynamic interactions (HIs) have in the distribution func-
tions. As shown in Fig. 4(b), we also explore the effect of HIs
by varying the driving frequency from the synchronous (o o
85.7 rad s�1) to the asynchronous regime. The emergence of the
finite plateaus is also observed at low frequency, while raising o
smooths the curves and produces power law tails, see Fig. 4(b).

The direct comparison with the experimental data taken at o =
37.7 rad s�1 is shown in Fig. 5(a) and (b) for two frequencies both
in the synchronous regime. The numerical simulations show that
the introduction both of obstacle mobility and HI smooth signifi-
cantly the plateaus, to the extent that they are barely visible when
HI are introduced with fixed obstacles. Moreover, flexible obsta-
cles induce distribution functions which have dependence with
frequency closer to the one observed experimentally.

Simulation results: planar wall

The geometry analyzed in the previous section with numerical
simulation was designed to match the experimental system,
thus featuring obstacles with the same positions and degrees

Fig. 4 (a) Distribution functions P(tp) of time lapses tp for different values
of the driving frequency o both in the synchronous (filled symbols) and
asynchronous (empty symbols) regimes from numerical simulations. The
simulations were performed by considering mobile obstacles with a spring
constant k = 0.593 mN m�1. The black segment indicates the slope a = 2
of the power law P B t�a. (b) Distribution functions P(tp) of time lapses
tp versus o from numerical simulations with hydrodynamic interactions.
The channel width for all data has been fixed to d = 2.576 mm.

Fig. 5 (a and b) Comparison between the experimental data (open symbols,
frequency o = 37.7 rad s�1) and the numerical simulations (filled symbols) the
latter with driving frequencies: (a) o = 37.7 rad s�1 and (b) o = 50.3 rad s�1. In
both images the black segment denotes the slope a = 1.8 of the power law P(tp).
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of disorder. Such disorder results from the procedure to pre-
pare the obstacles, since the silica particles were left sediment
above the substrate and forced to stick there by addition of
salt. Thus, adapting the simulation to the experimental system
implies a random distribution of the particles and an opening
characterized by a small inclination with respect to the driving
direction, as shown in Fig. 1(c). However, it is also interesting
to analyze the generic features of the probability of elapsed
times on a simplified geometry, when the silica obstacles
form a perfect planar wall with a small opening at the center.
This geometry is depicted in the inset of Fig. 6(a), for a width
d = 2.982 mm, while the main figure shows the variation of P(tp)
as a function of o. At very low frequencies, o o 18.8 rad s�1,
the distributions are exponential and the particles easily flow
trough the aperture. Increasing o we observe the emergence
of the steps as in the previous case, however we find that
clogging may be observed even within the synchronous regime
(o = 65.3 rad s�1) where the power law distributions feature a
very small exponent aB 1.2. The reason is that, in contrast to the
disordered geometry, the planar wall may act as a template for
crystallization (see inset Fig. 6(a)) and create arches and bridges
which easily impeded further motion, producing an intermittent
flow at the opening. In contrast, at low frequency the particle
oscillations due to the moving landscape are able to break these
bridges and to avoid the crystallization process.

Further, the numerical system allows to explore the effect that
an additional opening in the straight wall will have on the global

particle flow. An interesting question is whether adding a second
aperture separated by only one silica obstacle, could favor the
system fluidization and avoid clogging. We effectively report this
effect in Fig. 6(b), where two apertures of widths d = 2.982 mm are
able to avoid the particle crystallization at the opening for all
driving frequencies. The measured distribution functions P(tp) for
both apertures are almost identical, and in both cases (in Fig. 6(b)
we show their average) display a smooth and almost exponential
decay. We note that the effect of two openings may be considered
analogous to placing a single obstacle at the exit of one large
aperture. This situation has been used in the past in other macro-
scopic systems as an efficient means to fluidize a system.35–37

However, in most cases the obstacle was placed close to the
opening, but not exactly at the exit. Another interesting avenue
for future study is to investigate how the distributions function
may change upon variation of the different parameters, such as
the location and size of the central obstacle, or when the two
opening are asymmetric, namely with different width.

Conclusions

We have studied both experimentally and theoretically the
dynamics of paramagnetic colloidal particles driven through a
single aperture above a periodic magnetic substrate. We com-
bine experiments with numerical simulations and analyze the
distribution of displacements of the particles. We find that in
the experiments clogging occurs when the particles are driven
close to the asynchronous regime, while in the simulations they
always occur deep in this regime. Further we unveil the role
played by the obstacle movement due to flexibility and by
hydrodynamic interactions. The comparison between experi-
mental and simulation results on analogous geometries indicate
that HIs play a relevant role in the clogging dynamics of forced
colloids and that obstacle compliance hinders the dependence of
particle motion on the frequency of the driving field.

While the experimental system is based on the use of a
specially prepared ferrite garnet film, we observe a very good
agreement between the experimental data and the results from
numerical simulations by using a very generic model. The latter
neglect dipolar interactions between the particles while consider-
ing an effective short range repulsive interaction potential. Thus
our findingsmay be used to explore clogging in other drivenmany
particle systems two dimensionally confined to a plate, not
limited to magnetic ones. On the other hand, the possibility of
increasing the dipolar interactions between the particles via the
ellipticity of the applied field could be further used as an effective
tool to switch on attractive interactions and induce chaining.

Moreover, our findings invite future explorations of the
system, as considering two, three or several openings in differ-
ent geometric arrangements. Another interesting avenue would
be to explore how the overall dynamics changes for anisotropic
magnetic particles driven through the aperture.38–43 On the
application side, the possibility of transporting paramagnetic
colloidal particles close to a surface, and localize their position
by simply switching off the applied field may be of interest for

Fig. 6 (a and b) Distribution functions P(tp) of time lapses, tp, for different
frequencies of a straight wall of non magnetic colloids with: (a) a single
constriction of width d = 2.982 mm and (b), two small constrictions both
with widths d = 2.982 mm and separated by a single particle. The small
insets on the left of both images show a fraction of the simulation box with
a close packed monolayer of particles. The inset at the top shows channel
clogging, while the inset at the bottom shows the particle flow.
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microfluidics44 and lab-on-a-chip45 systems. In particular,
these particles can be used to pick up and mobilize a chemical
or biological cargo via surface functionalization.46
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We study computationally the dynamics of forced, Brownian particles through a disordered sys-
tem. As the concentration of mobile particles and/or fixed obstacles increase, we characterize the
different regimes of flow and address how clogging develops. We show that clogging is preceded by a
wide region of anomalous transport, characterized by a power law decay of intermittent bursts. We
analyze the velocity distribution of the moving particles and show that this abnormal flow region is
characterized by a coexistence between mobile and arrested particles, and their relative populations
change smoothly as clogging is approached. The comparison of the regimes of anomalous transport
and clogging with the corresponding scenarios of particles pushed through a single bottleneck show
qualitatively the same trends highlighting the generality of the transport regimes leading to clogging.

I. INTRODUCTION

Transport in disordered media can lead to a rich phe-
nomenology, where particles dynamically move freely, get
trapped, and are eventually released [1]. Understand-
ing the foundations and controlling the characteristics
of clogging and its effects is an outstanding challenge
with a large number of practical implications as diverse
as human pedestrian crowds [2–6], sheep herds, [7, 8],
silo discharges [9–11], and bottlenecks in microfluidic de-
vices [12–15]. In microfluidics, much effort has been
taken to understand how clogging can be prevented to
avoid blocking of capillaries and develop efficient biologi-
cal and medical applications in the microscale [16, 17].
Clogging is typically characterised when particles are
forced to pass through a bottleneck consisting of a nar-
row constriction [18]. The role of the geometry, the par-
ticle shape, and the hydrodynamic coupling to the in-
duced flows [19] has started to be analyzed systemati-
cally [20, 21]. Quantitative analysis of clogging in single
bottlenecks can be successfully carried out by measuring
the difference of the passage times between consecutive
particles [22]. Its complementary cumulative distribu-
tion function (CCDF) follows a power law decay, and the
tail gives the information of whether the average time of
passing particles is diverging, depending on the tail ex-
ponent, τ−α; specifically α < 2 corresponds to clogged,
and α > 2 unclogged regimes. This exponent, hence,
predicts the possibility that a bottleneck develops a clog
for an indefinite period of time. A well-known, counter-
intuitive observation in the passage through a constric-
tion, and that can be quantified with this methodology is
the Faster is Slower effect, in which faster entities rush-
ing into a bottleneck results in a more persistent clogged

∗ sergi.granados@ub.edu
† ipagonabarraga@ub.edu

state [23]. Experimental results using this approach to
clogging show that the coupling of the moving particles
to the environment, e.g. through hydrodynamics, may
affect the nature of the clogging transition [24].
Clogging can also take place in a disordered system

consisting of a landscape of pinned obstacles and free
moving particles [25–29]. The characterisation of the fil-
tration properties of granular media [30] constitutes a
relevant problem in clogging, where the goal is to min-
imise the flow of suspensions to filtrate a fluid, or to
selectively target some specific component of the solute
through a disordered medium. In heterogeneous environ-
ments, Péter et al. [31] showed that a completely clogged
disordered landscape is characterised by a critical obsta-
cle density, φc

pin, independent of the density of moving
obstacles, φmov, indicating that the transition to clogging
is controlled by an average obstacles spacing, lc. Further-
more, compared to jamming, clogging is characterized by
a long transient in which particles reorganize in clogged
regions of different size, leading to heterogeneous spatial
morphologies, characterized by large concentration fluc-
tuations.
The transition of the system from regular flow to the

fully clogged regime, where there is strictly no flow, is
characterized by a wide regime where flows are intermit-
tent. This intermediate region is specific of the clog-
ging transition. When clogging happens in local regions
around an obstacle configuration, burst-like dynamics
will also eventually appear and affect the flow before the
whole system is clogged. Even if the average flow mea-
sured in the landscape does not vanish, locally clogged
regions will coexist with free flows around other obsta-
cles. In such intermediate states the flow is locally ill-
defined, since the average time to leave a certain bottle-
neck may diverge. Linking the dynamics of particles trav-
elling across a disordered landscape and local clogging re-
quires specific measurements that quantify whether clogs
exist in a certain landscape before the average velocity
vanishes and the system is fully arrested.
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Understanding clogging in a disordered heterogeneous
medium will benefit from a perspective based in the
adopted methodology for a single bottleneck. In this
paper we focus on the dynamical properties of steady
states of moving particles driven through an heteroge-
neous landscape. Our scope lays in identifying what these
dynamical states consist of, and how to locally identify
clogged regions when these coexist with free flow regions,
bridging two complementary perspectives on the same
phenomenon. For this purpose, we define a temporal
quantity that follows the standard methodology devel-
oped for the determination of clogged states in single
bottlenecks introduced in Ref.[22]. This temporal quan-
tity allows us to determine whether a general landscape
contains local clogs or not. We refer to these states with
local clogs and non-vanishing average velocities in the
landscape as abnormal flow states. We demonstrate that
in such anomalous flows, structural properties of the sys-
tem such as the cluster distribution, or the velocity dis-
tribution of particles in clusters change qualitatively. By
describing these dynamical and structural properties we
provide a framework to understand how local clogs rise
in disordered landscape and eventually lead to total clog-
ging of the system with increasing obstacle density. Sim-
ilarly to fully clogged states, abnormal flow appears at a
rather constant density of obstacles φa

pin, which suggests
the existence of an additional lengthscale that favours lo-
cal clog formation. We focus on steady states of the sys-
tem, where that average velocity and average cluster size
have reached a steady value. This is crucial since clogging
characterisation requires of long simulation runs to accu-
rately capture the tails of power law distributions. This
corresponds to relevant experimental situations, where
clogs persist for arbitrarily long times compared to an
initial transient state. We also demonstrate that power
law exponents measured through single particle charac-
teristic times are correlated to local measures of clogging
as defined in the usual way [22].

We structure the paper as follows: In section II the
simulation procedure is introduced, and the magnitudes
of interest are defined. In section III the flow states are
quantified as a function of the concentrations of moving
and obstacle particles, by calculating the complementary
cumulative distribution function of passing times of mov-
ing particles, building on the procedure introduced to
analyze clogging through a single constriction [22]. This
methodology allows to introduce a general notion of ab-
normal flow, where localised flow of particles coexist with
persistently clogged regions where the flow is not well de-
fined. This new flowing regime allows to build a state di-
agram that distinguishes between normal flow, abnormal
flow, and clogged states, where the average velocity is
zero. In section IV we compare the developed methodol-
ogy with a local measure of clogging and establish a clear
correlation between both approaches. Thus, we confirm
the intuition that the abnormal region is a consequence of
locally constricted regions, and identify the same trends
and clogging exponents for both methodologies. In sec-

tion V, the dynamic and structural features of normal
and anomalous flows are compared. We characterise the
distribution of clusters size and the probability distribu-
tion functions of the velocity of particles belonging to
clusters interacting with obstacles, which show that such
quantities depend strongly on the system density. We
finish with the main conclusions and implications of the
obtained results in section VI.

II. SIMULATION METHODOLOGY

We carry out Brownian dynamics simulations of a 2D
system of area L2 with periodic boundary conditions,
composed by a total number of N = Nmov +Npin disks
of radius σ. Nmov disks move under the action of forces,
while Npin remain pinned at their initial positions. Both
moving and pinned particles interact sterically with a
force that derives from a Yukawa potential [32]

Fint(rij) =
U0

λ

σ

rij

(
σ

rij
+

σ

λ
e

−rij
λ −B

)
r̂ij , (1)

where rij=ri−rj , rij = |ri−rj | and r̂ij = rij/rij , where
i and j refer to both moving and pinned particles. The
parameter λ characterises the decay range of the steric
interaction, while U0 is the interaction strength.

Moving particle i evolves according to an overdamped
dynamics

1

μ

dri
dt

=

N∑
j �=i

Fint(rij) + Fext + FT(ri). (2)

where, μ is the disk mobility and relates the short time
diffusion coefficient and the temperature through the
Boltzmann constant, D0 = μkBT .
The driving force has a constant value and without lose

of generality, is chosen to act on the x-direction so that
Fext = FD x̂, where x̂. The last term in Eq. 2 accounts
for the thermal bath, and its integration over a time step
describes a Gaussian random displacement with second
moment Δr = μFT

i Δt such that < (ΔrT )2 >= 2D0Δt
and zero mean.
The dynamics can be expressed in dimensionless form

scaling distance and time by appropriate reference quan-
tities. We consider the particle radius, σ, as the char-
acteristic distance, and the characteristic time as the
time required for a particle dragged by the driving force
to move its own radius, τD = σ/(μFD). Accordingly,
Eq. (2) reads

dr̄i
dt̄

=
U0

λFD
ψ̄(r̄i/σ, λ/σ)r̂ij + x̂+

√
2τD
Pe

ξ̄, (3)

where bar indicates that the magnitudes have no dimen-
sions. The term ψ̄(r̄i/σ, λ/σ) is the Yukawa force in
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Eq. (1) divided by U0/λ. The term ξ̄ describes a Gaus-
sian stochastic function with < ξ̄ >= 0 and < (ξ̄)2 >= 1.
The Péclet number, Pe = v0σ/D0, quantifies the ratio
between the velocity and the thermal contribution to the
particle motion.

(a)

(b)

FIG. 1. (a) Computed complementary cumulative distribu-
tion function (CCDF) for φ = 0.40. Black lines corresponds to
the power law fit, and the calculated exponent, α is shown for
the two extreme cases considered. The decay tipically starts
fot T > 2, since it is the minimum moving time of a free par-
ticle, according to our definition of an event. Depending on
the fraction of obstacles, one can observe a fast decay region
produced by a majority of moving particles, or a power law
region, where particles often interact with obstacles, which
can lead to clogging events. (b) Characterisation of α as a
function of the immobile particle packing fraction, φpin, for
different total packing fractions, φ.

We are interested in the regime where driving and
inter-particle forces dominate over thermal fluctuations.
Accordingly, we consider U0/λFD = 300, Pe = 100 and
λ/σ = 1. The time step, Δt, is chosen small enough
to avoid particle overlapping, Δt/τD = 1 · 10−3. Both
moving and pinned particles are initialized following a
growing algorithm in which particles and obstacles are
placed randomly in space and then evolved in time to
grow to its size to reach the desired area fraction [31].
The number of moving particles in the simulation is

constant and large enough to provide reliable statistics,
Nmov = 10000. Simulations are performed fixing the
total packing fraction, φ = (Nmov + Npin)πσ

2/L2, and
varying the pinned packing fraction of particles ,φpin =
Npinφσ

2/L2. Hence, the state of the flow will be charac-
terized as a function of φpin and φ.
The simulation is first run until the average velocity

of moving particles becomes constant 〈vx〉 = cte . Af-
ter this initialisation, the tendency of particles to flow is
captured by means of a characteristic time quantity , τ ,
that we explain below. In order to compare with stan-
dard clogging measurements, we will also measure the
average particle velocity, and identify a state as clogged
if it exhibits a zero average velocity in the direction of the
driving force, thus < vx >=

∑
i vi,x � 0. Computation-

ally, we never observe < vx >� 10−5 due to the thermal
fluctuations. Thus, we take this threshold to identify a
fully clogged state.

III. FLOWING STATES

We characterize the state of flow of the system com-
puting the CCDF of disk displacement times. This func-
tion is constructed by quantifying the time, τ , it takes
a disk to displace its own diameter, d = 2σ, in the di-
rection of the driving force. We identify such intervals
through dynamical measurements (DM), where we iden-
tify all events in which any given disk has moved a dis-
tance d through the numerical integration of Eq. (3) [33].
These events allow to determine the dynamic regimes of
the moving disks. For example, free flowing particles
have passing times close to τ ∼ 2τD, while particles that
interact with obstacles will exhibit larger τ . The flow
regimes of the forced suspension are then analyzed using
the CCDF, P (T > τ) that quantifies the fraction of all
events that take a time T larger than a prescribed value
τ . Later we will also characterise such events with static
measurements (SM), a procedure that is equivalent to
the standard local characterisation of clogging through
bottlenecks.
Fig. 1a displays the CCDFs for a given overall area

fraction, φ = 0.4 as a function of the fraction of pinned
disks, φpin. One can identify three different dynamical
regimes. A first region of fast decay near T = 2 is ob-
served for small fraction of obstacles, which corresponds
to particles which do not interact strongly with the ob-
stacles and are essentially driven by the applied force at
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constant velocity. At larger times, a second region gener-
ally appears, characterized by larger displacement times,
which is due to the interaction of the driven particles
with fixed obstacles. This region can be characterized by
a power law decay: Moving particles interact with obsta-
cles, become trapped and may be able to move eventu-
ally. These interactions with constrictions and other free
particles can give rise to clogging events that persist in
time in certain bottlenecks of the system. For increas-
ing obstacle fraction, the decay of the CCDF can start
with this second region, as observed in Fig. 1a. Finally, a
third region appears at largest times, produced by obsta-
cles, in which the power law behaviour is lost. For such
large times, the deviation is produced by particles that
remain blocked most of the simulation run, typically due
to a geometric confinement that hinders the flow, with
no unclogging possibility. The saturation of the CCDF
observed for increasing φpin is due to such blockage of
free particles.

As shown in Fig. 1a, the second region can be adjusted
by a power law, and the corresponding clogging exponent
α can be systematically obtained following the procedure
stated in Ref. [34], as a function of φpin. If α≤2, the av-
erage passing of particles diverges, which means that in
some regions of the landscape a clog can exist for an in-
definite period of time, and will thus result in a local
accumulation of particles. In such cases, the system may
not be fully clogged and its average velocity may not be
zero, but clogs coexists with flowing states of particles.
Thus, in general, in this regime the average flow of parti-
cles can be well defined only locally in some regions of the
landscape; accordingly, we refer to this flowing regime as
abnormal flow.

By calculating the φpin at which the power law di-
verges, α(φa

pin) = 2, we can characterize the fraction of
obstacles at which such abnormal flows are developed.
Fig. 1b), displays the value of α as a function of φpin

for different φ, and we find an important feature of clog-
ging of colloidal suspensions in disordered media: The
fraction of obstacles where normal flow becomes abnor-
mal remains roughly constant φa

pin � 0.09, with a weak
dependence on the overall area fraction φ.

The different dynamical regimes that control the tran-
sition from normal flow to complete clogging for the
driven disks in a system composed by a random dis-
tribution of non-overlapping obstacles can be summa-
rized in the state diagram of Fig. 2 that identifies the
region of normal flow (α > 2, 〈vx〉 > 0)), abnormal flow
(α < 2, 〈vx〉 > 0))), and clogging (α < 2, 〈vx〉 = 0), as a
function of φ and φpin. This diagram is similar to that
shown by Péter et al. [31]: We see that flow vanishes at
a constant critical obstacle density φc

pin. This constant
φc
pin indicates the existence of a characteristic distance

lc between obstacles that impedes particle flows. Intro-
ducing in the diagram the notion of abnormal flow, we
observe an additional anomalous region where the av-
erage velocity is not strictly zero, yet we observe that
the distribution of times required for a particle to move
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FIG. 2. State diagram, which identifies the three regimes
of collective particle displacement of normal flow, abnormal
flow, and clogging. The maximum width of the normal region
is observed for intermediate densities, while it decreases for
small φ, where isolated particles get trapped easily in constric-
tions, or for large φ, where when we approach the jamming
transition.

its own diameter τ is diverging. In these states, clogs
can locally develop for an indefinite period of time, dra-
matically altering the flowing properties of the moving
particles in the landscape. Furthermore, we observe that
similar to φc

pin, the critical abnormal flow density φa
pin

also depends weakly on the obstacle density, suggesting
an additional characteristic distance between obstacles la
that sets the appearance of local clogs in the landscape.
Different steric potentials will affect these characteristic
sizes, lc and la, that sets the diagram width, but will
not affect the observed phenomenology. It is true that
significant changes in the character of the potential, e.g.
its range and attractive nature, can affect the stability
of the clusters and clogs significantly. Nonetheless, these
aspects complement the main message of this piece of
work and may be the subject of subsequent research.

The average height of the of the normal flow region
is around φpin = 0.09, which is a relatively small area
fraction. The normal and abnormal regions are compa-
rable in width, showing that anomalous flow is not a
marginal feature that takes place right before reaching a
completely clogged state. Aditionally, in the diagram, we
find evidence of cooperation, as for increasing density φ,
the normal region becomes thicker: For a constant φpin

we can eliminate local clogs by means of increasing the
fraction of moving particles.

At high densities, φ ≥ 0.65, we expect that increasing
φpin the system exhibits jamming [31]. Some features in-
deed point towards the existence of the jamming transi-
tion in these regions: Both φa

pin and φc
pin slightly decrease

for increasing φ. Even before the jamming transition, a
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FIG. 3. SM and DM comparison for φ = 0.4 (a,b,e) and φ = 0.6 (c,d,f), in the normal region (a,c) and abnormal region
(b,d). Our results show how SM and DM are not independent of each other and correlate in the characteristic algebraic
decaying exponent. (e) and (f) show how both densities exhibit the same tendency: In the normal region, the flow pdfs peaks
at a maximum value at the center, while in the abnormal region the flow pdfs has a maximum value at 0 and decreases with
increasing flow rate.

region of abnormal flow develops before the average ve-
locity decreases to zero 〈vx〉 = 0. Hence, the anomalous
flow regimes are a general, strong feature of disordered
landscapes, that can smoothly lead to fully clogged states
as the fraction of obstacles increase.

In the next section we will establish the connection
between clogging measured as previously described, and
clogging measured in local regions of the landscape,
which play a similar role of a bottleneck.

IV. LOCAL FLOW PROPERTIES

To provide further insight on the implications of the
local spatial organization of abnormal flowing events, we
analyse the flow of particles and compare the clogging
measurements as typically measured locally through bot-
tlenecks [22]. For this purpose, we divide the simulation
box in the y direction in sections of a characteristic width
ls. We choose ls = 2.5σ comparable to lc, which is of
the order of magnitude of particle dimension. We mea-
sure the time interval it takes two consecutive particles to

cross the region defined by ls [22]. We shall refer here to
this procedure as static measurement (SM), as opposed
to the previously DM protocol.
Fig. 3.a-d displays the CCDF obtained using the SM

and DM protocols. The curves show similar trends,
and indicates that SM sistematically overestimates the
events that require larger times, hence underestimating
the value of α. In general, this deviation decreases with
increasing φpin and φ, as can be appreciated in Fig. 4.
The underestimation of α using SM is due to its sensitiv-
ity to flow disturbances due to large passing times pro-
duced by density fluctuations. For φ = 0.6 we observe
that both methods give quantitatively similar exponents.
Thus, we find that SM and DM provide complementary
methods to analyze the emergence of abnormal flow in
suspensions of forced particles in a disordered system. In
other words, locally measuring the flow along the dis-
ordered obstacle at a certain definite locations, is akin
to following the flow of individual particles. However,
the DM method, when characterising the dynamic prop-
erties of a certain disordered medium consisting of an
arbitrary array of constrictions, provides a more robust
characterisation because it is less sensitive to obstacle
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FIG. 4. Static measurements (filled markers with continu-
ous lines) vs dynamic measurements (dashed lines and empty
markers), for different total area fractions. Both methods ex-
hibit qualitatively similar exponents. The SM method tends
to overestimate α compared to DM. This tendency weakens
as φ increases, and all the moving particles connect forming
a large continuous cluster.

density fluctuations.
The robustness of the measured exponent α suggests

that the state diagram, and the presence of an abnor-
mal flow regime initially identified for the flow through
isolated bottlenecks is a generic feature of the clogging
transition. The comparison between DM and SM pro-
vides complementary strategies to analyze the transition
when clogging does not take place through a unique ob-
stacle.
We can also quantify the local particle flow using SM.

To this end, we count the number of particles crossing
a prescribed segment of length ls perpendicular to the
direction of the driving force during a prescribed time
interval Δt. We choose Δt = 20dτD, as a compromise to
analyse the flow during a relevant amount of time min-
imising the impact of dispersion due to individual particle
motion. The flow in each cross section, defined by lc, is
then calculated as ψ = nmov/lcΔt, where nmov is the
number of moving particles across the line defined by lc
in a time Δt. Fig. 3e,f shows that in the normal regime,
the flow peaks around a certain value that depends on
φmov. In the abnormal regime, the flow distribution de-
creases monotonously and has its maximum at φ = 0,
providing a complementary perspective on the proper-
ties of the abnormal flow as opposed to normal flow.
In this section we have explored the clog dynamics in

local regions of the landscape, in a similar way as it is tipi-
cally characterised in single bottlenecks [22]. Our analy-

sis demonstrates that the anomalous dynamics observed
is directly correlated to clog development in localised re-
gions of the system. The picture that emerges is that of
a disordered system with heterogeneous dynamics, where
bottlenecks with diverging distributions of characteristic
passing times, τ , coexist with free flow paths [35]. These
bottlenecks tend to accumulate particles, forming large
dense clogs, and flow will tend to be localised around
these bottleneck zones or regions where fluctuations of
obstacles density have allowed a constant flow . To com-
plete this picture, we now turn to study the distribution
of particle velocities in clusters, and cluster distributions,
in order to map this description to a geometrical and dy-
namical picture of the properties of moving particles in
these anomalous flow regimes.

V. NORMAL AND ABNORMAL DYNAMICS

To gain insight on the particle dynamics that gives rise
to abnormal flow and the related emergent properties, we
analyze the disk cluster distribution and the relation to
the velocity distribution at the steady state. We use a
distance criterion, and consider that all particles with a
separation smaller than σ+ δ belong to the same cluster
[36]. Fig. 3a shows the cluster probability distribution
function (pdf) in the different flowing regimes. The decay
of the pdfs is generically compatible with an algebraic
decay. For small densities, e.g. φ = 0.2, moving from
the normal (dashed line, pink triangles) to the abnormal
(continuous line, pink pentagons) flow regime results in a
slower decay of the pdf, with an effective exponent of the
algebraic tail that increases from ξ < −2 to ξ > −2. This
implies that for small clogging densities, in the anomalous
regime, the average number of clusters diverges and there
is no characteristic cluster size. Instead, for arbitrarily
large systems, and thus increasing N with the same φpin

and φmov, we will find arbitrarily large clusters in the
anomalous regime.
At higher concentrations, e.g. φ = 0.6, in the normal

flow regime (dashed line, silver triangles), in both normal
and abnormal regions ξ > −2, implying that the mean
cluster size is always diverging. The difference remains
in the fact that now, arbitrarily large clusters will ap-
pear too in the normal flow regime, but these clusters
do not induce clogging. This change of trend translates
into qualitative differences in the morphology and flow-
ing characteristics of the system depending on the total
fraction of particles. To further understand how the area
fraction affects the distribution of particles in the sys-
tem, in Fig. 3b we show the average number of particles
in clusters 〈Nc〉 for different φ, as a function of φpin. In-
deed, it shows a strong qualitative dependence of 〈Nc〉 for
the different curves, depending on φ. At small φ, flow-
ing particles remain in small clusters. Keeping φ con-
stant, as φpin increases, particles increase their probabil-
ity to accumulate in small groups near obstacles, which
explains the increase in 〈Nc〉. For larger φ, already at
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small φpin particles display a strong probability to ac-
cumulate near obstacles while still being able to flow.
By increasing φpin starting in the normal regime, obsta-
cles initially divide the flow in disconnected regions of
normal flow, sharply decreasing the average cluster size.
Eventually, when φpin > φa

pin flow is interrupted and
results in clogs, as depicted in Fig. 6a-b,changing the de-
creasing trend, since now particles are not only divided
in disconnected regions but also accumulate in clogs, as
shown in Fig. 5b. Hence, in this case local clogs appear,
and 〈Nc〉 decreases more smoothly, since such local clogs
arise in spatially uncorrelated regions of the system dis-
connecting flow regions, but still favouring accumulation
of particles in bottlenecks. Even if the dependence of
〈Nc〉 with φpin differs qualitatively for large and small φ,
the resulting states are the same: Particles separate in
regions of high density near bottlenecks and regions of
small density between bottlenecks.

To quantify the impact of the dynamic properties of
the clusters on these different scenarios we compute the
velocity pdfs of particles belonging to clusters larger and
smaller than the average cluster size, 〈Nc〉, and for two
different densities. Fig. 6 displays a series of snapshots of
the clustering of disks in the normal, Fig. 6.a, and abnor-
mal, Fig. 6.b and Fig. 6.c, regimes. The plots show that
abnormal flow correlates with the development of large
clusters seeded around regions with a local enhancement
in the concentration of obstacles. As the overall packing
fraction increases, Fig. 6.e, the clusters grow towards a
jammed state.

Fig. 6.d-f displays the velocity pdfs for particles in-
teracting with obstacles and belonging to small and
large clusters. For normal flow, Fig. 6.d, most parti-
cles displace at the velocity corresponding to free flow,
vf = d/2 � 1, driven by the external force. Only a small
fraction of the particles are trapped by an obstacle, dis-
playing a velocity close to zero. This fraction is slightly
larger for the small fraction of disks which belong to large
clusters.

Entering the abnormal flow regime, the velocity pdfs
for particles in small and large clusters show some quali-
tative differences. In the abnormal flow regime, far from
the clogging transition, the velocity distribution of mov-
ing particles shows a characteristic two-peaked bimodal
distribution, as observed in Fig. 6e. Local clogs coexist
with normal flows, as appreciated in Fig. 6.b. Parti-
cles belonging to small clusters exhibit clearly this two-
peaked bimodal distribution, with a finite fraction of par-
ticles displacing in reaction to the applied force, vf , corre-
sponding to localised particle free flow. Particles released
from clogged states contribute to this peak, as they form
trails moving freely until reaching the next clogged re-
gion. The other peak correspond essentially to arrested
particles, with a velocity close to zero. Small clusters
of particles accumulating at clog regions in specific bot-
tlenecks of the system , temporarily or spatially isolated
from flowing regions contribute to this peak . All these
events can be observed in the snapshots of Fig. 6.b. In

(a)

(b)

FIG. 5. (a) Probability distribution function of number
of particles in clusters, in the normal region (dashed lines,
triangles) and abnormal region (continuous lines, pentagons),
for two different densities, 0.2 (pink) and 0.6 (silver). For
φ = 0.2, entering the abnormal region implies an increase of
algebraic exponent ξ, while for φ = 0.6 it implies a decrease of
ξ. This highlights qualitatively different flowing properties for
small and large concentrations. (b) Cluster size as a function
of φpin for different φ. For φ < 0.5, the average number
of clusters increases gradually with increasing φpin, while for
φ > 0.5 it decreases, showing how in this case interrupting
the flow translates into smaller clusters.

large clusters, the largest peak appears at vx ∼ 0, pro-
duced by large regions where clogs persist in time, giv-
ing rise to intermitent flows, but also in coexistence with
paths where particles can flow. Such mixed state high-
lights the key ingredient of abnormal flows in disordered
mediums: Intermittent flows and temporary blockages
arise locally throughout the disordered system as par-
ticles are dynamically trapped and released from local
constrictions.

As shown in Fig. 6.f, at higher φ, as we approach
the clogging transition, a smaller fraction of disks are
contained within small clusters and the bimodal veloc-
ity distribution is barely visible. Increasing φ decreases
the regions of locally small density, as can be seen in
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FIG. 6. (a,d) Shows a state of normal flow with φ = 0.4, φpin = 0.03 (b,e) Shows a state of abnormal flow with φ = 0.4,
φpin = 0.13 (c,f) Shows a state of abnormal flow with φ = 0.6, φpin = 0.13, respectively. Figs (a,b,c) show snapshots of the
simulations, different coloured lines correspond to different particle trajectories, showing where the flow tipically takes place in
the landscape. Figures (d, e, f) show the velocity distribution for clusters with ni particles smaller than the average size 〈Nc〉
(dashed line), clusters larger than 〈Nc〉 (continuous line), and the probability distribution of all the particles (dotted line) .
The velocity is calculated for all particles as vx = d〈r̄x〉/dt̄. For φ < 0.5 the abnormal region exhibits a bimodal distribution,
where big clusters have have the most particles at vx = 0, and small ones the largest velocities peaking at vx = 1. For φ > 0.5,
the doubled peaked distribution disappears, and the total pdfs almost coincide with those belonging to large clusters.

Fig. 6b, favouring that all particles belong to few large
clusters that dominate the system. For such large den-
sities, instead of having a large number of small clus-
ters distributed in uncorrelated bottlenecks, now we find
a small number of big clusters, where the velocities in-
side the same cluster are correlated. The resulting ve-
locity distribution corresponds to the attenuation of the
bimodal two-peak distribution of velocities as seen in
Fig. 6f. Large clusters exhibit a strong peak at vx ∼ 0,
whcih corresponds to particles in clogs. The pdf de-
creases monotonously after the peak, exhibiting a broad
range of intermediate velocities, and a marked depletion
of particles moving at vx � 1. Hence, almost all particles
are slowed down or trapped in a small number of larger
clusters, containing a wide distribution of velocities.

To summarize, the velocity distributions highlight the
nature of the abnormal flow and helps understand how
for a given area fraction increasing φpin local clogs arise
and affect the flow and system morphology. Typically,
for φ < φa

pin disks flow freely, either in big or small clus-

ters. Above φa
pin large clusters peak in the distribution

around vx = 0 due to constrictions and bottlenecks hin-
dering the flow and leading to intermittent flows. Small
φ results in a landscape of uncorrelated clogs and free
particles, characterised by a bimodal distribution of ve-
locities. Increasing φ weakens the bimodal distribution
of velocities. Instead, large, dense clusters contribute to
increase the correlation of clogging events, resulting in a
mixed distribution of velocities that peak at vx ∼ 0

VI. CONCLUSIONS

We have carried out a thorough study on how forced
particles move and give rise to flow in a randomly disor-
dered obstacle landscape. The methodology put forward
has allowed us to identify and quantify a regime of ab-
normal flow, where locally clogged regions persist in time
and intermittent motion emerges, from the normal flow
regime, where generally, the flow is well defined in the
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whole disordered system. We have classified the prop-
erties of these two regimes at small and large densities,
characterized by the development of a bimodal velocity
distribution for small densities, and a large region of co-
existence of particles with mixed velocities in large clus-
ters for large densities. The weak dependence of the crit-
ical anomalous flow regime shows that different area frac-
tions may reach the abnormal regime at different obstacle
densities due to cooperation between flowing particles,
which fluidize the system and hinder clogged states. The
flowing behavior of the forced disks is also altered in the
abnormal regime, where the distribution of flow through
local regions of the landscape is maximum for arrested
clusters and decreases monotonously, in comparison to a
non-zero maximum peak in the normal regime.

We have characterized some of the structural features
related to the anomalous flow regime by analysis the mor-
phologies of particle clusters. We have observed that, in-
dependently to the total density, anomalous flows always
exhibit a diverging average cluster size, which indicates
that there is no characteristic cluster size scale. This
contrasts with the fact that the abnormal flow density of
obstacles,φa

pin, depends weakly on φ, meaning that there
is a characteristic obstacle space, la, which results in clog
formation, favouring large densities in bottlenecks and
small densities in other regions. It is for this reason that
we observe different dynamical and structural features
for small and large local densities: Small densities start
with disconnected flows, and large densities starts with
connected flows, but both of them separate in large and
small density regions in the anomalous regime as φpin in-
creases, translating into an increase of the average cluster
size in the first case and a decrease in the second case.

The study performed has shown that the transition

from normal flow to clogging is complex, and it is con-
trolled by a broad region of abnormal flow where local
clogging events coexist with the underlying flow imposed
by the external driving. The nature and magnitude of
these events strongly correlates with the distribution of
particle clusters that nucleate and develop around local
constrictions. This correlation is not trivial, since clogs
in bottlenecks depend on very specific structural and dy-
namic properties, such as the bottleneck inclination with
respect the force, the number of particles instantaneously
arriving to a specific bottleneck and the size of the bot-
tleneck. However, there is still generic features in the
abnormal flow, such as the constant φa

pin or separation
in large and small density regions. Therefore, the abnor-
mal regime, initially identified in systems that undergo a
clogging transition through a single obstruction, is also
present in a disordered system, characterized by a spatial
distribution of bottlenecks, unifying our understanding of
the transition toward clogging.
The flexible methodology developed here can be ap-

plied to a wide variety of systems. from heterogeneous
mixtures of particles to interacting active matter, to gain
insight of how cooperation can be maximised to avoid
local clogged states or, inversely, achieve locally spatial
flows at some regions of the landscape.
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C. Mart́ın-Gómez, and I. Zuriguel, Flow and clogging of
a sheep herd passing through a bottleneck, Phys. Rev. E
91, 022808 (2015).

[8] I. Zuriguel, J. Olivares, J. M. Pastor, C. Martin-Gomez,
L. M. Ferrer, J. J. Ramos, and A. Garcimartin, Effect of
obstacle position in the flow of sheep through a narrow
door, Phys. Rev. E 94, 032302 (2016).

[9] S. M. Rubio-Largo, A. Janda, D. Maza, I. Zuriguel, and
R. C. Hidalgo, Disentangling the free-fall arch paradox
in silo discharge, Phys. Rev. Lett. 114, 238002 (2015).

[10] T. Borzsonyi, E. Somfai, B. Szabo, S. Wegner, P. Mier,
G. Rose, and R. Stannarius, Packing, alignment and flow
of shape-anisotropic grains in a 3d silo experiment, New.
J. Phys 18, 093017 (2016).

[11] B. V. Guerrero, L. A. Pugnaloni, C. Lozano, I. Zuriguel,
and A. Garcimartin, Slow relaxation dynamics of clogs in



10

a vibrated granular silo, Phys. Rev. E 97, 042904 (2018).
[12] O. Chepizhko and T. Franosch, Ideal circle microswim-

mers in crowded media, Soft Matter 15, 452 (2019).
[13] Z. B. Sendekie and P. Bacchin, Colloidal jamming dy-

namics in microchannel bottlenecks, Langmuir 32, 1478
(2016).

[14] T. Laar, S. Klooster, K. Schroën, and J. Sprakel,
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Active particles driven by chemical reactions
are the subject of intense research to date due
to their rich physics, being intrinsically far from
equilibrium, and their multiple technological ap-
plications. Recent attention in the field is now
shifting towards exploring the fascinating dynam-
ics of mixture of active and passive systems.
Here we realize active colloidal rafts, composed
of a single catalytic particle encircled by several
shells of passive microspheres, and assembled
via light activated chemophoresis. We show that
the cluster propulsion mechanism switches from
diffusiophoretic to diffusioosmotic by increasing
the number of colloidal shells. Using the Lorenz
reciprocal theorem, we demonstrate that in large
clusters self-propulsion emerges by considering
hydrodynamics via the diffusioosmotic response
of the substrate. The dynamics in our active col-
loidal rafts are governed by the interplay between
phoretic and osmotic effects. Thus, our work
highlights their importance in understanding the
rich physics of active catalytic systems.

In the past few years, active colloidal particles
have led to several exciting developments in the field
of non-equilibrium statistical mechanics [1–4] while
being also used as simplified models to reproduce
emerging phenomena in biological self-propelling sys-
tems [5–8]. Since the pioneering works of Ismagilov
et al. [9] and Paxton et al. [10], chemical reactions
have been routinely used to induce propulsion in asym-
metric systems [11] including Janus particles [12–15],
nanorods [16, 17], dimers [18, 19], mixtures [20, 21]
and many others [22–24]. Besides the interest in the
reaction mechanism that leads to net motion, these
particles showed the capabilities to pick up, transport,
and release microscopic cargoes on command [25–
28]. Thus, they may find direct applications in differ-
ent technological fields, including biomedicine [29], tar-
geted drug delivery [30] and microfluidics [31].

In several catalytic systems, self-propulsion is usu-
ally explained in terms of electrophoresis [32] and/or
chemophoresis [33], namely the particle motion in an
electric field/concentration gradient generated by the
chemical activity of the particle [34]. The release or
consumption of chemical elements produces also a

concentration gradient along the surfaces in the vicinity
of the catalytic system. The vast majority of the self-
propelled catalytic systems evolve close to a substrate.
Thus, one can expect the presence of a local osmotic
flow, which may affect the system dynamics through
viscous interactions [35]. Actually, the osmotic flows on
the substrate may even oppose and compete with parti-
cle diffusiophoresis. This competition has already been
used to concentrate passive nanoparticles in a capillary
channel [36]. Because both phenomena have a similar
osmotic origin [37], the contributions of diffusiophoresis
and substrate diffusioosmosis are difficult to disentan-
gle [33]. As a consequence, most of the theoretical and
simulation models in the field do not consider the im-
pact of hydrodynamic interactions associated with sub-
strate diffusioosmosis, and used an "ad hoc", effective
diffusiophoresis to describe the experimental results. In
contrast, a recent theoretical work showed that the dif-
fusioomotic contribution can be used even to guide ac-
tive Janus particles across a chemically patterned sub-
strate [38].

Here, we combine experiments and theory to demon-
strate that the diffusioosmotic flow induced by the cat-
alytic particle due to the near surface is necessary to
describe the motion of active particles driven by chem-
ical reactions. We realize active colloidal rafts com-
posed of several shells of passive spheres around a
single catalytic apolar particle, and investigate the raft
kinetics and dynamics during the illumination process.
These clusters grow up to an area of 120 times the
silica colloids, corresponding to 7 compact shells of
passive spheres. We find that the clusters display
self-propulsion despite being made of symmetric shells
of passive spheres. We thus realize a singular cat-
alytic self-propelled system, characterized by an evolv-
ing shape, with an aspect ratio progressing toward a flat
disk. Numerical simulations based only on a purely dif-
fusiophoretic system, without osmotic flow on the sub-
strate, reproduce the raft kinetics but not the cluster di-
rection of motion and its persistence length for large
clusters. We show that the substrate osmotic flow is an
essential feature that should be considered to explain
the mechanism of motion of these composite clusters.
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FIG. 1. The active colloidal raft. (A) Electron microscopy image of one hematite, scale bar is 500 nm. (B) Scheme showing the assembly
of the colloidal raft under blue light in a water (H2O) hydrogen peroxide (H2O2) mixture. (C) Sequence of two images of a growing raft
with superimposed (red) the trajectory of the central active particle. Time t = 0s corresponds to light application. Scale bar is 5μm. Last
image displays the final cluster size, see Supplementary Movie 1. (D) Sequence of average images showing the area occupied by the cluster
at different light intensities. (E) Cluster area A at steady state versus light intensity I . Black dots are the average values. The error bars are
the confidence interval for P = 0.95. Straight red line is the linear regression with the logarithm of the light intensity, A(I) = A0 ln (I/I0)
with A0 = 37.4 ± 1.9μm2 and I0 = 3.74 ± 0.4mWcm−2. (F) Average raft velocity v̄c versus cluster area A showing the experimental
data (black disk) and a linear regression with γ0 = 0.26 ± 0.02μms−1 and a negative slope γ = (1.48 ± 0.02) · 10−3μm−1s−1. Inset
shows a log-log plot of the area versus time for several rafts, error bars are indicated by the shaded orange region.

RESULTS

Colloidal rafts.
Our colloidal rafts are realized by illuminating with
blue light (wavelength λ = 450 − 490nm) synthesized
hematite ellipsoids with short and long axis equal to
1.3μm and 1.8μm resp., Fig. 1(A). These particles
are dispersed with passive silica spheres (1 μm di-
ameter) in an aqueous solution of hydrogen peroxide
(3.6 % w/v). The pH solution is raised to ∼ 9.2 by
adding Trimethylphenylammonium to negatively charge
the surfaces [39]. The electrostatic repulsion stabilizes
the dispersion and prevents the colloids from sticking to
the substrate. The colloidal dispersion is sediment over
the bottom of a sealed rectangular capillary tube. The
relative density is below 1 active particle for 2000 pas-
sive ones, with a total surface fraction of ∼ 6%. More
details on the experimental protocol are given in the
Materials and Method section.

Once the light is applied, the hematite particle
starts the decomposition of hydrogen peroxide in wa-
ter, following the chemical reaction: 2H2O2(l) →
O2(g)+2H2O(l). As a consequence, such particle be-
comes active and induces a strong phoretic attrac-
tion of the passive spheres, which assemble in the
form of circular clusters as shown in the schematic
in Fig. 1(B). During growth, the raft translates and ro-
tates, and the association of both can result in loop-
ing trajectories, Fig. 1(C) and Supplementary Movie 1.
The self-assembly process can be completely and re-

versibly controlled by the light intensity, as shown in the
sequence of images in, Fig. 1(D) where one large clus-
ter is disassembled by a step-wise reduction of the light
power. At the maximum intensity I = 125mWcm−2,
corresponding to the standard experimental condition,
one hematite accumulates up to 6 − 7 layers of pas-
sive particles, i.e more than 100 hundred colloids, for
one-hour experiment. In contrast, at the minimal light
intensity, which is ∼ 28 times lower, there is only one
layer. In terms of the light intensity, the cluster growth
is characterized via a simple logarithmic relationship,
as shown in Fig. 1(E). Further, we find that the rafts fol-
low a sub-linear growth with a power law behavior up
to t = 2000 s (� 0.6 hours), inset in Fig. 1(F). The ex-
ponent 1/3 is consistent with the Ostwald coarsening
process, as described by the Lifshitz-Slyozov-Wagner
theory [40]. Such exponent was predicted in scalar field
theory of active systems [41] and recently experimen-
tal observed in clustering passive particles by active
agents [42]. The mean cluster velocity, v̄c of the or-
der of few micrometers per minute, linearly decreases
with the cluster area A, reducing almost to zero for the
largest size of A = 175μm2, top inset in Fig. 1(F).

The aggregation process arises from chemophore-
sis, which is induced by the concentration gradient gen-
erated by the hematite particle [43]. However, more
subtle is the emergence of self-propulsion in our sys-
tem as it was not expected. Indeed, it was previ-
ously shown that the decomposition of hydrogen per-
oxide in water induce propulsion in Janus colloids with
anisotropic coating [44, 45]. However our clusters ap-
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FIG. 2. Raft dynamics. (A) Sequence of images showing the attraction of a silica particle towards the hematite once blue light is applied
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pear symmetrically surrounded by shells of passive
spheres, a situation that in principle would preclude
the emergence of directed motion unless some spatial
symmetries in the system are broken.

Numerical simulations.
To understand the kinetics and self-propulsion behav-
ior, we first perform Brownian dynamic simulations us-
ing input parameters obtained from the experimental
pair interaction between the hematite and the silica col-
loids. We assume a purely diffusiophoretic system and
consider a bath of i = 1..N passive particles at po-
sitions Ri (diameter σp, surface mobility μp and diffu-
sion coefficient Dp) with a single active particle. To
model the aspect ratio of the experimental ellipsoids,
the hematite is considered as a dumbbell of two ac-
tive particles, α = 1, 2, at positions rα (diameter σa =
1.3μm, surface mobility μa, and diffusion coefficient Da)
joined by a spring with rest length 0.5 μm, and force of
magnitude Fh along the vector n̂i = (ri − rj)/rij join-
ing the two beads. Accordingly, the motion of the active
and passive colloids read:

ṙα = vα + (Fhn̂α + F c
α)/γa +

√
2Daξα , (1)

Ṙi = Vi + F c
i /γp +

√
2Dpξi . (2)

where γa and γp correspond to the active and pas-
sive friction coefficients, respectively, while F c

i and F c
α

account for steric forces given by a Weeks-Chandler-
Andersen potential, which prevents particles from over-
lapping. The term ξi is a random Gaussian forces noise
that accounts for the thermal bath. Each bead consti-
tuting the dumbbell in the hematite acts as a source
[22, 43, 46] of a chemical field, φ. A second particle
with mobility μp (μa) will experience a slip velocity on its
surface, us = μp(μa)∇‖φ, that leads to a net diffusio-
phoretic velocity Vi (vα), see the Materials and Meth-
ods section for the derivation. Accordingly, the relative
speed of approach Δvr between an active and a pas-

sive particle at a relative distance Δr reads,

Δvr = vα + V = v0

[
μ̄
( σa

Δr

)2

+
1

4

(
σp

σa

)3 ( σa

Δr

)5
]

,

(3)
where μ̄ = μp/μa is the mobility ratio, a detailed deriva-
tion is provided in the Materials and Methods section.

To determine Δvr experimentally, we perform sev-
eral experiments by measuring the approach distance
Δr between an isolated pair of active and passive par-
ticles, Fig. 2(A). We then calculate Δvr and use Eq. 3
to fit the experimental data, and extract a character-
istic diffusiophoretic velocity v0 = 11.6 ± 0.4 μm s−1,
Fig. 2(B). The corresponding heat map of such field is
shown in the inset of Fig. 2(B), and was measured by
keeping fixed the orientation of the hematite with a con-
stant magnetic field.

The simulations explain some of the experimen-
tal features: the growth of the raft size as t1/3, the
decrease of the raft velocity with the cluster area
as shown in Fig. 2(C), and the emergence of self-
propulsion behavior. This aspect is illustrated by
Fig. 2(D), which displays the average translational
mean square displacement MSD(τ) ≡ 〈(r(t) − r(t +
τ))2〉 ∼ τ δ, with τ the lag time and 〈. . . 〉 a time aver-
age. The MSD computed from experimental and sim-
ulation data shows both diffusive (δ = 1) dynamics
at short time scale, followed by a sub-[super] diffusive
(δ < 1 [δ > 1]) dynamics, very close to a ballistic one
(δ = 2). However, the non overlapping MSD curves in
Fig. 2(D) show that the simulations do not recover all
the experimental features of the raft dynamics. We fur-
ther measure the trajectory persistence length lp, i.e.
the characteristic length over which the raft velocity ori-
entation decorrelates. We calculate this quantity from
the cluster trajectories as, 〈cos(θv(d + Δl) − θv(d)〉d ∝
exp(−Δl/lp) being d the distance traveled by the clus-
ter and θv the orientation of the velocity vector. From
the experiment, we measure lp � 20μm which is signif-
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FIG. 3. Raft Asymmetry. (A) Schematic overlayed to a raft image indicating the asymmetry vector b and the angle β between b and the
cluster velocity vc. The location of the hematite has been exaggerated (not on scale). (B) Experimentally measured asymmetry parameter
χ = b/a versus cluster area A, being a the cluster radius. The continuous line is an inverse square root law from which we extract
the prefactor κ = 0.858 ± 0.019μm. Top left inset shows the distribution of angles β between vc and the vector b pointing from the
cluster center to the hematite particle from experiments (filled symbols) and simulations (open circles). In both cases the continuous lines
are wrapped normal distributions. (C) Polar plot showing the experimentally measured angle β (scattered red disks) for different clusters
characterized by different number of shells ns. each shell is made of passive particles encircling the active one. The continuous green line
is a non-linear regression based on wrapped normal distributions.

icantly larger than the one predicted in the simulations,
lp � 2.5μm. As we show below, this discrepancy arises
from the opposite self-propulsion direction observed in
experiments and simulations.

Cluster asymmetry and self propulsion direction.
To better understand the origin of the raft propulsion,
we have analyzed in detail the position of the hematite
source within the cluster. During the growth process
and at the steady state we find that the hematite is not
exactly located in the cluster’ geometric center, but it is
displaced a small distance b from it, Fig. 3(A). Further,
we find that the asymmetry parameter of the cluster,
defined as χ = b/a, decreases with the raft area A, be-
ing a the radius of the cluster. Such dependence can be
well described by a power law, χ = κA−1/2, Fig. 3(B),
which indicates that the variations of b are rather small.
Indeed, from the extracted prefactor κ, and taking into
account that the radius of the cluster is a =

√
A/π we

find that b = κ/
√
π = 0.48 � σp/2, i.e. the shifted dis-

tance between the hematite and the cluster center is
of the order of the radius of the passive particle, con-
sistent with the fact that the cluster is growing layer by
layer.

The analysis of the distribution of angle β between
the cluster velocity vc and the asymmetry vector b gives

further insight on the propulsion direction. As shown
in the top inset of Fig. 3(B), the global distribution is
Gaussian (orange data and line) and centered around
β = 180◦, meaning that the raft propels with the ac-
tive particle at the rear. Numerical simulations show
that the clusters instead tend to propel with the active
particle at the front, as illustrated by the blue line and
corresponding data in the same image, see also Sup-
plementary Movie 2.

The hematite asymmetric location in the cluster con-
trols its persistence length. This feature arises from the
unfixed and evolving boundary that characterizes the
self-propelled cluster of particles. Qualitatively, when a
colloidal raft moves in a crowded environment of pas-
sive particles, they tend to accumulate at the front.
Thus, a cluster moving with the hematite shifted toward
the front has to change regularly its motion direction to
maintain this configuration, as reported in the simula-
tions. Instead, when a cluster moves with the hematite
shifted towards its rear, the colloids accumulate at its
front, preserving the asymmetry and the motion direc-
tion, as observed in the experiments. The two situa-
tions lead respectively to a system with a relatively low
and high persistence length. To confirm this hypothe-
sis, we have implemented a specific simulation by im-
posing that the cluster moves with the hematite at the
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rear. As shown in Supplementary Movie 3, we observe
a much longer persistence length, closer to the experi-
mental results.

If we consider the distribution of the angle β for a
given number of colloidal shells, ns, we find that during
the clustering process, the colloidal raft switches from
a motion with the hematite at the front to the rear. As
shown in Figure 3(C), for the smallest clusters, up to
two shells ns = 2, the probability distribution of the an-
gle β has a peak around 0◦. This observation is consis-
tent with the simulation prediction, and previous exper-
iments on smaller clusters [43]. For larger rafts, down
to ns = 4, the peak shifts to 180◦. Due to the slow
growing process, this orientation dominates the global
dynamics described previously. For the intermediate
sizes, ns = 2 − 4, the two opposed peaks coexist in
the distribution of angle β and show that the inversion
in the direction of motion occurs within this size range.

The discrepancy between the numerical and experi-
mental results arises from the assumption that the sys-
tem is purely diffusiophoretic and neglects hydrody-
namic interactions. The simulations do not consider
the presence of the near wall, and the competition be-
tween diffusiphoresis and diffusioosmosis. In particu-
lar, the change in the direction of motion of the raft can
be interpreted as a switch from a self-propulsion pro-
cess dominated by diffusiophoresis to diffusioosmosis.
For the small clusters at the early stage, diffusiphore-
sis dominates, leading to a motion direction consistent
with the simulation prediction. However, the clustering
process modifies the aspect ratio of the colloidal raft.
The emerging configuration favor the viscous interac-
tion between the raft and the substrate, with two mostly
flat surfaces facing each other at a very short distance.
Thus, due to clustering, the viscous interaction with the
substrate increases, up to the point that the substrate
diffusioosmotic flow overpass the diffusiophoresis and
determine the direction of motion.

Theoretical model.
The competition between diffusiophoresis and diffu-
sioosmosis is the key element to understand the raft
propulsion. Indeed one can consider that arise from an
osmotic effect, using the classical interpretation [47].
More precisely, the local diffusioosmotic flows occur-
ring on mobile surfaces lead to a slip velocity mak-
ing it move along the opposite direction [37]. On the
contrary, an external flow, as the osmotic flow occur-
ring on a nearby substrate, tends to drag the object in
the same direction. Then if both surfaces generate a
local osmotic flow along the same direction, their vis-
cous interactions become opposite. Here we propose
a more quantitative description illustrating the compe-
tition which occurs for the large rafts. To include the
effect of hydrodynamics and the proximity of the wall,
we approximate the colloidal raft by a disk of diame-
ter 2a and the shifted hematite by a "semi-punctual”

0.0 1.0x10-3 2.0x10-3 3.0x10-3
0.0

0.1

0.2

 experiment
 model

v c (
m

 s
-1
)

 / A ( m-2)

y

z

2a

vc

b
2c

J

D

FIG. 4. Mean raft speed. Experimental data of the mean cluster
velocity v̄c versus ratio χ/A being χ = b/a. Scattered circles
are experimental data while the continuous line is a linear fit from
the model, see Eq. 35 in the text. Inset illustrates a schematic of
the model: the cluster is considered as a thin disk of radius a with
an active source of size σa and distance b from the center. J and
D denote respectively the release rate of the source and solvent
diffusion rate.

source, where the concentration field φ is similar to
a punctual source except along the source surface,
where φ is constant. We orient the system such that
the unit vector ez is diametrically opposed to the vector
b linking the cluster centre to the source. The nega-
tive or positive sign of the cluster velocity vc indicates
a disk moving with the source at the front or the rear,
respectively. We assume that the catalyzed product
is released at the rate J , and diffuses in bulk with a
diffusion coefficient Dc. We consider two parallel sur-
faces, the disk (p) and the substrate (S), separated by
h, such as h/a 
 1. To describe the disk dynamics
we introduce two dimensionless numbers: the Péclet
Pec = vca

Dc
, the Damköhler number Da =

μpJ
4πaD2

c
which

relates the reaction rate to the diffusive mass trans-
port rate. Experimentally, Pec � 10−4 
 1 thus so-
lute transport is dominated by diffusion, and the source
motion can be disregarded. Therefore at a distance
r from the source the chemical gradient can be ex-
pressed as ∇φ = −J/(4πDcr

2)er. The concentration
gradient generates a slip osmotic flow uS = μ∇Sφ,
along the relevant surfaces, namely the disk surface
p and the substrate S, such that u|p = vcez + μp∇φ,
and u|S = μS∇φ. The disk motion is force-free, hence
Fv+Fp+FS = 0, where Fv is the damping force due to
the motion of the disk, Fp is the phoretic force associ-
ated with the slip velocity on the disk’s surface, and FS

the osmotic contribution coming from the slip velocity
on the wall. The details of all terms employed and the
extended model are given in the Materials and Methods
section.
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Using the Lorentz reciprocal theorem, we arrive at

Pec � 2Da(1− μS/μp)χ+O(χ2) , (4)

and, accordingly, the velocity of the disk at the first or-
der in χ is given by

vc ∝ (μp − μS)
χ

A
. (5)

Note that if we remove the osmotic flow along the
substrate, the term μS disappears from Eq. 35, and
vc ∝ μp

χ
A . Neglecting or taking into account this flow

leads almost to the same dependencies with χ
A for the

velocity of the disk which is consistent with the experi-
mental observation, Fig. 4. The difference between the
osmotic mobilities μp − μS in Eq.35 marks the com-
petition between diffusiophoresis and substrate diffu-
sioosmosis because it controls the sign of vc, i.e., the
direction of motion of the raft. Since the passive colloid
and the substrate are made of silica, it is reasonable
to assume that μS is comparable to μp , and have the
same sign. Thus, from the model and from the direc-
tion of motion of the large cluster the hematite at the
rear, we deduce that μS/μp > 1. As a consequence,
for the large cluster, diffusiophoresis acts against the
motion, while the osmotic flow on the substrate induces
the cluster propulsion.

Conclusion.
We have investigated the rich dynamics of active col-
loidal rafts composed of a central hematite particle and
several shells of passive colloids. We have shown that
this system displays a clustering phenomenon due to
diffusiophoresis, and collective self-propulsion that re-
sult from the interplay between diffusiophoresis and dif-
fusioosmosis on the nearby substrate. While for small
clusters the first mechanism dominates, hydrodynam-
ics become important and dominate for a number of
shells ns > 3. Indeed, simulations based only on dif-
fusiophoresis describe well the clustering kinetics but
cannot explain the direction of motion and persistence
length for large clusters. Our model solves the dis-
crepancy by considering the cluster asymmetry and the
substrate diffusioosmotic flow. Thus, we have shown
that there is a competition between the diffusiophoresis
and osmosis, and the crucial role of the substrate diffu-
sioosmotic flow on the raft dynamics. In line with these
results, previous works in the field have also shown the
importance of considering the osmotic flow generated
by an active particle close to a wall [13, 48]. The theo-
retical approach, based on the Lorentz reciprocal the-
orem, could be extended to many other catalytic active
systems close to a substrate, considering the proper
boundary conditions. In our experiments, we approxi-
mate the raft to a disk allowing to reach an analytical
expression that captures the underlying physics of this
complex, yet rich hybrid active passive system.

METHODS

Experimental details. The active particles are
hematite prolate ellipsoids synthesized following the
"gel-sol” technique [49]. While maintaining the stirring,
an iron chloride hexahydrate solution (54.00 g in 100 mL
of water, Sigma-Aldrich 31232-M) is gradually added
to a sodium hydroxide solution (19.48 g in 90 mL of
water; Sigma-Aldrich S5881), followed by 5 minutes by
a potassium sulfate solution (0.29 g in 10 mL of water;
Sigma-Aldrich P0772). After being agitated for 5 more
minutes, the mixture is hermetically sealed in a 1L
bottle and left to age at 100 ◦C for 8 days. Afterwards,
the reaction is stopped by completing the recipient
with water and leaving it to cool down in a storage
fridge. The hematite particles are concentrated and
washed through multiple cycles involving centrifuga-
tion and a re-dilution in clean deionized water. The
experimental system consists of a colloidal mix of syn-
thesized hematite with silica sphere (diameter 1μm;
Sigma-Aldrich) dispersed into an aqueous solution of
hydrogen peroxide (3.6% w/v; Fisher BP2633). The
quantity of active particles is much lower than passive
ones, the ratio is below 1 active for 2000 passives.
The solution is made basic (pH ∼ 9.2) by adding
TMAH (Sigma-Aldrich 328251), to see the attraction
phenomena, and treated for 5 minutes with an ultra-
sound bath to break up the hematite chains. Right
after, we introduce by capillarity the colloidal mixture
into a rectangular glass micro-tube (inner dimension
2 × 0.1 mm; CMC Scientific) immediately sealed
with wax at the atmospheric pressure. After a few
minutes of rest, all the colloids are left sediment, and
form a quasi-two-dimensional system. The high pH
ensures dispersion stability and prevents colloids from
sticking to the glass substrate. Contrary to a previous
work [50], no surfactant is added to the solution since
we have observed that SDS lowers the attraction
phenomena. To record the colloid raft behavior, we
use an upright optical microscope (Eclipse Ni; Nikon)
equipped with a charge-coupled device camera (12
up to 50 frame per second; Basler Scout scA640-74f)
and an epifluorescent tower. For the illumination,
the light is provided by a commercial mercury fiber
illumination system (C-HGFI Intensilight; Nikon) filtered
with a band-pass filter (Nikon B-2A filter). The output
after the objective (Nikon MRH01902) is a blue light
(wavelength λ = 450 − 490 nm) with an intensity going
from 4 up to 125 mWcm−2.

Details of the numerical simulation. We start
with the details on how we derive Eq.(3) in the main
text. We consider that the active and passive particles
of diameters σa and σp, respectively, are immersed in a
concentration field φ(r). The concentration field obeys
the Laplace equation Δc(r, θ) = 0, where Neumann
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boundary conditions are to hold Dc∂rc(r, θ)|φ ∝ αr on
each particle’s surface. In the previous expression αr

is the production/consumption rate of the chemical,
and Dc its diffusion coefficient. For passive particles
αr = 0, as they do not consume or produce any
chemical. We assume, for simplicity, that fuel depletion
is negligible.

An active particle, i, located in the origin in the pres-
ence of a second particle, j at a distance dij = |ri − rj |
, with the center-to-center direction parallel to ẑ, cre-
ates a concentration field

ci(r, d, θ) =
αr,iσ

2
i

4Dc

1

r
+ φi,j(r, dij , θ) . (6)

The first term on the right-hand side gives the pro-
duction of chemical, while the second describes the
disturbance of the chemical concentration produced
by the j-th particle and guarantees that the boundary
condition is satisfied on the i-th particle. The distur-
bance term φij can be expanded as a multipolar series
with the axis of symmetry along ẑ.

The first contribution on particle i created by a par-
ticle j, φ

(1)
i,j (r, dij , θ), corresponds to a dipole and de-

pends on the activity αr,j of the j-th particle, and the
distance between the pair,

φ
(1)
i,j (r, d, θ) = −1

2

(σi

2

)3 1

d2ij

αr,jσ
2
j

4Dc

cos θ

r2
(7)

which for an active producing a concentration field in
the presence of a passive corresponds to φ1

a,p = 0. The
second dipolar contribution on particle i appears only
on active particles. The monopolar field generated by
i is reflected on particle j and gives, on i the dipolar
term, φ(2)

i,j . As expected it depends on αr,i as

φ
(2)
i,j (r, d, θ) = −1

4

(σi

2

)3 (σj

2

)3 1

d5ij

αr,i2σ
2
i

4Dc

cos θ

r2
(8)

Note that this last contribution cancels for i = p, lead-
ing to the non-reciprocity of the interactions between
active and passive particles. The gradient of the chem-
ical concentration on the surface of a sphere generates
a tangential diffusiophoretic velocity, u = μd∇‖c(r), of
the fluid at the particle interface.

The particle velocity can be obtained from the diffu-
siophoretic velocity by imposing the momentum con-
servation

V = − 1

πσ2

∫
dΩu(r, θ) = (πσ2)−1μd

∫
dΩ∇‖c(r, θ)

(9)
The integration of ∇‖φ for a multipolar expansion of
the form c(θ, r) =

∑
l BlPl(cos θ)r

−(l+1) on a spherical
shell of diameter σ results in a velocity in ẑ, the sym-
metry axis of the system.

V =
2

3
μd

(
2

σ

)3

B1ẑ (10)

Hence, the diffusiophoretic velocity of the particle de-
pends only on the l = 1 contribution of the multipolar
expansion of the chemical field around the particle cen-
ter.

Introducing Eqs. (7)-(8) into Eq. (10), we recover the
relative velocities (Eq.(3) of the main text), with a char-
acteristic velocity V0 = αrσ

2
a/(12Dc). We have taken

into account that active and passive particles have dif-
ferent diffusophoretic mobilities, μa, μp, and have intro-
duced their ratio, μ̄ = μp/μa.

Thus, the velocity of an active particle induced by the
passive particle due to the diffusiophoresis reads

Vi =
∑
j �=i

V0μ̄

(
σa

dij

)2

r̂ij (11)

while the passive particle velocity induced by an active
particle is

vi =
∑
j �=i

V0

4

(
σp

σa

)3 (
σa

dij

)5

r̂ij (12)

Following the notation in the main text, we consider
N passive particle of diameter σp and mobility μp in the
presence of two active particles forming a dumbbell.
The active particles have diameter σa, mobility μa, and
consider σp a characteristic length and τc = σp/V0μ̄ as
a characteristic time. The equations of motion can be
rewritten in terms of these dimensionless variables as

ṙα =
∑
j

r̂αj
μ̄

(
σ3
pσ

2
a

r5αj

)
+

μa(F
hn̂α + F c

α)

V0μ̄
+

√
2τ

Pea
ξα,

(13)

˙̂
Ri =

∑
j �=i

(
σa

rij

)2

r̂ij +
μp

V0μ̄
F c
i +

√
2τ

Pep
ξi, (14)

where Pea,p = σpV0μ̄/Da,p is the Péclet number, and
subindices a and p distinguish between the active and
passive Péclet, since they have different diffusion co-
efficients. Note also that the subindex α = 1, 2
refers to each bead constituting the dumbbell joined
by the harmonic spring interaction F h = −k|r1 − r2|.
We obtain the characteristic time that allows compar-
ison between simulations and experiments from fit-
ting the experimental velocity to the dependence in
Eq. 14, τc � 0.067 s. The cluster dynamics are dom-
inated by Pea,p and μ̄. Fc and Fα

c follow a standard
Weeks-Chandler-Andersen potential, such that F (α)

c =
24(ε/σ)[2(σ/r)13 − (σ/r)7], being σ = 0.5(σi + σj),
where i, j stands for any combination pair of passive
and active particles. Following the standard WCA force,
we impose a cutoff at the minimum 21/6σ, such that the
force is purely repulsive. We choose k = 50 such that
the active dumbbell remains essentially rigid. μ̄ is cho-
sen high enough so that the relevant contribution to the
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dynamics comes from the active particle, as suggested
by the experiments. We can estimate the order of mag-
nitude of the cluster radius �0, by means of comparing
the diffusion term of Eq. 13 with the diffusiophoretic ve-
locity. From Eq. 11 and 12 we get

�0 ∼
√

V0μ̄

ξ

σa

(2Dp)1/4
(15)

Taking the experimental values, V0μ̄ = 11.6μm/s,
σa � 0.8μm,Dp = 0.29μm2/s leads to r � 6μm, in
agreement with simulations, and a good estimation of
the experimental cluster radius. Thus, the growth rate
of the cluster is compatible with an attraction 1/Δr2.

Supplementary Fig.2(a) shows how the cluster
grows its area compared to an expression of the type
t1/3, similar to the experiments. In Supplementary
Fig. 2(b) the cluster has a diffusive behavior at small
times and moves ballistically at large ones, due to the
non-reciprocal interactions. Supplementary Fig. 2(c)
shows how the velocity decreases as a function
of time. Supplementary Fig. 2(d) shows how the
velocity follows approximately a linear behavior as a
function of χ/A, as suggested by the theoretical results.

Details of the theoretical model.
Phoretic and osmotic force expression with

the Lorentz reciprocal theorem In the context of
phoretic/osmotic system, the main interest of the re-
ciprocal theorem is to directly compute integral quanti-
ties such as the viscous flow force without solving the
Stokes flows occurring in this type of system. The mo-
tion of an object in a concentration gradient is attributed
to the osmotic flow uS along its surface S,

uS = μ∇‖φ, (16)

with φ a chemical concentration and μ the osmotic mo-
bility of the slip flow.

For the most general case, we imagine an object
moving along a substrate at the velocity vcez in a gra-
dient of concentration ∇φ. The concentration gradient
generated a slip osmotic flow Eq. 16 along the object
surface p and the substrate S, such that:

u|p = vc ex + μp∇‖φ, u|S = μS∇‖φ. (17)

The use of the Lorentz reciprocal theorem requires the
introduction of a dual system. The dual system shares
at any moment the same boundaries, but no osmotic
phenomenon occurs, neither on the object surface nor
on the substrate. In those conditions, we simply as-
sume a no slip boundary condition:

û|p = vcez, û|S = 0. (18)

We add a hat “ ˆ ” to the quantities from the dual prob-
lem to distinguish them. According to the Lorentz re-
ciprocal theorem [51], we have∫

p

(n·ε)·û dS+

∫
S

(n·ε)·û dS =

∫
p

(n·ε̂)·u dS+

∫
S

(n·ε̂)·u dS,

(19)
with n the surface normal oriented toward the fluid and
ε the stress tensor, such that ε = −p¯+η(∇u+∇uT ),
with p the pressure and η the fluid viscosity. Know-
ing the boundary condition for the dual system, the left-
hand side simplifies into vc Fv. By injecting the bound-
ary condition (18)(17) in the integrals of the left-hand
side, we obtain an expression for the total viscous force
Fv as a sum of three other forces,

Fv = F̂v + Fp + FS , (20)

F̂v =

∫
p

n · ε̂ dS, (21)

Fp =

∫
p

n · ε̂
vc

· (μp∇‖φ
)
dS ez, (22)

FS =

∫
S

n · ε̂
vc

· (μS∇‖φ
)
dS ez, (23)

being u the flow field, n the surface normal oriented to-
ward the fluid. F̂v is the viscous drag of the dual prob-
lem, aka damping force since F̂v ∝ −vcez, Fp is the
viscous force due to the osmotic flow along the moving
object, aka the phoretic force, and FS is the viscous
force due to the osmotic flow along the wall, aka the
osmotic force.

For a system moving at a constant velocity, the force
balance imposes that the total viscous force is null:
Fv = 0. It leads to the dynamic equation,

0 = F̂v + Fp + FS . (24)

Note for a diffusiophoretic spherical object far from
any wall, the tangent stress is constant along the sur-
face [52] for the dual problem. We deduce the well-
known result [47] that the phoretic velocity is the op-
posite of the average slip velocity (16) over the object
surface vc = −〈up〉p = − 〈

μp∇‖φ
〉
p
.

The raft motion. To model the cluster motion, we
approximate the colloidal raft by a disk and the cen-
tral hematite by an “semi-punctual” source with a ra-
dius size σa/2, i.e the concentration field is the same
as a punctual source except along the source surface,
in this case, the concentration is constant. We assume
that the catalyzed product is released at the total rate
J = αrπσ

2
a, and diffused in bulk at the diffusion rate

Dc. The shift from the disk center is b, while the disk
radius is a with an area A. We orient the system such
that the unit vector ez is diametrically opposed to the
vector b linking the cluster center to the source. Thus,
the disk velocity vcez can be positive or negative, which
indicates respectively a self-propulsion with the source
at the rear or at the front.
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We introduce the Péclet number Pec = vca
Dc

, the
Damköhler number Da =

μpJ
4πaD2

c
, the asymmetry num-

ber χ = b
a and also the dimensionless substrate os-

motic mobility μ̄S = μS

μp
.

Experimentally Pec 
 1, thus we assume that the mo-
tion of the source does not affect the chemical distri-
bution φ, and by extension, the concentration gradient.
For r > σa/2,

φ = c0 +
J

2πDcr
, ∇φ = − J

2πDc

1

r2
er, (25)

with r the distance from the source, and c0 the con-
centration at the infinity. We neglect the terms in O(h2)
due to the short distance h between the source and the
impermeable substrate.

Because of the electrostatic interaction, the cluster is
sliding at a distance h from the substrate, with h small
compared to the cluster size. Two boundary conditions
might be studied for the substrate, either no-slip as we
consider in the wall model, or implementing an osmotic
flow as we consider in the osmotic model. From the
point of view of the Lorentz reciprocal theorem, both
models are very similar to treat, since they share the
same dual problem. The only difference is the osmotic
force FS , which is null for the wall model.

Surface stress in the dual problem. We seek an-
alytical expression for the viscous stress ε̂. The dual
problem is a disk sliding at the distance h over a sub-
strate. Even if the problem has already been solved an-
alytically [53], the complexity of the expressions does
not fit the objective of introducing analytical toy models
with a simple view of the physics in play. We propose
simple approximations for the viscous stress applying
on the different surfaces:

-Disk upper side. We assume that the disk upper
side facing the infinite half-space undergoes the same
stress with or without the wall. Then, the tangential
viscous stress on the disk surface is given by

n.ε̂ = −η
vc
a

C

2π

1√
1− r∗2/a

ez, (26)

with r∗ the distance from the disk center and C = 16/3.
For an oblate the stress reaches its maximum intensity
over the perimeter [51], for a disk it diverges over cir-
cumference r∗ = 1.

-disk lower side and substrate right below the
disk. For the lower disk side and the substrate straight
below, we assume the velocity profile is a solution of
the Stokes flow in the presence of a solid boundary.
Thus, û(x, y, z) = Ay2+By ez, with two boundary con-
ditions: û(x, y = h, z) = vc ez and u(x, y = 0, z) = 0. At
the disk border, we impose that the pressure is equal
to P0, therefore the only valid solution is a pure shear
flow

u(x, y, z) = vc
y

h
ez, n · ε̂ = (n · ez)vc η

h
ez, (27)

with n the normal to the surface considered.
-Remaining substrate. For the remaining surface

of the substrate, we assume that its contribution in the
osmotic force FS is negligible compared to the contri-
bution of the surface right below the disk, considering
that n · ε̂ · ∇‖φ ∝ 1

r4

Forces in the osmotic/phoretic problem. Knowing
the stress over the surface in the dual problem and the
chemical concentration gradient (25), we determine the
forces applying on the disk.

-damping force:

F̂v = −ηvca(C +
π

h̄
)ez, (28)

with h̄ = h/a. The drag formula proposed is computed
from the rough stress estimation described above.
Compared to the right variation, it becomes asymptoti-
cally accurate for h̄ 
 1 [54], when the shear stress on
the bottom side dominates.

-Phoretic force on the upper face:

F up
p =

C

π
DcηDa

∫ θ=π

θ=−π

cos θ

∫ r=â

r=c̄

1

r̄
√
1− r̄∗2

dr̄ dθ ez,

(29)

with â = χ cos θ +

√
1− χ2 sin2 θ, (30)

r̄∗
2

= r̄2
(
1 +

(χ
r̄

)2

− 2
χ

r̄
cos θ

)
, and c̄ =

c

a
.

In the above expression, the surface integral is ex-
pressed in the cylindrical frame of reference centered
on the source. Some quantities need to be rewritten
in this frame, such as the radial position of the disk
perimeter â(θ, χ) and the distance from the disk cen-
ter r̄∗(θ, χ).

-Phoretic force on the lower face and osmotic
force.

F down
p = 2Dcη

Da
h̄

∫ θ=π

θ=−π

cos θ

∫ r=â

r=c̄

1

r̄
dr̄ dθ ez, (31)

FS = −2Dcη
Da μ̄S

h̄

∫ θ=π

θ=−π

cos θ

∫ r=â

r=c̄

1

r̄
dr̄ dθ ez .

(32)

Finally, by using the dynamic equation (24), we ob-
tain an equation involving the dimensionless numbers,

Pec =
2Da

h̄C + π

∫ θ=π

θ=−π

cos θ (33)

∫ r=â

r=c̄

1

r̄

(
h̄C

2π
√
1− r̄∗2

− μ̄S + 1

)
dr̄ dθ. (34)

If we assume h̄ 
 1 and χ 
 1, the contribution of the
upper face becomes negligible. We reach the formula:

Pec � 2Da(1− μ̄S)χ+O(χ2), vc ∝ (μp − μS)
χ

A
.

(35)
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Note that if we remove the osmotic flow along the sub-
strate, we have instead for the wall model

Pec � 2Da χ+O(χ2), vc ∝ μp
χ

A
. (36)
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Capillary imbibition underpins many processes of fundamental and applied relevance in fluid
mechanics. A limitation to the flow is the coupling to the confining solid, which induces friction
forces. Our work proposes a general theoretical framework for the modeling of the transport of
liquids in lubricant impregnated surfaces. We show that for sufficiently small lubricant viscosity,
dissipation entirely occurs in the lubricant layer, resulting in a linear growth of the advancing front.
As a result, an external force gives rise to an exponential front growth. This new capacity to control
multiphase flows sets new experimental challenges that can be determinant for micro and nanofluidic
devices.

Spontaneous imbibition, also known as capillary filling,
occurs when one fluid displaces a second one from a solid
porous medium due to its preferential affinity to wet the
internal surfaces of the solid.

Applications can be found in nanofluidics [1], where
elastocapillary forces support the self-assembly of ar-
rays of carbon nanotubes [2]; biophysics, where capillary
forces are known to influence protein folding [3–5]; and
medical devices, where lateral flows, an example of capil-
lary driven flows, are widely used to detect the presence
of a target substance, and set the basis for antigen de-
tection [6, 7].

Classical imbibition corresponds to a viscous fluid dis-
placing a gas in a uniform porous medium, where the
front position, l(t), follows the “slowing-down” growth
of Washburn’s law, l(t) ∝ tα, with α = 1/2 [? ]. Un-
derstanding and controlling the exponent α, is therefore
of both fundamental and practical interest. Pradas et
al. [8, 9] and Queralt et al. [10] showed that the exponent
can be lowered to α < 1/2 by introducing disorder in the
channel topography. On the other hand, Primkulov et
al. [11] reported a larger exponent α = 1, but lower imbi-
bition speed, by capping the front with a slug of a viscous
oil.

What happens if the solid walls of a porous medium are
replaced by a liquid surface? Experimental realisations
of lubricant impregnated surfaces, like Liquid-Infused
Porous Surfaces (SLIPS) or Lubricant-Impregnated Sur-
faces (LIS) [12–16] have gained much attention in the
recent years. These materials have outstanding proper-
ties for droplet manipulation due to their low friction,
resistance to extreme conditions, and self-healing prop-
erties, as well as their ability to induce drag reduction
in contact with a single liquid phase [17–19]. Here we
address the fundamental question of how spontaneously
invades a porous medium coated with a lubricant.

We show that the lubricant viscosity plays a determi-
nant role to trigger a qualitative change in the dissipation
mechanism where the liquid front advances at a constant
rate, instead of slowing down, as would occur if the flu-

ids were in direct contact with the solid. We also identify
the high sensitivity of the liquid front to external pertur-
bations, which opens an avenue to new modes of liquid
manipulation in the microscale.

To elucidate the front dynamics, we have carried out
2D lattice-Boltzmann (LB) numerical simulations of the
imbibition into a solid channel coated with a liquid lu-
bricant layer. We couple the LB method to a ternary
free-energy model of three immiscible fluids, which we
solve by using the Cahn-Hilliard equation. The ternary
free-energy model [20], allows to independently choose
the surface tensions of the liquids, and thus the Neu-
mann angles at their intersection as well as the wettabil-
ity of the solid. In our simulations, Fig. 1a, two reservoirs
hold liquids of equal density but different viscosities, η1
and η2. The reservoirs are connected by a solid chan-
nel of length L and width H, whose internal surfaces are
coated by a thin film of a third liquid of viscosity ηs (the
lubricant). The lubricant is kept in place by two small
pillars located at the edges of the channel. This geome-
try mimics SLIPS, where the lubricant is locked into the
surface by roughness [21]. Further details on the simula-
tion methodology and choice of parameters are provided
in the supplementary information [22].

As shown in the simulation snapshot of Fig. 1a, an ap-
propriate choice of the surface tensions leads to the spon-
taneous imbibition of liquid 1 into the channel, displac-
ing liquid 2. The displacing and displaced liquids form
an advancing meniscus with a well-defined apparent an-
gle relative to the solid, θ, suggesting a driving capillary
force Fc ∝ γ cos θ, where γ is the surface tension of the
interface between liquids 1 and 2. Despite this similarity,
the meniscus does not touch the solid, but moves on top
of the lubricant layer.

We focus on the familiar case of a viscous liquid dis-
placing a much less viscous fluid, η2/η1 = 10−2, and anal-
yse the motion of the meniscus at different lubricant vis-
cosities, ηs. Fig. 1b shows the corresponding l vs t curves,
where the penetration length is normalised by the length
of the tube, and time is normalised using the filling time
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FIG. 1. Spontaneous imbibition in a lubricant coated channel. (a) Lattice-Boltzmann simulation snapshot. The liquid on the
left, of width H̄1, preferentially wets the surface of a thin lubricant layer of width h̄1, and displaces a resident fluid in a channel
of width H = H̄1+2h1, and length L. A meniscus, of apparent angle θ and position l(t), advances within the channel. (b) Effect
of the viscosity of the lubricant, ηs, on the imbibtion curves at fixed viscosity contrast between the displaced and displacing
liquids, η2/η1 = 1 × 10−2. (c) Velocity profile in the displacing fluid and in the lubricant layer, v(y), for η1/ηs = 5 × 10−1

(squares) and η1/ηs = 5 × 103 (circles). The solid lines shows the theoretical prediction (see text). The velocity is made
dimensionless by the velocity at the center of the channel, v(H/2), while the y coordinate is normalised by the channel width,
H.

predicted by Washburn’s law, T = 3η1L
2/Hγ cos θ [23].

For very large lubricant viscosity, the front advances fol-
lowing the scaling of Washburn’s law, l(t) ∼ t1/2, indicat-
ing that the viscous force, Fv, increases with increasing l.
Decreasing the lubricant viscosity leads to an unexpected
result: The front grows linearly, l(t) ∼ t, thus suggesting
that Fv is independent of l. In addition, the filling time is
significantly shorter than that predicted by Washburn’s
law. We shall show that these effects are not a transient
due to inertia or dynamic-angle effects [23–26]. They cor-
respond to a new long-time regime entirely dominated by
the viscous dissipation in the lubricant film.

Fig. 1c shows profiles of the tangential velocity of the
displacing phase and the lubricant far upstream of the
meniscus. The expected parabolic flow profile of a forced

fluid [27] is approached for large ηs. The velocity in the
lubricant layer becomes vanishingly small, which effec-
tively behaves like a solid. In contrast, for small ηs, the
flow profile resembles a plug flow in the displacing and
displaced phases, while there is strong variation of the
velocity in the lubricant layer, where shear stresses are
sustained.

Building on these observations, we propose a simpli-
fied model of the flow in each fluid phase where we ne-
glect the dynamics close to the meniscus and describe
the flow profile in the four “bulk” flow regions depicted
in Fig. 2a. The tangential velocity profiles in the dis-
placing and displaced phases, v1(y) and v2(y), and in the
adjacent regions of the lubricant layer, vs1(y) and vs2(y)
are obtained from lubrication theory, assuming that the
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FIG. 2. (a) Schematics of the lubricant coated channel.
The rectangular sections represent the bulk of the displac-
ing and displaced liquids, and of the lubricant layer, which
are separated by the meniscus region. (b) Theoretical im-
bibition curves (solid lines) vs simulation results (symbols)
for different values of the parameter λ. For λ → 1, corre-
sponding to small lubricant viscosity, the imbibition curves
approach the asymptotic limit l̂ = t̂ (red dashed line). The
values of Σ with decreasing lubricant viscosity correspond to
0.03, 0.01, 0.2, 0.9, 1.7, 3.2 and 24, respectively.

pressure profiles in each region, namely p1, p2, ps1 and
ps2, only vary along the longitudinal coordinate x. Ac-
cordingly, the flow profiles obey the Stokes equations.
Four out of the eight integration constants are found by
imposing continuity of the velocity and tangential stress
at the interface with the lubricant layer. The remaining
constants are determined by fixing the average velocities

of the fluids and the lubricant, 1
H/2−h

´H/2

h
vidy = u and

1
h

´ h
0
vsidy = us [22].

In general, u and us are independent free parameters;
however, for the imbibition geometry the lubricant layer
responds to the capillary driving force that acts on the

meniscus. Therefore, we expect that if no external forces
in the lubricant are present, the average velocity of the
lubricant obeys us = αu, with 0 ≤ α ≤ 1. This relation-
ship allows us to eliminate the pressure gradient terms
from the Stokes equations, and instead characterize the
flow through u and α. Figure 1c shows the excellent
agreement of the theoretical prediction with the simu-
lation velocity profiles, where us and u are fixed to the
measured liquid flow. The theoretical results show that
a vanishing average lubricant velocity us leads to a neg-
ative derivative of the velocity profile close to the solid,
indicating a recirculating flow in the lubricant layer, as
reported in SLIPS/LIS simulations [18] (see analytical
solution in the supplementary material [22] ).
The model can be used to determine the viscous fric-

tion force (per unit length) exerted by the lubricant layer
on the moving fluids, Fv = 2lτ1 + 2(L − l)τ2, where
τi ≡ ηsdvsi(h)/dy is the shear stress. From the velocity
profiles we obtain [22]

Fv =
4(2− 3α)uηs

h

(
l

1 + 2H̄
3δ1h

+
L− l

1 + 2H̄
3δ2h

)
. (1)

Here, H̄i ≡ H − 2h = H̄ is the width of either liquid
and δi ≡ ηi/ηs, i = 1, 2 is the viscosity ratio between
the displacing/displaced (i = 1/i = 2) liquid and the
lubricant. Letting δih/H̄ → 0, η2/η1 → 0 and setting
α = 0, this expression reduces to the classical result of
the viscous force acting on a single liquid in contact with
a solid channel i.e., Fv = 12η1ul/H. On the contrary,
the limit of small lubricant viscosity is achieved by let-
ting δih/H̄ → ∞, where the friction force reduces to
Fv = 4(2− 3α)ηsuL/h. In this regime the viscous force
is dominated by the lubricant layer, despite being the less
viscous phase, and the force does not depend on the posi-
tion of the front; rather, its magnitude scales with the en-
tire length of the channel, L. Comparing the energy dissi-
pation rate in the bulk of the displacing and displaced liq-

uids Ėb =
´ l
0

´H/2

h
η1|∇v1|2dydx+

´ L
l

´H/2

h
η2|∇v2|2dydx,

to that of the lubricant Ės =
´ l
0

´ h
0
ηs|∇vs1 |2 dydx +

´ L
l

´ h
0
ηs|∇vs2 |2 dydx, for δih/H̄ → ∞, we find Ėb/Ės →

0 [22]. Therefore, in this limit the energy dissipation oc-
curs in the lubricant, and not in the bulk of the displacing
and displaced phases.
The imbibition growth law, l̇(t), is derived from the

force balance, Fc = Fv +Fm, between the capillary (Fc),
viscous (Fv) and contact-line friction (Fm) forces per unit
length. The simulations show that the contact angle set-
tles to a constant value, θ ≈ θe after a short transient.
Accordingly, Fc = 2H̄γ cos θe/H. The unbalanced inter-
facial stress close to the triple line is given by γ cos θ(u).
Since the contact angle is finite, for small velocities, one
can expand this term γ cos θ(u) � γ cos θ(0)+ ku, result-
ing in Fm = ku, where k is a friction coefficient [23].
Independently, it has been reported that such a linear
scaling holds in the limit ηs/η1 → 0 [28].

Using the dimensionless variables l̂ ≡ l/L, t̂ ≡
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tγ cos θH̄/LH[4ηsL(2−3α)/h+k] and û ≡ dl̂/dt̂, we can
integrate the equation of the front motion and obtain

l̂2

2

(λ− 1)

1 + 2H̄
3hδ1

+ l̂

(
1

1 + 2H̄
3hδ1

+ λΣ

)
= λ (1 + Σ) t̂, (2)

where

λ ≡ η1
η2

3δ2h+ 2H̄

3δ1h+ 2H̄
and Σ ≡ kh

4ηsL(2− 3α)
. (3)

The parameter λ contains the relative effect of the vis-
cosities of the three fluids together with the fraction of
the channel occupied by the lubricant, and Σ quantifies
the strength of the friction of the meniscus relative to the
lubricant layer.
As shown in Fig. 2a, Eq. 2 agrees well with the simula-

tions, with the contact-line friction coefficient, k, used as
the only fitting parameter [29]. The classical, diffusive-
like growth regime of Wahsburn’s Law is recovered by
imposing Σ = 0 and letting δih/H̄ → 0. This eliminates
the effect of the meniscus and reduces λ to the familiar
viscosity contrast, i.e., λ → η1/η2. Then, taking λ � 1

gives l̂ →
√
4H̄ηst̂/3hη1.

On the other hand, for δih/H̄ � 1 and λ → 1 equa-

tion (2) yields the linear growth law l̂ → t̂. After recov-
ering dimensions we find

l(t) =
H̄hγ cos θ

H[4ηsL(2− 3α) + kh]
t. (4)

Remarkably, the velocity of the front depends only on
the viscosity and thickness of the lubricant layer and on
the channel length.
The linear growth regime identified in this letter occurs

for δih/H̄ � 1, where energy dissipation occurs primar-
ily in the lubricant layer. For intermediate regimes the
asymptotic growth of the front will conform to Wash-
burn’s law. A cross-over length lc can be estimated by
comparing the magnitudes of quadratic and linear con-
tributions in Eq. 2. We obtain lc ∼ 2L(1 + λΣ[1 +
2H̄/3hδ1])/(λ − 1), which implies lc > L if λ < 3/(1 −
2Σ[1+2H̄/3hδ1]). If the friction associated to the contact
line is negligible compared to the lubricant dissipation
Σ = 0, a crossover length lc > L requires λ < 3. However,
increasing the contact line friction increases the crossover
length, and when Σ > 1/2 Washburn’s law will never be
observed as the simulation results show in Fig. 2b.

Here we have focused on the case of spontaneous im-
bibition. However, a low-viscosity lubricant layer has a
strong impact in the sensitivity of the front to perturba-
tions, and leads to a significant modification of the front
dynamics when the fluids are subject to external forces.
Let us consider a uniform external force acting on the
displacing liquid, Fe = fH̄l, for small ηs. Fig. 3 shows
a speed-up of the front as it advances in the channel, in
sharp contrast to the classical result of forced imbibition,
where the motion of the front is linear. This effect is also

FIG. 3. Forced imbibition dynamics in a lubricant-coated
channel. External forcing leads to an exponential growth of
the position of the advancing front. The strength of the exter-
nal force is quantified the forcing coefficient ψ. The simula-
tion parameters correspond to Σ = 24, λ = 1.2 and δ1 = 5000.
The symbols correspond to simulations, solid lines correspond
to the numerical solution of the differencial equation including
the forcing term, and the dashed grey lines to the approxima-
tion in Eq. 5.

captured by the theoretical model upon adding an exter-
nal force, which leads to the solid curves shown in Fig. 3
after numerical integration. An approximate expression
of the growth law can be obtained in the regime λ → 1
and δ1 → ∞, which gives

l̂ =
eψt̂ − 1

ψ
=

et/ti − 1

ψ
, (5)

where ψ = LHf/2γ cos θ is the forcing coefficient. Equa-
tion (5) predicts an exponential invasion of the channel
in agreement with the simulation results (dashed curved
in Fig. 3), with a characteristic time scale ti = ηsL/Hhf
determined by the competition between viscous forces in
the lubricant layer and the external forcing.
Our work can be used to design experimental setups

that optimize imbibition in SLIPS/LIS channels. For ex-
ample, using liquids with viscosities η1 = 1700 mPas,
η2 = 17 mPas and ηs = 10 mPas [30], and a typical lu-
bricant thickness of 1 μm in a channel of H � 20 μm
would result in λ � 8, thus making the linear regime
reported here accessible in experiments. The analytical
framework, validated with simulations, provides a start-
ing point to characterise further effects that might be
relevant in spontaneous imbibition processes in SLIPS
and LIS, such as the precise role of the dissipation in the
ridge, or the effect of the varying width of the lubricant
in the channel.
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Altogether, the ideas reported in this work will help
rationalise the effect of a lubricant layer in naturally-
occurring situations as well as inspire solutions to techno-
logical challenges. For example, in pitcher plants, which
inspired SLIPS originally [12], the textured surface that
supports the lubricant layer has corrugations which form
semi-open channels, and such structures could sustain the
capillary flows reported in this paper [31]. Binary liquid
capillary bridges, which spontaneously move in confine-
ment and can therefore be used for droplet transport ap-
plications, have been reported to spontaneously leave a
thin film of liquid adhered to a channel wall [32]. In
antifouling applications [28, 33–36], some studies suggest

that bacteria can accumulate in the lubricant layer, limit-
ing its medical applications [37]. Controlling spontaneous
flows could be a key solution to enhance LIS properties
and make it a suitable material for medical applications
[38].
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M. Arundell, E. Corvera Poiré, and A. Hernández-
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DETAILS OF THE SIMULATIONS

The simulations are based in the Lattice-Boltzmann
(LB) method, where the discretised distribution function
fi defined at each node of a regular mesh, and each ve-
locity i of a set of velocities follows

fi(r+ciΔt; t+Δt) = fi(r; t)+
∑
j

Lij(fi(r; t)− feq
i (r; t)) ,

(1)
where ci is the discrete velocity basis and Δt is the
discrete time step. Lij is the collision operator that
provides the way by which the distribution function
evolves towards its equilibrium value. Given a ve-
locity set the discrete distribution function provides
a series of moments that relate to physical quanti-
ties of the model ρ(r; t) =

∑
i fi(r; t), ρuα(r; t) =∑

i fi(r; t)ciα,Παβ(r; t) =
∑

i fi(r; t)ciαciβ . The sum-
mation takes place over the discrete set of velocities that
corresponds to a certain basis, and the number of each
basis depends on the basis election. The number of dis-
crete velocities is called Nvel. In our method we will
generally use three dimensions and 19 discrete velocities,
which is widely known as the D3Q19 set. Further de-
tails on the collision operator and implementation can
be found in the documentation of the implementation we
used, Ludwig, which is an open access code [1]. The three
liquid phases are implemented by means of a ternary free
energy [2]

F =

∫
Ω

κ1

2
C2

1 (1− C1)
2 +

κ2

2
C2

2 (1− C2)
2+

κs

2
C2

3 (1− Cs)
2 +

κ′
1

2
(∇C1)

2 +
κ′
2

2
(∇C2)

2 +
κ′
s

2
(∇Cs)

2,

(2)

where the subindex s refers to the fluid phase we use
as the lubricant.

∗Electronic address: sergi.granados@ub.edu

In our current implementation, the order parameters
representing each phase are evolved following the Cahn-
Hilliard equation

∂tCi = ∂α(Ciuα −M∂αμi) (3)

which involves calculation of the advection of the order
parameter, and the gradient of the chemical potential
for each phase i. We set κi = βκ′

i to impose that all
interfaces have the same width. The solid-liquid surface
tension can be tuned by means of introducing a boundary
condition of the gradient of the order parameters normal
to solid boundaries, through the wetting parameters h1

and h2. With this model, one can tune the equilibrium
contact angles between the different fluids θ1, θ2 and θs,
through κi and α, and each combination of fluids and
solid through the wetting parameters h1 and h2, θ12, θ1s,
θs2. All the details of this calculations relating the con-
tact angles and the free energy parameters can be found
in Ref. [2].
We briefly introduce the set of parameters used for the

simulations. The total length and width of the channel
are L = 500 and H = 70, respectively. We add two
large reservoirs, of displacing (fluid 1, left) and displaced
(fluid 2, right) phases, to allow for the displacing phase
to invade the whole length of the capillary (from left to
right). The upper and lower lubricant layers (fluid s) are
initialised with a uniform width of h = 4 fluid nodes,
and the displacing-displaced interface is set at an initial
front position l(0) = 0.02L. The viscosity contrast is
η2 = η1/100, and we choose a viscosity η1 = 5, which in
our simulations ensures stability in a range of ηs of orders
of magnitude ηs ∈ (0.001, 50). We choose the surface
tension of the lubricant liquid with the other two to lad to
contact angle close to 180 degrees, to minimize the effect
of the curvature of the interface when the three liquids
meet. More specifically, we choose κ1 = 0.002, and κ2 =
κ3 = 0.007, which leads to an equilibrium angles between
fluids of 77.8◦, 141.1◦ and 141.1◦ for fluids 1, s, and 2,
respectively. For stabilising the lubricant layer, we choose
complete wetting of the lubricant respect the displacing
and displaced fluids by means of satisfying the relations
S1s = cos θ1s − γ1s > 1 and Ss2 = cos θs2 − γs2 < −1.
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This is achieved by a set of wetting parameters h1 = 1.75·
10−4 and h1 = 1.75 · 10−3. Furthermore, this wetting
parameters lead to an equilibrium contact angle θ12 =
51◦ that is hydrophilic in order to enhance spontaneous
imbibition of the pore. When the lubricant is introduced,
the interaction of the front between the lubricant and the
solid leads to a measured contact equilibrium angle of
θ = 49◦, which is the angle that sets the pressure drop.

ANALYTICAL SOLUTION

Our theoretical model consists in solving the Stokes
equation

ηi
∂2vi
∂y2

=
dpi
dx

, i = 1, 2, (4)

and

ηs
∂2vsi
∂y2

=
dpsi
dx

, i = 1, 2, (5)

for the displacing and displaced phases, 1 and 2 respec-
tively, and the corresponding lubricant velocity profile.
The boundary conditions, already introduced in the pa-
per, consist on imposing the continuity of the velocity and
tangential stress at the interface with the lubricant layer,
i.e., vi(h) = vsi(h) and ηidvi(h)/dy = ηsdvsi(h)/dy. and
fixing the average velocities of the fluids and the lubri-

cant, 1
H/2−h

∫H/2

h
vidy = u and 1

h

∫ h

0
vsidy = us. With

these boundary conditions, we obtain the velocity profiles

vsi(y) = aiy + ciy
2 for 0 ≤ y ≤ h, (6)

and

vi(y) = bi + di(y −H/2)2 for h ≤ y ≤ H/2. (7)

where the coefficients can be determined analitically

a =
3us

h
+

3(3us − 2u)δ

3hδ + 2H̄

b =
6uδh+ 3H̄(2u− us)

2(3eδ + 2H̄)

c =
9uδh− 3us(6hδ + H̄)

h2(3eδ + 2H̄)

d =
6(2u− 3us)δ

H̄(3hδ) + 2H̄

From Eq. 6, it becomes clear that an average lubri-
cant velocity us = 0 results in recirculation of fluid,
since a = −6uδ/(3hδ + 2H̄) < 0, thus resulting in a

negative derivative of the flow profile at y=0. Even for
small average lubricant velocities, some recirculation is
expected. It can be shown that a becomes zero when
us = uhδ/(3hδ + H̄), taking a positive value. For lower
us, we expect some lubricant going towards the opposite
direction of the front close to the solid.
For calculating the dissipation rate between the lu-

bricant and the bulk fluids, we note that Ėb =∫ l

0

∫H/2

h
η1|∇v1|2 dydx +

∫ L

l

∫H/2

h
η2|∇v2|2 dydx, to that

of the lubricant, Ės =
∫ l

0

∫ h

0
ηs|∇vs1 |2 dydx +∫ L

l

∫ h

0
ηs|∇vs2 |2 dydx.

Using this expressions and the analytical solution leads
to

Ėb

Ės

=
2H̄

3h

(
3hδ1+2H̄
3hδ2+2H̄

)2

+ 1

δ22

(
3hδ1+2H̄
3hδ2+2H̄

)2

+ δ21

. (8)

.
For adimensionalising curves in Fig. 2b, we use the

equilibrium angle θ = 49◦, and fit k to the curve of
smallest lubricant viscosity, which has a value of k = 34
simulation units. Then we use this same value for all
the curves. For each simulation, we measure the average
slip width in the channel and calculate the Σ variable to
obtain the solutions from our model.
The force balance, Fv + Fm = Fc + Fe leads to the

equation of motion

dl̂

dt̂

[
l̂(λ− 1) + 1

1 + 2H̄
3hδ1

+ λΣ

]
=

(
1 + Σ + l̂ψ

)
λ, (9)

where ψ contains the external forcing, as defined in the
paper. If ψ is set to 0, we obtain Eq. 2 of the manuscript.
If ψ is not zero, an analytical solution can be obtained in
the case λ = 1, which corresponds to Eq. 5 in the article.
In Fig. 3, we plot the numerical solution to Eq. 9 here
(solid line), and compare it to the approximate solution
Eq. 5 of the article (dashed lines) to check its validity.

COMPARING SIMULATIONS AND
THEORETICAL RESULTS

Here we report the values of the parameters we used
for reproducing the curves in Fig. 3b). The initial lu-
bricant width corresponds to a width h0 = 4 and relaxes
to an average constant value h, which we measure in the
simulations and always remains close to h0. The steady
lubricant width is tipically a smaller than h0, since some
lubricant is accumulated in the meniscous due to the sur-
face tensions and the resulting forces acting in the Neu-
mann triangle. Since the channel width is H=70, this
results in a H̄ = H − 2h � 62 LB units. In the simula-
tions, the average velocity of the lubricant, characterised
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by α, is negligible compared to that of fluids 1 and 2. For
example, for the largest lubricant viscosity ηs, we mea-
sure the largest α � 0.06. In this case, the influence of
this small flux turns out to be negligible and the curves
fit using α = 0. As the lubricant viscosity decreases, for
ηs < 1, the lubricant flux vanishes α = 0. In the imbi-
bition curves, In Fig. 3b), the values of δ2 correspond,
from large to small lubricant viscosities to 0.1, 0.83, 0.5,
1.7, 2.5, 5 and 50 respectively. With these parameters
we can obtain the values of λ. In our simulations, the
meniscous friction is characterised by a parameter k=34,

which remains constant as ηs is varied, in our simulation
range, for δ2 as small as 0.1. This allows to obtain the
Σ’s reported in the caption of Fig 3.
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Physics Communications 134, 273 (2001)
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Rev. E 93, 033305 (2016).
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We investigate the flow of an electrolyte through a rigid nanochannel decorated with a surface
charge pattern. Employing lattice Boltzmann and dissipative particle dynamics methods, as well
as analytical theory, we show that electro-hydrodynamic coupling leads to two distinct flow pro-
files. The accompanying discontinuous transition between slow, ionic, and fast, Poiseuille regimes is
observed at intermediate ion concentrations, channel widths, and electrostatic coupling strengths.
These findings indicate routes to design nanochannels containing a typical aqueous electrolyte that
exhibits a digital on/off flux response, which could be useful for nanofluidics and ionotronic appli-
cations.

Ion transport through nanochannels often exhibits
non-linear effects such as gating and pressure sensing [1–
3]. These mechanisms are generically present in bio-
logical nanochannels, for example, channels can adapt
their shape in response to mechanical stresses and act
as emergency safety valves to avoid cellular damage [4],
or changes in the fluid flows trigger electrochemical sig-
nals [5]. Much effort has been made to mimic the ca-
pabilities of such biological mechanisms. For example,
conical nanopores with constant surface charge exhibit
gating as a function of the exerted pressure, and have
been extensively characterized, both experimentally and
theoretically [6–12]. Such geometrical asymmetries can
result in rectification [6, 7] and particle separation due to
entropic transport [13]. Both molecular sized pores and
nanochannels can give rise to gating and rectification,
but the precise response and the physical mechanisms at
play may change drastically [8–11, 14–16].
An alternative avenue to obtain non-linear response

is by introducing charge heterogeneities. Theoretical in-
vestigations indicate that a discontinuity in the surface
charge causes a disturbance in the flow profile that can
extend a distance from the surface an order of magnitude
larger than the Debye screening length λD [17]. Indeed,
surface charge patterns in micron-sized channels can re-
sult in intricate electroosmotic flows [18], and complex
flow patterns such as vortex formation that enhance fluid
mixing [19–21]. Hence, surface charge patterns can qual-
itatively alter electrokinetic flows, opening up the possi-
bility to exploit this feature to control ionic transport in
nanochannels.
Here we investigate the flow of an electrolyte through

a nanochannel slit of width w at low Reynolds numbers
(Re 
 1). In the absence of charge, the flow through
a channel with slip length �s attains the parabolic,
Poiseuille velocity profile

vPx (y) =
Gx

2η

(
w2/4− y2 + w�s

)
, (1)

where Gx is the pressure gradient in the x-coordinate,

σ+σ−

pressure gradient 

ions

pressure gradient 

FIG. 1: Schematic of an electrolyte flow through a charge-
patterned nanochannel under a pressure gradient Gx. Chan-
nel width w with a charge pattern of size l of alternating
positive σ+ and negative σ− charge density.

η the dynamic viscosity and the channel walls are po-
sitioned at y = ±w/2. Introduction of surface charge
modifies this flow profile due to electrokinetic coupling
between the hydrodynamic flow and electrostatic interac-
tions. The electrostatic interaction strength is controlled
by the Bjerrum length lB = e20/(4πε0εrkBT ), with e0 the
elementary charge, ε0 and εr the vacuum and relative per-
mittivity, kB the Boltzmann constant and T the absolute
temperature, which yields a typical length lB = 0.71 nm
for an aqueous solution at room temperature. We employ
the simplest charge pattern that preserves the charge
neutrality; an alternating pattern of positive and neg-
ative charged sections with pattern size l and fraction
of the surface f with symmetric surface charge density,
σ+ = −σ− = σ (Fig. 1). The channel contains an elec-
trolyte solution at density ρ and monovalent ion concen-
tration cion. To investigate how the surface charge af-
fects the flow we employ two independent computational
methods that combine hydrodynamics with electrostat-
ics, Lattice Boltzmann (LB) with electrokinetics [22] and
Dissipative-particle dynamics (DPD) [23] with explicit
ions. Analysis is further supported by analytical mean-
field theory.

We initially focus on the parameters corresponding to
channel width w = 5.16 nm, containing an aqueous salt
solution (ρ = 103 kg/m3, η = 10−3 Pa s, T = 293K)
and consider a typical slip length �s for electrolytes on
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surfaces with different degree of polarity is generically
finite and small, �s ≈ 20 nm [24]. The surface charge
pattern length is l = 10w with f = 0.5, which makes
the width of each charged strip comparable to the width
of the channel (Fig. 1). The pattern charge density is
σ ≈ ±0.5e0/nm

2, which is typical of, e.g., silica or iron
oxide surfaces [25].
The Lattice-Boltzmann (LB) method combined with

convection–diffusion solver for ions [22] allows us to an-
alyze the steady-state flow of an electrolyte as a func-
tion of pressure gradient Gx and ion concentration cion
(Fig. 2). To model small ion diffusion with typical dif-
fusion constant D ≈ 10−9m2/s we set D = 10−3ν, with
the kinematic viscosity ν = η/ρ. The slip length is intro-
duced using a fractional bounce-back boundary condition
at the walls [26]. The lattice size is set to Δx = w/16,
which is sufficiently small to avoid finite size effects (see
SI), and the reduced viscosity is set to η∗ = 0.2, which
determines the LB time unit Δt = Δx2η∗/ν.

Surprisingly, we find that at a threshold pressure gra-
dient Gt, the flow velocity exhibits a discontinuous tran-
sition characterized by nearly an order of magnitude
change in the average flow velocity (Fig. 2a). This transi-
tion is associated with a discontinuous change in the ion
distribution measured by the net charge density ρq in the
channel. The slow flow regime shows localized counterion
clouds that reflect the surface charge pattern (Fig. 2b),
whereas the charge density is largely uniform in the fast
flow regime with only a scant signature of the counte-
rion layer (Fig. 2c). This suggest that at Gx < Gt the
counterions are localized in a pattern reflecting the sur-
face charge, which results in a high drag on the fluid and
thus a distinct slow flow regime. Conversely, at Gx > Gt,
the drag becomes sufficiently large to pull the counter-
ion away from the patterned surface charge, leading to
ion mixing and associated reduction in local net charge
density, which in turn substantially reduces the ion drag
and results in a discontinuous transition. For G � Gt,
electrokinetic effects become negligible and the average
flow velocity is determined by the Poiseuille flow,

vP = 〈vPx (y)〉 =
Gxw

2

12η

(
1 +

6�s
w

)
. (2)

The discontinuous transition is only observed at in-
termediate ion concentrations, whereas both higher and
lower salt concentrations result in a non-linear, but con-
tinuous flow dependance on Gx. This peculiar behav-
ior is a consequence of many-body electrokinetic effects.
At low ion concentrations, cion → 0, electrostatic in-
teractions become irrelevant and the flow attains the
Poiseuille profile. In the opposite limit the electrostatic
effects become confined to a narrow boundary layer since

λD ∝ c
−1/2
ion and thus the flow again approximately fol-

lows a Poiseuille profile. Conversely, at intermediate ion
concentrations the electrokinetic effects can qualitatively
change the flow, leading to a discontinuous transition
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FIG. 2: Steady-state flow velocity obtained from LB sim-
ulations. (a) average velocity at different ion concentra-
tions, c∗ion = cionΔx3. The dashed line corresponds to
ideal Poiseuille flow [Eq. (2)]. (b,c) net charge density,
ρ∗q = ρqΔx3/e0, at coexistence conditions for the (b) slow
and (c) fast flow profiles at G = 3.25 · 10−7ρΔx/Δt2 and
G = 3.26 · 10−7ρΔx/Δt2, respectively, and c∗ion = 0.00125.

that separates the fast and slow flow regimes. The same
argument implies the transition only occours at interme-

diate Bjerrum lengths since λD ∝ l
−1/2
B .

Although the LB calculations clearly point to a dis-
continuous transition in the flow, the method does not
include thermal fluctuations and assumes a continuous
charge distribution. To establish whether the observed
transition is affected by thermal fluctuations or unit
charge discretization, we turn to DPD, which is an off-
lattice method that models the solvent as a fluid of soft
particles and allows the introduction of explicit ions.

We use standard DPD parameters corresponding to
an aqueous solution [23, 27] with DPD particle density
ρs = 3/λ2, at λ = 0.645 nm and hydrodynamic cou-
pling γ = 4.5kBTτ/λ

2. We introduce electrolyte ions
as charged spheres with diameter λion = λ (Fig. 3a).
The short-range ion–ion and ion–wall repulsion is mod-
eled using the standard WCA potential with strength
ε = kBT . The same WCA form is used to describe the
smooth channel wall interaction with DPD particles and
ions. To separate thermodynamic and hydrodynamic pa-
rameters, ions and DPD particles have no conservative
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FIG. 3: Steady state flow from DPD simulations. (a)
Nanochannel configuration where cations and anions are
shown as red and blue spheres, respectively while channel
walls are shown in grey with embedded surface charges (at
G = 0.003kBT/λ

4). DPD particles are represented as small
black dots. (b) Average velocity, error bars mark the stan-
dard deviation of the velocity distribution. Inset shows the
velocity distribution at coexistence (G = 0.004512kBT/λ

4).
System size L/λ = [40, 8, 8] and cion = 0.01λ−3.

pair-interaction and interact only through the DPD ther-
mostat [28]. The ion–DPD hydrodynamic coupling is set
to γion = 5γ, which yields the desired diffusion constant
of ions, D ≈ nm2/ns, where the time unit, τ = 0.077 ns,
is determined from reduced viscosity η∗dpd = 0.85 [27] via

η = η∗dpdkBTτλ
−3. The pressure gradient is introduced

as an external body-force on the solvent DPD particles.
The partial-slip boundary condition at the walls is im-
plemented by introducing immobilized particles at the
wall with surface density ρw = ρsλ that interact with
DPD particles only via the thermostat with coupling γw,
which is determined by the desired slip-length �s. Elec-
trostatic interaction are calculated using PPPM Ewald
summation (see SI for details).

Using this DPD model we find that the steady-
state flow in a charge-patterned nanochannel exhibits a
doubly-peaked velocity distribution (Fig. 3b) which im-
plies a discontinuous transition between slow and fast
flow regimes. Moreover, the transition becomes sharper
at higher surface charge densities, which is in quantitative
agreement with LB (Fig. 4). The agreement is remark-
able given that LB does not account for either thermal
fluctuations or discrete charges. This indicates that the
existence and the location of the discontinuous transition
is robust and is not sensitive to the details of the model.

Based on the simulation results, we propose a mean-
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and analytical prediction for the Poiseuille regime (dotted
line, Eq. (2)) and ionic regime at σ = 0.2e0/λ

2 (dashed line,
Eqs. (6) and (7)). Parameters: cion = 0.01λ−3.

field theory that captures the essential features of the
electro-hydrodynamic coupling. The flow velocity is de-
termined by both the drag of ions localized in the channel
and the viscous drag of the walls. Specifically, the viscous
drag force of the two confining walls Fw is determined by
the shear rate at the walls,

Fw = ±2Aη

(
∂vx
∂y

)
y=∓w/2

, (3)

with A the surface area of the wall. The Stokes drag per
ion is fi = −3πηλionvi, where vi is the velocity of the ion
relative to the surrounding fluid and λion is the hydrody-
namic diameter of the ions. At small pressure gradients,
ions are confined to the charged regions (Fig. 3a) thus the
relative velocity is, vi = −vx(y). The total ion drag Fi

on the fluid is obtained by integrating over all counter
ions in the charged channel section. Approximating that
the counter-ion charge density ρq does not vary with x
within each charged section,

Fi = 3πηλionfA

∫ w/2

−w/2

vx(y)
ρq(y)

e0
dy , (4)

where ρq(y)/e0 is the counterion concentration profile.
For λD ≥ w/2 the two screening layers from the op-
posite walls overlap and ρq(y) is approximately uni-
form and determined by the surface charge density for
cion > fσ/(we0) or the overall ion concentration for
cion < fσ/(we0), ρq(y) = min[2σ/w, cione0]. Conversely,
for λD < w/2 and cion > fσ/(we0), the surface charge
pattern is screened (Fig. 2) and the ion contribution be-
comes negligible, Fi ∼ 0.

We can now analytically determine the ratio of drag
forces due to bound counterions and the channel walls.
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shown as dotted lines. The transition at Gt (dashed line) is
determined by Eq. (7).

Assuming the profile remains parabolic,

R =
Fi

Fw
=

πλionw

2
min[σf, wcione0]

(
1 +

6�s
w

)
, (5)

which is independent of the pressure gradient. The aver-
age flow velocity in the channel 〈vx〉 ∝ Gx/(Fw + Fion)
can be written as,

〈vx〉 = vP
1 +R

. (6)

For R 
 1 the ion contribution is negligible and the flow
attains the Poiseuile profile [Eqs. (1) and (2)], whereas
for R > 1 the ion drag dominates and we call this regime
“ionic”.
The transition between the two flow profiles will oc-

cur when the drag force is sufficiently large to pull the
ions away from the charge pattern. This force can
be estimated analytically by approximating the charge
distribution with a point charge Qs per surface patch
depth w (the relevant lengthscale), Qs = σwfl (Fig 1),
and a corresponding point charge Qi for the counteri-
ons in the center of the channel, while neglecting in-
teractions beyond w. The net counterion charge is de-
termined by either the surface charge, or the ion con-
centration if ions cannot fully compensate the surface
charge, Qi = min[Qs, cionw

2le0]. The resulting maximum
restoring force is Fmax = kBT

8QsQilB
3
√
3w2e20

and the transi-

tion between the diffusive and Poiseuille flow regimes oc-
curs at a pressure gradient that can overcome this force,
Gt = 2Fmax/(w

2l), which equals to

Gt =
16kBT lBσflcion min[1, fσ/(cionwe0)]

3
3
2we0

. (7)

This theory is able to semi-quantiatively predict both
the flow velocity 〈vx〉 and the location of the transitionGt

(Fig. 4). Moreover, the theory predicts general regions
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at force density Gx = Ex〈ρq〉. Theory [Eq. (7)] predicts the
transition at Et ≈ 2 · 10−4ρΔx4/(Δt2e0).

of parameter space where different flow regimes are ex-
pected to be observed (Fig. 5). The ionic regime is found
only at intermediate cion and w, while its extent depends
on the surface charge σ and slip length �s. The larger the
slip length, the larger the relative drag of ions [Eq. (5)]
and thus the larger the jump at the transition [Eq. (6)].

For non-neutral charge patterns the fluid attains a net
charge and the electrosmotic flow can be induced by an
external electric field Ex instead of a pressure gradient.
For a pattern consisting of only one polarity we again
observe a discontinuous transition (Fig. 6). The only no-
table difference is a lower limit for the counterion con-
centration 〈ρq〉 = 2fσ/w, at which the transition re-
mains discontinuous even in the absence of extra salt
density cion,ex. The net body force, Gx = Ex〈ρq〉, is de-
termined by the net charge density 〈ρq〉 and the location
of the transition, Et = Gt/〈ρq〉, is semi-quantitatively
determined by the theory [Eq. (7)]. Thus, we expect the
flow-regime-diagrams (Fig. 5) are qualitatively applicable
to flows driven by electric fields.

The sharp flow transition is reminiscent of the ionic
Coulomb blockade effect that occurs at the level of indi-
vidual ions or electrons at small channel widths w � lB
and leads to sharp changes in the ionic current depend-
ing on the surface charge density. However, Coulomb
blockade is limited to strong electrostatic coupling and
does not predict a discontinuous transition as a function
of electrostatic field [29]. Therefore, we conclude that
the observed phenomenon (Fig. 6) is distinct from the
Coulomb blockade effect.

In summary, we have investigated the flow of an elec-
trolyte solution through a rigid nanochannel decorated
with a surface charge pattern and demonstrated the ca-
pability of effective gating for overall electroneutral chan-
nels. Simulation results and analytical theory predict two
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distinct flow regimes, a slow ion-drag dominated flow,
and a faster Poiseuille flow, separated by a discontinuous
transition. This transition occurs only at intermediate
ion concentrations, channel widths, and electrostatic cou-
pling strengths and appears to be qualitatively different
both from the Coulomb blockade effect [29] in nanochan-
nels and the continuous laminar–turbulent transition in
pipe flow [30].

While mechanosensitive nanochannels are common in
biology, their non-linear response is typically coupled to
structural changes in the channel such as protein con-
formational changes [31]. Our findings imply that such
structural changes are not necessary to obtain two dis-
tinct (on/off) flow profiles. Moreover, the principles
that drive the discontinuous flow transition open venues
for the design of nanochannel devices, an alternative
to those based on conical pores [9, 12] and angstrom-
scale slits [32], that could also result in a memristive re-
sponse. Hence, the possibility to control ionic transport
through charge-patterned nanochannels make them po-
tential components in iontronics and the design of brain-
inspired neuronal circuits. [12].
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LATTICE BOLTZMANN

The lattice Boltzmann calculations are performed using the open-source package Ludwig [1]. The fluid contains
monovalent cations and anions at initial concentration c+ = c− = c . Ions are initially uniformly distributed with
net zero charge density at every position. Initial fluid velocity is zero. With this initial configuration, the LB
simulations run for Nt = 10000000 time steps with step Δt = η∗(Δx)2/ν. Mapping to an aqueous solution with
dynamic viscosity μ = 10−3 Pa · s, kinematic viscosity ν = μ/ρ, density ρ = 103kg/m3, at lattice size Δx = λ/2,
the time step is Δt ≈ 2.1 · 10−14 s. The diffusion constant of ions is set to D = 10−3ν, which models small ions
in an aqueous solution with typical diffusion constant D ≈ nm2/ns. The reduced diffusion constants of ions is
thus set to D∗ = Dη∗/ν = 0.0002. The temperature is T = 293K, with a unit of temperature in LB units is
T0 = ρ0(Δx)5(Δt)−2/kB, the reduced temperature is set to T ∗ = T/T0 = kBT (η

∗)2/(ν2ρ0Δx). For the parameters
used in (η∗)2 and Δx = λ/2 we find T ∗ = 0.0005. The slip length Ls is introduced using a fractional bounce-back
boundary condition at the walls [2],

�s/Δx = 3η∗
p

1− p
(S1)

We use p = 0.99 at Δx = w/16 resulting in �s = 59.4Δx. Since we set w = 5.16 nm, this corresponds to �s = 19.2 nm.

Lattice-Boltzmann reduces to the Navier-Stokes in the limit of a small lattice size. Finite-size scaling shows that
reducing the lattice size beyond Δx = w/16 has no noticeable effect on the results, see Fig. S1.
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FIG. S1. Finite-size effects at the transition in the flow. Parameters correspond to the plot in Fig 1 in the main text: w = 8λ,
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DPD

Dissipative Particle Dynamics simulations are performed in a slit geometry using standard parameters corresponding
to an aqueous solution [rc = 0.645 nm, A = 25kBT , ρs = 3/r3c , γ = 4.5] [3, 4]. Free ions are modeled as charged spheres
with diameter λion = 0.645 nm. The short-range ion-ion repulsion is modeled using WCA potential with ε = kBT .
The same WCA interaction is used between ions and wall particles. Ions and DPD particles have no pair-interactions.
Instead, ions and DPD particles inly interact through the dpd thermostat with coupling γion = 5γ. This ensures
that the presence of DPD particles does not affect equilibrium properties of ion distributions in the channel and only
affects hydrodynamics. Electrostatic interaction are calculated using PPPM Ewald summation with real-space cutoff
rewald = 4rc and relative force accuracy of 10−3. Slab correction is with ration 3 is used for periodic boundaries in
the y-axis. The external force acts only on the solvent (dpd particles) and does not directly affect ions. This is to
ensure that local ion concentration would not alter the local external force density.
This implementation of walls enables simulations at variable slip length. Changing the damping parameter γw

between the immobile particles and the dpd particles allows tuning of the slip length at the wall (Fig. S2). The slip
length is defined as

�s = Δv

[(
∂v

∂y

)
y=−w/2

]−1

, (S2)

where Δv is the velocity at the wall. Since the numerical accuracy of an average is much higher that that of a
derivative, the slip length calculation is etermined from the average velocity 〈vx〉 rather than derivatives. Since the
velocity profile follows the Poiseuille profile, Fig. S2, the slip length can be calculated as

�s =

( 〈vx〉
vP,0

− 1

)
w

6
, (S3)

where vP,0 is the average velocity at no slip, vP,0 = Gw2

12η . Thus, we measure 〈vx〉 as a function of γw and determine
the slip length �s. We find �s ≈ 30λ at γw = 0.005γ which is used for comparison with LB data.
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FIG. S2. Velocity flow profile from DPD simulations at different wall–DPD damping γw (symbols) and comparison to Poiseuille
profiles (dashed lines). G = 0.003ρΔx/Δt2.
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CHAPTER 5

Conclusions and perspectives

We conclude this work with a general view of the publications presented in this
thesis and the methodologies employed to model soft matter at the nanoscale.
We have modelled particles and fluids in different fashions, some of which share
a common background. Between the simulation models presented in the two
main parts of the thesis, there is a huge methodological gap. This gap is a
consequence of the rich and complex phenomena that can be found in soft
matter. We have studied systems as diverse as paramagnetic solid particles and
electrolyte solutions in confined media. The key for employing this different
techniques lays in identifying which are the aspects of the problems that needs
to be understood. For example, one can imagine that the full solution to the
velocity field in Pub. 4.2 is very intrincated, specially when particles move in
the asynchronous region. Solving the full numerical Navier-Stokes equation
coupled to the colloids would only result in a very complicated solution, where
the different contributions to the resynchronisation would be very difficult
to disentangle. Using the Blake tensor coupled to Brownian Dynamics, we
proved that far-field hydronamics lead to resynchronisation. At the same time,
this allowed us to rationalise that thermal fluctuations and lubrication forces
were not relevant for the problem. Thinking in terms of simple models can
provide simple explanations, resulting in a solid framework for building an
analytical theory that explains the desired response. This way of thinking can
be extrapolated to all the publications from part one.

As we skecthed in the introduction, part two has rather the opposite way
of thinking. The research performed in these second part was entirely novel,
in the sense that experiments were lacking, and no theoretical results existed
prior to the publications. This second part was more focused on the direction
of exploring the experimental viability of certain designs, based in principles
contained in the simulations. In this case, simple models can be tricky, since
there is a risk that effects not considered in the simple model might be important.
In Pub. 4.6 we used a Lattice-Boltzmann approach, since we knew that this
method reproduces accurately the dynamics of spontaneous imbibition and also
the dynamics of ternary fluid with tunable contact angles. The simulations
were used to set the viability of a experimental set-ups, to prove the dynamical
properties of a front advancing on a lubricant.

In Pub. 4.7, we explored the properties of electrolyte solutions in charge-
patterned confined channels. The lengthscale considered for this system
was the nanoscale, meaning that thermal fluctuations can be determinant.

145



Furthermore, at the nanoscale the sizes of ions can be commensurate to the
width of the channel, which might result in strong deviations from the Nernst-
Planck equation, which considers ions in a continuous fashion. That is why we
collaborated combining LB continuous-based simulations with DPD simulations,
where ions are explicitly considered. Combining this two powerful simulation
methodologies and obtaining the same result gave a confirmation that not only
thermal fluctuations were not determinant in the discontinuous transition, but
furthermore the transition did not depend on the explicit ion-ion interaction.
This evidence paved the way towards a mean field theory that predicted the
onset of the transition. Hence, this latter publication is also a solid example of
how simulation models can be employed to build strong experimental evidence
that a response exists in a experimental setup.

As for the scientific works presented here, we have significantly contributed
to several different research topics in soft matter that open perspectives for
other related works. Overall, the first part is inclinated towards investiging
collective effects that take place in colloidal suspensions. In the research topic
of microswimmers, we have reported a swimming mechanism which allows to
direct a swimmer to any direction of a plane, only by switching the magnetic
field polarisation and one of the components of the magnetic field. This allows
to control the movement of the swimmer without further alteration of the
experimental setup. We have identified the mechanism that leads to this
rectification mechanism, making possible other similar microswimmers can be
designed with this idea in mind, with the hope of controlling microscopic object
in the future near solid boundaries. We have reported novel results on the
hydrodynamics of colloidal suspensions, both supported by experiments, theory
and simulations. These will help understand and rationalise similar effects in
other driven colloidal suspensions. We have also characterised clogging in the
microscale in different conditions. Our work reports for the first time the effect
that a modulated ratchet potential has on the clogging transition through a
narrow constriction. Furthermore, we have developed a methodology to quantify
clogging in a arbitrary landscape. This methodology relates the clogging that
takes place locally with the emergence of an anomalous flow regime. In this
regime particles flow in localised regions of the landscape and present a rich
phenomenology, like a bimodal distribution of velocities for small densities that
changes to a unique broad peak for large densities. This methodology will
allow to report how prone to clogging are different types of active particles,
and understand which parameters could enhance or hinder the anomalous flow
region.

The second part has been more focused into posing experimental challenges
and predicting responses of interest. We have unveiled a new dynamic regime
of capillary driven spontaneous imbibition, based in lubricant coated surfaces.
Our studies demonstrate the capability of lubricant coated surfaces to speed up
an imbibition process, even resulting in a linear front advance. This could have
huge implications for transport of flows, since it opens the possibility to obtain
a constant flux of fluid without any need of an external pump or external field.
We have further investigated on how the lubricant affects the deformation of
the interface and obtained some analytical solutions that capture the observed
trend. This reported results are very easy to test experimentally, contributing
to capture the effect of the dissipation due to the deformation of the interface.
Furthermore, we have also characterised a novel mechanism for controlling
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electrolyte flows in confinement. Our studies clearly indicate that charge-
patterned nanochannel can result in a discontinuous flow transition, where the
average flow increases several orders of magnitude. This transition also can
also take place with increasing the electric field, which suggests that potentially
charge-patterned nanochannles could be suitable for designing devices suitable
for iontronics.

Taken together, we hope that this thesis can be read as a collection of
challenges, the effort of which has been put in choosing and developing the
correct simulation approach to the problem at hand and advance each respective
research topic. There is no ultimate simulation method that will solve all
problems, and there is not even a correct single way of approaching a challenge
by computational means. Instead, one needs to stop and think what is the
problem at hand and try to use a simulation model accordingly, as rigorously as
possible for the desired outcome. This way of modelling and solving scientific
challenges does not come out of nowhere. It is the result of a continuous effort
of the scientific community, for more than fifty years, to develop, test and
validate methodologies so we can use them today, knowing their advantages and
disadvantages. It is thanks to those efforts and those pioneers that developed
and used simulation models, that today we can use them to comprehend
better nature, make accurate predictions even when there is a lack of previous
experiments and analytical theories, and face new challenges we wouldn’t have
imagined some decades ago. That is why the last lines of this thesis are dedicated
to them.
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