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Abstract
We discuss the potential alleviation of both the Hubble and the growth of
galactic structure data tensions observed in the current epoch of cosmology
in the context of the so-called stringy running vacuum model (RVM) of cos-
mology. This is a gravitational field theory coupled to matter, which, at early
eras, contains gravitational (Chern–Simons (CS) type) anomalies and torsion,
arising from the fundamental degrees of freedom of the massless gravitational
multiplet of an underlying microscopic string theory. The model leads to RVM
type inflation without external inflatons, arising from the quartic powers of
the Hubble parameter that characterize the vacuum energy density due to
primordial-gravitational-wave-induced anomaly CS condensates, and domin-
ate the inflationary era. In modern eras, of relevance to this work, the gravita-
tional anomalies are cancelled by chiral matter, generated at the end of the RVM
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inflationary era, but cosmic radiation and other matter fields are still respons-
ible for a RVM energy density with terms exhibiting a quadratic-power-of-
Hubble-parameter dependence, but also products of the latter with logarithmic
H-dependencies, arising from potential quantum-gravity and quantum-matter
loop effects. In this work, such terms are examined phenomenologically from
the point of view of the potential alleviation of the aforementioned current
tensions in cosmology. Using standard information criteria, we find that these
tensions can be substantially alleviated in a way consistent not only with the
data, but also with the underlying microscopic theory predictions, associated
with the primordial dynamical breaking of supergravity that characterize a
pre-RVM-inflationary phase of the model.

Keywords: running vacuum, quantum gravity, supergravity,
cosmological tensions

1. Introduction

The standard (also called ‘concordance’) model of cosmology, aka ΛCDM, has been a rather
successful paradigm for the description of the Universe at a pure phenomenological level for
more than three decades [1], although it became definitively strengthened only in the late
nineties [2], see particularly [3, 4]. Despite its phenomenological success, crucial ingredi-
ents such as the presumed existence of dark matter (DM), still lack of direct observational
evidence. The theoretical situation with the cosmological term Λ in Einstein’s equations is
no less worrisome, though. The main difficulty most likely stems from its interpretation as a
quantity which is connected with the vacuum energy density (VED), ρvac. The proposed con-
nection between the two quantities is well known: ρvac = Λ/(8πGN), where GN is Newton’s
gravitational coupling, usually assumed to be constant. Treating Λ as a mere fit parameter one
can determine it consistently using different observational sources such as e.g. distant type Ia
supernovae (SNIa) and the anisotropies of the cosmic microwave background (CMB) [5–8].
Now the VED is a fundamental concept in quantum field theory (QFT) and the lack of proper
understanding of its connection with cosmology is at the root of the longstanding cosmological
constant problem [9–11], a problem which is actually not solved with any alternative form of
dark energy [12].

However, new theoretical approaches to some of the above conundrums might be helpful
to redefine the difficulties and maybe to alleviate some of these problems. For example, we
wish to focus here on the running vacuummodel (RVM) [11–18], an approach which has been
providing a consistent cosmological framework for a long time (for the latest developments the
reader is referred to [12]). The RVM could be conceived as an effective field theory description
of a smooth evolution of the Universe [11, 19, 20] from an inflationary epoch, without invoking
ad hoc inflaton fields, up to the modern era, where the model leads to observable, in principle,
deviations from the ΛCDM paradigm [21–23] (see also [24–27] for fits of general dynamical
dark energy cosmologies to the data). The RVM framework is also capable of explaining the
entropy production and, in general, thermodynamical properties of the Universe as being con-
sequences of the decay of the running vacuum [19, 28–30]. More recently, the RVM acquired a
more fundamental status, which goes beyond the above phenomenological description, in that
the VED advocated in it can be derived within the context of renormalizable QFT in curved
spacetime, including the appropriate terms (in fact, emerging as quantum effects derived from
the effective QFT action) that can trigger inflation in a dynamical way in the early Universe, as
shown in [31–34]—see also [12] for the essentials. Remarkably, the RVMcan arguably provide
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viable alternatives to the ΛCDM at late epoch, with in-principle observable deviations from
it, compatible with the current phenomenology, as well as Big-Bang-Nucleosynthesis (BBN)
data [35], which remarkably lead to similar order of magnitude of the RVM parameters with
those of current-era phenomenology. The RVM framework also provides potential resolutions
to the recently observed, persisting tensions in the current-epoch cosmological data [36–38],
provided the latter do not admit mundane astrophysical and/or statistical explanations [39]. In
particular, some versions of the RVM with a low-redshift interaction between the vacuum and
cold DM or a mildly time-varying effective gravitational ‘coupling’ with a renormalized value
at cosmological scales, can provide a resolution of these tensions [40, 41].

As pointed out above, the RVM as a successful phenomenological framework can be
derived within the context of QFT in Friedmann–Lemaître–Robertson–Walker (FLRW) space-
time [31–34]. It would, however, be desirable to derive the various coefficients parametrising
the RVM energy density also from alternative microscopic descriptions. One interesting pos-
sibility is the embedding of the RVM into microscopic string-inspired gravitational models
with axions and gravitational anomalies in the early universe [42–45] (for reviews and com-
parison with other approaches to quantum gravity (QG) and string theory [46], specifically
theories with torsion [47, 48], see [49–51]). Both approaches, QFT in curved spacetime and
string-inspired gravitational theories can be simultaneously applicable, in the sense that mat-
ter QFT corrections to the gravitational effective actions, arising from integrating out massive
quantum fields, can also be implemented in string effective field theory constructions. There is
a crucial difference between these two approaches, though. In the latter, the so-called stringy
RVM (StRVM), the dominant terms in the cosmic VED during the early Universe evolve with
H4 due to QG-induced anomaly condensates. In contrast, in the local QFT approach, gravity
is considered as a background, and it is matter which is viewed as quantum and integrated
over in a path-integral framework. In the QFT approach, in the context of scalar field theor-
ies with non-minimal coupling to space-time curvature, one obtains explicit H6 and higher
powers in the VED [32, 34]. So far, the explicit H4 RVM corrections to the VED have been
reproduced explicitly only within the StRVM framework, as well as a one-loop supergravity
framework in a de Sitter background [52–55]5. The latter will be of crucial importance in this
work, as it will provide a prototype theory, in which, on integrating out gravitational degrees
of freedom, we obtain (in approximately de Sitter cosmological backgrounds corresponding
to a slowly varying Hubble parameterH(t)) terms in the effective cosmic energy density of the
form H2 ln(H). Moreover, such supergravities may characterize pre-RVM inflationary eras in
the StRVM framework, playing an important rôle in providing microscopic origin of the chiral
metric fluctuations leading to the aforementioned anomaly condensates [45].

As mentioned previously, from a microscopic point of view, explicit examples of RVM
have been given in the context of the so-called StRVM [42–45] parity-violating string-inspired
cosmologies of Chern–Simons (CS) type [59, 60], which are characterized by the presence
of chiral mixed (gravitational and gauge) anomaly terms, as a result of the Green–Schwarz-
mechanism [61] for the cancellation of anomalies [62] in string theory. The theory also contains
torsion, which is dual to the gravitational (also known as a string-model-independent) axion
field [48, 63].

In this context, it is the condensate of anomalous gravitational CS terms, induced by chiral,
parity-violating gravitational waves (GWs) [64, 65] that induce non-linear terms of fourth

5 We note for completion that, outside the RVM framework, H4 terms in cosmology can arise [56, 57] through quad-
ratic curvature corrections in the effective actions induced in certain scenarios of the generalized uncertainty principle
that may characterize quantum-gravity models, e.g. the quantum-gravity proposal of Stelle [58].
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orderH4 in the Hubble parameter of a cosmological background in the cosmic energy density6.
SuchH4 terms, which are dominant at early epochs, drives RVM inflation without the need for
external inflaton fields [19, 20]. In [42, 44, 50] we have discussed the possibility of forming a
condensate of the gravitational anomaly, in case there is a macroscopic number of sources of
GWs, with constructive interference. In [42, 44] anO(1) proper density of defects (i.e. over the
proper cosmological volume) was assumed, which lead for consistency to large (compared to
Planck scale) string mass scales Ms ∼ 10−3MPl. In [50], on the other hand, we have assumed
proper macroscopic densities of sources of such GW in the expanding Universe, n∗ ≡ N (t)√

−g ,

which implies a total number of sources N=
´
d4xN (t) =

´
d4x

√
−gn∗. As discussed in that

work, in such a case, the string scale Ms is a free parameter, to be fixed phenomenologically,
and can also serve as the Ultra-Violet (UV) cutoff of the string-inspired effective point-like
field theory.

It is the point of this work to analyze the current-epoch phenomenology of StRVM, which,
notably, in addition to integer even powers of H, also contains logarithmic dependent terms
H2ln(H2) [44, 49]. In the StRVM such terms arise exclusively from QG corrections. A proto-
type QFT model where such corrections have been computed explicitly is the one-loop super-
gravity [53–55], which, as already mentioned, yields a RVM theory when placed in approxim-
ately de Sitter cosmological backgrounds with slowly varying Hubble parameter [52]. Apart
from serving as prototypes, where such quantum-graviton corrections can be computed reli-
ably, such supergravities play an important rôle also for the physics of StRVM, providing a
microscopic origin of the primordial chiral GWs that lead to the CS condensates which drive
the RVM inflationary period [44, 45]. We stress that such logarithmic corrections H2 ln(H)
also appear in QFT by integrating out matter quantum fields [31–34]. In the current work we
constrain the StRVM bymaking use of an updated and rich set of cosmological measurements,
and study the potential alleviation of the Hubble tension and the tension with the large-scale
structure (LSS) data. We shall see that the dynamical scale of supergravity breaking (which
occurs during the pre-RVM-inflation era of the model [44]) can be constrained this way to lie
close to the reduced Planck scale, exactly as expected in the microscopic underlying model.
We find this a remarkable fact, worthy of stressing to the reader.

The structure of the article is as follows: in the next section 2 we discuss the one-loop
supergravity model in de Sitter backgrounds, as a provider of a prototype model of calculable
QG induced one-loop corrections to the one-loop effective action. In section 3 we explain
how this approach can lead to non-polynomial, logarithmic, corrections of the form H2 ln(H)
to the late-eras cosmic VED, when the supergravity model is embedded in a cosmological
context. We then proceed in section 4 to apply the above considerations to the (one-loop) QG
corrected effective cosmological field theory of the StRVM, discussing in detail the formalism
underlying the late-era equation of state (EoS) and the related phenomenology, including the
linearly perturbed gravitational equations. In particular we carefully discuss the perturbation
formalism that will allow us to use the Einstein–Boltzmann code CLASS [70, 71] so as to
perform fits of the StRVM to the available cosmological data. As a follow up, we discuss the
potential alleviation of the present-era cosmological tensions. In section 5 we describe the
datasets and the methodology employed to constrain the model. In section 6 we present our
results. In section 7, we discuss the status of the energy conditions in the StRVM, and also
argue how the model might evade the so-called transplanckian cosmic censorship conjecture

6 This would also be true in the presence of populations of rotating black holes [66–69], and in general space-time
deformations which are ‘chiral’ in nature.
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(TCC). Finally section 8 contains our conclusions and outlook. Technical aspects of our study
are given in two appendices.

2. One-loop corrected supergravities in pre-RVM inflationary eras as a
prototype model for discussing QG corrections

As discussed in [44, 45] there is a pre-RVM-inflationary epoch in the StRVM, which may be
characterized by dynamically broken local supersymmetry (supergravity (SUGRA)), through,
e.g. condensates of the gravitino field ψµ, the supersymmetry partner of graviton. Such exten-
sions are still within the spirit of [42] that only fields from the gravitational multiplet of strings
appear as external fields in effective field theories at the very early stages of the string-inspired
universe. An important aspect of the dynamically broken supergravity model is that QG cor-
rections, i.e. corrections arising from integrating out massless spin-2 graviton fields, in the
one-loop effective action of SUGRA considered in a de Sitter background [53–55] lead to the
appearance of terms in the effective action exhibiting logarithmic dependence on the cosmolo-
gical constant. As discussed in [45, 54], such SUGRA de Sitter vacua are metastable, charac-
terized by calculable (within the field theory approximation) imaginary parts, which eventually
imply tunneling of the system into the RVM inflationary anomaly-condensate-induced RVM
inflationary spacetime. This is in agreement with the no-go theorems on the incompatibility
of stable de Sitter space-time vacua with SUGRA models arising from compactifications in
string/brane models [72].

The one-loop effective potential of a prototype N= 1 d= 4-dimensional SUGRA model,
which is dynamically broken by means of a condensate of gravitinos ψµ:

σc = κ⟨ψµψ
µ⟩ , (1)

is given, in a Euclidean (E) path-integral formalism, in a background spacetime with a one-
loop-renormalized (positive) cosmological constant Λ> 0, by [54, 55]:

Γ(E) ≃− 1
2κ2

ˆ
d4x
√
ĝE
[(
R̂− 2Λ1

)
+α1 R̂+α2 R̂

2
]
, (2)

where κ= 1/MPl is the inverse of the reduced Planck mass, and we used the fact that the
curvature scalar in the (Euclidean) four-dimensional de Sitter spacetime is given by:

R̂= 4Λ, (3)

or:

R̂= 12H̄2, H̄= constant (4)

in the cosmological de Sitter case, with a constant Hubble parameter H̄, of interest to us here,
and in a specific gauge.

The remaining quantities in (2) are given by [55]

Λ1 =−κ2

(
−Λ0

κ2
+αF0 +αB0

)
, (5)
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where the superscripts B anf F refer to terms arising from integration of massless (quantum)
gravitons and gravitinos, which are Bosonic (B) and Fermionic (F) degrees of free-
dom, respectively. Formula (5) expresses one-loop corrections to the bare cosmological
constant Λ0,

Λ0

κ2
≡ σ2

c − f 2 , (6)

with

αF0 = κ4σ4
c

(
0.100 ln

(
κ2σ2

c

3µ2
τ

)
+ 0.126

)
,

αB0 = κ4
(
f2 −σ2

c

)2(
0.027− 0.018ln

(
3κ2

(
f2 −σ2

c

)
2µ2

τ

))
, (7)

and

α1 =
κ2

2

(
αF1 +αB1

)
, α2 =

κ2

8

(
αF2 +αB2

)
, (8)

where

αF1 = 0.067κ2σ2
c − 0.021κ2σ2

c ln

(
Λ

µ2
τ

)
+ 0.073κ2σ2

c ln

(
κ2σ2

c

µ2
τ

)
,

αF2 = 0.029+ 0.014ln

(
κ2σ2

c

µ2
τ

)
− 0.029ln

(
Λ

µ2
τ

)
,

αB1 =−0.083Λ0 + 0.018Λ0 ln

(
Λ

3µ2
τ

)
+ 0.049Λ0 ln

(
−3Λ0

µ2
τ

)
,

αB2 = 0.020+ 0.021ln

(
Λ

3µ2
τ

)
− 0.014ln

(
−6Λ0

µ2
τ

)
. (9)

We note that the tree-level (bare) cosmological constant Λ0 (6) must be necessarily neg-
ative, given that (unbroken) supergravity (local supersymmetry), which characterizes the
classical (Euclidean) action S(E)cl =− 1

2κ2

´
d4x
√
ĝE (R̂− 2Λ0), is incompatible with de Sitter

vacua [53–55]. The one-loop renormalized cosmological constant Λ, on the other hand, is
positive, due to quantum corrections (see equation (5)), and this is compatible with the case
of dynamically-broken supergravity [73]. The quantity σc < f, where f is the energy scale of
dynamical breaking of supergravity (and also global supersymmetry) [55], denotes the value
of the gravitino condensate field (1) at the minimum of its double-well one-loop effective
potential.

The replacement ofΛ in all the above expressions by the scalar curvature, (3), is understood.
The quantity µ2

τ (with dimensions of mass-squared) is an inverse renormalization group (RG)
scale, in the sense that it is a UV cutoff on the proper-time τ , which regularizes UV diver-
gences [53–55], that is, small µ2

τ values correspond to the UV regime of the theory, whilst
large µ2

τ values correspond to the infrared (IR)7. In other words, as we flow from UV to IR
the value of µr increases, which is the opposite behavior of an ordinary RG scale in QFT.

7 The alert reader should note that in this article, for economy in notation, we use the same symbol τ also to denote
the conformal time in the expanding-Universe metric (A1), used in section 4.2 and in appendix A.
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In the work of [54, 55], supergravity breaks dynamically at a large scale µ2
τ close to Planck

scale [54], which allows us to set from now on

µ2
τ ∼M2

Pl = κ−2. (10)

In the dynamically-broken-supergravity phase, the gravitino and its condensate acquire large
masses, which can be well above the grand-unification scale, even close to Planck scale for our
purposes [44, 45, 52], since we want supergravity to be broken well before the RVM inflation.
This can be arranged for appropriate values of the scale f.

From a physical viewpoint, the dynamically broken supergravity phase of the Universe
during the pre-RVM inflationary era, entails a (not necessarily slow-roll) first, hill-top, infla-
tion [74], near the origin (σc = 0) of the gravitino double-well potential [44]. The latter is
responsible for the homogeneity and isotropy of the Universe assumed for the RVM inflation,
which is induced by condensation of primordial GW. These GW are due to either merging
of primordial black holes, or the non-shperically-symmetric collapse (or collisions) of domain
walls, that in turn arise in scenarios [44] in which the initial degeneracy of the two vacua of the
gravitino condensate double-well potential is lifted, e.g. due to cosmic percolation effects [75,
76] (see also [77, 78]).

As discussed in detail in [45], quantum fluctuations of the condensate field σc, which exceed
f, lead to imaginary parts in the effective action (2) (due to negative arguments of the appro-
priate logarithms in (9)), which in turn imply that the spontaneously broken SUGRA de Sitter
vacuum is metastable, leading to a tunnelling of the system to the RVM inflation, induced by
the GW condensation of the gravitational anomaly terms. The latter is itself metastable, due to
the time dependence of the Hubble parameter, leading eventually to the exit from the second
RVM inflationary phase, as a consequence of the decay of the RVM vacua. Such metastable
vacua are in agreement with the rigorous no-go theorems concerning SUGRA and de Sitter
vacua [72], or the swampland conjectures [79–83], concerning embedding of RVM into UV
complete theories of QG, such as string theory, which are thus avoided in the case of the RVM.
In this way one may avoid the cosmological constant problem. In this respect, we also mention
that similar conclusions can be reached in the QFT approach to RVM in the context of theories
involving matter fields in curved (cosmological) spacetimes, whereby the novel renormaliza-
tion studies of [31–34] also lead to the avoidance of the appearance of a cosmological constant
term in the renormalized effective action, in contrast to conventional approaches.

The conjectural (at this stage) interpretation that the lnΛ terms in the effective action of
the dynamically-broken supergravity theory are not simple coefficients of curvature terms
dependent on the renormalized Λ, but can themselves be viewed as covariant curvature scalars
also away from a de Sitter background (3), implies that the quantum supergravity effective
action (2) now has non-polynomial terms of the form

R̂n ln
(
κ2R̂

)
, n= 1,2 , (11)

on account of (10)8.

8 The reader should notice that our modified gravity has a Minkowski flat limit, as the curvature scalar R→ 0, and
in this respect it has to be contrasted with the purely lnR gravity suggested in [84], whose terms grow with small
curvatures.
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Moreover, in the broken supergravity phase, which also includes the RVM infla-
tion, the gravitino and its condensate fields, are superheavy excitations in our stringy
scenario [44, 45, 52], with masses close to the Planck mass, and this can be integrated out in
the path integral. This in turn will imply Planck-mass suppression for these terms in the action
of the effective field theory, leaving only terms of the massless degrees of freedom, eventually
leading to the string-inspired action of [42, 44, 45] with axion and graviton degrees of freedom
(the dilaton has been assumed stabilized to a constant, in a self consistent way [43]).

3. Implications for modern eras

It is important to stress that, as one observes from (8) and (9), terms with logarithmic depend-
ence on the Hubble parameter H, (11), are also the result of integrating out massless graviton
fluctuations. Thus, we may also encounter such modified relativity (bosonic) effective actions
in the modern era, where the gravitino fields play no rôle [44, 49], purely due to QG effects9.
Therefore, the result of integrating out massless graviton fluctuations in the effective action,
which describes the gravitational dynamics of the post-inflationary stringy RVM Universe,
until the current era, leads to weak QG corrections, given by adding to the standard Einstein–
Hilbert Lagrangian term one-loop corrections of the form (we analytically continue back to a
Minkowski-signature spacetime from now on)10:

δL1−loop
quant. grav. =−

√
−g
[
α̃0 +R

(
c̃1 + c̃2 ln

(
− 1

12
κ2R

))]
+ · · · (12)

where the constant α̃0 plays the rôle of a one-loop induced VED.
From the supergravity example [54, 55] we have seen that α̃0 > 0, and that the constant

coefficients c̃i assume the form (cf (9))

c̃i ∝ κ2E0, or c̃i ∝ κ2E0 ln
(
κ4|E0|

)
, i = 1,2, (13)

with E0 a bare (constant) VED scale. From (13) it becomes clear that the sign of the coefficients
c̃i, i = 1,2 depends on the signature of the bare cosmological constant term. In supergravity
models E0 < 0, but in the absence of supersymmetry E0 could be positive. This will play an
important rôle for the generic parametrization of our phenomenological analysis of the StRVM
at late epochs in section 4.

The ellipses . . . in (12) denote terms of quadratic and higher order in R, which are sub-
dominant in the current epoch (H= H0), when the Universe enters again a de Sitter phase, but
with a much smaller (approximately) de Sitter Hubble parameter. We stress once more, that
the structures (12) appear generic for weak QG corrections about de Sitter backgrounds [53],

9 Such terms also exist in the RVM inflationary era, but they are suppressed compared to the inflation-driving anomaly
condensates, scaling like H4 [44]. Indeed, the QG-induced H4ln(κ2H2) terms in the early Universe are subdominant
compared to the GW-induced H4 terms in the Chern–Simons condensate for κ4|E0|< 1, as required by the trans-
planckian conjecture, which the bare scale E0 is assumed to satisfy. Thus our conclusions on RVM inflation [42, 44,
45] remain unaffected.
10 In this work we follow the convention for the signature of the metric (+,−,−,−), and the definitions of the
Riemann Curvature tensor Rλµνσ = ∂ν Γλ

µσ +Γρ
µσ Γλ

ρν − (ν ↔ σ), the Ricci tensor Rµν = Rλµλν , and the Ricci
scalar R= Rµνgµν . Overall, these correspond to the (−,+,+) conventions in the popular classification by Misner
et al [85].

8
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as appropriate for the current era of the Universe. We may therefore conjecture that the cor-
rections (12) can lead to a modified version of the stringy RVM discussed so far, thus playing
a rôle in the current-era phenomenology.

Indeed, considering the graviton equations stemming from the one-loop corrected effective
Lagrangian, we easily observe that the correction terms (12) imply corrections to the effective
stress-energy tensor in the current era of the form:

δρvac0 =
1
2
α̃0 + 3(c̃1 − c̃2) H

2
0 + 3c̃2H

2
0 ln
(
κ2H2

0

)
+ · · · , (14)

where the . . . denote subleading terms proportional to (Ḣ0)
2, Ḧ0, which are negligible in the

current epoch, during which the Universe enters once again a de-Sitter phase.
Crucial to us in this work will be the approximately-de-Sitter nature of the spacetime

at late eras of the Universe, which implies a mild but non-trivial cosmic-time depend-
ence of the Hubble parameter. Thus in what follows, we shall replace H0 by H. It
is also important to notice that the supergravity prototype [52, 54, 55] indicates that
the one-loop correction (dark-energy-type) term 1

2 α̃0 is constant, independent of lnH2

terms.
The total stress energy tensor is obtained by adding (14) to the stress tensor of the RVM,

including a cosmological constant c0 > 0 phenomenologically11, thus obtaining a total energy
density (we use below κ−2 =M2

Pl):

ρvacRVM ≡ ρDE ≃ 3M2
Pl

{
c0 +

[
ν+ d1 ln

(
M2

Pl/H
2
)]
H2 + · · ·

}
, (15)

where c0 > 0,ν > 0, and d1 are phenomenological parameters. Below we treat these para-
meters as functions of the cosmic time, because we assume that they can take in prin-
ciple different values in different epochs of the expansion. This characterizes the stringy
RVM model, as we have discussed explicitly in [42, 44], where, for instance, it was
shown that the parameter ν < 0 during the RVM inflation, as a consequence of the grav-
itational anomaly contributions, while, par contrast, ν > 0 in the post-inflationary epoch.
Below, we also argue that ν remains of the same order from the BBN until the modern
epochs, in a way consistent with the available cosmological data, provided one assumes the
running vacuum to be the dominant source of the currently observed dark energy in the
Universe.

Indeed, compatibility of the model with the BBN constraints leads to constraints on d1 in
narrow windows [35]:

11 An important formal remark is in order here. A cosmological constant c0 is added phenomenologically in (15),
given that in our string-inspired StRVM a de Sitter spacetime is not welcome (perturbative string theory scattering
matrix is not well-defined in de Sitter spacetimes, and non-perturbative string vacua are incompatible with de Sitter
spacetimes, due to swampland [79–83]). During the RVM phase there was no c0 term and any (approximate) de
Sitter contribution arose dynamically and it was metastable. Thus, it is most plausible, that this will be the case
also of the current era, during which, as a result of the depletion of matter content in the Universe, gravitational
anomalies (which, in the StRVM framework, where cancelled [42–45] at the exit of inflation from chiral matter that
was created as a consequence of the decay of the RVM vacuum) could resurface. In such a case a de Sitter contribution
could also be viewed due to some sort of condensate of GW, which are much weaker of course in the current epoch.
At present we do not have a concrete scenario for the current era, and this should be considered as a speculative
remark.
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dBBN
1 ∈

(
−1.0× 10−5,1.3× 10−5

)
, (16)

with c0
H2

0
∈ (0.697,0.704), as required by the current-era dark energy constraints [8]12.

Therefore, on ignoring terms of order O(H4) and higher, the current-era VED, including
QG logarithmic-H corrections, assumes the form:

ρvacRVM ≡ ρDE ≃ 3M2
Pl

{
c0 +

[
ν0 +(d1)0 ln

(
M2

Pl/H
2
0

)]
H2

0 + . . .
}
, (17)

where c0 > 0, ν0 > 0 and (d1)0, are phenomenological parameters. where, in a standard nota-
tion in cosmology, a subscript ‘0’ indicates present-day quantities. In the context of StRVM,
such a form is derived [42] by assuming cosmic radiation fields as playing a rôle in inducing
the H2 terms. It should be stressed, that in contrast to the stringy RVM inflationary scenario,
where the anomaly terms imply a negative ν < 0, the post-inflationary ν0, is positive.

We remark at this stage that fitting (17), in the case (d1)0 = 0, to the plethora of the cosmo-
logical data leads to the conclusion that [22, 23, 40, 41]:

ν0 =O
(
10−4 − 10−3

)
> 0 , 3κ2 c0 =O

(
10−122

)
> 0 . (18)

Remarkably, these order-of-magnitude estimates are consistent with BBN [35], which indicate
that for the phenomenologically correct RVM models, the coefficient ν > 0 does not change
in order of magnitude since, at least, the BBN era.

The presence of the H2
0 terms in (17) leads to observable in principle deviations from

ΛCDM, since there is different scaling of the Hubble parameter today compared to the pre-
diction of the ΛCDM paradigm:

Hmodern (a) = H0

([
1− c0

H2
0 (1− ν)

]
a−3(1−ν) +

c0
H2

0 (1− ν)

)1/2

≡ H0

(
Ω̃m0 a

−3(1−ν) +Ω̃Λ0

)1/2
, (19)

where the quantities Ω̃Λ 0 ≡ c0
H2

0 (1−ν)
> 0 and Ω̃m0 ≡ 1− Ω̃Λ0 play the rôle of the matter and

cosmological-constant energy densities today, in units of the critical density of the Universe,
with the term Ω̃Λ0 dominant in the current era.

We also remark at this point that the existence of logarithmic terms, induced by quantum-
graviton corrections, in the VED (cf (14)) may lead to some differences with respect to other
RVMs whose phenomenology has been recently analyzed in [40, 41]. However, this subject
requires a more careful consideration in the future, as the QFT version of the RVM con-
tains also logarithmic terms, see the detailed works [31–34]. The phenomenology of the QG-

12 We remind the reader that during the modern eras, including that of BBN, the coefficients of terms of order
H4 (and higher) in (15) cannot be constrained. Indeed, as shown in [35], if one assumes that the H4 terms in
the energy density (15), which also include logarithmic corrections due to one-loop quantum-graviton contribu-
tions [54], α

H2
I
[1+ d2 ln(M2

Pl/H
2)]H4, play an equal rôle to the rest of the terms in (15), as far as the observed

dark energy today is concerned, then one finds αBBN

H2
I

= 1046GeV−2, and only then BBN constraints imply dBBN
2 ∈(

−8.5× 10−2,1.2× 10−2
)
. Such a value for the coefficient αBBN is far greater than the value such a quantity would

have in the RVM inflationary phase (α/H2
I ∼ 10−26 GeV−2 for α∼O(1)). Hence, only the d1 coefficient can be

constrained by BBN data.

10
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modified stringy RVM, as far as the current-epoch tensions in the cosmological data are con-
cerned, will be the subject of the next section.

Before moving onto the data analysis, we make a final but important comment, regarding
the presence of H2 ln(H2) terms in effective RVM energy densities in the context of QFT non-
minimally coupled to FLRW spacetime, during the current cosmological epoch, discussed in
[31–34]. Indeed, as shown in those works, following a RG analysis well within the spirit of
the RVM [11], in which H is viewed as a RG scaling parameter, one may write for the RVM
energy density ρQFT

RVM in such QFT, connecting two values of the Hubble parameter, an H era,
and the current era, at which H= H0:13

ρvac QFT
RVM (H) = ρ0RVM +

3νeff (H)
κ2

(
H2 −H2

0

)
,

νeff (H)≃
1

16π2

(
ξ − 1

6

)
m2κ2 ln

(
m2

H2

)
, (20)

where νeff(H) is not a constant coefficient, but depends mildly on the cosmic time today
through the time dependence of H(t). In the formula (20), ξ is the non-minimal coupling of
the (quantized) scalar matter fields with gravity, with the conformal theory corresponding to
ξ = 1/6. The quantity ρ0RVM = 3

κ2 (c0 + ν0H2
0) denotes the standard current-era RVM energy

density [22, 23]. In arriving at (20), we have assumed ln(m2/H2)≫ 1. We mention for com-
pletion that the exact formula for scalars can be found in [32] and was complemented with the
(quantized) fermionic contributions in [34].

We stress that the form (20), is due to the appropriate subtractions of the vacuum energy
at modern eras [31–34]. Thus, we observe that the logarithmic corrections to the VED due
to quantum matter in the RVM framework are of the form (H2(t)−H2

0) ln(m
2H(t)−2)≪

H(t)2 ln(m2H(t)−2), as H(t)→ H0. Quantitatively, in the modern eras, of relevance to the
observed tensions in the data, which correspond to small redshifts z≪ 1, in which one has mat-
ter and vacuum energy dominance, with equations of state wm = 0,wvac ≃−1, the quantum-
matter corrections in (20) may be expressed as:

δρvacQFT
RVM ≃ 9m2

16π2

(
ξ − 1

6

)
H2

0 zΩ
(0)
m ln

(
m2

H2

)
+ · · · , 0< z≪ 1 (21)

where the ... indicate terms of higher order in the redshift z. In arriving at (21) we have taken
into account the standard relation

H2 (z) = H2
0

(∑
i

Ω
(0)
i (1+ z)3(1+wi)

)
, (22)

where Ω
(0)
i , i = m,Λ, are the current-era densities of matter (m) and vacuum energy (Λ)

in units of the critical density (the radiation component is assumed negligible today), for
which we have Σi=m,ΛΩ

(0)
i = 1, and wm = 0(wΛ ≃−1) are the corresponding equations of

state.

13 Although we show explicitly below the case of a scalar quantum field, non-minimally coupled to gravity [31–33],
qualitatively similar results, as far as the induced logarithmically dependent corrections on the Hubble parameterH(t)
are concerned, also characterize fermionic quantum field theories [34].

11
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For completion, we also remark that, on using (4) for an approximately de Sitter cosmolo-
gical background, we can express (21) in a covariant form in terms of the scalar curvature of
spacetime, as:

δρvacQFT
RVM ≃ m2

64π2

(
ξ − 1

6

)
(R0 −R) ln

(
−12m2

R

)
, (23)

where R0 =−12H2
0 is the scalar curvature of the expanding-universe spacetime today.

From (21) (or (23)) we thus observe that, despite the fact that for ordinary matter m2 ≫
H2

0 ∼ R0, the smallness of the prefactor H2 −H2
0 ≪ H2

0 during modern eras (when z≪ 1),
implies that, depending on the scale

√
|E0| of the QG corrections (cf (13)), the latter may

actually be dominant over matter QFT fields, even in modern epochs. Basically this depends
on whether κ2E0 is bigger or not thanm2(ξ− 1/6). To satisfy that dominance it would enforce
E1/4
0 to be in the geometric mean of Mpl and m. Since m is a GUT scale, it means that E1/4

0
should be of order of the string scale, ∼1017 GeV (for large string scales, that we work with
in the model of [42, 44]). In the context of the StRVM this is to be expected, given that the
SUGRAdynamical breaking phase in the stringyRVMpreceded the RVM inflation [44], which
should occur around the GUT scale, so that the model is in agreement with the data [8]. As
we shall see in section 4.2 (cf (58) and (59)), this range of κ2E0 emerges from requiring that
the SUGRA-StRVM model alleviates both, the Hubble and the growth-of-structure tensions.
On the other hand, for generic QG models, both QG and matter-QFT effects could be of com-
parable magnitude. In the present study, and for the sake of simplicity, we will consider that
the QG effects are dominant, as this will help to highlight their potentiality. A full analysis by
taking into account both the QG effects and the combined QFT contributions from quantized
boson and fermion fields [34] would be too cumbersome at this stage and can be left for a future
study. Let us recall at this point that these QFT effects from matter can also help to relieve the
existing tensions in the ΛCDM context [40, 41], so we cannot exclude a collaborative effect
from QG and QFT to highly alleviate both tensions.

Although our phenomenological analysis in the following sections will be general as far
as the quantum-graviton corrections are concerned, nonetheless one can make the plausible
assumption [44, 49, 52] that the primordial supergravity breaking, occurring at a high energy
scale

√
| f | close to Planck scale [54], actually constitutes the dominant source of the logar-

ithmic (on the Hubble scale H(t)) corrections to the effective action for the entire evolution of
the StRVM Universe, from the SUGRA-breaking phase till the current-era. In such a case, we
may identify

|E0|1/4 =
√
| f | , (24)

in (13), and attempt to match with the current cosmological data. In what follows, we shall see
that, upon using (24), such fits yield

√
f sufficiently close to Planck scale, which is consist-

ent with our dynamical supergravity breaking scenario during the pre-RVM inflationary era
in the stringy RVM. Of course, in generic QG models in de Sitter backgrounds with bare cos-
mological constant κ2|E0| of order of today’s measured cosmological constant, the quantum
matter field corrections (21) may dominate, in which case the relevant phenomenology should
be properly adjusted to take account of this fact.

12
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Before closing the section, an important remark should be made concerning (20). This con-
tribution pertains strictly to QFT matter effects, which have been calculated by integrating
out quantum matter-field fluctuations, with the appropriate vacuum subtractions absorbed in
ρ0RVM [31–34]. On the other hand, as discussed in detail in [42], background matter and cosmic
radiation fields, can lead tomodern eras to contributions proportional toH2 (without the ln(H2)
factors in the VED). This important feature will be taken into account in our phenomenological
analysis below.

4. Detailed late-eras phenomenology of the StRVM

Motivated from the above discussion, in both supergravity and renormalized QFT in curved
spacetime, we parameterized both quantum graviton and matter field effects using the follow-
ing action14:

S=−
ˆ
d4x

√
−g
[
c0 +R

(
c1 + c2 ln

(
R
R0

))]
+ Sm , (25)

where, in connection with our previous notation and discussion, c1 = 1
2κ2 + c̃1 denotes

both the tree-level and one-loop-induced QG and background matter QFT corrections to
the gravitational constant, whilst c2 is the corresponding one-loop logarithmic corrections,
which are only due to QG, given that the corresponding matter QFT corrections will be
assumed subdominant for the supergravity model, which we restrict our attention to in
this work, according to our previous discussion. The constant c0, might depend on the RG
scale, but is independent of H, as follows explicitly from the study of the supergravity
case. The reader is reminded that, in this and the following sections, quantum-matter-field
induced loop corrections are assumed subdominant, as compared to their quantum-graviton
counterparts15.

The modified Einstein equations, obtained from the variation of the action (25) with respect
to the metric, read,

14 For convenience, we have expressed the argument of the logarithm in (25) in terms of the present-era curvature
scalar R0, instead of units of the square of the Planck mass scale, κ−2, which would be the natural scale in a quantum
gravity scenario, such as the dynamically-broken supergravity model [54, 55], discussed in section 2 (cf (2) and (10)).
This implies the vanishing of the logarithmic terms in the modern era, and will be taken into account when we match
the predictions of the supergravity Lagrangian for the coefficients ci, i = 1,2, see e.g. (47) below.
15 If the matter terms were not negligible, as it may happen in generic quantum gravity models in (approximately)
de Sitter backgrounds, with bare cosmological constants of order of the observed one today [8], then their effects are
captured by adding to (25) a term with the structure:

δSmatter QFT =−
ˆ
d4x

√
−gh1 ln

(
R

R0

)
, (26)

where h1 is a constant coefficient that is determined from (23). Appropriate additions (which are suppressed by factors
m2/m2

Pl) should also be made to the coefficients ci, i = 0,1,2, of (25) to take account of all the matter contributions,
as follows from (23). Of course, the reader should always bear in mind that the matter terms vanish today (R→ R0,
z→ 0), and thus the constraints on the matter contributions have to be imposed by looking at z ̸= 0, provided the
matter terms there surpass the quantum-graviton contributions from the bare cosmological constant terms. We shall
not consider this more general case here, thereby ignoring the matter effects in front of the quantum-graviton-induced
effects from primordial supergravity breaking, which we assume to be the dominant effects in our stringy RVM
scenario [44, 49, 52].

13



Class. Quantum Grav. 41 (2024) 015026 A Gómez-Valent et al

Gµν −
c0
2c1

gµν +
c2
c1

[
Gµν ln

(
R
R0

)
+Rµν −∇µ

(
∂νR
R

)
+ gµν∇α

(
∂αR
R

)]
=
T(M)
µν

2c1
, (27)

with the superscript (M) denoting the joint contribution of non-relativistic matter fields and
radiation. We can define the tensor

Aµν ≡−Gµν ln

(
R
R0

)
−Rµν +∇µ

(
∂νR
R

)
− gµν∇α

(
∂αR
R

)
(28)

such that

T(vac)µν ≡ c0gµν + 2c2Aµν and Gµν =
T(M)
µν +T(vac)µν

2c1
. (29)

The model at this point does not know anything about quantum effects from matter. We have
assumed at the level of the action that c0, c1 and c2 are constants, so the model reduces, in prac-
tice, to an f (R) model. In f (R) models the total energy-momentum tensor (EMT) is covariantly
conserved. Actually, it is easy to see that the geometrical quantity (28) obeys∇µAµν = 0 and,

therefore, ∇µT(vac)µν = 0. Thus, for the model under consideration, with constant ci’s, there is
no cross-talk between the vacuum and matter nor a running of the gravitational coupling.

Now let us study a more general scenario with potential quantum effects from matter, in
which we promote all the constants ci to functions and consider that matter is not conserved.
The conservation equations take the following form,

2Gµ
ν∂µc1 =∇µT(M)

µν + ∂νc0 + 2Aµ
ν∂µc2 . (30)

According to (29), c1 can be associated to the effective gravitational coupling, c1 = (16πG)−1.
It can be a dynamical quantity if we abandon the assumption of the covariant conservation of
matter and/or the constancy of c0 and/or c2. For instance, we could promote c0 to a function,
assuming a RVM expression, c0(R) = c̃0 + c̃1R, while keeping c2 = const. and ∇µT(M)

µν = 0.
The dynamics of the vacuum would depend in this case on the two parameters c1 and c̃1.
But actually it is not clear how to build T(vac)µν from equation (27). There is a high degree of
ambiguity. Maybe it is natural to re-express equation (27) as follows,

Gµν

[
1+

c2
c1

+
c2
c1

ln

(
R
R0

)]
− c0

2c1
gµν +

c2
c1

[
R
2
gµν −∇µ

(
∂νR
R

)
+gµν∇α

(
∂αR
R

)]
=
T(M)
µν

2c1
, (31)

and do

T(vac)µν ≡ (c0 − c2R)gµν + 2c2

[
∇µ

(
∂νR
R

)
− gµν∇α

(
∂αR
R

)]
, (32)

Gµν =
T(M)
µν +T(vac)µν

2
[
c1 + c2 + c2 ln

(
R
R0

)] . (33)

Even if the ci’s are constant and matter is covariantly conserved in this scenario we have a
dynamical vacuum and a running G with a mild logarithmic dependence,

1
8πG(R)

≡ 2

[
c1 + c2 + c2 ln

(
R
R0

)]
. (34)
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The conservation equation that relates the variation of the two can be obtained straightfor-
wardly from ∇µAµν = 0,

∇µT(vac)µν = Gµ
ν

∂µG−1

8π
. (35)

The form of the effective gravitational coupling and the vacuum EMT is similar to those in the
so-called type-II RRVM [40, 41], in which T(vac)µν = ρvac(R)gµν , with ρvac(R) a constant plus
a linear term in the Ricci scalar R. In the case at hand, though, the vacuum EoS parameter is
not equal to−1 due to the third term of the rhs of (32), namely the one with the coefficient c2.
As a result, the vacuum EoS is not proportional to gµν , see equation (53) below. This scenario
leads to the same cosmology as the one obtained in equation (29), of course, but now the link
with the usual RVMs is more explicit since the QFT calculation also points to a vacuum EoS
different from −1, see [33]. From now on we focus on this last setup.

4.1. Background expressions in StRVM

In order to work with dimensionless parameters we define

c1 + c2 ≡
d

16πGN
, c2 ≡

ν

16πGN
, (36)

with GN the Newton constant and

d=
GN

G(z= 0)
(37)

the ratio of GN and the effective cosmological value of the gravitational coupling at present.
The modified Friedmann and pressure equations in a flat FLRW Universe read, respectively,

3H2 =
8πGN

d
[
1+ ν

d ln
(

R
R0

)] [∑
i=m,r

ρi+ c0 −
ν

16πGN

(
R+

6HṘ
R

)]
, (38)

−
(
3H2 + 2Ḣ

)
=

8πGN

d
[
1+ ν

d ln
(

R
R0

)] [∑
i=m,r

pi− c0 +
νR

16πGN
+

ν

8πGN

(
R̈
R
− Ṙ2

R2
+

2HṘ
R

)]
,

(39)

with the dots denoting derivatives with respect to the cosmic time. It is not possible to obtain an
analytical solution for the Hubble function. However, we can solve the system perturbatively.
The running of the effective gravitational coupling and the vacuum is controlled by ν. We
expect this parameter to be much smaller than one in order not to depart excessively from
general relativity and respect, among others, the BBN constraints. Thus, we can use to a good
approximation,

3H2 =
8πGN

d
[
1+ ν

d ln
(
RL
R0

)] [∑
i=m,r

ρi+ c0 −
ν

16πGN

(
RL+

6HLṘL
RL

)]
, (40)
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−
(
3H2 + 2Ḣ

)
=

8πGN

d
[
1+ ν

d ln
(
RL
R0

)] [∑
i=m,r

pi− c0 +
νRL

16πGN

+
ν

8πGN

(
R̈L
RL

− Ṙ2
L

R2
L

+
2HLṘL
RL

)]
, (41)

where RL and HL are the Ricci scalar and the Hubble function at leading order, i.e. those
obtained by solving the system with ν= 0. The analytical expressions of the energy densities
in terms of the scale factor or the redshift are known in this model. They take the same form
as in the ΛCDM, since matter is covariantly self-conserved,

ρ̇i+ 3H(ρi+ pi) = 0 → ρi = ρ
(0)
i a−3(1+wi) , (42)

with wi the EoS parameter of the species i and ρ(0)i its current energy density. For radiation
(i= r), i.e. for photons and massless neutrinos, wr = 1/3, whereas for non-relativistic matter
(i=m), i.e. baryons and cold DM, wm = 0. Massive neutrinos have a varying EoS parameter
that evolves from w= 1/3 to w= 0 when they become non-relativistic.

On the other hand, we know the relation between RL and the energy-pressure content of the
Universe. Hence, we can also express RL and its time derivatives as a function of a or z very
easily,

RL =
−8πGN

d

(
T(M) + 4c0

)
=

−8πGN

d
(4c0 + ρm) , (43)

ṘL =
−8πGN

d
ρ̇m =

24πGN

d
HLρm =

24πGN

d
ρm

[
8πGN

3d
(ρm+ ρr+ c0)

]1/2
, (44)

R̈L =−96

(
πGN

d

)2

ρm

(
2c0 + 3ρm+

10
3
ρr

)
. (45)

Substituting these expressions in (40) and (41) we find H(a) and its time derivative at first
order in ν. Higher-order corrections to these expressions can be computed straightforwardly,
but we neglect them here, since their contribution is very small.

In what follows it is useful to define the dimensionless parameter

ϵ≡ ν

d
=

c2
c1 + c2

, (46)

where we used (36). Both, the numerators and denominators of (40) and (41) are sensitive to
this ratio, which controls the running of the vacuum and G. We naturally expect ϵ to be close
to zero and d close to one in order not to depart excessively from the ΛCDM framework.

Perhaps it is worth to remark that in the supergravity case (2), discussed in section 2, if
one ignores the gravitino condensate (σc → 0), so as to resemble qualitatively the situation
encountered in modern eras, in which gravitinos have decoupled from the spectrum, being
very heavy, the coefficients c1 and c2, including one-loop graviton corrections assume the
form:

c1 − c2 ln

(
H2

0

µ2
τ

)
=

1
2κ2

[
1+

1
2
κ4 f 2

(
0.083+ 0.049ln

(
µ2
τ

3κ2 f2

))]
⇒

c1 − c2 ln
(
κ2H2

0

)
=

1
2κ2

[
1+

1
2
κ4 f 2

(
0.083− 0.049ln

(
3κ4 f 2

))]
,

c2 =−0.0045κ2 f 2 < 0 , (47)
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where −κ2f 2 < 0 denotes the bare (anti-de-Sitter-type) cosmological constant, as required by
(local) supersymmetry, and in the second line of (47) we have taken into account (cf discussion
in section 2) that the RG scale µτ is set [54, 55] equal to the reduced Planck mass κ−1 for
the dynamical breaking of local supersymmetry, cf (10). The reader should observe that the
coefficient c2 < 0 independently of the RG scale µτ . On the other hand, for perturbative QG,
one may ensure c1 > 0, as required by unitarity, by imposing

1≫ κ4f 2 (48)

and appropriately restricting the argument of the logarithmic term, thus restricting the range
of µτ . In our supergravity approach, the choice (10) satisfies this requirement, and thus, in this
example, c1 > |c2|> 0, and therefore the parameter ϵ (46) is negative, independently of the
scale µτ . Moreover, as a consequence of (48), we have

|ϵ| ≃ 0.009κ4f 2 ≪ 1 . (49)

In non-supersymmetric QG models, the bare cosmological constant could be positive, i.e. one
would face a situation in which f 2 →−E0 < 0, and thus ϵ> 0 in such cases. In what follows
below, we shall therefore consider a generic phenomenological analysis, including both cases
for the parameter ϵ. We also stress that upon incorporation of background matter effects, such
as, e.g. cosmic electromagnetic background fields as in [42], the coefficient c1 receives addi-
tional contributions from such effects. Thus c1 and c2 can be considered in practice as inde-
pendent parameters, and may therefore be fitted as such. This will be used in the subsequent
phenomenological analysis.

Using (46) together with (43)–(45), the background equations read,

3H2 = 8πG

(
ρr+ ρm+ c0 +

ϵ

2
(4c0 + ρm)+

3ϵ(ρm+ ρr+ c0)

1+ 4c0
ρm

)
, (50)

3H2 + 2Ḣ=−8πG

pr− c0 −
ϵ

2
(4c0 + ρm)+

ϵ

2
(
1+ 4c0

ρm

)2

×
[
−ρm− 4c0 +

4c0
ρm

(2c0 + 6ρr+ 5ρm)

] (51)

with the gravitational coupling

G=
GN

d
[
1+ ϵ ln

(
4c0+ρm

4c0+ρ
(0)
m

)] . (52)

The vacuum EoS parameter takes the following form16,

wvac =−1+

3ϵρm
ρm+4c0

(ρm+ ρr+ c0)+
ϵρ2

m

2(ρm+4c0)2

[
−ρm− 4c0 +

4c0
ρm

(5ρm+ 6ρr+ 2c0)
]

c0 + ϵ
2 (ρm+ 4c0)+

3ϵρm
ρm+4c0

(ρm+ ρr+ c0)
. (53)

16 Notice that this expression depends, in turn, on how we have defined the vacuum EMT in equation (32). As already
discussed, this definition is not unique. Other choices would leave the physics intact, but would change the form of
wvac.
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Figure 1. Vacuum EoS parameter wvac, equation (53), obtained for different values of ϵ,
usingΩ(0)

m = 0.3 andΩ(0)
r = 8 · 10−5. The black dashed line in the left plot corresponds

to wvac =−2/7. In the right plot we zoom in the redshift range z ∈ [0,1] in order to
better grasp the differences between the various curves at low redshifts.

Deep enough in the radiation-dominated epoch (RDE), wvac → 0. If the condition |ϵρm| ≫ c0
is fulfilled when radiation becomes negligible compared to non-relativistic matter, i.e. at
z∼O(102), wvac →−2/7≈−0.286 in the matter-dominated era (MDE). Considering typ-
ical values of the ratio c0/ρ

(0)
m ∼ 7/3 we find that this happens if |ϵ| ≫ 10−6. Finally, when

c0 ≫ |ϵρm|, wvac →−1 from above (quintessence-like) if ϵ> 0 or from below (phantom-like)
if ϵ< 0. In the negative-ϵ case, there is a vertical asymptote at the redshift at which the denom-
inator of equation (53) is equal to zero. In figure 1 we show the shape of wvac for different
values of ϵ. The larger the value of |ϵ|, the faster the departure from wvac =−1 at low red-
shifts. For sufficiently small values of ϵ> 0, the transition happens directly from wvac =−1 to
wvac = 0, with no intermediate plateau at wvac ∼−2/7.

It is important to notice that despite the significant deviations of the vacuum EoS parameter
from−1 at high redshifts, the EoS of the total cosmological fluid,wtot = ptot/ρtot, remains very
close to the ΛCDM one if |ϵ| ≪ 1. In the MDE wvac =−ϵ, and in the RDE wvac =

1
3 − ϵ.

4.2. Linear perturbations in StRVM

We compute in appendix A the perturbed Einstein equations at linear order in the synchron-
ous gauge, that is upon considering the line element ds2 = a2[dτ 2 − (δij+ hij)dxidxj]. We refer
the reader to this appendix for technical details of the computation and the iterative method
employed to solve the system of equations. Let us start discussing now the range of values of
ϵ for which the linearly perturbed equations remain reasonably close to the ΛCDM ones. In
order to study this we take for illustrative purposes the perturbed part of the 00 component of
Einstein’s equations in momentum space, which reads,

Hh ′ − 2ηk2 =
8πGNa2δρ

d
[
1+ ϵ ln

(
RL
R0

)] + ϵ

[
δR

(
−a2

2
− k2

RL
+ 3HL

R ′
L

R2
L

− 3H2
L

RL

)

−h ′R ′
L

2RL
− 3HL

δR ′

RL

]
. (54)
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The primes denote derivatives with respect to the conformal time τ . The functions h(τ, k⃗) and
η(τ, k⃗) are associated to the trace and traceless parts of the perturbed metric in the synchronous
gauge, respectively, as defined in [86]. On the other hand, the perturbation of the Ricci scalar
takes the form

δR= a−2
(
4ηk2 − 3Hh ′ − h ′ ′) . (55)

ϵ is expected to be very small. Thus, almost all the terms inside the brackets of the right-hand
side of equation (54) are just a small correction to the terms that appear in the left-hand side.
Nevertheless, there is one term that can actually compete with the usual terms (those that would
survive if ϵ was set to 0) for sufficiently small scales (large k’s). This term is the following,

ϵk2
δR
RL

= ϵk2
a−2

RL

(
4ηk2 − 3Hh ′ − h ′ ′) . (56)

We can compare, for instance, the first term in the rhs of (56) with the second term of the lhs of
equation (54). It is clear that (56) cannot be treated as a small perturbation unless the condition

|ϵ| ≪
(
aH
k

)2

(57)

is fulfilled. The larger the value of |ϵ|, the smaller the allowed wave numbers k and the larger
the scales at which this happens. We want that the above condition is fulfilled, at least, at
the typical non-linear scales in ΛCDM, i.e. knl ≳ 0.1Mpc−1, in order not to spoil the correct
description of the CMB and LSS observables. This forces us to consider values of |ϵ| at least
10% smaller than the limiting value 10−6 (see figure 2), hence

|ϵ|≲O
(
10−7

)
. (58)

From (49), then, we observe that for such values one obtains a scale for dynamical supergravity
breaking √

| f |≳ 10−5/4κ−1 ∼ 1017GeV , (59)

which is sufficiently close to Planck scale to provide support to the pre-RVM-inflationary
scenario of [44, 45]. We find this estimate rather remarkable. The microscopic dynamics of
the stringy RVM involves a pre-inflationary phase characterized by dynamical supergravity
breaking at scales much higher than the RVM inflationary scale, which the data place near the
GUT scale. Therefore, the range of (59), which ensures, according to our analysis here, that
the model alleviates both tensions, is perfectly natural. In fact, it could even be conceived as
a prediction of the model, if one reverses the logic. That is, assuming such high supergravity
breaking scales, one can arrive at a prediction of the magnitude of the parameter |ϵ|, which
enters the data tension phenomenology.

We next remark that when the condition (57) is not fulfilled, the perturbation expansion
simply breaks down and our linearly perturbed equations become unreliable17. Thus, non-
linear corrections would be needed in order to solve the system in a proper way at these scales.

17 Similar problematic terms can be found in the other perturbed Einstein’s equations as well, see equations (A16)–
(A19) in appendix A.
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Figure 2. Plot of (aH/k)2 for different comoving wave numbers k. To estimate this
quantity we have used the Hubble function in theΛCDM, withH0 = 70 km s−1 Mpc−1,
Ω

(0)
m = 0.3 and Ω(0)

r = 8 · 10−5. This is to assess the range of scales at which the depar-
tures from the standard matter growth in the ΛCDM are kept under control, given a
value of |ϵ| and the condition (57). If we consider a sufficiently large |ϵ| we violate
the condition (57) at linear scales and low redshifts. For instance, for |ϵ|= 10−5 and
k= 0.1Mpc−1 the condition (57) is not fulfilled at z≲ 10.

This can be seen more explicitly by studying the evolution of the matter perturbations at sub-
horizon scales (k2/H2 ≫ 1). From the matter-dominated epoch onwards, we can approximate
equations (54) and (A19) as follows,

Hh ′ − 2ηk2 =
8πGNa2δρm

d
[
1+ ϵ ln

(
RL
R0

)] − ϵ
k2

RL
δR , (60)

−h ′ ′ − 2Hh ′ + 2ηk2 = ϵ
2k2

RL
δR . (61)

Here we have neglected the contribution of radiation to the total density and pressure perturba-
tions, since this is a good approximation in theMDE. On the other hand, we have δ ′dm =−h ′/2
and δ ′b =−h ′/2, where δi = δρi/ρ̄i is the density contrast of the matter species i. Using these
results we finally obtain the equation of the baryon and cold DM density contrasts,

δ ′ ′i +Hδ ′i −
4πGNa2 (ρbδb + ρdmδdm)

d
[
1+ ϵ ln

(
RL
R0

)]
1+ 4ϵk2

a2|RL|

1+ 3ϵk2
a2|RL|

= 0 , (62)

with i = b,dm. We have done RL =−|RL|, since RL < 0 in our sign convention, see
equation (43). In this way it will be easier to study later on the rôle played by the sign of
ϵ. The last equation takes the following form in terms of the scale factor,

d2δi
da2

+

(
3
a
+

1
H
dH
da

)
dδi
da

− 3Ωm

2a2
δm

1+ 4ϵk2

a2|RL|

1+ 3ϵk2
a2|RL|

= 0 , (63)
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with Ωm = ρm/ρc and ρc = ρr+ ρm+ ρvac the total energy density. As expected, in the limit
ϵ→ 0 and d→ 1 we recover the equation of the ΛCDM. The effective gravitational coupling
that controls the clustering of matter depends on both, the scale factor and k,

Geff (k,a) =
GN

d
[
1+ ϵ ln

(
RL
R0

)]
1+ 4ϵk2

a2|RL|

1+ 3ϵk2
a2|RL|

= G(a)

1+ 4ϵk2

a2|RL|

1+ 3ϵk2
a2|RL|

 , (64)

whereG(a) is given by equation (52). In the safe region in which the condition (57) is fulfilled,
we can Taylor expand equation (64) around ϵk2/|a2RL|= 0,

Geff (k,a) =
GN

d

(
1+

ϵk2

a2|RL|

)
+O

(
ϵ2k4

a4|RL|2

)
. (65)

Negative (positive) values of ϵ lead to a suppression (enhancement) of the amount of structure
in the Universe, even if it is |ϵ|≲O(10−7) and, therefore, too small to change significantly
the matter energy fraction Ωm. From equation (63) one can also see that, for fixed energy
densities, d is fully degenerated with ϵ in that equation, since the ratio ϵ/|RL| is sensitive to the
parameter ν = ϵd, cf formula (43). This means that if d≲ 1 (for a fixed ϵ> 0) matter clusters
less efficiently at subhorizon scales, whilst if d≳ 1 (again, for a fixed ϵ> 0) the aggregation of
matter speeds up. This degeneracy can be broken using e.g. data onH(z). Contrary to ϵ, whose
values are very restricted by the LSS data, the parameter d can in principle still deviate from
1 by 1− 10% at cosmological scales without spoiling the description of data from relative
cosmic distance indicators like supernovae of type Ia (SNIa) and baryon acustic oscillations
(BAO), respecting also the location of the CMB peaks. This is simply because the ratios of
cosmic distances do not depend on d.18

The evolution of the matter density contrast at the scales that violate the condition (57) is
more involved. One can see that if ϵk2/|a2RL| ≫ 1, for ϵ> 0, the growing mode during the
MDE reads δm ∼ aα, with α= (1+

√
33)/4≈ 1.7. Thus, there is a huge enhancement of the

matter perturbations compared to the ΛCDM, where δm ∼ a. This obviously leads to the non-
linear evolution already mentioned before, which basically makes the power spectrum to blow
up, as we show in our figure 3. If ϵ< 0, instead,Geff (equation (64)) manifests a weird behavior.
It cancels when ϵ→ a2RL/(4k2) and diverges when ϵ→ a2RL/(3k2). This fact is imprinted in
the matter spectrum, of course, see the upper left plot of figure 3.

These rare features appear typically at strongly non-linear scales k≳ 1 Mpc−1 if |ϵ|≲
O(10−7). However, even for these small values of |ϵ|, they can still have a residual (but non-
zero) impact on linear quantities like the root-mean-square (rms) of mass fluctuations at scales
of R8 = 8h−1 Mpc, σ8, cf the upper right-most plot of figure 3. It is important to remove the
non-linear effects that are contaminating our theoretical estimation of the linear matter power
spectrum at k≳ 0.5–1 Mpc−1. We do so by considering only one iteration in the iterative
method that we apply to solve the system of linear perturbation equations, cf appendix A.5.
Proceeding in this way we manage to describe very well the power spectrum in the region of
k’s where (57) holds, while keeping under control its amplitude in the region where (57) is
violated, effectively decoupling the contribution of non-linearities in the calculation.

For the small values of |ϵ| under consideration the running of G and the VED and pres-
sure are completely negligible, so there is no effect at the background level in StRVM, apart
from a pure renormalization of G controlled by the parameter d, which can be significant.

18 This also happens in the Brans–Dicke model with a cosmological constant for sufficiently small values of the
Brans–Dicke parameter [87], and also in the type-II RRVM for a slow enough running of the vacuum [40, 41]. See
section 3 of [87] for further details.
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Figure 3. Upper plots: matter power spectrum obtained with different values of ϵ and
applying the iterative approach described in section A.5, which is implemented in our
modified version of CLASS, cf section 5. We use in all cases the same primordial power
spectrum, d= 1, and the same matter and radiation energy densities. The differences in
ρ̄vac are completely negligible for these small ϵ’s. Hence, the values of h are essentially
the same, up to a tiny correction of order ϵ. Values ϵ∼O(10−6) break the well-tested
linearity of P(k) at scales k≳ 0.1Mpc−1 and, hence, are unacceptable. The plot on the
right is a zoom in the region k ∈ [0.3,1] hMpc−1, which allows us to check that our
iterative approach achieves convergence and delivers an output fully in accordance with
our analytical study of section 4.2. It introduces, though, non-linear effects at the scales
at which (57) is violated, namely at k≲ 0.2 hMpc−1 if |ϵ|= 10−6 and k≲ 0.7 hMpc−1 if
|ϵ|= 10−7; Lower plots: corrected power spectra obtained with ϵ=±10−7,±10−8 by
performing only one iteration in order to remove non-linear effects. See the discussion
in the main text.

Nevertheless, as already seen in figure 3, even very small values of ϵ can have a non-negligible
impact on the shape of the linear matter power spectrum. We have checked that for a fixed
expansion history and primordial power spectrum, an |ϵ| ∼ O(10−7) induces O(1%) changes
in σ8, compared to the ΛCDM, which is of the same order as the uncertainty obtained for this
parameter in CMB studies and can be significant concerning the σ8 or S8 tension. Values of
|ϵ| ∼ O(10−8), instead, modify σ8 only by a O(0.1%), much below the sensitivity of current
data. As explained in the caption of figure 3, larger values of |ϵ| are unacceptable because they
introduce important non-linearities at the very well-tested (mainly linear) BAO scale. This
observation motivates us to use the prior ϵ ∈ [−10−7,10−7] in our fitting analysis. It is import-
ant to notice that in this range of ϵ the modifications ofP(k) happen already at mildly non-linear
scales, k≳ 0.2 hMpc−1, hardly proven by the CMB, cf figure 19 in [88]. On the other hand, it
is not clear how to use galaxy clustering data from redshift-space distortions (RSD) or pecu-
liar velocities to constrain our model, since these measurements are performed by the various
galaxy surveys assuming a fiducial ΛCDM model and, hence, taking the scale-independence
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Figure 4. Upper plots: CMB temperature power spectra obtained with different values
of the parameter d, using in all cases ϵ= 0 and the same optical depth to reionization,
same primordial power spectrum and energy densities of the various species. If d< 1
(d> 1) there is a suppression (enhancement) of the amplitude, which is more evident at
large multipoles, see the right plot. For values of d relatively close to 1, as those explored
in this figure, the angular location of the peaks remain essentially unaffected [87]. Lower
plots:CMBEEpolarization spectrum (on the left) and the ET cross-correlation spectrum
(on the right), obtained for the same setup as in the upper plots. See the comments in
the main text.

of the matter density contrast and the growth factor f = dlnδm/dlna for granted. Thus, the use
of these data could induce a bias in our analysis, since in StRVM these quantities depend on
k at subhorizon scales. Finally, weak lensing data could also allow us to further constrain ϵ,
in principle, but this requires a good theoretical control of the non-linear evolution of matter
perturbations in the model, which is out of the scope of this paper19. Therefore, we take a con-
servative approach and avoid the use of RSD, peculiar velocities and weak lensing data in this
study. We will employ the CMB likelihoods from Planck and cosmological background data
to constrain the StRVM. Due to the aforementioned reasons, we do not expect these datasets
to be able to tighten the constraints on ϵ beyond those set by the prior.

As already discussed, ϵ does not alter the background evolution nor the CMB spectra for
the range of values covered by our prior. Hence, in order to discuss now the rôle played by the
parameter d, we can just set ϵ= 0 for convenience. In figure 4 we show the temperature CMB
spectrum obtained with d= 1, 0.9 and 1.1, by using the same energy densities of the vari-
ous species, reionization depth and primordial power spectrum. This translates into a constant

19 In the non-linear regime, we expect a potential screening mechanism entering into play and a change (running)
of the parameters in the model (d, ϵ) with respect to the cosmological values. Here we assume that such a screening
exists and works fine.
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Figure 5. Left plot: linear matter power spectrum in units of (Mpc/h)3 obtained for the
ΛCDM and two StRVM models with d= 0.9 and d= 1.1. We use the same primordial
power spectrum and energy densities, setting in both cases ϵ= 0. There is no difference
between the three curves, but this is just due to the units employed in this plot; Right
plot: the same, but now in units of Mpc3. The differences between the three models
become now evident. The amplitude of P(k) is lower for values of d< 1. The power
spectrum at present reads, P(k) = (k/H0)

4T2(k)δ2H(k), with T(k) the transfer function
and δ2H an amplitude which is directly related to the primordial power spectrum [93]. At
superhorizon scales T(k)≈ 1, so we have P(k,d= 1.1)/P(k,d= 0.9) = (1.1/0.9)2 ≈
1.49, since we have fixed the primordial power spectrum. There are also differences at
larger k’s, of course. For instance, the location of the peak keq and the comoving wave
number at the horizon crossing khor scale both as keq,khor ∝ d−1/2.

cosmological G equal to the standard value GN, 1.1GN and 0.9GN, respectively. Values of d
below (above) one lead to a decrease (increase) of the amplitude of the spectra, more conspicu-
ously at large multipoles. The larger is the effective Newton constant the faster the expansion
and, hence, the longer the recombination time. This increases the photon diffusion at small
angular scales [89], which explains the suppression of the DTT

l ’s for d< 1 [90]. See also [87,
91, 92]. We will constrain d using CMB data and measurements on cosmic chronometers and
H0. The latter provide information about the absolute distance scale of the Universe, instead of
relative distances like uncalibrated SNIa or BAO, which are useful to constrain the parameter
space of the theory, of course, but do not constrain d when used alone. The changes induced in
the CMB TT spectrum by d can be compensated at large extent by shifts of the spectral index
ns [87, 90–92]. CMB data introduce a strong anti-correlation between these two parameters,
which is partially broken by CMB polarization data, see [90] and figure 4. This anti-correlation
is welcome because might allow d to depart from 1 in a non-negligible way. Values of d< 1
may alleviate the Hubble tension, since they enhance H(z) by a factor that does not change
throughout the cosmic expansion. It is also interesting to note that for ϵ= 0 and at subhorizon
scales the growth in the MDE and late-time Universe is not affected by d, as it can be easily
seen from equation (63). Notice, however, that P(k) is clearly sensitive to this parameter, since
the moment at which the modes become subhorizon and other many features like the location
of the peak depend on d, cf figure 5. As explained in [87], the value of σ8 remains unmod-
ified in this case under changes of d, despite the changes induced in P(k). This is because
the latter are exactly compensated by shifts in the scale R8 = 8/h Mpc−1 at which the win-
dow function peaks20. Hence, in principle, RSD data, which constraints the combination fσ8,

20 Remember that σ8 does not characterize the amount of clustering at a fixed scale if h is not kept constant [94]. This
is also another argument against the use of RSD data in this work.
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cannot constrain d neither. Notice, though, that measurements of the rms of mass fluctuations
at a fixed scale R (independent from h), or the shape of the matter power spectrum could be
employed to constrain the StRVM.

The StRVM has a very interesting phenomenology and may have something to say con-
cerning the cosmological tensions. A value of d∼ 0.90–0.95 could let us alleviate the existing
Hubble tension between the distance ladder measurement by SH0ES [95] and the determina-
tion from Planck’s CMB data [8], and also produce a smaller amplitude of the power spectrum
(see again figure 5). In addition, a negative ϵ of order 10−7 may also contribute to suppress the
structure formation processes in the Universe (cf figure 3).

5. Data and methodology

We have implemented the StRVM model in our own modified version of the Einstein–
Boltzmann code CLASS [70, 71], which allows us to solve the system of background and linear
perturbations equations and compute all the theoretical quantities that are required to confront
the model with observations. See section 4.1 and appendix A for the relevant expressions in
StRVM.

In our fitting analyses we have employed the following datasets:

1. The high- and low-ℓ data of the CMB temperature and polarization spectra and their cross-
correlations measured by the Planck satellite [8]. This is the Planck 2018 TT,TE,EE+lowE
likelihood, or Planck18 in short. In some of our analyses we exclude the use of the high-ℓ
polarization data. Some authors have found a moderate inconsistency between this data-
set and the CMB temperature anisotropies measured by Planck [96, 97], so it is good to
study what is the impact of removing the polarization information. We denote the result-
ing CMB dataset as Planck18(np). Finally, we also incorporate in some cases the CMB
lensing by considering the Planck 2018 TT,TE,EE+lowE+lensing likelihood, what we call
Planck18(lens).

2. The compilation Pantheon+ of SNIa [98]. It includes 1701 light curves of 1550 SNIa, ran-
ging in redshift from z= 0.001 to 2.26. In this work we actually use two different SNIa
samples. In our main analyses we use the sample with 1624 data points that is obtained
upon the removal of the SNIa contained in the host galaxies of SH0ES [95, 99]. When we
use the full Pantheon+ compilation together with the distances to the host galaxiesmeasured
by SH0ES we denote the resulting SNIa dataset as SnIa_H0. The statistical and systematic
uncertainties are included through the corresponding covariance matrix.

3. The BAO measurements from the galaxy surveys 6dFGS+SDSS MGS [100], WiggleZ
[101], BOSSDR12 [102], DESY3 [103] and eBOSSDR16 [104–106].We have considered
the corresponding covariance matrices, accounting for the internal correlations in WiggleZ,
BOSS DR12 and eBOSS DR16.

4. 32 data points on H(zi) from cosmic chronometers in the redshift range 0.07< z< 1.965
obtained with the differential age technique and passively evolving galaxies [107]. They
are provided in [108–116]. We have taken into account the various sources of statistical and
systematic errors and the existing correlations, as explained in [117].

We have constrained the parameter space of the model making use of the Metropolis-
Hastings algorithm [118, 119] that is integrated in the Monte Carlo sampler MontePython
[120, 121]. We stop the Monte Carlo routine when the Gelman–Rubin convergence statistic
R− 1< 5 · 10−3 [122, 123]. Our Markov chains are analyzed with the Python code GetDist
[124], which is also employed to obtain the marginalized constraints presented in tables 1–4
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Figure 6. Contour plots and one-dimensional posterior distributions for the para-
meters (H0,σ12,d,rd,ns) of the StRVM obtained with the datasets Planck18,
Planck18+SNIa+BAO+CCH and Planck18+SNIa_H0+BAO+CCH. For the latter
dataset, we also show the results obtained with ΛCDM.

and the contour plots of figure 6. In our Monte Carlo routine we perform jumps in the para-
meter space composed by the parameters (ωb,ωcdm,H0, τreio,As,ns) and the StRVMparameters
(ϵ,d), using the prior ϵ ∈ [−10−7,+10−7], as discussed in section 4.2. We assume the stand-
ard form of the primordial power spectrum in our main analyses, PR = As(k/k∗)ns−1, with the
pivot scale k∗ = 0.05 Mpc−1. We obtain as derived parameters the comoving sound horizon at
the baryon-drag epoch, rd, σ8 ≡ σ(R= 8h−1Mpc), σ12 ≡ σ(R= 12Mpc), and the combined
quantities [94]

S8 = σ8

(
Ωm

0.3

)0.5

and S12 = σ12

( ωm
0.14

)0.4
. (66)
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Let us note that the quantity σ12 (and the associated S12) has been claimed to be more suitable
for the analysis of the growth tension than the more traditional ones σ8 (S8)—see [94] for
details—and for this reason we shall report on both type of parameters (66) in our analysis.
When the SNIa of the Pantheon+ compilation are used, we also report in our tables the values
of their standardized absolute magnitude, M.

In addition, in some of our analyses we also explore the effect of the running of the spectral
index, αs, and the running of the running, βs,21 to see whether this can help the model to
improve the overall description of the data. The EE polarization data break to some extent the
strong anti-correlation between ns and d. It is clear from figure 4 that while ns can compensate
the effects of a change in d in the TT spectrum, it is unable to compensate the changes induced
in the EE spectrum at mulipoles ℓ≲ 1000. Here we study whether a running in the spectral
index can solve this problem.

Finally, we also study the status of the CMB lensing anomaly in the context of the StRVM.
This anomaly is an excess of CMB lensing power in the temperature spectra measured by
WMAP [125] and Planck [8] under the assumption of the ΛCDM. To perform this study
we rescale the theoretical prediction of the lensing spectrum by the so-called AL consistency
parameter [125]. Significant deviations from AL = 1 indicate a tension. In the standard model,
this anomaly reaches the 2.5σ and 2.8σ c.l. with Planck18(np) and Planck18, respectively [8].

Due to the reasons explained in the preceding section, we believe it is safer to avoid the
use of data on fσ8 and from weak lensing. We perform our analyses first with Planck18 alone
to study the constraining power of the CMB. Then, we combine CMB with background data
without including the information from SH0ES, i.e. Planck18+SNIa+BAO+CCH, and also
including it, i.e. Planck18+SNIa_H0+BAO+CCH. This will allow us to assess the impact
of the cosmic distance ladder measurements on our results. Then, we repeat all the fitting
analyses excluding the high-ℓ CMB polarization data and, finally, keeping the polarization
data and including the CMB lensing information.

For the sake of comparison, in our tables and figures we present not only the fitting res-
ults obtained within the StRVM, but also those obtained within the ΛCDM framework. Apart
from the mean values and uncertainties of the various parameters, we also list in our tables
the minimum values of χ2, i.e. χ2

min, and the difference between the deviance information cri-
teria (DIC) [126] in the two models, ∆DIC≡ DICΛCDM −DICStRVM. DIC penalizes the use
of additional parameters. It is defined as

DIC= χ2
(
θ̄
)
+ 2pD , (67)

21 The primordial scalar perturbation spectrum is assumed to take the following power-law form,

PR (k) = As

(
k

k∗

)n(k)

,

with k∗ = 0.05Mpc−1 the pivot scale,

n(k) = ns − 1+
αs

2
ln

(
k

k∗

)
+

βs

6
ln2

(
k

k∗

)
,

and

αs ≡
dns
d lnk

and βs ≡
d2ns
d lnk2

the running of ns and the running of the running of ns, respectively [8].
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with pD = χ2 −χ2(θ̄) the effective number of parameters in the model and θ̄ the mean of the
parameters that are left free in the Monte Carlo analysis. A positive difference of DIC implies
that the StRVM performs better than the ΛCDM, whereas negative differences mean just the
opposite. If 0⩽∆DIC< 2 we find a weak evidence in favor of StRVM. If 2⩽∆DIC< 6 we
speak, instead, of positive evidence. If 6⩽∆DIC< 10 there is strong evidence in favor of
StRVM, whilst if ∆DIC> 10 we can conclude that there is very strong evidence supporting
our StRVM model.

6. Results

We discuss now our fitting results for theΛCDM and the StRVM.We display them in tables 1–
4. They have been obtainedmaking use of the datasets and applying themethodology explained
in the preceding section. In appendix B we present some additional tables with the breakdown
of the contributions to χ2

min from each observable, which will prove useful to understand some
aspects of the analyses.

The StRVM is characterized by two additional parameters with respect to the vanillaΛCDM
model, d and ϵ. They control the current value of the gravitational coupling at cosmological
scalesG, and the running of the vacuum andG, respectively. Unfortunately, none of the datasets
considered in this work is able to improve significantly our prior constraints on ϵ (|ϵ|< 10−7)
for the reasons already discussed in section 4.2. This is why we do not include this parameter
in our tables. The situation regarding d, though, is different. When CMB data is used alone in
the fitting analysis in any of its variants, i.e. Planck18, Planck18(np) or Planck18(lens), we find
values of d fully compatible with 1 and, hence, also a full compatibility between the measured
G and Newton’s constant. For instance, we find d= 0.995+0.041

−0.047 with Planck18(np) and d=
1.008+0.029

−0.032 with Planck18. The inclusion of the CMB polarization data allows us to reduce the
uncertainties significantly, by ≳30%. When, on top of the temperature and polarization data,
we also consider the CMB lensing, we get d= 1.010+0.029

−0.032, showing that the CMB lensing
does not improve the overall constraining power, since the uncertainties remain essentially the
same. The fit values of the standard cosmological parameters remain also very close to those
found in the ΛCDM. Actually, the StRVM only allows for a slight decrease of χ2

min when only
CMB data are employed in the analyses. This explains the small differences of DIC, which
lie in all cases in the negative range −2.8≲∆DIC≲−1.5 and, hence, do not point to any
statistical preference for the StRVM once we penalize the use of additional parameters in the
model. Despite the central values of all the parameters being close to the ΛCDM ones, there
is a non-negligible broadening of their posteriors. In particular, the one of H0, which allows to
reach the region ≳70 km s−1 Mpc−1 at ∼2σ C.L.

If we combine CMB with background data from SNIa, BAO and cosmic chronometers,
we get even tighter constraints. The values of d are still ≲1σ away from 1 and −2.6≲
∆DIC≲+0.5, so again we find no hint of new physics, e.g. we get d= 0.987+0.025

−0.028 with
the Planck18(lens)+SNIa+BAO+CCH dataset (cf table 3). Volume effects are not expected
to have a significant impact on these results [127].

The inclusion of the SH0ES data makes a difference, as it is evident from the very
large positive values of ∆DIC obtained when CMB is combined with background data and
the measurements from SH0ES. They read ∆DIC≳+17 regardless of the concrete CMB
data configuration employed in the fitting analysis. There is an important lowering of the
value of d, which departs now from 1 at ≳4.5σ C.L. We obtain d= 0.924± 0.017 with
Planck18+SNIa_H0+BAO+CCH. This leads toG= (1.082± 0.020)GN, so to a central value
of G∼ 8% larger than GN. This is aligned with previous results in the literature found in the
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context of Brans–Dicke with a cosmological constant [87, 128] and the type-II RRVM [40,
41], which exhibit a similar preference for larger values of G when the SH0ES information is
considered on top of CMB, background and LSS data in the fitting analyses. See also [129].
This clear departure of the value of G preferred at cosmological scales from the one measured
locally can be thought of as natural in the context of models with a space-time dependent grav-
itational coupling, but it requires a physical mechanism that explains the transition between
the cosmological and astrophysical regimes, see e.g. [130–133]. This is beyond the scope of
this paper, of course, but in any case, we expect this mechanism to enter into play at non-
linear scales and, hence, at scales that have not been proved by our dataset. The lowering of
d is of course accompanied by non-negligible (∼2σ) shifts in essentially all the parameters of
the model, including those that are relevant for the discussion of the cosmological tensions. A
comparison of the constraints on the relevant parameters of the StRVMobtained with Planck18
alone with those found including also the background and SH0ES information is provided in
figure 6. The improvement of the StRVM versus the concordance ΛCDM model (whose con-
tours are also included in that figure) is rendered evident on simple inspection. In particular, the
H0 tension is virtually absent as it is below the 1σ C.L.—if estimated through the comparison
of the SH0ES measurement ofH0 (H0 = 73.04± 1.04 km s−1 Mpc−1) and our fit values in the
StRVM. If, however, we use our posterior values for the absolute magnitude of SNIa and com-
pare them to the SH0ES determination (M=−19.253± 0.027 mag) we are led to a moderate
discrepancy of ∼2σ C.L. We find, in any case, a notable decrease of the tension with SH0ES
in the context of the StRVM. Worth noticing in figure 6 is also the shift of σ12 in the right dir-
ection, viz. towards smaller values than those predicted in the ΛCDM model. The impact on
S8, instead, is not so important, but according to [94] the most adequate parameter for judging
the growth tension is S12. Hence, on these grounds, it seems that the physical mechanism that
allows to alleviate the H0 tension also produces a lower amplitude of the matter power spec-
trum at linear scales, which is in agreement with what we have explained in section 4.2 (see
the caption of figure 5). This is remarkable. However, the fit prefers to accommodate well the
SH0ES data at the expense of worsening the description of the CMB. This can be also seen
in the tables of appendix B, specially in tables 5 and 7, which include the contribution of the
CMB polarization data. As discussed in section 4.2, the polarization data partially breaks the
degeneracy between ns and d. If we remove the polarizations, i.e. if we consider Planck18(np)
in the fitting analyses, the situation is much more favorable for the StRVM, since in this case
the inclusion of SH0ES does not induce a significant raise of the χ2

CMB (cf table 6).
We have also studied whether the aforementioned issue concerning the polarization data can

be mitigated by considering a running spectral index in the primordial power spectrum. We
present the corresponding results in table 4. It turns out that such an increase of the complexity
of the model does not produce a significant decrease of theχ2

min compared to the value obtained
with a rigid (non-running) n(k) = ns, see the last column of table 1. According to the deviance
information criterion, the addition of these extra degrees of freedom is not justified.

Finally, we have also studied the status of the lensing anomaly in the context of the StRVM.
We do so by allowing the CMB lensing consistency parameter AL to vary freely in the Monte
Carlo. The results are also presented in table 4. We still find values of AL larger than one at
≳3σ C.L. and, therefore, a very similar level of tension to the one found in the ΛCDM.

7. Energy conditions and TCC in the StRVM

Before closing, we feel like discussing briefly, for completion, two issues, whose resolution
though falls beyond the scope of the current article. The first concerns the validity of the energy
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conditions in our effective theory (25) in all the post-inflationary epochs. As well known [134],
it is expected that at least at some point in the evolution of the Universe, the energy conditions
would be violated. These conditions characterize dark energy models. Whether these condi-
tions are satisfied for the entire history of our string-inspired model is not essential for the ana-
lysis in this work, given that, as discussed in [44, 45], the nature of the current-era dark energy
in the StRVM is still not understood from a microscopic point of view [42], and moreover,
as we shall discuss below, it depends crucially on details of the underlying string model. In
general, like in other cosmology models, we can expect a change in the status of the energy
conditions at different cosmic periods. As a matter of fact, there is nothing sacrosanct about
the energy conditions that the DE must obey. This concept remains unaccounted for on fun-
damental grounds. At present there is a wide range of energy conditions used to describe the
DE and nothing forbids a transition between them, provided the expansion properties of the
Universe are in accordance with observations. Among the various possibilities, we mention,
for concreteness, two popular (and very disparate) examples, namely, quintessence (which
violates the strong energy condition (SEC) but preserves the weak and DECs—see below),
and phantom dark energy, which in fact violates the entire set of classical energy conditions!
Many other exotic possibilities can occur, see e.g. figure 3 of [45] and discussion therein.

Thus, in view of the diversity of situations for the description of the DE, it would be inter-
esting to briefly study the status of the energy conditions within the context of our effective
point-like theory (25). We start discussing the null energy condition (NEC), which takes the
following covariant form:

Tµνk
µkν ⩾ 0 , (68)

for any null vector (kµkµ = 0). In a FLRW universe, the NEC can be written explicitly as
follows if we consider the energy-momentum tensor of the total cosmological fluid:∑

i=m,r,vac

(ρi+ pi)⩾ 0 , (69)

or, equivalently,

Rµνk
µkν ⩾ 0−→ Ḣ⩽ 0 . (70)

We can use equations (50) and (51) of our paper to write equation (69) in terms of the
matter and radiation energy densities and pressures, and the parameter ϵ. Taking into account
that G(a)> 0∀a for the typical values of ϵ allowed by the data we find,

∑
i=m,r

(ρi+ pi)+
ϵ(

1+ 4c0
ρm

)2

[
3ρr+ c0 −

5
2
ρm+

2c0
ρm

(8c0 + 11ρm+ 12ρr)

]
⩾ 0 . (71)

If ϵ = 0 we recover the NEC condition in ΛCDM, i.e.
∑

i=m,r(ρi + pi)⩾ 0 (in which the cos-
mological termΛ yields zero contribution). From inequality (71) one can see that the total cos-
mological fluid in StRVM fulfills the NEC in all the stages of the cosmic expansion provided
|ϵ|<<1. This is in fact the case in our analysis, see equation (58). The effective vacuum, though,
violates the NEC if ϵ < 0.

The strong energy condition (SEC) imposes the NEC and(
Tµν −

1
2
Tααgµν

)
uµuν ⩾ 0 , (72)
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where u is a timelike four-vector (uµuµ > 0). If we consider the total energy-momentum tensor,
this inequality reduces to Rµνuµuν ⩾ 0, which can be expressed in a very simple way in a
FLRW universe:

q⩾ 0 , (73)

with q=−äa/ȧ2 the deceleration parameter. This tells us that the SEC is only satisfied in a
decelerating Universe. This is also equivalent to∑

i=m,r,vac

(ρi+ 3pi)⩾ 0 , (74)

where in our case the explicit form of the VED and pressure can be obtained again from
equations (50) and (51). It is easy to convince oneself that the SEC is violated at late times in
StRVM, when there is acceleration. This is actually analogous to what happens inΛCDM. The
SEC is violated by the effective vacuum if ϵ<0 since, as discussed above, it also violates the
NEC. If, instead, ϵ>0, the effective vacuum violates the SEC at late times and, depending on
the exact value of ϵ, there might be also a violation in some periods of the cosmic expansion,
at higher redshifts.

The weak energy condition (WEC), on the other hand, considers the NEC together with

Tµνu
µuν ⩾ 0 . (75)

Let us start by studying theWEC applied to the total cosmological fluid, which incorporates the
contributions of radiation, matter and the effective vacuum fluid described by the EMT (32).
If we treat these components as perfect fluids, inequality (75) can be written as follows,∑

i=m,r,vac

ρi ⩾ 0 . (76)

In StRVM, the WEC is satisfied by the total effective cosmological fluid, regardless of the
post-inflationary epoch under consideration. We can also study whether the EMT associated
to the vacuum, as defined in equation (32) of our paper, fulfills the WEC. In this case, the
condition takes the form

ρvac ⩾ 0 ,

or, equivalently,

c0 +
ϵ

2
(4c0 + ρm)+

3ϵ

1+ 4c0
ρm

(ρm+ ρr+ c0)⩾ 0 . (77)

Thus, at sufficiently early stages of the cosmic history the WEC is violated by the vacuum if
ϵ< 0, whereas it is always fulfilled for positive values of ϵ.

Finally, we discuss the dominant energy condition (DEC), which assumes the WEC and, in
addition,

(TµνV
ν)(TµαVα)⩾ 0 , (78)

for any time-like vector (VµVµ > 0). If applied to the total cosmological fluid, it can be
expressed as follows,∑

i=r,m,vac

ρi ⩾ |
∑

i=r,m,vac

pi| . (79)
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This condition is satisfied during the radiation-, matter- and vacuum-dominated epochs. If we
focus only on the vacuum, the DEC simply reads

ρvac ⩾ |pvac| . (80)

Our effective vacuum does not necessarily satisfy the DEC at sufficiently high redshifts
because, as mentioned before, it may violate theWEC (when ϵ< 0). The DEC, though, will be
respected in our framework for ϵ> 0 when the vacuum eventually dominates over matter and
radiation in the remote future. This can be seen upon using again equations (50) and (51) in the
inequality (80) and the fact that the condition ρm,ρr ≪ c0 will become ϵρm(1+O(ρm/c0))⩾
0, since pvac < 0, which will eventually be fulfilled for ϵ> 0, in the future cosmic history, in
which case an approximate RVM de-Sitter EoS (saturating (79)) would arise. For negative ϵ,
on the other hand, there will be a very small (negligible for all practical purposes) violation of
DEC in the far future.

Nonetheless, in the context of a string theory model, such a point-like effective field the-
ory analysis is not sufficient. When the model (25) is viewed as a low-energy limit of some
underlying string theory model after appropriate compactification, the validity of the energy
conditions in the four-dimensional space-time model becomes more complicated, depending
on details of compactification. In our effective approach we did not discuss such details. Those
can lead to stringent constraints when comes to the question as to whether the energy condi-
tions are satisfied. Indeed, as discussed in [135, 136], in models in which a NEC is satisfied, a
dark energy phase of the compactified-string-inspired Universe, consistent with observations,
is only possible at late eras, if both Newton’s gravitational constant and the dark energy EoS
vary with time.

Such features seem to characterize our effective theory, but it goes without saying that
a detailed embedding of our theory on specific string theories and specific compactification
schemes fall beyond the scope of the present article. Having said that, though, we also remark
that our string inspired cosmology at late epochs, which has been the focus of our work in
this article, has its origin in supergravity theories which describe low-energy effective string
theories at early times. In [137], it has been argued that higher-dimensional string-compatible
supergravity actions, corresponding to the standard content of the massless string spectrum, as
in our case in this article, do satisfy all the energy conditions, provided quantum corrections
are ignored. Such higher-dimensional energy conditions might induce the preservation of the
four-dimensional energy conditions, so we might expect this to characterize our models.

Another issue that we have not discussed in detail is the satisfaction (or not) by our effective
theory of the TCC [138], which is known to follow [139, 140] from the swampland distance
conjecture [82], and, more generally, to have implications for the various swampland con-
jectures [141]. The TCC implies the important restriction that modes that cross the Hubble
horizon could ever have had a wavelength smaller than the Planck length (or, equivalently,
their momentum is less than the Planck energy scale MPl).

In our theory [44, 45], as we have stressed above and in our previous articles, transplanckian
modes are not allowed, as the UV momentum cutoff is set to the string scale Ms <MPl.
However, the TCC, as formulated in [138], implies that, in models of standard inflation,
induced by an inflaton field, the energy scale of inflation is at most 109 GeV,whichwould imply
extremely small slow-roll parameters22 ϵI < 10−31, so that the amplitudes of cosmological
fluctuations agree with observations, which would imply an extremely small tensor to scalar
ratio <10−30.

22 Here we denote the inflationary slow-roll parameter as ϵI (instead of ϵ) to distinguish it from the parameter of the
StRVM (46).
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Aswe have discussed in detail in [42–45], our string-inspired cosmology is characterized by
an inflationary phase that is induced not by external inflaton fields, but is due to the RVM-like
non linearities that are induced by condensates of the anomalous gravitational CS terms. In our
case, the slow roll parameter is provided by the axion-like field that is associated with the four
space-time dimensional dual of the Kalb–Ramond field strength. This evades the TCC argu-
mens of [138], and, as shown in [44, 45], the corresponding inflationary epochs are consistent
with large inflationary scale HI ∼ 10−5MPl, in agreement with observations [8].

Nonetheless, it should be remarked that the considerations and estimates of [44, 45] on the
condensates of the anomalous gravitational CS terms, which leads to inflation, are based on
effective local field theories. A full derivation of the QG-induced anomalous CS condensates
requires a complete understanding of the rôle of the infinite towers of massive stringy states,
whose manipulation is at present not feasible. Thus, from the point of view of a full string
theory, we consider the issue as wide open.

8. Summary, discussion and outlook

In this work we have used the framework of a string-inspired cosmology of RVM type,
developed in [42–45], to discuss its modern-day phenomenology and in particular its abil-
ity to alleviate both the Hubble-H0 tension and the tension in the galactic growth data. An
important ingredient of such models is the inclusion of QG fluctuations, which although gen-
erated at primordial epochs, when the model is embedded in appropriate dynamically-broken
supergravity theories, nonetheless they lead to corrections to the VED which exhibit logar-
ithmic dependence on the Hubble parameter in modern times of the form c̃2H2ln(M2

pl/H
2).

The coefficient c̃2 is proportional to the scale of the bare cosmological constant κ2 |E0| or
κ2E0 ln(κ4|E0|), cf (13). In the case of the supergravity model, |E0|= f 2, where

√
f is the

energy scale of the primordial dynamical supergravity breaking. It should be remarked that
in such scenarios, the logarithmic-H quantum-graviton-induced corrections are of primordial
origin, surviving until today.

Another closely related kind of logarithmic corrections that can survive in our present
Universe are those of the type ∼H2ln(m2/H2), see equations (20) and (21), which appear
when we take into account the quantum effects generated by the fluctuations of the quant-
ized matter fields in curved spacetime, which can be significant for masses of order of a GUT
scale,m∼MX [31, 32, 34]. However, in a scenario where

√
f is sufficiently close to the reduced

Planck energy scale, theQG correctionsmay dominate over the corresponding ones from integ-
rating out quantum matter fields (21). In this paper, we have precisely focused on exploiting
this possibility, but in general these two types of effects could actually be present and behave
collaboratively in the task of smoothing out the cosmological tensions under study. We have
put very strong constraints on the running of the vacuum arising from graviton effects in the
context of the StRVM. In order not to spoil the correct description of the LSS at linear scales
we have to demand a subplanckian

√
f close to the reduced Planck scale (59), consistent with

the dynamical supergravity scenario of [44, 54].
On the other hand, for generic non-supersymmetric QG models, such logarithmic

c̃2H2 ln(κ2H2) corrections to the VED also exist, but in such cases |E0| is a bare cosmo-
logical constant which is a free phenomenological parameter. In such models, the one-loop
renormalized (‘R’) cosmological constant is the one which is identified with the observed one
|ER| ∼ 10−122κ−4, and not |E0|. If E0 ∼ |ER|, then such terms may be subleading compared to
the quantum-matter-induced terms (21).
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Our phenomenological analysis in this work has also demonstrated that, if the parameter
d (37), which defines the ratio of Newton’s constant to the current value of the gravitational
coupling acting at cosmological scales—as follows from the graviton equations of motion
stemming from (36) and the effective action (25)—, takes on values in the range d∼ 0.90–
0.95, then the model leads to an alleviation of both tensions, the H0 and the growth tension.
We have assessed the situation of the growth data both through the traditional σ8 parameter and
also in terms of the alternative one σ12, which has been claimed to be a more realistic quantity
for the analysis of the growth tension—see [94]. We remark that the aforesaid preferred low
values of the parameter d below 1 (or, equivalently, enhanced values of G(z= 0)≳ 8% larger
than GN) are obtained only when the SH0ES data are also considered in our fitting analyses.
The signal for new physics reaches the ∼4.5 C.L. when we include the CMB polarization
anisotropies, but can grow up to the 5.2σ C.L. when we do not consider the high-ℓ polarization
data. These results are also strongly supported by Bayesian information criteria. We remind
the reader at this point that the clustering of matter depends on whether d is larger or less than
one, as discussed in section 4.2. Indeed, for d< 1 and fixed values of the other parameters
there is a decrease of the power spectrum, in contrast to the d≳ 1 case (cf figure 5).

It should be stressed, at this point, that the effective gravitational constantG(z) receives cor-
rections from both matter and quantum graviton contributions. Thus constraining phenomen-
ologically the value of the parameter d and the running of the vacuum, e.g. by requiring the
alleviation of the cosmological tensions, might provide important insight on the underlying
microscopic theory. The link between the cosmological and local regimes is, however, not
trivial at all. In particular, a transition from the cosmologicalG toGN at astrophysical domains
is required to explain the best-fit values needed to loosen the tensions, but this study is certainly
beyond the scope of this paper.
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Appendix A. Cosmological perturbations in the synchronous gauge

In this appendix we provide the expressions of the geometrical quantities and the energy-
momentum tensors of the cosmological fluids and the vacuum up to linear order in the per-
turbed quantities. We use the synchronous gauge, since this is the one employed to solve
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the set of coupled differential equations numerically in our modified version of the Einstein–
Boltzmann solver CLASS [70, 71]. We use, as in the main text, the sign convention (−,+,+)
in the classification by Misner et al [85]. In the synchronous gauge the line element reads,

ds2 = a2 (τ)
[
dτ 2 − (δij+ hij (τ, x⃗)) dx

idxj
]
, (A1)

with τ the conformal time, x⃗ the spatial comoving coordinates, and hij the metric perturbation.
The components of the metric tensor and its inverse take the following form, respectively,

g00 = a2 gij =−a2 (δij+ hij) || g00 = a−2 gij =−a−2 (δij− hij) . (A2)

A.1. Geometrical quantities

In the synchronous gauge, the perturbed FLRW metric has the following associated non-null
elements of the Christoffel symbols,

Γ0
00 =H ; Γ0

i0 = 0 ; Γ0
ij =H (δij+ hij)+

h ′
ij

2

Γi00 = 0 ; Γij0 =Hδij+
h ′
ij

2
; Γijl =

1
2
(hij,l+ hil,j− hjl,i) , (A3)

with the primes denoting derivativeswith respect to the conformal time, the lower comas partial
derivatives with respect to the spatial comoving coordinates, and H≡ a ′/a. Using (A3) one
can compute the components of the Ricci tensor,

R00 =−3H ′ − h ′ ′

2
− H

2
h ′ , R0i =

∂jh ′
ij

2
− ∂i h ′

2
,

Rij = (δij+ hij)
(
H ′ + 2H2

)
+
h ′ ′
ij

2
+

1
2
(hli,jl+ hlj,il− hij,ll− h,ij)+

H
2
h ′δij+Hh ′

ij , (A4)

and, hence, also the Ricci scalar,

a2R=−6
(
H ′ +H2

)
− h ′ ′ − 3Hh ′ − hli,li+ h,ll . (A5)

These results can be used to finally compute the elements of the Einstein tensor,

G00 = 3H2 +Hh ′ +
1
2
(hli,li− h,ll) ,

Gi0 =
1
2

(
∂jh

′
ij− ∂ih

′) ,
Gij =−(δij+ hij)

(
2H ′ +H2

)
+
h ′ ′
ij

2
− h ′ ′

2
δij−Hh ′δij+Hh ′

ij

+
1
2
(hli,jl+ hlj,il− hij,ll− h,ij− hlt,ltδij+ h,llδij) . (A6)

The scalar part of the metric perturbation can be written as follows [86],

hij (τ, x⃗) =
ˆ
d3ke−i⃗k·⃗x

[
h
(
τ, k⃗
)
k̂ik̂j+ 6η

(
τ, k⃗
)(

k̂ik̂j−
δij
3

)]
, (A7)

with k̂= k⃗/k and k= |⃗k|. h(τ, k⃗) is the trace of hij in momentum space, whereas η(τ, k⃗) is the
function that controls its traceless part. It is useful to write the perturbed components of the
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Ricci scalar and the Einstein tensor in momentum-space, since they will be employed later on
in Einstein’s equations. They read, respectively,

δR= a−2
(
4ηk2 − 3Hh ′ − h ′ ′) , (A8)

and

δG00 =Hh ′ − 2ηk2 ,

δGi0 =−iki2η ′ ,

δGij = k̂ik̂j

[
−
(
2H ′ +H2

)
(h+ 6η)+

h ′ ′ + 6η ′ ′

2
+H (h ′ + 6η ′)− ηk2

]
+ δij

[
2η
(
2H ′ +H2

)
− η ′ ′ − h ′ ′

2
−Hh ′ − 2η ′H+ ηk2

]
. (A9)

A.2. Energy-momentum tensor of a perfect fluid

The energy-momentum tensor of a perfect fluid reads,

Tµν = (p+ ρ)uµuν − pgµν , (A10)

The perturbed four-velocity is

uµ =
1
a

(
1,vi
)
; uµ = a

(
1,−vi

)
. (A11)

We split the energy density and pressure as ρ= ρ̄+ δρ and p= p̄+ δp, respectively, with the
bar denoting the background contribution. Hence, at linear order we find,

T00 = a2 (ρ̄+ δρ) , T0i =−a2 (ρ̄+ p̄)vi , Tij = a2δij (p̄+ δp)+ a2hijp̄ . (A12)

Some species, as neutrinos, can receive also a contribution from anisotropic shear, see e.g.
[86]. We duly take this fact into account in our numerical code.

A.3. Energy-momentum tensor of the vacuum

The perturbation of the vacuum EMT (32) is given by the following expression,

δT(vac)µν = δgµν

(
c0 −

νR̄
16πGN

)
− ḡµν

ν δR
16πGN

+
ν

8πGN

[(
δαµδ

β
ν − ḡµν ḡ

αβ
)(∂β∂αδR

R̄
− δR
R̄2

∂β∂αR̄

+
2δR
R̄3

∂βR̄∂αR̄− ∂βδR∂αR̄
R̄2

− ∂βR̄∂αδR
R̄2

+ Γ̄κ
βα

δR
R̄2

∂κR̄− δΓκ
βα

∂κR̄
R̄

− Γ̄κ
βα

∂κδR
R̄

)
−
(
δgµν ḡ

αβ + ḡµνδg
αβ
)(∂β∂αR̄

R̄
− ∂βR̄∂αR̄

R̄2
− Γ̄κ

βα
∂κR̄
R̄

)]
, (A13)

with the bars denoting again background quantities. From this formula one obtains,

δT(vac)00 =− a2νδR
16πGN

+
ν

8πGN

(
∂i∂i δR
R̄

− R̄ ′h ′

2R̄
+ 3H R̄ ′

R̄2
δR− 3HδR ′

R̄

)
,

δT(vac)0i =
ν

8πGN

(
∂i δR ′

R̄
− R̄ ′

R̄2
∂iδR−

H
R̄
∂i δR

)
,

δT(vac)ij = hij

[
−a2

(
c0 −

νR̄
16πGN

)
+

ν

8πGN

(
R̄ ′ ′

R̄
+

HR̄ ′

R̄
− (R̄ ′)

2

R̄2

)]
− ν

16πGN

R̄ ′

R̄
h ′
ij
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+
ν

8πGN

∂i∂jδR
R̄

+
ν

8πGN
δij

[
a2

2
δR− HR̄ ′δR

R̄2
+

H
R̄
δR ′ − ∂l∂lδR

R̄
+
R̄ ′h ′

2R̄
+
δR ′ ′

R̄

− R̄ ′ ′

R̄2
δR+

2δR
R̄3

(R̄ ′)
2 − 2R̄ ′δR ′

R̄2

]
. (A14)

A.4. Modified Einstein equations

The perturbed covariant conservation equations for matter and radiation take exactly the same
form as in the ΛCDM. We refer the reader to [86] for the corresponding equations. The per-
turbed Einstein equations change, though. From equation (33) we obtain,

δGµν =
8πGN

d+ ν ln
(

R̄
R̄0

) (δT(M)
µν + δT(vac)µν

)
− ν Ḡµν

d+ ν ln
(

R̄
R̄0

) δR
R̄
. (A15)

Making use of the results presented in the preceding sections of this appendix and considering
values of |ϵ| ≪ 10−2 such that |ϵ| ln(R/R0)≪ 1, we get,

Hh ′ − 2ηk2 =
8πGNa2δρ

d
[
1+ ϵ ln

(
R
R0

)] + ϵ

[
δR

(
−a2

2
− k2

RL
+ 3HL

R ′
L

R2
L

− 3H2
L

RL

)
− h ′R ′

L

2RL

−3HL
δR ′

RL

]
, (A16)

−2η ′k2 =
−8πGNa2

d
[
1+ ϵ ln

(
R
R0

)] (ρ̄+ p̄)θ+ ϵk2
(
−δR

′

RL
+
R ′
L

R2
L

δR+
HL

RL
δR

)
, (A17)

1
2
(h ′ ′ + 6η ′ ′)+H (h ′ + 6η ′)− ηk2 =

−12πGNa2

d
[
1+ ϵ ln

(
R
R0

)] (ρ̄+ p̄)σ

− ϵ

[
R ′
L

2RL
(h ′ + 6η ′)+ k2

δR
RL

]
, (A18)

−h ′ ′ − 2Hh ′ + 2ηk2 = ϵ

[
δR

(
3
2
a2 − 3HL

R ′
L

R2
L

+
2k2

RL
− 3R ′ ′

L

R2
L

+
6(R ′

L)
2

R3
L

+
3
RL

(
2H ′

L+H2
L

))

+δR ′
(
3HL

RL
− 6R ′

L

R2
L

)
+

3δR ′ ′

RL
+
R ′
Lh

′

RL

]
+

24πGNa2

d
[
1+ ϵ ln

(
R
R0

)]δp .
(A19)

The first two equations are the 00 and 0i components of equation (A15), while the last two are
obtained from its ij component. They correspond to the part proportional to k̂ik̂j and the trace,
respectively. θ is the divergence of the three-velocity vi in momentum space. When the various
species can be treated separately,

δρ≡
∑
l

δρl , δp≡
∑
l

δpl , (ρ̄+ p̄)θ ≡
∑
l

(ρ̄l+ p̄l)θl ,
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(ρ̄+ p̄)σ ≡
∑
l

(ρ̄l+ p̄l)σl , (A20)

where the index l here runs over the particle species, and the anisotropic stress is given by

(ρ̄+ p̄)σ ≡−
(
k̂ik̂j−

δij
3

)(
Tij− δij

Tkk
3

)
. (A21)

For completeness, we also show the traceless and transverse (TT) part of the ij component of
the newton constant Einstein equations, which leads to the equation for the GWs,(

hTTij
) ′ ′

+H
(
hTTij
) ′ [

2+
ϵR ′

L

HRL

]
+ k2hTTij = 0 . (A22)

In StRVM GWs propagate with the speed of light. Therefore, the model automatically sur-
passes the very tight constraints we have on this quantity thanks to the GW event GW170817
and the detection of the accompanying electromagnetic counterpart GRB170817A [142–144].
The modification of the friction term is extremely small in all the epochs of the cosmic expan-
sion, since it is proportional to ϵ, and |ϵ|≲ 10−6. As in Horndeski theories [145], the correction
of the friction term depends on the running of the effective Planck mass M2

∗ = 1/G (52),

αM =
d ln

(
M2

∗
)

d ln a
=

ϵR ′
L

HRL
=

−3ϵ

1+ 4c0
ρm

. (A23)

This is not surprising, since every f (R) model can be reformulated as a scalar-tensor model
with no kinetic term for the scalar field φ, as follows,

Sg =−
ˆ
d4x

√
−gf(R) =−

ˆ
d4x

√
−g [ f(φ)+ (R−φ)F(φ)] , (A24)

with F(R) = df/dφ. This means that the action (25) can be rewritten as,

Sg =−
ˆ
d4x

√
−g
[(

c1 + c2 + c2 ln

(
φ

R0

))
R+ c0 − c2φ

]
, (A25)

which automatically leads to (A23).

A.5. Iterative method to solve the system

The appearance in these equations of δR and its first and second time derivatives, which, in turn,
introduce higher derivatives of h and η, complicates the implementation of these equations
in CLASS. Nevertheless, we can apply an iterative method to solve the system of coupled
differential equations formed by the equations (A16)–(A19) and the perturbed conservation
equations of the various matter species. First, we express all the perturbed quantities entering
the equations as a perturbative expansion in ϵ,

h= h(0) + ϵh(1) + ϵ2h(3) + · · ·
η =η(0) + ϵη(1) + ϵ2η(3) + · · ·

· · · (A26)

where the subscripts (0) denote the leading order terms in these expansions and the subscripts
(i) with i⩾ 1 their ith-order corrections. By substituting (A26) in the perturbed equations we
find that the leading terms must obey

Hh ′
(0) − 2η(0)k

2 = 8πGa2δρ(0) , (A27)
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−2η ′
(0)k

2 =−8πGa2 (ρ̄+ p̄)θ(0) , (A28)

1
2

(
h ′ ′
(0) + 6η ′ ′

(0)

)
+H

(
h ′
(0) + 6η ′

(0)

)
− ηk2 =−12πGa2 (ρ̄+ p̄)σ(0) , (A29)

−h ′ ′
(0) − 2Hh ′

(0) + 2η(0)k
2 = 24πGa2δp(0) , (A30)

together with the conservation equations at zeroth order. The higher order corrections (i⩾ 1)
are computed as follows,

Hh ′
(i) − 2η(i)k

2 = 8πGNa
2δρ(i) + δR(i−1)

(
−a2

2
− k2

RL
+ 3HL

R ′
L

R2
L

− 3H2
L

RL

)
−
h ′
(i−1)R

′
L

2RL
− 3HL

δR ′
(i−1)

RL
, (A31)

−2η ′
(i)k

2 =−8πGa2 (ρ̄+ p̄)θ(i) + k2
(
−
δR ′

(i−1)

RL
+
R ′
L

R2
L

δR(i−1) +
HL

RL
δR(i−1)

)
, (A32)

1
2

(
h ′ ′
(i) + 6η ′ ′

(i)

)
+H

(
h ′
(i) + 6η ′

(i)

)
− η(i)k

2 =−12πGa2 (ρ̄+ p̄)σ(i)

− R ′
L

2RL

(
h ′
(i−1) + 6η ′

(i−1)

)
− k2

δR(i−1)

RL
,

(A33)

−h ′ ′
(i) − 2Hh ′

(i) + 2η(i)k
2 = δR(i−1)

(
3
2
a2 − 3HL

R ′
L

R2
L

+
2k2

RL
− 3R ′ ′

L

R2
L

+
6(R ′

L)
2

R3
L

+
3
RL

(
2H ′

L+H2
L

))

+ δR ′
(i−1)

(
3HL

RL
− 6R ′

L

R2
L

)
+

3δR ′ ′
(i−1)

RL
+
R ′
Lh

′
(i−1)

RL
+ 24πGa2δp(i) ,

(A34)

plus, again, the corresponding conservation equations. This is nothing more than simple per-
turbation theory, of course. See section 4.2 for an study of the convergence of this iterative
method, further comments and results.

Appendix B. Breakdown contributions to χ2
min

In this appendix we show the additional tables 5–7, which contain the contributions of the
various observables to the total χ2

min for all our fitting analyses.
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Table 5. Contribution of the χ2
i of each observable to χ2

min, for the ΛCDM and StRVM,
and using the datasets specified in the upper part of the table. The corresponding fit
values of the parameters are reported in table 1.

Planck18 Planck18+SNIa+BAO+CCH Planck18+SNIa_H0+BAO+CCH

χ2
i ΛCDM StRVM ΛCDM StRVM ΛCDM StRVM

χ2
CMB 2767.27 2767.28 2768.32 2767.77 2773.19 2775.60

χ2
SNIa — — 1458.48 1458.66 1493.36 1471.22

χ2
BAO — — 15.11 16.17 13.56 13.66

χ2
CCH — — 13.42 13.25 13.14 12.70

χ2
min 2767.97 2767.28 4255.34 4255.30 4293.24 4273.16

Table 6. Same as in table 5, but for the datasets that do not incorporate the high-ℓ CMB
polarization data from Planck. The corresponding fit values of the parameters are repor-
ted in table 2.

Planck18(np) Planck18(np)+SNIa+BAO+CCH Planck18(np)+SNIa_H0+BAO+CCH

χ2
i ΛCDM StRVM ΛCDM StRVM ΛCDM StRVM

χ2
CMB 1179.54 1178.80 1181.31 1181.24 1183.00 1184.69

χ2
SNIa — — 1459.11 1459.21 1494.81 1466.41

χ2
BAO — — 13.89 14.17 13.42 13.38

χ2
CCH — — 13.45 12.74 13.20 13.37

χ2
min 1179.54 1178.80 2667.78 2667.34 2704.42 2677.84

Table 7. Same as in table 5, but including the CMB lensing information from Planck.
The corresponding fit values of the parameters are reported in table 3.

Planck18(lens) Planck18(lens)+SNIa+BAO+CCH Planck18(lens)+SNIa_H0+BAO+CCH

χ2
i ΛCDM StRVM ΛCDM StRVM ΛCDM StRVM

χ2
CMB 2778.64 2777.07 2780.42 2785.70

χ2
SNIa — — 1458.26 1458.43 1496.08 1471.12

χ2
BAO — — 15.91 16.27 13.59 13.88

χ2
CCH — — 13.44 13.18 13.26 12.71

χ2
min 2775.28 2775.22 4266.26 4264.94 4303.35 4283.43
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[52] Basilakos S, Mavromatos N E and Solà J 2016 Starobinsky-like inflation and running vacuum in
the context of supergravity Universe 2 14

[53] Fradkin E S and Tseytlin A A 1984 One loop effective potential in gauged O(4) supergravity and
the problem of the Λ term Nucl. Phys. B 234 472

[54] Alexandre J, Houston N and Mavromatos N E 2013 Dynamical supergravity breaking via the
super-Higgs effect revisited Phys. Rev. D 88 125017

[55] Alexandre J, Houston N andMavromatos N E 2015 Inflation via gravitino condensation in dynam-
ically broken supergravity Int. J. Mod. Phys. D 24 1541004

[56] Nenmeli V, Shankaranarayanan S, Todorinov V and Das S 2021 Maximal momentum GUP leads
to quadratic gravity Phys. Lett. B 821 136621

[57] Das S, Fridman M, Lambiase G and Vagenas E C 2022 Baryon asymmetry from the generalized
uncertainty principle Phys. Lett. B 824 136841

[58] Stelle K S 1977 Renormalization of higher derivative quantum gravity Phys. Rev. D 16 953–69
[59] Jackiw R and Pi S Y 2003 Chern–Simons modification of general relativity Phys. Rev. D

68 104012
[60] Alexander S and Yunes N 2009 Chern–Simons modified general relativity Phys. Rep. 480 1–55
[61] Green M B and Schwarz J H 1984 Anomaly cancellation in supersymmetric D= 10 gauge theory

and superstring theory Phys. Lett. B 149 117–22
[62] Alvarez-Gaume L and Witten E 1984 Gravitational anomalies Nucl. Phys. B 234 269
[63] Svrcek P and Witten E 2006 Axions in string theory J. High Energy Phys. JHEP06(2006)051
[64] Alexander S H S, Peskin M E and Sheikh-Jabbari M M 2006 Leptogenesis from gravity waves in

models of inflation Phys. Rev. Lett. 96 081301
[65] Lyth D H, Quimbay C and Rodriguez Y 2005 Leptogenesis and tensor polarisation from a grav-

itational Chern–Simons term J. High Energy Phys. JHEP03(2005)016

46

https://doi.org/10.1038/s41550-019-0902-0
https://doi.org/10.1038/s41550-019-0902-0
https://doi.org/10.1016/j.astropartphys.2021.102604
https://doi.org/10.1016/j.astropartphys.2021.102604
https://arxiv.org/abs/2105.05208
https://doi.org/10.1038/s41550-017-0121
https://doi.org/10.1038/s41550-017-0121
https://doi.org/10.1209/0295-5075/134/19001
https://doi.org/10.1209/0295-5075/134/19001
https://arxiv.org/abs/2304.11157
https://doi.org/10.1103/PhysRevD.101.045001
https://doi.org/10.1103/PhysRevD.101.045001
https://doi.org/10.1016/j.physletb.2020.135342
https://doi.org/10.1016/j.physletb.2020.135342
https://doi.org/10.1140/epjs/s11734-021-00197-8
https://doi.org/10.1140/epjs/s11734-021-00197-8
https://doi.org/10.1140/epjp/s13360-021-02149-6
https://doi.org/10.1140/epjp/s13360-021-02149-6
https://doi.org/10.1103/RevModPhys.48.393
https://doi.org/10.1103/RevModPhys.48.393
https://doi.org/10.1016/0550-3213(92)90052-D
https://doi.org/10.1016/0550-3213(92)90052-D
https://doi.org/10.3390/universe7120480
https://doi.org/10.3390/universe7120480
https://arxiv.org/abs/2205.07044
https://doi.org/10.1098/rsta.2021.0188
https://doi.org/10.1098/rsta.2021.0188
https://doi.org/10.3390/universe2030014
https://doi.org/10.3390/universe2030014
https://doi.org/10.1016/0550-3213(84)90074-9
https://doi.org/10.1016/0550-3213(84)90074-9
https://doi.org/10.1103/PhysRevD.88.125017
https://doi.org/10.1103/PhysRevD.88.125017
https://doi.org/10.1142/S0218271815410047
https://doi.org/10.1142/S0218271815410047
https://doi.org/10.1016/j.physletb.2021.136621
https://doi.org/10.1016/j.physletb.2021.136621
https://doi.org/10.1016/j.physletb.2021.136841
https://doi.org/10.1016/j.physletb.2021.136841
https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.1103/PhysRevD.68.104012
https://doi.org/10.1103/PhysRevD.68.104012
https://doi.org/10.1016/j.physrep.2009.07.002
https://doi.org/10.1016/j.physrep.2009.07.002
https://doi.org/10.1016/0370-2693(84)91565-X
https://doi.org/10.1016/0370-2693(84)91565-X
https://doi.org/10.1016/0550-3213(84)90066-X
https://doi.org/10.1016/0550-3213(84)90066-X
https://doi.org/10.1088/1126-6708/2006/06/051
https://doi.org/10.1103/PhysRevLett.96.081301
https://doi.org/10.1103/PhysRevLett.96.081301
https://doi.org/10.1088/1126-6708/2005/03/016


Class. Quantum Grav. 41 (2024) 015026 A Gómez-Valent et al

[66] Yunes N and Pretorius F 2009 Dynamical Chern–Simons modified gravity. I. Spinning black holes
in the slow-rotation approximation Phys. Rev. D 79 084043

[67] Yagi K, Yunes N and Tanaka T 2012 Slowly rotating black holes in dynamical Chern–Simons
gravity: deformation quadratic in the spin Phys. Rev. D 86 044037

Yagi K, Yunes N and Tanaka T 2014 Phys. Rev. D 89 049902 (erratum)
[68] Chatzifotis N, Dorlis P, Mavromatos N E and Papantonopoulos E 2022 Scalarization of Chern–

Simons–Kerr black hole solutions and wormholes Phys. Rev. D 105 084051
[69] Chatzifotis N, Dorlis P, Mavromatos N E and Papantonopoulos E 2022 Axion induced angular

momentum reversal in Kerr-like black holes (arXiv:2206.11734 [gr-qc])
[70] Lesgourgues J 2011 The cosmic linear anisotropy solving system (CLASS). Part I: overview

(arXiv:1104.2932 [astro-ph.IM])
[71] Blas D, Lesgourgues J and Tram T 2011 The cosmic linear anisotropy solving system (CLASS).

Part II: approximation schemes J. Cosmol. Astropart. Phys. JCAP07(2011)034
[72] Maldacena J M and Nunez C 2001 Supergravity description of field theories on curved manifolds

and a no go theorem Int. J. Mod. Phys. A 16 822–55
[73] Witten E 1981 Dynamical breaking of supersymmetry Nucl. Phys. B 188 513
[74] Ellis J and Mavromatos N E 2013 Inflation induced by gravitino condensation in supergravity

Phys. Rev. D 88 085029
[75] Coulson D, Lalak Z and Ovrut B A 1996 Biased domain walls Phys. Rev. D 53 4237–46
[76] Lalak Z, Lola S, Ovrut B A and Ross G G 1995 Large scale structure from biased nonequilibrium

phase transitions: percolation theory picture Nucl. Phys. B 434 675–96
[77] Lalak Z and Ovrut B A 1993 Domain walls, percolation theory and Abell clusters Phys. Rev. Lett.

71 951–4
[78] Lalak Z, Ovrut B A and Thomas S 1995 Large scale structure as a critical phenomenon Phys. Rev.

D 51 5456–74
[79] Ooguri H and Vafa C 2007 On the geometry of the string landscape and the swampland Nucl.

Phys. B 766 21–33
[80] Obied G, Ooguri H, Spodyneiko L and Vafa C 2018 De Sitter space and the swampland

(arXiv:1806.08362 [hep-th])
[81] Garg S K and Krishnan C 2019 Bounds on slow roll and the de Sitter swampland J. High Energy

Phys. JHEP11(2019)075
[82] Ooguri H, Palti E, Shiu G and Vafa C 2019 Distance and de Sitter conjectures on the swampland

Phys. Lett. B 788 180–4
[83] Palti E 2019 The swampland: introduction and review Fortschr. Phys. 67 1900037
[84] Nojiri S and Odintsov S D 2004 Modified gravity with lnR terms and cosmic acceleration Gen.

Relativ. Gravit. 36 1765–80
[85] Misner C W, Thorn K S and Wheeler J A 1974 Gravitation (Freeman)
[86] Ma C-P and Bertschinger E 1995 Cosmological perturbation theory in the synchronous and con-

formal Newtonian gauges Astrophys. J. 455 7–25
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