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Medical imaging, particularly through Wireless Capsule Endoscopy (WCE), has rev-
olutionized gastrointestinal health by capturing intricate details of the digestive tract,
with a focus on identifying potential precursors like polyps. However, labeling vast
and continuous WCE videos for machine learning poses significant challenges due
to its resource-intensive nature. This research explores the realm of active learning
(AL) to optimize WCE image classification, aiming to enhance model performance
with minimal labeled data. Utilizing WCE videos, we established an AL frame-
work that at every cycles selects a video to query for labels. Our study implemented
various sampling strategies, categorized into uncertainty-based and diversity-based
approaches. Initial outcomes with uncertainty-based methods aligned closely with
random sampling, prompting a shift towards diversity-based strategies. Notably,
the cover strategy, especially with its autoencoder variant, and the clustering strate-
gies, both diversity-based, exhibited promising results. Despite these advancements,
discerning the superior strategy between cover with autoencoder and clustering ne-
cessitates further exploration. This study shows the potential of AL in WCE image
classification while highlighting areas for future investigation.
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Chapter 1

Introduction

1.1 Motivation and Goals

Medical imaging plays a crucial role in the early detection and diagnosis of various
diseases, contributing significantly to improved patient outcomes. With the grow-
ing efforts in deep learning research, more concretely in computer vision tasks, deep
learning algorithms have quickly become a methodology of choice in the analysis
of medical images (Litjens et al., 2017). In the realm of gastrointestinal health, Wire-
less Capsule Endoscopy (WCE) (Iddan et al., 2000) has emerged as a non-invasive
and patient-friendly technique, capturing high-resolution images and videos of the
digestive tract. One of the challenging tasks within this domain is the identifica-
tion and classification of polyps (Jin et al., 2020) (Mamonov et al., 2014), which are
potential precursors to gastrointestinal malignancies.

To effectively train supervised machine learning algorithms, access to expansive
labeled datasets is necessary—a task that can sometimes be challenging. Labeling
data is an expensive and time-consuming process, often requiring an expert to com-
plete it. While this reliance is commonly assumed, it takes on particular significance
in the context of Wireless Capsule Endoscopy (WCE). In WCE, the acquired data
comprises lengthy videos, often spanning hours and capturing intricate details of the
gastrointestinal tract. The sheer volume and continuous nature of these recordings
amplify the complexity of the data labeling process, rendering it a highly resource-
intensive and costly endeavor.

Active learning (AL) (Settles, 2009a) is a machine learning paradigm where the
algorithm is actively involved in selecting the most informative data points for train-
ing. The fundamental premise of AL is rooted in the notion of information gain.
Rather than passively accepting a predefined set of labeled instances, the algorithm
actively seeks out samples that present a higher degree of uncertainty or complex-
ity. By doing so, AL aims to reduce the overall volume of labeled data required for
effective model training.

This project focuses on the development of an AL technique tailored for the clas-
sification of images obtained from WCE videos. The primary objective is to design
an approach that prioritizes the labeling of videos, optimizing the model’s learning
process. The underlying hypothesis is that judiciously chosen samples, guided by a
well-defined metric, will lead to enhanced model performance with minimal labeled
data.

1.2 Document Structure

This project follows a structure that goes bottom-up. It starts by introducing some
background knowledge on WCE and AL and then continues to present the strategies
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attempted to accomplish the objectives that have been previously mentioned. It is
organized as follows:

1. Background: This chapter aims to present the basic concepts that are neces-
sary to develop this project. We start by explaining what WCE is and why it’s
important for looking inside the digestive tract using videos. Then, we talk
about AL, a smart way for computers to learn, especially when there’s a lot of
information to process or the cost of labeling data is very high. We show how
these concepts set the stage for the rest of the project.

2. Method: Building upon the foundational knowledge established in the previ-
ous chapter, this chapter explains the strategies deployed to achieve the prede-
fined objectives. It provides an in-depth exploration of the strategies that have
been proposed, the reasoning behind them and their implementation.

3. Results: Contains the work environment and the frameworks used during the
whole development of this project. It also contains a discussion on the ob-
tained results. The proposed strategies are tested and a clear visualization of
the results is shown.

This chapter presents the experiments we have performed, explaining the dif-
ferent strategies that have been implemented and offering visualizations that
help understand which strategies have provided better results.

4. Conclusions and future research: Brief summary of the project. It comments
on whether the objectives have been met or not and attempts to reach some
conclusions based on the experiments that have been performed.

It also contains a discussion on possible improvements and mentions some
ideas to further expand the project in the future.



Chapter 2

Background

This chapter serves as a foundational exploration, providing the background knowl-
edge required to comprehend the motivation and implementation behind the strate-
gies that will be explained in the following chapters.

2.1 Wireless Capsule Endoscopy

The exploration and diagnosis of GI disorders have traditionally relied on a series
of specialized procedures, each designed to inspect specific segments of the GI tract.
Gastroscopies primarily focus on examining the upper digestive system, including
the esophagus and stomach, providing insights into conditions such as ulcers, gas-
tritis, and tumors within this region. Small-bowel endoscopies, on the other hand,
extend the examination to the small intestine, enabling the detection of abnormali-
ties such as tumors, ulcers, and signs of inflammatory bowel diseases like Crohn’s
disease. Meanwhile, colonoscopies serve as the gold standard for evaluating the
large intestine and rectum, facilitating the detection of polyps, colorectal cancer, and
other colorectal conditions. These procedures are all endoscopic, meaning that they
requires the use of an endoscope; a long tube with a camera attached to it, making
them invasive procedures that often cause discomfort to the patient. Furthermore,
the need for multiple procedures to inspect different parts of the GI tract compli-
cates the diagnostic process, potentially delaying treatment and increasing patient
inconvenience.

Wireless Capsule Endoscopy, introduced by Iddan et al., 2000, serves as a proce-
dure for comprehensive imaging of the entire gastrointestinal (GI) tract. It consists
of a swallowable pill-sized capsule that contains a camera, light source, lens, radio
transmitter and battery that allows for it to be propelled along the whole GI tract
while capturing images and then transmitting them to an external receiver for their
posterior analysis. Through this procedure, WCE offers a patient-friendly alterna-
tive to conventional methods and has become the standard technique for the diag-
nosis of GI abnormalities such as bleeding, detection of polyps and lesions, small
bowel obstructions, Crohn’s disease and other critical conditions.

While WCE represents a significant leap forward in GI diagnostics, offering nu-
merous advantages over traditional methods at the time of the procedures, it is not
without its own limitations. The videos recorded by the capsule can have a dura-
tion of up to 12h (Vasilakakis et al., 2019) since this is not a targeted exploration, but
a complete recording of the GI tract, therefore requiring additional post-analysis.
Although these videos usually have a low frame rate, if we suppose that a 2 frames-
per-second capsule is used, this means that a single video can contain up to 86400
images, and this number can get even larger with higher frame-rate capsules. The
analysis of the videos is also complicated by the inability to control the direction of
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the camera while in the GI tract. This causes frames to exhibit a significant vari-
ability in camera orientation and perspective (Segui et al., 2016). This complexity of
the variability in frames combined with the duration of a single WCE study, renders
video analysis by physicians a challenging and labor-intensive task.

For this reason, the application of Al techniques has garnered increasing atten-
tion for detecting abnormal images in WCE, thereby aiding in the analysis of these
videos. Deep learning, in particular, has significantly enhanced the performance of
WCE. To assist physicians in diagnosis, deep learning models have been employed
to develop Computer-Aided Detection (CAD) systems. These systems automatically
identify gastrointestinal abnormalities, including bleeding (Hajabdollahi et al., 2018)
(Aoki et al., 2020) (Saraiva et al., 2021), polyps or tumors (Gilabert et al., 2022) (Falin,
Haihua, and Ning, 2022) (Saito et al., 2020), ulcers (Aoki et al., 2019) (Klang et al.,
2020) (Ribeiro et al., 2022), and other pathologies (Ciaccio et al., 2010) (Malagelada
et al.,, 2012). Still, to enhance the effectiveness of CAD systems, a vast amount of
labeled data is essential for training deep learning models. Consequently, the labo-
rious task of data annotation by experts remains integral.

2.2 Active Learning

In the realm of deep learning, the efficacy and accuracy of models largely depend on
the quality and quantity of labeled data used for training. Labeled data forms the
foundation upon which neural networks and other advanced algorithms learn to
recognize patterns, make predictions, and execute complex tasks. However, anno-
tating data is a labor-intensive and time-consuming process that often necessitates
domain expertise to ensure both accuracy and relevance. Recognizing these chal-
lenges, Active Learning (AL) emerges as a methodology wherein the most informa-
tive unlabeled data points are selected for a human to review and label, aiming to
maximize model improvement efficiently. AL is based on the idea that a model will
make better predictions if it can chose which samples to learn from (Settles, 2009b).

2.2.1 AL Framework

An AL application begins with a small set of labeled data and a larger set of unla-
beled data. Initially, the model is trained using the labeled data and subsequently
employed infer on the set of unlabeled data. The Learner then assigns priority scores
to the data points within this unlabeled set, subsequently selecting the data point
with the highest priority score for labeling. An expert then labels this selected data
point, and augments the labeled dataset. This iterative process continues until a pre-
defined performance threshold is achieved. A visual representation of this frame-
work is depicted in Figure 2.1. Although this is the general idea of how AL works,
there are different frameworks to actively learn in.

'u_‘___ 3 ___,-«" Train | Infer on 7 Select samples [:(l
model unlabeled data | to label o
Labeled Model Learner ‘ » \
_ Data | Expert
— Add labeled
T samples

FIGURE 2.1: Graphical representation of the basic AL framework.
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Streaming framework

In stream-based AL, the learner receives one sample at a time and determines if the
instance should be labeled by an expert or not. This approach is cost-effective as
it evaluates only individual data points sequentially, making it well-suited for real-
time scenarios. However, a significant limitation of this framework is its potentially
constrained performance, given that data points are evaluated sequentially and de-
cisions are made independently for each one for them, without considering broader
context among instances.

Makes
deulslon

Observe an Query the [:f

instance |nstance o
‘ Learner }—b ,.
Expen

Discard the
instance

FIGURE 2.2: Stream-based AL framework.

Pooling framework

In pooling-based AL, the learner receives a batch of N instances from the unlabeled
data set and identifies the most informative instance within the batch for expert
labeling. Unlike stream-based AL, where decisions are made on individual data
points in a sequential manner, pooling-based AL evaluates the entire set of unlabeled
data points during each iteration. While this approach demands more memory and
may be less cost-effective due to increased computational requirements, it effectively
addresses some of the performance limitations associated with stream-based AL by
considering a broader context and facilitating more informed decisions.

Selects most .
Observes Query the ()
instances |nstance —
‘ Learner }—b ,.
Expen
informative

instance

FIGURE 2.3: Pool-based AL framework.

Due to the extended duration associated with model training and the relatively
minimal impact of individual data points on model behavior, pooling-based AL is
frequently employed in scenarios where batches of data are submitted for labeling
instead of just one. This batch-based approach allows for more efficient utilization
of computational resources and expert annotation efforts, as it enables the model to
leverage collective insights from multiple data points simultaneously.

2.22 AL Sampling Strategies

In AL frameworks, one of the most crucial components is the learner. As previ-
ously discussed, the learner is responsible for assigning priority scores to unlabeled
data points and determining whether expert review and annotation are necessary.
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Various strategies can be employed when designing the learner, with two primary
categories being uncertainty sampling and diversity sampling strategies.

Uncertainty sampling

Uncertainty sampling centers on selecting samples for which the current model ex-
hibits the highest level of uncertainty. Typically, when a supervised machine learn-
ing model makes predictions, it provides confidence metrics or probabilities asso-
ciated with those predictions. The underlying principle of uncertainty sampling is
to seek expert annotation for instances where the model’s uncertainty is greatest,
with the belief that obtaining feedback on these challenging samples will enhance
the model’s performance in such cases.

In the case of classification problems, the predictions of a model are a probability
distribution, so every prediction is between 0 and 1, and the individual predictions
for each class add up to 1. Let Y = {y1, ..., yu} be the set of available classes in
an multi-class clasification problem with n classes. Let U denote the collection of
unlabeled instances of data. Then, some common uncertainty measures are:

¢ Least Confidence sampling: measures the distance from the most confident
prediction to 100% confidence. Then, this sampling strategy selects the next
instance to query for labels following:

x* = arg max (1 — max P(y|x)> ,
xel yey

where P(y|x) denotes the probability that instance x has label y. Consequently,

this strategy measures uncertainty as the difference between 1, 100% confi-

dence, and the most confidently predicted label for each item.

* Margin of Confidence sampling: measures the difference between the top two
most confident predictions. The margin of confidence sampling strategy se-
lects the next data point in an AL algorithm by solving the following problem:

Xt = argmaX<1 — (P(ymlx) — P(yp|x))> /

xel
where y,, = argmax, ., P(y|x) and y, = argmax, .y, P(y[x).

¢ Ratio of Confidence sampling: measures the ratio between the top two most
confident predictions. The ratio of confidence, following the same notation as
the margin of confidence strategy, solves the following problem:

* P(yP|x)
X = argmaXX ————.
S Plymlx)

¢ Entropy sampling: measures the difference between all predictions. Entropy
is a concept borrowed from information theory. It is frequently used as a mea-
surement of impurity, disorder or randomness. In this case, it measures the
disorder of a probability distribution. Entropy sampling selects the next point
to query for labels by solving;:

. — Lyey P(ylx) log(P(y|x))
X" = arg max 1 .
xeld ng(n)
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Figure 2.4 shows three heatmaps that illustrate the differences between least con-
fident, margin of confidence and entropy sampling strategies in a three-class classi-
fication problem. Notice that in all three cases, the most informative data points are
found in the center of the triangles, that is where the posterior label distribution is
most uniform. Correspondingly, the least informative data points are at the three
corners, since this is where one of the classes has a very high probability assigned.
The main differences between these three strategies lie in the rest of the probability
space. Looking at the heatmap of entropy sampling, it shows that all the outer side
edges are coloured as yellow or green, indicating that data points where only on of
the classes is highly unlikely are not considered informative. On the other hand,
the least confident and margin confidence strategies consider these data points to be
informative for the model since it is not able to distinguish between the remaining
two classes.

0.8 £
‘_
0 02

(A) Least confident (B) Margin confidence (c) Entropy

FIGURE 2.4: Comparison of uncertainty-based sampling functions in
a three-class classification setting. Taken from (Settles, 2009b).

Diversity sampling

Diversity sampling selects data-points in order to maximize diversity, so it targets
gaps in the current model’s knowledge. There are four different strategies for diver-
sity sampling:

* Model-based outliers: this method involves identifying samples that produce
low activations or responses in the model’s logits and hidden layers. Low
activation implies that the model finds these samples confusing or ambiguous
because they might represent data points on which the model lacks sufficient
information or has not been trained adequately.

¢ Cluster-based Sampling: unsupervised machine learning techniques like clus-
tering (e.g., k-means clustering) are employed to partition the feature space of
the data into distinct clusters. Once clusters are formed, samples are selected
from each cluster to ensure diversity.

* Representative Sampling: focuses on selecting samples that are most indicative
or representative of the target domain you aim to model, relative to the existing
training data. This method considers the distribution and characteristics of the
target data when selecting samples.

* Real-world diversity: emphasizes sampling strategies that prioritize fairness,
inclusivity, and representation of various demographic, cultural, or socio-economic
groups in the data, trying to support real-world diversity.
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In contrast to uncertainty sampling strategies, for which there exist some spe-
cific metrics that clearly measure uncertainty in predictions, diversity sampling ap-
proaches are more exploratory and diverse in nature. While the strategies mentioned
above suggest different applications of diversity sampling, they do not prescribe
specific methods due to the focus of diversity sampling on addressing "unknown
unknowns."
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Method

3.1 Dataset

For this research, we had access to 45,851 Wireless Capsule Endoscopy (WCE) im-
ages. These images are derived from 23 distinct WCE videos, with each video con-
taining approximately 2,000 images. All these images were labeled and categorized
into one of six classes: bubbles, high turbidity, large blob, wall, wrinkles, and unde-
fined. Sample images representing each class can be viewed in Figure 3.1.

Wrinkles

Bubbles HighTurbid LargeBlob

Undefined Wall Wrinkles

.

LargeBlob Undefined Wall Wrinkles

FIGURE 3.1: WCE samples images and their corresponding labels.

Bubbles HighTurbid LargeBlob

Bubbles HighTurbid

Analysing the number of images of each of these classes for every patient allows
to detect bowel motility problems. Bowel motility refers to the synchronized move-
ments of the stomach and intestine. Functional gastrointestinal disorders, such as
functional dyspepsia and gastritis, are often associated with poor bowel motility, so
the study of these classes can help in detecting these health issues.

3.1.1 Train-test Split

Given the availability of 23 videos, the data was partitioned as follows:

¢ Training set: This set consists of 13 videos. Initially, one video serves as the
labeled dataset, while the remaining 12 videos are treated as unlabeled. These
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unlabeled videos are the candidates for querying to obtain their respective la-
bels.

¢ Validation set: This set encompasses 5 videos. Its primary purpose is to assess
the efficacy of the model and validate whether the proposed strategies yield
favorable outcomes in terms of performance enhancement.

¢ Test set: This set also consists of 5 videos. The videos in this set are not used by
the model in any way and are separated only to evaluate the selected sampling
strategy.

3.2 Problem Statement

As it was previously mentioned in Chapter 1, our project focuses on establishing an
AL strategy tailored for WCE image classification. To achieve this goal, we execute
multiple training cycles. Initially, we begin with a small subset of the data labeled
(or, in our context, considered labeled). Subsequently, in each cycle, we incremen-
tally incorporate additional data into the labeled dataset, enabling us to retrain the
model from the ground up. Our primary emphasis lies in the selection of new data
during this iterative process, as we explore various strategies to determine which ap-
proach optimizes model performance more efficiently. Figure 3.2 shows a diagram
for the basic flowchart of our AL algorithm. This diagram shows in orange the step
in which we use different strategies to test our AL method.

Start

cycle in
range(cycles)

Train madel with
labeled training data

}

Ewvaluate model on
validation data

!

Select new data
(AL - sampling
strategy)

!

Update labeled
training data

FIGURE 3.2: AL algorithm flowchart.
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As discussed in Chapter 2, when operating within an AL framework, utiliz-
ing batches of data for labeling is frequently favored over selecting individual data
points. In this research, our focus is on devising strategies that guide us in identify-
ing the most appropriate video to query for labeling, optimizing the efficiency and
effectiveness of the AL process. Therefore, whenever a new video is selected, about
2000 images are added to the labeled training images set.

To assess the effectiveness of a strategy, we are benchmarking it against a ran-
dom sampling approach. In this comparison, during each cycle where a new video
selection is required, a video is randomly chosen from the available list. When eval-
uating alternative strategies, we analyze the rate of enhancement in the model’s per-
formance using various performance metrics. Figure 3.3 presents three distinct plots,
each illustrating the progression of a specific metric throughout the cycles of the AL
algorithm. Consequently, our objective is to identify a strategy that produces more
favorable outcomes than the random sampling approach. Specifically, for the loss
metric, a superior strategy would yield a curve below that of the random strategy,
whereas for accuracy and AUC metrics, an effective strategy would result in a curve
surpassing that of the random strategy.

loss metrics/accuracy metrics/AUC

—— random —— random 0.96 4 —— random

0 2 4 6 8 10 12 0 2 4 6 8 10 12 [} 2 4 6 8 10

FIGURE 3.3: Plots showing the evolution of the model’s performance
through the different cycles of the AL algorithm.

3.3 Base Model

In testing all the proposed strategies, we have kept the foundational model within
the AL algorithm consistent. Specifically, we utilized the EfficientNet architecture
(Tan and Le, 2019), a convolutional neural network design introduced in 2019 aimed
at enhancing both model accuracy and computational efficiency. The original publi-
cation presented a series of eight EfficientNet models, ranging from B0 to B7, distin-
guished by varying parameter counts. For this project, we have used the Efficient-
NetB3 model for our analyses and evaluations.

Also, the EfficientNetB3 model used is pre-trained with the ImageNet dataset
instead of using randomly initialized weights.

3.4 Greedy Strategy

We begin with a straightforward greedy strategy. In each cycle, we test all available
videos to see which one improves the most the model’s performance. Once we pin-
point the most impactful video, we add it to our labeled dataset, aiming to boost
the model’s accuracy and effectiveness. Figure 3.4 illustrates the flowchart of this
strategy.
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Start of greedy
selection strategy

Find video that
improved the most
the model's
periormance

Add video to labeled
training videos return video ID
dataset (temporarily)

l |

/ -..."'\\
Train model (" End of greedy

‘.selection strategy ./

Evaluate model
Save performance
results

I

FIGURE 3.4: Flowchart of the greedy strategy.

To determine the video that most significantly enhances the model’s performance,
we employ the Area Under the Curve (AUC) score, specifically derived from the Re-
ceiver Operating Characteristic (ROC) curve. The AUC score quantifies the model’s
ability to distinguish between the positive and negative classes across various clas-
sification thresholds. Essentially, the ROC curve plots the True Positive Rate (TPR)
against the False Positive Rate (FPR), offering a graphical representation of the model’s
discriminatory power. A higher AUC score indicates superior model performance,
with a perfect classifier yielding an AUC of 1, while a random classifier would yield
an AUC of 0.5. The reasoning behind prioritizing the AUC metric over conven-
tional accuracy metrics lies in its robustness, particularly for datasets characterized
by significant class imbalances. Accuracy metrics may be misleading in such scenar-
ios, whereas the AUC metric provides a more comprehensive evaluation, making it
more suitable for datasets where class imbalances could potentially skew results and
misrepresent actual model performance.

The reason we are using this greedy selection strategy is pretty straightforward:
we want to see the best we can get out of our model using the videos we have. By
picking the video that gives us the most improvement each time, we are aiming to
push our model to its limits with the data we have got. This approach helps us figure
out how well our model can perform under the best circumstances possible, given
our current setup. In simpler terms, we're trying to see the highest performance
we can achieve with our model and dataset before considering any other sampling
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strategies, thus obtaining some sort of upper bound on the performance improve-
ment that we are looking for with the strategies we devise.

Using the greedy selection approach is logical as it aims to maximize our model’s
performance with the available videos. However, this method is not practical for
real-world applications due to its significant computational demands. Furthermore,
it would not be possible since in a real-case scenario we would not have access to
the labeled data immediately. Each time we select a video, the need to train an en-
tirely new model consumes extensive time and resources. Therefore, while it offers
insights into the model’s potential, it becomes impractical for larger datasets or more
intricate tasks. In essence, while effective for assessing peak performance, its com-
putational requirements make it unsuitable for routine use.

3.5 Uncertainty Strategies

This section introduces various uncertainty-based strategies that have been imple-
mented, offering insights into the motivation behind their adoption.

3.5.1 Logits Strategy

The logits sampling strategy aims to identify the video with the highest uncertainty
by assessing the least confidence in the model’s predictions across its frames. In this
approach, each video’s uncertainty is evaluated by computing the average least con-
fidence (highest uncertainty) of its frames. Specifically, for every frame in a video,
it looks at the label assigned to it and with what probability. Then, the average of
these probabilities is done. Ultimately, the video exhibiting the highest average un-
certainty, indicative of the model’s least confidence in its predictions across frames,
is selected. Following the same notation as in Chapter 2, let Y = {y1, ..., ¥, } be the
set of available classes in a multi-class classification problem with 7 classes. In our
case n = 6. Let U denote the collection of unlabeled instances of data. To adapt the
notation to the structure of our data, U = {Uj, ..., Uy} where each U; is a video

and is defined as a set of frames {x]@ |x](i) € U;}. Then, the calculation used by this
strategy to choose the next video to query for labels is given by:

us = argminL ) <max P(y\x(i))>
u;eld ‘ l‘ X(i>€u1' yey

This sampling strategy uses an uncertainty score inherently generated by the
model itself. Therefore, the strategy works under the assumption that the model
possesses a proficient capability for self-evaluation. The core hypothesis behind this
approach is that prioritizing novelty is crucial. This implies that the model benefits
significantly from encountering and grappling with more complex and challenging
instances. Rather than reinforcing existing knowledge or patterns, the strategy pri-
oritizes the continual incorporation of novel concepts and complexities.

3.5.2 Margin Strategy

The margin sampling strategy is based on discerning the uncertainty of a model’s
predictions by evaluating the gap between the probabilities of the most probable
class and the next highest probable class for each data instance. In essence, this
approach emphasizes the distinction or "margin" between the top two predicted
classes, aiming to highlight instances where the model’s decision is less definitive.
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Following the same notation that was defined in the previous section, let Y = {y;, ...
be the set of available classes in a multi-class classification problem with n classes.
Let U denote the collection of unlabeled instances of data. To adapt the notation to
the structure of our data, U= {l,...,Uy} where each U, is a video and is defined

(i)
video to query for labels by solving the following problem:

as a set of frames {x ]x € U}. Then this sampling strategy determines the next

U* = arg min — P( xM)y—p x® ,
B yuy Z ( (ynlx™) = Py, <))

where y,, = arg max, .y P(y|x®) and Yp = argmax,cy,, P(y|x®).

Whereas the logits sampling strategy solely focuses on the predicted probability
of the most likely class, the margin strategy extends its evaluation by also taking into
account the predicted probability of the second most probable class. By incorporat-
ing this additional dimension, the margin strategy provides a more informative and
comprehensive assessment of the model’s confidence levels across its predictions,
although it still doesn’t consider the third to the nth confidences. This approach
becomes particularly valuable when dealing with overconfident models. By scruti-
nizing the margin between the top two predicted classes, the strategy can effectively
identify instances where the model’s confidence might be misleadingly high, but
with little difference to the confidence with which another class has been predicted.

This strategy is intuitive in its approach. It categorizes examples with larger mar-
gins as straightforward for the model, as it effectively distinguishes them from the
next most probable class. Conversely, examples with narrower margins are deemed
more ambiguous, providing the model with opportunities to refine its distinctions
between two closely competing classes. Therefore, this strategy focuses in ambigu-
ous regions of the feature space and aims to better separate these areas.

3.5.3 Entropy Strategy

The entropy sampling strategy uses the concept of entropy from information theory
to determine the next video to query for labels. Entropy is a measure that represents
the amount of information needed to “encode” a distribution (Settles, 2010). Again,
we follow the same notation as in the previous sections, so this sampling strategy
selects the next video by solving the following problem:

U* = argmax -— ) ( Y P(ylx") log( (y\x(i)))>/

U;eu | i|x(i)eui yeY

Where the logits and margin strategies consider only one or two most prob-
able classes for sampling, entropy sampling considers the confidence awarded to
all classes available. Entropy provides a quantitative measure of the uniformity or
spread of the predicted class probabilities. Instances with low entropy have pre-
dicted class probabilities that are concentrated on one or a few classes, indicating
that the model is more confident in its prediction for these instances. Conversely, a
higher entropy suggests a more uniform distribution of probabilities, meaning that
predicted class probabilities are spread out across multiple classes, indicating uncer-
tainty or ambiguity in the model’s prediction.

/yn}
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3.6 Diversity Strategies

This section presents a range of diversity-based strategies that have been imple-
mented, providing an understanding of the rationale for their incorporation.

3.6.1 Cover Strategy

Following the idea proposed in (Gilabert et al., 2023) the cover strategy employs
embeddings of data points to quantify the "diversity" they introduce to the labeled
dataset. To initiate this process, embeddings for the labeled data are computed,
forming the foundation for constructing a KDTree based on these embeddings. Sub-
sequently, for each video, embeddings are computed for all its frames. Utilizing the
KDTree, the strategy determines the distances from these video frame embeddings
to their 30 closest neighbors within the labeled dataset. By aggregating these dis-
tances, the average is calculated for each frame. To determine the overall diversity
contribution of a video, the mean distance is derived from the averaged distances
of its constituent frames. Ultimately, the strategy identifies the video that exhibits
the highest mean distance as the one to be incorporated next, thereby emphasizing
diversity in the labeling process.

The cover strategy is designed with a specific objective in mind: to pinpoint re-
gions within the embedding space that remain unexplored or inadequately repre-
sented by the existing labeled dataset. By leveraging this approach, the strategy
aims to augment the coverage of the labeled data. Essentially, it prioritizes the incor-
poration of data points that reside farthest from the current boundaries of the labeled
space. In doing so, the strategy seeks to enhance the diversity and richness of the la-
beled dataset, ensuring a more comprehensive representation across the embedding
landscape.

Embedding calculation

To derive embeddings for the data points, an intermediary model is used and plays
an important role in the results of this strategy. Two distinct methodologies have
been employed for this purpose. Firstly, the initial approach harnesses the layer
immediately preceding the final dense layer equipped with the softmax activation
function. This layer is extracted from the model trained on the most recent pool of
labeled data.

Conversely, the second approach, uses an autoencoder model to generate em-
beddings for all available data points, encompassing both labeled and unlabeled
instances. Autoencoder are an unsupervised learning technique that take advantage
of neural networks for the task of representation learning. More concretely, autoen-
coders are a neural network that compress the knowledge from the initial output and
then aim to reconstruct it based on its compressed version. As we have mentioned,
autoencoders follow an unsupervised learning technique, since they are trained by
minimizing the reconstruction error, which measures the differences between the
original input and the consequent reconstruction. In short, autoencoders are known
for their ability to compress and reconstruct data, they provide a holistic embedding
that encapsulates the intrinsic characteristics of each data point.

There are major differences between these two approaches that may favor one
resulting in a better performance than the other. The first strategy recalculates new
embeddings in each cycle using the most recently trained model. Consequently, the
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embedding space from which the cover strategy selects the subsequent video for la-
beling undergoes changes whenever fresh data integrates into the labeled dataset.
This approach may exhibit some initial unreliability within the AL algorithm, par-
ticularly when the model operates with limited data. In contrast, the utilization of
the autoencoder model ensures consistency in embeddings throughout the entirety
of the AL algorithm. Since autoencoders are trained in an unsupervised way, their
performance does not depend on the amount of labeled data that there is available.
Therefore, the autoencoder model is trained independently from the AL framework
and is used at the beginning of the AL algorithm to obtain the embeddings of all
the data points, providing reliable and constant representations of the data points.
This consistency facilitates the strategy in identifying areas to enhance the model’s
understanding, relying on a more dependable and steadfast latent space.

3.6.2 Cloud Strategy

The cloud strategy is another diversity-based sampling strategy that leverages data
point embeddings. The strategy starts by computing the embeddings of the labeled
data and uses a dimension reduction technique to condense these embeddings into
a 2-dimensional space. Then, using these 2-dimensional embeddings the convex
hull of all the labeled training data points is determined. These steps are repeated
for every video: the embeddings of the frames of the video are obtained and the
same dimension reduction technique is used to reduce them to 2-dimensional em-
beddings. Then, the convex hull of the data points of the video is computed. The
convex hull of the video frame is compared to the one of the labeled data points by
computing the intersection are between both convex hulls. The cloud strategy con-
siders that the smaller the intersection area, the more informative the video will be
for the model.

To refine the cloud strategy’s performance and prevent it from being overly in-
fluenced by outliers, specific hyperparameters are incorporated:

¢ sample_size: This parameter determines the portion of frames from a video
used to compute its convex hull. A value of 1 implies all frames are considered,
while fractional values mean a proportionate random selection.

¢ num_samples_per_video: This parameter dictates how many times the convex
hull for a video is computed. Each iteration uses a fresh set of sampled points.
The intersection of the convex hull obtained for each sample is done to obtain
the final convex hull of the video.

This iterative approach helps mitigate potential distortions caused by outlier frames.
By focusing on consistent convex hulls across multiple samples, the strategy empha-
sizes areas where a video likely contains significant frames rather than being skewed
by isolated outliers.

The objective of the cloud strategy aligns closely with that of the cover strategy
but employs a slightly different approach. While the cover strategy focuses on max-
imizing distances to determine the most informative data points, the cloud strat-
egy emphasizes the spatial area by leveraging convex hulls. Similar to the cover
strategy’s aim to expand the convex hull of the labeled data to enhance the model’s
understanding, the cloud strategy seeks to amplify this area to achieve a similar out-
come.
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Embedding calculation

To determine embeddings within the cloud strategy, it adopts the same techniques
used in the cover strategy. Specifically, the first approach leverages the last dense
layer prior to the final softmax activation function from the model trained on the
most recent labeled data. Conversely, the second approach harnesses an autoen-
coder model. This autoencoder is instrumental in deriving embeddings for all avail-
able data points, encompassing both labeled and unlabeled data.

Dimensionality reduction step

In the dimension reduction phase, the cloud strategy employs two distinct tech-
niques: Principal Component Analysis (PCA) and Uniform Manifold Approxima-
tion and Projection (UMAP) (McInnes et al., 2018).

PCA operates on the principle of linear dimensionality reduction by identify-
ing axes, termed principal components, that maximize the variance within the data.
Its primary objective is to condense the data into a lower-dimensional space while
retaining the maximum amount of variability present. On the other hand, UMAP
delves into non-linear dimensionality reduction. Rather than merely focusing on
variance, UMAP emphasizes preserving both the local and global structures inher-
ent in the data manifold. This distinction makes UMAP particularly adept at captur-
ing intricate relationships and patterns within data sets that might not be discernible
through linear methods alone.

3.6.3 Clustering Strategy

The clustering strategy adopts a distinct methodology to categorize data points,
leveraging the capabilities of an autoencoder model to generate embeddings for both
labeled and unlabeled data. Once these embeddings are derived, an unsupervised
clustering approach, specifically K-means or Gaussian Mixture Models (GMM)), is
employed to cluster these data points based on their similarities. This clustering en-
ables a structured representation of the data, grouping together points that exhibit
similar characteristics. Given the distribution of the labeled data in the clusters and
the distribution of the frames of a video, a score is computed using a pre-defined
metric that determines the next video to query for labels.

The core objective behind utilizing these clustering methods within the strategy
is to test the hypothesis that videos with frames in a large number of clusters are
more informative than videos with most of the frames in just a few clusters.

Clustering strategies

In order to cluster the embeddings, we have used two different clustering algo-
rithms: KMeans and Gaussian Mixture Models.

The main difference between K-Means and Gaussian Mixture Models (GMMs)
lies in their assumptions and resulting outcomes. Visually, Gaussian Mixtures have
more flexible decision boundaries due to their ability to form elliptical shapes using
covariance matrices, whereas K-Means strictly creates circular boundaries. Addi-
tionally, GMMs are probabilistic in nature. This means that for each data point,
GMNMs provide a quantifiable measure, indicating the likelihood or confidence of its
association with a particular cluster. In contrast, K-Means offers definitive assign-
ments, placing each data point squarely within one cluster without ambiguity. These
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distinctions underscore that while both methods aim to segment data into clusters,
they employ different foundational principles and methodologies.

By employing both strategies, we aim to discern which approach aligns more
effectively with the inherent characteristics and structure of our data.

Scoring metrics

With regards to the scoring metrics employed in this strategy, three distinct metrics
have been implemented to evaluate the distribution and diversity of videos across
various clusters. The following notation will be used to explain the scoring metrics:
let Y = {y1,...,yn} be the set of available classes in a multi-class classification
problem with 7 classes. Let U denote the collection of unlabeled instances of data.
To adapt the notation to the structure of our data, U = {Uj, ..., U, } where each U;

is a video and is defined as a set of frames {x]@ |x]@ € U;}. LetC = {Cy,...,Cs}
denote the set of clusters. We will denote by Ujc; as the set of frames of U; that have
been assigned to cluster C;.

* Entropy Metric: This metric is based on the same concept as the entropy sam-
pling strategy explained in Section 3.5.3. It leverages the concept of entropy to
measure the uniformity of the distribution of the frames of a video in the dif-
ferent cluster to determine if a video is scattered in several clusters or if most
of its frames can be found in a few clusters. Following this scoring metric,
the video to query for labels at each cycle is determined with the following
formula:

|Uijic | |Ujic|
U* = argmax | — "_ 1o /
me |~ 2l s\

* Gini Metric: This metric leverages the concept of the Gini impurity. The Gini
impurity is a measure used to evaluate how pure a set of data is in terms of its
class labels. A Gini impurity of 0 indicates perfect purity (all items in the set
belong to the same class). Whereas, a Gini impurity of 1 indicates maximum
impurity (the items are evenly distributed across all classes). Therefore in this
case we are looking for videos with a high Gini impurity, since this means that
frames are distributed across several clusters. Following this idea, this scoring
metric uses the following problem to determine the next video to query for
labels:

\Ujc, | ?
U =argmax [1— ) |ll-|]
1

u;eu CI'EC

* Log Metric: This metric combines cluster weights with the logarithmic trans-
formation of video frame distributions, aiming to prioritise videos with frames
in many cluster, while emphasizing clusters with lower representation in the
current pool of labeled data. The following formula shows the problem solved
by this metric to choose the next video to query for labels:

1+ ’ui\Cj’ ’Cj\labeled|

u* = arg max Z wjlog <]C|) , where w; = 1— W
ujel cjeC ] j

By calculating the log transformation of the proportion of frames per cluster
and summing them up, it prioritizes videos that have frames spread across



3.6. Diversity Strategies 19

multiple clusters. Then, by adding the w; weights, whose values are based
on the proportion of labeled data in the corresponding cluster, it gives more
importance to clusters with a lower ratio of labeled data points, Therefore, it
aims to maximise the diversity included by the AL algorithm at every cycle.

Each of these metrics uses a different concept to score the videos, while still main-
taining the same objective: to prioritise videos with frames belonging in a variety
of clusters, and allowing us to see which concept is better suited for our problem in
specific.
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Chapter 4

Results

4.1 Working Environment

This project has been developed mostly in Jupyter notebooks. We did our coding
in Python and used tools like TensorFlow, Keras, and NumPy for tasks and graphs.
Since running an AL algorithm is highly computationally intensive, we have had
access to a GPU, specifically an NVIDIA GeForce RTX 3090 to speed up our work
and enhancing our ability to efficiently train and optimize deep learning models.

4.2 Experiments

This section outlines the experiments conducted in this research and their outcomes.
We intend to showcase the results from implementing all the strategies introduced
in Chapter 3 and provide comparisons between the outcomes of each strategy.

As it was explained in Section 3.1.1, our training set consists of 13 videos. Since
one is used as the initial labeled dataset, there are 12 remaining videos, meaning that
in our AL framework we can perform up to 12 cycles. In Figure 3.3 we showed the
results obtained with the maximum of 12 cycles with the random strategy. Given
that performance typically stabilizes after 8 cycles, we limited subsequent experi-
ments to this number to optimize computational efficiency.

Furthermore, the performance curves presented in this section represent the av-
erage of three trials for each strategy. This means that the AL algorithm was executed
three times for each strategy, and the graphs reflect the mean results from these trials.

421 Greedy Strategy

The initial strategy we implemented is the greedy approach. This method estab-
lishes an upper limit for the performance we aspire to achieve with a sampling strat-
egy that will still remain feasible for real-world applications. Figure 4.1 illustrates
the performance evolution curves of the model across the cycles of the AL algorithm.
This plot shows that where the greedy strategy rapidly increases the model’s perfor-
mance in the first 3 cycles and then quickly stabilizes, the random strategy makes
the model’s performance improve more slowly. Therefore, for the rest of the exper-
iments we will be using the curve obtained with this strategy as an upper bound
of the performance evolution curve that can be reached with the data set available,
and the curve obtained with the random sampling strategy as a lower bound of the
performance evolution curve of a sampling strategy that we will consider successful.
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FIGURE 4.1: Plot of the performance evolution curves with respect to
the AUC metric of the greedy and random strategies.

4.2.2 Uncertainty Strategies

Next, we implemented some uncertainty-based metrics. This section presents the
results obtained with some of the most common uncertainty-based sampling strate-
gies in AL and that have been explained in Section 3.5.

Figure 4.2 shows a comparison of the performance evolution curves obtained
with the three different uncertainty-based sampling strategies that have been imple-
mented: logits, entropy and margin sampling. As we can see, we can not express
with confidence that one strategy results in a better performance than the other two
since the three curves grow at a similar speed throughout the cycles in the AL algo-
rithm. Still, we can see that the margin and logits sampling strategies have a slightly
faster improvement in cycles 1 through 4. However, by cycle 4, the entropy sampling
curve begins to closely align with the other two strategies.
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FIGURE 4.2: Plot of the performance evolution curves with respect to
the AUC metric of the uncertainty-based strategies.

Given that we don’t have a distinct strategy that stands out as the clear winner
among the three implemented approaches, in Figure 4.3 compare each of them to the
upper and lower bounds set by the greedy and random strategies respectively. In
all three plots we can see that neither strategy gives a performance in between these
bounds, all of them having a similar evolution to the one obtained by the random
strategy.

One potential reason why the uncertainty-based sampling strategies might not
exhibit a performance similar to the greedy or even superior the random sampling
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FIGURE 4.3: Plots of the performance of each of the uncertainty-based
strategies against the performance curves of the random and greedy
strategies.

strategy is likely because of the videos themselves. While certain videos might regis-
ter as highly uncertain to the model, their frames could present a consistent and lim-
ited variety. Given the design of our AL framework, where we select entire videos
rather than individual frames, such videos could receive elevated uncertainty scores
if their predominant frame type isn’t represented in the current labeled dataset. Con-
sequently, adding such videos to the labeled pool would not significantly augment
the model’s knowledge. Fundamentally, incorporating nearly identical frames from
these videos offers minimal new insights, questioning the value of adding about
2000 similar frames to our labeled dataset.

4.2.3 Diversity Strategies

Given the conclusions drawn from the previous section, we then explored diversity-
based sampling strategies. With this, we aimed to avoid the observed issue with
uncertainty-based sampling strategies where the selected videos predominantly con-
tained similar frames, thereby contributing minimal new information to the model’s
understanding.

To address this, we introduced three new sampling strategies: cover, cloud, and
clustering techniques. Each strategy was developed with a distinct rationale and
aims to address the previously highlighted issue in its own unique manner.

Cover strategy

The cover strategy attempts to solve the issue by using distance in the embedding
space as a measure of diversity with respect to the data that can already be found in
the labeled pool of data. As it has already been mentioned, this strategy leverages
the information from the embeddings of the frames.

Initially, we used the model trained on the updated labeled data to obtain an
intermediate model that predicts embeddings of the frames rather than the specific
classes. However, this approach could produce unreliable embeddings, especially
during the early stages of the AL algorithm when the model hasn’t accumulated suf-
ficient training data. To address this, we develop an alternative approach: instead of
generating embeddings with the most recent model, we use an autoencoder model.
This ensures consistency in the embeddings throughout the entire AL process. This
variant of the cover sampling strategy is the cover autoencoder strategy.

In Figure 4.4, we present a comparison of the performance evolution curves be-
tween the cover strategy and the cover autoencoder strategy. Clearly, the cover au-
toencoder approach demonstrates superior results. Specifically, the cover strategy
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employing the autoencoder rapidly improves the model’s performance within the
initial three cycles, followed by stabilization. In contrast, the standard cover strat-
egy requires more cycles to achieve comparable efficiency and stability.
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FIGURE 4.4: Plot of the performance evolution curves with respect to
the AUC metric of all the cover strategy variants.

Figure 4.5(A) displays the performance evolution curve of the cover strategy,
compared with the upper and lower bound curves established by the greedy and
random strategies, respectively. It’s evident that while the cover strategy outper-
forms the random approach marginally, the improvement isn’t substantial, as their
curves intersect and overlap over several cycles. In contrast, Figure 4.5(B) showcases
the performance evolution curve of the cover autoencoder sampling strategy, again
in comparison with the curves of the greedy and random strategies. Notably, the
cover autoencoder strategy demonstrates significantly enhanced performance over
the random strategy. Moreover, its curve closely aligns with the upper boundary set
by the greedy strategy, reaching comparable performance levels at certain cycles.
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FIGURE 4.5: Plots of the performance of each of the cover strategy
variants against the performance curves of the random and greedy
strategies.

Cloud strategy

Although the cover sampling strategy does target videos that are diverse with re-
spect to the data already in the pool of labeled data, it does not take into consid-
eration the amount of diversity that is being added. For this reason, we devise the
cloud sampling strategy. The idea behind this strategy is to use the intersection area
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between the labeled data and the frames of the video, instead of using only the dis-
tance.

In Figure 4.7 we show the performance of the four variants of the cloud strategy.
The plot to the left shows the performance evolution curves of the cloud variants
that use PCA for the dimension reduction of the embeddings. We can observe that
in this case, both sampling strategies, cloud and cloud autoencoder have a similar
curve. Then, on the plot on the right we show the performance evolution curves of
the cloud strategy variants that use UMAP for the dimension reduction. It’s evident
by observing this plot that the cloud strategy that uses UMAP with the autoencoder
model results in an infinitely better performance improvement than the same strat-
egy that does not use the autoencoder model. Where the cloud UMAP autoencoder
sampling strategy improves the model’s performance throughout all the cycles of
the AL algorithm, the cloud UMAP strategy stops improving the model’s perfor-
mance in cycle 4.
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FIGURE 4.6: Plots of the performance evolution curves with respect
to the AUC metric of all the cloud sampling strategy variants.

Following these results, Figure 4.7 compares the curves of the three best per-
forming variants; cloud, cloud autoencoder and cloud UMAP autoencoder strate-
gies, to the upper and lower bound performance evolution curves obtained with the
greedy and random sampling strategies respectively. Regrettably, the outcomes we
observed did not align with our initial expectations. The three plots show that nei-
ther the cloud strategy nor its variants, have an evolution better than the random
sampling strategy. We notice however, that the cloud sampling strategy with the
UMAP and autoencoder model has the best performance out of the four sampling
strategies of this type, being the closest one to match the performance of the random
strategy.

A possible explanation for the outcomes observed with the cloud strategy, and
all its variants, could be attributed to the dimension reduction of the embeddings.
Specifically, when employing the autoencoder model, the embeddings are condensed
from a dimension of 256 down to just 2. In contrast, utilizing an intermediate layer
from the last trained model reduces the dimensions from 64 to 2. This significant
reduction in dimensions implies that a considerable amount of information is lost
during this process. Such loss in critical information might be a leading factor con-
tributing to the suboptimal performance of the cloud strategy.

However, despite the subpar results from the cloud strategy, when comparing
the performance curves of the cover and cloud strategies, both of which incorporate
variants that use the autoencoder model for obtaining data point embeddings, a no-
table trend emerges. Strategies employing the autoencoder model for embeddings
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FIGURE 4.7: Plots of the performance of the cloud, cloud autoencoder
and cloud UMAP autoencoder sampling strategies (from left to right)
against the performance curves of the random and greedy strategies.

consistently match or outperform those utilizing the intermediate model from the
last trained iteration.

Clustering strategy

The final strategy we implemented is the clustering strategy. This approach aims not
only to introduce diversity into the labeled data pool but also to assess the degree of
diversity being incorporated. The basis of this strategy is the clustering step, where
all the embeddings, obtained from labeled and unlabeled data, is clustered. For
these experiments, we have clustered the data into 50 clusters.

The clustering strategy has two main factors that can affect the strategy: the clus-
tering strategy and the scoring metric. In Figure 4.8 the left plot shows the results
obtained with the three different scoring metrics using KMeans as the clustering
algorithm. The plot on the right shows the same results with a Gaussian Mixture
Model for the clustering step of the sampling strategy. From these two plots, we
can observe that using either clustering strategy, all three scoring metrics have an
extremely similar performance, overlapping and crossing throughout all the cycles
of the AL algorithm.
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FIGURE 4.8: Plot of the performance evolution curves with respect to
the AUC metric of all the cover strategy variants.

Observing minimal differences in the performance evolution curves across the
three distinct scoring metrics, Figure 4.9 compares the performance trends of the
KMeans and Gaussian Mixture Model in the clustering step. This figure contrasts
the evolution curves of the clustering strategy using the log scoring metric with both
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clustering methods. Notably, the resulting curves closely resemble each other, show-
ing nearly identical performance increments for both strategies in each cycle. Conse-
quently, based on these findings, we cannot definitively conclude that one clustering
method outperforms the other within this specific context and with our dataset.
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FIGURE 4.9: Plot of the performance evolution curves with respect to
the AUC metric of the clustering strategy with the log scoring metric.

Ultimately, given the almost zero variance in the performance evolution curves
between the two clustering algorithms, we use the results from the KMeans cluster-
ing algorithm to evaluate the success of the clustering sampling strategy. Our aim
is to determine if this strategy can outperform the results achieved with the random
sampling strategy and approach the performance curve of the greedy sampling strat-
egy. For this purpose, Figure 4.10 compares the performance evolution curves of the
clustering sampling strategy using KMeans and the three different scoring metrics;
entropy, gini and log, to the upper and lower bounding curves given by the greedy
and random sampling strategies respectively. These plots shows that the clustering
sampling strategy, with either scoring metrics, clearly outperforms the random sam-
pling strategy and almost matches the evolution obtained with the greedy sampling
strategy.
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FIGURE 4.10: Plots of the performance of the clustering sampling

strategy with the entropy, gini and log scoring metrics (from left

to right) against the performance curves of the random and greedy
strategies.

Best performing strategies comparison

Having explored various sampling strategies and dissected their outcomes, two
sampling strategies have distinctly emerged with superior performance evolutions
compared to others. To discern the most effective strategy for our objectives, we
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compare these top-performing strategies — namely, the cover autoencoder and the
clustering with KMeans using the log scoring metric — through a plot showcasing
their performance evolution curves. While the various iterations of the clustering
strategy showcase comparable results, we've opted for the KMeans variant with log
scoring metric in our visualization to maintain clarity in the readability of the results
for the reader.

In Figure 4.11, we present this comparison alongside the greedy and random
sampling strategies. It's evident that the curves closely mirror the performance tra-
jectory of the greedy strategy, showing consistent improvements with each cycle.
This suggests that both strategies effectively serve as viable sampling methods for
our AL algorithm. Yet, given the striking similarity in their curves, it’s challenging
to assert the superiority of one over the other; rather, both emerge as commendable
sampling approaches.
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FIGURE 4.11: Plot of the performance evolution curves with re-

spect to the AUC metric of the best performing sampling strategies:

cover autoencoder and clustering with KMeans and log scoring met-

ric against the performance curves of the random and greedy strate-
gies.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this research, our main goal was to explore into different sampling strategies
within AL, specifically within the realm of WCE image classification. Our aim was to
establish an AL framework and explore the idea that by carefully selecting training
samples, we could enhance the model’s performance with minimal data.

To achieve these objectives, we utilized 23 WCE videos. Initially, we defined
the operation of our AL algorithm. For this research, we opted to design an AL
framework that consistently selects entire videos for querying, rather than individ-
ual frames that might span across different videos.

Next, we implemented a random sampling strategy and used it as our baseline
to benchmark the progression and effectiveness of the AL algorithm. Additionally,
to determine the peak performance enhancement achievable with the given data, we
incorporated the greedy sampling strategy, setting it as our upper performance limit
to strive for.

From the sampling strategies we introduced, we can categorize them into two
primary types: uncertainty-based and diversity-based. Within the uncertainty-based
category, we explored three distinct strategies: logits, entropy, and margin. As dis-
cussed in Chapter 4, the outcomes from these strategies fell short of our expectations,
often only matching the performance improvements seen with the random sampling
strategy.

Believing that the issue might be related to selecting videos with high uncertainty
but minimal diversity, thus not significantly enhancing the model’s understanding,
we explored three diversity-based sampling strategies: cover, cloud, and clustering.
Among these approaches, we observed improved results. While the cloud sampling
strategy didn’t outperform the random strategy, the cover and clustering strategies
stood out. Specifically, the cover strategy, particularly with the autoencoder version,
demonstrated notable results. Meanwhile, across the clustering strategy’s various al-
gorithm and scoring metric variants, we consistently observed successful outcomes,
often rivaling the performance evolution seen with the greedy strategy.

While we’ve identified AL sampling strategies that meet our objectives, distin-
guishing between the efficacy of the cover with autoencoder and clustering strate-
gies remains challenging. To definitively determine the superior strategy, additional
research is necessary.

5.2 Future Work

Our AL algorithm selects whole videos for labeling in each cycle, reaching the up-
per performance limit with the greedy strategy. However, there’s room to explore
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a different approach. Instead of choosing entire videos, we can consider selecting
individual frames from different videos in each cycle. Future studies can investi-
gate into optimizing AL strategies for this frame-level approach, offering a chance
to improve the performance evolution curves achieved by our video-level approach,
with the potential to enhance the efficiency and effectiveness of AL in WCE images
classification.
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Appendix A

Source Code

A.1 Github Repository

All the code that was develop for this research can be found in the following GitHub
repository
https://github.com/sarabase/ActiveLearning-WCE

The github repository contains the following files:

¢ ActiveLearning-Benchmarks.ipynb: executes the active learning framework
using benchmarking strategies: random and greedy. It serves as a baseline
comparison for other sampling strategies.

¢ activelearning_utils.py: contains auxiliary functions for the active learning
algorithm’s functionality. It includes functions for plotting results, as well as
functions specific to the random and greedy sampling strategies.

¢ ActiveLearning-Uncertainty.ipynb: implements the active learning framework
with uncertainty-based sampling strategies: least confident, margin and en-

tropy.

* activelearning_uncertainty.py: contains the auxiliary functions for the uncertainty-
based sampling strategies.

¢ ActiveLearning-Cover.ipynb: implements the active learning framework with
the cover sampling strategy and its variants.

* activelearning_cover.py: provides the necessary functions for the cover sam-
pling strategy and its variants.

¢ ActiveLearning-Cloud.ipynb: implements the active learning algorithm with
the cloud sampling strategy and it variants.

e activelearning_cloud.py: contains the necessary functions for the cloud sam-
pling strategy and its variants.

¢ ActiveLearning-Clustering.ipynb: executes the active learning algorithm with
the clustering sampling strategy and test three different scoring metrics: en-
tropy, gini and log.

e activelearning_clustering.py: contains the necessary functions for the cluster-
ing sampling strategy variants.


https://github.com/sarabase/ActiveLearning-WCE
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Note that due to the sensitive nature of the dataset, which contains clinical infor-
mation of real patients, the data with which the experiments have been performed
cannot be uploaded to this repository.

Also, since this is a non-publicable project, the repository is private. If you re-
quire access to the GitHub repository, please contact me at sbardase7@alumnes.ub.
edu.


sbardase7@alumnes.ub.edu
sbardase7@alumnes.ub.edu
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