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Synthetic training data generation from a single image for enhanced breast
cancer diagnosis.

by Marta BUETAS ARCAS

According to the World Health Organisation (WHO), breast cancer is one of the
cancer types with a high prevalence worldwide. Deep-learning based computer-
aided detection systems have shown promising potential in improving the curability
and reducing mortality rates through early detection in mammography screening.
Artificial Intelligence (AI) has become a popular tool in medicine, aiming to reduce
costs and assist radiologists in decision-making processes. However, AI in cancer
imaging presents significant challenges, including data access and privacy issues, as
well as a scarcity of expert-annotated medical imaging. Motivated by these factors,
this project aims to enhance the robustness and generalisability of breast cancer clas-
sification tools. The study focuses on obtaining a pre-biopsy result of suspicious
areas in mammograms, providing a comprehensive assessment of lesion nature. It
was observed that the classifier’s performance for the malignant class was inferior
to that of the other classes, and the tightness of the annotation mask around the
lesion significantly influenced the classifier’s performance. To improve the perform-
ance for malignant lesions, the study investigates data augmentation based in single
image Generative Adversarial Network (SinGAN) to balance this underrepresented
class. To the best of our knowledge, this project represents a novel investigation into
the application of single-image generative models for breast cancer, addressing the
challenge of expert annotation scarcity. Promising results were observed through
the use of SinGAN-based data augmentation. The classification model, trained with
SinGAN-augmented training data, demonstrated a higher area under the receiver
operating characteristic (AUROC) for the malignant class (0.718 ± 0.044), compared
to the same model without augmented data (0.677± 0.076). Furthermore, it was also
identified an unexpected trend during the experiments. It was observed that using
more SinGANs for data augmentation did not always result in a higher enhancement
of performance. This project opens up new research possibilities through collabora-
tion with healthcare experts. Its ultimate goal is to analyse and validate a mitigation
strategy for improving robustness and, as such, trustworthiness of AI-based applic-
ations for adoption in the clinical workflow.

HTTP://WWW.UB.EDU
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Chapter 1

Introduction

1.1 Motivation

Cancer is the leading cause of death worldwide, accounting for nearly 10 million
deaths in 2020, according to WHO: Cancer Fact Sheet, 2022. The most common ones
are breast, lung, colon and rectum and prostate cancers. These figures can be re-
duced when cases are detected and treated early. An early diagnosis increases the
probabilities of survival, as it is more likely to respond to treatment. On the other
hand, screening programmes help to identify findings suggestive of a specific cancer
or pre-cancer before they have developed symptoms.

To detect and diagnose tumours, radiologists inspect, normally by visual assess-
ment, medical imaging modalities such as magnetic resonance imaging (MRI), com-
puted tomography (CT), ultrasound (US), X-ray mammography (MMG) or nuclear
imaging (positron emission tomography, PET or single-photon emission computer-
ised tomography, SPECT).

The present project is focused on breast cancer that, as stated before, is one of the
cancer types with the highest prevalence in the world. According to WHO: Breast
Cancer Fact Sheet 2021, in 2020, there were 2.3 million women diagnosed with breast
cancer and 685,000 deaths globally. WHO reports that breast cancer occurs in every
country of the world in women at any age after puberty but with increasing rates
in later life. The organisation also highlights that improvements in survival began
in the 1980s in countries with early detection programmes combined with different
modes of treatment to eradicate invasive disease.

1.2 Challenges of Artificial Intelligence in medicine

Deep-learning based computer-aided detection systems have shown promising po-
tential in enhancing the curability and reducing mortality rates of breast cancer
through early detection in mammography screening (MMG).

In general, Artificial Intelligence (AI) has become a popular tool in medicine to
improve the performance of clinicians, to reduce costs and assist radiologists in the
decision-making process. Despite technological and medical advances, the detection
and diagnosis of breast cancer based on images continue to pose important chal-
lenges.

In this respect, AI models learn from data; thus, the amount and quality of med-
ical data has a direct influence on the success of AI-based applications. The most
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significant challenges of AI in cancer imaging can be resumed in: data scarcity, data
access and privacy, data annotation and segmentation, cancer detection and dia-
gnosis and tumour profiling and treatment (Osuala et al., 2023a).

Regarding data scarcity, it poses a significant challenge in developing AI tools
for breast cancer detection. Scarcity of expert-annotated medical images often con-
strains Deep Learning based methods to be trained and evaluated on a small dataset
coming from a single centre. Addressing this challenge involves establishing collab-
orations between healthcare institutions to pool together diverse and well-curated
datasets. Additionally, techniques such as data augmentation could be employed to
mitigate the impact of data scarcity and enhance the generalisability of AI models.
In the development of this project, the impact of using synthetic data for both, data
augmentation and addressing data imbalances was studied. Moreover, accessing
scarce data becomes a more significant challenge when robust patient anonymisa-
tion is required.

One critical issue arising from data scarcity is class imbalance, which refers to
the overrepresentation of certain types of data compared to others (Bi et al., 2019).
One common manifestation of class imbalance is the imbalance of diagnostic labels
because of a low prevalence of the disease in the population. For instance, in the
context of breast cancer, the malignant label is often the minority class. Such im-
balances can have a detrimental effect on a model’s specificity or sensitivity, as the
learned bias from the data distribution may impact its performance.

To tackle this problem, one approach is to address the imbalances by using syn-
thetic images generated from models such as Generative Adversarial Networks (GANs),
from Goodfellow et al., 2020. Hu et al., 2018 previously implemented GANs to gen-
erate underrepresented grades in a risk assessment scoring system for prostate can-
cer. In their paper, Szafranowska et al., 2022 proposed GANs as an alternative data-
sharing method. They explored the concept of sharing trained generative models
instead of the original private data, studying its potential in the context of mammo-
graphy patch classification.

SinGAN (Shaham, Dekel and Michaeli, 2019), another promising framework, of-
fers a solution to alleviate the challenge of data scarcity in cancer imaging. SinGAN
generates multiple synthetic images based on a single training image, thereby en-
hancing the utility of each cancer imaging sample.

Integration of AI tools into radiology workflows, where they serve as decision
support systems, can help improve accuracy, reduce false negatives, and provide
second opinions, leading to more reliable and timely diagnoses. However, this in-
volves developing robust Deep Learning models that can accurately detect and clas-
sify breast cancer lesions in order to achieve a wider adoption of this tools in clinical
practice.

Addressing these challenges requires collaboration between clinicians, data sci-
entists, policymakers and other stakeholders to establish robust data sharing mech-
anisms, develop ethical guidelines, and ensure the safe and effective implementation
of AI tools in breast cancer detection and treatment. Trustworthiness and robustness
are two of the keys to achieve a wider adoption of AI tools in medicine, as defined
by the FUTURE-AI guidelines developed by Lekadir et al., 2021.
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1.3 Contributions

The research is centered on analysing and enhancing the robustness and general-
isability of a classification model for wider adoption in the clinical workflow. The
classification task is to obtain a pre-biopsy result of breast lesions, which can as-
sist healthcare professionals in making informed decisions regarding further dia-
gnostic procedures and treatment plans. The classification model is applied at the
patch level, with regions-of-interest extracted as patches from mammograms. The
patches from lesions were extracted from both tightly fitting bounding boxes and
larger bounding boxes surrounding the lesion, i.e. with different levels of zoom.
Therefore, the influence of varying zoom levels of the lesion on the classifier’s per-
formance was examined.

Several interesting outcomes were observed in this project. Firstly, it was shown
that the classifier’s performance for the malignant class was inferior to that for the
other classes. Moreover, it was also found that the tightness of the bounding box
around the lesion has an impact on the classifier’s performance. This motivates
further study to improve the classifier’s robustness against different accuracies of
the annotation masks, that can be due to inter- and intra-observer variability.

To enhance the performance for malignant lesions, SinGAN-based data aug-
mentation was employed to balance this underrepresented class. To the best of our
knowledge, this project presents a novel investigation into the application of single-
image generative models for breast cancer, representing the first-ever exploration
of this approach in the field of breast imaging. Across all conducted experiments,
the performance consistently improved when this data augmentation technique was
used. However, other surprising outcomes were also observed. When using more
SinGAN models to generate new data, it was expected to improve performance as
more diversity was added to the training data. The performance did improve, but
not in the expected trend. This outcome provides potential avenues for further ana-
lysis and research with the ultimate goal of achieving sufficient robustness for im-
plementation in clinical practice.

This study introduces an innovative perspective on the utilisation of these mod-
els for breast cancer analysis, opening up new research possibilities and potential
advancements in diagnostic methodologies. 1

1The code of this project is available in the following link: Master Project GitHub repository.

https://github.com/MartaBuetas/EnhancingBreastCancerDiagnosis
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Chapter 2

Literature review

In recent years, the application of Convolutional Neural Networks (CNNs, LeCun,
Bengio et al., 1995) has demonstrated exceptional performance in learning crucial
features from mammography mass lesions for subsequent classification tasks (Ab-
delrahman et al., 2021). For instance, Arevalo et al., 2015 demonstrated remarkable
results using CNNs for the classification of mammography mass lesions, utilising
the same dataset as the one used in this study (BCDR dataset, Guevara Lopez et
al., 2012). However, it is worth noting that their work exclusively focused on film
mammograms. By incorporating both digital and film mammograms, this project
approach aims to enhance the model’s ability to generalise across different imaging
modalities and improve its performance in real-world scenarios.

In a general overview, synthetic images generated by GANs Goodfellow et al.,
2020 have demonstrated remarkable visual realism when applied to mammography.
These synthetic images have shown potential in enhancing various subsequent tasks,
such as cancer detection, tumor segmentation, and classification (Osuala et al., 2023a).
Therefore, GANs can be studied and utilised for data augmentation or to address
data imbalances, providing a means to generate additional training samples or cor-
rect the distribution of existing data. Utilising GANs in this context would enhance
the robustness, generalisability, and performance of medical image analysis models,
in applications such as nodule classification in mammography.

GANs (Goodfellow et al., 2020) are a class of Deep Learning models that consist
of two neural networks: a generator and a discriminator. GANs is a framework for
generating an estimate distribution based on an adversarial process between two
models trained simultaneously. On the one hand, the generative model G, that cap-
tures the data distribution. On the other hand, a discriminative model D, captures
the probability that a sample has been drawn from the training data rather than from
the modelled distribution, so if it is a real sample or a generated (”fake”) one. This
simultaneous training corresponds to a minimax two-player game between G and
D. The objective for G is to maximise the probability of D making a mistake, while
D tries to classify fake and real images correctly.

In Goodfellow et al., 2020, they proposed an interesting analogy to understand
the adversarial process, where the process is thought as a team of counterfeiters,
analogous to the generator, trying to produce fake currency and use it without de-
tection. The discriminative model would be analogous to the police, trying to detect
the fake currency. This competition pushes both teams to improve their methods
until the fake currency is indistinguishable from the original.

G and D in the adversarial modelling framework are usually modelled as mul-
tilayer perceptrons. In this case, the system can be trained with backpropagation.
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In order to learn the generator’s distribution pg over data x⃗, a prior distribution
is defined on input noise variables: pz (⃗z). A multilayer perceptron G represents
a mapping from the noise variables to data space with the mapping G(⃗z; Θg) with
parameters Θg. On the other hand, a second multilayer perceptron models the dis-
criminator D as D(x⃗; Θd) with parameters Θd from the data space and outputs a
probability. D is trained to maximise the probability of assigning the correct label
to both training examples and samples from G. D(⃗x) represents the probability that
x⃗ came from the actual data pdata rather than from the generated one pg. A general
scheme of GANs architecture is presented in Figure 2.1. G is simultaneously trained
to minimise log(1 - D(G(⃗z))). D and G play the following two-player minimax game
with value function V(G, D):

min
G

max
D

V(D, G) = min
G

max
D

Ex⃗∼pdata(x⃗)
[logD(x⃗)] + Ez⃗∼ p⃗z (⃗z)[log(1 − D(G(⃗z)))]

(2.1)

FIGURE 2.1: General pipeline of Generative Adversarial Networks
(GANs). The generator network (G(⃗z; Θg)) takes in a random noise
input and produces a synthetic output that is meant to be similar to
the input data. The discriminator network (D(x⃗; Θd)) takes this gen-
erated data mixed with the real samples and it learns to classify it
as either "real" or "fake" data. Both networks are trained simultan-
eously through backpropagation during a number of iterations in an

adversarial process.

However, training GANs typically requires large datasets, which can be time-
consuming to collect. Moreover, in certain domains such as healthcare, acquiring
large annotated datasets is often impractical due to the need for expert annotations,
which are both costly and time-consuming. This challenge is particularly relevant in
the medical domain. To address these limitations, the SinGAN framework (Shaham,
Dekel and Michaeli, 2019) offers a unique approach. Unlike traditional GANs, which
are trained on large datasets, SinGAN is designed to be trained on a single image.
This substantially reduces the data requirements and computational burden associ-
ated with training.
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There have been several successful studies in breast cancer utilizing GAN archi-
tectures. In their paper, Lee and Nishikawa, 2022 demonstrated the feasibility of em-
ploying mammograms generated by Conditional GANs to detect mammographically-
occult (MO) cancer in women with dense breasts. Additionally, Eric et al., 2018
augmented the dataset with high-resolution synthetic mammogram patches gener-
ated by a class-conditional GAN. They illustrated that a ResNet-50 classifier, trained
with GAN-augmented training data, achieved a higher AUC compared to the same
model trained solely on traditionally augmented data. Furthermore, Wu, Wu and
Lotter, 2020 investigated the augmentation of the original training set with GAN-
generated samples, resulting in a significant improvement in malignancy classifica-
tion performance on a test set of real mammogram patches. Once demonstrated that
synthetic data from generative models can enhance the performance of data-hungry
Deep Learning models in medical imaging. To facilitate this process, Osuala et al.,
2023b developed medigan, an open-source library of pretrained generative models
for medical image synthesis. medigan enables researchers and developers to easily
create, augment, and adapt their training data in medical imaging.

On the other hand, the SinGAN model has seldomly been used in medical ima-
ging and, to the best of our knowledge, this is the first study done for breast cancer
diagnosis using this method. Remarkably, Thambawita et al., 2022 showed prom-
ising results of SinGAN framework for medical applications. The authors success-
fully applied the SinGAN framework to cancer imaging for polyp segmentation.
Their work not only involved generating synthetic images but also generating cor-
responding masks as an additional channel to the image. This innovative application
highlighted the potential of utilising SinGANs in the medical context.
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Chapter 3

Methods and materials

3.1 BCDR dataset

The Breast Cancer Digital Repository (BCDR, Guevara Lopez et al., 2012) is an ex-
tensive accessible repository that comprises annotated cases of breast cancer patients
from the northern region of Portugal. BCDR provides both normal and annotated
patient cases, including mammography lesion outlines, anomalies observed by ra-
diologists, and relevant clinical data. Most mammograms with suspicious lesions
contain an annotated mask indicating the affected region, created by a radiologist.

This study is focused on the classification of lesions in patches extracted from di-
gital and scanned film mammograms. The objective is to enhance the robustness and
generalisability of the classification model by incorporating data from both sources.
Specifically, the research looks for classifying patches into: healthy (no lesion), ma-
lignant, and benign. The classification into malignant and benign classes is based on
biopsy results, offering a comprehensive assessment of the nature of the lesions.

3.2 Mammogram patch extraction

3.2.1 Rationale

The extraction of patches serves two primary purposes in this study. Firstly, the
patches are extracted to facilitate the implementation of a sliding window procedure
for detection. This approach enables the model to evaluate multiple regions within
an image and make predictions based on individual patches. Secondly, the extrac-
tion of patches aims to predict, based on a quick annotation mask of the lesion’s
location, whether the lesion is more likely to be benign or malignant even before a
biopsy is performed. This pre-biopsy prediction can provide valuable information
to assist healthcare professionals in making informed decisions regarding further
diagnostic procedures or treatment plans.

Additionally, the patches containing lesions are extracted with varying percent-
ages of adjacent healthy tissue. This approach serves two purposes. Firstly, it allows
for the exploration of the model’s robustness against different window sizes used
in the sliding window procedure for lesion detection. By including patches with
varying amounts of healthy tissue surrounding the lesion, the model can adapt to
different window sizes and improve its detection capabilities.

Secondly, it aims to analyse the model’s adaptability to imperfect annotations,
enabling it to make accurate classifications despite variations in the quality or ac-
curacy of the annotation masks. This includes considering both inter-observer and
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intra-observer variability presented by Elmore et al., 1994. Inter-observer variabil-
ity refers to the robustness of the model against different annotations provided by
different experts. It ensures that the model can consistently produce accurate res-
ults regardless of the variations in annotations among different experts. Similarly,
the model should also account for intra-observer variability, which involves assess-
ing its performance when the same expert provides annotations on different days.
This variability may arise due to factors such as varying expertise levels, changing
subjective judgment, or inconsistencies in the annotation process.

By including patches with different amounts of adjacent healthy tissue, the model
becomes more robust and can handle variations in the precision or consistency of
the annotation masks. This approach helps to evaluate the model’s performance de-
pendency on precise annotations and its ability to generalise well in real-world scen-
arios where annotations may be less precise or consistent. In doing so, the model
can effectively handle imperfect annotations and maintain accurate classifications,
ensuring its reliability in practical applications.

3.2.2 Technique

In this section, the complete procedure for extracting patches from the mammo-
grams is explained. The BCDR repository Guevara Lopez et al., 2012 provides a
folder of normal (healthy) mammograms exclusively for the digital dataset. Thus,
healthy patches from digital mammograms are extracted from breasts without any
annotation indicating the presence of a lesion. Bounding boxes were generated using
a sliding window approach within completely healthy breast images, ensuring that
these patches never contain more than 50% of background pixels. It was configured
with a zero stride, so adjacent patches do not overlap. In Figure 3.1, an example
of a digital normal mammogram is included, with the boxes used in this case for
extracting healthy patches.

FIGURE 3.1: Example of a normal digital mammography image illus-
trating the procedure for extracting healthy digital patches.

In contrast to the digital subdataset, the film subdataset does not have a separate
folder for normal mammograms. Therefore, to extract healthy patches from film
mammograms, patches of healthy tissue from suspicious film images were selected.
To achieve this, a margin of at least 20 pixels was ensured between the extracted
healthy patch and the bounding box of the lesion, while also satisfying the constraint
of not containing more than 50% background pixels. Since film images are more
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limited in quantity, a stride of 65 pixels was utilised to obtain healthy patches. In
Figure 3.2, an example of a film suspicious mammogram is included, with the boxes
used in this case for extracting healthy patches.

FIGURE 3.2: Example of a suspicious film mammography image il-
lustrating the procedure for extracting healthy film patches.

Non-healthy patches are crops that contain the Region of Interest (ROI) of both
malignant and benign lesions of any type present in the datasets, including masses,
calcifications, microcalcifications, and architectural distortions. The annotated lesion
masks were used, created by a radiologist, to create bounding boxes that enclose
them, from which square patches were extracted. If the margin extends beyond the
border of the mammogram, a translation is performed to ensure the patch remains
fully within the limits of the mammogram.

Figure 3.3 displays a sample of a suspicious film mammogram along with its
corresponding annotation mask of the lesion. This is the same sample introduced in
Figure 3.2 for healthy patch extraction. Additionally, Figure 3.4 showcases a sample
of a digital mammogram with the corresponding annotation of the lesion ROI.

FIGURE 3.3: Film mammogram and the corresponding annotation
mask. In the third column, the patches extracted from them from the
three different zoom levels, being the Group 1 the most accurate ROI

bounding box.
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FIGURE 3.4: Digital mammogram and the corresponding annotation
mask. In the third column, the patches extracted from them from the
three different zoom levels, being the Group 1 the most accurate ROI

bounding box.

Each lesion has three patches with different levels of zoom, capturing varying
percentages of adjacent healthy tissue for the purposes explained in Section 3.1.
Group 1 patches correspond to the original bounding box defined around the an-
notated mask. Group 2 and 3 capture patches with double and triple the height and
width of the original bounding box, respectively. While group 1 patches capture the
minimum subjacent healthy tissue, group 3 patches capture more subjacent healthy
tissue. Figure 3.5 shows sample patches of lesions extracted from different zoom
levels of both digital and film mammograms.

In the final step of patch extraction, they were resized to 224x224 pixels using
interpolation via the OpenCV: Open Source Computer Vision Library n.d. Each gen-
erated patch has a unique ID. The metadata collected for each patch includes the
unique patient ID, mammogram format (digital or film), zoom group (1, 2, or 3, and
0 for healthy patches), image view type, breast density, biopsy result, and boolean
variables indicating the presence of microcalcifications, calcifications or nodules.
The BCDR dataset includes samples from different image view types: RCC (Right
Cranio-Caudal), LCC (Left Cranio-Caudal), RMLO (Right Medio-Lateral Oblique),
and LMLO (Left Medio-Lateral Oblique). Breast density is determined based on
Breast Imaging Reporting & Data System (BI-RADS®) 2023, which classifies it as A, B,
C, or D. The BCDR dataset utilises the previous version of BI-RADS, in which the
numbers 1, 2, 3, and 4 corresponded to the letters A, B, C, and D respectively.

For more details, you can find the complete code at the following link: Master
Project GitHub repository.

https://github.com/MartaBuetas/EnhancingBreastCancerDiagnosis
https://github.com/MartaBuetas/EnhancingBreastCancerDiagnosis
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(A) Film patches (B) Digital patches

FIGURE 3.5: On the left, three samples of lesions extracted from
scanned film mammograms at different zoom scales (Group 1, Group
2, and Group 3). All three lesions are benign: the first one is a nodule,
the second one is a calcification with a nodule, and the third one is an-
other distortion. On the right, three samples of lesions extracted from
digital mammograms, also at different zoom scales. The first sample
is a malignant nodule, while the second and third samples are benign

calcifications.

3.3 Analysis of the data

In this subsection, the metadata distributions of the patch dataset that was created
are analysed. The dataset comprises a total of 5408 patches from 473 patients. The
age distribution of these patients is visualised in Figure 3.6, where it can be observed
that the highest density of patients falls within the age range of 50 to 65 years old.
This concentration of patients in the middle-aged group aligns with the fact that the
risk of developing breast cancer increases significantly for women over the age of 40
(WHO: Breast Cancer Fact Sheet 2021).

FIGURE 3.6: Distribution of ages of the different patients included in
the patch dataset generated from the BCDR dataset. There are 473 in

total.

The research is centered on classifying lesions into three distinct categories: healthy
(no lesion), malignant, and benign. The classification into malignant and benign
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classes is based on biopsy results. The distribution of the three classes is visualised
in Figure 3.7a. The majority of patches in the dataset are categorised as normal, in-
dicating the absence of suspicious masses. However, among the suspicious patches,
they are further divided into the benign and malignant classes. It is evident that
the malignant class is the minority, presenting an imbalanced distribution that will
receive special attention in this project. According to Figure 3.7b, there are a total of
984 lesions, and for each of these lesions, three patches are available, corresponding
to the three groups of zoom scale.

(A) Distribution of biopsy results
(B) Sample distribution according to

zoom group

FIGURE 3.7: On the left image, the distribution of patches based on
biopsy classification. The majority of patches are normal with no sus-
picious mass, while the suspicious patches are divided between be-
nign and malignant.On the right, the distribution of patches based on
the zoom group of the lesions, along with the total number of patches

in each group.

According to Nalawade, 2009, a biopsy can be avoided if the calcifications ap-
pear absolutely benign on mammography and the patient can be followed-up with
annual screening mammography. Although the presence of calcification in a lesion
patch was not taken into consideration for the classification pipeline, this feature has
been explored for subsequent analysis. In the bar chart shown in Figure 3.8, there
are four different classes for the lesions. The lesions can be classified as nodules,
calcifications, nodules with calcifications, or other anomalies (microcalcification, ax-
illary adenopathy, architectural distortion, or stroma distortion). Based on this Fig-
ure, 54.51% of the benign samples exhibit calcification without nodules, while only
7.02% of the malignant samples demonstrate the same characteristic. Additionally,
the majority of malignant lesions (55.44%) are nodules. Considering this data from
a frequentist approach, it can be inferred that a given calcification sample is more
likely to be benign.

Regarding the breast density, as shown in Figure 3.9a, it can be observed that the
density groups are unbalanced, with groups 1 and 4 being the minority categories.
According to Canadian Cancer Society 2023, approximately 40% of women fall into
density category 2, another 40% in category 3, 10% in category 1, and 10% in category
4, which aligns reasonably well with the distribution observed in the patch dataset.
Regarding the type of image view, as depicted in Figure 3.9b, there is no significant
imbalance among the different views.
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FIGURE 3.8: Distribution of different classes for lesions with calcific-
ation, with nodule, with both calcification and nodule or and without

calcification for each classification type (benign and malignant).

(A) Breast density distribution (B) Image view distribution

FIGURE 3.9: On the left image, the distribution of breast dens-
ity according to Breast Imaging Reporting & Data System (BI-RADS®)
2023, with 1 indicating lower density and 4 indicating higher dens-
ity. On the right, the distribution of mammography view types:
RCC (Right Cranio-Caudal), LCC (Left Cranio-Caudal), RMLO (Right
Medio-Lateral Oblique), LMLO (Left Medio-Lateral Oblique) and

some without specification (blue area).

Both film and digital mammograms are being utilised in this research. How-
ever, as illustrated in Figure 3.10, there is a larger proportion of patches derived
from digital images. Among the healthy patches, approximately 41.5% are from
film mammograms, while for the patches with a suspicious lesion, around 39.8%
originate from film mammograms. Thus, there is a comparable level of imbalance
observed for both healthy and lesion patches. It is worth noting that this imbalance
is not substantial, as the film class constitutes approximately 40% of the total patch
distribution.
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FIGURE 3.10: Distribution of the format (digital or film) of the mam-
mography for healthy and suspicious patches.

3.4 Data augmentation with SinGAN

As depicted in Figure 3.7a, the malignant biopsy result represents a minority class
within the dataset. As I will elaborate in Section 4, this class imbalance poses a chal-
lenge and adversely affects the classification performance for malignant samples.
Given the objective of achieving a robust pre-biopsy classification outcome, The po-
tential of augmenting the malignant samples using synthetic images generated from
a generative model was explored. This approach aimed to bolster the representation
of the malign class and improve the classification results.

For this purpose, SinGAN (Shaham, Dekel and Michaeli, 2019) was used, a prom-
ising framework that addresses the challenge of data scarcity in cancer imaging.
SinGAN provides a solution by generating multiple synthetic images from a single
training image. This technique enables the augmentation of the dataset, enhancing
the representation and diversity of the malignant class for improved classification
performance.

3.4.1 SinGAN model architecture

The architecture of SinGAN reframes the traditional idea of GANs. Instead of mod-
eling the distribution of a set of images, as initially proposed by Goodfellow et al.,
2020, SinGAN focuses on modeling the distribution of different overlapping patches
within a single image, across different scales. This hierarchical approach enables
SinGAN to capture fine-grained details while preserving global structures.

They proposed a pyramidal structure with one GAN (one discrimintator and one
generator) per each of the N scales. Every generator takes a noisy image as an input
and produces a new image of the same size as an output. The output of the generator
n is then the input of the discriminator on scale n, just like in a classical GAN. The
output of the scale n is resized to a higher resolution and – with some additional
noise – added to the generator of scale n-1. In this way, the N -th scale defines the
overall structure of the image with the coarsest resolution and the first scale defines
the finest structures and details.

For instance, let’s consider training SinGAN on a natural image of a city skyline.
In this scenario, the N -th scale could define the positioning and arrangement of
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buildings in the generated image. The (N -1)-th scale would determine the overall
shape and structure of each building, while the (N -2)-th scale could contribute to
the variations in architectural styles and features. Additionally, the (N -3)-th scale
might influence the distribution of windows and doors, while the (N -4)-th scale
could control the placement and density of people or vehicles within the cityscape.

FIGURE 3.11: General pipeline of the SinGAN framework. Figure
adapted from Shaham, Dekel and Michaeli, 2019. N GANs are oper-
ating on different scales. The training process starts with the coarsest
scale and progresses to the finest scale. Each GAN in the hierarchy
learns to generate realistic images at its respective scale, capturing
both global and local details. At each scale n, the image from the pre-
vious scale, x̃n+1, is upsampled and added to the input noise map, zn.
The result is fed into the generator (Gn), whose output is a residual

image that is added back to (x̃n+1) ↑r. This is the output x̃n of Gn.

The training procedure of the SinGAN structure addresses the challenges of over-
fitting that arise from training on a single image through the simplicity of the gen-
erator and discriminator architectures. The generator consists of only a few convo-
lutional layers, which limits its effective receptive field, ensuring variance at each
scale and preventing the generator from capturing the global structure of the image.
As the image is upscaled at each step, the relative effective receptive field decreases,
shifting the focus from the global structure at the coarsest scale to the fine textures at
the finest scale. Similarly, the complexity of the discriminator is restricted to prevent
it from memorising the real image.

Another crucial aspect is the mapping of the noisy image. To ensure that the
generator functions as an identity function when no noise is added, a modified loss
function is employed. In addition to the adversarial loss, which penalises deviations
from the distribution of real patches, a reconstruction loss term is added. This term
penalises deviations from the identity function when the input noise is set to zero.

The training of the hierarchical GAN structure is performed sequentially, starting
from the coarsest scale N and progressing to the finest scale 1. The generator at
each scale is trained against its corresponding discriminator and reconstruction task.
Once the training of one scale converges, the next finer scale is trained. Therefore,



18 Chapter 3. Methods and materials

instead of training a single GAN, N GANs are trained sequentially, which is a trade-
off for training on a single sample.

The training loss for each GAN incorporates two terms (3.1): the adversarial loss
(Ladv) and the reconstruction loss (Lrec).

min
Gn

max
Dn

Ladv(Gn, Dn) + αLrec(Gn) (3.1)

The adversarial loss penalises the difference between the distribution of patches
in the real image xn and the distribution of patches in the generated samples x̃n.
This loss term helps the generator to produce samples that resemble the real data
distribution. In the paper by Shaham, Dekel and Michaeli, 2019, the Wasserstein
GAN with Gradient Penalty (WGAN-GP) loss function, proposed by Gulrajani et
al., 2017, is used for training the generator and discriminator. The authors observed
that this loss function, compared to other GAN variants, enhances training stability.
The formula of the WGAN-GP loss function is:

L = Ex̃∼Pg [ f (x̃)]− Ex∼Pr [ f (x)] + λEx̂∼Px̂ [(||∆x̂ f (x̂)||2 − 1)2] (3.2)

In Equation 3.4.1, the first two terms are the original WGAN loss and the right
term is the gradient penalty with λ the penalty coefficient.

When there is no noise added to the image, each generator should just be the
identity function, returning the input image xn. This is achieved by the reconstruc-
tion loss, which penalises deviations from the identity function, given zero noise. If
the noise images added in each of the n scales are chosen so that {zrec

N , zrec
N−1, ..., zrec

0 } =
{z∗, 0, ..., 0}, where z∗ is some fixed noise map. Denoting by x̃rec

n the generated image
at the nth scale when using these noise maps. Then for n < N :

Lrec = ||Gn(0, (x̃rec
n+1)) ↑r)− xn||2

and for n = N : Lrec = ||GN (z∗)− xN ||2.

In summary, SinGAN is a stacked ensemble of N GANs that operate on different
scales of the same image. Despite the requirement of only a single image as training
input, the training process involves sequentially training N GANs, which is the
trade-off for leveraging the capabilities of SinGAN.

3.4.2 SinGAN implementation

The synthetic dataset was generated using four different SinGAN models trained
on distinct images. To enhance robustness against the digital and film formats, two
digital and two film patches from malignant lesions for training each of the four
SinGAN models were employed. This set of four SinGAN models will be referred to
as ’Set A’ and was exclusively generated from patches belonging to zoom group 3,
which contains a higher percentage of adjacent healthy tissue. In addition, another
synthetic dataset was generated by training four different SinGAN models (referred
to as ’Set B’) on four different training images, also from zoom group 3 and two film
and two digital. The purpose of this was to repeat the experiment using a different
set of SinGAN models and assess the consistency of the results.
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Furthermore, for a different experiment, four different SinGAN models (referred
to as ’Set C’) were trained on four single patches from lesions (two film and two di-
gital), specifically from zoom group 1, which includes accurately annotated bound-
ing boxes around the lesions. The training images used for this experiment are
presented in Figure 3.12, organised by format. The first and second rows corres-
pond to Set A and Set B, respectively, both derived from zoom group 3. The third
row corresponds to Set C, which is associated with zoom group 1.

SET FILM FORMAT DIGITAL FORMAT

A
ID 51 168 2180 3884

B
ID 13 77 2789 3941

C
ID 11 75 2787 3939

FIGURE 3.12: Original patches from malign lesions used for train-
ing each SinGAN model. The first two rows consist of patches from
the zoom level group 3, which has the highest percentage of adjacent
healthy tissue. The last row contains a set of 4 patches from the zoom
level group 1, which have tight bounding boxes around the lesions.
Each set of 4 patches is labeled as Set A, Set B, and Set C, respectively.
Within each set, there are 2 patches extracted from film mammograms
and 2 from digital mammograms. The ID corresponds to a unique la-

bel assigned to each patch extracted from the BCDR dataset.

In this study, the public repository provided by the original SinGAN paper Of-
ficial pytorch implementation of the paper: "SinGAN: Learning a Generative Model from a
Single Natural Image" 2019 was used, with adaptations made for some of the hyper-
parameters. A pyramide scale factor of 0.8 was chosen, this means that the resol-
ution of the image when passing to the next scale is reduced by a 20%. Therefore,
the pyramide had 11 scales and 30 epochs were computed for each scale. The de-
fault values were used for the rest of hyperparameters. By increasing the number of
scales, finer details in the generated images can be captured. Similarly, a higher num-
ber of epochs allows for more training iterations, potentially leading to improved
convergence and overall image quality. It is important to note that a trade-off was
considered between computational cost and image quality during parameter selec-
tion. Some samples of the generated images with the SinGAN models trained are
presented in Table 3.13.
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The training process for each SinGAN model took approximately 3.5 hours, us-
ing the computational resources of the Barcelona Artificial Intelligence in Medicine
Lab (BCN-AIM) server with the following service available: NVIDIA RTX 2080 Su-
per 8GB GPU. This enabled efficient training and generation of synthetic images
within a reasonable time frame.

O
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ID 51 77 75 3884 2789 2787
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FIGURE 3.13: Some samples of generated images with different
SinGAN models. The corresponding image used for training the
model is presented in the first row. The ID corresponds to a unique

label assigned to each patch extracted from the BCDR dataset.

3.4.3 SiFID as evaluation metric

The Fréchet Inception Distance (FID) (Heusel et al., 2017) metric is commonly used
to evaluate the quality of generated images in generative models. It is a metric that
calculates the Fréchet distance between feature vectors calculated for real and gen-
erated images. It indicates how similar the two groups are in terms of statistics on
computer vision features of the raw images calculated using an Inception model v3
trained on the ImageNet used for image classification. This distance metric is for-
mulated as follows:

d2((µ1, C1), (µ2, C2)) = ||µ1 − µ2||22 + Tr(C1 + C2 − 2(C1C2)
1/2) (3.3)

The parameters µ1 and µ2 refer to the feature-wise mean of the real and generated
images and parameters C1 and C2, to the covariance matrices for real and generated
feature vectors.

Lower scores indicate the two groups of images are more similar, or have more
similar statistics, with a perfect score being 0.0 indicating that the two groups of
images are identical.

In this study, the Fréchet Inception Distance (FID) metric was not used. Instead,
SiFID, a metric based on the FID metric, was used as a substitute. SiFID stands for
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Single Image FID and was proposed by Shaham, Dekel and Michaeli, 2019. Instead
of using the activation vector after the last pooling layer in the Inception model (a
single vector per image), SiFID uses the internal distribution of deep features at the
output of the convolutional layer just before the second pooling layer (one vector
per location in the map). The SiFID is the FID between the statistics of those features
in the real image and in the generated sample.

3.5 Classification pipeline

The research is based on a classification pipeline for distinguishing patches from
mammograms into three distinct categories: healthy (no lesion), malignant, and be-
nign. The classification of lesions into malignant and benign classes is based on
biopsy results, providing a reliable ground truth for training the model. To accom-
plish this task, a pre-trained ResNet50 model that was originally trained on the Im-
ageNet dataset from PyTorch: models and pre-trained weights 2023 was utilised. By
transfer learning, I could leverage the knowledge learned from the ImageNet data-
set to improve the classification performance on my specific task.

The choice of using a Residual Network (ResNet) (He et al., 2016) was motivated
by its demonstrated better performance over traditional deep neural networks. Deep
neural networks often encounter the vanishing gradient problem, where gradients
diminish significantly as the network becomes deeper, hindering weight updates
and impeding further training progress. Residual Networks effectively address this
issue by incorporating skip connections, also known as "shortcuts," between every
two layers. These direct connections allow the activation from one layer to be fed dir-
ectly to another layer, facilitating the flow of information and preserving the learning
parameters in deeper layers. ResNet50 specifically refers to a Residual Network ar-
chitecte comprising 50 layers, including convolutional layers, pooling layers, fully
connected layers, and the aforementioned residual connections. In Appendix 6.1, a
diagram of the complete model is included.

The ResNet50 model was initialised with the default weights and then added a
last linear layer, which adapts the output to match the number of classes in the prob-
lem addressed. This number of classes were three (healthy, malignant, and benign)
for the multiclass problem and two, for the binary one. To optimise the training pro-
cess and focus on fine-tuning the last layer for improved classification performance,
only the parameters of the last layer were kept trainable. For the multiclass task,
there were finally 6147 trainable parameters.

To fine-tune the model’s hyperparameters, an initial binary pipeline was adop-
ted to classify samples as either healthy or suspicious. The benign and malignant
classes were combined into a single category for this purpose. After fine-tuning,
the following hyperparameters were fixed to ensure consistent comparisons across
experiments: a batch size of 128, the adaptative moment (Adam) optimiser with
default beta parameters (β1=0.9 and β2=0.999), and a learning rate scheduler that
progressively decayed the learning rate. The scheduler had a step of 5 epochs and a
gamma value of 0.1, which represents the factor by which the learning rate is mul-
tiplied in each step. For the binary classification problem, the Binary Cross Entropy
loss function was utilised, which expresion is:

BinaryCE(p) = −y · log(p) + (1 − y) · log(1 − p), (3.4)
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where y is the actual label (1 or 0) and p(y) is the predicted probability of the
positive class. For the multiclass problem, the same hyperparameters were used, but
with the Categorical Cross Entropy loss function as the criterion, which is similar to
the Binary Cross Entropy loss, but adapted for more classes:

CategoricalCE(p) = −
N

∑
i=1

(yi · log(pi)), (3.5)

where yi represents the ground truth of class i and pi represents the predicted prob-
ability of class i. Each experiment ran for 100 epochs and the model with the best
validation loss was selected. They were evaluated using a train-validation-test split
across three folds, ensuring that each patient was present in only one of the sets.

3.5.1 Evaluation of the classification

In order to evaluate the performance of the classifier, various metrics were selected.
Firstly, the accuracy metric was considered. It was chosen as it represents the ratio
of correct predictions to the total number of input samples:

Accuracy =
# of correct predicitons

Total number of predictions

By using this metric, an overall idea of the classifier’s performance can be ob-
tained. However, in cases where there is a significant class imbalance, a high ac-
curacy score can misleadingly imply good performance. This issue becomes more
critical when the cost of misclassifying the minor class samples is substantial. In the
dataset utilised in this study, the malignant class constituted the minority, and the
cost associated with misclassification, leading to underdiagnosis, was considerable.
Consequently, a different metric was also employed to provide a more comprehens-
ive evaluation of the classifier’s performance.

To gain a better understanding of the performance, the ROC curve and ROC
AUC score were computed for each experiment. The ROC (Receiver Operating
Characteristic) curve is a graphical representation that illustrates the classification
model’s performance at various classification thresholds by plotting the True Posit-
ive Rate (proportion of actual positives correctly identified) against the False Positive
Rate (proportion of actual negatives incorrectly identified as positives). AUC meas-
ures the complete two-dimensional area under the complete ROC curve. Therefore,
it is an integral calculation from (0,0) to (1,1) of the curve. Its expression is as follows:

AUC =
∫ (1,1)

(0,0)
TPR(FPR)δ(FPR) (3.6)

The selection of these metrics for comparing the performance of the different
experiments was motivated by their ability to demonstrate the separability of the
classes across all possible thresholds, thereby indicating how effectively the model
classifies each class. Other metrics that consider the outcomes as discrete may not
provide as comprehensive insights. For the multiclass problem, the ROC curve was
adapted using the One versus Rest (OvR) strategy. Under the OvR strategy, one class
is treated as the "positive" class while considering all other classes as the "negative"
class. This transformation reduces the multiclass problem to a series of binary ones,



3.5. Classification pipeline 23

so this process is repeated for each class present in the dataset. Consequently, for
a dataset with three classes, three different OvR scores, along with their respective
ROC curves, are obtained. In the experiments conducted in Section 4, three AUC
scores and three ROC curves were computed, each corresponding to a specific class.

3.5.2 Malignant class balancing

The performances of two different approaches in addressing the class imbalance is-
sue was compared and their effectiveness in improving the classification results was
determined. The first approach involves data augmentation using synthetic images
generated by SinGAN, while the second approach utilises sample weights.

For the experiments involving synthetic data, the synthetic samples were exclus-
ively introduced into the training set. It is important to note that special care was
taken to maintain consistency between the labels and metadata of the synthetic data
and the corresponding original images used to train the SinGAN model. This en-
sured that the synthetic data accurately reflected the characteristics and annotations
of the original images. Additionally, thorough attention was given to ensuring that
the samples used to train the SinGAN and generate the synthetic data were exclus-
ively present in the training set. This preserves the independence and reliability of
the results. Finally, all data, both synthetic and original, underwent the necessary
preprocessing required by the pretrained model.

For experiments that do not involve the use of synthetic samples to balance the
malignant class, the Weighted Random Sampler (PyTorch: Weighted Random Sampler
2023) technique was applied to both the train and validation sets. The Weighted
Random Sampler is a method that addresses class imbalance by assigning weights
to each sample during the sampling process, ensuring that less frequent classes re-
ceive higher probabilities of being selected. By using this technique, it was aimed to
mitigate the impact of class imbalance on the training and validation stages.

In cases where synthetic samples were introduced to balance the classes within
the training set, the Weighted Random Sampler was exclusively utilised for the val-
idation set. This decision was made to preserve the integrity of the synthetic samples
and avoid introducing biases during the validation process. The performances of
these two approaches in addressing the class imbalance issue will be compared and
their effectiveness in improving the classification results will be determined.

3.5.3 Varying the zoom level group with which the classifier is trained
and tested

The impact of the accuracy of lesion annotation on the performance of the classifier is
explored through the conducted experiments. The area of adjacent tissue included
in the patch os a lesion is reduced as the annotation accuracy increases. For this
purpose, different combinations of zoom level group sets are used to train and test
the classifier. The training set remains the same for validation in all cases.

For example, in one of the experiments, the classifier is trained using the set of
lesions from zoom group 3 (with more healthy adjacent tissue) and subsequently
tested with zoom group 1 (containing less healthy adjacent tissue). This allows us to
assess how well the classifier is able to recognise the patterns of the lesion itself with
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minimal adjacent tissue (group 1) when it has been trained with a greater amount of
healthy tissue (group 3).

In this experiment, it was also investigated how data augmentation using SinGAN-
generated images can enhance the robustness of the classification pipeline. This aug-
mentation technique is applied to both the training sets for zoom group 3 and zoom
group 1 (samples of different zoom levels are illustrated in Table 3.5). Furthermore,
the limitations associated with the data augmentation based on SinGAN were also
analysed.

FIGURE 3.14: General pipeline of the experiments performed.
Patches of healthy and lesion samples are initially extracted from the
BCDR dataset (technique in Section 3.2.2). Three patches at three dis-
tinct levels of zoom are extracted for each lesion (Rationale in Section
3.2.1). The patch dataset is subsequently splitted into training, valida-
tion, and test sets, with three folds computed for all experiments. The
number of patches depicted in the figure assumes the selection of a
single group of zoom for the lesions. To augment the malignant class,
different patches from Group 3 and Group 1 are chosen, and SinGAN
models are trained on each of them. Synthetic patches are then gen-
erated from these models and incorporated into the training dataset.
Sets A, B, and C, each refering to four SinGAN models, are named to
represent this process, with further details provided in Figure 3.12.
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Chapter 4

Results and discussion

4.1 Binary experiment

The first experiment performed was the binary task, where the target label indic-
ated whether the patch represented healthy tissue or a suspicious lesion, with the
positive class representing the healthy tissue. This experiment was conducted using
the group of zoom 3 for the lesions, as the presence of more healthy adjacent tissue
around the lesion could make it harder to detect.

The results for this experiment, conducted over 3 folds, demonstrated a test ac-
curacy of 0.924 ± 0.009 and a test AUC of 0.971 ± 0.009 (Table 4.1). A high AUC
metric suggests that the model is effective at discriminating between classes and
ranking instances. However, the accuracy of individual classifications is slightly
lower than the AUC, which may be attributed to potential misclassifications near
the decision boundary. In addition, it is important to note that the standard devi-
ation is low, what demonstrates consistency against different folds, reinforcing the
model’s stability and reliability. For a better visualisation of the model’s perform-
ance, the Receiver Operating Characteristic (ROC) curve is presented in Figure 4.1.
The ROC curve showcases the trade-off between the True Positive Rate and False
Positive Rate.

To further address the problem, the subsequent sections of the paper focused
on converting the task into a multiclass classification problem. This enabled the
classification of suspicious patches into benign or malignant lesions, providing a
more detailed analysis of the detected abnormalities.

Experiment
Accuracy AUC

(Mean ± Standard Deviation) (Mean ± Standard Deviation)
Binary 0.924 ± 0.009 0.971 ± 0.009

TABLE 4.1: Performance test metrics for Binary Experiment. The table
presents the performance metrics of the ResNet model in the bin-
ary task of classifying suspicious lesions. The AUC metric is higher
than the Accuracy metric, suggesting that the model is more effective
at discriminating between classes and ranking instances rather than
achieving perfect individual classification accuracy. The low stand-
ard deviation indicates consistent performance across different folds,

reinforcing the model’s stability and reliability.
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FIGURE 4.1: Receiver Operating Characteristic (ROC) Curve for Bin-
ary Experiment at testing. The shaded area surrounding the ROC
curve represents the standard deviation across different folds, indic-
ating the variability in performance. In this experiment, the ResNet
model achieved a significant AUC value, reinforcing its capability to

classify suspicious lesions effectively.

4.2 Training at different zoom levels of the lesions

In this section, the results of a set of experiments are presented. The patches from
lesions were extracted, considering different percentages of healthy adjacent tissue
and grouped into three levels of zoom, as shown in Figure 3.5. These grouping
strategies served two purposes: (a) to explore the model’s robustness against differ-
ent window sizes, aiming for implementation in a sliding windows procedure for
lesion detection, and (b) to handle variations in the precision or consistency of the
annotation masks provided by radiologists. These explorations aimed to evaluate
the model’s dependency on precise annotations and its ability to generalise well in
real-world scenarios where annotations may be less precise or consistent.

Each of the performed experiments involved training the classifier on one group
of zoom levels and testing on samples from all the groups. It is important to note
that each lesion was exclusively present in one of the train-validation-test sets. For
instance, if the training set contained samples from group 1, those lesions were not
present in the test set for any of the zoom level groups. Furthermore, an additional
experiment was conducted by training the model using lesion patches from all three
groups.

Table 4.2 presents the accuracy obtained for this set of experiments. The highest
accuracy was achieved when training the model using lesion patches from all three
groups of zoom levels. However, it is important to note that the accuracy obtained
in the multiclass classification experiments is slightly lower than that of the binary
problem. Conversely, the lowest accuracy was observed when training the model
exclusively on group 1 of zoom levels, which corresponds to lesions with the least
adjacent tissue. This finding suggests that the zoom level of the patch plays a signi-
ficant role in the classifier’s performance when tested on lesion patches at different
levels of zoom.

Additionally, Figure 4.2 illustrates the AUC metric for the different classes in
the experiments. Across all experiments, the malignant class consistently exhibits
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Experiment
Accuracy (Mean ± Standard Deviation)

Train-Val Test
1:2:3 1:2:3 0.837 ± 0.045

1 1:2:3 0.748 ± 0.044
2 1:2:3 0.804 ± 0.035
3 1:2:3 0.807 ± 0.035

TABLE 4.2: Accuracies of the experiments performed on Figure 4.2
training the classifier only on one group of zoom levels and testing
on samples from all the groups. The majority of experiments show
comparable accuracy values, except for the second experiment, which
also exhibits the lowest performance in terms of the AUC metric in

Figure 4.2.

the lowest AUC value, indicating that the classifier performs comparatively worse
for this class. These results highlight the challenge in accurately classifying malig-
nant lesions and suggest the need for further investigation and improvement in the
model’s performance for this specific class. The corresponding ROC curves for each
of the experiments, are included in the Appendix 6.2.1, in Figure 6.3.

FIGURE 4.2: Area under ROC curve of the experiments performed
training only on one group of zoom levels and testing on samples
from all the groups. The malignant class consistently exhibits the low-

est AUC value.

It is worth highlighting the results of the third experiment, where the model was
trained on group 2 of zoom levels. This experiment demonstrates superior perform-
ance compared to training exclusively on group 1 or group 3. A hypothesis can be
formulated that training on the group of zoom 2 represents an intermediate point
that optimally captures the necessary features for later testing on groups 1 and 3.
Conversely, training exclusively on set 1 or set 3 and subsequently testing on all
three sets leads to poorer performance. This observation further supports the notion
that the tightness of the bounding box around the lesion plays a significant role in
the classifier’s performance.
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4.3 Analysing classifier robustness against variations in the
quality or accuracy of the annotation mask

With the purpose of analysing how variations in the quality of the annotation mask
of a lesion influences classifier performance, this section presents experiments con-
ducted by training and testing on different combinations of zoom level groups. Table
4.3 provides an overview of the accuracy obtained for this set of experiments at test-
ing time. The highest accuracies were achieved when the model was tested on lesion
patches from the same group of zoom levels the model was trained on. This consist-
ency is also reflected in the AUC metric, as shown in Figure 4.3. However, the most
interesting results were observed when the model was tested on a different level of
zoom the model was trained on. The worst performance in terms of accuracy was
observed when the classifier trained on group 1 was tested on group 3. In terms
of the AUC, it is the experiment with the second worst result. Observing the AUC
test results for the different classes, the worst result was for the classifier trained on
group 3 tested on group 1. Is is ovserved also in Figure 4.3 that when the model
is trained on the intermediate level of zoom of group 2, the perfomance when test-
ing on group 1 or 3 is better for the malignant class than training on group 1 or 3.
The ROC curves of the different experiments are inlcuded in Figure 6.3 in Appendix
6.2.2.

Experiment Accuracy Malignant class AUC
Train-Val Test (Mean ± Standard Deviation) (Mean ± Standard Deviation)

1 1 0.929 ± 0.034 0.948 ± 0.043
2 2 0.899 ± 0.024 0.930 ± 0.020
3 3 0.887 ± 0.031 0.928 ± 0.036
3 1 0.865 ± 0.088 0.677 ± 0.076
2 1 0.877 ± 0.009 0.840 ± 0.041
1 3 0.780 ± 0.021 0.709 ± 0.066
2 3 0.835 ± 0.025 0.893 ± 0.052

TABLE 4.3: Accuracies at testing time of the experiments performed
on Figure 4.3 and the AUC metric for the Malignant class. Train-
ing and testing the model on different combinations of zoom level

groups.

4.4 SinGAN-based data augmentation

After the previous sets of experiments, it can be consistently concluded that the clas-
sifiers perform comparatively worse for the malignant class, which based on Figure
3.7a, it is the minority class. In this section, data augmentation with SinGAN mod-
els is explored aiming to improve the classifier performance for this specific class.
The subsequent experiments involving SinGAN data augmentation focus on the ex-
periment with the lowest AUC (Area Under the Curve) for the malignant class, as
described in Section 4.3, which serves as the baseline.

This particular experiment aims to assess the performance of a classifier trained
on the level of zoom of group 3, which utilises less accurate annotation masks of
lesions when tested on group 1. In group 1, the annotation masks consist of tightly
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FIGURE 4.3: Area under the Receiver Operating Characteristic (ROC)
Curve for the multiclass task training and testing the model on differ-

ent combinations of zoom level groups.

bounding boxes around the lesions. The objective of this experiment is to determine
whether training a classifier with a broader annotation mask of the lesion, which
accounts for inter- and intra-observer variability, can accurately classify patches of
lesions with fewer adjacent healthy tissue.

This analysis seeks to determine if the classifier has successfully learned the spe-
cific patterns of the lesion itself, thereby preventing scenarios similar to the well-
known anecdote in the field of AI involving a neural network model trained to dif-
ferentiate between wolves and huskies (Ribeiro, Singh and Guestrin, 2016). In that
case, the model accurately classified test samples but had seemingly learned to pre-
dict "Wolf" if there was snow and "Husky" otherwise, disregarding animal features
or patterns. Drawing upon this analogy, our analysis examines the performance of a
classifier trained on the animal (or breast lesion) with its corresponding background
(or healthy adjacent tissue), when subsequently tested on images that solely depict
the animal body (or a tight bounding box around the lesion).

4.4.1 Generation and evaluation images with SinGAN models

As introduced in Section 3.4.3, the Single Image FID (SiFID) metric (proposed by
Shaham, Dekel and Michaeli, 2019) was used. The SiFID metric allows to quantit-
atively evaluate the similarity between the original and synthetic images, providing
valuable insights into the performance of the SinGAN models in generating realistic
and faithful images that capture the characteristics of the original data.

To establish a reference point for comparison, the SiFID between the original im-
age and randomly generated noise images was also computed. This baseline value
provided an indication of the level of dissimilarity expected between unrelated im-
ages. Furthermore, when comparing the original image with itself, a SiFID value of
absolute 0 was obtained, indicating a perfect match between identical images.

The SiFID values for the generated synthetic images, as shown in Figure 4.4,
were found to be very close to 0 with a small standard deviation. This implies that
the feature distributions of the synthetic images closely resemble those of the ori-
ginal images, indicating a high degree of quality and fidelity in the image generation
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process. The small standard deviation further suggests consistency across different
images of the same set.

FIGURE 4.4: Distribution of SiFID metric values for datasets gener-
ated using a SinGAN model trained on different single images. The
y-axis represents the ID of the training image used to generate each
dataset, indicating the set (A, B, or C) and the format (digital or film).
The dots represent the mean value, and the horizontal black line rep-
resents the standard deviation. For reference, the metric was com-
puted with respect to a dataset of random noise images as an upper-
bound, which had a SiFID of 39.282 ± 0.143, so the metrics obtained

demonstrate the excellent quality of the generated images."

4.4.2 Improving baseline performance with SinGAN-based data augment-
ation

In order to investigate the impact of SinGAN data augmentation on the malignant
class within the training data, additional samples were incorporated into the dataset.
These samples were generated using four SinGAN models, two from digital patches
and two from film patches. This approach allowed the exploration of the effects of
data augmentation across different formats. Subsequently, the classifier trained with
this augmented dataset was tested on group 1 to evaluate its performance compared
to the baseline.

The data augmentation was performed on generated samples from four patches
of group 3, corresponding to Set B in Figure 3.12, as well as on augmented samples
from patches of group 1, corresponding to Set C in the same Figure. For consistency,
the same lesions were used in both Sets but at different levels of zoom. These two
experiments were labeled as i and ii, and the accuracy metric is presented in Table
4.4, while the AUC for the different classes can be observed in Figure 4.5.

The performance of the classifier for the malignant class exhibits notable im-
provements in terms of the AUC, increasing from 0.677 ± 0.076 to 0.718 ± 0.044,
when augmenting the training data with SinGAN-generated samples from the group
of zoom 3. The accuracy also reflect an enhancement, which remains consistent at
0.865± 0.008. In experiment (ii) (Table 4.4), where the training set is augmented with
samples from SinGAN models trained on zoom 1 samples, the performance boost is
even more substantial. The AUC for the malignant class rises to 0.771 ± 0.045 and
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the accuracy, to 0.881 ± 0.007. However, it is important to note that the test perform-
ance is not as favorable when directly testing on the group of zoom 3. This positive
outcome highlights the potential of data augmentation with synthetically generated
images based on SinGAN models, presenting a promising result. The ROC curves
for data augmentation nad non data augmentation experiments are included in Fig-
ure 4.6.

Experiment Set of models Training image IDs Zoom group
i B 13, 77, 2789, 3941 3
ii C 11, 75, 2787, 3939 1

TABLE 4.4: Specification of the SinGAN models (Table 3.12) used for
the experiments performed in Figure 4.5.

FIGURE 4.5: AUC metric for each class for different experiments.
In the first pair of experiments, data augmentation is not used and
only the test (Te.) set is changed. In the second pair of experiments,
SinGAN-based data augmentation was used for two sets of 4 SinGAN

models, specified in Table 4.4.

Experiment Accuracy Malignant class AUC
Train-Val Test (Mean ± Std. Deviation) (Mean ± Std. Deviation)

3 3 0.887 ± 0.031 0.928 ± 0.036
3 1 0.865 ± 0.008 0.677 ± 0.076

3(4 SinGANs - i) 1 0.870 ± 0.016 0.718 ± 0.044
3(4 SinGANs - ii) 1 0.881 ± 0.007 0.771 ± 0.045

TABLE 4.5: Accuracies and AUC metrics for the malignant class of
the experiments performed on Figure 4.5.

Additionally, misclassification rates for the test set were computed. This in-
volved calculating the ratio of misclassified samples with a specific feature to the
total number of samples with that feature in the test set. In relation to the calcific-
ation feature presented in Figure 3.8, a surprising outcome was observed in these
experiments. When testing for group 1 without data augmentation, the misclassi-
fication rate of samples with calcification was found to be 0.248 ± 0.104. However,
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when augmenting the dataset with four SinGAN models in experiment (i), this res-
ult decreased to 0.238 ± 0.064. It is worth noting that two of the SinGAN models
used in this experiment were trained on calcification samples (ID 2789 and 3941 in
Table 3.12). As discussed in Section 3.3, according to Nalawade, 2009, the appear-
ance of absolutely benign calcifications on mammography may render biopsy unne-
cessary. These findings highlight promising slight improvements in the consistency
of the classifier using SinGAN-based data augmentation, particularly in identify-
ing calcifications. Furthermore, for experiment (ii), where the Set C (Figure 3.12) of
SinGAN models was used, corresponding to the same lesions as in the Set B used in
experiment (i), the misclassification rate for samples with calcification was further
improved to 0.211± 0.074. This outcome is consistent with the initial hypothesis that
augmenting the data with synthetic images generated from patches of calcifications
could decrease the misclassification rate for calcifications.

(A) Training only on group 3 and testing
on group 1.

(B) Augmenting training samples with
synthetic samples of group of zoom 3.

(C) Augmenting training samples with
synthetic samples of group of zoom 1.

FIGURE 4.6: Receiver Operating Characteristic (ROC) Curve for the
multiclass task training on level of zoom group 3, augmenting the
training data with synthetic samples of group 3 (Set B in 3.12) and of
group 1 (Set C in the same Figure). The shaded area corresponds to
the standard deviation for the different k-folds for which the experi-

ment was done.

4.4.3 Synthetic dataset generated from a different number of SinGAN
models

After the promising results obtained using single image generative models for data
augmentation, the interest in exploring SinGAN opportunities led to the set of exper-
iments explored in this section. The aim was to investigate the potential benefits of
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incorporating diversity into the training set through synthetic samples. The number
of synthetic samples remained constant across all experiments, while the number of
SinGAN models used to generate those samples varied. Different synthetic datasets,
which augmented the training set by the same size, were created by combining dif-
ferent subsets of the 12 SinGAN models. Each SinGAN model was trained on one
of the 12 images presented in Figure 3.12. This process was specifically carried out
for SinGAN models trained on samples from the group of zoom 3. The IDs of the
training images used for generating each synthetic dataset are provided in Figure
4.6. The accuracy achieved in each experiment is presented in Table 4.7, while the
AUC values for the three classes are plotted in Figure 4.7. All the ROC curves for
each experiment and for each class are included in the Appendix 6.2.3, in Figure 6.5.

The results of the entire set of experiments indicate that the performance without
data augmentation is worse in terms of both AUC and accuracy. This observation
confirms that data augmentation with generated samples using SinGAN models
consistently improves the performance and robustness of the model across differ-
ent levels of zoom.

However, there is an important observation to be made from these results. While
the experiments utilising synthetic samples from 2 and 4 SinGAN models demon-
strate a considerable and promising enhancement, the performance is substantialy
poorer when using 6 or 8 SinGAN models to generate the synthetic dataset. This
observation suggests that the choice of the training image for SinGAN sample gen-
eration has a notable influence on the model’s performance.

As a final observation regarding the misclassification rate for calcifications men-
tioned in Section 4.4.2, it was observed that augmenting the dataset with images
generated from samples of lesions with calcification resulted in an improvement in
this rate. However, in experiment (iv) of this section, a contrasting effect was ob-
served. None of the SinGAN models from Set A (3.12) were trained on a calcification
lesion patch, and these models were used to generate the synthetic dataset for this
experiment. Surprisingly, the misclassification rate for calcifications did not improve
and, in fact, worsened from 0.248 ± 0.103 to 0.261 ± 0.112.

Experiment Set of models Training image IDs Zoom group
i B 77, 2789 3
ii B 13, 3941 3
iii B 13, 77, 2789, 3941 3
iv A 51, 168, 2180, 3884 3
v A&B 13, 77, 168, 2789, 3941, 2180 3
vi A&B 13, 77, 51, 2789, 3941, 3884 3
vii A&B 77, 51, 168, 2789, 3884, 2180 3
viii A&B 13, 51, 168, 3941, 3884, 2180 3
ix A&B 13, 51, 168, 77, 3941, 3884, 2180, 2789 3

TABLE 4.6: Specification of the image IDs (Table 3.12) used for train-
ing the SinGAN models used for the experiments performed in Fig-

ure 4.7.
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FIGURE 4.7: AUC metric for each class for different experiments. For
all the experiments the classifier was trained (Tr.) on group 3 of zoom
and tested (Te.) on group 1. Each SinGAN model set is specified in

Table 4.6.

Experiment Accuracy Malignant class AUC
Train-Val Test (Mean ± Std. Deviation) (Mean ± Std. Deviation)

3(0 SinGANs) 1 0.865 ± 0.008 0.677 ± 0.076
3(2 SinGANs - i) 1 0.891 ± 0.011 0.723 ± 0.026
3(2 SinGANs - ii) 1 0.892 ± 0.004 0.728 ± 0.043
3(4 SinGANs - iii) 1 0.870 ± 0.016 0.718 ± 0.044
3(4 SinGANs - iv) 1 0.873 ± 0.012 0.726 ± 0.046
3(6 SinGANs - v) 1 0.874 ± 0.005 0.695 ± 0.062
3(6 SinGANs - vi) 1 0.880 ± 0.009 0.705 ± 0.070
3(6 SinGANs - vii) 1 0.879 ± 0.014 0.706 ± 0.048
3(6 SinGANs - viii) 1 0.869 ± 0.018 0.703 ± 0.080
3(8 SinGANs - ix) 1 0.882 ± 0.012 0.687 ± 0.082

TABLE 4.7: Accuracies of the experiments performed on Figure 4.7,
the index of which SinGAN models are used for generating the syn-

thetic set in each experiment is included in Table 4.6.
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Chapter 5

Conclusions and further work

In this project, a Deep Learning model has been implemented to classify patches ex-
tracted from mammograms into three classes: healthy (no lesion), benign, and ma-
lignant. These are biopsy results of the lesions and provide a reliable ground truth
for training the model. This methodology allowed the assessment of multiple re-
gions within an image and predictions based on individual patches. Furthermore, it
was observed that the performance for the malignant class was relatively poorer. To
enhance the robustness and generalisability of the classification model, patches with
lesions were extracted at various levels of zoom, representing different quantities of
adjacent healthy tissue. This technique aimed to simulate inter- and intra-observer
variability in expert annotated masks or sliding window detection software with
different window sizes. The influence of the adjacent tissue of the lesion to the per-
formance of the classifier has been consistently proved.

For the subsequent experiments, the performance of a classifier trained on patches
with less zoom was analysed when tested on patches with more zoom and min-
imal adjacent healthy tissue. This approach aimed to assess the classifier’s ability to
learn the patterns of the lesions themselves. A SinGAN-based data augmentation
methodology was applied to evaluate its potential for balancing the malignant class,
and promising results were obtained. Additionally, the impact of diversity in the
synthetic dataset on performance was analysed, revealing an unexpected trend of
performance improvement. However, the improvement relative to the baseline was
consistently observed. The hypotheses explored throughout the project and their
corresponding conclusions are summarised in Table 5.1.

As stated in the introduction section, to the best of our knowledge, this project
represents a novel study in the application of single image generative models for
breast cancer diagnosis. Given its novelty, it opens up several avenues for further
analysis, validation, and implementation of derived tools. Suggestions for future
work and motivations to continue this study can be categorised into two sections:
(a) improvements of the techniques employed and (b) potential clinical applications.

Regarding the improvement of the employed techniques, it is recommended to
augment the dataset from different sources, considering that this project only util-
ised the BCDR dataset. Restricting the dataset limits the representation of the popu-
lation and, for practical implementation in medical applications, it is crucial to avoid
distribution shifts. In terms of patch extraction, randomising the zoom of healthy
patches, similar to what was done with the lesions, can provide a more compre-
hensive analysis. However, the focus was primarily on the lesions, as they were the
critical point for the classification task. Additionally, incorporating a more complex
ResNet or exploring alternative classification models could enhance the analysis.
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# Hypothesis Result ✓/ p

1 The malignant class exhibits in-
ferior performance compared to
other classes.

Consistently supported across
all conducted experiments.
Moreover, it was observed that
the malignant class represents
the minority within the dataset.

✓

2 A classifier trained exclusively
on lesions with a broad bounding
box (group 3 of zoom) is expec-
ted to exhibit lower performance
when tested on lesions with min-
imal adjacent tissue (group 1 of
zoom) compared to when tested
on lesions from group 3.

Experiments in section 4.3 con-
firm the hypothesis. It seems
more difficult for the classifier to
learn the specific patterns of the
lesion itself when trained solely
on lesions with more surround-
ing tissue (group 3).

✓

3 The performance of a classifier
trained on lesions from group
3 (broader bounding box) im-
proves when tested on lesions
from group 1 (tight bounding
box) if the training data is aug-
mented with synthetic malignant
lesions from group 3 of zoom.

The hypothesis was confirmed
by experiment (i) conducted in
section 4.4.2.

✓

4 Augmenting the data with syn-
thetic images generated from
patches of calcifications will de-
crease the misclassification rate
for calcifications. However, if the
synthetic dataset is not generated
from calcification lesions, it will
not lead to any improvement.

It was confirmed by experi-
ments (i) and (ii) in Section 4.4.2,
where synthetic samples gener-
ated from calcification patches
improved the baseline. How-
ever, in experiment (iv) in Sec-
tion 4.4.3, where no calcification
patches were used for SinGAN
data augmentation, the misclas-
sification rate did not improve.

✓

5 The improvement of the per-
formance stated in Hypothesis 3
is larger when augmenting the
training data with synthetic le-
sions from group 3.

The hypothesis was confirmed
by experiment (ii) conducted in
Section 4.4.2.

✓

6 The larger the number of
SinGAN models used for gen-
erating the synthetic dataset,
the greater the enhancement of
performance for the malignant
class.

Although the experiments car-
ried out in Section 4.4.3 showed
a consistent enhancement in the
classification performance for the
malignant class, the expected
improvement when augmenting
data with more SinGANs was of-
ten minimal. Therefore, having
more SinGANs is not always bet-
ter.

p

TABLE 5.1: Overview of the hypotheses explored in the project devel-
opment with the corresponding outcomes and conclusions.
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Moreover, conducting more folds for each experiment would allow for performing
robust significance statistical tests. Due to the significant training time required for
each classifier (approximately 3.5 hours), only three folds were computed, which
limited the statistical analysis.

Concerning SinGAN augmentation, conducting further analysis on the rejected
hypotheses in Table 5.1 would be beneficial. It would be valuable to investigate the
patterns that contributed to a poorer enhancement for the of certain SinGAN mod-
els used in experiments of section 4.4.3. It can be also explored other single-image
generative models, such as SinFusion model proposed by Nikankin, Haim and Ir-
ani, 2022. Additionally, revisiting the SinGAN model itself could be considered. In
their Con-SinGAN paper, Hinz et al., 2021 proposed promising enhancements to the
original SinGAN technique. Unlike the original structure, which fixed each GAN
once trained, Hinz et al., 2021 suggested training multiple stages concurrently in a
sequential multi-stage manner. This modification enables better capture of semantic
structure between patches, resulting in models with fewer stages and faster training
(up to 6 times faster).

On the other hand, considering potential clinical applications, the involvement of
medical experts is essential. The use of a Deep Learning model, as demonstrated in
this study, offers a pre-biopsy result that can provide valuable insights to healthcare
professionals, helping them in making informed decisions regarding subsequent
diagnostic procedures and treatment plans. Two specific applications were con-
sidered during the project’s development. Firstly, the classification task could be in-
tegrated into a lesion detection software using a sliding windows procedure. Secondly,
an API could be developed, enabling radiologists to submit selected suspicious areas
(bounding boxes) from mammograms and promptly receive a measure indicating
the likelihood of a benign or malignant lesion.

For both application, the classifier should be robust against variations in the le-
sion zoom levels and the accuracy of the annotation masks. The model should be ad-
apted to different window sizes in the detection software and varying accuracies of
bounding boxes submitted to the Application Programming Interface (API), consid-
ering inter-observer variability among different radiologists or even intra-observer
variability between different examinations conducted by the same radiologist.

These two applications have the purpose of helping to assist on decision mak-
ing, in general, and for a biopsy intervention decision and its urgency, in particular.
As highlighted by Shyamala, Girish and Murgod, 2014, biopsy interventions carry
inherent risks for patients, such as the possibility of dislodging and seeding of neo-
plastic altered cells. It is important to emphasise that any clinical implementation
requires a comprehensive understanding of the healthcare system and diagnostic
protocols. It is evident that the involvement of clinical experts is essential for fu-
ture work on this project. The first step would be to gain a deeper understanding
of the actual challenges, which would lead to the development of effective solu-
tions. Additionally, it is important to validate the realism of the generated synthetic
images through expert assessment. Furthermore, the previously presented applic-
ations could potentially be developed for utilisation by radiologists. Therefore, the
validation of these tools should be conducted by healthcare experts. In conclusion,
the participation of clinical experts in the study is crucial to ensure the wider adop-
tion of these AI-tools within the healthcare system.
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Appendix

6.1 ResNet model graph

FIGURE 6.1: Schema of the model used for the classification task in
this project. More details explained in Section 3.5.
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6.2 ROC curves

6.2.1 ROC curves of experiments computed in section 4.2

(A) Training only on group 1 and testing
on all of them.

(B) Training only on group 2 and testing
on all of them.

(C) Training only on group 3 and testing
on all of them.

FIGURE 6.2: Receiver Operating Characteristic (ROC) Curve for the
multiclass task training on three different levels of zoom of lesions

(Figure 3.5) and testing with all of them.
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6.2.2 ROC curves of experiments computed in section 4.3

(A) Training only on group 3 and testing
on group 1.

(B) Training only on group 2 and testing
on group 1.

(C) Training only on group 1 and testing
on group 3.

(D) Training only on group 2 and testing
on group 3.

FIGURE 6.3: Receiver Operating Characteristic (ROC) Curve for the
multiclass task training on the three different levels of zoom of lesions
separately (Figure 3.5) and testing on a different level of zoom. The
shaded area corresponds to the standard deviation for the different

k-folds for which the experiment was done.
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6.2.3 ROC curves of experiments computed in section 4.4.3

(A) Training the classifier on group 3 and
tesing on 1

(B) Experiment (i) of Section 4.4.3 with 2
SinGANs.

(C) Experiment (ii) of Section 4.4.3 with 2
SinGANs.

(D) Experiment (iii) of Section 4.4.3 with
4 SinGANs

(E) Experiment (iv) of Section 4.4.3 with
4 SinGANs.

(F) Experiment (v) of Section 4.4.3 with 6
SinGANs.
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(A) Experiment (vi) of Section 4.4.3 with
6 SinGANs.

(B) Experiment (vii) of Section 4.4.3 with
6 SinGANs.

(C) Experiment (viii) of Section 4.4.3 with
6 SinGANs.

(D) Experiment (ix) of Section 4.4.3 with
8 SinGANs.

FIGURE 6.5: Receiver Operating Characteristic (ROC) Curve for the
multiclass task training on level of zoom group 3 and testing on group
1, presented in section 4.4.3. The training set is augmented with syn-
thetic samples of group 3 (3.12) from a different number of SinGAN
models. The shaded area corresponds to the standard deviation for

the different k-folds for which the experiment was done.
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