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Abstract

Huntington’s disease onset of symptoms is clinically predicted primarily using the length
of the CAG trinucleotide expansion in the HTT gene. However, this prediction can
only explain around 50% of the variability of the phenotype. It is estimated that
40% of the remaining variability is heritable, suggesting the presence of other genetic
factors. Genome Wide Association Studies (GWAS) have identified potential genetic
modifiers, although only through the revelation of linear effects and via computationally
demanding processes.

This project benchmarks various machine learning algorithms trained with an Enroll-
HD GWAS dataset to predict the age at HD onset. The dataset comprises the geno-
type of millions of SNPs from approximately 9,000 individuals. The models considered
include regularized linear models (Lasso and Elastic Net) and tree-based models (Ran-
dom Forest and XGBoost), and their predictive power is compared to an Ordinary
Least Squares baseline model trained solely with sex and CAG as covariates. The re-
sults indicate that tree-based models achieve the best estimation of age of onset (AO),
improving the prediction by 3% with respect to the baseline, possibly due to their im-
plicit consideration of interactions between SNPs. For each model, we extract the most
significant features contributing to the model, thereby identifying genetic modifiers.
Some of these key SNPs are in well-known AO modifier candidates such as FAN1 and
MYT1L, while others are in genes like CDYL2 proposed as new candidates.

Keywords: Machine Learning, High Dimensional Data, Huntington’s Disease, Single
Nucleotide Polymorphism.
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1 Introduction

Huntington’s disease (HD) is a hereditary neurodegenerative disease whose first symp-
toms can appear at different points of a lifetime. The age of disease onset correlates
strongly with the length of the mutation related to the disease, a CAG trinucleotide
expansion in the huntingtin gene (HTT ) [1], [2]. Genetic testing and clinical prediction
for age of onset (AO) both rely on the length of this expansion. Nevertheless, this is not
a perfect predictor, as the standard deviation of AO at a specific CAG repeat length
is quite large, specially for short expansions (see Figure 1). Expansion length accounts
for 40-70% of the variability of AO. The remaining variance is considered to be due to
environmental and other genetic factors, showing a high degree of heritability [3], [4].
Large genetic studies have been done during the last two decades and are still ongoing
in the search for genetic modifiers (GeMs) of AO, genes or genetic elements involved in
the process of disease onset either by accelerating or delaying the emergence of HD’s
first symptoms [5]. The main AO modifier candidates are related to DNA maintenance
machinery, through their mechanisms are still being studied [6].

Figure 1: Inverse correlation of age of onset and CAG repeat length observed in the
Enroll-HD dataset used in this project.

Phenotype prediction in HD is not only interesting from a clinical point of view for
life planning addressed to mutation carriers. It can also provide valuable insight of the
disease mechanisms that generate such phenotype, and apply this knowledge into the
design of clinical trials, where the effect of putative modifiers of HD pathogenesis needs
to be controlled for the effect of genetic background [7]. Knowing more about disease
onset mechanisms can also reveal possible targets for treatment that could delay onset
of symptoms [2].
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1.1 Objective

The main research objectives of the thesis, by order of relevance, are:

1. Benchmark different machine learning (ML) regression models on how well can
they predict AO in HD using SNP genotyping data.

2. Identify which genetic variants are most important in predicting AO and which
processes are they involved in.

1.2 Methodology

The workflow of the project can be divided into four main parts, which are not strictly
sequential. First, a comprehensive literature review is conducted to understand the
background and context in which the project is situated. This is followed by data
preprocessing, where the raw data is tailored and prepared for model training. Subse-
quently, ML models are selected and trained to analyze the preprocessed data. Finally,
the results are discussed, offering insights into the performance of the models and their
implications for the study.

Models are going to be trained with data provided by Enroll-HD, genetic data contain-
ing the genotype of millions of Single Nucleotide Polymorphisms (SNP) for thousands of
HD patients. The dataset was assembled by Lee et al. [8] in June 2023. Data handling
will be done with different programming languages, depending on the specific needs
(e.g., Python, R, bash, C++). The models themselves will be coded and trained using
Python and several open-source packages for easy implementation of ML algorithms.

1.3 Scope

This project is an exploratory approach to phenotype prediction. The use of (ML) is
not intended to create a new prediction tool but to review how well existing models can
predict the onset of the disease based solely on genetic data. The results obtained with
the final trained models will be compared to published studies that propose candidates
for HD GeMs. This comparison will serve as a check for positive control discoveries
and provide an alternative method for GeM discovery.

1.4 Limitations

The limitations of the project stem from several challenges across its various stages.
First, the vast amount of data requires significant computational resources for pre-
processing and analysis, which might not be readily available. Secondly, the choice
of feature engineering methods, such as treating each SNP individually or aggregat-
ing them at the gene level, presents a trade-off between specificity and dimensionality
reduction, potentially masking important polymorphisms when reducing dimensions.
Additionally, selecting the right subset of SNPs impacts the discovery potential and
computational feasibility. The high dimensionality of data also impacts the training of
ML models, which can led to models which suffer from high variance.
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2 Background

2.1 Huntington’s disease

HD is an autosomal dominant neurodegenerative disease. At disease onset an irre-
versible progression of motor, psychiatric and cognitive symptoms starts. As there
is currently no cure, this progression inevitably spans over 15-20 years, ending with
death. In most cases the first manifestations of HD appear in mid-life. Prior to this on-
set, called “manifest HD”, a “prodromal” phase may happen during some years where
more subtle symptoms start appearing [9]. During this time, the striatum suffers a
progressive a neuronal loss, finally leading to the development of manifest HD.

Clinical symptoms of manifested HD are very heterogeneous, even within families. The
most distinct motor symptom is chorea: involuntary, excessive movements whose am-
plitude increases with disease progression. At more advanced stages, bradykinesia and
rigidity dominate the motor symptoms. Cognitive impairments that appear are related
to visual attention, psychomotor speed, and visuomotor and spatial integration, exec-
utive capacity, and short-term memory. The most common psychiatric symptoms are
depression and anxiety, which can occur in premanifest HD, followed by apathy, irri-
tability, and obsessive, compulsive thoughts and behaviours [9]. Pneumonia and suicide
are the most common cases of death in HD [10].

HD pathology is cytologically located mainly in the striatum. Medium-sized spiny neu-
rons (MSNs) of the striatum which use γ-aminobutyric acid (GABA) die, and cortical
pyramidal neurons that project to the striatum and striatal neurons projecting to the
substantia nigra degenerate [11]. The normal distribution of glial cells is also affected
[12]. The overall brain volume is reduced, different brain compartments showing differ-
ent rates of loss [13].

In 1993, the mutation related to this disease was identified in the huntingtin gene (HTT )
located in the short arm of chromosome 4: a CAG trinucleotide expansion in its exon
1, a trinucleotide which is transcribed into glutamine [14]. This finding indicated that
genetic testing could be an accurate and specific diagnostic test for HD. The same study
revealed that there was a wide range of AO for any specific repeat number, although
larger expansions correlated with juvenile onset, extreme rigidity and more widespread
neuropathology. Now it is estimated that only around 50-70% of variance of AO can
be explained by CAG repeat length. The remainder is accounted for by environmental
and individual genetic background [2], [3], [15].

The exon where the expansion mutation is located encodes a polyglutamine tract near
the amino terminus, an alpha-helical solenoid-like scaffold. Repeats in this expansion
up to 35 CAGs are found in the general population, while length polymorphisms ex-
ceeding this number can cause HD, affecting the structure, phosphorylation pattern and
activities of the protein [16]. Depending on the length of the expansion, the allele is
usually classified into normal, reduced penetrance and full penetrance allele (see Table
1).

This mutation is inherited following an autosomal dominant pattern, meaning that if
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Allele classification
nº CAG

repetitions
Expression

Normal Allele <27
Not associated with a phenotype and

are inherited in a stable manner.

High Normal/ Intermediate Allele 27-35

Do not typically develop signs of HD

but may show some degree of germline

instability of the CAG repeat.

Reduced Penetrance HD Allele 36-39

Associated with HD, but not all

individuals with these alleles will

develop clinical symptoms.

Full Penetrance HD Allele >39

Almost always associated with

development of clinical signs and

symptoms of HD.

Table 1: Classification of CAG expansion alleles in HTT [16].

either parent carries the CAG repeat expansion, the child has a 50% chance of inheriting
it. It is also an unstable mutation: the length of the expansion can increase when passed
from parent to child, being unstable in 80% of intergenerational transmissions. The
higher size changes usually occur in the male germline [17]. Due to this instability,
parents with CAG allele in the intermediate range which is not causing symptoms
might pass a disease-causing range allele to their offspring. Decreases in size seldom
occur. Expansion of HTT alleles can happen somatically as well as gametically, being
prevalent in brain regions that are most susceptible to neurodegeneration [18]. Somatic
expansion is predicted to accelerate the disease process [19], [20].

Backing the dominant behaviour, heterozygotes which have two expanded alleles with
different sizes do not seem to follow a different pattern of onset than heterozygous
when taking the larger allele for comparison. This means that the effects this mutation
has are caused by the longest expanded allele, the dominant one [21]. However, there
are some studies indicating that there could be an interaction between the two alleles:
among HD subjects with large fully penetrant alleles, the length of the unexpanded
CAG repeat was positively associated with a delayed HD onset [4]. Whether having
two mutant alleles means displaying a more severe phenotype is still under discussion
[2].

Upon further research on what other factors could be involved in HD manifestation
and development, HD modifiers are still being discovered and described. Up until this
moment, the majority of proven modifiers are DNA maintenance genes. The correla-
tion between HD modifiers and the disease’s precise toxicity mechanisms are yet to be
discovered [16].

The protein’s activity is altered in other neurological diseases apart from HD [22]. Its
function is not completely known, but it is involved in brain development, transcription
regulation, balance of histone acetylation and deacetylation, glial activation, mitochon-
drial functions, axonal transport, signaling pathways regulatization, and autophagy[2].

The mutant HTT affects the regulation of transcription factors, impacts chromatin
regulation, impairs mitochondrial functions, alters protein homeostasis, affects axonal
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trafficking, dysregulates glutamatergic signaling, induces synaptic plasticity failure and
glial activation [2], [23]. The mutant version of huntingtin is misfolded and forms ag-
gregates with toxic properties, whereas in unaffected individuals it is localized in a
diffused fashion around the cell cytoplasm [24]. Polyglutamine tracts with 37 or more
glutamines (almost coinciding with the fully penetrant allele) self-assemble into such
aggregates in experiments in vitro. The formation of this nucleus is dependant on
time and protein concentration, and the rate of aggregate formation directly correlates
with repeat length [25]. Mutant HTT also can co-aggregate with other proteins reduc-
ing their availability. Both toxic gain-of-function of the mutant HTT and loss of the
wildtype HTT functions contribute to the disease phenotype.

2.2 SNP genotyping

2.2.1 Single nucleotide polymorphisms

A SNP is a described variation at a single position in a DNA sequence among individ-
uals, only named as such if the variation is found in more than 1% of a population [26].
For every SNP there is a reference allele, which is the nucleotide present in the major-
ity of the population, and one or multiple alleles, which are the minoritary nucleotides
found in that position.

2.2.2 Genome-wide association studies

The primary use of Genome-Wide Association Studies (GWAS) is to identify genetic
variations associated with complex traits or diseases in populations. GWAS scan the
entire genome of individuals to find variations such as SNPs that occur more frequently
in people with a particular trait or disease (referred to as phenotype) compared to those
without it. This way enhancers and suppressors of selected phenotypes are identified.

Given the lack of variance explained in the phenotype by the CAG repeat length,
the HD research community started the search for HD modifiers. When GWAS became
technologically possible, large human molecular genetic tests enabled an unbiased search
for modifier loci (position on a genome). The HDMAPS study by Li et al. (2003) [3] was
a large linkage analysis on a genome scan which found evident linkage at chromosomes
4 and 6, near the localization of potential modifiers GRIK2. A combination of three
GWAS carried out by the Genetic Modifiers of HD (GeM-HD) Consortium in 2015
identified important loci on chromosomes 8 and 15 that accelerated or delayed onset
with respect to the mean [5]. Genes in these loci have been confirmed as HD modifiers
years later through biological models: FAN1, in chromosome 15, a gene involved in
DNA repair; and RRM2B, in chromosome 8, a ribonucleotide reductase [16]. Further
studies revealed new modifier loci in other chromosomes; the most recent one by Lee,
MacDonald and Gusella (2022) [8] has identified modifier loci in chromosome 7 too,
with a greater power analysis by including motor and cognitive measures as additional
phenotypes. The potential of such studies is still being exploited.
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2.2.3 Linkage disequilibrium

An important fact to consider when relating SNPs to a certain phenotype is the linkage
disequilibrium (LD), the non-random association of alleles at two or more loci: the
allele of one polymorphism in an LD block, also known as haplotype, can predict the
allele of the other polymorphisms in the block [27]. The size of the LD blocks depends
primarily on the recombination rate in the region where they are found [28].

2.3 State of the art: Phenotype prediction in HD.

HD prediction in presymptomatic patients started for research purposes, as studying the
evolution of the disease in already manifested HD was an important research limitation.
The discovery of the trinucleotide repeat expansion in 1993 gave the basis for a highly
accurate and easy to perform test, without the need of family samples [14]. It then
evolved into a clinical service accompanied by counselling and support protocols which
were later on internationally standardized [29].

One of the most spread model for age at HD onset is the Langbehn formula, derived from
a parametric survival model [30]. This survival model was created with CAG repeat
length specific survival functions, that take into consideration not only the CAG length
but the current age of the case at hand. The resulting model can be expressed through
a formula with parameters age and CAG that computes the probability of surviving
without neurological symptoms until at least the given age. For example, a 40 year old
individual without symptoms and a CAG repeat size of 44 will have a probability of
onset by age 50 years, 10 years into the future, of 0.7; in an individual of this same
age but with a repeat size of 44, the probability of onset by age 50 is 0.95. These
probabilities are given with a 95% confidence interval for CAG lengths between 41 and
56, as these are the lengths of the samples used to build the model. Predictions for CAG
beyond these limits are extrapolations. Figure 2 shows the cumulative probabilities for
different CAG lengths of the model.

Figure 2: Cumulative probability of onset of HD for various CAG lengths based on
the Langbehn model. Figure by Langbehn et al. [30].
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There are other published statistical models that fit relationships between CAG length
and clinical onset. There are two main approaches: using some sort of linear regression,
or as the Langbehn model, using modeling techniques particular to survival analysis.
Regressions tend to provide overly pessimistic estimates of AO specially for shorter
CAG lengths, because they do not considerate cases which never reach HD diagnosis.
Survival analysis accounts for samples that do not reach onset [31]. All models struggle
predicting onset for the shortest expansions, due to either statistical biases or un-
representative sample sets because subjects in this range are mostly non-symptomatic
and are rare in clinical samples. Figure 3 overlaps the mean AO predicted for different
CAG lengths by different models.

Figure 3: Mean as estimated by various published formulae. Figure by Langbehn,
Hayden, Paulsen et al. [31].

The PREDICT-HD study was a multi-site observational study ongoing for more than
a decade at the start of the century aimed at identifying biological and refined clinical
markers of early HD in humans, to validate them for use in preventive clinical tri-
als. Outcome measures include basal ganglia volumes on magnetic resonance imaging
(MRI), estimated probability of diagnosis based on CAG length, performances on 21
standardized cognitive tasks, total scores on 3 scales of psychiatric distress, and motor
diagnosis based on the Unified Huntington’s Disease Rating Scale [32]. Studies done
over the data generated by this study try to relate biological and clinical measures to
the estimation of years to diagnosis, to better understand how the disease symptoms
start manifesting and evolve. Estimated time to diagnosis is correlated to most clinical
and neuroimaging markers [33]. Detectable changes were seen 10-20 years before the
predicted age of clinical diagnosis. Structural MRI scans alone have been proven suf-
ficient to separate presymptomatic disease gene mutation carriers and prodromal from
controls [34], [35].
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2.4 Machine Learning

ML is a branch of artificial intelligence that focuses on the development of algorithms
and statistical models that enable computers to perform tasks without explicit instruc-
tions. It is considered a knowledge discovery technique, together with statistics, as it
is an approach to characterize and predict complex phenomena described by a set of
variables [36].

In the context of the study of biological systems, the two major goals pursued are in-
ference and prediction. Inference refers to the capability of creating a mathematical
model of the process creating the studied data in order to understand such process
or test a hypothesis about its behaviour. Prediction is focused in forecasting unob-
served outcomes, without necessarily understanding the underlying mechanisms of the
involved process. Both statistics and ML are methods that can achieve both goals, but
classical statistical methods are historically more focused on inference, and ML meth-
ods concentrate on prediction [37]. Statistics requires previous knowledge about the
data-generating system, as different methods take different assumptions [38]. This is
not the case of ML, which makes minimal assumptions about the systems. This proves
particularly helpful when exploring unknown systems with interactions that can be
complicated and nonlinear [39]. Another advantage with respect to classical statistics
is the size of the data ML can deal with, allowing a larger number of input variables
(features) than the number of samples.

ML can be broadly categorized into two types: supervised learning which uses pre-
labeled samples to allow the algorithm to see how accurate its performance is; and
unsupervised learning, where the algorithm can identify patterns amongst unlabeled
data.

2.5 Market analysis

HD is a disease present in all populations but occurs at much higher frequencies among
individuals of European ancestry. Prevalence studies show that approximately 1 in
7,300 individuals are affected in Western populations [15]. The demand of HD testing
and phenotype prediction is overall considered to be between 5 and 20% amongst at-
risk patients. Data on subjects tested from different centres show a higher percentage
of female subjects being tested than men [40]. Reasons to undergo genetic testing
generally include future planning in career and family decisions. Because there does not
exist an effective treatment of the disease, genetic testing is still low. The uncertainty
of predictions for short CAG expansions also contributes in a low testing percentage.
With a better model, genetic counselling would be more reliable.

A better AO regression model could also be a potential research tool in HD research, to
understand the mechanisms of disease onset and reveal possible targets for treatment
[2].

2.5.1 ML in disease phenotype prediction

The most common type of studies to reveal genotype-phenotype associations are the
already introduced GWAS, centered in identifying statistically significant associations.
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Using ML algorithms to build models that correlate genotype with phenotype shifts the
goal from deeply understanding the phenotype (main GWAS goal) towards accurately
predicting it [41]. Still, in a disease diagnostics setting, the explainability of a prediction
is crucial, and thus algorithms that produce interpretable models are preferred.

There are two main challenges when applying ML onto the study of the effects of multi-
ple genetic variables: the size of the datasets that are usually used (with more variables
than samples due to the extension of the genome) and the effect of LD between SNPs,
which is most likely to be present when a large number of SNPs are genotyped on
a genome-wide scale, and which makes the dataset have correlated variables. This is
why either penalized regression methods applied onto standard linear regressions or
non-parametric approaches like the ensemble methods are needed to model the com-
plex relationships contained in the data even though it probably contains correlated
variables [42]. With this consideration, many researchers have shown the potential of
SNP information for phenotype prediction [42], [43].

2.5.2 Enroll-HD studies

The study of rare diseases with ML has an extra challenge involved due to the ML
requirement for large datasets. Enroll-HD is an outstanding observational study with
almost 25,000 participants, being the world largest study for HD [44]. This dimensions
make studying HD with ML possible. The dataset provides a very complete dataset
with very diverse information about HD patients: general information such as sociode-
mographic data; medical information like medication and nutrition; motor, functional,
behavioural and cognitive assessments, ratings and tests; and genotyping information
from blood samples.

There are several published studies which use diverse ML techniques trained with
Enroll-HD datasets. Ouwerkerk et al. (2023) [45] explores an Enroll-HD dataset of over
300 categorical and numerical features applied into improving AO prognosis, achieving
an improvement of 9.2% with respect to the Langbehn formula estimation by using a
light gradient boosting machine; and being able to predict future time points of disease
progression. Ko et al. (2023) [46] recently applied ML into modeling disease progres-
sion with a similar heterogeneous dataset, using an unsupervised method to cluster
samples according to progression velocity, followed by a supervised method (XGBoost)
to identify features which could predict disease trajectory. The feature corresponding
to the product of age and CAG repeat length was the top predicting feature, followed
by years since symptom onset and medical history of apathy.

No published study has been found using ML with the GWAS dataset from Enroll-HD.
The specific dataset used in this project was assembled by the GeM-HD Consortium
[47] and later on expanded by Lee et al. [8], and used in GWAS analysis which revealed
possible AO modifying SNPs.
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3 Concept engineering

The main objective that summarizes the driving purpose of this thesis is to predict
the AO in HD from SNP information. There are several approaches regarding different
stages of the project, mainly: i) how to treat the available data (approximately 40GB
of compressed raw data), and ii) what algorithms should be tested and how to compare
them. The project’s workflow (Figure 4) highlights the steps where we could uptake
different methodologies, which will be discussed in this section.

Figure 4: Project’s general workflow.

3.1 Data Preprocessing

3.1.1 Feature engineering

The most usual approach to encode SNPs as numerical features consists in taking each
SNP as an individual feature, with values 0, 1 or 2 depending on the allele of each
sample (heterozygous or homozygous with the reference or alternative allele). This is
a more suitable data format for further ML steps, as the raw data is encoded by 0/0,
0/1 and 1/1, which is not an appropriate input format.

We could also define as feature the sum of the SNP encodings in each gene, resulting
in one feature per gene and, consequently, reducing drastically the dimensionality. We
could even add only the encoded value of SNPs that have an effect on the gene’s
corresponding protein’s structure, those found in coding regions. Considering that
taking all SNPs in our data pertaining to a single gene we can find up to 2000 SNPs/gene
and in average being 204 SNPs/gene, reducing these numbers to a single dimension
would extremely reduce the number of features given to the models, making them easier
to train. Nevertheless, this places the focus of the conclusions on a gene level rather than
the SNP level, which would reduce the specificity of the results. Moreover, masking of
important events in large genes could make important polymorphisms invisible. Still,
the main interest of the thesis is to work at SNP level, which will allow us to identify
relevant variants and model epistatic interactions (interactions between genes to express
a certain phenotype).

Using all available SNPs directly would be a first exploratory analysis similar to a large
Genome-Wide Association Study (GWAS), but it would require an unfeasible amount
of computational power to train models with millions of features. Instead, we need to
establish which is the best sub-setting criterion.
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a. Literature-Based SNP Selection. One option could be taking the SNPs that
have been previously described in literature to explain AO variance. This way we
would be working with a low number of features, but the potential of revealing
new AO modifiers would be zero. The next logical step would be to take the
SNPs pertaining to genes described as either HD modifiers or related to AO
explanation. Now we could find what SNPs inside each gene are the ones that
could be responsible for the already observed gene effect. The discovery potential
of this option is also limited.

b. Ontology-Based Selection. A broader option is to take the genes of ontology
terms related to HD processes, after a thorough literature review. This would
include genes which have been previously studied in this context and genes related
to them, which have not been studied, but yet they are not randomly selected.
The set of genes of each term can be extracted as files from the AmiGO web
application [48].

c. Protein Interaction Network-Based Selection. Another parallel approach
to broaden the subset of selected SNPs is to include the genes related to a core
set of genes on the protein level, taken from the STRING database [49]. In this
case another problem arises: how many levels of interaction, which we named
interaction order, should we include? Should we just take those genes directly
related to the core set of genes (first order interactions), or should we expand
it further to those related to this first order interactions, related to the core
genes through a two link path (second order interaction), and so on? We would
have to test how such a network would grow including interactions of increasing
order. This interactions are extracted from databases where a confidence interval
for each interaction is given, representing how confident is the community in
that interaction’s existence. Different thresholds of this confidence should also be
considered when exploring this option.

d. Alternative Allele Prevalence Selection. An additional option for dimen-
sionality reduction whilst treating single SNPs as features is to filter them by
prevalence of the alternative alleles, by removing those SNPs that do not reach a
minimum threshold of the alternative allele in our sample set. This would follow
the reasoning behind treating a single nucleotide variation as a SNP.

3.1.2 Feature scaling

Some ML models are more easily interpretable if the data given as input has a specific
distribution, or they require a specific feature value range. As a general rule, models
perform better if all the used features have values in comparable ranges. This is why
feature scaling is an important step to consider.

In out data we include the sex and CAG repeat length of each sample as two additional
features apart from the selected SNPs, as we have to control for the features that most
highly explain AO variance and this is most probably the CAG repeat lenght. Sex is
encoded with 1 (male) or 2 (female), which are values similar to SNP encoding (0, 1 or
2). CAG length, on the other hand, is much larger, containing values between 40 and
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55. This feature must be scaled down.

The most common scaling methods for ML are:

a. Min Max Scaler: preserves the original distribution of data but scales it linearly
to be in the range [0, 1].

y′ =
y − ymin

ymax − ymin

(1)

b. Standard Scaler: transforms data to have mean (µ) equal to 0 and unit standard
deviation (σ).

y′ =
y − µ

σ
(2)

3.1.3 Outcome scaling

AO is also spanning between 5 and 83. Depending on what algorithm we will be using,
we might want to scale it too in order to make the residuals centered at 0. The scaling
that make this transforms data to be Gaussian, so we will use the standard scaler on
the outcome vector.

3.2 ML models

Being a continuous random variable, AO prediction can be thought as a regression
problem using a supervised learning process: we use the known outcome (AO) to build
a regressor. As in any ML application, having more samples than features is an im-
portant limitation, as any model build with such high-dimensional data are prone to
overfitting, giving a model that could not predict new unseen observations successfully.
Penalized regression models are a recorded necessity in settings similar to ours [42], [50]
to constrain the model to represent the overall relations in the dataset rather than each
sample’s particularities.

3.2.1 Regression models

Regression models that are used for similar applications to ours (regression over SNPs
data for phenotype) comprise linear least squares methods and tree-based methods [51].

1. Linear regression methods

These methods include all models that can ultimately be expressed as a fit of the
response Y to the data X through a vector of coefficients β and a disturbance
term ϵ:

Y ≈ βX + ϵ (3)
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A multiple linear regression model estimates as many coefficients as features used
as predictors from the data. After optimizing the unknown parameters of the
model (β vector), these can be used to predict the outcome of new observations,
being the new observations x and their prediction ŷ. The most common way of
estimating the coefficients is the least squares method: it looks for coefficient
values that minimize the error between the true outcome and the predicted out-
come, which is expressed by the residual sum of squares (RSS), being a residual
the difference between the true outcome and the predicted outcome. In Eq. 4,
n is the number of samples used for training the model, and p the number of
predictors.

RSS =
n∑

i=1

e2i =
n∑

i=1

(yi − ŷi)
2 (4)

This method is very straightforward, but fitting a linear regression onto any type
of data is not guaranteed to yield good results. Problems as multicollinearity,
overfitting and non-linearity of the response-predictor relationships pose the need
for complementary methods to model a broader set of cases.

Non-linearity can be addressed by using polynomial regression, interaction terms
and transformations, amongst other options. They all involve fitting the data to
functions which are no longer linear. Generalized Linear Models (GLMs) extend
linear regression to handle non-normal response variables like counts of discrete
while allowing for different types of response distributions and link functions. This
would be an interesting approach to apply in our case, as AO can be thought as
counts coming from a Poisson distribution, and we could use a Poisson regres-
sion, a specific type of GLM [52].

But our AO vector contains decimal onset ages, and therefore we should round
its values to integers, which would involve loosing information. The possible non-
normality coming from the theoretic distribution of our response variable can
be ignored considering the approximation given by the Central Limit Theorem
(CLT) which implies that for a sufficiently large sample size, the distribution of
the sample mean of random variables will be approximately normal [53]. This
normality approximation should be tested empirically (with statistical tests such
as Shapiro-Wilks or Kolmogorov–Smirnov) as part of the preprocessing steps, as
SNP counts (considering the counts as the genotype) are not entirely independent
in the case of LD blocks. Such tests have to be computed over subsets of the
outcome vector, as any test will find enough evidence of a non-normal distribution
with such large statistical power provided with our data (over 9k samples). We
can also test for normality graphically, by fitting the histogram of AO to a normal
distribution and assessing the fit, or through a Q-Q plot. If we can prove that
the outcome variable can be approximated to a Gaussian distribution, we can use
the least squares approach.

We can build a simple model using Ordinary Least Squares (OLS) to work as the
baseline, using as predictors only CAG repeat length and sex. Then we can build
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more complex models including the SNP genotypes. Our main interest resides in
shrinking methods which focus on regularizing the coefficient estimates, making
them close or equal to 0. Such methods

• Act as feature selectors, which is important to highlight feature impor-
tance in a model towards finding AO modifiers.

• Control overfitting by introducing a controlled amount of bias which re-
duces the variance of the model, thereby encouraging the model to generalize
well to unseen data.

• Deal with multicollinearity, the situation where features are correlated
with each other and thus either provide the same information or their effect
can be canceled if the correlated features have opposite effects (a large posi-
tive coefficient can be canceled by its related large negative coefficient) [54].
This could happen in our context when having SNPs of the same LD block.

The three main shrinkage methods are the following:

a. Ridge

This technique uses the l2 regularization: it introduces a penalty term in the
function to minimize (Eq. 5), which is the product of the tuning parameter
l2 to the norm two of the coefficients’ vector.

F (β) = RSS+α

p∑
j=1

β2
j (5)

The effect of this added penalty is that it shrinks closer to 0 the largest
coefficients, and acts less in those which are already close to 0.

A higher α value decreases variance but increases bias. An optimal parameter
value has to be found to reach a nice equilibrium between bias and variance
and have a good associated model performance.

b. Lasso

This approach also includes a penalty term to the minimized function, but
in this case it uses the norm 1 of the coefficients’ vector,

F (β) = RSS+α

p∑
j=1

|βj| (6)

Such penalty acts on the model by performing variable selection when α is
sufficiently large, shrinking to exactly 0 those features which contribute less
in the model. It is indifferent to very correlated predictors, it will tend to
pick one and ignore the rest.
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c. Elastic Net

Elastic Net can be considered a fusion of both Ridge and Lasso, as it uses
l2 and l1 regularization at the same time. The minimized function (Eq. 7),
when implemented, considers α2 = 1− α1.

F (β) = RSS+α1

p∑
j=1

|βj|+ α2
1

2

p∑
j=1

β2
j (7)

This penalty is particularly useful in situations where p >> N or where there
are many correlated predictor variables. For a penalty close to the Lasso, it
can perform just like a Lasso while removing strange behaviours caused by
extreme correlations [55].

As we will most probably be working with a very big dataset where the number
of features is going to be very large, the most useful regularization to implement
is an l1 regularization for feature selection, and thus Lasso is the principal model
to try out. Elastic Net is also a good option.

2. Tree-based methods

These methods involve segmenting the predictor space into a number of simple
regions: the prediction of a new observation is set to the mean or mode response
value for the training observations similar to the new input. The segmentation
of the predictor space follows a set of splitting rules, which can be thought of as
a tree, hence the method’s name. Each split, called node, generates two leafs,
creating its own unique simple regression model [56]. The used approach to
segment the predictor space (the space made up of all features used in the model)
is known as recursive binary splitting, which is: top-down in the sense that it
begins splitting by just one feature, at the top of the tree where all observations are
still in the same region; and greedy because each split step is chosen considering the
immediate goodness of the split, without thinking of possible better combinations
with other splits further down. The goodness of a split is assessed by minimizing
the RSS over all regions (Eq. 8) where Rj are the predictor regions (having a total
of J regions), and ŷRj

the mean response for the training observations within the
jth region.

RSS =
J∑

j=1

∑
i∈Rj

(
yi − ŷRj

)2
(8)

The main benefit of tree-based methods is their interpretability. But a single
decision tree may not always have a good prediction accuracy due to its simplicity.
It has a very high variance, and it tends to overfit, as feature space splitting
usually ends when the split space contains a small number of train observations,
which can make the tree too case specific. To solve this, a threshold on RSS
could be applied, but this could leave out low minimizations of RSS that later on
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would reveal important splits. This overfit is solved with cost complexity pruning
or weakest link pruning : a tuning parameter α controls a trade-off between the
subtree’s complexity (amount of nodes) and the fit to the training data. In the
minimized equation optimized in this approach (Eq. 9), |T | is the number of end
nodes of the tree T, Rm is the predictor subset of each terminal or end node, and
ŷRm is the predicted response associated with Rm. A more complex tree will have
a higher number of terminal nodes, which will make the function’s independent
term value, the penalization, larger.

F (|T |) =
|T |∑
m=1

∑
i∈Rm

(yi − ŷRm)
2 + α|T | (9)

Tree ensemble methods are more complex approaches which produce multi-
ple weak trees or learners and later combine them to produce a single output
prediction. These are:

a. Bagging: trees are grown independently using a random set of samples and
all features being available for every tree growth.

b. Random Forests: trees are also grown using random sets of samples, but
for each split on each tree only a random subset of features is available. A
similar approach is followed by Extra Trees, with the difference that it
chooses the split points at each node randomly, whereas Random Forests
searches for the best splitting points for each random subset of features at
each node. This makes Extra Trees faster to train, with the price of having
higher bias.

c. Boosting: trees are grown successively, starting from a single tree which
uses all samples and all features, and continuing on fitting the following tree
to the residuals of the previous one. It is a numerical optimization technique
for minimizing the loss function by adding a new tree at each step that best
reduces the loss function (stepping down its gradient) [57].

Random forests are preferable over bagging in our case as we restrain the used
features as predictors to a random subset of features. This way if there is a very
strong predictor as CAG is, we can create trees that will explore relations between
other features apart from CAG. We can try Extra Trees if the implementation of
Random Forest is computationally unfeasible.

Both bagging and random forests make predictions taking the average of all their
regression trees which are independent. This is why increasing the number of trees
can prevent overfitting. Boosting grows trees by capturing signals which have not
been accounted for by the previous set of trees, so a large number of trees can
overfit data. The size of trees in boosting methods is also reduced compared to
bagging and random forests [58].

Inside boosting methods, there are different tree-methods: the exact solution and
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the approximated solutions. The exact solution involves the booster considering
all candidates from data for tree splitting, which makes this method very slow
computationally [59]. Approximated solutions build a gradient histogram for each
node and iterate through the histogram instead of seeing all observations of the
real dataset [60].

3.2.2 ML packages

The most commonly used resource for easy ML algorithm training is Scikit-learn for
Python. Apart from containing functions for several algorithms, it also contains mod-
ules on metrics to evaluate the fit of a model, and model selection to perform cross
validation and grid search to find the best parameters. Similar packages are statsmod-
els and skglm. For boosting algorithms, the most popular package is XGBoost.

As a starting point, we will implement the chosen models with the two most simple
sources: Scikit-learn [61] and XGBoost [59].

3.2.3 Data sparsity

Another important aspect to keep in mind when choosing algorithms is the large di-
mension of our data. Training any model with a feature matrix taking several gigabytes
of memory can turn out to be impossible with the available resources. Considering the
matrix is mostly formed by zeros, as the reference homozygous is the average genotype
we will find in most cases, we can use sparse matrices. This is a way of representing
a matrix by listing the non-zero elements of the matrix and their position. This way
we store less values than by recording all the positions that simply contain zeros.

Most ML training packages in python, including Scikit-learn and XGBoost allow giving
as input a sparse matrix.

3.2.4 Model metrics

Because we are training models with high-dimensional data where the number of fea-
tures is larger than the number of samples, reporting measures of model fit using sta-
tistical metrics on the training data will not be very informative, as the models will
most probably be overfitted. Instead, these metrics should be computed over a test set
to compare the true predictive ability of the models. Calculating these metrics over the
train set is also done, but to check for overfitting rather than for model comparison.

There are different statistics to evaluate the goodness of fit of a model [62]. In the
following expressions, y represents the outcome vector true values, and ŷ their corre-
sponding predictions.

a. Max error: single worst error amongst all predictions.

b. Mean absolute error (MAE): average of the absolute difference between the
true and predicted values of y.
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MAE(y, ŷ) =
1

nsamples

nsamples −1∑
i=0

|yi − ŷi| (10)

c. Mean squared error (MSE): expected value of the squared error.

MSE(y, ŷ) =
1

nsamples

nsamples −1∑
i=0

(yi − ŷi)
2 (11)

d. Coefficient of determination R2: proportion of variance of y explained by the
independent variables in the model.

R2(y, ŷ) = 1−
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − ȳ)2
(12)

ȳ is the true average 1
n

∑n
i=1 yi and

∑n
i=1 (yi − ŷi)

2, which is the RSS.

The closer the score is to 1, the better the fit to the data. A 0 value of R2 means
the model is constant, always predicting the expected value of y disregarding the
input features (ŷi = ȳ for i = 1, ..., n). It can also be negative, if the model is
arbitrarily worse than the constant model.

e. Explained variance score: fraction of deviance explained. A perfect fit explains
the totality of the data variance, hence the score would be 1. Lower values
correspond to worse fits.

explained variance(y, ŷ) = 1− Var{y − ŷ}
Var{y}

(13)

It is similar to R2, but the explained variance score does not account for systematic
offset in the prediction.

There are many other metrics we could use, but these are the simpler ones which
should be enough to compare between models. These methods tend to be very dataset
dependent, thus the test set to evaluate all models will be the same. The preferred
metric in many different settings is the coefficient of determination.

The model’s performance can also be assessed visually by plotting the predicted values
over the actual values of all samples in the data set. Another useful plot is the repre-
sentation of the residuals (predictions subtracted from the true values) over the actual
values, to see whether a range of outcomes is better or worse predicted than the rest.
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4 Detailed engineering

All generated code can be consulted in the ML-HD GitHub repository (URL: https:
//github.com/cfuses/ML-HD). The repository organization follows the same direc-
tory structure as the code directory of the computer where the scripts were executed.
Throughout this section some code snippets are included between the text to show
the parameters used in relevant functions or to see in a more direct way how certain
non-standard processes were executed.

Scripts were build and executed in a remote machine provided by Creatio. To manage
the required packages, a Conda environment was created with the necessary packages:
Plink2, Numpy, Pandas, Scipy, Sklearn, Matplotlib, os, XGBoost, and StatsModels.

The “GWAS12345” Enroll-HD data was acquired from CHDI in .tar format. The un-
compressed folder contained .bed, .bim, and .fam files for each autosomal chromosome
plus a metadata file containing sex, CAG repeat length and different residual calcula-
tions of each subject, as well as a readme file with information about the compression
format. The total number of subjects is 9064, with 4,647 females and 4,417 males.
CAG values range from 44 to 55, with a mean of 44 and a standard deviation of 3.06,
which means we will only be working with full penetrance HD alleles. The mean AO is
45.54 years, with a standard deviation of 11.58 years.

The outline of the preprocessing steps taken is represented in Figure 5. Each process
is explained in detail in the following subsections.

Figure 5: Data preprocessing flow chart.

4.1 Core gene selection

We considered that for an application with simple ML models, the ontology-based
selection of genes would be enough. After a thorough literature review on genes and
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processes related to HD mechanisms [2], [5], [7], [8], [15], [19], [63]–[66], a list of GO
terms to be included in the analysis was assembled, presented in Table 2.

Process GO term Related Genes

Mismatch repair GO:0006298
FAN1, MLH1, MSH3,

MLH3

Synaptic transmission, Glutamatergic GO:0035249
GRIK2, GRIN2A,

GRIN2B

Omega peptidase activity GO:0008242

Cysteine-type endopeptidase activity GO:0004197

Proteasome-mediated ubiquitin-dependent

protein catabolic process
GO:0043161

Ubiquitin binding GO:0043130

Ubiquitin protein ligase binding GO:0031625

Protein deubiquitination GO:0016579 UCHL1

Transcription regulator activity GO:0140110 TCERG1, TP53

Neuron apoptotic process GO:0051402
DFFB, MAP3K5,

MAP2K6

Lipoprotein metabolic process GO:0042157 APOE

Axonal transport GO:0098930 HAP1

Folic acid metabolic process GO:0046655 MTHFR

Energy reserve metabolic process GO:0006112 PPARGC1A

Table 2: Included GO terms as core genes.

These set of genes associated to each GO term was downloaded from the AmiGO web
application [48], selecting three fields to download: the Gene/product, which contains
the UniProt identifier; the Gene/product name which is the name of the gene (a string
with words separated by spaces); and the direct GO class, as GO terms are hierarchi-
cal and a single gene can be found under different terms (which makes a single gene
appear in several rows if it has more than one direct GO class). The downloaded files
are tab-separated text files. In a local Jupyter Notebook, all these files were concate-
nated, and an additional column containing the GO class from which each set was
taken (broad GOclass was included. Using ExPASy and SwissProt from Biomanager ’s
Python package the UniProt ID of each gene was translated into the gene symbol, saving
it into a new column called Gene. Later on the process of this thesis, further literature
review revealed potentially important genes in HD processes which were not included
in the core genes set. These are HTT, MAP2K6, PRMT6, CCDC82, SOSTDC1, and
FAN1. They were added manually to the list. We could have expanded the list further
on by including the entire set of genes of the GO terms of these new genes, but at that
moment we were facing important memory availability issues and decided not to.

Once this table was assembled, we uploaded it onto the remote machine used for the
rest of the analysis. The list of unique Genes are from now on referred to as the core
gene set of our study.
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4.1.1 Core genes SNPs

The Enroll dataset identifies SNPs through their chromosome position, but we need
to relate them to their corresponding gene, which is easier when they are identified
with their Reference SNP cluster ID (Rsid). This was achieved by creating a look-
up table containing all SNPs from each core gene. The script performing this task is
biomart retrieval/biomart snpid gene retrieval v2.R.

For such task, the Ensembl Biomart database was used, and to easily access it we used
its R API. We first extract the starting and ending positions of each gene, giving as
input a vector containing the list of core genes (gene.list), and then we save the
output in a data frame gene.symb.

1 # Connect to the Ensembl BioMart database

2 ensembl <- useMart("ensembl", dataset = "hsapiens_gene_ensembl",

3 "https://feb2014.archive.ensembl.org")

4

5 # Retrieve gene coordinates

6 gene.symb <- getBM(

7 attributes = c("ensembl_gene_id", "external_gene_id",

8 "chromosome_name", "start_position", "end_position", "strand"),

9 filters = "hgnc_symbol", values = gene.list ,

10 mart = ensembl)

It is important to access a dataset using the same genome assembly reference as our
data, which is GRCh37/hg19, so the positions of our SNPs are comparable to the
chromosome coordinates obtained with this script.

Next, we access another Ensembl dataset, now containing information on SNPs. We
read the gene.symb row by row, which makes the iteration consider one chromosome
at a time, and ask for the position, reference identification and reference variant of
all SNPs inside each chromosome by passing a query with the format <chromosome

number>:<start position>:<end position>. This petition is tried at least 5 times
per chromosome, as the connection with the dataset is often unstable. When the output
data frame is obtained, we bind it to a general data frame where we concatenate the
outputs of all chromosomes, finally obtaining the look-up table. The following code
snip is a reduced version of the used code, leaving out the error handling:

1 # Empty data frame to store ensembl outputs

2 snp.tab <- data.frame()

3

4 # Iterate over chromosomes

5 for (i in 1:nrow(gene.symb)) {

6

7 # Create coords vector as required for getBM

8 query <- paste(gene.symb$chr[i], gene.symb$st[i],
9 gene.symb$end[i], sep = ":")

10

11 ... (while loop to handle connection errors)

12 # Get table from ensembl

13 sub.snp.tab <- getBM(

14 attributes = c("chr_name", "chrom_start",

15 "refsnp_id", "allele"),

16 filters = c("chromosomal_region"),
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17 values = query , mart = mart

18 )

19 }

20

21 # assign gene name

22 sub.snp.tab$gene <- gene.symb$gene_name[i]
23

24 # Append to general snp tab

25 snp.tab <- rbind(snp.tab , sub.snp.tab)

26 }

The table generated through this script was then revised manually using bash com-
mands. Initially we had a table with 4,153,337 rows. We then applied two filters:

• Only those SNPs which had Rsid (reference identifiers starting with rs) were kept,
reducing the rows to 4,106,699.

• We just want to include SNPs, which are single nucleotide variations. We leave
out all those variations that are insertions, deletions, and other types of mutations
which do not follow the format Nr/Na (reference and alternative bases). The final
revised and filtered look-up SNP table has 3,590,278 SNPs.

For easier result visualization, a final table relating SNPs to the GO terms from
which we extracted their corresponding genes was generated with bash in the script
data preprocessing/mapping snps to GO v2.sh. It iterates over each SNP in the
look-up table and searches their gene in the table of core genes which relates genes to
their GO terms.

4.2 Data preprocessing

4.2.1 Feature matrix assembly

The Enroll-HD dataset contains three files per chromosome which encode each individ-
ual’s alleles for all the sequenced SNPs: .bed, .bim, .fam. To work with a simpler format,
Plink2 software combines this kind of data into a single vcf file (Variant Coding File).
Having all three files for each chromosome in the same directory (each group of three is
named equally, only changing their suffix so we can point to the files through a single
file name), we generate the vcf files and build the final SNP matrix with the bash script
vcf generation/run plink.sh. The first step is to iterate over each chromosome with
a for loop and generate the vcf files with the following command:

1 plink2 --bfile "$filename" --recode vcf --out "$out"

This command generates two files: a .log file which will not be used and hence it is
deleted, and the .vcf, which is a text file where each row is a SNP position, the first
10 columns describe the SNP and the following ones are the samples’ genotype in that
chromosome position. The genotype is encoded with 0/0 (homozygous for the reference
variant), 0/1 (heterozygous) and 1/1 (homozygous for the alternative variant).

To avoid saving the totality of the encoded SNPs contained in the original dataset, just
after creating each vcf and still inside the for loop we filter the recently generated vcf
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file using the SNP look-up table: we take the positions of all those SNPs in the table
whose chromosome matches with the for loop iteration, and we keep the rows in the vcf
which match these positions using the command grep. With this filtering we are not
including the file’s headers. The row containing the samples’ ID is saved in a separate
file before filtering, and we externally checked from the command line that the column
order is the same in all generated files for each chromosome.

Right after this filtering, we also discard the columns that give additional information
about the SNP, such as what are the reference and alternative bases on that position,
the quality score that indicates the confidence that the variant is correctly called, filter
status, the format of the genotype fields. By doing so, we delete the information that
could differentiate between multiallelic SNPs, but they are still being included in the
model. This is a common simplification done in the genomics field, as we are mainly
interested in representing if a sample has an alternative variant or not, rather than
what precise nucleotide is in that alternative variant, disregarding the possible different
effects these variants could have down the transcription processes. This is why Rsid
nomenclature is unique for the SNP position, and not for the alternative alleles.

Once the vcf is filtered, the genotype is re-encoded with bash command sed to be easier
to work as ML features, changing 0/0, 0/1 and 1/1 for 0, 1 and 2, respectively.

Once this has been done for all 22 chromosomes, all filtered files are concatenated,
generating a single table with all the SNPs of the core genes and their genotype in each
sample. Since we are treating SNPs as features, we need them as columns, not rows.
Due to the large size of the table, we transpose the numeric part of the table (transposing
the chromosome and position columns separately afterwards) with the C++ script
vcf generation /transpose matrix.cpp. Regarding the chromosome and position
columns, we need to merge them into a single identifier. We do so by using their
Rsid, once again using the look-up SNP table extracted with BioMart. Now we can
concatenate back together SNP identification and their genotypes, now having each
SNP as a column.

Finally, we add three columns containing the sample identification, their sex and the
number of CAG repetitions (extracted from the sample information file) as the first three
columns, and we have a first version of the feature matrix, occupying approximately
11GB.

4.2.2 Alternative variant prevalence filtering

To reduce the dimensionality of our data in the most unbiased fashion possible, in the
concept engineering we presented the option at hand: filtering out those SNPs which are
homozygous for the reference variant in more than 99% of the subjects, or equivalently
only taking the SNPs for which at least 1% of the samples have an alternative variant.
This is done with Python in the script data preprocessing/alternative prevalence

colsuming.py.

The filtering is done by applying a boolean mask to the feature matrix. This mask is
created from an initialized vector containing as many indices as SNPs, and each value,
which starts as zero, will ultimately be the number of subjects which have at least one
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copy of the alternative variant. This way if all subjects had at least one copy of the
alternative variant in a certain SNP, the corresponding index of that SNP in the vector
would contain the total number of samples of the dataset.

As the table to filter is so large and loading it entirely onto processing memory can
make everything slower and more expensive in terms of computation resources, the
script reads it line by line (one subject at a time). It then looks at all SNPs genotypes
one by one, adding 1 to the SNP index of the already mentioned vector if the genotype
is different from 0 (either 1 or 2). Once the iterator has gone through the entire matrix,
the boolean mask is created by comparing each vector value with the minimum value
chosen as threshold, which is the 1% of the total number of samples.

This mask is then applied to the feature matrix by opening an output file in write mode
and opening again our feature matrix in read mode, and for each line read, it applies
the mask and writes it onto the new output matrix.

The final matrix contains 339886 features, which means we are including 339884 SNPs
in the models.

4.2.3 Toy example matrix

The filtered version of the table achieved with the previous step takes 5GB of storage,
having reduced 6GB of memory. Still, to make further developments faster to build
and test, a toy example of 50MB is generated with 900 samples and 70k SNPs, forcing
to include the SNPs of the genes which are some of the known HD modifiers candi-
dates (MLH1, MLH3, GRIK2, GRIN2A, GRIN2B, UCHL1, APOE, ASK1, MAP3K5,
PPARGC1A), and the SNPs of HTT, and picking randomly the rest to sum up to 70k.
This is done in subsampling/random sample snps pick.ipynb.

4.2.4 AO normality check

In the concept engineering section on ML models we have stated that AO can be
considered a normally distributed variable through the approximation of the Central
Limit Theorem. This approximation can be tested both graphically and statistically.

We can do two different graphical tests: fitting the AO vector to a normal distribution
and plotting the fitted curve on the histogram of the experimental data to see how
accurate is the fit (Figure 6a); and a Q-Q plot (Figure 6b). Both tests show a normal
distribution.

Statistically, several tests were run: Shapiro-Wilk, Kolmogorov-Smirnov and normal-
test, all from Scipy ’s module stats. These tests take as the null hypothesis that the
data comes from a normal distribution, so a p-value lower than 0.05 would indicate
that there is enough evidence to reject the null hypothesis, and thus would be con-
trary to the normal approximation. When run over the raw AO all three tests reject
the null hypothesis, and again when transforming the entire raw AO vector to try to
make them more normal (logarithmic, reciprocal, exponential, Box-Cox, Yeo-Johnson,
standardization).
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(a) Normal fit over actual AO histogram. (b) Q-Q plot of AO.

Figure 6: Graphical normality tests.

The problem lies in overpowering the tests with a too large number of samples. When
the vector was split into 30 subsets and each subset was tested individually, more than
80% of the subsets did not reject the null hypothesis. We can consequently treat AO as
a normally distributed variable and continue implementing a wider set of model options.

4.3 Regression models

All Python code to train and test the ML models was first tested using the toy example
in the same Jupyter Notebook, and once the code was optimized, a separate Python
script for each model was created to execute them in parallel. All these scripts can be
found in the directory code/regression models/individual models.

Each individual script follows the same structure:

1. Import dependencies, including the custom functions to load data and evaluate
the model performance contained in separate scripts inside the same directory.

2. Declare the working directory and the different directories which will be accessed
throughout the script, as well as the paths to the data files.

3. Load the feature matrix as a sparse array with the custom function read sparse

and the outcome vector as a Numpy array.

4. Scale the CAG column of the feature matrix with the custom function scale CAG,
and the outcome vector with the pickled scaler aooStandardScaler generated in
the script regression models/aoo scaler.py.

5. Split the data in training and testing sets with the function train test split

of the Sklearn’s module model selection. We ensure that the samples set aside
for testing across different scripts are the same samples by setting the same ran-
dom state number. The testing set size is set to the 30% of the total number of
samples.
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Model Parameter Parameter ranges

Lasso
alpha [0.005, 0.01, 0.05]

max iter [1000, 2000]

Elastic Net

alpha [0.005, 0.01, 0.05]

l1 ratio [0.2, 0.5, 0.9]

max iter [5000, 10000]

Random Forest

ccp alpha [0.001, 0.01, 0.04, 0.1]

max depth [2, 4, 6, 7]

n estimators [10,20,30,40]

XGBoost (approx)

reg alpha [0, 0.1, 0.5]

max depth [3, 5]

n estimators [10, 20, 40, 80]

XGBoost (hist)

reg alpha [0, 0.5, 0.8]

max depth [2, 3, 5]

n estimators [5, 10, 15, 20]

Table 3: Grid search parameter values for trained models. All parameters not stated
here were left with the default value.

6. Model definition, different in each script, followed by a dictionary of hyperparam-
eters to test in a grid search.

7. Grid search with 5 fold cross validation using the Sklearn’s function GridSearchCV,
from the model selection module, over the training sets, using the default R2 scor-
ing as the metric to evaluate the trained model on the validating set in each fold.

8. Extract the best estimator fitted with the previous grid search, and pickle it in a
sub-directory inside the results folder to examine it further on a separate script.

9. Evaluate the training of the model using the custom function model description,
saving the generated plot as a png image in the results directory.

10. Evaluate the model performance with the custom function model metrics, saving
the generated outputs in the results directory.

The custom functions are explained in greater detail in the following subsections. The
parameter values included in the grid search were chosen on the preliminary testing done
with the toy example in the notebook, starting with standard values and tuning them
to ranges closer to the best parameters chosen in each execution. When running the
scripts which use the entire dataset, we also executed the scripts again (when possible)
changing the parameter ranges if the chosen hyper parameters in the first execution
were one of the limit values to ensure we were not limiting the best possible model
performance in this aspect.

The models that were chosen as most suitable for our objective and the parameters
tested in their grid search are presented in Table 3.

The OLS script differs slightly from the models above, as it is a simple linear regression
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with no hyperparameters to tune, and the feature matrix given to the model only
contains the variables sex and CAG repeat length. The cross validation is performed
with the function cross validate of the samemodel selection module as the grid search
function, with the most similar configuration as the rest of cross validations performed
(returning the best trained estimator, doing 5 folds and scoring with R2).

With such a large dataset it is very difficult to obtain an unbalanced split if done
randomly. Nevertheless, we also checked in the testing notebook that the split does not
affect the balance of the dataset with regards to sex, CAG and AO distributions. This
was done by plotting the amount of samples from each sex at each set in a bar plot,
and the distribution of CAG lengths in each set with boxplots, separating also by sex
(see the results in appendix A).

Each Python script was executed through a Slurm job, creating batch scripts for each
model. The maximum resources given are 200GB for execution, with a time limit of 24
hours. Any model configuration which took more than a day to execute was discarded.

4.3.1 Feature matrix loading

The feature matrix is loaded in the model training scripts using read sparse X, a func-
tion created in the script regression models/individual models/data loading.py.
Trying to load the matrix directly using Pandas or Numpy was too demanding memory-
wise. Our dataset is made of mostly zeros, as the reference genotype is the predominant
one. Hence the usage of a sparse matrix, which only saves the non-zero elements and
its indices, reducing drastically the memory needed for script execution.

As the matrix is not saved as a sparse matrix in its directory, we need to convert it. We
could load once the matrix with a computationally demanding tool such as the ones
provided by Pandas or Numpy, convert it to a sparse matrix and save it as such to
directly access the sparse version from the model scripts, or create a function which
allows reading the original matrix directly. Using this last option we avoid having
multiple copies of the same information in our memory. This is done by reading the
dense matrix by chunks, converting these chunks into csr (Compressed Sparse Row)
matrices, and concatenating the sparse chunks:

1 # Initialize an empty list to store the chunks

2 chunks = []

3

4 # Open the file

5 with open(X_path , ’r’) as file:

6 # Read header line

7 header = file.readline ().strip().split("\t")

8

9 # Initialize a list to store chunk data

10 chunk_data = []

11

12 # Read the file in chunks

13 while True:

14 # Read chunk_size lines

15 for _ in range(chunk_size):

16

17 line = file.readline ()
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18

19 if not line:

20 break # Reached end of line

21

22 data = line.strip ().split("\t")

23

24 # Add feature data to row vector as float32

25 rowdata = [np.float32(val) for val in data [1:]]

26

27 # Add row vector to chunk_data list

28 chunk_data.append(rowdata)

29

30 if not chunk_data:

31 break # No more data to read

32

33 # Convert the chunk data to a CSR matrix

34 chunk_sparse = csr_matrix(chunk_data)

35

36 # Append the chunk to the list

37 chunks.append(chunk_sparse)

38

39 # Clear chunk data for the next iteration

40 chunk_data = []

41

42 # Concatenate the list of CSR matrices into a single CSR matrix

43 X = vstack(chunks)

It is important to note that the sparse matrix does not include the sample names to
be able to fix the data type of the matrix to 32 bit floats, and thus reduce even further
the memory usage. Using 16 bit integers would be even better, but as we scale CAG
between 0 and 1, we need a float data type.

The final X is the sparse matrix which is returned when calling this function. The
function itself takes two parameters: X path where the matrix to read is saved, and
chunk size, with default 100, which is the amount of rows read once at a time from the
dense matrix. The bigger the chunk size, the larger the working memory requirement.

4.3.2 Scaling functions

After loading the data we scale the CAG feature and the outcome vector AO. CAG
scaling is performed by giving the sparse feature matrix to the function scale CAG,
created in the script regression models/individual models/data loading.py. This
function takes the second column of the sparse matrix, corresponding to CAG values,
and performs a Min Max scaling over it. To ease computations, we extract the column as
a Numpy array, scale it, and reallocate the array as a sparse matrix (using the function
csr matrix) from the sparse module of the Scipy package. The function returns the
entire sparse matrix, now with CAG scaled between 0 and 1.

The AO scaling is done through a standard scaler, generated once executing the script
regression models/aoo scaler.py. The script takes the file which contains the AO
vector, loads it as a Numpy array, converts it to a 1 dimension array and uses it to fit
the StandardScaler from the preprocessing module of Sklearn with the method fit.
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The generated scaler is then saved with a pickle format, as later on we need to convert
the scaled values of AO back to their original range in a controlled manner. When the
saved scaler object is loaded in the model training scripts, it transforms AO values with
the StandardScaler method transform, without needing to fit it again.

4.3.3 Evaluating functions

Two custom functions were created to evaluate the model after training:

a. model description, intended for seeing whether the model is overfitted by plot-
ting the predictions of the training samples versus their actual values and by
computing the percentage of deviance explained by the model. The in-
put parameters are the regressor object, the feature matrix, the outcome vector,
and optionally the outcome scaler if we want the plot to represent the values
scaled back to the original AO values. The predictions are computed inside the
function with the regressor object’s method predict. Then the percentage of
deviance explained by the model is calculated with Sklearn metrics ’ function
explained variance score. If the scaler is passed as a parameter, both pre-
dictions and actual values are transformed to the original range with the scaler
method inverse transform. Finally the plot is done with matplotlib, using the
function hexbin to plot a heatmap containing the density of points inside each
hexagon that splits the plotting area. We use a heatmap approach rather than
plotting each sample as a point in a scatter plot because a scatter is not as infor-
mative when we have thousands of samples overlapping. The subtitle of the plot
contains the value of the explained variance.

b. model metrics, which returns the metrics of the model (calculated using the pre-
dictions of the test set), the model parameters and a plot to visually see how close
are the predictions to their real values. The main structure is similar to the pre-
vious function described, but this time around the input data must be the feature
matrix and outcome vector of the testing samples. The metrics computed here are
the coefficient of determination R2, mean squared error MSE and mean
absolute error MAE. Their values are written in a text file, alongside the pa-
rameters of the model, obtained with the regressor object method get params.
The plot generated with this function is made up of two subplots, one plotting
the predictions versus their actual values as in the model description plot, and
another representing the residuals of the predictions versus the predictions, to see
whether the error in predictions is bigger along a specific range or it is homo-
geneous over all predictions. Both plots have a dashed line which shows where
should all points fall in a perfectly fitted model (the function x = y in the case
of predictions over actual values, and the line at y = 0 in the residuals plot). In
this case we also use hexbin plots.

4.4 Results presentation

Apart from seeing how well each model explains the AO effect with the given feature
matrix through the outputs of the evaluating functions, we also want to see which
are the features that contribute the most to each trained model. In the least squares
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methods, this can be done by looking at the values of the optimized coefficients. In the
tree based methods, feature importance changes across packages. In XGBoost, we can
see feature importance through two amounts: weight and gain. Weight is the number of
times a feature appears in a tree across all trees in the model, so a higher weight means
that many trees have considered that feature important in their tree building process.
Gain represents the average improvement in accuracy of the decision tree when used
across all trees in the model. This is a more direct way of calculating the contribution
of a feature to the model’s performance. Sklearn’s Random Forest already has a feature
importance property, which is the Gini importance.

These feature importance amounts are extracted from the regressor objects pickled
just after training them, and loaded into regression models/model results.ipynb.
Then the most important features, selected using the feature importance measurement
suited for each model type, are related to the SNP they represent, and a sorted table
presenting the results is assembled, containing the columns SNP, importance amount
(coefficient, gain or Gini importance), gene and GO term. These tables are saved as
text files.

To further present our findings in a simple way, we can do plots following the Manhattan
plot format used in GWAS: the horizontal axis represents the genome positions, starting
from chromosome 1 up, and on their corresponding relative positions over a chromo-
some, each SNP is represented as a bar, with its height being the feature importance
measurement of the represented model. In least square methods, the vertical axis will
be the coefficient value of a SNP, which means that it can take both positive and nega-
tive values (whether a SNP coefficient is positive or negative is valuable information and
we must make it visible). With tree-based methods, the vertical axis will be the gain or
Gini importance of each SNP, and thus will only have positive values. These plots are
done in regression models/results visualization/model results plots.ipynb.

From the results tables we can also see from which GO term are the genes of the
SNPs contributing to each model. This information is best seen using a segmented
bar chart that visualizes the distribution of GO categories across the different mod-
els. Each bar represents a different model, and the segments within each bar rep-
resent the proportion of various GO categories present in that model. The height
of each segment corresponds to the percentage of that particular GO category out
of the total GO categories for that model. We also include the background propor-
tions, the GO proportions in the feature matrix. This plot is generated in the notebook
regression models/results visualization/go contributions.ipynb. In the same
notebook we also compute a two-sided Fisher test to see which GO terms are signifi-
cantly enriched in the model’s representation compared to the background.
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5 Results

5.1 Baseline model

The current models of HD AO estimation predominantly rely on CAG repeat length,
with the explained variability ranging from 40 to 70%, depending on the source. With
the Enroll-HD dataset, a simple OLS model using as predictors sex and CAG achieves
an R2 of 0.5572. This indicates that the model can explain approximately 56% of the
variance in AO, based on the performance on a test set (observations not used during
training).

5.2 SNP models

The performance of the models that use genotype information will be compared to this
baseline to assess any improvement in prediction accuracy and to identify GeMs.

5.2.1 Metrics comparison

All models were subjected to extensive regularization, with hyperparameters tuned
through a grid search (see Table 3 in section 4). The selected hyperparameters for each
technique are detailed in Table 4. The final models were trained with these optimized
hyperparameters. The predictions computed on the training set predictions to check
for overfitting demonstrate satisfactory generalization capability (see appendix B).

Model Parameter Value

Lasso
alpha 0.01

max iter 1000

Elastic Net

alpha 0.01

l1 ratio 0.9

max iter 10000

Random Forest

ccp alpha 0.001

max depth 6

n estimators 40

XGBoost (approx)

reg alpha 0.5

max depth 3

n estimators 10

XGBoost (hist)

reg alpha 0.1

max depth 2

n estimators 20

Table 4: Hyperparameter values of the final models found using cross-validation.

The metrics from each resulting model are shown in Table 5, which includes the baseline
for easier comparison. The best performance, in terms of metric values, was achieved
by the XGBoost model using the histogram tree method, which improved the baseline
R2 by 0.03. The approximate tree method performed almost as well while requiring
less training time. Random Forest also achieved a similar R2, but it took more than
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Model R2 MAE MSE Training time Nº features

OLS 0.5572 0.5124 0.4462 11.3 ms 2

Lasso 0.5478 0.5188 0.4556 10.2 min 867

Elastic Net 0.5395 0.5247 0.464 13.4 min 1164

Random Forest 0.5866 0.4883 0.4165 180.5 min 1159

XGBoost (hist) 0.5908 0.4844 0.4123 13.7 min 33

XGBoost (approx) 0.5847 0.4904 0.4184 8.3 min 34

Table 5: Model metrics, execution time and number of features used, including the
baseline.

10 times the time required to train the XGBoost models. In contrast, the least squares
methods did not enhance the prediction compared to the baseline.

Thus, adding more features does not necessarily lead to better results. In addition, the
relationship between genetic information and AO seems to be non-linear since models
capable of capturing non-linear relationships, such as the XGBoost variants, outperform
regularized linear models, which did not uncover additional predictive information from
the provided features. These models can take interactions between SNPs into account
implicitly. This is in contrast with linear models, which need to explicitly incorporate
interaction terms in turn increasing the size of the models.

Comparing the plots produced to graphically study the model’s predictions reveals
interesting differences between the two methods. In Figure 7 we compare the best-
performing models of each type (similar plots for the other models can be found in
appendix B). Predictions of the least squares methods exhibit non-symmetric residuals,
underestimating AO at older ages and overestimating AO at younger ages. Conversely,
tree based methods show a more homogeneous distribution of residuals, although they
fail to predict the youngest AOs.

5.2.2 Feature importance

To further inspect the trained models, we examined the features they use. All models
identified CAG as the most important predictor. In tree-based methods, CAG is almost
always the splitting feature at the root node. However, the subsequent predictors vary
between models.

Using Manhattan-like plots, we can easily visualize the SNPs that contribute the most
to each model. Figure 8 shows two types of Manhattan plots, again showing just one
model of each method. Plots for the remaining models can be found in appendix C,
followed by the tables with the top SNPs of each model. The labeling of SNPs in these
plots does not indicate significance, it simply highlights some of the most important
genes in each model. Notably, certain genes are used across multiple models.

There is no single SNP which is used by all models, though there are intersections within
model groups. Between the two linear models, there is an overlap of 839 features. Given
that the Lasso model, which has the fewest features among the two, includes 866 SNPs,
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Figure 7: Comparison of least squares method prediction (Lasso), top image, and
tree-based method prediction (Histogram XGBoost), bottom image.

we can consider that both models are practically the same. This is further justified
upon realizing that the chosen l1 ratio for Elastic Net is 0.9, shifting its regularization
more towards a Lass-like regularization rather than an l2 regularization. The five
most important SNPs in these models come from the genes SMARCD3, FAN1, MLH1,
TCF7L2 and ESRRB. Interestingly, ESRRB has two SNPs with high coefficients but
opposite effects, rs8017707 hastens onset while rs2278687 delays it.

FAN1 and MLH1 are commonly reported AO GeMs [16]. TCF7L2 is not considered
to be an AO GeM, but a repressed expression of TCF7L2 in HD mouse models has
been proven to affect the myelin maintenance [67]. ESRRB is not a known AO GeM
either, although it is used as a pluripotency marker in HD induced pluripotent stem
cells from mice models in [68].

The effect of such coefficients, however, cannot be considered to be the cause of the
large variability of AO introduced at the start of this project. Since the coefficients
were estimated with standardized AO values, we can calculate the shift from the mean
that a unit change in the feature’s value causes by multiplying the coefficient’s value
by the AO’s original standard deviation, 11.58 years. A SNP with a related coefficient
of 0.03 would shift the AO prediction from the mean by 0.35 years if it only had one
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Figure 8: Manhattan plots of a least squares method (Lasso), top image, and a
tree-based method (Histogram XGBoost), bottom image.
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alternative variant, and by 0.69 years if both chromosomes had the alternative variant.
This demonstrates that AO variability cannot be explained by a single SNP, as AO can
shift up to 30 years from the mean AO in the most extreme cases.

This is also graphically illustrated in Figure 9, which shows the AO variability over
CAG values for a random subset of 500 samples. Cases with an alternative allele for
a specific SNP are highlighted in black. If the effect of the alternative variant were
significant, we would see these samples shifted consistently to one side or another of
the line representing the mean AO for each CAG repeat length. However, this is not
the case. The mean curve is calculated using the entire dataset to make it constant
between plots.

Figure 9: AO over CAG repeat length of 500 random samples, colored by the presence
of an alternative allele in SNPs rs61997076 (left) and rs144287831 (right).

Between the tree-based methods we only have two intersecting SNPs: rs10169129
(MYT1L) and rs118089305 (FAN1 ). The plots of samples colored by their genotype
over the CAG-AO plane in this two cases are different from the linear examples in the
density of samples with an alternative allele, being much smaller than in the cases of
the SNPs chosen by the linear models. This characteristic is seen in many more SNPs
chosen by the two XGBoost methods. Nevertheless, their effect on AO is not clearer
than the last examples.

The two XGBoost tree methods have 7 SNPs in common. The first two are the already
seen rs10169129 (MYT1L) and rs61997076 (FAN1 ), followed by rs141338757, an HTT
SNP whose alternative variant is very scarcely found but seems to delay AO in the
few samples which have it (Figure 11). The rest of SNPs are rs57013064 (CDYL2 ),
rs72841819 (BTRC ), rs118089305 (FAN1 ), and rs5743061 (PMS1 ).

Amongst the reviewed literature, we found SNPs which coincide with some of the top
SNPs amongst the models:

• rs144287831 from the mismatch repair gene MLH1, which is suspected to act
on CAG repeat instability [5]. This SNP is used by the linear models and XGBoost
(hist).
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Figure 10: AO over CAG repeat length of 500 random samples, colored by the
presence of an alternative allele in SNPs rs118089305 (left) and rs10169129 (right).

• rs79727797 from the transcription regulator geneTCERG1, which is associated
with a quasi-tandem repeat in the gene that hastens HD onset [69]. This SNP is
only used by XGBoost (hist).

These findings should not be interpreted as being genomic positions directly related to
the phenotype. We could be viewing a SNP in the same LD block as the effect causing
polymorphism. What is more informative, and indicative that the trained models
identified true signals, is the comparison at the gene level. Overall, the genes where the
SNPs with the highest importance as features in all models are located are consistent
with the results of the GWAS analysis conducted in a recent study by Lee et al. [8],
where the authors used the same dataset. Figure 12 summarizes their findings regarding
AO, labeling with solid arrows loci that are related significantly to the phenotype, and
including candidate modifier genes on top, in red those which are DNA maintenance
genes. Comparing these external results obtained with a different methodology than
ours with our Manhattan plots, we see that there are many similarities.

There are 3 genes with at least 1 SNP which is a feature in all 5 models: the already
mentioned FAN1 and MYT1L, both important AO modifier candidates, and CDYL2,
another gene from GO:0140110 as MYT1L, related to the transcription regulation.
While CDYL2 does not appear among potential AO modifiers, it is mentioned in a
profiling thesis of MSNs from HD mouse models by Fenster (2011) [70].

In summary, the majority of SNPs and genes highlighted by the feature importance
study summarized in this section are related to DNA maintenance machinery, aligning
with the initial hypothesis [6], and the regulation of transcription. This reinforces the
notion that the models have likely captured meaningful associations between genetic
factors and AO.

36



Exploring ML approaches for phenotype prediction of HD

Figure 11: AO over CAG repeat length of 500 random samples, colored by the
presence of an alternative allele in rs141338757.

Figure 12: GWAS by Lee et al. [8], showing significant associations between AO and
different chromosome loci.

5.2.3 GO enrichment analysis

Figure 13 illustrates the GO term proportions of the genes associated with all the
SNPs used in each model, juxtaposed with the initial proportions of features in the
data matrix used for training the models (background proportions).

Lasso, Elastic Net, and Random Forest models, with approximately a thousand features
each, closely resemble the largest background proportions. In contrast, the XGBoost
methods exhibit GO term proportions that deviate more from the background and
vary between them. Across all models, over 40% of the SNPs used as regressors belong
to GO:0140110 (transcription regulator activity), followed by terms related to protein
degradation and ubiquitin. The enrichment analysis shows the best performing XG-
Boost model has three enriched terms: GO:0006298 (mismatch repair), GO:0046655
(folic acid metabolism) and the Extra genes group. This last group is enriched by all
models, primarily due to multiple FAN1 SNPs. The term of transcription regulation is
only significantly enriched in Lasso, Elastic Net and Approx XGBoost. See appendix D
for the complete results of the enrichment test.
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Figure 13: GO terms proportions of the features used in each model plus the
background proportions.
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6 Execution schedule

In this section, we present the execution schedule for the project, which is meticulously
structured to ensure timely and efficient completion. The schedule encompasses a set
of project management tools: a comprehensive Work Breakdown Structure (WBS) to
delineate the tasks, a Program Evaluation and Review Technique (PERT) chart for
critical path analysis, and a GANTT chart to visually track activity progress over
time.

6.1 Work Breakdown Structure

The WBS delineates the project’s key components, providing a detailed roadmap for
successful execution. Our WBS is organized into four main parts: project preparation,
data preprocessing, machine learning regression models, and project writing. Each
segment is broken down into specific tasks to facilitate a clear understanding of the
project workflow and ensure systematic progress toward our goals. Figure 14 shows
what activities are included in each of these main parts. These individual activites are
described below, including their estimated duration.

Figure 14: WBS diagram of the project.
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1 Project preparation

1.1 Project planning Duration: 1 day

Set goals and time landmarks from the beginning of the project. Define the key
activities of the project, where to start and how. Talk over the work methodology
with the project tutor.

1.2 Bibliography research on HD Duration: 7 days

Literature review on the HD investigation stage, find out what has already been
done on the AO prediction challenge. It is essential to look for studies which explore
different pathways that could be related to disease mechanisms, most importantly
to disease onset. Review basic biology concepts related to SNPs. Keep track of the
references consulted through the refenerce management software Mendeley.

1.3 Core genes selection Duration: 2 days

From the literature review on HD mechanisms, assemble a list of genes to be included
in the models, either by individual genes (specially HD genetic modifiers) or by groups
of genes of a relevant pathway.

1.4 ML theory and packages research Duration: 5 days

Having read about the bibologic setting of the project, review the knowledge on ML
algorithms that can be useful towards achieving the project’s objective.

1.5 Data acquisition Duration: 1 day

Ask the project’s director for the Enroll-HD data, and understand how to handle it
through bash.

2 Data preprocessing

2.1 SNP look-up table generation Duration: 10 days

Assemble a table containing all SNPs registered for each defined core gene. Search for
possible tools which can return SNPs based on an input list of genes, and implement
the best option.
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2.2 Feature encoding and filtering Duration: 20 days

Assemble a first version of a feature matrix, filtering the original data using the look-
up table generated in the activity 2.1 to reduce the size of the dataset in a way which
makes the dataset more HD focused. Make the matrix have a ML compatible format:
observations in rows (each subject being represented by a row), the genotype being
encoded as an integer, clear headers.

2.3 Final feature matrix assembly Duration: 10 days

Filter the feature matrix obtained in activity 2.2 by minimum alternative variant
prevalence. Make a subset of this feature matrix for easy model testing, the toy
example.

3 ML regression models

3.1 Model training with toy example Duration: 30 days

Test the ML models proposed after defining the concept engineering in a notebook
with the toy example. Make prototypes of the custom functions to read large matri-
ces, to scale features and AO values, and to evaluate model training and performance.

3.2 Model training with entire dataset Duration: 15 days

Make separate scripts for each model to execute separately with the entire dataset.
Check that the resulting models are not overfitted, adjust the parameters of the grid
search to obtain the best model possible for each technique.

3.3 Results extraction and discussion Duration: 5 days

From the saved regressors obtained in activity 3.2, study which are the most im-
portant features contributing to the predictions, and present the results in the most
appropriate format for each model. Discuss the obtained results with the project’s
directors, and check for positive controls between the most relevant features found
across models.

4 Project writing

4.1 Background Duration: 7 days

Commit to paper the literature review done at the beginning of the project. Com-
plete throughout the project with new references found or with concepts which have
become relevant at some point during the process.

4.2 Concept engineering Duration: 7 days

After knowing what are the common practices in the environment where the project
is set, and what are the available resources, state what are the realistic options for
all the steps necessary to attain our objective.
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4.3 Detailed engineering Duration: 4 days

Describe what has been done and how regarding data handling, transformation,
feature selection, model training and results.

4.4 Results Duration: 4 days

Write the results and discussions produced during the activity 3.3.

4.5 Viability analysis and regulatory aspects Duration: 2 days

Think about the strengths and weaknesses of the project by creating a SWOT dia-
gram. Complement the knowledge about the project external limits by searching for
regulatory factors that may influence the applications of this project.

4.6 Execution schedule creation Duration: 1 days

Create an execution schedule made up of a PERT diagram to control which activities
should not be delayed, and a GANTT diagram to keep track of the activities that
need to be done throughout the project.

4.7 Conclusions Duration: 2 days

Write the final conclusions of the project once all activities are completed.

6.2 PERT diagram

PERT is a project management tool utilized to analyze and depict the tasks involved
in project completion. Table 6 outlines all activities along with their precedence re-
lationships and estimated duration. The PERT diagram takes this relationships and
represents them graphically, having each activity on an arrow. Each node is a project’s
landmark, having two times: t early (left number), which is the time when the activities
coming out of that node can be started, and t last (right number), the time when the
activities pointing to that node should be finished to avoid delays in the project. The
top number is simply a node identification.

The critical path is the combination of activities along which the time that its activities
can be started and the time when they should be finished is the same, meaning that
any delay in these activities affects directly the total duration of the project. Our
critical path is mainly formed by the initial literature review to select the core genes,
the feature matrix assembly and the model training. Any activity outside this path
can be postponed until a limit (before reaching the t last of the node to which they are
directed) without altering the project’s total duration.
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ID Activity name Dependencies Duration

A Project planning - 1

B Bibliography research on HD - 7

C Core genes selection B 2

D ML theory research B 5

E Data acquisition - 1

F SNP look-up table generation C 10

G Feature encoding and filtering E,F 20

H Final feature matrix assembly G,M 10

I Model training with toy example H 30

J Model training with entire dataset I 15

K Results extraction and discussion J 5

L Background writing B 7

M Concept engineering B,D 7

N Detailed engineering writing J 4

O Results writing K 4

P Viability analysis and regulatory aspects M 2

Q Execution schedule creation A 1

R Conclusions L,N,O,P,Q 2

Table 6: Activity table for the PERT diagram.

Figure 15: PERT diagram of the project.
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6.3 GANTT diagram

Figure 16: GANTT diagram of the project schedule, starting the 29th of January and
ending the 28th of May.
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7 Technical viability

To assess the technical viability of this research project a SWOT analysis is presented.
With it, we identify the strengths, weaknesses, opportunities and threats associated
with the technical aspects of the project in a structured framework to evaluate the
internal and external factors that could influence the project’s success from a techno-
logical standpoint. The diagram which summarizes the key points of the analysis is
presented in Figure 17.

Figure 17: SWOT analysis of the project.

By examining the strengths, we aim to highlight the technical capabilities and resources
that give the project a competitive edge. We can consider that the two major strengths
of the project are the dataset to which we have been given access and the professional
setting of HD researchers involved. The dataset contains information on all autoso-
mal chromosomes and a large number of SNPs per gene, which provides us with the
opportunity to expand our research without having information limits and reveal new
genetic modifiers. Additionally, the project is situated in a professional environment
with experienced HD researchers whom we can consult to check the validity of our lit-
erature findings, which is crucial for conducting a ML exploration with solid biological
foundations that can yield significant results disease-wise. My previous knowledge of
ML applications through Python also contributes to the strength of the project, making
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the model training phase quicker.

Conversely, identifying the weaknesses allows us to recognize the internal limitations
and challenges that could impede progress. The most significant weakness of the project
is related to one of our main strengths: the dimensionality of our data. Although it
gives us the power to study the whole genome, the computational resources needed to
include the entire genome are not available, necessitating a restriction on what infor-
mation we keep, which could potentially leave out important modifier points in the
process. Moreover, although we have institutional support for the biological aspect
of the research, I personally lack initial knowledge of the disease. Understanding the
biological aspect of the disease is key at the start of the project to choose the processes
on which to limit our search. This step can be biased due to a short period to get
acquainted with the disease, the literature on it, and the state-of-the-art procedures in
similar cases. Lastly, the results we might obtain are not as conclusive as an experimen-
tal study, which can empirically prove that a potential GeM has a true effect on disease
onset. We can only explain the results based on how each model gives importance to
each feature and provide possible biological theories on how that effect could occur.

The opportunities section focuses on external factors and trends that the project can
leverage to its advantage. The principal opportunity is that the algorithms tried in
this project are very simple. If they can improve the baseline, it is likely that a more
complex algorithm will be able to improve the AO prediction much more, especially
algorithms that model non-linear interactions such as Neural Networks. We could also
expand the model to include other processes and genes once the pipeline of the process
toward model training is created. An AO prediction algorithm that provides more
accurate predictions than the standard Langbehn’s formula could potentially become
a new clinical prediction tool in genetic counseling. It would also be a very useful tool
in research, allowing us to control for the effect of the already known modifiers to test
the effect of more polymorphisms and interactions between them.

Finally, the threats analysis considers external challenges and risks that could nega-
tively impact the project’s technical viability. The most direct threat to the research is
losing our originality aspect, as the technology used is very simple and easily accessible,
meaning that what we are doing can be done by many others simultaneously or even
before us. If the results achieved are good enough to propose a new AO prediction tool
for clinical application, the regulations surrounding technology testing and transfer are
very strict and require long, demanding procedures.
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8 Economic viability

Three main components are essential to this project: data, technical resources, and
human resources.

Data for this project was graciously provided by CHDI Foundation, Inc. as part of the
Enroll-HD study. CHDI Foundation is a nonprofit biomedical research organization
dedicated to collaboratively developing therapeutics for Huntington’s disease (HD).
The economic costs associated with data collection are not within the scope of this
project and therefore are not factored into our analysis.

Due to the substantial memory requirements of the data, analysis cannot be performed
using standard laptops. Instead, a computationally capable computer is necessary.
Most of the data manipulation and analysis were conducted on a remote computational
cluster provided by Creatio, a service that had been paid for years prior to the initiation
of this project. To estimate the cost of this service, we referenced the pricing of Amazon
Elastic Compute Cloud (Amazon EC2) from Amazon Web Services. Based on our
execution schedule (refer to section 6), we estimate that we utilized the cluster for
approximately 93 days. Assuming an average of 3 hours of code execution per day, with
a computational memory requirement of 10GB (or 10.74 GiB) and a Linux operating
system, we found that the most cost-effective instance is the t3.xlarge [71]. Opting
for the EC2 Instance Savings Plan for the minimum duration (1 year) would result in
a total cost of 1,287.72 USD, or alternatively, selecting the on-demand option would
amount to approximately 656.92 USD for four months, making it the more economical
choice. Notably, the personal laptop used to access the remote computational resources
is not considered a project expense.

Regarding human resources, the project team consists of myself and the supervising
tutor. As we were not directly compensated for our involvement in the project, human
resources are not considered as an economic limitation.

In conclusion, the primary economic consideration for this project is the acquisition of
a sufficiently powerful computing machine. If Creatio did not possess such a resource
prior to the project, the estimated total cost would approximate 656.92 USD.
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9 Regulatory and legal aspects

9.1 Enroll-HD data usage

The dataset used (“GWAS12345” data) involving human subjects is shared by the
CHDI foundation with qualified investigators given their institutional assurance of sub-
ject confidentiality and compliance with General Data Protection Regulation (GDPR)
2016/679 requirements with respect to personal data. This regulation ensures the pro-
tection and privacy of individuals’ data, particularly in sensitive research areas such as
HD. GDPR mandates rigorous controls over data handling, requiring that all personal
data be processed lawfully, transparently, and for a specific purpose [72].

The use of the data under GDPR involves several key considerations. Firstly, the data
must be anonymized or pseudonymized to protect the identity of the subjects. We
already received the data with anonymous identifications for each subject. We must
ensure that data usage is restricted to the stated research objectives when we asked
for the dataset to the foundation, and any deviation would require additional consent.
Furthermore, data security measures are implemented to prevent unauthorized access
or breaches, saving the data in password-protected machines. The principles of data
minimization and purpose limitation under GDPR mean that only the data necessary
for the ML models’ development and validation should be utilized. This compliance
not only protects the participants’ privacy but also enhances the ethical integrity of the
research. Therefore, throughout the thesis, stringent adherence to GDPR guidelines will
be maintained to uphold the trust and confidentiality placed by the CHDI Foundation
and the study participants.

9.2 Medical algorithms legislation

The models created throughout this thesis only have research purposes. If this was
to be applied as clinician support, several additional steps should be taken to ensure
compliance with the relevant regulatory frameworks. Firstly, the ML predictive soft-
ware would need to be evaluated to determine if it qualifies as a “Software as a Medical
Device” (SaMD) under the Regulation (EU) 2017/745 – Medical Device Regulation
(MDR) [73]. This regulation stipulates that any software intended to process, analyze,
create, or modify medical information must adhere to strict standards to ensure safety,
performance, and compliance with intended medical purposes. A thorough regulatory
assessment would be necessary to classify the software appropriately and to confirm it
meets all applicable requirements. By addressing these regulatory aspects, the transi-
tion from research to clinical application can be achieved responsibly, ensuring that the
benefits of the ML models are realized without compromising patient safety or legal
compliance.
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10 Conclusions and future outlook

This thesis explores the potential of ML models to predict the AO in HD using geno-
typing data, aiming to identify genetic variants significantly contributing to AO predic-
tion. The study benchmarks various regression models, comparing their performance
to a baseline model that relied on CAG repeat length and sex.

The baseline OLS model, using CAG repeat length and sex as predictors, explained
approximately 56% of the variance in AO. Among the tested models, the XGBoost
model using the histogram tree method achieved the best performance, with an R2 of
0.5908, improving the baseline by 3%. Other tree-based methods like Random Forest
and approximate XGBoost also performed well, while regularized linear models like
Lasso and Elastic Net did not outperform the baseline although they were able to
rediscover known GeMs and propose new candidates. The better performance of tree-
based methods suggests that the relationship between genetic information and AO is
non-linear and that these models are better suited for capturing complex interactions
among genetic features. This points towards a future research direction of exploring
algorithms which can better fit these non-linear interactions such as Neural Networks.

Given the limited number of observations compared to the number of features, a strategy
to overcome this fundamental problem was required. To that end, we have implemented
regularization, cross-validation, and ensemble techniques, successfully addressing the
problem in all models.

CAG repeat length consistently emerged as the most significant predictor across all
models. Several SNPs were identified as important across different models. Notably,
SNPs in genes such as FAN1, MLH1, TCF7L2, ESRRB, and MYT1L were highlighted.
The identified SNPs are consistent with known GeMs of HD and mechanisms related to
DNA maintenance, transcription regulation, and protein degradation, reinforcing the
validity of the models’ feature selection. We found that the effect of individual SNPs on
AO was relatively small, indicating that AO variability cannot be attributed to single
genetic variants alone but rather a combination of multiple genetic factors.

Gene Ontology enrichment analysis revealed that the most important SNPs identified
by the models were associated with genes involved in transcription regulation, protein
degradation, and DNA mismatch repair. Notably, genes related to DNA maintenance
machinery were consistently highlighted, aligning with existing literature on GeMs of
HD. The best performing XGBoost model, in particular, significantly enriched the terms
of mismatch repair and folic acid metabolism, plus the group containing other possible
GeMs.

One important assumption worth noting is that we encoded the SNP genotype by
considering the effect of a homozygous SNP for the alternative allele to be double the
effect of a heterozygous SNP. This assumption could be biologically inaccurate. Another
simplification is that the CAG repeat length used here is not representative of the actual
CAG repeat length found in patients, as it is an unstable mutation that undergoes
somatic expansions differently in various tissues. These expansions are thought to
accelerate the disease process [19], so controlling for different CAG lengths in different
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tissues other than blood and considering the age at which the mutation was genotyped
could improve the AO prediction models. Finally, the CAG length typically used in AO
prediction, including in this project, is the longest mutation of the two chromosomes,
which is the dominant one. However, studies suggest there may be an interaction
between the two alleles [4]. Although the primary focus of this thesis was on the
effect of SNPs rather than CAG length, uncontrolled variables could still influence the
phenotype we are trying to explain.

In conclusion, the application of machine learning models to predict AO in HD us-
ing genotypic data demonstrated that incorporating additional genetic features beyond
CAG repeat length can modestly improve prediction accuracy. The study confirmed the
relevance of known GeMs and identified new potential candidates for further investiga-
tion. These findings enhance our understanding of the genetic factors influencing HD
onset and highlight the complexity of the disease’s genetic architecture. Future research
could focus on refining these models and exploring the biological mechanisms under-
lying the identified genetic associations to develop targeted interventions for delaying
HD onset.
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[34] S. Klöppel, C. Chu, G. C. Tan, et al., Automatic detection of preclinical neurode-
generation presymptomatic huntington disease, 2009. [Online]. Available: http:
//www.cmmt.ubc.ca/clinical/hayden.

[35] J. A. Ciarochi, V. D. Calhoun, S. Lourens, et al., “Patterns of co-occurring gray
matter concentration loss across the huntington disease prodrome,” Frontiers in
Neurology, vol. 7, SEP Sep. 2016, issn: 16642295. doi: 10.3389/fneur.2016.
00147.

[36] D. Bzdok, M. Krzywinski, and N. Altman, Points of significance: Machine learn-
ing: A primer, Dec. 2017. doi: 10.1038/nmeth.4526.

[37] Z. Ghahramani, Probabilistic machine learning and artificial intelligence, May
2015. doi: 10.1038/nature14541.

[38] D. Bzdok, N. Altman, and M. Krzywinski, Points of significance: Statistics versus
machine learning, Apr. 2018. doi: 10.1038/nmeth.4642.

53

https://doi.org/10.1007/978-3-031-05616-1_4
https://doi.org/10.1007/978-3-031-05616-1_4
https://doi.org/10.1016/B978-0-7234-3658-4.00005-6
https://doi.org/10.1016/B978-0-7234-3658-4.00005-6
https://doi.org/10.1111/j.1399-0004.2004.00241.x
https://doi.org/10.1002/ajmg.b.30992
https://doi.org/https://doi.org/10.1001/archneur.63.6.883
http://archneur.jamanetwork.com/
http://archneur.jamanetwork.com/
https://doi.org/10.1136/jnnp.2007.128728
http://www.cmmt.ubc.ca/clinical/hayden
http://www.cmmt.ubc.ca/clinical/hayden
https://doi.org/10.3389/fneur.2016.00147
https://doi.org/10.3389/fneur.2016.00147
https://doi.org/10.1038/nmeth.4526
https://doi.org/10.1038/nature14541
https://doi.org/10.1038/nmeth.4642


Exploring ML approaches for phenotype prediction of HD

[39] P. P. Silva, J. D. Gaudillo, J. A. Vilela, et al., “A machine learning-based snp-set
analysis approach for identifying disease-associated susceptibility loci,” Scientific
Reports, vol. 12, 1 Dec. 2022, issn: 20452322. doi: 10.1038/s41598-022-19708-
1.

[40] P. Harper, C. Lim, C. David, and P. Disease, “Ten years of presymptomatic
testing for huntington’s disease: The experience of the uk huntington’s disease
prediction consortium,” J Med Genet, vol. 37, pp. 567–571, 8 Aug. 2000. doi:
10.1136/jmg.37.8.567.

[41] A. Drouin, G. Letarte, F. Raymond, M. Marchand, J. Corbeil, and F. Laviolette,
“Interpretable genotype-to-phenotype classifiers with performance guarantees,”
Scientific Reports, vol. 9, 1 Dec. 2019, issn: 20452322. doi: 10.1038/s41598-
019-40561-2.

[42] S. Szymczak, J. M. Biernacka, H. J. Cordell, et al., “Machine learning in genome-
wide association studies,” vol. 33, 2009. doi: 10.1002/gepi.20473.

[43] A. Ziegler, A. L. DeStefano, and I. R. König, “Data mining, neural nets, trees -
problems 2 and 3 of genetic analysis workshop 15,” vol. 31, 2007. doi: 10.1002/
gepi.20280.

[44] S. Sathe, J. Ware, J. Levey, et al., Enroll-hd: An integrated clinical research plat-
form and worldwide observational study for huntington’s disease, Aug. 2021. doi:
10.3389/fneur.2021.667420.

[45] J. Ouwerkerk, S. Feleus, K. F. van der Zwaan, et al., “Machine learning in hunt-
ington’s disease: Exploring the enroll-hd dataset for prognosis and driving capa-
bility prediction,” Orphanet Journal of Rare Diseases, vol. 18, 1 Dec. 2023, issn:
17501172. doi: 10.1186/s13023-023-02785-4.

[46] J. Ko, H. Furby, X. Ma, et al., “Clustering and prediction of disease progression
trajectories in huntington’s disease: An analysis of enroll-hd data using a machine
learning approach,” Frontiers in Neurology, Jan. 2023. doi: 10.3389/fneur.
2022.1034269.

[47] J. M. Lee, K. Correia, J. Loupe, et al., “Cag repeat not polyglutamine length
determines timing of huntington’s disease onset,” Cell, vol. 178, 887–900.e14, 4
Aug. 2019, issn: 10974172. doi: 10.1016/j.cell.2019.06.036.

[48] S. Carbon, A. Ireland, C. J. Mungall, S. Shu, B. Marshall, and S. Lewis, “Amigo:
Online access to ontology and annotation data,” Bioinformatics, vol. 25, pp. 288–
289, 2 Jan. 2009, issn: 1367-4811. doi: 10.1093/bioinformatics/btn615.

[49] D. Szklarczyk, A. L. Gable, D. Lyon, et al., “String v11: Protein-protein as-
sociation networks with increased coverage, supporting functional discovery in
genome-wide experimental datasets.,” Nucleic acids research, vol. 47, pp. D607–
D613, D1 Jan. 2019, issn: 1362-4962. doi: 10.1093/nar/gky1131.

[50] S. Cherlin, R. A. Howey, and H. J. Cordell, “Using penalized regression to predict
phenotype from snp data,” vol. 12, BioMed Central Ltd., Sep. 2018. doi: 10.
1186/s12919-018-0149-2.
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A Appendix A

Figure A.1: Age distribution in training and testing sets.

Figure A.2: Number of samples in training and testing sets separated by sex.
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Figure A.3: CAG repeat length distribution in training and testing sets separated by
sex.
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B Appendix B

B.1 Training predictions

(a) Lasso model. (b) Elastic Net model.

Figure B.1: Least squares methods predictions over training set.

(a) Hist XGBoost model. (b) Approx XGBoost model.

Figure B.2: XGBoost predictions over training set.
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Figure B.3: Random Forest predictions over training set.
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B.2 Testing predictions

Figure B.4: Elastic Net predictions of testing set.

Figure B.5: Random Forest predictions of testing set.
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Figure B.6: Approx XGBoost predictions of testing set.
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C Appendix C

C.1 Manhattan Plots

Figure C.1: Manhattan Plot of Elastic Net coefficients.
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Figure C.2: Manhattan Plot of Random Forest.

Figure C.3: Manhattan Plot of Approx XGBoost.
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C.2 Feature importance tables

SNP Coefficient Gene GO

rs17173770 0.03656065 SMARCD3 GO:0140110

rs61997076 0.033996664 FAN1 extra genes

rs144287831 0.029233377 MLH1 GO:0006298

rs10885398 -0.028514741 TCF7L2 GO:0140110

rs8017707 -0.026800904 ESRRB GO:0140110

rs1543108 -0.025090193 CTSO GO:0004197

rs2278687 0.023999402 ESRRB GO:0140110

rs1650649 -0.022265296 MSH3 GO:0006298

rs5743063 -0.021884425 PMS1 GO:0006298

rs7500197 0.021786358 GRID2 GO:0035249

rs2025533 -0.020597318 KLF12 GO:0140110

rs11293 0.01907387 ABCA1 GO:0042157

rs12531177 0.018855557 PMS2 GO:0006298

rs35782477 0.018614033 ANAPC13 GO:0043161

rs2262948 0.017807763 ZNF675 GO:0140110

rs2500286 -0.017432597 PRDM16 GO:0140110

rs9653966 -0.017269952 XPC GO:0006298

rs2875957 -0.017144997 CDYL GO:0140110

rs9312893 0.016999085 FBXL7 GO:0043161

rs17302697 0.016957078 NR3C1 GO:0035249

rs6856354 0.016785666 CTSO GO:0004197

rs3740405 0.015683452 FHIT GO:0031625

rs12422904 0.01560022 FOXN4 GO:0140110

rs201804677 -0.01556026 ZNF431 GO:0140110

rs2972071 -0.015510717 RTN4 GO:0031625

rs7316068 -0.015349336 SLC17A8 GO:0035249

rs3132292 -0.015137427 RXRA GO:0140110

rs6987733 0.015124317 UBR5 GO:0043130

rs3512 0.014648994 AGBL4 GO:0098930

rs274883 0.014632466 LIG1 GO:0006298

rs13208655 -0.014536453 JARID2 GO:0043130

Table 7: Lasso top 30 SNPs by feature importance.
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SNP Coefficient Gene GO

rs17173770 0.03365854 SMARCD3 GO:0140110

rs61997076 0.03142683 FAN1 extra genes

rs10885398 -0.029996023 TCF7L2 GO:0140110

rs8017707 -0.02911162 ESRRB GO:0140110

rs144287831 0.026012165 MLH1 GO:0006298

rs2278687 0.025964953 ESRRB GO:0140110

rs1543108 -0.024854636 CTSO GO:0004197

rs1650649 -0.023066632 MSH3 GO:0006298

rs7500197 0.022596601 GRID2 GO:0035249

rs5743063 -0.022342289 PMS1 GO:0006298

rs1917533 -0.021176575 ACTN1 GO:0140110

rs35782477 0.020563638 ANAPC13 GO:0043161

rs2025533 -0.020403964 KLF12 GO:0140110

rs201804677 -0.019823277 ZNF431 GO:0140110

rs9312893 0.019517148 FBXL7 GO:0043161

rs2262948 0.019241005 ZNF675 GO:0140110

rs12531177 0.019214965 PMS2 GO:0006298

rs2500286 -0.019203568 PRDM16 GO:0140110

rs11293 0.018643003 ABCA1 GO:0042157

rs2875957 -0.018634377 CDYL GO:0140110

rs3132292 -0.01829819 RXRA GO:0140110

rs3512 0.017774522 AGBL4 GO:0098930

rs12422904 0.016952137 FOXN4 GO:0140110

rs199779315 -0.016934201 ZBTB7C GO:0140110

rs9653966 -0.016681628 XPC GO:0006298

rs17227161 0.016438538 RUNX1 GO:0140110

rs2118638 -0.016436614 TCERG1L GO:0140110

rs3740405 0.01640511 FHIT GO:0031625

rs2777803 0.016330175 ABCA1 GO:0042157

rs7316068 -0.01607368 SLC17A8 GO:0035249

rs6856354 0.016003186 CTSO GO:0004197

Table 8: Elastic Net top 30 SNPs by feature importance.
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SNP Gini Importance Gene GO

rs77752857 0.001420583 NEK6 GO:0031625

rs1043742 0.000995081 CUL2 GO:0043161

rs11201880 0.000837296 GRID1 GO:0035249

rs10169129 0.000586326 MYT1L GO:0140110

rs342 0.000577957 ABCB1 GO:0031625

rs10516927 0.000570458 GRID2 GO:0035249

rs143394620 0.000508776 EGFR GO:0031625

rs118089305 0.000503646 FAN1 extra genes

rs17767868 0.000498691 ZFAT GO:0140110

rs17760586 0.000495167 ZFAT GO:0140110

rs6835277 0.000484814 MAML3 GO:0140110

rs11293 0.000446546 ABCA1 GO:0042157

rs56141370 0.000431173 NEK6 GO:0031625

rs185978838 0.000424241 PGAP1 GO:0042157

rs7986341 0.000419989 KLF12 GO:0140110

rs62206880 0.000419746 ASXL1 GO:0140110

rs146175915 0.000415588 CDYL2 GO:0140110

rs138114240 0.000404046 HHAT GO:0042157

rs3512 0.000400071 AGBL4 GO:0098930

rs4297916 0.00039359 MYT1L GO:0140110

rs149682363 0.000386536 MAF GO:0140110

rs191435283 0.000355128 EXT1 GO:0035249

rs111434006 0.000333013 MSH3 GO:0006298

rs6582088 0.000332103 TRHDE GO:0008242

rs181825 0.000320682 ADARB1 GO:0051402

rs903372 0.000305975 LRRFIP1 GO:0140110

rs147241096 0.000285983 CUL2 GO:0043161

rs17703967 0.000284305 ASB4 GO:0031625

rs141939884 0.000273324 LPIN1 GO:0140110

rs111506732 0.000272638 TRHDE GO:0008242

rs60026188 0.000270552 MYT1L GO:0140110

Table 9: Random Forest top 30 SNPs by feature importance.
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SNP Gain Gene GO

rs3512 19.99822235107422 AGBL4 GO:0098930

rs115282897 17.450469970703125 PGAP1 GO:0042157

rs10169129 16.90975570678711 MYT1L GO:0140110

rs2160644 15.064666748046875 PID1 GO:0006112

rs245100 14.723200798034668 DHFR GO:0046655

rs62142184 13.985157012939453 CAPN13 GO:0004197

rs7487625 13.919387817382812 HMGA2 GO:0140110

rs61997076 13.325885772705078 FAN1 extra genes

rs57013064 13.008210182189941 CDYL2 GO:0140110

rs118089305 12.423885345458984 FAN1 extra genes

rs11678557 11.876806259155273 PID1 GO:0006112

rs116530043 10.932844161987305 GRIN3B GO:0035249

rs113363660 10.814685821533203 ACTN1 GO:0140110

rs112574961 10.742321968078613 CASZ1 GO:0140110

rs607549 10.549150466918945 CIT GO:0051402

rs8100660 10.517244338989258 UNC13A GO:0035249

rs11487218 10.287309646606445 EGFR GO:0031625

rs72841819 9.312403678894043 BTRC GO:0043161

rs4083635 9.14719009399414 PDLIM1 GO:0140110

rs1908771 8.820863723754883 AEBP2 GO:0140110

rs151067506 8.694870948791504 TEAD1 GO:0140110

rs141338757 8.484679222106934 HTT extra genes

rs17720191 8.309086799621582 FBXO38 GO:0043161

rs1860968 7.850630760192871 DTNBP1 GO:0098930

rs111434006 7.695502281188965 MSH3 GO:0006298

rs2536065 7.573413848876953 PRKAG2 GO:0006112

rs893507 7.270939826965332 TCERG1L GO:0140110

rs77047816 7.227169036865234 ZHX2 GO:0140110

rs5743061 6.460529327392578 PMS1 GO:0006298

rs146339947 5.831992149353027 ZNF670 GO:0140110

rs999449 5.206699848175049 RORA GO:0140110

rs12380722 4.913415908813477 KDM4C GO:0140110

rs149622839 4.911685943603516 DHFR GO:0046655

Table 10: Approx XGBoost SNPs by feature importance.
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SNP Gain Gene GO

rs10169129 21.090667724609375 MYT1L GO:0140110

rs61997076 17.790246963500977 FAN1 extra genes

rs141338757 15.449226379394531 HTT extra genes

rs2393777 14.811421394348145 HNF1A GO:0140110

rs245105 14.218707084655762 DHFR GO:0046655

rs2316153 11.806947708129883 CDYL2 GO:0140110

rs144287831 11.36458683013916 MLH1 GO:0006298

rs79727797 11.205156326293945 TCERG1 GO:0140110

rs139931071 10.507678985595703 STAM GO:0051402

rs2293317 10.322250366210938 FAN1 extra genes

rs149561857 10.169393539428711 MAPT GO:0098930

rs57013064 10.138040542602539 CDYL2 GO:0140110

rs72841819 10.081390380859375 BTRC GO:0043161

rs10779614 9.906745910644531 PTPN14 GO:0140110

rs274883 9.713150024414062 LIG1 GO:0006298

rs1543108 9.711298942565918 CTSO GO:0004197

rs45506797 9.655911445617676 PAX3 GO:0140110

rs2949568 9.652124404907227 FAN1 extra genes

rs1476130 9.63764762878418 ESRRG GO:0140110

rs6856354 9.573089599609375 CTSO GO:0004197

rs118089305 9.558370590209961 FAN1 extra genes

rs117606009 9.500611305236816 HOXB7 GO:0140110

rs34837214 9.182149887084961 UBR5 GO:0043130

rs6875184 8.844964027404785 DHFR GO:0046655

rs6875489 8.843254089355469 RHOBTB3 GO:0043161

rs2074927 8.828694343566895 CLC GO:0004197

rs3789821 8.79568099975586 SMARCD3 GO:0140110

rs34065247 8.734062194824219 ESRRB GO:0140110

rs4053615 8.51319694519043 BACH2 GO:0140110

rs113189219 7.644144058227539 PLAGL1 GO:0140110

rs4908624 7.346027374267578 CAMTA1 GO:0140110

rs5743061 6.857511520385742 PMS1 GO:0006298

Table 11: Hist XGBoost SNPs by feature importance.
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GO Lasso Elastic Net Hist XGBoost Approx XGBoost Random Forest

GO:0140110 1.1687 1.1263 0.5569 0.4654 1.1143

GO:0043161 0.7598 0.8009 0.7326 0.709 0.9038

GO:0031625 1.362 1.3084 0.0 0.4995 1.2984

GO:0035249 0.7434 0.7764 0.0 1.1388 0.7799

GO:0098930 0.7487 0.7556 0.6506 1.3011 0.7216

GO:0051402 0.832 0.8526 0.6995 0.6776 0.8767

GO:0042157 0.9395 1.0129 0.0 0.9123 0.9367

GO:0004197 0.8981 1.0214 3.4052 1.0287 0.6375

GO:0006112 0.68 0.7841 0.0 5.2856 0.9762

GO:0043130 0.2872 0.4826 1.9962 0.0 1.143

GO:0006298 2.2613 1.5241 8.5739 5.3471 1.1612

GO:0016579 0.3036 0.3014 0.0 0.0 0.5311

GO:0008242 1.6281 2.1865 0.0 0.0 2.6887

GO:0046655 1.3075 1.4612 18.7844 18.1784 0.7319

extra genes 3.1109 3.3109 70.6949 38.1752 2.3217

Table 12: GO enrichment analysis results: odds ratio for each comparison against the
background counts obtained with a Fisher test.

GO Lasso Elastic Net Hist XGBoost Approx XGBoost Random Forest

GO:0140110 0.0272 0.0493 0.1077 0.0336 0.0733

GO:0043161 0.0486 0.0558 1.0 1.0 0.3942

GO:0031625 0.017 0.0177 0.2601 0.721 0.0242

GO:0035249 0.0958 0.0895 0.4162 0.6966 0.0893

GO:0098930 0.1268 0.0828 1.0 0.6687 0.0437

GO:0051402 0.3611 0.3515 1.0 1.0 0.43

GO:0042157 0.849 0.9345 0.6269 1.0 0.8048

GO:0004197 0.6876 0.8621 0.0675 1.0 0.036

GO:0006112 0.2543 0.3829 1.0 0.0231 1.0

GO:0043130 0.0039 0.0245 0.4013 1.0 0.5547

GO:0006298 0.0005 0.0582 0.0065 0.0589 0.4977

GO:0016579 0.0229 0.0074 1.0 1.0 0.0943

GO:0008242 0.2437 0.0412 1.0 1.0 0.0035

GO:0046655 0.5561 0.3158 0.0058 0.0062 0.8042

extra genes 0.0087 0.0012 0.0 0.0001 0.035

Table 13: GO enrichment analysis results: p-values for each comparison against the
background counts obtained with a Fisher test.
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