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Data drift is a problem in machine learning (ML) where characteristics of the
input predictors changes over time, leading to model degradation. However, the
effects of data drift on ML models built from human exposome data have not been
well described yet. This study aimed to investigate data drifts for exposome data
in ML models of diabetes risk. 7,521 participants with a diagnosis of diabetes from
the UK Biobank, along with a proportional control group from 2006 to 2010 were
used to train several baseline ML models for diabetes prediction. A second cohort
of 4,007 participants attending the follow-up assessment period from 2012 to 2013
was used to assess potential data drifts over time. When evaluated on the second
cohort, significant performance degradation was found in all baseline models (i.e.
average precision dropped by 15%, f1-score by 12%, recall by 15%, and precision
by 10%). A suite of drift detection tests were run on the best performing baseline
models to identify possible signatures of three distinct kinds of data drift: covariate
drift, label drift, and concept drift. Utilizing both multivariate and univariate data-
distribution based detection methods, covariate drift was identified in features such
as Birth Year, BMI, Frequency of Tiredness, and Lack of Education. A comparison
of prevalence rates for time-ordered batches of the population found no severe la-
bel drift. Nonetheless, gradual label drift could not be ruled out. A model-aware
concept drift detection method was employed, monitoring temporal changes in nor-
malized Shapley contributions for the model’s input features. This test found drift in
abnormal changes in feature contribution when predicting on the second cohort for
the Birth Year feature and near alerts in multiple others. This study shows the po-
tential for data drift acting as a driver of model degradation in exposome-based ML
models and highlights the need for further research into the traceability of clinical
AI/ML solutions.
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Chapter 1

Introduction

The field of healthcare has witnessed a revolution in recent years with the applica-
tion of machine learning (ML) techniques, offering immense potential for disease
prediction and improving patient care. Among the numerous applications, disease
prediction has garnered significant attention due to the transformative impact that
early detection and preventive measures can have on long-term prognoses (Uddin
et al., 2019). One particular disease that has been a focus for AI/ML predictive mod-
els is diabetes. Diabetes is recognized as a major global health crisis with increasing
prevalence (Saeedi et al., 2019). A substantial proportion of diabetes cases remains
undiagnosed, particularly in the Global South. Early detection of diabetes is crucial
for initiating patient-centered management strategies to enhance glycemic control
and minimize complications (Chatterjee, Khunti, and Davies, 2017), thereby high-
lighting the need for high-performing predictive models.

ML models developed for diabetes prediction have demonstrated remarkable
accuracy, enabling early detection, timely intervention, and personalized treatment
(Jaiswal, Negi, and Pal, 2021). However, a common challenge encountered by ML
solutions is the lack of trust from stakeholders. AI/ML solutions are often perceived
as complex, opaque, and difficult to comprehend, utilize, and trust in critical clin-
ical applications. Efforts have been made in recent years to address concerns sur-
rounding clinical AI/ML models. Developmental and transition guidelines have
been established to ensure the trustworthy and ethical development and integration
of such tools (Lekadir et al., 2021; Char, Abràmoff, and Feudtner, 2020; McCradden
et al., 2022). These guidelines emphasize principles of best practice to foster com-
plete stakeholder trust, including fairness, universality, and traceability. Fairness
aims to mitigate discriminatory group and individual bias, as well as prevent the
reinforcement or amplification of existing disparities. Universality encourages stan-
dardization to ensure compatibility across diverse settings. Traceability necessitates
transparency in model design, including proper documentation of data collection
and utilization throughout the model’s lifecycle, along with regular monitoring for
any potential model degradation.

One crucial assumption made during the AI/ML learning process is that the
training data adequately represents both current and future relationships. However,
if the training data is derived from non-stationary distributions, there is a risk of
rapid model degradation as predictions are made further into the future (Hoens,
Polikar, and Chawla, 2012). This phenomenon is referred to as data drift, where
the statistical properties or relationships of the input data change over time, leading
to a mismatch between the training and future data distributions. Even though all
sources of data risk data drift, some may be less robust against it. Precisely the
exposome, as it spans a wealth of information from environmental exposures to
lifestyle and dietary choices, may experience more temporal drift reflecting changes
in cultural norms and emerging technologies. There has been limited investigation



2 Chapter 1. Introduction

conducted regarding the stationarity of exposome data nor the temporal impact on
exposome-based model performance. For exposome data, data drift can manifest in
various forms, such as shifts in patient demographics, changes in healthcare poli-
cies, advancements in medical technologies, or even seasonal variations. Regardless
of the source, data drift poses a significant threat to the performance and reliabil-
ity of ML models, potentially resulting in erroneous predictions and compromised
patient outcomes.

Understanding exposome-based ML models’ susceptibility to data drift is cru-
cial for ensuring their effectiveness and maintaining initial predictive power over
time. In this thesis, various exposome-based diabetes risk-predictive baseline mod-
els were trained and evaluated using the UK Biobank data set. The performance
on two evaluations sets were analyzed, the first coming from the same time period
but consisting of participants assessed at locations the training data omitted and
the second consisting of assessments conducted between two and three years after
the final training assessment. A significant drop in performance was found in all
baseline models between the former and the latter. Multiple types of analysis were
conducted to identify the drivers of this model degradation including multivariate
and univariate drift detection methods (covariate drift), a performance-aware detec-
tion method using Shapley feature importance analysis (concept drift), and an anal-
ysis of time-ordered diagnosed prevalence rates of diabetes within the dataset (label
drift). While no significant label drift was found, possible instances of covariate and
concept drift were identified.

All code used for data prepossessing, cohort selection, model development, and
drift analysis is provided here. Due to grant agreements, the data used is only avail-
able via application to UK Biobank.

https://github.com/Pbrosten/exposome_data_drift/blob/main/
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Chapter 2

Preliminaries

The information in this section forms a foundation upon which this thesis was built.
The primary focus of this section is predominantly Bayesian statistics, probability
distribution comparison, and the topic of data drift. Most definitions are drawn
from various well regarded texts on these subjects. The reader is expected to have
a general understanding of statistics and machine learning. Readers well versed in
the subjects of type of data drift and methods of their detection may skip ahead to
Chapter 3 and simply refer back to the prior sections when needed.

2.1 Probabilistic Underpinnings

2.1.1 Random Variables and Probability

A random variable X : S → ΩX, is a function from a sample space S to an outcome
space ΩX. If the image of a random variable is countable, like a binary variable
where ΩX = {0, 1}, we say X is a discrete random variable. In the case that the our
outcome space is non-numeric, e.g. ΩX = {dog, cat, bird}, we refer to it as a cate-
gorical random variable. When the image is uncountably infinite, such as ΩX = R,
then X is called a continuous random variable. For a random variable, X, we refer to
its probability distribution as p(X) with the following requirements:

1. 0 ≤ p(X = x) ≤ 1, ∀x ∈ ΩX and

2. ∑x∈ΩX
p(X = x) = 1.

2.1.2 Probability Distributions

Joint Probability Distribution

Given two random variables X and Y, we define the joint probability distribution of
the two events as follows:

p(X, Y) = p(X|Y)p(Y) = p(Y|X)p(X). (2.1)

This decomposition is often called the chain rule. Given a joint probability distri-
bution, we can account for the influence of all but one variable of choice by comput-
ing the marginal distribution. This consists of summing over all possible states y ∈ ΩY
for the random variable Y. This operation is called marginalization and is formally
described as follows:

p(X) = ∑
y∈ΩY

p(X|Y = y)p(Y = y). (2.2)
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Conditional Probability

When looking at more than one event, X and Y for example, it can be useful to con-
sider the probability of observing state x of X given that we have already observed a
certain state of Y. This is called the conditional probability of X given Y and is formally
denoted as

p(X|Y) = p(X, Y)
p(Y)

. (2.3)

Note that we enforce that for p(X|Y), p(Y) ̸= 0.

2.2 Comparing Distributions

There are many ways to analyze and compare distributions. For this thesis, focus on
two. One that is used when handling categorical features and another when dealing
with continuous distributions.

2.2.1 Continuous Distributions

For this investigation we use the Wasserstein distance, also known as the Earth Mover’s
distance, when comparing continuous distributions. Given a random variable X and
two sampling of that variable XP and XQ, the Wasserstein distance between the two
samples is precisely the area between the two samples’ cumulative density functions
F̂P(x) and F̂Q(x). The one-dimensional Wasserstein distance (Panaretos and Zemel,
2019) is as follows

W1(XP, XQ) =
∫

R
|F̂P(x)− F̂Q(x)|dx. (2.4)

Intuitively, the Wasserstein distance describes the total amount of "work" needed
to change one distribution into the other. This is aptly visualized if one replaces the
continuous distributions with piles of dirt. In this context, the Wasserstein distance
would characterize the solution to the mass transport problem of moving shovels of
dirt from one pile to the other until the two dirt mounds are identical. This example
is the genesis of the name: Earth Mover’s distance.

2.2.2 Categorical Distributions

A characteristic of categorical variables is that there is no intrinsic distance between
members of the outcome space. What is the distance between the labels dog and
cat? For this reason, we can not use the distance metrics which require continuity
in the outcome space, such as the Wasserstein distance, when comparing categorical
distributions. In order to find an appropriate metric, we look to information theory.
Specifically, an symmetrized extension of the Kullback-Leibler divergence.

Kullback-Leibler Divergence

As with all our distribution comparison methods, the Kullback-Leibler divergence,
or relative entropy, quantifies the difference between two probability distributions.
The KL divergence accomplishes this by capturing the amount of excess Shannon-
information gained by modelling a given probability distribution using a second ref-
erence distribution. Shannon-information characterizes the overall uncertainty and
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information content of a probability distribution. More precisely, given distributions
P and Q of a categorical feature X, KL divergence is defined as

DKL(P||Q) = ∑
x∈X

P(x) ln
(

P(x)
Q(x)

)
. (2.5)

where P(x) and Q(x) are the probability mass functions of P and Q respectively
(MacKay, 2003).

Jensen-Shannon Distance

The main draw back of the KL divergence is that, because it is non-symmetric, it is
not a distance measure. Hence, we will use the Jensen-Shannon distance when com-
paring categorical distributions. The Jensen-Shannon distance is the square root of
the Jensen-Shannon divergence, which symmetrizes the KL divergence. The JS di-
vergence also benefits from always being bounded, only taking values between 0
and 1, where a divergence of 0 means perfect similarity between distributions and 1
is complete dissimilarity. JS divergence symmetrizes the KL divergence by comput-
ing the KL divergence from each distribution with respect to the average of the the
two, then takes the average of both divergences. Formally,

DJS(P||Q) =
1
2

DKL(P||M) +
1
2

DKL(Q||M) (2.6)

where M = 1
2 (P + Q). The JS distance is defined as the square-root of the JS diver-

gence. It benefits from being both symmetric and a proper distance metric. It has
shown been shown to be robust against changes in support, meaning it is a good
metric to capture drift when novel labels have appeared.

2.3 Data Drift

Given the diversity of terminology within the literature, it is important to be specific
about what we define as data drift. For the sake of illustration, let us assume that
we have perfect knowledge about the classification task of predicting a label y given
data X. We train a classification model for this task at time t, using data from the
joint distribution Pt(X, y). Now consider we use the model at inference time t + i.
We say that data drift has occurred between t and t + i if:

Pt(X, y) ̸= Pt+i(X, y). (2.7)

This is broad definition as there are multiple factors which may drive data drift.
The chain rule from 2.1 can give us a better insight into the drivers of data drift.

2.3.1 Covariate Drift

The detection of data drift does not always necessitate that our previously learned
model will no longer perform as expected. covariate drift is a prime example of this
and occurs when the data drift is driven by a change in the marginal distribution of
X. Formally put, covariate drift occurs when

Pt(X) ̸= Pt+i(X). (2.8)
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(A) KDE plot compares pt(X) and pt+i(X). (B) Prevalence plot compares pt(y) and pt+i(y).

(C) Scatter plot with classification boundary.
Compares pt(y|X) and pt+i(y|X).

FIGURE 2.1: Example of covariate drift where the classification
boundary will no longer capture the relationship between the data
and labels. Two time instances are shown, time = t and t + i. The
initial time = t instance with class 1, class 2, and the learned classifi-

cation boundary is overlaid with the time = t + i instance.

In Figure 2.1 we can see an example of covariate drift. Initially, a classification
boundary between the two classes is learned and does a perfect job at differentiat-
ing the two clusters. However, when moving from time t to t + i, we see that the
distribution of the second class has shifted towards the first class. Notice in Figure
2.1c that the original linear classification boundary no longer perfectly partitions the
two classes. The example in Figure 2.1 would show reduced classification perfor-
mance if the original boundary was continued to be used. This is a example of model
degradation.

Benign covariate drift, also known as virtual drift, refers to covariate drift which
has no meaningful effect on a model’s inference power. This means that there is a
restriction added to the definition of covariate 2.8.

Pt(X) ̸= Pt+i(X) and Pt(y|X) = Pt+i(y|X). (2.9)

Returning to our example in Figure 2.1, an case of benign covariate drift could be
when the two classes drift apart such that the original classification boundary still
performs well in its task. This is shown in Figure 2.2. During the occurance of virtual
data drift, the remodelling of the problem may not always be necessary. However,
just as in any other instance of detected drift, analysis should be conducted to learn
more about the factors driving the drift.



2.3. Data Drift 7

(A) KDE plot compares pt(X) and pt+i(X). (B) Prevalence plot compares pt(y) and pt+i(y).

(C) Scatter plot with classification boundary.
Compares pt(y|X) and pt+i(y|X).

FIGURE 2.2: Example of benign covariate drift where the classifica-
tion boundary continues to capture the relationship between the data

and labels.

2.3.2 Label Drift

Label drift describes the event when the underlying distribution of targets begins to
change overtime, however the distribution of X knowing its target remains stable.
Formally, this mean

Pt(y) ̸= Pt+i(y) and Pt(X|y) = Pt+i(X|y). (2.10)

A possible cause of label drift could be a shift in the prevalence of one or more
classes. Figure 2.3 shows a reduction of the prevalence of class 1 between time t
and t + i. Notice that, during label drift, while there is very little change in p(X)
and p(y|X), the shift in the label distribution could still lead to a reduction in per-
formance of an AI/ML model. This could happen if the model has learned a bias
towards the past label distribution at time t.

2.3.3 Concept Drift

One of the most difficult types of drift to identify, concept drift occurs when the distri-
bution of the input data remains stable but the governing relationship between the
features X and the targets y is no longer the same. Given that ML and AI models
trained on data X at time t will attempt to learn the relationship P(y|X), data drift of
this type almost certainly leads to degradation in model performance as the patterns
the model has learned to make inferences is no longer descriptive of the relation
between the data X and the targets y.
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(A) KDE plot compares pt(X) and pt+i(X). (B) Prevalence plot compares pt(y) and pt+i(y).

(C) Scatter plot with classification boundary.
Compares pt(y|X) and pt+i(y|X).

FIGURE 2.3: Example of label drift from time t to t + i.

Concept drift is characterized by the following:

Pt(y|X) ̸= Pt+i(y|X) and Pt(X) = Pt+i(X). (2.11)

2.4 Drift Detection

There have been multiple approaches to data drift detection. The predominant tech-
niques can be split into two primary subtypes: data-distribution based and performance-
based, also referred to as error rate-based, approaches (Bayram, Ahmed, and Kassler,
2022). Each have their own specific benefits and drawbacks.

2.4.1 Data-Distribution Analysis

Data-distribution based detection approaches put their focus squarely on the data
being seen by a given AI/ML model. Through the use of distance measures, they
estimate the similarity between data distributions in distinct time-windows. If the
distance measure indicates that two distributions are sufficiently dissimilarity from
one another, drift is detected. Intuitively, two distributions being significantly dis-
similar from one another leads us to believe that the two sample distributions being
compared did not come from the same parent distribution. This means that using
models trained on old data may perform worse when asked to make inferences on
more recent samples.

A benefit of analyzing the data itself is that there are a host of well defined and
theoretically sound analysis techniques and metrics for this task. The comparison
of sampled distributions is a long standing task within the subject of statistics and
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for this boasts a numerous tools for conducting the analysis. For the purpose of
this thesis we focus on the Jensen-Shannon distance and the Earth-Mover’s distance (see
Section 2.2).

Data-distribution detection methods also work equally well on both labeled and
unlabeled datasets, as there is not consideration of the specific model trained on said
data. This allows for earlier drift detection in the event that ground-truth collection
lags behind data acquisition. This is a common problem when implementing risk
predictive models in the clinical setting.

However, these detection techniques are not infallible. There are two major
drawbacks that need to be considered when applying a data-distribution based drift
detector. The first is such detection techniques perform best when we have perfect
knowledge of the underlying distributions that our data is sampled from. As this is
impossible in most practical instances, all analyses are conducted between samples
and thus are approximations of the true population distribution. Additionally, given
that no model performance is being accounted for in these analysis techniques, there
is an increased susceptibility to benign covariate drift, as discussed in Section 2.3.1,
leading to a heightened risk of false-positive drift detection.

Univariate Analysis Techniques

When conducting a univariate analysis of a dataset, X = (X1, X2, . . . , Xn) where Xj
is a random variable, we consider each feature Xj in isolation. For the purpose of
conducting data-distribution drift analysis, this means a direct comparison of distri-
bution of a feature at time t, with the distribution of the same feature at time t + i.
We are checking to see if there is covariate data drift in each of the dataset’s features.
This query takes the form

pt(Xj)
?
= pt+i(Xj) (2.12)

and is made for all Xj in our dataset X.
We often find ourselves handling datasets with heterogeneous data types, thus

we need methods for comparing both categorical and continuous distributions. In
the univariate case, there is many robust statistical tools for comparing distributions
and determining their dissimilarity (see Section 2.2).

Multivariate Analysis Techniques

It is often the case that given a dataset, X = (X1, X2, . . . , Xn), the random variables Xj
are not independent of one another. In other words, there are complex relationships
which require subsets of X to be considered in unison. This is were shifting the level
of analysis from the individual variables, to the dataset as a whole becomes very
useful. For a toy example where a dataset consists of two variables which are highly
positively correlated. Now consider that at some point in time, the two features
switch from positive to negative correlation but both are still sampled from the same
distribution individually. This is a complex covariate drift which only manifests
when viewing all the features as they relate to one another. As we can see in Figure
2.4, univariate analysis of the two feature distributions would not be able to detect a
substantial difference between the blue and red datasets.

A novel approach to drift detection on the global level (considering inter-variable
relationships) is introduced in the drift detection and monitoring python package
NannyML (NannyML (release 0.8.6) 2023). This method consists of splitting comparing
two time period’s distributions via PCA reconstruction error. A time ordering of the
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FIGURE 2.4: Example of drift which is only detectable by multivariate
analysis. Source: (Nuyttens, 2020).

two distribution is enforced with the former being dubbed the reference set and the
latter the analysis set. A PCA is learned using the reference set, then a estimation for
the expected reconstruction error is calculated by batching the reference set in time.
The reconstruction error is defined as the average Euclidian distance between a data
point and the reconstructed position after being projected into and out of the PCA
latent space. The PCA projection and reconstruction is applied to each reference
batch. This process is never lossless which produces a strictly positive measurement.
The mean and variance of these reference reconstruction errors are used to estimate
what an expected reconstruction error should be, given the sample is pulled from
the distribution that the PCA learned.

The same reconstruction process can be applied to the analysis distribution. If
the analysis reconstruction error is significantly different from the expected recon-
struction error, then there is evidence of a change in distribution structure between
the two time periods. The PCA reconstruction method has been shown to detect the
covariate drift in Figure 2.4 and has been used as a baseline comparison for more re-
cent multivarite drift detection methods (Cummings, Snorrason, and Mueller, 2023).

2.4.2 Performance Analysis

The more numerous of the drift detection method subtypes, performance-based
drift detectors do exactly as their name suggests: detect model-impacting data drift
by monitored performance. These techniques follow the probably approximately cor-
rect learning model (Mitchell, 1997) and assume that inference error depends on
the number of seen examples and the complexity of the hypothesis space. This
learning model can be translated into a workable drift detection strategy, as the
prior assumptions imply that (given a stationary underlying distribution) the error
rate should decrease as the learner is given more examples (Bayram, Ahmed, and
Kassler, 2022). Hence, sudden spikes in a learner’s error rate may be evidence of the
non-stationarity of the underlying distribution, also known as data drift.

The main advantage of performance-based detection strategies over their data
distribution-based relatives is that benign data drift will be largely ignored. The
data itself is analyzed, but this analysis is done by proxy of the trained model’s
performance on that data. This forces drift alerts to be triggered by demonstrative
degradation in the model’s performance, rather than benign changes in the data
distribution being sampled. This advantage acts as a double-edged sword. Due to
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the model performance being the focus of the detector, the lag between inference
and drift detection is based on how quickly ground-truths can be recovered.

Confidence Auditors

In situations where ground-truths are not readily available, the feature space is very
large, and rapid drift detection is required, the weaknesses of the prior two detec-
tor types are highlighted. The lack of quickly known ground-truths hinders the
response time of performance-based detection schemes and the high dimensionality
of the data makes data-distribution based detectors computationally cumbersome.
This often occurs when a trained AI/ML model is incorporated in a pipeline and
inference is made by being fed a constant data stream. In these cases a slightly mod-
ified version of a performance-based detector scheme may be advantageous. One
example of this is the confidence auditor detection strategy (Ackerman et al., 2021).
Confidence auditors have a defined schema for classification-tasks. For every infer-
ence the classifier makes, it will assign a label to the seen data. This assigned label
is referred to as the winning label. Similar to the driving idea behind performance-
based detectors, confidence auditors operate under the assumption that a significant
shift in the distribution of winning label confidences indicate a data drift.

In this described situation, a confidence auditor is able to quickly analyze batches
of data. As the detector is only considering the confidence of the model’s prediction,
not the performance. The auditor has immediate knowledge of the winning label
confidence (WLC) at the time of inference. As confidences are bound between 0 and
1, we are able to perform univariate statistical tests on the distribution of batched
WLCs. This is much more computationally efficient than performing a multivariate
analysis on the whole data distribution and benefits from using a detection metric
which is directly tied to the model itself.
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Chapter 3

The Data

Our data was sourced from the UK Biobank (UKBB). This data was accessed by ap-
plication through the EarlyCause project funded by Grant no. 848158 and consisted
of 502494 participant evaluations. Data collection began in Stockport in March 2006
(pilot program) and the baseline assessment period continued until October 2010.
The assessments recorded a medley of physical, psychological, lifestyle, and expo-
sure data. This information was collected using direct measurement for physical
features and a series of questionnaires completed by each participant. These base-
line evaluations were conducted in 22 different UKBB assessment centres around the
United Kingdom, as see in Figure 3.1.

FIGURE 3.1: Map of all UKBB assessment centres.
Source: UKBiobank External Information

After the baseline assessment period concluded, a repeat assessment period from
August of 2012 to June 2013 occurred. These revaluations took place at the Cheadle
assessment centre and consisted of a 20345 member subcohort of the original partic-
ipants. It should be noted not all of the records were re-evaluated during the second
assessment period. Hence, only those which were recorded during the second pe-
riod are considered for this investigation.
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FIGURE 3.2: Selection of training, testing, and traceability cohorts.

3.1 UKBB Exposome Features

Filtering for exposome features, our initial dataset contains 128 features. An exhaus-
tive catalogue of these features is provided in Tables A.1 and A.2 of Appendix A. It is
understood that the choice of only exposome features may limit the predictive per-
formance of our models, blood work and other non-exposome features have been
shown to be help diabetes risk-predictive power (Mani et al., 2012). However, we
make this decision for two reasons. First, acquisition of external exposome data is
very cheap, as it does not rely on the use of expensive testing equipment i.e. blood
or genetic assays. Additionally, the ability to report this data using self-assessment
reduces need for clinical visits to collect the required feature information.

In addition to the diabetes disease group, other groups were explored, namely
skin cancer (benign, malignant, and both), breast cancer, lung cancer, prostate can-
cer, and CVD. The diabetes risk prediction task was ultimately selected. Diabetes
mellitus (DM) is the biggest endocrine, and 14th overall, driver for the Global Bur-
den of Disease (Bhutani and Bhutani, 2014). Globally, 45.8%, roughly 74.8 million
of all diabetes cases in adults are estimated to be undiagnosed, and nearly 84% of
all undiagnosed cases are estimated to be in low- or middle-income countries (Bea-
gley et al., 2014). The vast amount of undiagnosed cases, especially in low-income
countries, highlights the need for low-cost (both for the patient and the clinic) risk
predictive models which can help direct patients towards proactive care.

3.2 Cohort Selection

When constructing the cohorts, the exposome features were not taken into account.
Cohort selection was performed on an individual participant level, by considering
the date of the participant’s assessment, the location of their attended assessment
center, the date of diagnosis and specific ICD-10 codes for participant’s diagnosis
history. The first step of the process was to split the participants into those who
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FIGURE 3.3: Positive-Negative selection filter.

attended the follow-up assessment and those who only attended the baseline eval-
uation stage. Any UKBB participant who attended both assessment periods was
considered as a candidate for the time-shifted traceability-validation cohort. All others
were considered candidates for the training cohort. Once the candidates were parti-
tioned, a positive-negative selection filter was applied to each (as seen in Figure 3.3).
Three aspects of the participant’s candidacy were evaluated by this filter. First, if
they had no diagnoses they were selected as members of the healthy (negative) class.
The remaining participants were split based on which ICD-10 codes were logged for
them (see Table 3.1). If none were a member of the chosen disease group, they were
removed from the cohort. Finally a cutoff and washout period was implemented for
the remaining positive candidates. Given that our task was risk-prediction, a one
year washout period was enforced after the candidates assessment date. This was
to ensure that no participant was included who had already been diagnosed before
or within one year of their data collection1. Diagnosis information was recorded
through 2017. Due to this lack of data after 2017, a recency restriction was used in
the form of a 5 year diagnosis cutoff enforced from the participant’s assessment date.
Hence, a candidate assessed on June of 2009 and diagnosed with diabetes in July of
2015, would be removed from the cohort. This enforcement was enacted in order to
ensure fair evaluation of performance between the initial assessment period and the
follow-up assessment period.

Once the training cohort has been constructed, a portion was split off to form
the external test cohort. The purpose of this test cohort was for final performance
evaluation after model development . The members of this cohort were selected
based on the assessment center attended during evaluation. The removed centers
were selected so that they were geographically diverse and accounted for roughly
8-10% of participants. This test set evaluated each model’s ability to generalize both
with respect to unseen data and to populations from unseen locations. The selected
assessment centers were Manchester, Oxford, Glasgow, and Cardiff. This selection

1To minimize the number of unused participants, those who were washed out of the traceability
cohort were passed through the positive-negative selection filter for the training set as well. This
means that if a candidate attended the second assessment, but was diagnosed one day prior, they
could be added to the positive training class. In this case, no information collected from the second
assessment was used.
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ICD-10 Codes

Diagnosis type Prefix Suffix

Insulin-dependent diabetes mellitus E10 0,1,2,3,4,5,6,7,8,9

Non-insulin-dependent diabetes mellitus E11 0,1,2,3,4,5,6,7,8,9

Malnutrition-related diabetes mellitus E12 1,3,5,8,9

Other specified diabetes mellitus E13 0,1,2,3,4,5,6,7,8,9

Unspecified diabetes mellitus E14 0,1,2,3,4,5,6,7,8,9

TABLE 3.1: Positive ICD-10 codes for the diabetes disease group.

FIGURE 3.4: Total proportion of missing values from each of the 164
transformed features.

ensured we had representation from Wales, Scotland, and both Northern and South-
ern England.

3.3 Data Cleaning

Prior to cohort selection, Section 3.2, simple data cleaning and feature transforma-
tion was required. UKBB uses negative values to encode uninformative or uncertain
labels. The values −3 or −818 are often used to encode the "Prefer not to answer"
response −1 often encodes a response of "Unsure" or "Do not know", where as −2
might indicate that the question does not apply to the participant. In these cases
we replaced such responses with NaN based on the data encoding scheme used for
that specific feature. This was done so that data imputation could be performed to
estimate these values.

After the data was cleaned, one-hot encoding was applied to many of the cate-
gorical features. This increased the size of our feature space from 128 to 163. Once
the one-hot encoding was complete, any feature with greater than 30% of its values
being NaN were dropped as they would require too much imputation to be consid-
ered reliable features. Figure 3.4, shows all the proportional missing values for each
feature in the 163 dimensional feature space. In total 39 features were considered to
be saturated with missing values and were dropped. This reduced our feature space
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Future Diagnosis Training Cohort Test Cohort Traceability Cohort

No 77305 10982 3714

Yes 8350 1033 293

Totals 85655 12015 4007

TABLE 3.2: Final class membership totals for each cohort

to its final size of 124 features. The next step was to apply a second 30% missing
data filter, this time to the each of the remaining cohort members. This resulted in
the removal of 202 members of the training cohort, 10 members of the external test
cohort, and 2 participants of the traceability cohort. This marked the end of the data
cleaning routines. The final cohort sizes can be found in Table 3.2.
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Chapter 4

Model Development

4.1 Task Definition

Before proceeding, it is prudent to clearly put forth the task our models will be ask
to perform. Using the only the features in Chapter 3, we ask our models to differen-
tiate between healthy individuals and those whom will be diagnosed with diabetes
within the a five year period.

4.2 Model Architectures

We briefly outline the model architectures evaluated for the risk predictive classifi-
cation problem.

4.2.1 Logistic Regression

Logistic regression is a popular family of discriminative machine learning model.
The model seeks to distinguish between possible classes by assuming a linear rela-
tionship between the input features and the log-odds of the outcome. By using a
logit (sigmoid) function, logistic regression maps the linear prediction to a probabil-
ity score between 0 and 1, representing the likelihood of the positive class. Consider
a finite set of input features, X, and a binary target label y. Let π be the log-odds of
y being the positive label. Then the logistic function applied to π is

logit(π) =
1

1 + e−π
(4.1)

where
π = β0 + ∑

xi∈X
βixi (4.2)

Training a logistic regression model involves estimating the optimal coefficient
values of the βis. This is typically done using gradient descent.

Logistic regression offers interpretability, as the coefficients associated with each
feature indicate their impact on the outcome. It has been used for diabetes predic-
tion (Joshi and Dhakal, 2021) and has been shown to perform on par or better with
most machine learning models for clinical predictions (Christodoulou et al., 2019).
However, it should be noted that logistic regression can suffer from overfitting, par-
ticularly when asked to make predictions using a high number of features (IBM,
2021).
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4.2.2 Support Vector Machines

Support Vector Machines (SVMs) are a family of machine learning models used for
binary classification. SVMs aim to find the optimal decision boundary that maxi-
mally separates the two classes in the feature space. The decision boundary is deter-
mined by a subset of the training samples, called support vectors, which lie closest
to the boundary. SVMs have the ability to handle high-dimensional data and are
robust to overfitting. They can also find non-linear decision boundaries through
the application of the kernel trick. This consists of mapping features into a higher-
dimensional space through a kernel function. In this higher-dimensional space, the
SVM linearly separates the two classes and then maps the decision boundary back to
the original feature space. Hence, SVMs are able to describe non-linear relationships.
However, the choice of kernel function dictates the type of non-linear boundary the
SVM can define. Support vector machines have a long history of use for the task of
diabetes diagnosis and prediction (Kavakiotis et al., 2017).

4.2.3 Random Forest Ensembles

Random Forest is a popular ensemble method for binary classification tasks. It de-
mocratizes the prediction process by considering the predictions of multiple deci-
sion trees. Each decision tree in the ensemble is trained on a random subset of the
training data and a random subset of features. Using the Law of Large Numbers, the
algorithm has been shown to converge without overfitting (Breiman, 2001). When
performing inference, each tree independently classifies the input and the final pre-
diction is made using some decision strategy. For classification tasks this strategy is
often majority vote. Random Forests can handle high-dimensional data and are ca-
pable of capturing non-linear relationships between features and the target variable.
They are also less sensitive to outliers and noise compared to individual decision
trees. However, all the decision trees in an ensemble are trained independently of
one another and greedily. There is also the physical storage concern if the pattern
that the ensemble is trying to learn is very complex. This is due to the increased
depth of each tree required to form complicated rules (Ren et al., 2015)

Balanced Random Forest

An issue can arise when training random forests on imbalanced data. Given that the
training data for each independent decision tree is constructed using bootstrapping,
if our data is highly imbalanced then some trees run the risk of being trained on
samples with little to none minority class representation. This results in that part of
the ensemble not being useful in classifying the minority class. The ramifications of
this risk is heightened when the classification task is in the clinical setting (disease
prediction or diagnosis) as the label which would require intervention on the clinic’s
part is usually the minority class (positive member of the disease group). To com-
bat this, the Balanced Random Forest (BRF) algorithm is proposed in Chen, Liaw,
Breiman, et al., 2004. This alteration to the random forest ensemble enforces that the
sampled training data must be balanced on the minority class. Succinctly put, the
algorithm consists of three steps:

1. For each iteration in the random forest, draw a bootstrap sample from the mi-
nority class. Randomly draw the same number of cases, with replacement,
from the majority class.
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2. Induce a classification tree from the data to maximum size, without pruning.

3. Repeat the two steps above for the number of times desired. Aggregate the
predictions of the ensemble and make the final prediction.

Both random forest and balanced random forest have been used for early dia-
betes prediction (Shrivastava et al., 2022).

4.2.4 Gradient Boosting

Gradient boosting is a machine learning technique that combines multiple weak
predictive models, to form a stronger and more accurate one. First proposed by
Friedman, 2001, it differs from other ensemble techniques by - rather than learning
each classifier independently - iteratively fitting each member of the ensemble to
the residuals of the prior member. The predictions of all the models are aggregated
together to produce the final prediction. This iterative process continues until a stop-
ping criterion, such as a maximum number of models or a minimum improvement
threshold, is met.

XGBoost

The eXtreme Gradient Boosting algorithm (commonly known as XGB or XGBoost)
is a widely used gradient-boosting algorithm known for its exceptional performance
in a variety of tasks, including classification, regression, and ranking (Chen and
Guestrin, 2016). It is based on the gradient boosting framework and employs an
ensemble of weak decision trees to make accurate predictions. The reason for its
popularity within the data science community is due to the combination of high-
end performance with efficient training speeds. Due to the large complexity of XGB
ensembles, regularization is usually required to dampen the risk of overfitting.

4.3 The Learning Scheme

4.3.1 Model Pipelines

The training pipeline comprised several essential steps to prepossess and optimize
the input data before training the final model. It began with missing value impu-
tation. As all our data now has a numeric encoding, we replaced missing values
with the median of that respective feature. This was done to ensure there was no
data leakage due to imputed data. When training, each model learns its own impu-
tation scheme only from the seen data. Given the high imbalance between classes,
we applied random under sampling of the majority class along with a synthetic data
augmentation of the minority class using SMOTE (Chawla et al., 2002). The latter tech-
nique helps to address class imbalance by generating synthetic examples based on
the characteristics of the minority class. Lastly, the pipeline selected the 15 best fea-
tures by ranking them according to their ANOVA f-statistic. This was implemented
using the SelectKBest function from scikit-learn package (Pedregosa et al., 2011).
This input feature restriction was recommended in conversations with clinicians.
All discussed techniques are recommended when dealing with imbalanced datasets
(Kotsiantis, Kanellopoulos, Pintelas, et al., 2006). Each step in the pipeline is given
trainable parameters to create a comprehensive training pipeline that improves the
quality of the data, handles class imbalance, and selects the most relevant features,
ultimately leading to an optimized model.
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FIGURE 4.1: Nested cross-validation scheme used for hyperparame-
ter tuning.

4.3.2 Nested Cross-Validation

After pipeline construction, we approached the training process using a nested cross-
validation scheme. This scheme followed a 3-5 inner-outer fold split. The training
data was divided into five stratified partitions. Folds of this stratified partition were
constructed such that one of the partitions was removed to act as the outer valida-
tion set. The remaining four partitions were combined to for the inner training fold,
which was used to optimize the hyperparameter configuration. To tune the param-
eters, each inner training fold was then partitioned using a 3-fold cross-validation
scheme. We evaluated all configurations from a 50 member sample of the defined
hyperparameter space. This random selection and evaluation was repeated once for
each inner fold. The parameter configuration which performed best over all folds
in the 3-fold cross-validation was then retrained on the entire inner training fold
and passed back to the outer fold. Once passed to the outer fold, a final decision
threshold was tuned using the left out portion of the outer stratified partition. The
partitioning of all data is depicted in Figure 4.1.

Tuning Metrics

For the inner cross-validation, average precision (AP) was used for the tuning met-
ric. AP is a metric which summarizes the precision-recall curve. It differs from cal-
culating the area under the precision-recall curve, by calculating the weighted mean
of precisions achieved at each decision threshold, with the increase in recall from the
previous threshold used as the weight. That is,

AP = ∑
n
(recalln − recall(n−1))precisionn (4.3)

where precisioni and recalli are the precision and recall scores for the ith deci-
sion threshold. When dealing with imbalanced datasets the precision-recall curve
is often more descriptive than evaluating the receiver operator curve (Saito and
Rehmsmeier, 2015). Unlike other common tuning metrics, like f1-score, AP benefits
from being decision threshold agnostic. This means that the metric is a consider-
ation of all possible decision thresholds. Metrics which lack this quality require a
decision threshold to be defined before they can computed. As we tune the decision
threshold in the outer fold this threshold agnosticism is a very useful property.
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Once a configuration of hyperparameters has been selected, the decision thresh-
old was tuned using the left out partition in the outer cross-validation. This tuning
was done with regards to the f1-score, which is the harmonic mean between the
precision and recall scores.

f1score = 2
precision ∗ recall

precision+precision
(4.4)

This allowed us to consider both the positive predictive value and the true positive
rate when selecting a final decision threshold.
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Chapter 5

Performance Results

5.1 Model Performances

In order to estimate model performance, we evaluated each outer fold model. By
taking the mean and variance of all outer fold performances for a given architecture,
we were more confidently able to estimate true performance. In total, we evaluated
on four performance metrics. As stated in Section 4.3.2, average precision and f1-score
are evaluated for each model. In addition to the prior two metrics, precision and recall
were also evaluated. Note that only average precision is a threshold agnostic metric,
meaning f1, precision, and recall were all calculated using the optimized decision
threshold selected during the model development process.

Figure 5.1 compares the models’ performance on the training and external test
cohorts. Note that the BRF classifiers seem to be overfitting on the training cohort,
resulting in a steep drop in overall performance when making inference on the ex-
ternal test cohort. SVM performed poorly on both cohorts. XGBoost and Logistic Re-
gression were the best overall performers on these two cohorts. The metrics of each
have very little change between the training and external test sets which led us to
believe these architectures were best able to generalize to unseen data and data col-
lected at novel locations (universality). Figure 5.2 makes the same comparison, now
between the external test cohort and the traceability cohort. For exact performance
estimations, see Table 5.1. We found worse performance across every architecture
and for every metric. The smallest performance drop for the XGBoost and logistic
regression architectures was 10% (see Table 5.2). This was a strong indication that
model degradation occurred sometime in between the baseline assessment period
and the follow-up assessment period.

We sought to understand the driving factors for this stark degradation and de-
cided to perform a distribution-based data drift analysis on the best performing
feature subsets. Having both logistic regression and XGBoost performing similarly
well, we choose to focus on the best performing models for each architecture.

5.2 Best Model Selection

As we allowed each model to learn its own input feature space, we needed to choose
a representative model for the two architectures. Using the training cohort perfor-
mance, we selected the best model by AP score. The Receiver Operator Curve (ROC)
has commonly been used in the development of clinical risk assessment models for
diabetes (Buijsse et al., 2011). The ROC plots the recall against the false-positive rate
over all possible decision thresholds and is most commonly summarized by the area
underneath this curve. This summary of the ROC reports the probability that the
predicted risk for a positive subject is higher than that for a negative participant and
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FIGURE 5.1: Estimations of architecture performances on Training
and Test cohorts. Evaluation metrics include: Average Precision, F1-

score, Precision, and Recall.

FIGURE 5.2: Estimations of architecture performances on External
Test and Traceability-Validation cohorts. Evaluation metrics include:

Average Precision, F1-score, Precision, and Recall.
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Architecture Avg. Precision F1 Precision Recall

SVM

Train 0.248 ± 0.044 0.301 ± 0.039 0.238 ± 0.039 0.411 ± 0.031

Test 0.246 ± 0.055 0.295 ± 0.042 0.222 ± 0.036 0.441 ± 0.052

Trace 0.174 ± 0.042 0.231 ± 0.035 0.170 ± 0.028 0.362 ± 0.061

BRF

Train 0.832 ± 0.003 0.723 ± 0.005 0.630 ± 0.011 0.849 ± 0.007

Test 0.568 ± 0.002 0.564 ± 0.003 0.495 ± 0.006 0.655 ± 0.010

Trace 0.404 ± 0.006 0.424 ± 0.004 0.372 ± 0.005 0.494 ± 0.013

Log Reg

Train 0.566 ± 0.004 0.551 ± 0.004 0.523 ± 0.023 0.585 ± 0.033

Test 0.592 ± 0.004 0.576 ± 0.003 0.524 ± 0.026 0.643 ± 0.033

Trace 0.434 ± 0.003 0.448 ± 0.008 0.421 ± 0.024 0.483 ± 0.037

XGBoost

Train 0.580 ± 0.005 0.560 ± 0.003 0.521 ± 0.016 0.607 ± 0.027

Test 0.594 ± 0.008 0.573 ± 0.003 0.513 ± 0.023 0.651 ± 0.031

Trace 0.438 ± 0.006 0.448 ± 0.009 0.409 ± 0.016 0.498 ± 0.034

TABLE 5.1: Model performance by architecture, cohort, and evalua-
tion metric. Bold values mark the best performance for that fixing

metric and cohort.

Performance Drop (%)

Architecture Avg. Precision F1 Precision Recall

Log Reg 15.78 ± 0.23 12.82 ± 0.85 10.29 ± 0.80 16.08 ± 0.82

XGBoost 15.65 ± 0.61 12.45 ± 1.08 10.33 ± 1.24 15.37 ± 0.63

TABLE 5.2: Percentage drop in performance from external test to
traceability cohort for logistic regression and XGBoost architectures.
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Architecture Avg. Precision F1 Precision Recall

Best Log Reg

Train 0.573 0.558 0.507 0.620

Test 0.599 0.575 0.497 0.682

Trace 0.440 0.462 0.407 0.536

Best XGBoost

Train 0.587 0.563 0.509 0.628

Test 0.605 0.572 0.495 0.678

Trace 0.445 0.448 0.392 0.522

TABLE 5.3: Performance metrics of best logistic regression and XG-
Boost models.

is a good proxy for the overall goodness of the model. However, it has been pro-
posed that AP is a more appropriate metric when evaluating risk predictive models
for low prevalence disease groups (Su, Yuan, and Zhu, 2013).

Using the training cohort AP score as our selection metric, we found that both the
highest performing logistic regression and XGBoost models had selected the same
feature subspace. Moving forward, we only analyzed possible data drift within this
feature space. The performances of the two selected models on all three cohorts are
reported in Table 5.3.
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Chapter 6

Data-Distribution Drift Analysis

We performed two levels of data-distribution drift analysis. The first was a multi-
variate analysis to check for covariate data drift on the global scale. We followed this
macro scale analysis with univariate analyses to detect covariate drift within the in-
dividual features. This analysis was done using implementations from the NannyML
python library. We only investigated the subset of our feature space determined by
the best performing Logistic Regression and XGBoost models. That subset is pre-
sented in Table 6.1.

6.1 Multivariate Analysis

We implemented the multivariate PCA reconstruction method outlined in 2.4.1. As
both the training and external test cohorts come from the same time period, their
participants were combined to form the reference set. The analysis set consisted of
only the traceability cohort.

We first learned a PCA embedding which captured a minimum of 70% of the
variance within our reference set. We then needed to learn the expected reconstruc-
tion error and tolerance for deviation. This was done by ordering all participants in
the reference set by date of first assessment, then partitioning them into batches of
500 members. The PCA reconstruction method was applied to each of the batches
and their respective reconstruction errors were calculated. Our mean expected re-
construction error was around 1.835 with an upper and lower tolerance of 1.993 and
1.676 respectively. The upper (or lower) tolerance were defined as the mean expected
error plus (or minus) three standard deviations. None of the reference batches fell
outside these tolerances. Any batch whose reconstruction error fell outside of these
bounds would be considered evidence of covariate data drift’s presence.

We then applied the same batching process to the analysis set. The mean re-
construction error of the analysis batches was 1.713 with a standard deviation of
0.057. Two of the analysis batches fell outside of the reconstruction error tolerance.
The analysis batch from October 28th to December 3rd 2012 had a reconstruction
error of 1.645 and the analysis batch from January 16th to Febuary 22nd 2013 had
a reconstruction error of 1.650. Figure 6.1 shows the reconstruction errors of both
the reference and analysis batches along with the drift alert thresholds and analysis
batches which exceeded those tolerances.

6.2 Univariate Analysis

Following the multivariate PCA reconstruction analysis, we conducted data-distribution
analyses for each feature individually. We used both the training and external test
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Feature Types

Categorical Continuous

Employment Status Waist Circumference

Retirement Status Hip Circumference

Ability to Work BMI

Lack of Education Weight

Frequency of Day Naps Whole Body Water Mass

Diet Change in Prior 5 Years Basal Metabolic Rate

Diet Change due to Illness Birth Year

Frequency of Tiredness

TABLE 6.1: Feature subspace selected by best performing models.

cohorts as the reference set and the traceability cohort as the analysis set. For con-
tinuous features, the Wasserstein distance was used (see Section 2.2.1). The same
partitioning scheme from the multivariate case was followed for the time-ordered
reference and analysis sets. The appropriate Wasserstein distance was calculated be-
tween each of the reference batches and the whole reference set. The mean and stan-
dard deviation of the distances were used to set the distance tolerance for the anal-
ysis set. As all distance metrics are non-negative in value, only the upper threshold
was required. The upper threshold was defined as three standard deviations above
the mean distance. For categorical features, the Jensen-Shannon distance was used
(see Section 2.2.2) as the distance metric. As the JS distance is bound between 0 and
1, a fixed value of 0.1 was used as the upper threshold. The same partitioning was
done on the analysis set and batches whose JS distance exceeded 0.1 were considered
to be drifting.

All plots generated for this analysis are included in Appendix B. Figures B.1 and
B.2 shows the analysis batch alert and distribution plots for all categorical features.
The only categorical features to register drift are Lack of Education and Frequency of
Tiredness. Figures B.3 and B.4 shows the analysis batch alert and distribution plots
for all continuous features. Of the continuous features, BMI, Basal Metabolic Rate,
and Birth Year have batch Wassertein distances which exceed their features upper
tolerance. However, the batch which triggered a drift alert for Basal Metabolic Rate
contained few participants and as such we ignored this alert moving forward.

6.3 Confidence Analysis

We also conducted an analysis of both the best Logistic Regression and XGBoost
model’s predictions and confidences for each of the partitioned batches. We use the
proxy feature of positive class probability for the prediction confidence. Figure 6.2
shows the combined analysis batch alert and distribution plots for the Logistic Re-
gression model. As we are dealing with a binary classification task, the predictions
are considered a categorical feature and the positive class probability is continuous.
There were not any batches which exceeded the upper threshold for either feature.

Figure 6.3 shows the combined plots for the XGBoost model. Similar to the Logis-
tic Regression model, the distribution of predictions did not significantly differ from
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the reference set. However, there was a batch which exceeded the threshold for the
confidence of predictions. In addition, two other batches’ Wasserstein distance were
very close the feature’s upper tolerance.

FIGURE 6.2: Combined analysis batch drift alert and distribution
plots for the best Logistic Regression model.

FIGURE 6.3: Combined analysis batch drift alert and distribution
plots for the best XGBoost model.

6.4 Prevalence Rate Analysis

In order to check for potential label data drift, the true diagnosed prevalence rate
was recorded for each of the batches used in the multivariate PCA reconstruction.
The same reference and analysis split was made and an upper and lower tolerance
for the diagnosed prevalence rate was set as the mean reference prevalence rate plus
and minus three standard deviations. Figure 6.4 shows the batch-wise prevalence
rate for both reference and analysis set. While the mean diagnosed prevalence rate
for the analysis set was lower than the reference set’s, it was not outside of our set
tolerances.
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FIGURE 6.4: Batch-wise diagnosed prevalence rate for the reference
and analysis sets. Upper and lower tolerance for deviation from the

mean reference prevalence rate are marked in red.
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Chapter 7

SHAP Importance Drift Analysis

In Chapter 6, the analysis was restricted to the data-distributions and the model
predictions themselves. The former ignores all model input and the latter does not
take into account the contributions of the input features. In order to build a better
understanding of how the how the best Logistic Regression and XGBoost models
were using the input features we turn to analysing the absolute normalized Shapley
(| nSHAP |) contributions of each feature. Error estimations for the | nSHAP | contri-
butions were calculated via a 5-fold split of each cohort’s participants. The | nSHAP |
contributions were calculated for each feature on each fold and the mean and stan-
dard deviations were reported.

For each model, two forms of comparisons were conducted. First, the | nSHAP |
contributions for each feature were calculated for the external test cohort and the
traceablility cohort. A feature-wise comparison was done to identify the features
which had the most significant absolute contribution shift. The second comparison,
inspired by (Duckworth et al., 2021), focused on the temporal change in | nSHAP |
contribution. To make this comparison, we ordered all participants by date of as-
sessment and then partitioned them using the same batching scheme from Chapter
6. The reference set was composed of all batches coming from the training or ex-
ternal validation cohorts and the analysis set consisted of batches pulled from the
traceability cohort. The | nSHAP | contribution of each feature was computed for
every batch and a 5-fold split was used to estimate the contribution error. Batches
with fewer than 30 participants were dropped to avoid inflated variance. The mean
| nSHAP | contribution and standard deviation for each feature was reported for all
remaining batches. Upper and lower feature contribution tolerances were set as the
mean of all contributions for the reference set batches plus and minus three standard
deviations.

Logistic Regression XGBoost

Top 5 Features ∆| nSHAP | Top 5 Features ∆| nSHAP |

Birth Year 0.0107 Birth Year 0.0087

Hip Circumference 0.0047 BMI 0.0082

BMI 0.0042 Lack of Education 0.0050

Ability to Work 0.0032 Hip Circumference 0.0047

Lack of Education 0.0027 Ability to Work 0.0045

TABLE 7.1: Top 5 features by change in mean | nSHAP | contribution
for Logistic Regression and XGBoost.
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(A) | nSHAP | contributions (Logistic Regression). (B) | nSHAP | contributions (XGBoost).

FIGURE 7.1: Comparison plots of | nSHAP | contributions for Logistic
Regression and XGBoost models.

7.1 Logistic Regression Model

The first method of comparison for the Logistic Regression model is presented in
Figure 7.1a. The absolute difference between the external test and tracebaility cohort
| nSHAP | contribution and the top five features with respect to absolute change in
contribution were recorded. Table 7.1 given the top five features and their respective
absolute difference in contributions.

The second, time-ordered, comparison was used to detect gradual shifts in the
feature contribution over time. All drift alerts from the reference set are ignored
as we are interested in deviations in the analysis set. The only feature to trigger a
| nSHAP | drift alert is Birth Year, while Weight, Employment Status, and Frequency
of Day Naps come close to triggering alerts. The names of those features who reg-
istered drift in Section 2.3.1 are italicized and the top five features from the prior
comparison are in bold. Interestingly, only one feature which registered possible co-
variate drift did not experience a difference in mean | nSHAP | contribution between
the reference and analysis sets. The results of this comparison are shown in Figure
7.2.

7.2 XGBoost Model

The first SHAP comparison for the XGBoost model is shown in Figure 7.1b. The top
five features in terms of difference in | nSHAP | contribution between the external
test and traceability cohorts recorded and the change in mean | nSHAP | contribution
for these features can be seen in Table 7.1. We found that the top five feature were
the same as those found for the Logistic Regression model, albeit the ordering of the
features and magnitudes of their respective changes differed.

Figure 7.3 shows the temporal comparison of the mean monthly contributions
for each feature. Interestingly, none of the batched analysis feature contributions
trigger | nSHAP | drift alert. However, Birth Year and Whole Body Water Mass have
confidence intervals which exceed the contribution deviation tolerances. Plots with
bold titles indicate the feature was one of the top five features for change in mean



7.2. XGBoost Model 37

FIGURE 7.2: Temporal comparison of monthly | nSHAP | contribu-
tions for Logistic Regression.

| nSHAP | contribution. Plots whose titles are italicized are features whom registered
drift alerts during Section 6.2.
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FIGURE 7.3: Temporal comparison of monthly | nSHAP | contribu-
tions for XGBoost.
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Chapter 8

Discussion

All the trained models experience a stark drop in performance when making infer-
ence on a cohort which is temporally distant from the period that training data was
collected. The assessments for members of the traceability cohort were conducted at
a location which was not seen in the training data. However, we believe we may rule
out location bias as a driver of the degradation considering the external test cohort,
whose assessment centres were also removed from the training data, showed much
higher performance. We see this as strong evidence that the cause may be connected
to one or multiple types of data drift.

In Chapter 6 we investigated this hypothesis. We found that portions of the best
performing feature subset had extreme PCA reconstruction errors. Surprisingly, the
reconstruction error was significantly lower than that of our training cohort data.
This implies that the PCA which was used to estimate the reconstruction error was
a better representative of the traceability cohort (analysis set) than the training and
external test cohorts (reference set) on which it was learned. It was expected that sig-
nificant deviations from the expected reconstruction error would have higher errors
than the reference set. The reason for the analysis set being less effected by passing
through the PCA latent space is unknown and worth further investigation. Four
features were identified as possibly experiencing covariate data drift between 2010
and 2012, namely Lack of Education, Frequency of Tiredness, Birth Year, and BMI.
We are very interested to see if a gradual shift can be seen in these feature’s distri-
butions over time. However, due to a lack of assessment data between those dates,
this may be beyond our abilities.

A performance-aware drift detection was run via a proxy for model prediction
confidence. This revealed that only the XGBoost model demonstrated a significant
deviation in its positive class probability distribution. It is of interest, to reformulate
this test and directly use model prediction confidence. Section 6.4, found no poten-
tial label drift alerts. Considering the heavy imbalance between the positive and
negative classes, small changes in the batch prevalence may be impacting model
performance even if the changes are within our reference set deviation tolerance.

In Chapter 7, we used Shapley values to better understand how the models
were using each of the input features. These Shapley contributions were compared
between the external test and traceability cohorts. In this comparison we found
multiple differences in the feature contributions and both models exhibited similar
changes in said contributions. They were both found to have the same five feature
experience the largest contribution shift. Both models showed the relative contribu-
tion of BMI and Hip Circumference drop, while the relative contributions of Birth
Year, Lack of Education, and Ability to Work increased. Both models registered the
same total change in absolute feature contribution. However, the Logistic Regres-
sion model exhibited higher contribution shifts for the most shifting features than
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the XGBoost model. Interestingly, three features are shared between the most signif-
icant changes in feature contribution and the set of features who indicated possible
covariate data drift. This could be an indication of data drift driving the model
degradation.

A time-evolution of Shapley values was also constructed. Due to the lack of in-
formation between the years of 2010 and 2012, it is difficult to identify specific trends
or seasonality within the batched feature contributions across time. However, the
observation that Logistic Regression experienced a larger change in its most shifting
feature is supported as it is the only model which registered | nSHAP | drift alerts
within the analysis set. Another observation is that the XGBoost model seemed to
consolidate more absolute feature contribution in fewer of the input features than
Logistic Regression. This might explain XGBoost being the only model which trig-
gered an analysis set drift alert for the distribution of positive class probabilities in
Section 6.3. To the best of our knowledge, while SHAP analysis have been proposed
to detect drifts for medical monitoring models, this is the first study to propose it for
a disease risk prediction task.

Lastly, there are multiple factors that may have led to the traceability cohort be-
ing biased. This is due to the reassessments being voluntary and performed in one
location. This may produce a representation bias towards individuals with more
flexibility with their time and ability to travel. This bias may be driving the data
drift found during this investigation. As the reassessment cohort was not sampled
from the UK population but from the subset which had already been evaluated dur-
ing the first assessment period, the covariate drift alerts may have been picking up
these biases rather than shifts in overall population characteristics.

8.1 Further Work

The primary restrictions of this investigation is limiting the disease group to dia-
betes and allowing only an external exposome feature space. It is of interest to see if
similar levels of model degradation are experienced by risk predictive models with
alternative classification tasks, such as identifying participants at risk of developing
cardiovascular disease, depression, or skin cancer, as well as allowing the predictive
models to learn on blood work test results. In addition, the impact of batch size
choice for the various detection methods has not been explored.

Currently there is no causal link between the detection of data drift and subse-
quent model degradation. We would like to further explore the potential for inter-
preting the impact of covariate drift on the models through comparison and analysis
of normalized Shapley contributions. This leads to a natural extension of this thesis,
an exploration of techniques for identification, interpretation, and correction of data
drift driven performance degradation.
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Chapter 9

Conclusion

In this thesis, several diabetes risk-predictive ML models were trained and vali-
dated using exposome data from the UKBB assessments between 2006 and 2010.
The best performing architectures by average precision were Logistic Regression
(0.592±0.004) and XGBoost (0.594±0.008). Each model was subsequently evaluated
on a temporally distant cohort, in order to assess the traceability of the exposome-
based models. Every model architecture experience a significant degradation in per-
formance between the two time periods. Further analysis was run to explore pos-
sible driving forces of this degradation. Covariate data drift was detected within a
subset of the UKBB exposome feature space. This drift was detected using both mul-
tivariate and univariate detection methods and was found in the Birth Year, BMI,
Frequency of Tiredness, and Lack of Education features. Severe label drift was not
detected. However, due to the lack of continuously collected data, a gradual shift
in the label distribution could not be ruled out. Lastly, a model-aware concept drift
detection method was applied by tracking temporal changes in normalized Shalpely
contributions for model input features.

Due to a lack of causal connection between the detected drifts and the model
degradation along with possible representation biases in the second reassessment
cohort, further research is needed before definitive claims can be made about the
susceptibility of exposome-based disease predictive models to data drift. However,
it is clear that traceability of clinical models is a subject which requires careful moni-
toring to ensure that the benefits provided by AI/ML clinical solutions remain stable
well past initial deployment.





43

Appendix A

UKBB Exposome Feature Space

Feature Category Feature
Physical Waist Circumference Hip Circumference

Standing Height BMI
Weight Body Fat Percent
Whole Body Fat-Free Mass Basal Metabolic Rate
Hair Color

Demographics Year of Birth Townsen Depreivation
Education Level of Education End of Education Age
Employment Employment Status Length Current Employment

Length of Work Week Work Home Distance
Job Involves Standing Job Involves Physical Work
Job Involves Shift Work

Lifestyle Sleep Duration Sleeplessness/Insomnia
Daytime Dozing Naps During Day
Tobacco Smoking Past Tobacco Smoking
Frequency of Alcohol Ever Taken Cannabis
Injury Through Alcohol Recommended Less Alcohol
Alcohol Drinker Status Use of Sun Protection
Apparent Facial Age Ease of Skin Tanning
Time Outdoors (Summer) Time Outdoors (Winter)
Mobile Phone Use Weekly Phone Usage
Change in Phone Habits Head Side Using Phone
Plays Computer Games

Environment Traffic Intensity Near Major Road
Daytime Sound Level Evening Sound Level

TABLE A.1: Physical, demographic, education, employment,
lifestyle, and environmental features used from UKBB dataset.
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Feature Category Feature
Diet Cooked Vegetable Intake Raw Vegetable Intake

Fresh Fruit Intake Dried Fruit Intake
Oily Fish Intake Non-oily Fish Intake
Processed Meat Intake Poultry Intake
Beef Intake Lamb Intake
Pork Intake Cheese Intake
Milk Type Bread Intake
Bread Type Cereal Intake
Cereal Type Added Salt
Tea Intake Coffee Intake
Coffee Type Varied Diet
Spread Type Water Intake
Major Diet Change Non-butter Spread Type

Diet (24 Hours) Coffee Consumed Tea Consumed
Alcohol Consumed Vitamin Supplements

Early Life Childhood Sun Burns Breastfed
Age 10 Body Size Age 10 Height
Handedness Adopted
Multi-birth Maternal Smoking Post-birth
Medical Guardian Molested
Physically Abused Felt Loved
Felt Hated

Trauma Sexual Assault Witnessed Violent Death
Violent Crime Life-threatening Accident
Able to Pay Rent Partner Sexual Assualt
Partner Violence Confiding Relationship
Partner Belittlement Disturbed by Past Trauma
Upset by Past Trauma Avoided Activities due to Past

Mental Health Risk Taking Depressed Mood
Doctor Visit Psychiatrist Visit
Happiness Week Long Depression
Longest Depressed Period Number Depressive Episodes
Bipolar Neuroticism Score
Week Long Disinterest Frequency Tired
Frequency Tense Frequency Disinterested

TABLE A.2: Dietary, early life, trauma related, and mental health fea-
tures used from UKBB dataset.
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Appendix B

Univariate Drift Analysis Figures

This section holds the univariate drift analysis figures generated for both the selected
Logistic Regression and XGBoost model. Both the drift alert and the batched distri-
bution plots are reported. Categorical and continuous features are separated as the
distance metrics used for the drift alert detection method differed depending on the
feature datatype.

FIGURE B.1: Alert plots for categorical features in traceability cohort.
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FIGURE B.2: Distribution plots for categorical features in traceability
cohort. Batches which exceed the drift threshold are shaded in red.

FIGURE B.3: Alert plots for continuous features in traceability cohort.
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FIGURE B.4: Distribution plots for categorical features in traceability
cohort. Batches which exceed the drift threshold are shaded in red.
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