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Abstract: The decision to transfer or share an insurable risk is critical for the decision maker’s
economy. This paper deals with this decision, starting with the definition of a function that represents
the difference between the expected utility of insuring, with or without deductibles, and the expected
utility of not insuring. Considering a constant relative risk aversion (CRRA) utility function, we
provide a decision pattern for the potential policyholders as a function of their wealth level. The
obtained rule applies to any premium principle, any per-claim deductible and any risk distribution.
Furthermore, numerical results are presented based on the mean principle, a per-claim absolute
deductible and a Poisson-exponential model, and a sensitivity analysis regarding the deductible
parameter and the insurer security loading was performed. One of the main conclusions of the paper
is that the initial level of wealth is the main variable that determines the decision to insure or not
to insure; thus, for high levels of wealth, the decision is always not to insure regardless of the risk
aversion of the decision maker. Moreover, the parameters defining the deductible and the premium
only have an influence at low levels of wealth.

Keywords: decision analysis; risk analysis; CRRA utility function; deductible

MSC: 91G05; 91B05; 91B16

1. Introduction

We consider risk-averse decision makers who face a random insurable loss and must
decide whether to purchase insurance to cover themselves against that risk. In economics,
utility functions that capture the decision maker’s preferences are often used to model the
decision maker’s behaviour. This study is based on the analysis of the difference in the
expected utility of insuring and not insuring using a one-period collective risk model that
includes the possibility of per-claim deductibles.

We denote the aggregate claim amount random variable (r.v.) of a given portfolio of
risks over a year as S. Using the collective risk model, S is defined as a random sum [1],

S =
N

∑
i=1

Xi, (1)

where Xi, i ∈ N is a non-negative r.v. that represents the cost of the i-th claim, and N
is a positive counting r.v. that represents the number of claims. Xi, i ∈ N are assumed
to be independent and identically distributed (i.i.d.) and also independent of N (see [2]
or [3]). The r.v. Xi, i ∈ N is distributed as a strictly positive r.v. (X). Knowing the
moments of X and N, the expected value and the variance of the aggregate claim amount
are E(S) = E(N)E(X) and V(S) = E(N)V(X) + E(X)2V(N), respectively.

Most insurance policies include a deductible so that a part of the claim is paid by
the insured. Without the deductible, the aggregate claim amount coincides with the total
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cost covered by the insurer, and the premium paid is denoted as Π. If a deductible is
applied, A(Xi), i ∈ N is the part of the cost paid by the insured, C(Xi), i ∈ N is the part
of the claim paid by the insurer, the total cost for the insurer is SC = ∑N

i=1 C(Xi) and the
cost assumed by the insured is SA = ∑N

i=1 A(Xi). Then, S = SA + SC. The premium paid
for the deductible insurance, ΠD, considers only SC. In the actuarial literature, one of the
main topics related to deductibles is the analysis of optimal coverage through expected
utility [4,5] and stochastic dominance [6]. For the insurer, a correct calculation of the
premium is essential to comply with the principles of fairness, solidarity and solvency [7].
Insurance premiums can be calculated by applying different premium principles, and
therefore fulfil different properties (see, for instance, [8–11]). One of these properties is
that the premium includes a positive safety loading, i.e., the premium is greater than
the expected cost. In this paper, we consider that the premium principle always fulfils
this property. The most common is the mean principle in which a positive safety loading,
symbolised by δ and proportional to the expected cost, is used, i.e., ΠD = E(SC)(1+ δ). For
more information about premium principles and their properties, see [12,13]. The literature
discussing various problems from the point of view of the insurer/insured is abundant,
and includes discussions on the application of fuzzy theory to the multi-layered insurance
portfolio [14], modal interval probabilities of bonus–malus systems [15], simulations related
to calculating the VaR from the compound distribution of claims [16] and the impact of the
Markovian bonus–malus system on insurer ruin probability [17].

Faced with a risk that could cause economic damage, the decision maker considers
ways of hedging against this risk. The simplest option is self-hedging, i.e., covering
losses when they occur with their own resources. Insurance provides cover if the risk
has a number of properties that make it insurable [1,18]. This cover may be partial if the
insurance includes a deductible. The decision maker can then take out insurance that will
cover all (or part) of the losses if claims occur in return for the payment of a premium
calculated by the insurer. Thus, to face insurable risks, the decision maker has two options:
to purchase an insurance with or without deductible, or not to insure. In this paper, we
compare these two situations in order to obtain rules that help in the decision process
considering a set of variables. In Situation 1, the decision maker purchases an insurance.
Then, the premium ΠD is paid, and part of each claim A(Xi) must be paid if a deductible
is included in the insurance contract. In Situation 2, the decision maker does not insure
the risk and pays each claim in full. To analyse the decision maker’s choice, the literature
applies utility functions related to their risk aversion. The standard model underlying such
decision making under risk is the expected utility theory (see the seminal work of [19] and
others such as [20,21]). Our approach to this problem was carried out using a static model
(see, for instance, [22]), which analyses the situation in one period (other authors, such
as [23], use a dynamic model that adapts to the decision maker’s choice over time).

Considering that the initial wealth of the decision maker is W > 0, the wealth at the
end of the period in Situation 1 is

W −ΠD −
N

∑
i=1

A(Xi) = W −ΠD − SA (2)

(without deductible, ΠD = Π and SA = 0), whereas, in Situation 2, it is W − S. We define
DU(W) as the difference between the expected utilities in these two situations:

DU(W) = E
[
U
(

W −ΠD − SA

)]
− E[U(W − S)], (3)

where U(x), x > 0 is the utility function of the decision maker.
In [24], the increase in welfare generated by insurance is measured by comparing the

wealth if an insurance contract is purchased or if the decision maker assumes the total cost
of the claim. Specifically, the paper measures the so-called “added value of insurance”,
defined as the difference between sets of wealth. First, the absolute deductible is calculated
such that the expected utility obtained when purchasing the insurance is maximised. Then,
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the first wealth is that which would provide us with the same utility, whereas the second
wealth is that which would coincide with the expected utility of not insuring.

In this paper, we followed a different approach. In fact, we are interested in the sign
of DU(W) depending on the initial wealth of the decision maker, W; whenever DU(W) is
positive, the decision maker chooses to insure, whereas, if DU(W) is negative, the decision
maker prefers to assume the total cost of the claims. Mathematically, we use the sign
function, sgn : R→ {−1, 0, 1}, defined as a piece-wise function (see [25]).

sgn(x) :=


−1, x < 0,

0, x = 0,

1, x > 0.

(4)

The objective of this paper is to provide a decision pattern for the individual who
is considering how to hedge against an insurable risk according to their level of wealth.
The methodology used is the comparison of the expected utility obtained by the decision
maker in the two previously defined situations. Other studies also focus on the decision
of how to hedge against a risk, but with different methodologies [24,26]. The analysis is
performed using the constant relative risk aversion (CRRA) utility function, widely used in
the economic and actuarial literature to model preferences [23,24,27–29].

From the theoretical analysis in Section 2, for integer values of the relative risk aversion
coefficient, we obtain the expression of DU(W) as a function of the moments of S and SA.
Using the sign function, the main result of the paper is the rule that determines the decision
for different wealth intervals. It should be noted that these results are generic and apply to
any premium principle and any risk distribution.

After this introduction, the rest of the paper is structured as follows. In Section 2,
general expressions for DU(W) are obtained, and the sign of DU(W) is analysed depending
on the initial wealth of the insured, W. In Section 3, we present some numerical results
considering an absolute deductible and the mean premium principle. A sensitivity analysis
regarding the deductible’s parameter and the security loading was also performed. The
paper ends with some concluding remarks.

2. Theoretical Analysis of sgn(DU(W))

In this section, we assume the constant relative risk aversion (CRRA) utility function,
sometimes called isoelastic, with the expression U(x) = x1−p−1

1−p , p > 0, p 6= 1. For p = 1,
the utility function takes the form U(x) = ln(x). The value p is the coefficient of relative
risk aversion, where R(x) = −u′′(x)x

u′(x) = p is constant, hence the name of this utility function.
A larger value of p implies that the decision maker is more risk-averse and therefore
more prudent.

Theorems 1 and 2 present the expressions of DU(W) considering that p ∈ N+.

Theorem 1. For the CRRA utility function with p = 1,

DU(W) = E
[
ln
(

W −ΠD − SA

)]
− E[ln(W − S)], W > max(S), (5)

which can be estimated by

DU(W) ' ln
[
W −ΠD − E(SA)

]
− ln[W − E(S)]

+
1
2

[
V(S)

[W − E(S)]2
− V(SA)

[W −ΠD − E(SA)]2

]
, (6)

with W 6= E(S) and W 6= ΠD + E(SA).
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Proof of Theorem 1. Expression (5) is derived directly from the definition of DU(W) using
the utility function U(x) = ln(x), where the DU(W) domain is restricted to a wealth of
greater than max(S). This restriction arises from the limitation of the logarithm function
to positive arguments. Considering that the no-rip-off property of the applied premium
principle is fulfilled [13], E(SC) < Πδ < max(SC), max(S) > ΠD + max(SA). Therefore,
the function DU(W) is only defined for W > Max(S). Applying the second-order Taylor
approximation, (6) is obtained.

In the particular case where there is no deductible, Theorem 1 is still valid by consider-
ing that ΠD = Π and SA = 0 (this is also valid for the rest of the section). Specifically, (5)
and (6) become

DU(W) = E[ln(W −Π)]− E[ln(W − S)], W > max(S), (7)

and

DU(W) ' ln[W −Π]− ln[W − E(S)] +
1
2

[
V(S)

[W − E(S)]2

]
, (8)

respectively.

Theorem 2. For the CRRA utility function with p ∈ N+ and p > 1,

DU(W) =
1

1− p

 ∑
p−1
s=0 (bsE(Ss)− asE(Ss

A))

∑
p−1
s=0 ∑

p−1
j=0 asbjE(Ss

A)E(Sj)

 (9)

with ∑
p−1
s=0 ∑

p−1
j=0 asbjE(Ss

A)E(Sj) 6= 0, being

as = (−1)s
(

p− 1
s

)
(W −ΠD)p−1−s, (10)

bj = (−1)s
(

p− 1
s

)
Wp−1−s. (11)

Proof of Theorem 2. Substituting the CRRA utility function, U(x) = x1−p−1
1−p , in (3),

we obtain

DU(W) =
1

1− p

[
E
[
(W −ΠD − SA)

1−p
]
− E[(W − S)1−p]

]
. (12)

We apply the binomial theorem to (12), (a− b)n = ∑n
s=0(−1)s(n

s)an−sbs, and we define as =

(−1)s(p−1
s )(W −ΠD)p−1−s and bj = (−1)s(p−1

s )Wp−1−s. Then, (9)–(11) are obtained.

From (9), if p = 2, the difference is

DU(W) =
E(S)− E(SA)−ΠD

[W −ΠD − E(SA)][W − E(S)]
, (13)

and, if p = 3, the difference is

DU(W) =
−1
2

[
ΠD − E(SC)

]
2W −

[
(ΠD)2 − E(S2) + E(S2

A) + 2E(SA)ΠD][
(W −ΠD)2 − 2(W −ΠD)E(SA) + E(S2

A)
]
[W2 − 2E(S)W + E(S2)]

. (14)

If there is no deductible, (13) and (14) become

DU(W) =
E(S)−Π

[W −Π][W − E(S)]
(15)
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and

DU(W) =
−1
2
·

[Π− E(S)]2W −
[
Π2 − E(S2)

]
[(W −Π)2][W2 − 2E(S)W + E(S2)]

. (16)

We restrict ourselves to p ≤ 3. This restriction is standard in macroeconomics and
finance (see [23,30] and the references therein).

The decision to insure or not to insure is made on the basis of the sign of DU(W). For
p = 1, no analytical results can be obtained to determine the sign of DU(W). For p = 2 and
p = 3, Propositions 1 and 2 show that the sign of DU(W) depends on the level of initial
wealth, and the wealth intervals are defined, for which, DU(W) is positive.

Proposition 1. For p = 2, DU(W) is not defined when W = ΠD + E(SA) or W = E(S), and

sgn(DU(W)) :=

{
−1, W < E(S) or W > ΠD + E(SA),

1, E(S) < W < ΠD + E(SA).
(17)

Proof of Proposition 1. The numerator of (13) is always a negative value (assuming a
positive safety loading), and the denominator can be rewritten as a function of W, which
is a concave quadratic functions with roots r1 = E(S) and r2 = ΠD + E(SA). Then, the
proposition is proved.

If the decision maker has a CRRA utility function with p = 2, for all kind of deductibles
and different premium principles, when their initial wealth is included in the interval
E(S) < W < ΠD + E(SA), the decision maker will prefer Situation 1, i.e., to insure the risk.
For other values of the initial wealth that are greater than E(S) or less than ΠD + E(SA), the
decision maker will not insure. In fact, as ΠD + E(SA) = E(S) + L, where L = ΠD − E(SC),
i.e., the safety surcharge included in the premium, the decision ultimately depends on the
parameters that define E(S), L (if the mean principle is applied, L = δE(SC), where δ > 0
is the security loading) and the deductible’s parameters (the examples in Section 3 will be
carried out for an absolute deductible of parameter a). Among all of these parameters, the
decision maker only controls those of the deductible, whereas L is controlled by the insurer.
The wealth interval in which DU(W) is positive is widened by the security surcharge and
narrowed if the insured increases their deductible.

Proposition 2. For p = 3, DU(W) is always defined. Let c = E
[
(SA + ΠD)2] − E(S2).

Therefore, if c ≤ 0, sgn(DU(W)) = −1, and if c > 0,

sgn(DU(W)) :=



−1, W >
E[(SA+ΠD)2]−E(S2)

2[ΠD−E(SC)]
,

0, W =
E[(SA+ΠD)2]−E(S2)

2[ΠD−E(SC)]
,

1, W <
E[(SA+ΠD)2]−E(S2)

2[ΠD−E(SC)]
.

(18)

Proof of Proposition 2. The denominator of the second factor of (14) is the product of two
positive quadratic functions with respect to W without roots, and it is always a positive
function. The numerator of the second factor is a linear function with a positive slope with
respect to W being the root r = c

2[ΠD−E(SC)]
. As ΠD > E(SC), sgn(r) = sgn(c), the sign

of DU(W) depends on the sign of c. If c ≤ 0, then r ≤ 0; therefore, the numerator of the
second factor reaches positive values for any W > 0, and, as demonstrated in (14), DU is
negative. If c > 0, then r > 0, and the sign of the numerator of the second factor depends
of the value of W: if W > r, it is positive and DU(W) is negative. If W < r, it is negative
and DU(W) is positive.
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For p = 3, if c ≤ 0 or if c > 0 and initial wealth, W, is greater than
E[(SA+ΠD)2]−E(S2)

2[ΠD−E(SC)]
,

the decision maker obtains a greater utility choosing Situation 2 (not insuring). If c > 0
and W = r, the two situations are indifferent, since they provide the same expected utility.
Otherwise, the decision maker should choose Situation 1. As for p = 2, the interval of
wealth values for which the sign of DU(W) is positive widens with the security surcharge,
but, contrary to what happens for p = 2, this interval also widens if the deductible is
widened. If the mean premium principle is used, ΠD = E(SC)(1 + δ). Let us rewrite c as
follows: c = (1 + δ)2E(SC)

2 + 2(1 + δ)E(SA)E(SC)− E(S2
C)− 2E(SASC). As V(SC) > 0

and Cov(SA, SC) > 0 [31–33], the marginal behaviour with regard to δ is easily determined:
c increases with δ, limδ→∞ c = ∞ and c < 0 if δ = 0.

3. Numerical Application

In this section, we obtain numerical results for DU(W) and comment on the decisions
that the decision maker would take. We consider that the number of claims follows a
Poisson distribution N ∼ Po(λ). From now on, for reasons of simplicity, the part of the cost
paid by the insured in an insurance with a deductible, A(X), and the part of the claim paid
by the insurer, C(X), are denoted as A and C, respectively. Consequently, E(S) = λE(X)
and V(S) = λ(E(X)2 + V(X)). We obtain the corresponding moments of SA and SC by
substituting the moments of X with the A and C moments.

We consider that the deductible applied is absolute. In an absolute deductible, the
insured pays the first a monetary units of each claim X, and the insurer pays the excess
over a, X− a, [34,35]. Then, if an absolute deductible with parameter a ≥ 0 is applied, A
and C are defined in Table 1.

Table 1. Absolute deductible with parameter a ≥ 0.

X A C

X ≤ a X 0
X > a a X− a

The mean principle is used to calculate the premium of the deductible insurance,
hereby ΠD = λE(C)(1 + δ), δ > 0.

In Example 1, the CRRA utility function with p = 1 is used and the behaviour of
DU(W) is analysed depending on the values of the initial wealth (W) and the parameter
of the absolute deductible (a). The same analysis is performed in Example 2 and Example
3 using the CRRA utility function when p = 2 and p = 3, respectively. If p = 2 or p = 3,
the individual claim amount X is exponentially distributed, X ∼ exp(b), b > 0, with a
probability density function of fX(x) = be−bx, E(X) = 1/b, E(A) = 1

b (1 − e−ba) and
E(C) = 1

b e−ba. According to (5), the CRRA utility function refers to when p = 1 can only
be applied to total cost distributions that have a finite maximum value. This implies, in our
case, that the distribution of the individual claim amount is a mixed continuous-discrete
probability distribution, symbolising its maximum value as xmax. In order to be able to
compare the results according to the risk aversion of the decision maker, the parameter of
the mixed exponential, symbolised by bt, will be such that the expectation of the mixed
exponential coincides with that of the non-mixed (1/b).

Unless other values are indicated, such as E(X) = 2, λ = 1 and δ = 0.2.

Example 1. Case p = 1. As mentioned before, X follows a truncated exponential distribution:

fX(x) =

{
bte−btx, x ∈ (0, xmax),

e−btxmax , x = xmax,
(19)
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bt > 0. Hereby, E(X) = 1
bt
(1− e−btxmax ), E(A) = 1

bt
(1− e−bta); E(C) = 1

bt
(e−bta −

e−btxmax ), V(X) = 1
b2

t

(
1− 2btxmaxe−btxmax − e−2btxmax

)
; and V(A) = −2bte−bta − a2e−btxmax

+ 1−e−2bta

b2
t

. If xxmax = 4 and bt = 0.398406, E(X) = 2 as desired. The value of the deductible´s

parameter must be less than the value of the maximum of the claim amount, xmax. In the example,
a < 4. In order to calculate max(S), we can consider that the maximum number of claims is six (as
it accumulates a probability of 99.9917%).

In Figures 1–3, DU(W) is plotted for different values of W > 24 and a < 4 for
several values of a and for different values of δ. We can observe that the sign of DU(W) is
always negative.

30 40 50 60 70 80 90 100
W

-0.010

-0.008

-0.006

-0.004

-0.002

DU

Figure 1. DU(W)δ for a = 0.5, 1, 1.5, 2.5, 3.8.

30 40 50 60 70 80 90 100
W

-0.15

-0.10

-0.05

DU

Figure 2. DU(W)a=0.5 for δ = 0.5, 0.8, 1, 1.2, 2, 3.

Figure 3. DU(W, a).
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We performed a sensitivity analysis, where changes in E(X), λ, δ, xmax or bt did not
alter the result; DU(W) is always negative.

Example 2. Case p = 2. The sign of DU(W) depends on E(S) and ΠD + E(SA). The first
one does not depend on the deductible parameter, E(S) = λ/b, whereas the second one does,
ΠD + E(SA) =

λ+δλe−ab

b . These values for a = 0, 0.5, 1, 1.5, 2, 2.5 are shown in Table 2.

Table 2. E(S) and ΠD + E(SA) for different values of a.

a E(S) ΠD + E(SA)

0 2 2.4
0.5 2 2.31152
1 2 2.24261

1.5 2 2.18894
2 2 2.14715

2.5 2 2.11460

As stated in Proposition 1, DU(W) is always different from zero and is positive when
the initial wealth is between E(S) and ΠD + E(SA), with these values being the asymptotes
of DU(W). DU(W) is represented in Figure 4 as a function of only one variable, the
initial wealth, and, in Figure 5, as a function of two variables, the initial wealth and the
deductible’s parameter.

1.6 1.8 2.0 2.2 2.4

-40

-20

20

40

60

DU

Figure 4. DU(W)δ for a = 0.5, 1, 1.5, 2, 2.5.

Figure 5. DU(W, a).
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Example 3. Case p = 3. From Proposition 2, DU(W) is always defined and its sign depends on
the sign of c. In this case, c(δ, a) = e−2abλ(δ2λ− 2eab(1 + ab− δλ))/b2 and r = (−1− ab +
δλ + 0.5δ2λe−ab)/bδ. It is easy to see that

sgn(c(δ, a)) =


−1, δ ∈ (0, δ∗) or (δ ∈ (δ∗, ∞) and a > a∗(δ)),

0, (δ = δ∗, a = 0) or (δ ∈ (δ∗, ∞) and a = a∗(δ)),

1, δ ∈ (δ∗, ∞) and a < a∗(δ),

(20)

where δ∗ is such that c(δ∗, 0) = 0 and a∗(δ) is such that c(δ, a∗(δ)) = 0 for δ > δ∗. In our
example, δ∗ = 0.73205 and Table 3 includes the values of a∗(δ) for different values of δ > δ∗. In
Figure 6, for c(a), several values of the security loading are represented and Figure 7 shows the
contour plots of c(δ, a). From both figures, the behaviour of the sign of c(δ, a) depending on a∗(δ)
can be verified.

Table 3. a∗(δ) for different values of δ.

δ a∗(δ)

0.8 0.18380
1 0.70347

1.2 1.19304
2 2.92611
3 4.81170

2 4 6 8

-6

-4

-2

2

4

c

Figure 6. c(a) for δ = 0.1, 0.5, 0.8, 1, 1.2, 3.

-

-

-2

0

6

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

2

4

6

8

Figure 7. Contour plots of c(δ, a).
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Regarding DU(W), using Proposition 1, if δ ∈ (0, δ∗) or (δ = δ∗, a = 0) or (δ ∈
(δ∗, ∞) and a ≥ a∗(δ)), sgn(DU(W)) < 0 for all W, and if (δ ∈ (δ∗, ∞) and a < a∗(δ)),

sgn(DU(W)) =


1, W < r,

0, W = r,

−1, W > r.

(21)

In Figures 8–10, DU(W) is plotted in the three mentioned cases and it can be realised
that the sign of DU(W) is almost always negative; it is positive in only a few situations.

2 4 6 8 10
W

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

DU

Figure 8. DU(W)δ=0.1,a=0.5.

2 4 6 8 10

-0.15

-0.10

-0.05

DU

Figure 9. DU(W) for several combinations of δ and a such that δ > 0.73205 and a > a∗(δ).

Figure 10. DU(W, a)δ=1 for a ∈ (0, 0.70347).
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Let us now summarise the decision to insure or not to insure depending on the initial
wealth level, W, taking into account that the analysis of the decision is divided into three
intervals: the low wealth interval for W < 8, which corresponds to W < 4E(S), the interval
of intermediate wealth corresponding to values of W between 4E(S) and 12E(S), and the
high wealth interval for values of W > 12E(S) (see Figure 11).

Figure 11. Sign of DU(W) for W.

This decision depends on the sign of the function DU(W) that is different for different
risk aversions (p = 1, 2 or 3). If p = 1, we can only make decisions for W > 24, and the
decision is always not to insure. For p = 2 or p = 3, the decision is also always not to
insure for W > 8; in other cases, the decision depends on a, δ and W, and is represented in
Figure 12 (red, not to insure; green, to insure).

Figure 12. Sign of DU(W) for W ∈ (0, 8): negative (red), positive (green). The first (second) row of
each block of two rows corresponds to p = 2 (p = 3). The white column and row separate blocks for
several combinations of a = 0.1, 0.5, 1, 2, 4 (row) and δ = 0.5, 0.8, 1, 1.2, 2, 3 (column).

Analysing the low wealth interval, 0 < W < 8, regarding the marginal behaviour with
respect to δ and a, we observe that an increase in δ increases the range of wealth for which
the decision is to insure (green in Figure 12). On the other hand, an increase in a (which
implies that the insured assumes a larger share of each loss) decreases this range.

For values of the initial wealth close to zero, the increase in risk aversion does lead to
the decision to insure. On the other hand, for values of W close to 8, the increase in risk
aversion (from p = 2 to p = 3) is not sufficient to make the decision to insure.

The numerical application presented has made it possible to obtain a pattern of de-
cision maker behaviour as a function of the different parameters that define the model.
Although this pattern corresponds to a specific set of parameter values, these rules for
deciding whether or not to insure are logically applicable for other combinations of param-
eters, and the main conclusions on the effect that W, δ, a and risk aversion p have on the
decision remain valid.
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4. Discussion

To analyse the decision problem of whether or not to insure an insurable risk faced
by an individual, in this paper, we used the CRRA utility function to define the difference
between the expected utilities of the two choices: to insure (with or without deductible) or
not to insure. A theoretical analysis of the sign of this difference permits us to provide a
decision pattern as a function of wealth level, when the risk aversion parameter is a natural
number less than three, which is a standard restriction in macroeconomics and finance.

To determine the decision maker´s choice, we work with expected utilities (see the
seminal work of [19]). Although, as discussed by [36], the dual utility characterised by [37]
could also be used, the expected utility is usually applied as the preference relation for
individuals [38]. Several utility functions have been used in the economic and actuarial
literature, of which, the exponential is the simplest, but the CRRA is a more standard
formalisation of individual preferences within the field of personal financial decision
making [39]. We consider a one-period model so that the decision is made at the beginning
of the period considering only the expected utility of wealth at the end of the period. We
leave open for future research the analysis with a dynamic model, so that decisions made
in one period affect decisions in successive periods.

The theoretical results obtained (see Propositions 1 and 2) show us, given some values
of the parameters of the model, the decision to be taken by the individual according to their
initial level of wealth. This decision pattern is valid for any premium calculation criterion,
any type of deductible and any compound loss distribution, which makes it particularly
robust. One of the main conclusions of the paper is that the initial level of wealth is the
main variable that determines the decision to insure or not to insure so that, for high levels
of wealth, the decision is always not to insure regardless of the risk aversion of the decision
maker. Moreover, the parameters defining the deductible and the premium only have an
influence at low levels of wealth.
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