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by Nikolaos ATHANASOPOULOS

The field of machine learning has undergone significant advancements and devel-
opments in medicine over the past few years. Strong deep learning techniques have
been developed for the purpose of processing complicated medical data types as
time-series data (such as electrocardiography), genetic data or medical imaging.
However, these developments have often taken place in specialised ways, result-
ing in a lack of deep learning implementations that allow to seamlessly integrate
medical data from different types. This diploma thesis investigates the potential
of deep learning models to combine electrocardiography (ECG) and magnetic res-
onance imaging (MRI) data for improved cardiac analysis. The research aims to
overcome the costs, complexity and processing time constraints of MRI, by develop-
ing a deep learning model capable of predicting cardiac structural dynamics based
on ECG signals. The interest of this project relies on the potential of generating
from a single ECG signal a pseudo-MRI Image, which corresponds to the same pa-
tient, providing significantly more detailed information related to the condition of
the heart compared to the ECG alone. In this approach, we will benefit from both the
advantages ECG processing has over MRI and the improved understanding of the
heart provided by the generated pseudo-MRI. The study utilizes a large collection of
ECG and cardiac MRI pairs dataset derived from multiple patients, available in the
UK Biobank, in order to build connections between these two modalities. By suc-
cessfully integrating multimodal data, the proposed model can create opportunities
for novel applications in anomaly detection, diagnosis and clinical decision-making.
This innovative approach has the potential to transform the field of medical imag-
ing by providing a more affordable, effective and accessible way to analyze cardiac
health and disease.
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Chapter 1

Introduction

Medical imaging plays a crucial role in the diagnosis, treatment, and monitoring of
various diseases and conditions. One of the most powerful imaging modalities uti-
lized in the field of medical imaging is Magnetic Resonance Imaging (MRI). An MRI
scan is a test that creates clear images of the structures inside the body, providing
this way thorough anatomical details. However, MRI processing is often associated
with significant challenges, making it an expensive, difficult and time-consuming
process.

The fundamental nature of MRI technology itself is one of the main causes of the
processing complexity. Strong magnetic fields and radio waves are used in MRI to
provide precise images of the inside organs and tissues of the body. The acquisition
process requires specialized equipment and skilled personnel to operate the MRI
scanner, ensuring patient safety and optimizing image quality. Additionally, MRI
datasets usually require various computational resources for storage and process-
ing. In this direction, analyzing MRI data requires a number of difficult tasks. To
enhance the quality of captured images, pre-processing methods like noise reduc-
tion, artifact removal and image enhancement are frequently required. Algorithms
for image reconstruction are also used to convert raw MRI data into comprehensible
images. These algorithms make use of complex mathematical models and calcula-
tion methods, which increase the computational load and processing time.

Electrocardiography (ECG) offers a considerably more accessible method of moni-
toring heart activity, in comparison to the difficulties encountered by MRI process-
ing. The heart’s electrical signals are measured using an ECG, which can provide
important details about the heart’s rhythm and operation. ECG recordings are fre-
quently utilized in clinical practice because they are non-invasive, affordable, and
easily accessible.

Though, despite the drawbacks we mentioned earlier regarding the processing of
MRIs, they proved to be extremely helpful for the analysis of the heart, due to the
fact that MRI provide more detailed information compared to ECG. To be more spe-
cific, MRI can accurately visualize the size, shape, and position of the heart, as well
as even more detailed information regarding the surrounding structures, such as the
lungs, blood vessels and adjacent organs, which can be important in evaluating com-
plex cardiac cases. Therefore, while ECG focuses primarily on the electrical activity
of the heart, MRI offers a more comprehensive overview of the heart’s structure,
making MRI a valuable tool for diagnosing and monitoring cardiac conditions.
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1.1 Motivation

Machine learning methods have observed an impressive expansion over the past
decade, thanks to the advancement of potent deep learning methods [14] that have
been utilized across diverse fields, including the medical domain. Deep learning
models, in particular, have shown tremendous promise for handling complex med-
ical data types like medical imaging, genetic data, and time-series data like ECG.
Nevertheless, because these developments have mainly taken place in specialized
settings, there aren’t many deep learning applications that can easily combine med-
ical data from various sources. While significant advancements have been made
separately in deep learning for cardiac MRI and ECG signals, there remains a signif-
icant gap in exploring the integration of cardiac electrical activity (ECG) and cardiac
structure (cardiac MRI) using deep learning methodologies. This gap represents a
valuable opportunity to develop innovative approaches, that leverage the comple-
mentary information from both modalities to gain a more comprehensive under-
standing of cardiac function and pathology.

The motivation behind this research stems from the need to bridge the gap between
deep learning applications in cardiac MRI and ECG signals. By integrating these
modalities using advanced deep learning techniques, we aim to develop models that
can provide a richer understanding of cardiac structure-function relationships. The
successful development of such models holds the potential to contribute to various
downstream tasks, including anomaly detection and accurate diagnosis, ultimately
leading to improved patient care and outcomes in cardiology. At the same time, the
potential to greatly reduce data processing costs by using the ECG rather than the
MRI consists of a great importance.

1.2 Contribution

The current diploma thesis seeks to investigate the possibility of deep learning mod-
els to close the gap between these two modalities, given the benefits of ECG pro-
cessing over MRI. The main idea is based on eventually being able to generate the
patient’s MRI image, while processing the ECG data, in order to obtain more pre-
cise information about the heart. The interest of this project relies on the potential
of generating from a single ECG the corresponding pseudo-MRI, that offers signifi-
cantly more information in comparison with just an ECG alone. In this way, we will
take use of both the benefits that ECG processing offers over MRI and the enhanced
knowledge about the heart that is offered by the created pseudo-MRI.

This study was carried out utilizing a sizable collection of ECG and cardiac MRI
datasets from the UK Biobank [26], within the context of the H2020 euCanSHare
project (http://www.eucanshare.eu), which is under the coordination of the Uni-
versity of Barcelona. This novel strategy aims to overcome the costs, complexity, and
processing time constraints of MRI processing by developing a deep learning model
capable of processing MRI data through ECG signals. The proposed model seeks
to predict cardiac structural dynamics over a heartbeat, based on the electrocardio-
graphic signals, by building links between these two modalities. Upstream applica-
tions like anomaly detection and diagnosis are made possible by the integration of
multimodal data, which shows potential for improving clinical decision-making.

http://www.eucanshare.eu
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This project is based upon the work by Radhakrishnan et al. [23], that proposes a
methodology in order to generate a pseudo-MRI from a single ECG heartbeat of
the same subject. Not only did we attempt to replicate the authors results, but also
we went a step further by attempting to do an exploration of the latent space. The
representations of the latent space might provide some useful information, that can
be used to distinguish abnormal patterns.

1.3 Thesis Organization

This thesis is organised as follows:

• Chapter 2 - Background and Related Work: Explanation of the theoretical
foundation of the thesis, state of the art and additional terminologies.

• Chapter 3 - Dataset: Analysis of our dataset and a thorough explanation of the
data pre-processing process.

• Chapter 4 - Methodology: Detailed explanation of the different architectures
that we used for every model, as well as the process of training.

• Chapter 5 - Results: Analysis of the pre-Training, Training, Validation and
Evaluation pipelines, presentation of the final model and the results obtained
from the experiments. Visualisation of the Latent Space will be provided as
well, while observations regarding the outcomes will be made.

• Chapter 6 - Conclusions and Future Work: Assessment of the work that has
been done and suggestions for further improvement.
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Chapter 2

Background and Related Work

In this section we will provide a comprehensive overview of the key background
concepts and related work, relevant to the development of deep learning models for
integrating ECG and MRI data. The chapter begins by introducing ECG and MRI,
providing definitions and general information about these modalities. Subsequently,
it explores the concept of Autoencoders, which will play a significant role in the de-
velopment of the models proposed in this master thesis. Finally, the chapter explores
the field of Multi-modal and Cross-modal deep learning models, highlighting their
significance and potential applications in the field of medical imaging.

2.1 Electrocardiogram

A diagnostic procedure that monitors the electrical activity of the heart is called an
electrocardiogram or ECG [13]. Each heartbeat generates electrical activity, which is
distributed throughout the body and can be detected on the skin. The ECG machine
uses electrodes placed on the skin to pick up these signals and displays them graphi-
cally. During an ECG, temporary electrodes are attached to the chest and limbs using
10 electrical cables. The electrical activity of the heart, which regulates heartbeats, is
observed and recorded by these electrodes. The signals detected by the electrodes
are transmitted to an electrocardiograph machine. The electrocardiograph records
the electrical signals as a series of waves, representing different phases of the cardiac
cycle. This graphical representation, called an ECG tracing, offers important details
regarding the electrical conduction and rhythm of the heart. The recorded ECG data
is then processed by a computer, which analyzes the signals and translates them into
a visual waveform pattern. Healthcare professionals can use this pattern to diagnose
numerous cardiac problems, identify anomalies, find arrhythmias, assess the heart’s
conduction system and more. Using electrodes on the limbs and chest, a 12-lead
ECG offers a thorough view of the electrical activity of the heart. It gathers data
from several cardiac planes, enabling a more thorough study. In Figure 2.1, one can
see an example of an ECG signal.

2.2 Magnetic Resonance Imaging

Magnetic resonance imaging or MRI [22] is a non-invasive imaging technology that
produces three dimensional detailed anatomical images. It is often used for dis-
ease detection, diagnosis and treatment monitoring. It is based on sophisticated
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FIGURE 2.1: Example of an ECG signal [9]

technology that detects the change in the direction of the rotational axis of protons
found in the water that makes up living tissues. Building upon the basic concept
of MRI, Cardiac Magnetic Resonance Imaging (CMRI) specifically focuses on imag-
ing the heart and its surrounding structures. It offers detailed anatomical images of
the heart’s chambers, valves, blood vessels and the surrounding tissues. The pri-
mary use of CMRI is to assess the structure, function and blood flow of the heart. It
provides valuable information for diagnosing and monitoring various cardiac con-
ditions. MRIs are widely used in Healthcare in order to detect cardiomyopathies,
valvular heart disease, cardiac tumors and masses etc. In Figure 2.2, we present an
example of an MRI image of the heart.

FIGURE 2.2: Example of a cardiac MRI Image
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2.3 Autoencoders

What is an Autoencoder?

Autoencoders [18], an essential component of machine learning, are simple learning
circuits that aim to transform inputs into outputs with minimal distortion. They are
a type of artificial neural network utilized for various unsupervised learning tasks,
including dimensionality reduction, feature extraction and data compression. An
autoencoder comprises two primary components: an encoder and a decoder. The
encoder maps the input data to a lower-dimensional latent space, while the decoder
aims to reconstruct the original input data from the learned latent representation.
These neural networks have been widely employed in diverse domains, such as
computer vision and natural language processing. In the context of this thesis, au-
toencoders play a crucial role in reconstructing both ECG and MRI modalities, as all
the models designed for this project are based on the Autoencoder architecture. The
combination of ECG and MRI modalities may result in useful insights by utilizing
the capabilities of autoencoders, improving medical diagnosis and therapies.

How Autoencoders Work

The autoencoder [1] aims to reconstruct the original data, as accurately as possible,
by learning a lower-dimensional representation of the input data in the Latent Space.
This lower-dimensional representation is then utilised in order to generate the out-
put data. The objective is for the desired output to match the input data as closely as
possible, by minimizing the reconstruction error between the input and the recon-
structed output. The error can be measured by using different loss functions, such
as Mean Squared Error(MSE) or cross-entropy loss. Autoencoders, as can be seen
in Figure 2.3, consist of three main components: Encoder, Latent Space (Bottleneck)
and Decoder [18].

Encoder: The Encoder is a neural network that compresses the input data into a
lower-dimensional latent representation. Therefore, the output of the Encoder block
consists the Latent Space representation.

Latent Space or Bottleneck: The compressed or lower-dimensional representation
of the input data is called Latent Space or Bottleneck. This block contains the en-
coded values of the input data, capturing the most important features of them in the
Latent Space in a compressed form. Hence, the visualisation of the lower-dimensional
space (2D or 3D) can significantly contribute not only to the exploration of the data,
but also to the extraction of meaningful patterns.

Decoder: The Decoder is another neural network that reconstructs the input data
from the Latent Space representation. The input of the Decoder are the encoded
data captured in the Latent Space, which the Decoder utilises in order to generate
the reconstructed data. The goal of the Decoder is to minimize the reconstruction
error between the original input data and the reconstructed data. Regarding the
structure, the Decoder usually mirrors the structure of the encoder.
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FIGURE 2.3: Basic structure of an Autoencoder for images [17]

Different types of Autoencoders

To easily distinguish the differences between some fundamental Autoencoder types,
we are going to provide in this subsection a brief explanation for each type.

• Simple Autoencoder [1991] [29]: The Simple Autoencoder is a basic autoen-
coder architecture that consists of an encoder network and a decoder network.
The encoder maps the input data to a lower-dimensional latent representation,
while the decoder reconstructs the input data from the latent space. Both the
encoder and decoder networks are typically fully connected neural networks,
which will be explained in detail in the following paragraph. The hidden lay-
ers in the encoder and decoder include fewer neurons than the input and out-
put layers, respectively. By learning a compressed representation of the input
data, Simple Autoencoders can be used for tasks such as dimensionality re-
duction, feature learning and data denoising.

• Fully Connected Autoencoder [2006] [11]: The Fully Connected Autoencoder
is an autoencoder architecture where each neuron in one layer is connected
to every neuron in the subsequent layer. It is a generic form of autoencoder
with fully connected (dense) layers. The input data is passed through multiple
fully connected layers in the encoder, reducing its dimensionality, and then the
decoder uses fully connected layers to reconstruct the data. Fully Connected
Autoencoders are flexible and can be used for a wide range of applications.
They are particularly useful when working with structured data or as a base-
line for more complex autoencoder variations.

• Convolutional Autoencoder (CAE) [2010] [29]: The Convolutional Autoen-
coder is specifically designed for processing structured data, particularly im-
ages. Convolutional layers are used by CAEs in both the encoder and decoder
components. The encoder applies convolutional filters to extract local features
and downsamples the spatial dimensions of the input, gradually reducing its
dimensionality. The decoder uses transposed convolutions (also known as de-
convolutions or upsampling) to reconstruct the data back to its original shape.
CAEs capture spatial dependencies and learn hierarchical representations of
images, making them effective for tasks such as image generation, denoising
and inpainting.
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Works including ECG and MRI Autoencoders

Autoencoder models have been used in various projects, that also included the use
of ECG or MRI data. For example, Ojha, Wadhwani, and Wadhwani [20] proposed a
method for automatically detecting arrhythmias from ECG signals. Arrhythmias are
abnormal activity of the heart functioning and some arrhythmias are harmful to the
heart, causing in many occasions sudden death. In this implementation, the ECG
was analysed for the diagnosis of arrhythmia beats. The authors developed a clas-
sification model that includes a one-dimensional convolutional neural network (1D-
CNN) model, based on a Convolutional Autoencoder, that learns the most important
values from an ECG signal in order to improve the categorization of arrhythmias.
The four different forms of arrhythmic beats were then detected using a classifier.
[25] consists another paper that makes use of Autoencoders. This study focuses on
using advanced deep learning techniques to detect and classify brain tumors using
512x512 MRI images. The authors proposed a 2D Convolutional Autoencoder neu-
ral network to classify three types of brain tumors and healthy brains, using a large
dataset of MRI images. The aforementioned model, follows the typical architecture
of a U-Net [24] convolutional network, which was the baseline as well for the design
of our model that reconstructs the MRI images.

2.4 Multi-modal and Cross-modal DL

Nowadays, increasing amounts of data are being generated and collected at an un-
precedented speed. A single modality [7] in the context of Deep Learning in general
can refer to any type of input data, such as audio, signals, images or videos. In the
field of Medical Imaging in particular, imaging modalities [6] refer to different types
of imaging techniques used in medical imaging to visualize the internal structures
of the human body. Some examples of medical imaging modalities consist of X-ray,
Ultrasound, Computed Tomography and MRI. In some cases, imaging modalities
can be combined with other non-imaging modalities such as ECG, clinical history
data or genomics data in order to improve diagnosis. One of the latest and most
promising trends in Deep Learning research is Multi-modal Deep Learning. In this
section we are going to analyse in depth not only Multi-modal, but also Cross-modal
Deep learning approach. Additionally, we will also provide some works related to
each approach in the field of Medical Imaging.

What is Multi-modal Deep Learning

Multi-modal Deep Learning [19] refers to the utilization of deep learning techniques
for processing data from multiple modalities or sources of data simultaneously. The
multi-modality refers to the ability to combine sources. The modalities can be of dif-
ferent types, such as signals, images or audio. The model learns to extract features
and information from each modality and then combine them in order to make pre-
dictions. The main goal of Multi-modal Deep Learning is to extract features from
the information gathered from the different available modalities, combining them
afterwards in order to enhance the overall performance of the model and improve
even further the learning process of the model.
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What is Cross-modal Deep Learning

Cross-modal Deep Learning [27] goes a step further in comparison with Multi-modal
Deep Learning, by explicitly addressing the relationships and correlations between
different modalities. The models are designed to map data from one modality to
another, enabling the transfer of knowledge and information across modalities. In
other words, Cross-modality refers to the ability of a model to use information from
one modality to improve performance in another modality. The main difference
between multimodal and crossmodal learning is that crossmodal requires sharing
characteristics of different modalities to compensate for the lack of information to-
wards enabling the ability to use data of one modality to predict data of another
modality [4].

In order to have a better understanding of how these two notions differentiate, let’s
think about a scenario: A model is tasked with predicting the emotion of a person in
a video. A Multi-modal model would process both the visual frames (images) and
the audio simultaneously and use the information from both modalities to make
predictions. On the other hand, a Cross-modal model may learn to generate textual
descriptions of facial expressions from images and then predict the emotion based
on the textual description. While the Multi-modal model used simultaneously the
information provided by the different modalities in order to make predictions, the
Cross-modal model used the information from one modality (images) in order to
improve the performance in another modality (text) and then predicted the emotion
of a person based on the text modality.

Regarding the heart, by combining information coming from different modalities,
such as ECG and MRI, a more comprehensive understanding of cardiac health is fea-
sible and different aspects of patients anatomy could be revealed. In this direction,
we have to bear in mind the fact that Multi-modal systems are based on the idea that
different modalities have the potential to provide unique information, significantly
contributing to a more holistic understanding. The development of Multi-modal
systems in the medical health sector is driven by the goal of improving patient out-
comes, enhancing clinical decision-making and accelerating medical research. For
instance, these systems can offer a greater understanding of a patient’s condition
by combining imaging data with clinical notes, enabling more accurate diagnosis
and customised treatment strategies. Additionally, they can help with early disease
detection, treatment outcome prediction and disease progression monitoring.

The past few years, a lot of research on the exploration of Multi-modalities has
been made, in order to benefit from the advantages offered by Multi-modality Deep
Learning models. The method proposed by Hammad, Liu, and Wang [10] presents a
Multi-modal biometric authentication system, that combines two different biometric
modalities: Electrocardiogram (ECG) and fingerprint. The goal of the study is to cre-
ate a more secure and reliable authentication system, by fusing these two biometric
modalities at different levels using Convolution Neural Network. In other words,
the objective was to enhance security and improve the overall performance com-
pared to traditional unimodal systems, while at the same time reducing the chances
of security threads.

Another innovative approach in Cross-modal integrations consisted [23], which was
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the starting point of our project, due to the fact that the authors effectively gen-
erated pseudo-cardiac MRI from an ECG input. Looking in more detail, a Cross-
modal autoencoder framework was developed in order to process data from two
different modalities: ECG and MRI. In this way, a more comprehensive representa-
tion of the cardiac state is feasible. The combination of ECG and cardiac MRI data
contributed to the demonstration of the advantages of Cross-modal representations
through three different applications. Firstly, they improved the prediction of car-
diovascular phenotypes using ECGs alone, which is particularly useful considering
the abundance of ECG data compared to MRI. Secondly, they successfully imputed
cardiac MRIs from ECGs, making it possible to acquire challenging modalities using
easily obtainable ones. Lastly, they identified associations between genotypes and
general cardiovascular traits. Notably, the authors found that increasing the num-
ber of unlabelled ECG and MRI pairs had a more significant impact than increasing
the number of labeled MRI data. The study also highlighted the ability of Cross-
modal autoencoders to capture confounding factors, as evidenced by the effective
prediction of sex and age using MRI Cross-modal embeddings. Overall, this work
represents a significant advancement in utilizing Cross-modal modalities for a better
understanding of physiological states in the context of cardiovascular health.

Now, let’s take a pause and summarize what we have seen so far in Chapter 2. This
chapter has provided a comprehensive overview of the fundamental concepts of
ECG and MRI modalities, introduced the concept of Autoencoders and discussed
the significance of Multi-modality and Cross-Modality in Deep Learning. Therefore,
the reader should be equipped by now, with thorough understanding regarding the
aforementioned notions. The knowledge gained from this chapter will serve as a
solid foundation for the subsequent chapters, where the proposed models will be
developed and evaluated in order to achieve the objectives of this master thesis.
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Chapter 3

Dataset

For the implementation of this project we needed a large database, which we had ac-
cess to thanks to the H2020 euCanSHare project (www.eucanshare.eu), coordinated
by the Universitat de Barcelona. Within the project, we had access to a large pa-
tient cohort from the UK Biobank, a large-scale biomedical database being acquired
in the United Kingdom that contains multiple sources of genetic and health data
from around 500,000 participants. The database is continually expanded with new
information and is globally accessible to approved researchers. It has greatly con-
tributed to the advancement of modern medicine and has enabled several scientific
discoveries that improve human health.

To be more specific, the euCanSHare project is a collaborative effort between Eu-
ropean and Canadian institutions. It seeks to create a platform for collaboration
that enables the fusion of various data types related to cardiovascular health, such
as sociodemographic data, biosamples, cardiac imaging and clinical outcomes. Re-
searchers are able to learn more about various facets of cardiovascular health, thanks
to this extensive dataset. In other words, the euCanSHare project acts as a plat-
form for collaboration that combines cardiovascular data from several cohorts. The
University of Barcelona was involved in coordinating the project, and therefore we
eventually had access to a great number of ECG signals and cardiac MRI datasets,
accounting for more than 40,000 participants. For this project, we decided to limit
the sample size to 10,000 participants to allow for a faster implementation and train-
ing. We have to underline that regarding the structure of our project, we created a
folder named UKBB, inside which we had two more folders: ecg, where all the ECG
signals were stored and the NIFTI folder, where all the cardiac MRI Images were
stored.

It is of a great importance to underline the fact that this thesis was based on pair
modalities, and more specifically pairs of ECG signals and MRI images. Therefore,
this dataset is quite useful for us, due to the fact that for the majority of the patients
we had available pairs of ECG signals and the corresponding cardiac MRIs. How-
ever, for the patients that an ECG-MRI pair didn’t exist on the dataset, because either
the ECG or the MRI was missing, we removed those patients from the dataset using
the unique identifier. Eventually, we filtered out the common Ids that existed not
only in the ecg folder, but also in the NIFTI folder, so that the final dataset will only
include ECG-MRI pairs. Moreover, we had available other information related to the
characteristics of the subjects of the dataset in a csv file. The mapping between the
Dataset and the csv file, was feasible by using again the unique Id for every patient.
The most significant features of each subject, among others, can be observed on the
following list:

http://www.eucanshare.eu
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• feid: The unique Id number of each patient in the dataset.

• age

• height

• weight

• sex: This column records the sex (male or female) of the individuals.

• bmi: This column stores the Body Mass Index values of the individuals.

• date_first_scan: Contains the dates when the first scan was conducted.

• date_second_scan: This column is related to the dates that the second scan
took place.

• Acute MI: This column indicates whether the patient had an acute myocardial
infarction (MI). An acute MI is a serious condition that occurs when the blood
supply to part of the heart is blocked, usually by a blood clot.

• Ventr. Tachy.: This column indicates whether the patient had ventricular tachy-
cardia at some point, which is a type of abnormal heart rhythm.

• LV fail.: This column indicates whether the patient had heart failure with re-
duced ejection fraction.

In terms of sex, our dataset had a balanced number of Females (23510) and Males
(21844) patients. In the following sections, we are going to analyse how we pre-
processed the ECGs and the MRIs that we had available for each individual subject.

3.1 Electrocardiogram

To begin with, we are going to display an ECG signal stored from the dataset in
Figure 3.1. As you can see, the amplitude of the ECG has approximately range [-60,
200]. Furthermore, the full ECG signal has 5000 samples (x-axis) and some noise
also is present. The pre-processing of the ECG mainly concerns the aforementioned
features of the signal.

FIGURE 3.1: Example of an ECG Signal
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ECG Preprocessing

• Segmentation

Following the implementation by Radhakrishnan et al. [23], we selected the
first 600 samples from the full ECG signal, which correspond to the 1.2-second
600-voltage median waveforms derived from the full 10-second ECG. You can
notice in Figure 3.2, that after the segmentation the x-axis has a range of [0,
600].

(A) (B)

FIGURE 3.2: (A) Before Segmentation (B) After Segmentation

• Re-scaling

The next step is to normalise the ECG signals. For this purpose, we utilised the
following formula:

xnorm =
x − min(x)

max(x)− min(x) + 1e−4
(3.1)

where x refers to the ECG signal. The factor 1e-4 was added, because some sig-
nals of the dataset had the same min and max value, and therefore we wanted
to avoid divisions by zero. After the Normalization process, we can observe
that the ECG signal has an amplitude value between 0 and 1. In Figure 3.3, we
present the ECG before and after normalization.

(A) (B)

FIGURE 3.3: (A) Before Normalization (B) After Normalization

• Denoise

Last but not least, we applied a Denoising technique in order to cancel the
noise that the ECG signals have. In this way, we expect to be able to acquire
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better results. To accomplish that, we created a function named median_filter
and we got the results shown in 3.4. It is obvious that the final ECG signal is
more clean that the initial one.

(A) (B)

FIGURE 3.4: (A) Before Denoise (B) After Denoise

3.2 Magnetic Resonance Imaging

As far as it concerns the cardiac MRI Images, due to the fact that the computational
effort and time needed for the completion of the tasks were extremely big, we de-
cided to select a single slice from the entire 50-slice MRI Image. In that way, not
only the data given as an input to the models were extremely reduced, but also the
number of parameters of the models as well. Therefore, the computational time was
significantly reduced, which was extremely important for us due to time limitations.
Apart from that, because MRI images in the dataset had various sizes, we resized all
images to 128x128 pixels. In Figure 3.5, you can see an example of an MRI Image
after the pre-processing that we applied.

FIGURE 3.5: An example of an 128x128 MRI Image after pre-processing
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Chapter 4

Methodology

In this section we are going to describe the methodology employed during this work.
To be more specific, we will examine the various models we have developed, includ-
ing details on their architecture and the loss functions we used. We implemented a
Multi-modality autoencoder that had different encoding paths for the different data
sources. For ECG data we used a Fully Connected-based autoencoder, while for
MRI data we used a 2D Convolutional autoencoder. More details will be given next
regarding the specific architecture and training details.

4.1 Fully Connected Autoencoder for ECGs

The first model that we are going to analyse consists the first out of the two models
used in order to form the Multi-Modality Autoencoder. This model is a Fully Con-
nected Autoencoder and is responsible for reconstructing ECG signals. The pipeline
can be seen in Figure 4.1. Having a batch size of 64, each input ECG signal has a
shape of (batch size=64, 600). This model also consists of an encoder and a decoder,
which are defined as separate sequential modules. The encoder is responsible for
transforming the input ECG signal into a lower-dimensional latent representation.
The encoder comprises several linear (fully connected) layers followed by ReLU ac-
tivation functions and each layer reduces the dimensionality of the input gradually,
going from 600 to 256. Therefore, after the ECG Encoder the dimensionality will be
reduced from 600 to a 256 feature vector. The decoder takes the latent representa-
tion and reconstructs the original ECG signal. In our implementation, the decoder
mirrors the structure of the encoder in reverse order, consisting of linear layers and
ReLU activations. The decoder layers progressively increase the dimensionality, ul-
timately reconstructing the ECG signal of size (batch size=64, 600). The final layer of
the decoder uses a sigmoid activation function to squash the output values between
0 and 1, which is typical for signal reconstruction tasks. This model was initially pre-
trained using a group of 5000 ECG signals. More details on the pretraining process
of the Fully-Connected Autoencoder will be provided in Chapter 5.

Number of Parameters

In Figure 4.2, one can observe the model parameters that the Fully Connected Au-
toencoder includes in every layer of the autoencoder as well as the total number of
parameters.
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FIGURE 4.1: Fully Connected ECG Autoencoder Pipeline

FIGURE 4.2: ECG Fully Connected Autoencoder number of parameters overview

4.2 2D Convolutional Autoencoder for MRIs

The basis for the implementation of our 2D Convolutional Autoencoder model con-
sisted the simple and successful U-Net model, which was introduced in 2015 [24].
The UNet architecture is a convolutional neural network that is widely used for im-
age segmentation tasks, particularly in the field of biomedical image analysis. It
was specifically designed to handle the challenges of limited training data and class
imbalance often encountered in such applications.

4.2.1 Architecture

The U-Net architecture consists of an encoder path and a corresponding decoder
path. The encoder path follows a typical convolutional neural network (CNN) struc-
ture, consisting of multiple convolutional and pooling layers that progressively down-
sample the input image to capture context and extract high-level features. The de-
coder path, on the other hand, performs upsampling and uses skip connections to
concatenate feature maps from the encoder path with the corresponding upscaled
feature maps to recover spatial resolution and localize features. It is of a crucial im-
portance to underline that in our implementation we removed the skip connections,
which are visualised with the gray arrows, due to the fact that we do not desire a
connection between the Encoder and the Decoder of our model. In Figure 4.3 an
overview of the classic UNET model architecture is presented.
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FIGURE 4.3: UNET Model Architecture [24]

We will now try to break down the different blocks of the UNET model. The ba-
sic building block of the UNet model, shown in Figure 4.4, consists of three main
components: a convolutional operation, a normalization layer, and an activation
function. This building block is typically repeated multiple times(x2) in the model
to create a deep network architecture.

• Convolutional Operation: The fundamental part of the building block is the
convolutional operation. In order to extract relevant features, it applies a series
of trainable filters to the input data. By sliding over the input, each filter carries
out a convolution operation by computing the dot product between the filter
weights and the corresponding input values. This operation helps to capture
spatial patterns and features in the data.

• Normalization Layer: The output of the convolutional operation is normalized
by the normalization layer. By ensuring that the input values are within an
acceptable range, it contributes to the stabilization and improvement of the
training process. Batch Normalization is a frequently used normalization layer
that adjusts the output by dividing by the mini-batch’s standard deviation and
subtracting the mean.

• Activation Function: The building block becomes non-linear due to the activa-
tion function. The output is element-wise subjected to the activation function
following the convolutional operation and normalization. It makes the model
more expressive and enables the model to learn complex relationships. ReLU
(Rectified Linear Unit) and its variants, such as Leaky ReLU or PReLU, are
frequently used activation functions that hold positive values constant while
setting negative values to zero.
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FIGURE 4.4: Building Block Architecture

A downsampling operation, presented in Figure 4.5, is applied to reduce the spatial
resolution of the feature maps. The most common downsampling operations used in
the UNet model are max pooling and strided convolution. Max pooling divides the
feature maps into non-overlapping regions and selects the maximum value within
each region, effectively reducing the spatial dimensions. Strided convolution, on the
other hand, performs convolution with a larger stride, resulting in a smaller output
size. By stacking multiple downsampling blocks together, the UNet model gradually
reduces the spatial resolution while increasing the number of channels, allowing it
to capture both local and global features at different scales. This downsampling
process helps to extract and encode the hierarchical information in the input data,
which can later be used for upsampling and reconstructing the original input in the
decoder part of the UNet model. In our case we have 3 consecutive downsampling
blocks, reducing the spatial dimensions from 128x128 that are the input cardiac MRI
Images to 16x16. After that, a Max Pooling operation with Kernel size 16 is applied,
reducing even more the spatial dimensions from 16x16 to a 1x1 vector. We have also
to mention the fact, that while downsampling, the channels increased from 64 to 256
channles on the feature space. On the other hand, we have the Upsampling block,
displayed in Figure 4.5, which increases the the spatial dimensions and starts the
procedure of reconstructing the 128x128 image. In our implementation, we used 7
Upsampling blocks followed at the end from a 1x1 Convolution layer, upsampling
eventually the initial 1x1 vector to a 128x128 reconstructed MRI Image. In this case,
the number of channels was reduced from 256 to 64. The updated UNET model has
a total number of 27338497 parameters.

4.2.2 Pipeline

In Figure 4.6 we present the Pipeline for the 2D Convolutional Autoencoder for the
cardiac MRI Image reconstruction. As you can see, the input is a 128x128 MRI Im-
age, that Preprocessing techniques are applied, as mentioned in Chapter 3. Then,
this processed 128x128 Image is encoded in a 1x1 vector which is represented with
blue colour in the latent space. Subsequently, the 1x1 vector is Decoded and the
output is the generated 128x128 pseudo-MRI Image. This model was separately
pretrained as well, like we did with the Fully-Connected Autoencoder, but this time
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(A) (B)

FIGURE 4.5: (A) Downsampling Block (B) Upsampling Block

FIGURE 4.6: 2D Convolutional MRI Autoencoder Pipeline

using 1000 MRIs. Detailed information related to the pretraining process of the 2D
Convolutional Autoencoder will be provided in Chapter 5.

4.3 Multi-Modality Autoencoder

In this section we are going to explore the Multi-modality Autoencoder. At first,
paired modalities will be explained, a detailed pipeline that we used for the training
process will be provided as well as the architecture of the model.

4.3.1 Training Pipeline

To begin with, we are going to analyse the pipeline that we used in order to train the
Multi-modal Autoencoder. An overview of our Multi-modal autoencoder frame-
work can be seen in Figure 4.7. Having a general overview of the Autoencoder
model, we notice that the basic elements are:

• Input Modalities (ECG and cardiac MRI pairs)

• Encoder

• Latent Space
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• Decoder

• Output Modalities (Reconstructed ECG and MRI for the same individual)

For our implementation we used two different modalities as inputs to our Multi-
modal Autoencoder model: ECG signals and MRI Images. To be more specific, we
have trained our model on ECG and cardiac MRI pairs from the UK biobank. We
have to underline the fact that the ECG-MRI pairs correspond to a single individ-
ual. The model is trained on paired-modalities, meaning the ECG-MRI pairs of each
subject. By combining information coming from different modalities in our case, a
more comprehensive understanding of cardiac health might be feasible and different
aspects of patients anatomy could be revealed.

The first step of our Training pipeline consists the Preprocessing of our inputs (both
ECG and MRI), as we previously explained in Chapter 3. After that, each of the in-
puts will go through the Encoder part. The ECG signals will go through the Fully
Connected ECG Encoder and the MRI Images through the 2D Convolutional En-
coder. Hence, different data sources have different encoding paths. Modality spe-
cific encoders map data modalities into a shared latent space in which a contrastive
loss is used to enforce the constraint that paired samples are embedded nearby and
further apart from other samples. Contrastive Loss will be further explained later
in this Chapter. For both inputs, the output of the encoder would be a 256 feature
vector in the Latent Space. The Latent Space is represented with grey colour in Fig-
ure 4.7, where with a red cross is the 256 feature vector of the ECG encoded signal
and with a blue circle is the 256 feature vector of the MRI encoded image for each
subject.

Then, the next step in our Training pipeline is the Decoder part of each model.
Modality specific decoders are then used to reconstruct modalities from points in
the latent space. In more detail, in this step the 256 feature vectors are transformed
again to ECG signals or MRI cardiac images, contributing to the successful recon-
struction of the ECG as well as the MRI. Overall, the final outputs of the model will
eventually be: the Reconstructed ECG signal and the Reconstructed MRI cardiac
Image.

FIGURE 4.7: An overview of our Multi-modal autoencoder framework, which also consists
a visualization of our training pipeline. [23]
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4.3.2 Architecture

As we observe in Figure 4.7, the Multi-Modal Autoencoder is a combination of two
separate autoencoder models, that were explained in detail previously in the sec-
tions 4.1 and 4.2 accordingly: a Fully Connected Autoencoder for processing ECG
signals, which is shown with red colour, and a 2D Convolutional Autoencoder,
which is responsible for processing MRI images and is shown with blue colour at
the pipeline.

The Multi-Modality Autoencoder model combines the capabilities of an ECG au-
toencoder and an MRI autoencoder to jointly learn representations from both modal-
ities and reconstruct the input data. Moreover, we combine the ECG encoder and de-
coder with the MRI encoder and decoder. In further detail, the model takes an ECG
signal and an MRI image as inputs. To obtain the encoded representation, the ECG
signal is processed through the ECG encoder. The ECG signal is then regenerated
using the encoded ECG representation. Similarly, the MRI image is passed through
the MRI encoder to obtain the encoded representation, which is then decoded to re-
construct the MRI image. The forward method returns the encoded representations
of both the ECG and MRI inputs, as well as the reconstructed ECG signal and MRI
image.

In Figure 4.8, we are able to see the number of parameters of the model for every
layer. We have to underline the fact that the total number of parameters for our
Multi-Modality Autoencoder is: 11981905.

FIGURE 4.8: Multi-Modality Autoencoder number of parameters overview

4.3.3 Training Procedure

In our implementation, the above pipeline consisted the Training pipeline, as we
used 4627 ECG-MRI pairs for different individuals provided by the UK biobank
dataset as inputs to the model. For this Multi-modal model we used the following
parameters:

• Loss Function: The L1 loss function was used, also known as the Mean Abso-
lute Error, which is used to measure the average absolute difference between
predicted and true values.

• AdamW Optimizer [15]: AdamW is an optimization algorithm derived from
Adam, a popular optimizer in deep learning. It combines the benefits of adap-
tive learning rates with weight decay, an L2 regularization technique. By adding
a penalty term based on the magnitudes of model weights, weight decay helps
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control model complexity and prevents overfitting. This regularization en-
courages smaller weight values, leading to smoother and more generalizable
models.

• Learning rate: The learning rate that we used for training is 0.001.

• Batch size: A batch size of 64 was used for Training, which means that the
model is processing 64 training examples at a time.

Regarding the Train-Validation split of our dataset, we have to mention the fact that
the initial 5000 dataset was split with a proportion of:

• 80% for Training : The training dataset is composed of 3701 ECG-MRI pair
modalities.

• 20% for Validation: The validation dataset, on the other side is composed of
926 ECG-MRI pair modalities.

The model has been trained for 30 epochs and the model parameters after Training
have been saved, so that they could be loaded afterwards for the final Evaluation
of the model. For every epoch, after the training of our training dataset has been
completed, a Validation starts to take place on the validation set, which contains
unseen data compared to the training set. In this way, we are allowed to assess
how well our trained model performs on unseen data in every epoch and determine
the models generalization potential by assessing it on a different dataset. In other
words, it gives us insights on the model’s effectiveness and potential problems like
overfitting or underfitting by demonstrating how the model is expected to behave
when new data are provided.

4.4 Loss Functions

The training methodology in this project involves the use of a multi-modal au-
toencoder to reconstruct original modalities and ensures that the representations of
modalities corresponding to the same sample are embedded nearby in the latent
space. In the following section we are going to discuss about the Reconstruction,
Contrastive and Total Loss. To begin with, the total loss function used for training
consists of a linear combination of two components: a reconstruction loss (LRec) and
a contrastive loss (LContrastive). For our experiments we will use: λ = 0.1.

L({X(j), f j, gj}) = LContrastive({X(j), f j}) + λLRec({X(j), f j, gj})

Reconstruction Loss (LRec)

The Reconstruction Loss [23] is responsible for reconstructing the original modali-
ties. It measures the difference between the original input samples and the recon-
structed samples obtained from the autoencoder. The reconstruction loss (LRec) is
calculated as the sum of squared Euclidean distances between the original and re-
constructed samples.
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LRec({X(j), f j, gj}) =
n

∑
i=1

m

∑
j=1

∥∥∥x(i,j) − gj( f j(x(i,j)))
∥∥∥2

Contrastive Loss (LContrastive)

Contrastive loss [23, 28, 3, 5] is a commonly used loss function in deep learning for
tasks involving paired modalities, such as cross-modal retrieval. In the context of
paired modalities, we have multiple data modalities available for the same sample,
and the goal is to learn a shared representation space that captures the relationships
between these modalities. The contrastive loss aims to ensure that the representa-
tions of modalities corresponding to the same sample are embedded nearby in the
latent space, while pulling apart the representations of different samples or modali-
ties. This loss encourages similar samples or modalities to have smaller distances in
the learned representation space, promoting better alignment. The contrastive loss
is typically computed by comparing pairs of samples or modalities within a batch.
It encourages the positive pairs (pairs of modalities from the same sample) to have
small distances and negative pairs (pairs of modalities from different samples) to
have large distances. This is achieved by using similarity measures, such as dot
products or cosine similarities, and applying a softmax function to obtain probabili-
ties that represent the similarity between pairs. In our implementation we used the
cosine similarity.

To develop a multi-objective loss function for Multi-modal autoencoder training,
the contrastive loss can be paired with additional loss functions, such as reconstruc-
tion loss. Hyperparameters like lambda can be used to regulate the weights of these
different loss components to balance their contributions during training. The Recon-
struction Loss is responsible for reconstructing the original modalities. It measures
the difference between the original input samples and the reconstructed samples ob-
tained from the autoencoder. The LRec is calculated as the sum of squared Euclidean
distances between the original and reconstructed samples. Overall, the Contrastive
Loss ensures that the representations of modalities corresponding to the same sam-
ple are embedded nearby in the latent space, by using a contrastive loss formulation
to push similar samples closer together and separate dissimilar samples. The con-
trastive loss is calculated as follows:

LContrastive({X(j), f j}) =
m

∑
j1=1

m

∑
j2=1

Ib log σj1 j2(Sj1 j2 et) + Ib log σj2 j1(Sj1 j2 et)2
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Chapter 5

Results

In this section, the different experiments and results from the different pipelines,
that we have explained in Chapter 4, will be exposed. Additionaly, the Final Cross-
modal Autoencoder pipeline will be presented. To be more specific, we will present
the results for the following procedures:

• Pretraining of the ECG Autoencoder

• Pretraining of the MRI Autoencoder

• Training of the Multi-Modality Autoencoder

• Evaluation of the Final Cross-modal Autoencoder

It is of a great importance to underline the fact that for our experiments, the initial
implementation was edited in order to use a GPU (Graphics Processing Unit), pro-
vided by the University of Barcelona, instead of a CPU (Central Processing Unit).
This was possible, due to the fact that Python’s framework Pytorch, which was used
for all the implementations, gives the user the opportunity to speed up deep learn-
ing computations by using GPUs [21]. GPUs are specifically designed for parallel
computations and boast a large number of cores, making them highly efficient for
the computationally intensive matrix calculations involved in training neural net-
works. This is especially advantageous when dealing with extensive datasets, such
as images, which tend to be memory-intensive and require complex operations. By
utilizing a GPU’s power, we can achieve remarkable speed-ups in the training and
evaluation process of deep learning models. GPUs excel at parallel processing, al-
lowing multiple operations to be executed simultaneously. This capability signif-
icantly accelerates the computations required for tasks like matrix multiplications
and convolutions, which are fundamental operations in neural network training.
Consequently, the training time for deep learning models is substantially reduced
compared to running them solely on a CPU.

5.1 ECG Signal Autoencoding

In the beginning, we will analyse the results that we have got after pre-training the
Fully Connected Autoencoder model (4.1), that is responsible for reconstructing the
ECG signals.
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Pre-Training

In the pre-train process, which obviously took place before the Training of the com-
bined Multi-Modality Autoencoder, after preprocessing the ECG data as explained
in Chapter 3, we used 5000 ECG signals as inputs in order to pre-train our model
for the ECGs. Regarding the parameters (loss function, optimizer, learning rate),
we used exactly the same parameters with the parameters we used for the Training
of the Cross-Modal Autoencoder as presented in 4.3.3, except from the batch size
which instead of being 64 it was 512. In Figure 5.1a, we can observe the Loss Func-
tion curve for the ECG pretraining process. From the plot of the Loss Function we
notice that our ECG model is learning very fast and this is reflected from the steep-
ness of the curve, which means that the loss is reducing dramatically during the first
epochs. Afterwards, the loss continues to decrease ,but at a slower rate , until finally
getting stable, which means than our model is not improving anymore. We have
to mention the fact, that this is a desirable Loss function plot, because it means that
our model is learning extremely fast, significantly reducing the loss eventually. Re-
garding the reconstructed ECG signal, we can see in Figure 5.1b, that with the blue
colour is presented the initial ECG signal and with the red colour is displayed the
reconstructed ECG signal. The reconstructed ECG signal is considered to be very
accurate, following the same pattern as the original ECG signal, even the peak of
the ECG waveform. After the pre-training process is over, we save the pretrained
ECG Fully Connected Autoencoder model parameters. These ECG model parame-
ters will be loaded before starting the Training of the Multi-Modality Autoencoder
model.

(A) Loss Function Plot for
ECG pre-Training

(B) Input and Recon-
structed ECG signal after

pre-Training

FIGURE 5.1: ECG Pre-Training Results

5.2 MRI Image Autoencoding

After presenting the results of ECG Signal Autoencoding, let’s take a look at the
outcomes obtained from the MRI Autoencoder model (4.2). We have to remind, that
the aforementioned model is responsible for regenerating the MRI.
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Pre-Training

Pre-training was applied not only to the ECG, as we have seen previously, but also
to the MRI Images. To be more specific, the parameters (loss function, optimizer,
learning rate) used for this procedure were exactly the same with the ones that we
used for the Training of the Multi-Modality Autoencoder, apart from the batch size,
that we gave the value of 32. For the pre-training we used 1000 MRI Images as an
input to the model, which was trained for 40 epochs. It is worth noticing that during
the MRI pre-training we shuffle the data to avoid memorization and thus improve
generalizability of the model. In more detail, shuffling the data refers to randomly
rearranging the order of the samples in our dataset. Memorization occurs when a
model learns to map specific inputs to specific outputs, without truly understand-
ing the underlying relationships. By shuffling the data, we ensure that the model is
exposed to a variety of samples in different orders during training. This helps the
model to learn the underlying patterns in the data, rather than relying on the sam-
ples particular sequence. The dataset’s inherent biases and ordering are disturbed
by shuffling, contributing this way to better generalization and adaptability of the
model to unseen data. In Figure 5.2a we display the Training Loss curve that we
got after pre-training, which shows that the 2D Convolutional Autoencoder shows a
significant improvement as the loss is reducing rapidly during some iterations. We
also observe that at the last iterations the Loss curve is stable, which means that the
model is not improving anymore and we have to stop the pre-train process in order
to avoid overfitting.

Finally, we present an example of an original MRI Image, accompanied by the Re-
constructed MRI cardiac Image in Figure 5.2b. As one can see, the reconstruction of
the MRI image is quite satisfying as the shape of the original MRI image has been ac-
curately reconstructed and, in general, the reconstructed image is very similar to the
original one. However, finer details tend to be blurred in the reconstructed image.

(A) MRI Loss Function (B) Original(Up), Reconstructed(Down)
MRI after pre-Training

FIGURE 5.2
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5.3 Multi-Modality Autoencoding

In the following section, we are going to present the results that we obtained after
following the Methodology 4.3 for the Multi-Modality Autoencoder. We have to
bear in mind the fact that this model has 2 inputs (Original ECG Signal and MRI
Image) and 2 outputs (Reconstructed ECG Signal and MRI Image).

Training

The following results were obtained after the training process was complete. Re-
garding the ECG signals reconstruction, we present you in the same plots in Fig-
ure 5.3, some examples of the Original ECG signals accompanied by the Recon-
structed ECG signals. As you can observe, the Reconstructions of the ECG precisely
replicate the original ECG waveforms.

Apart from the Reconstructed ECG, we are going to present the Reconstructed MRI’s
as well. In 5.5a, we have captured an example of a Reconstructed MRI Image that
we obtained after Training, compared to the Original MRI Image of the subject. We
observe that the shape of the MRI Image has been correctly recreated, while also
some details of the heart are depicted with various tonalities.

FIGURE 5.3: ECG Reconstruction Results

Training Loss Function

In Figure 5.4 one can see the waveform of the Training Loss Function. According to
the preceding explanation at section 4.4, this Loss Function was the result of adding
the Reconstruction (LRec) and Contrastive (LContrastive) Losses. Additionally, the
loss function for training seems to first decline quickly before remaining stable for
the last iterations. The significance of this plot is focused on visualizing the point
at which the model stopped becoming better, which is also the point at which we
terminated the training procedure.
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FIGURE 5.4: Training Loss Function

Validation

For each epoch, after training is completed, a Validation step is performed. During
validation, the model is evaluated on a separate validation dataset that is not used
for training. Validation has various positive aspects, such as evaluating models per-
formance. More specifically, through validation we can evaluate how effectively the
model generalizes to new unseen data. On the validation set, we may estimate the
model’s performance and determine if it is overfitting or underfitting by calculating
various metrics or loss values. In Figure 5.5b a Reconstructed MRI Image over the
Validation set is displayed. The reconstruction is still blurry but is similar to the
reconstruction for a training sample, underlying the fact that the model is learning.

(A) Training (B) Validation

FIGURE 5.5: MRI Reconstruction Results
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5.4 Visualisation of the Latent Space

As previously explained in Section 2.3, the latent space in our case refers to the com-
pressed representation of the ECG signals and MRI images. The encoder part of the
autoencoder learns to map the high-dimensional input data (ECG and MRI) to this
lower-dimensional latent space, while the decoder part learns to reconstruct the orig-
inal input data from the compressed latent representations. In order to have a better
understanding of our model’s behaviour, we are going to visualise the Latent Space
of the encoded ECG and MRI. To achieve this, we used the t-distributed stochastic
neighbor embedding, also called t-SNE [16], Latent Space Representation. T-SNE is
a dimensionality reduction technique that is particularly well-suited for visualizing
high-dimensional data into two or three dimensions. The t-SNE latent space rep-
resentation refers to the visualization of the latent space using the t-SNE technique
and is extremely useful for understanding the organization of the data points in the
latent space and how the autoencoder learns to separate or group these data points
based on their inherent structure or relationships. By applying t-SNE to the encoded
ECG signals and MRI images, we are able to create a 2D or 3D representation of the
latent space that can be easily visualized and analyzed. In our case, we implemented
a 2D Visualisation of the Latent Space.

In more detail, we wanted to visualise the Latent Space of the Encoded ECG Sig-
nals and MRI Images before and after the Training process. Visualizing the latent
space using t-SNE before training the autoencoder can help you understand the ini-
tial organization of the data points. At this stage, the latent representations may be
randomly distributed without any clear structure or grouping, as the autoencoder
has not yet learned to encode the input data effectively. On the other hand, by visu-
alizing the t-SNE representation of the latent space after training, we will be able to
observe how the autoencoder has learned to organize the data points and bring ECG
signals and MRI images that refer to the same subject closer together. This is espe-
cially useful when using a loss function that incorporates both Reconstruction and
Contrastive Losses, as it promotes the grouping of similar and the separation of dis-
similar data points, respectively. In this way, useful conclusions could be extracted
especially regarding the functionality of our Contrastive Loss Function, which was
presented in 4.4. In general, visualizing the t-SNE representation of the latent space
before and after training, can offer insightful information about the autoencoder’s
learning process and the way it arranges the input data in the latent space. The ef-
fectiveness of our model, the selected loss function, and perhaps the identification
of possible areas for further improvement are all clarified in this way.

Therefore, focusing on our implementation, we present in Figure 5.6 the t-SNE La-
tent Space Representations that we got before (5.6a) and after (5.6b) the Training of
our Multi-Modality Autoencoder. We have to underline the fact that the ECG are
displayed with red colour, while the MRI are presented with blue colour. As can be
observed, it is obvious that before Training, the ECG and MRI encoded points are
randomly distributed in the Latent Space. Therefore, we can come to the conclusion
that in general the ECG and MRI of the same subject were quite distanced to each
other for every patient. In addition, after training the Multi-Modality Autoencoder,
we notice that the Contrastive Loss significantly contributed to reduce the distance
between the ECG and the MRI for all the patients, bringing the corresponding points
in the Latent Space closer. We can also say that both ECG and MRI points, are not
anymore randomly distributed in the space, creating a distribution which reminds
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us of a circle with a gap in the center. Overall, the plots that we have are giving
us the indication that the Contrastive Loss that we created is successfully working,
grouping together the pairs of ECG and MRI while training the Autoencoder. In this
way, t-SNE underlines the improvement and the fact that our Autoencoder model is
learning during training.

(A) Before Training (B) After Training

FIGURE 5.6: Latent Space t-SNE Visualisation of the encoded ECG’s and MRI’s

5.5 MRI Image Reconstruction from ECG signal

The ultimate target of this project was actually to be able to have a clear understand-
ing over the heart in general and more specifically the MRI Images, given only the
ECG Signals. Therefore, we present the final Cross-modal model, which is capable
of producing an MRI Image of a subject, given a single ECG signal as an input of the
model. In Figure 5.7 we present the Pipeline of this final Cross-modal Autoencoder
Model, which aims from an ECG signal to create the corresponding MRI. For this
purpose, we combined the Encoder quantity of the ECG Fully Connected Autoen-
coder with the Decoder quantity of the 2D Convolutional MRI Autoencoder.

FIGURE 5.7: Final Cross-modal Model Pipeline [23]

Evaluation

In Figure 5.8 we can see the number of parameters for this combined model, which
in total are: 4219325.
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FIGURE 5.8: Final Model Number of Parameters

For the evaluation of this final model, we utilised completely new and unseen data,
which were approximately the 20% of the Training Data. In Figure 5.9 we present
you an example of an ECG signal from our Evaluation dataset, which was given as
an input to this model.

FIGURE 5.9: ECG Input to the model

We display in Figure 5.10b the pseudo-MRI Image that was generated by our model
and was the final output of the model. Furthermore, in Figure 5.10a we present for
the same subject, the Original MRI Image that we have available in our dataset and
constitutes the real MRI Image. Hence, we tried the Reconstructed Image to be as
close as possible to the Original Image. As we notice, the reconstruction is not very
accurate, despite the fact that we can observe a very abstract representation of the
heart and it seems like the model is trying to recreate the shape of the original MRI.

(A) Original MRI (B) Reconstructed MRI

FIGURE 5.10: MRI Reconstructed Evaluation Results
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Conclusions and Future Work

This project deals with developing a deep learning implementation that can com-
bine medical data from two different sources. Time series data, and more specifically
ECG, were combined with MRI in order to develop models that will provide a richer
understanding of the relationships between those two modalities. The general goal
of this project was eventually to be able to predict cardiac structural dynamics over a
heartbeat based on the information extracted from the ECG signals. This is of a great
importance, due to the fact that MRI processing is a quite expensive, difficult and
time-consuming process in addition to ECG. Apart from that, the possibility of gen-
erating from an ECG the corresponding pseudo-MRI, , which provides considerably
more information than an ECG alone, is what makes this study interesting. In order
to achieve this goal, our objective was to built several deep learning models using
different architectures and creating various pipelines. The main steps of this project
consisted of pre-Training, Training, Validation and Evaluation. While the first three
steps gave us satisfying results, during the Evaluation process we observed some
limitations.

Limitations

The reconstruction of the MRI images, that the final Cross-modal model produced,
was not accurate comparing to the original MRI images of the dataset. Moreover, the
model seemed to be unable to generate diverse outputs for different signal inputs.
The generated pseudo-MRI images looked in general quite similar to each other.
Therefore, further investigation needs to be done in order to figure out whether we
are experiencing mode collapse [8], [2]. When we talk about mode collapse, in the
context of machine learning, we are referring to a situation where a trained model
fails to capture and express the desired complexity or diversity of the data that it
has been trained on. This term is widely used also in Generative Adversarial Net-
works (GANs) apart from the Autoencoders. Similarly, mode collapse refers to the
situation where a GAN is able to generate only few modes(variations) of the input
data distribution even though input data contains many modes. In contrast, the
model converges to a simpler representation that does not fully take advantage of
the variety of the training data. The model produces outputs that lack diversity
and sometimes exhibit repetitive patterns or modes. Mode collapse can lead to a
lack of variability in the latent space representation. Looking in more detail, the en-
coder network fails to capture the full complexity of the data distribution, leading to
collapsed representations where similar inputs are mapped to nearby points in the
latent space. As a result, the decoder network fails to generate diverse outputs.
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Future Work

The most important factor that contributed significantly to the limitations regarding
the regeneration of the pseudo-MRI, is the fact that in order to reduce the compu-
tational time we extremely reduced the sample sizes, not only for the ECG but also
for the MRI. More specifically, from the initial 12-lead ECG of our dataset, we only
utilised 1-lead for every ECG of our subjects, which contributed to the simplification
of the Training data and resulted the lack of more diverse information. Moreover,
regarding the MRI, we selected for every image only 1 frame from the initial 50
frame cardiac MRI. This decision had as a side effect the simplification of the MRI
data as well, despite the fact that the computational time was drastically reduced.
Hence, if we used the complete ECG and MRI information (12-lead ECG and 50
frame MRI) for our Training, instead of slicing the data, the results would be for
sure more promising.

Another factor that possibly contributed to the aforementioned problems, consist
the limitations regarding the expressivity of the model that we constructed. In or-
der to overcome this problem we should use more complex network architectures.
To be more specific, a more complicated model that we would suggest for future
work would be a UNET model consisting of Residual and Attention Blocks [12].
We believe that such a model, would significantly contribute to the acquisition of
more accurate results and we would be capable of overcoming mode collapse. In
our case, the development of a second and improved model wasn’t possible due to
time restrictions.

Further research in the future could be made, focusing on the representations of the
Latent Space. More specifically, our UK Biobank dataset contained information re-
garding some features of the subjects, such as sex, bmi, Acute MI, Ventr. Tachy, LV
fail. Useful conclusions might be extracted if someone tries to group the points rep-
resented in the Latent Space based on some characteristics of the patients, once we
have available various information. Patterns might be revealed for each modality
(ECG or MRI) separately for different group of people and may help to detect and
diagnose various cardiovascular diseases more effectively. In this direction, we sep-
arated the points in the Latent Space based on the patients sex (Male or Female) as
one can see in Figure 6.1. Though, the points don’t seem to be gathered in a specific
space for Males or Females, without contributing to the extraction of a pattern at
first glance.

FIGURE 6.1: t-SNE Latent Space Representation grouped by sex
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Taking a step further into this research, we grouped separately the points for each
modality (ECG and MRI) and sex (Males and Females) shown in Figure 6.2. At
this point, one can observe that in the latent space we have different groups like
clusters. Hence, it would be anatomically interesting if these groups are expressed
in the signals or images somehow.

(A) Male ECG (B) Male MRI

(C) Female ECG (D) Female MRI

FIGURE 6.2: t-SNE Latent Space Representation for Female and Male Modalities

Last but not least, we tried to experiment a little bit with some diseases that some
patients have suffered, like Acute Myocardial Infarction, Ventricular Tachycardia
and Left Ventricular Failure. In Figure 6.3, with red colour are dislpayed the sub-
jects that have not suffered from the disease in question and with blue colour are
showed the patients who suffered. In this case as well, we are not able to extract
useful conclusions, due to the fact that there is a small number of individuals in our
training dataset, that have suffered from the aforementioned diseases. It is possible
if someone examines a wider range of the Dataset, by utilising for Training a signif-
icantly greater number of patients data, to come to more generalizable conclusions.
We have to underline the fact, that the available Dataset includes a great number of
other features, that we have not included to our grouped Latent Space representa-
tions, therefore providing a solid ground for further research in this field.
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(A) Acute MI ECG (B) Acute MI MRI (C) Ventr. Tachy ECG

(D) Ventr. Tachy MRI (E) LV fail. ECG (F) LV fail. MRI

FIGURE 6.3: t-SNE Latent Space Representation grouped by Acute MI, Ventr. Tachy and LV fail.
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Appendix A

Master thesis source code

The source code for this master thesis can be found at the following github link:
https://github.com/nickathans/master-thesis

https://github.com/nickathans/master-thesis
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