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The Fortran program sbethe calculates the stopping power of materials for swift charged particles 
with small charges (electrons, muons, protons, their antiparticles, and alphas). The electronic stopping 
power is computed from the corrected Bethe formula, with the shell correction derived from numerical 
calculations with the plane-wave Born approximation (PWBA) for atoms, which were based on an 
independent-electron model with the Dirac–Hartree–Fock–Slater self-consistent potential for the ground-
state configuration of the target atom. The density effect correction is evaluated from an empirical optical 
oscillator strength (OOS) model based on atomic subshell contributions obtained from PWBA calculations. 
For projectiles heavier than the electron, the Barkas correction is evaluated from the OOS model, and the 
Lindhard–Sørensen correction is estimated from an accurate parameterization of its numerical values. 
The calculated electronic stopping power is completely determined by a single empirical parameter, 
the mean excitation energy or I value of the material. The radiative stopping power for electrons, and 
positrons, is evaluated by means of Seltzer and Berger’s cross section tables for bremsstrahlung emission. 
The program yields reliable stopping powers and particle ranges for arbitrary materials and projectiles 
with kinetic energy larger than a certain cutoff value Ecut, which is specific of each projectile kind. The 
program is accompanied by an extensive database that contains tables of relevant energy-dependent 
atomic quantities for all the elements from hydrogen to einsteinium. sbethe may be used to generate 
basic information for dosimetry calculations and Monte Carlo simulations of radiation transport, and as a 
pedagogical tool.

Program summary
Program title: sbethe

CPC Library link to program files: https://doi .org /10 .17632 /7zw25f428t .1
Licensing provisions: CC by NC 3.0
Programming language: Fortran 90/95
Nature of problem: The program calculates the stopping power of arbitrary materials for swift charged 
projectiles with small charges. The material is characterized by its chemical composition, mass density, 
and the empirical I value. The considered projectiles are electrons, positrons, negative muons, antimuons, 
protons, antiprotons, and alphas, which are described as point particles characterized by their mass and 
charge. If the actual I value of the material is known, the results from the program are expected to be 
reliable for projectiles with kinetic energy higher than a value Ecut, of the order of 1 keV for electrons 
and positrons, 150 keV for muons and antimuons, 0.75 MeV for protons and antiprotons, and 5 MeV for 
alpha particles.
Solution method: The electronic stopping power is calculated by means of a corrected Bethe formula [1], 
which combines the conventional Bethe logarithm with the following corrections,
1) the shell correction obtained from calculations based on the plane-wave Born approximation with 
the self-consistent Dirac–Hartree–Fock–Slater (DHFS) potential of neutral atoms in their ground-state 
configuration [2],
2) the density effect correction, which accounts for the reduction of the stopping power caused by the 
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dielectric polarization of the medium,
3) a parameterization of the Lindhard–Sørensen correction, which generalizes the Bloch correction for 
relativistic projectiles, and
4) the Barkas correction, which accounts for differences between the stopping powers of particles and 
their antiparticles.
The density-effect and the Barkas corrections are calculated from a model of the optical oscillator 
strength (OOS) of the material, which combines the contributions of inner atomic subshells calculated 
with the DHFS potential, with a classical oscillator model for the contribution of valence electrons,
A simple extrapolation formula is used to extend the calculated electronic stopping power to energies 
less than Ecut to allow the calculation of particle ranges.
For electrons and positrons, the radiative stopping power is calculated from numerical tables prepared by 
Seltzer and Berger [3].
Additional comments including restrictions and unusual features: The calculated stopping power is determined 
by a single parameter, the mean excitation energy or I value. The program assigns to each material a 
default I value, derived from the recommendations in the ICRU Report 37, which can be changed by 
the user. The distribution package includes text files with tables of atomic energy-dependent quantities 
(subshell optical oscillator strengths, shell corrections, scaled cross sections for bremsstrahlung emission) 
that are used in the calculations.
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1. Introduction

The stopping power of materials for swift charged particles 
[1,2] is a fundamental quantity in dosimetry studies and in Monte 
Carlo simulations of radiation transport. The stopping power is 
defined as the average energy loss per unit path length of the pro-
jectile. In spite of its practical importance, the available sources 
of reliable stopping power tables are essentially limited to the Re-
ports of the International Commission on radiation Units and Mea-
surements (ICRU) [3–5] and various unpublished computer codes 
associated to those Reports. Frequently the stopping power is esti-
mated from the uncorrected Bethe formula, even when the energy 
of the projectile is below the validity limit of that formula.

Fast charged projectiles lose energy though interactions of dif-
ferent kinds, namely, 1) inelastic collisions, i.e., interactions that 
produce electronic excitations of the material (electronic stopping), 
2) elastic collisions, which cause the recoil of the target atom (nu-
clear stopping), and 3) the emission of bremsstrahlung, or breaking 
radiation (radiative stopping). The latter is negligible for particles 
heavier than the electron. Nuclear stopping, which is appreciable 
only for particles heavier than the electron that move with small 
speeds, is not considered.

The present article describes the computer program sbethe

that calculates the stopping power of materials for fast charged 
particles from the most reliable theoretical and semiempirical 
approaches available. The considered projectiles are electrons, 
positrons, negative muons, antimuons, protons, antiprotons, and al-
phas; they are all treated as charged point particles. The radiative 
stopping power for electrons, and positrons, is evaluated from the 
tables of atomic cross sections for bremsstrahlung emission pre-
pared by Seltzer and Berger [6,7]. The electronic stopping power 
is calculated from the corrected Bethe formula, as described by 
Salvat [8]. In principle, the Bethe formula approximates the results 
obtained from the plane-wave Born approximation (PWBA) for thin 
gases only asymptotically, i.e., for projectiles with very large kinetic 
energies. The shell correction, the density-effect correction, the 
Lindhard–Sørensen correction, and the Barkas correction are in-
troduced so as to extend the validity of the formula to condensed 
materials and to projectiles with moderately low kinetic energies. 
However, the calculation of these corrections is far from trivial and, 
2

more importantly, it requires knowledge of the optical-oscillator 
strength (OOS) of the material and other energy-dependent quan-
tities, which are not generally available. The calculation scheme 
implemented in sbethe combines pre-calculated atomic data with 
an empirical model of the OOS built from atomic subshell OOS 
that is determined by the adopted empirical value of the mean 
excitation energy, or I value, of the material. The corrected Bethe 
formula allows calculating the electronic stopping power only for 
particles with kinetic energy higher than a certain value Ecut, of 
the order of 1 keV for electrons and positrons, 150 keV for muons 
and antimuons, 0.75 MeV for protons and antiprotons, and 5 MeV 
for alpha particles. In spite of this limitation, the formula pro-
vides the stopping powers required in calculations and Monte 
Carlo simulations of the transport of fast charged particles with 
initial energies such that their initial ranges are much larger than 
the residual ranges at Ecut.

The article is organized as follows. Section 2 provides a brief 
description of the plane-wave Born approximation (PWBA) for in-
elastic collisions of charged projectiles with atoms, which is the 
fundamental theory underlying the Bethe formula for the stop-
ping power. Exchange effects in inelastic collisions of electrons and 
positrons are accounted for by considering that collisions involving 
large energy transfers are correctly described by the Møller [9] and 
Bhabha [10] differential cross sections (DCSs) for collisions with 
free electrons at rest. The atomic shell correction was evaluated 
by requiring that the Bethe formula with that correction included 
yields the same stopping cross section as the numerical PWBA cal-
culations. In Section 3, the density-effect, Lindhard–Sørensen, and 
Barkas corrections are introduced to obtain a corrected Bethe for-
mula that is applicable to arbitrary materials [8] and projectiles 
with kinetic energy higher than Ecut. In order to estimate the range 
of projectiles with energies near Ecut, the results from the cor-
rected Bethe formula are extrapolated to lower energies by using 
a simple analytical form that places the maximum of the elec-
tronic stopping power at nearly the same energy as the available 
experimental measurements. Section 4 describes the calculation of 
the radiative stopping power for electrons and positrons. The For-
tran program sbethe and the associated database are described in 
Section 5. For each kind of projectile particles and for a given ma-
terial (described by its chemical composition and mass density), 
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the program computes detailed tables of the total stopping power 
(electronic plus radiative) and the average range as functions of the 
kinetic energy of the projectile in terms of the I-value of the ma-
terial, which is proposed by the program or defined by the user. 
The complete calculation takes less than about one second on a 
modest personal computer.

In the calculations we consider a fast charged projectile (mass 
M1 and charge Z1e, with e denoting the elementary charge) that 
moves with kinetic energy E in a homogeneous compound ma-
terial with Z electrons per molecule and N molecules per unit 
volume. To cover the energy range of interest, relativistic kinemat-
ics is used. We recall that the kinetic energy E and the magnitude 
p of the linear momentum of the projectile can be expressed as

E = (γ − 1) M1c2, p = βγ M1c , (1)

where

β = v

c
=

√
γ 2 − 1

γ 2
=

√
E(E + 2M1c2)

(E + M1c2)2
(2)

is the projectile’s velocity v in units of the speed of light c, and

γ =
√

1

1 − β2
= E + M1c2

M1c2
(3)

is the total energy of the projectile in units of its rest energy. No-
tice that

cp =
√

E(E + 2M1c2). (4)

2. Electronic stopping

Electronic stopping is the dominant energy-loss process for 
charged particles heavier than the electron. For projectile electrons 
and positrons electronic stopping dominates for kinetic energies 
less than a critical energy that, for elemental materials, decreases 
when the atomic number increases (∼ 50 MeV, 15 MeV, and 
10 MeV for aluminum, silver, and gold, respectively); above this 
energy, the radiative stopping power exceeds the electronic one.

Inelastic collisions of fast charged projectiles with randomly 
oriented atoms or molecules can be described by means of the 
relativistic plane-wave (first) Born approximation (PWBA) [see, e.g., 
1,11]. Each collision involves a certain energy transfer W from the 
projectile to the target and an angular deflection of the projectile, 
determined by the cosine of the polar scattering angle, cos θ . Let E
and p denote the kinetic energy and linear momentum of the pro-
jectile before the collision, the corresponding quantities after the 
collision are denoted by primes, E ′ and p′ . Evidently,

E ′ = E − W and p′ = c−1
√

(E − W )(E − W + 2M1c2) . (5)

The central result from the PWBA is a closed expression of the 
doubly differential cross section (DDCS) as a function of W and 
cos θ = p̂ · p̂′ . This DDCS takes a cleaner form when expressed in 
terms of the recoil energy Q defined by [1]

Q (Q +2mec2) = c2(p−p′)2 = (cp)2 + (cp′)2 −2c2 pp′ cos θ , (6)

where me is the electron mass. The DDCS for collisions leaving the 
target either in an excited bound state (excitation) or in a free state 
(ionization) is [12,13]

d2σin

dW dQ
= 2π Z 2

1e4

me v2

[
2mec2

W Q (Q + 2mec2)
3

×
{

(2E−W + 2M1c2)2 − Q (Q + 2mec2)

4 (E + M1c2)2

}
d f (Q , W )

dW

+ 2mec2W

[Q (Q + 2mec2) − W 2]2

×
(

β2 sin2 θr+
{

Q (Q + 2mec2)−W 2

2(E + M1c2)2

})
dg(Q , W )

dW

]
,

(7)

with

β2 sin2 θr = β2 − W 2

Q (Q + 2mec2)

(
1 + Q (Q + 2mec2) − W 2

2W (E + M1c2)

)2

.

(8)

The factors d f (Q , W )/dW and dg(Q , W )/dW are, respectively, 
the longitudinal and transverse generalized oscillator strengths 
(GOSs), which completely characterize the effect of inelastic col-
lisions on the projectile.

In the case of target atoms (or ions), the GOSs can be calcu-
lated numerically by combining the PWBA with an independent-
particle model of the atomic electron cloud, i.e., by assuming that 
atomic electrons move independently of each other under a com-
mon central potential, V (r). Calculations with the self-consistent 
Dirac–Hartree–Fock–Slater potential for the ground-state configu-
rations of neutral atoms have been performed by Salvat et al. [13]
for all the elements of the periodic table, from hydrogen (Z = 1) to 
einsteinium (Z = 99). A detailed description of the underlying the-
ory and the numerical methods employed in those calculations is 
given in the document rpwba.pdf [14]. From the calculated GOS 
tables one can easily obtain the atomic DDCS (7) for projectiles 
with arbitrary charge, mass, and kinetic energy.

In the limit Q → 0 both the longitudinal and transverse GOSs 
reduce to the optical oscillator strength (OOS), which is an impor-
tant ingredient of the corrected Bethe formula (see below),

d f (0, W )

dW
= dg(0, W )

dW
= d f (W )

dW
, (9)

while for large Q the GOSs can be approximated as

d f (Q , W )

dW
= dg(Q , W )

dW
� Zδ(Q − W ), (10)

where δ(x) is the Dirac delta distribution. The longitudinal GOS 
satisfies the sum rule

∞∫
0

d f (Q , W )

dW
dW = Z [1 − �(Q )] , (11)

where �(Q ), the departure from the non-relativistic Bethe sum 
rule [13], increases with Z and decreases with Q . For single atoms, 
the largest value of �(Q ) is about 0.025 for Z = 99 and Q = 0.

Integration of the DDCS over recoil energies yields the energy-
loss differential cross section (DCS),

dσin

dW
=

Q +∫
Q −

d2σin

dW dQ
dQ , (12)

where Q ± are the lower and upper limits of the kinematically al-
lowed interval of recoil energies, corresponding to cos θ = ±1, that 
is,

Q ±(Q ± + 2mec2) = c2(p − p′)2 = (cp)2 + (cp′)2 ± 2c2 pp′ ,
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or

Q ± =
√

(cp ± cp′)2 + m2
ec4 − mec2 . (13)

The total cross section, σ (0)
in , and the stopping cross section, σ (1)

in , 
are obtained as integrals of the energy-loss DCS,

σ
(n)
in =

Wmax∫
0

W n dσin

dW
dW (14)

where Wmax is the largest allowed energy loss in a single collision, 
which is given by [8]

Wmax = 2β2γ 2 mec2

1 + 2(me/M1)γ + (me/M1)2
. (15)

For projectile positrons, Wmax = (γ − 1)mec2 = E , while for pro-
jectile electrons Wmax = E/2 because of the indistinguishability 
between the projectile and the target electrons (see Section 2.1
below).

The electronic stopping power S in is defined as the average en-
ergy loss per unit path length s of the projectile caused by inelastic 
collisions. It can be evaluated as the ratio of the average energy 
loss in a collision,

〈W 〉 =
Wmax∫
0

W
1

σ
(0)
in

dσin

dW
dW , (16)

and the mean free path for inelastic interactions, λ = (Nσ
(0)
in )−1, 

that is,

S in ≡ − dE

ds
= 〈W 〉

λ
= Nσ

(1)
in . (17)

Very often the terms “stopping power” and “stopping cross sec-
tion” are used interchangeably.

2.1. Corrections for electrons and positrons

Collisions of electrons (Z1 = −1, M1 = me) with atoms differ 
from those of heavier particles in that the projectile is indistin-
guishable from the atomic electrons and, consequently, interac-
tions are affected by exchange effects (such as re-arrangement 
collisions and interference between direct and exchange transition-
matrix elements). Exchange effects occur also in inelastic collisions 
of positrons (Z1 = +1, M1 = me). The reason is that the (active) 
electron-positron pair can undergo annihilation followed by recre-
ation of a new pair, a process that coexists with ordinary scat-
tering. Exchange effects then arise from the indistinguishability of 
the target electron from the electrons in virtual states of nega-
tive energy (the Dirac sea). In the energy range where the PWBA 
is expected to be reliable, the total cross section is known to be 
fairly insensitive to these effects (see, e.g., Ref. [12]). However, elec-
tron exchange introduces appreciable modifications in the stopping 
power of both electrons and positrons.

In the present calculations, exchange effects for projectile elec-
trons and positrons are accounted for by multiplying the DDCS by 
a correction factor such that the energy-loss DCS at sufficiently 
large W ’s reduces to the DCS for collisions with Z electrons at 
rest [14]. Explicitly, the energy-loss DCS for large-W collisions of 
electrons with free electrons at rest is given by the Møller formula 
[9]

dσMøller = 2πe4

2

1
2

FMøller(W ) , (18)

dW me v W

4

where

FMøller(W ) = 1 +
(

W

E − W

)2

− (1 − b0)W

E − W
+ b0W 2

E2
(19)

with

b0 =
(

E

E + mec2

)2

=
(

γ − 1

γ

)2

=
(

1 −
√

1 − β2

)2

. (20)

In ionizing collisions, we have two (indistinguishable) free elec-
trons in the final state, and it is natural to consider the fastest as 
the “primary”. Consequently, the largest allowed energy loss in bi-
nary collisions of electrons is

Wmax = E/2 . (21)

The DCS for large-W collisions of positrons with free electrons 
at rest is obtained from the Bhabha formula [10],

dσBhabha

dW
= 2πe4

me v2

1

W 2
FBhabha(W ) , (22)

where

FBhabha(W ) = 1 − b1
W

E
+ b2

(
W

E

)2

− b3

(
W

E

)3

+ b4

(
W

E

)4

,

(23)

with

b1 =
(

γ − 1

γ

)2 2(γ + 1)2 − 1

γ 2 − 1
,

b2 =
(

γ − 1

γ

)2 3(γ + 1)2 + 1

(γ + 1)2
,

b3 =
(

γ − 1

γ

)2 2γ (γ − 1)

(γ + 1)2
,

b4 =
(

γ − 1

γ

)2
(γ − 1)2

(γ + 1)2
. (24)

2.2. Asymptotic formula for the stopping cross section

When the kinetic energy of the projectile is sufficiently high, 
the stopping cross section of atoms obtained from the PWBA can 
be expressed as [13,14]

σ
(1)
in,asympt = 2π Z 2

1e4

me v2
2Z

{
ln

(
2me v2

I

)
+ lnγ 2 − β2 + 1

2
f (γ )

+ S0 − Z

2Z

[
ln(β2γ 2) − β2

]}
(25)

with

S0 =
∞∫

0

d f (W )

dW
dW . (26)

The quantity I , the mean excitation energy, is defined by

ln

(
2mec2

I

)
= S0

Z
ln

(
2mec2

I0

)
+ D0

2Z
(27)

where
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ln I0 = 1

S0

∞∫
0

ln W
d f (W )

dW
dW (28)

and D0 is an integral of the longitudinal GOS with numerical val-
ues of the order of 0.05 Z . In the conventional theory [1], which 
differs from the present approach in that it neglects small rela-
tivistic corrections, the I value is defined by the right-hand side of 
Eq. (28).

The function f (γ ) has different forms for projectile electrons, 
positrons, and heavier particles. Explicitly [3,4,14],

f (γ ) = ln(R) +
(

me

M1

γ 2 − 1

γ
R

)2

,

R =
[

1 +
(

me

M1

)2

+ 2γ
me

M1

]−1 (29a)

for particles much heavier than the electron,

f (γ ) = 2γ 2 − 1

γ 2
+ 1

8

(
γ − 1

γ

)2

−
[

4 −
(

γ − 1

γ

)2
]

ln 2

− ln(γ + 1) (29b)

for electrons, and

f (γ ) = γ 2 − 1

12γ 2

(
1 − 14

γ + 1
− 10

(γ + 1)2
− 4

(γ + 1)3

)
− ln 2 − ln(γ + 1) (29c)

for positrons.

2.3. Shell correction

The formula (25) approximates the calculated atomic stopping 
cross section σ (1)

in asymptotically, i.e., when the kinetic energy of 
the projectile is sufficiently high. The difference σ (1)

in,asympt − σ
(1)
in

determines the so-called shell correction C/Z , defined so that the 
corrected formula

σ
(1)
in = 2π Z 2

1e4

me v2
2Z

{
ln

(
2me v2

I

)
+ lnγ 2 − β2+ 1

2
f (γ )− C(γ )

Z

}
(30)

reproduces the calculated values of the atomic stopping cross sec-
tion.

The “modified” shell correction

C ′(γ )

Z
≡ C(γ )

Z
− S0 − Z

2Z

[
ln(β2γ 2) − β2

]
(31)

for protons has been computed by Salvat et al. [13] for the ele-
ments with Z = 1 to 99. Because the difference σ (1)

in,asympt − σ
(1)
in

magnifies numerical inaccuracies of the calculated σ (1)
in , the nu-

merical value of C ′(γ )/Z becomes uncertain for high-energy pro-
jectiles. To avoid the influence of those inaccuracies, for projectile 
protons with energies higher than Ec = min{0.2Z , 5} MeV, the cal-
culated “modified” shell correction was replaced with the analyti-
cal form

C ′(γ )

Z
=

6∑
n=1

pn(γ − 1)n (32)

with the parameters pn (n = 1 to 6) determined by a least-squares 
fit to the numerical values in the energy interval from Ec to 
10 GeV. At higher energies, owing to numerical inaccuracies, the 
5

value of the modified shell correction is uncertain; for γ > 2, 
C ′(γ )/Z is assumed to be constant and equal to C ′(2)/Z . As dis-
cussed by Salvat [8], these modified shell corrections are valid also 
for any charged projectile heavier than the electron.

For completeness, we have also determined modified shell cor-
rections for electrons and positrons from the difference σ (1)

in,asympt −
σ

(1)
in , where the numerical stopping cross section σ (1)

in was cal-
culated with the appropriate exchange corrections (see [14]). For 
electrons and positrons, the parameters of the expression (32)
were obtained by fitting the calculated values for energies higher 
than Ec = min{Z , 10} keV up to about 1 MeV. The modified shell 
correction is assumed to be constant for γ > 2.

The modified shell corrections C ′(γ )/Z for projectile electrons, 
positrons, and heavier particles are listed in the database files
eshcor-zz.tab, pshcor- zz.tab, and shcor-zz.tab, re-
spectively. The string zz in the file names, two digits, denotes the 
atomic number of the element.

3. Corrected Bethe formula for the electronic stopping power

In a recent study, Salvat [8] has shown that the electronic stop-
ping power of a condensed material for charged projectiles with 
sufficiently high energy can be calculated from the corrected Bethe 
formula

S in(E) = 4π Z 2
1e4

me v2
N Z

{
ln

(
2me v2

I

)
+ lnγ 2 − β2 + 1

2
f (γ )

− C(γ )

Z
− 1

2
δF + �LLS + �LB(a)

}
, (33)

where the last three terms are the density-effect correction, the 
Lindhard–Sørensen correction and the Barkas correction, respec-
tively. The last two corrections are derived under the assumption 
that the velocity of the projectile changes slowly along its path, 
which does not hold for electrons and positrons because these 
particles may change their energy and/or direction of motion ap-
preciably in a single collision. Hence, the Lindhard–Sørensen and 
Barkas corrections will be excluded in calculations for projectile 
electrons and positrons.

The mean excitation energy I [see Eqs. (27) and (28)] and the 
corrections δF and �LB(a) are determined by the OOS of the ma-
terial. In the present approach, I is considered as an empirical 
parameter, which is used to build the OOS model of the material 
and, consequently, determines its stopping properties.

3.1. DHFS model of the optical oscillator strength

The OOS of the material is modeled as proposed in Ref. [8], 
from information in the database of atomic subshell GOSs cal-
culated with the DHFS potential [14]. Let F ion

i (Z; W ) denote the 
calculated OOS for transitions of individual electrons in the i-th 
subshell of the atom to final orbitals with positive energy (ion-
ization). To correct for the small discrepancies between subshell 
ionization energies Ui obtained from the DHFS potential and the 
experimental ionization energies, the subshell OOS is shifted in en-
ergy to the correct (empirical) ionization energies given by Carlson 
[15]. Excitations to bound atomic levels (a series of discrete res-
onances with energies below Ui ) must be taken into account to 
preserve the dipole sum rule,

∞∫
d f (W )

dW
dW = Z , (34)
0
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which holds exactly in the non-relativistic theory; notice that we 
are neglecting the small relativistic correction �(Q = 0) [cf. Eq. 
(11)]. Since the details of the excitation spectrum are not im-
portant, the contribution of discrete excitations to the OOS are 
represented approximately by extending the ionization OOS to ex-
citation energies below the ionization threshold. The OOS of the 
i-th electron subshell is described as

Fi(Z; W ) =

⎧⎪⎪⎨
⎪⎪⎩

F ion
i (Z; W ) if Ui ≤ W ,

F ion
i (Z; Ui) if U ′

i ≤ W < Ui ,

0 if W < U ′
i ,

(35)

with the cutoff energy U ′
i such that the product (Ui−U ′

i)F ion
a (Z; Ui)

equals the sum of OOSs for excitations to discrete levels. For 
the outmost subshells the cutoff energy so defined may be less 
than 0.5Ui ; in this case, the recipe (34) is modified by set-
ting U ′

i � 0.5Ui , and defining the constant OOS in the interval 
(U ′

i, Ui) so that the subshell contribution to the dipole sum is pre-
served. The atomic subshell OOSs of the elements are listed in the 
database files oos-zz.tab, where zz denotes the atomic num-
ber.

The OOS of a monoatomic gas of the element with atomic num-
ber Z is approximated as

Fatom(Z; W ) =
∑

i
F i(Z; W ) , (36)

where the summation runs over the various electron subshells of 
the atom in its ground-state configuration. As this atomic OOS may 
deviate slightly from the dipole sum rule, which is instrumental 
in the derivation of the Bethe stopping power formula (see, e.g., 
[1,13]), the OOS is renormalized to fulfill that sum rule. In addi-
tion, we shall rescale the excitation energies so as to reproduce 
the empirical value of the mean excitation energy I through its 
conventional definition [1], Eq. (28). That is, we express the atomic 
OOS as

d f (Z; W )

dW
= a1a2 Fatom(Z;a2 W ) (37)

with the constants a1 and a2 determined from the conditions

Z =
∞∫

0

d f (Z; W )

dW
dW = a1

∞∫
0

Fatom(Z; W ′)dW ′, (38a)

where W ′ = a2W , and

ln I = 1

Z

∞∫
0

ln W
d f (Z; W )

dW
dW (38b)

= 1

Z
a1

∞∫
0

ln(W ′/a2) Fatom(Z; W ′)dW ′

= − ln a2 + a1

Z

∞∫
0

ln W ′ Fatom(Z; W ′)dW ′.

The recipe given by Eqs. (36) and (37) is not suited for com-
pounds and condensed materials, because the wave functions of 
electrons in outer subshells are strongly affected by atomic ag-
gregation, and the presence of neighboring atoms modifies the 
final-state orbitals of the active electron [16]. The contributions 
from inner subshells with binding energies Ui larger than a certain 
threshold value W th of the order of 50 eV, are relatively insen-
sitive to aggregation and may be approximated by the free-atom 
6

form (36). The OOS of electrons in outer subshells with binding 
energies Ui < W th is represented as the OOS of a single classical 
damped oscillator with resonance energy W r , damping constant 
, 
and an energy gap Wg in the case of insulators and semiconduc-
tors. That is,

Fout(W ) = Cout

W
√

W 2 − W 2
g(

W 2
r + W 2

g − W 2
)2 + 
2(W 2 − W 2

g )

× �(W − Wg)�(UK,max − W ), (39)

where Cout is a normalization constant and �(x) is the Heaviside 
step function (= 1 if x > 0, and = 0 otherwise). The OOS of the os-
cillator is truncated at the largest binding energy UK,max of the K 
shells of the elements present to prevent a tail that would dom-
inate over the atomic OOSs at very large W ’s. The model OOS is 
obtained as

d f (W )

dW
= Fout(W ) +

∑
i
F i(Z; W )�(W − W th), (40)

where the summation runs over the inner subshells, whose OOSs 
are truncated at W th. The constant Cout is determined by requiring 
that the dipole sum rule (34) is satisfied, i.e.,

UK,max∫
Wg

Fout(W )dW = Z −
∞∫

W th

(∑
i
F i(Z; W )

)
dW

= fout, (41)

and the resonance energy W r is set equal to the plasma resonance 
energy of an electron gas with the average density of electrons 
in outer subshells (including contributions from truncated inner 
subshells),

W r =
√

4πN fout
h̄2e2

me
, (42)

where h̄ is the reduced Planck constant. The gap energy Wg is 
null for conductors, and should be determined from knowledge of 
experimental information (e.g., from Refs. [17–19]) in the case of 
semiconductors and insulators. Finally the damping constant 
 is 
fixed by requiring that the OOS yields the empirical I value of the 
material, as given, e.g., in the ICRU Report 37 [3]. The OOS build in 
this way has a realistic appearance for large energy transfers W , it 
satisfies the dipole sum rule, and it yields the adopted empirical I
value.

3.2. Density-effect correction

This correction, which was first studied by Fermi [20], accounts 
for the effect of the dielectric polarization of the medium, which 
makes the stopping power of a dense material smaller than that of 
a thin gas of the same composition. The density-effect correction is 
calculated from the formula derived by Fano [21] for high-energy 
projectiles, which is equivalent to (see Ref. [22])

δF ≡ 1

Z

∞∫
0

d f (W )

dW
ln

(
1 + L2

W 2

)
dW − L2

�2
p

(
1 − β2

)
, (43)

where L is the positive root of the equation

F(L) ≡ 1

Z
�2

p

∞∫
1

W 2 + L2

d f (W )

dW
dW = 1 − β2. (44)
0
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The quantity

�p =
√

4π N Z
h̄2e2

me
, (45)

is the plasma resonance energy of an electron gas with the aver-
age electron density N Z of the material; h̄ is the reduced Planck 
constant. The function F(L) decreases monotonically with L, and 
hence, the root L(β2) exists only when 1 − β2 < F(0); other-
wise it is δF = 0. Therefore, the function L(β2) starts with zero 
at β2 = 1 −F(0) and grows monotonically with increasing β2.

In the high-energy limit (β → 1), the L value resulting from Eq. 
(44) is large and it can be approximated as L2 = �2

p/(1 −β2). Then, 
using the dipole sum rule and the relation (38b), we obtain

δF � ln

(
�2

p

(1 − β2)I2

)
− 1 when β → 1. (46)

Therefore, because of the density-effect correction the electronic 
stopping power of high-energy projectiles is determined by the 
electron density of the material, i.e., it is independent of the I
value.

As the density-effect correction δF is significant only for pro-
jectiles with high energies, the value obtained from the formula 
(43) can also be used when the energy of the projectile is low or 
moderate.

3.3. Lindhard–Sørensen correction

This correction accounts for the differences between the exact 
DCS for collisions of the projectile with electrons [23] and its per-
turbative approximation to first order. In the non-relativistic limit, 
it reduces to the Bloch correction, which is given by

Z 2
1 LBloch

2 = −η2
∞∑

n=1

1

n(n2 + η2)
, (47)

where

η = Z1e2

h̄v
(48)

is the Sommerfeld parameter.
For pointlike projectiles with small charges (|Z1| ≤ 2) and en-

ergies less than 102 M1c2, the Lindhard–Sørensen correction calcu-
lated numerically is closely approximated by the following analyt-
ical expression [8]

�LLS
point =

(
1 + A

1 + 1.92 (γ − 1)1.41
− A

)
Z 2

1 LBloch
2 , (49)

where A = 180.20 for Z1 = +1 (protons, deuterons, tritons, an-
timuons), A = −178.34 for Z1 = −1 (antiprotons, muons), A =
90.59 for Z1 = +2 (alphas), and A = −88.73 for Z1 = −2. Values 
from this empirical formula differ from accurate numerical results 
for pointlike projectiles with Z1 = ±1 and ±2 in less than about 
5×10−4.

3.4. Barkas correction

In the classical derivation by Bohr [24] of a formula for the elec-
tronic stopping power, the contribution from distant interactions is 
evaluated by assuming that electrons behave as classical oscilla-
tors under the action of the electric field of the projectile, which is 
assumed to be constant over the atomic volume. The Barkas cor-
rection accounts for the (linear) variation of that electric field over 
7

the volume swept by the target electron. This correction is evalu-
ated as [25,26]

�LB(a) = Z1α

γ 2β3mec2

1

Z

Wmax∫
0

dW
d f (W )

dW

× W

[
I1(ξ) + 1

γ 2
I2(ξ)

]
, (50)

with ξ = W a/(γ vh̄), where a is a cutoff impact parameter that 
separates close and distant interactions, which for elemental ma-
terials is estimated as [8]

a = CB 0.5616
h̄

me v
, (51)

with CB = max{1, Z/10}. The functions I1(ξ) and I2(ξ) are defined 
by triple integrals involving modified Bessel functions of orders 
0 and 1 [25,26], which were calculated numerically. To facilitate 
further calculations, these functions have been fitted by analytical 
expressions in various subintervals that approximate the numerical 
results with an accuracy better than 0.1% for ξ from 0 to ∼15. The 
adopted parameterizations of I1(ξ) and I2(ξ) can be found in the 
source file sbethe.f of the program, functions ARBI1(X) and
ARBI2(X).

3.5. Corrected Bethe formula for compound materials

The corrected Bethe formula (33) is applicable to arbitrary ma-
terials, including compounds and mixtures of various elements. Let 
us consider a compound whose molecules consist of n j atoms of 
the element of atomic number Z j . The mean excitation energy of 
the compound can be estimated by using the additivity approxi-
mation, i.e., by assuming that the molecular cross section can be 
approximated as the sum of atomic cross sections of the atoms in 
a molecule. The OOS of a molecule is then the sum of the OOSs of 
its atoms and, consequently, the I value of the compound is given 
by

Z ln I =
∑

j
n j Z j ln(I j) with Z =

∑
j
n j Z j , (52)

where I j denotes the mean excitation energy of the element with 
atomic number Z j . Since the additivity approximation neglects the 
effect of aggregation on the atomic OOSs, the I value resulting 
from Eq. (52) may differ appreciably from the “true” mean ex-
citation energy of the material. A better estimate of the I value 
can only be obtained either from stopping measurements or from 
knowledge of the OOS of the material.

As discussed by Salvat [8], the atomic shell correction obtained 
from the PWBA is valid for arbitrary materials, because the main 
contribution to that correction arises from inner electron subshells, 
which are only slightly affected by aggregation effects. The shell 
correction C(γ )/Z of the compound, obtained from the additivity 
approximation, is given by

C(γ )

Z
= 1

Z

∑
j

Z j
C j(γ )

Z j
, (53)

where the quantity C j(γ )/Z j is the shell correction for the ele-
mental material of atomic number Z j . The cutoff impact parameter 
a, which determines the Barkas correction, may be estimated from 
Eq. (51) with

CB = max{1, Z/10} where Z = Z
(∑

n j

)−1
. (54)
j
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As indicated above, the electronic stopping power obtained 
from the corrected Bethe formula is completely determined by the 
adopted value of the mean excitation energy I . By default, the pro-
gram sbethe sets I = IICRU, the I value recommended in the Report 
37 of the ICRU [3], which yields results in close agreement with 
available experimental stopping powers [8]. In order to allow an-
alyzing the dependence of the calculated stopping power on this 
parameter, the user is allowed to modify its default value.

3.6. Electron capture by positively charged ions

A fundamental assumption of the PWBA is that the projectile 
behaves as a traveling point particle with constant charge. This is 
not true for slow positive ions, which capture electrons from the 
medium and loose them through a complex dynamical process. Ex-
perimental evidence gives support to Bohr’s suggestion that the 
orbital velocity of bound electrons is the dominant parameter of 
the process, and that an ion gets stripped of all its electrons that 
(in their bound orbitals) have orbital velocities smaller than the ve-
locity of the ion (see Ref. [2] and references therein). In the case of 
light ions with small charges (Z1 ≤ 2), it is natural to consider that 
the capture process is ruled by the velocity of an electron bound 
to the ion in the ground state, which may be estimated from the 
hydrogenic model as c αZ1, where α � 1/137 is the fine structure 
constant. To account for electron capture effects, for protons and 
alphas the sbethe program replaces the factor Z1 in Eq. (33) with 
the effective charge of the ion, estimated by means of the empiri-
cal formula

Z∗
1 = Z1

[
1 − exp

( −β

αZ1

)]
, (55)

which is analogous to the usual expression for heavy ions, with 
the velocity of captured electrons evaluated from the hydrogenic 
model rather than from the Thomas–Fermi model.

3.7. Low-energy extrapolation

The results from the corrected Bethe formula, calculated from 
the present approach, closely approximate the measured stopping 
powers for protons and alpha particles with kinetic energies higher 
than a value Ecut of the order of 0.75 MeV and 5 MeV respec-
tively. The very limited experimental information available on the 
stopping of low energy electrons, suggests that the formula is also 
valid for electrons, and positrons, with kinetic energies higher than 
Ecut ∼ 1 keV. In order to permit the approximate calculation of 
particle ranges of low-energy projectiles [see Eq. (71) below], it 
is convenient to extrapolate the predictions of the Bethe formula 
to energies lower than Ecut. Our aim here is not to give reliable 
stopping powers for low-energy projectiles, but simply to permit 
estimating the order of magnitude of their ranges.

Inspection of available experimental data for protons and al-
phas [8] indicates that the stopping power of these particles has 
a wide maximum at an energy Emax of about 50 keV for protons 
and 0.8 MeV for alphas [8]. The stopping power for electrons has 
a similar energy dependence, with a maximum at Emax ∼ 100 eV.

The program sbethe calculates the electronic stopping power 
from the corrected Bethe formula (33) for energies higher than 
Ecut, which the program sets equal to 1 keV for electrons and 
positrons, 150 keV for muons and antimuons, 0.75 MeV for protons 
and antiprotons, and 5 MeV for alpha particles. The calculated val-
ues are extrapolated to lower energies by using the analytical form
8

S in(E) =

⎧⎪⎪⎨
⎪⎪⎩

exp

[
A − B (ln t)1.5

]
if Emax ≤ E ≤ Ecut,

1.5 exp(A)
√

t

(
1 − t

3

)
if E ≤ Emax,

(56)

with t = E/Emax, and the parameters A and B determined by re-
quiring continuity of S in(E) and its derivative at E = Ecut. The 
energy dependence at low energies, S in ∝ √

E , is in accordance 
with the theory of the free-electron gas (which predicts that the 
stopping power of slow projectiles is proportional to their velocity 
[27]).

Electronic stopping cross sections of noble gases for protons 
and alpha particles calculated with the sbethe program are com-
pared with results from measurements in Fig. 1. The experimental 
data were taken from the exhaustive IAEA online database1 on 
“Electronic Stopping Power of Matter for Ions” [28]. The vertical 
lines are at the energy Ecut above which the corrected Bethe for-
mula is applied. Below this energy, the plotted values were gener-
ated from the extrapolation formula (56). In spite of the simplicity 
of that formula, its results follow the global trends of the experi-
mental data.

Fig. 2 compares stopping powers of metallic aluminum, sili-
con, copper, and gold for projectile electrons calculated by the
sbethe program with experimental data from the Refs. [29–33]. 
The dashed portion of the curves are results from the extrapola-
tion (56), which yields realistic values of the electronic stopping 
power for electron energies down to about 100 eV.

4. Radiative stopping power for electrons and positrons

Electrons and positrons, because of their small mass, experience 
large accelerations when they penetrate the electrostatic field of an 
atom, or of an electron, and, as a result, they emit bremsstrahlung 
(braking radiation). A thorough review of the theory and experi-
mental measurements of bremsstrahlung emission is given in the 
monograph by Haug and Nakel [34]. The process is responsible for 
the radiative stopping power, which dominates the stopping power 
for high-energy electrons and positrons.

In each bremsstrahlung event, an electron with kinetic energy 
E emits a photon of energy W , which may take values in the 
interval from 0 to E . The relevant information on the radiative 
process is provided by the atomic energy-loss DCS, differential in 
only the energy W of the emitted photon (see [3] and references 
therein). Theoretical considerations [35,36] show that the DCS for 
bremsstrahlung emission in the field of an atom of atomic number 
Z can be expressed in the form

dσrad

dW
= Z 2

β2

1

W
χ(Z , E;κ), (57)

where κ is the reduced photon energy,

κ ≡ W /E, (58)

which takes values between 0 and 1. The quantity

χ(Z , E;κ) ≡ (β2/Z 2)W
dσrad

dW
(59)

is known as the “scaled” bremsstrahlung DCS; for atoms of a given 
element Z , it varies smoothly with E and κ . Seltzer and Berger 
[6,7] produced extensive tables of the scaled DCS for all the ele-
ments (Z =1–99) and for electron energies from 1 keV to 10 GeV. 
They tabulated the scaled DCSs for emission in the (screened) field 

1 This database is available from the IAEA web site, https://www-nds .iaea .org /
stopping /index .html. Data downloaded in March 2022.

https://www-nds.iaea.org/stopping/index.html
https://www-nds.iaea.org/stopping/index.html
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Fig. 1. Electronic stopping cross sections of noble gases for protons (left) and alpha particles (right) as functions of the kinetic energy of the projectile, multiplied by the 
indicated powers of 10 to improve visibility. Solid curves are results from sbethe. Symbols represent experimental data from the IAEA database. Other details are explained 
in the text.
of the nucleus (electron-nucleus bremsstrahlung) and in the field 
of atomic electrons (electron-electron bremsstrahlung) separately, 
as well as their sum, the total scaled DCS. The electron-nucleus 
bremsstrahlung DCS was calculated by combining analytical high-
energy theories with results from partial-wave calculations by 
Pratt et al. [37,38] for bremsstrahlung emission in screened atomic 
fields and energies below 2 MeV. The scaled DCS for electron-
electron bremsstrahlung was obtained from the theory of Haug 
[39] combined with a screening correction that involves Hartree–
Fock incoherent scattering functions. Seltzer and Berger’s scaled 
DCS tables constitute the most reliable theoretical representation 
of bremsstrahlung energy spectra available at present.

The total atomic cross section for bremsstrahlung emission is 
infinite due to the divergence of the DCS (57) at W = 0 (the so-
called infrared divergence), which is associated with the null mass 
of the photon. Nevertheless, the radiative stopping cross section,

σ
(1)

rad (E) ≡
E∫

0

W
dσrad

dW
dW = Z 2

β2
E

1∫
0

χ(Z , E;κ)dκ , (60)

is finite. The radiative stopping power (i.e., the average energy ra-
diated per unit path length) is

Srad(E) = Nσ
(1)

rad (E), (61)

where N is the number of atoms per unit volume. The tables of 
Seltzer and Berger include the quantity

φrad(Z , E) ≡ 1

Z 2αr2
e (E + mec2)

E∫
W

dσrad

dW
dW , (62)
0
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where α is the fine-structure constant and re = α2a0 is the classi-
cal electron radius. The stopping power of elemental materials for 
electrons with kinetic energy E can then be calculated easily by 
interpolation of the Seltzer and Berger tables.

In the case of compounds (or mixtures), the molecular DCS is 
obtained from the additivity approximation, i.e., as the sum of the 
DCSs of all the atoms in a molecule. Consider a compound whose 
molecules consist of n j atoms of the element Z j . The molecular 
DCS is

dσrad,mol

dW
= 1

β2W

∑
j

n j Z 2
j χ(Z j, E;κ). (63)

The radiative stopping power of the compound is

Srad(E) = N αr2
e (E + mec2)

∑
j

n j Z 2
j φrad(Z j, E), (64)

where N is the number of molecules per unit volume.
The radiative DCS and the stopping power for positrons are 

generally smaller than those for electrons because positrons are 
repelled by the nucleus and, therefore, experience less acceleration 
than electrons with the same energy. Owing to the lack of more 
detailed calculations, the atomic DCS for positrons is obtained by 
multiplying the electron DCS by a κ-independent factor, i.e.,

dσ
(+)

rad

dW
= Fp(Z , E)

dσ
(−)

rad

dW
. (65)

The factor Fp(Z , E) is set equal to the ratio of the radiative stop-
ping powers for positrons and electrons, which has been calculated 
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Fig. 2. Electronic stopping powers of solid aluminum, silicon, copper, and gold for electrons, as functions of the kinetic energy E . The curves are results from sbethe. Symbols 
represent experimental data from the indicated references.
by Kim et al. [40,41]. In the calculations we use the following an-
alytical approximation

Fp(Z , E) = 1 − exp(−1.2359 × 10−1 t + 6.1274 × 10−2 t2

− 3.1516 × 10−2 t3 + 7.7446 × 10−3 t4

− 1.0595 × 10−3 t5 + 7.0568 × 10−5 t6

− 1.8080 × 10−6 t7), (66)

where

t = ln

(
1 + 106

Z 2

E

mec2

)
. (67)

Expression (66) reproduces the values of Fp(Z , E) tabulated by 
Kim et al. [40] to an accuracy of about 0.5%. Correspondingly, the 
radiative stopping power of a compound material for positrons is 
calculated as
10
S(+)

rad (E) = N αr2
e (E + mec2)

∑
j

n j Z 2
j Fp(Z j, E)φrad(Z j, E). (68)

Fig. 3 compares the radiative mass stopping powers of electrons 
in solid aluminum, silver, and gold, with the corresponding elec-
tronic stopping powers. The total stopping power

S(E) = S in(E) + Srad(E), (69)

determines the projectile range [see Eq. (71)]. While electronic 
stopping dominates at low energies, it is outweighed by radiative 
stopping at high energies.

5. The program SBETHE

The Fortran program sbethe calculates the electronic stopping 
power of a material for fast charged particles from the corrected 
Bethe formula, Eq. (33), with the various corrections computed as 
described in the text. The program utilizes a database of subshell 
OOSs and atomic shell corrections obtained from PWBA calcula-
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Fig. 3. Electronic, radiative, and total mass stopping powers (dashed, dotted, and 
solid curves, respectively) for electrons in solid aluminum, silver (×10), and gold 
(×100) as functions of the kinetic energy of the projectile.

tions with the DHFS self-consistent potential of free neutral atoms 
[8,12,13].

The Fortran program and the associated database are dis-
tributed in a single compressed zip file named sbethe.zip. Its 
contents consists of a single directory named ./sbethe with two 
subdirectories.
• The root directory ./sbethe contains the set of files of the
sbethe code:
1) the Fortran source file sbethe.f of the program, and its exe-
cutable binary file sbethe.exe generated with the Intel Fortran 
compiler on a Windows 10 64-bit platform,
2) three gnuplot scripts with the extension .gnu for visualizing 
the calculation results, and
3) the text file material-list.txt is the list of 280 materials 
of radiological interest that are pre-defined in the file pdcom-
pos.pen, with their identification numbers. The first 99 materials 
are the elements (Z = 1 to 99), ordered by atomic number. Materi-
als 100 to 280 are compounds and mixtures, in alphabetical order.

• The subdirectory ./docs includes the preprint of the present 
article and the document rpwba.pdf with details on the PWBA 
theory and numerical methods used in the calculations of the GOS 
and integrated cross sections.

• The subdirectory ./sdbase contains the following 497 ASCII 
files. The string zz in the file names denotes the atomic number 
of the element, two digits:
◦ 99 files oos-zz.tab with tables of the subshell OOSs that were 
extracted from the database of GOSs calculated with the DHFS po-
tential.
◦ 99 files shcorr-zz.tab with tables of the atomic modified 
shell correction C ′(γ )/Z (see Section 2.3) for protons and other 
projectiles heavier then the electron.
◦ 99 files eshcorr-zz.tab with tables of the atomic modified 
shell correction C ′(γ )/Z for electrons.
◦ 99 files pshcorr-zz.tab with tables of the atomic modified 
shell correction C ′(γ )/Z for positrons.
◦ 99 files pdebr-zz.p08 with tables of scaled bremsstrahlung 
DCSs, χ(Z , E; κ), and integrated cross sections, φrad(Z , E), for elec-
trons (Section 4).
◦ pdatconf.p14, this file contains a list of ground-state config-
11
urations, and subshell ionization energies [15] of free atoms of the 
elements.
◦ pdcompos.pen contains composition data and physical pa-
rameters for the materials listed in material-list.txt, taken 
from the database of the ESTAR program of Berger [42].

To run the program on your computer, copy the directory 
./sbethe from the zip file into the hard disc, keeping the struc-
ture of its contents unchanged. The binary file sbethe.exe will 
work only under Windows 64-bit operating systems; to obtain the 
executable file for other platforms, the user must compile the For-
tran source file, and replace the Windows executable. Notice that
sbethe.exe assumes that the database files are in the subdirec-
tory ./sdbase of its own directory.

The program sbethe runs interactively, input data are entered 
from the keyboard following the program prompts, which are self-
explanatory. The program starts by asking the name mname of the 
material, an alphanumeric string of up to 15 characters. If a file 
with the name mname.mat exists in the working directory, the 
program reads the material parameters (composition, mass density 
and mean excitation energy) and the OOS from that file. Other-
wise, sbethe asks for the parameters of the material, and builds 
the OOS table by using the DHFS subshell OOSs in the database. To 
minimize the amount of input information, the program can read 
the material characteristics from the file pdcompos.pen; the list 
of predefined materials with their identifying numbers is given 
in the file material-list.txt. Once the material parameters 
and the OOS table are set, the program writes them in the out-
put file mname.mat, which will be read directly in future runs 
for that material. The user can select the kind of projectile particle 
among the default options (electrons, positrons, negative muons, 
antimuons, protons, antiprotons, and alphas), or enter the charge 
and mass of the desired projectile.

The electronic stopping powers obtained from the corrected 
Bethe formula are determined by the adopted values of the mean 
excitation energy I . By default, the program sets I = IICRU, the I
value recommended in the ICRU Reports 37 and 90 [3,5]. The re-
sults shown in Figs. 1 and 2 were generated with this default I
value. In order to permit analyzing the dependence of the calcu-
lated stopping power on the adopted mean excitation energy, the 
user is allowed to change the proposed value of this parameter. 
With the default I value and for projectiles with E > Ecut, the 
results from the program are in close agreement with the ICRU 
recommended stopping powers [3–5].

The sbethe program generates tables of the stopping power and 
related quantities for a nearly logarithmic grid of kinetic energies 
of the projectile with 66 points per decade. The output of sbethe

consists of the following formatted text files:

• OOS.dat: optical oscillator strength F (W ) ≡ d f (W )/dW of the 
material, as a function of the excitation energy W , calculated from 
the DHFS-model atomic subshell OOSs with the adopted I value, 
as described in Section 3.1.

• stplog.dat: table of the electronic stopping cross section per 
atom or molecule, σ

(1)
in ≡ S in/N , calculated from the corrected 

Bethe formula (33), the Bethe “logarithm”

L0 ≡ ln

(
2me v2

I

)
+ lnγ 2 − β2, (70)

the function f (γ )/2, and the corrections C(γ )/Z , δF/2, �LLS and 
�LB(a).
• stp.dat: table of the electronic stopping power calculated 
from the corrected Bethe formula, Eq. (33), with and without the 
shell correction (useful for visualizing the effect of the shell cor-
rection).
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Fig. 4. Results from sbethe for protons in solid copper, plotted with gnuplot by using the provided scripts. Terms in the corrected Bethe formula (33), as functions of the 
kinetic energy of the projectile.

Fig. 5. Results from sbethe for protons in solid copper, plotted with gnuplot by using the provided scripts. Mass stopping power as a function of the kinetic energy of the 
projectile.
• stp-low.dat: table of the electronic stopping power obtained 
from the low-energy extrapolation, Eq. (56), of results from the 
corrected Bethe formula.
• lstp.dat: tables of the electronic stopping power (including 
the low-energy extrapolation), the radiative stopping power (null 
for projectiles heavier than the electron), and their sum, the total 
stopping power, Eq. (69), all in eV/Å. The fifth column is the CSDA 
range in cm,

R =
E∫

Eabs

dE

S(E)
, (71)

where Eabs is the lowest energy in the table or plot.
12
• mstp.dat: table of the electronic, radiative and total mass stop-
ping powers, S(E)/ρ (in MeV cm2/g), and the CSDA range times 
the mass density of the material (in g/cm2).

The output files are in a format ready for visualization with a 
plotting program. We recommend using gnuplot, which is small 
in size, available for various platforms (including Linux and Win-
dows) and free; this software package can be downloaded from 
the distribution sites listed at the gnuplot homepage, http://
www.gnuplot .info. The output file gnuinfo.txt contains infor-
mation used by these scripts.

Results from sbethe for projectile protons and electrons in cop-
per (material identification number 29) are displayed in Figs. 4 to 
6, which are screen shots of the plots generated with the provided

http://www.gnuplot.info
http://www.gnuplot.info
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Fig. 6. Results from sbethe for electrons in solid copper, plotted with gnuplot by using the provided scripts. Electron stopping powers as functions of the kinetic energy of 
the projectile.
gnuplot scripts. Of course, these scripts will work only when gnu-

plot is installed on the computer. When the extension “.gnu” is 
associated to gnuplot, a script can be executed by simply clicking 
the mouse with the pointer on the script icon.
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