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Machine learning one-dimensional spinless trapped fermionic systems with neural-network
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We compute the ground-state properties of fully polarized, trapped, one-dimensional fermionic systems
interacting through a Gaussian potential. We use an antisymmetric artificial neural network, or neural quantum
state, as an Ansatz for the wave function and use machine learning techniques to variationally minimize the
energy of systems from two to six particles. We provide extensive benchmarks for this toy model with other
many-body methods, including exact diagonalization and the Hartree-Fock approximation. The neural quantum
state provides the best energies across a wide range of interaction strengths. We find very different ground states
depending on the sign of the interaction. In the nonperturbative repulsive regime, the system asymptotically
reaches crystalline order. In contrast, the strongly attractive regime shows signs of bosonization. The neural
quantum state continuously learns these different phases with an almost constant number of parameters and a
very modest increase in computational time with the number of particles.
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I. INTRODUCTION

The emergence of machine learning (ML) within science
has revolutionized numerous fields, from ab initio quantum
chemistry to cosmology, by directly “learning” from data
to understand physical phenomena [1]. Learning algorithms
based on neural networks are underpinned by universal ap-
proximation theorems (UATs), which allow for, in principle,
an arbitrary accuracy of data representation. UATs are, how-
ever, existence theorems, which state that such benefits are
possible, but do not necessarily indicate how such benefits are
achieved [2–5]. This allows for a wide range of research to
build ML-based algorithms that represent physical phenom-
ena, most notably the quantum many-body problem.

The first use of ML in a quantum many-body system was
pioneered in Ref. [6] and focused on discrete systems. Since
then, several different physical systems have been tackled
with these techniques [7–14]. Applications in quantum chem-
istry, like FermiNet [15,16] or PauliNet [17,18], have paved
the way for accurate solutions of the electronic Schrödinger
equation [19–23]. The marriage of quantum states and neural
networks has led to the novel field of neural-network quantum
states (NQSs) [9].

ML-based NQS approaches solve the Schrödinger equa-
tion variationally by representing the wave function as a
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neural network [6]. NQSs are formulated so that they explic-
itly respect the symmetry of the many-body wave function,
e.g., antisymmetry in the case of fermions. So far, there are
indications that NQSs can compress the relevant information
of many-body wave functions in a compact way [6,8,15–
17,24–26]. While NQSs come in many different setups, first-
quantized, real-space formulations are often employed to
perform integrals over many-particle variables, using Monte
Carlo (MC) techniques. This approach essentially boils down
to variational Monte Carlo (VMC) [27] with more expressible
Ansätze. Moreover, the use of a ML framework allows for effi-
cient updates of NQS parameters via automatic differentiation
(AD) techniques [28]. Having direct access to the many-body
wave function has the added benefit of allowing, in principle,
the calculation of any many-body observable and, potentially,
the simulation of many-body dynamics [6].

Our focus here is on providing a minimal implementa-
tion of an NQS for solutions of the many-body Schrödinger
equation in a simple system of potential interest in con-
densed matter. As a proof of concept, we turn our attention to
one-dimensional systems, which are computationally simpler
than three-dimensional ones, and fully polarized (or spinless)
fermions. We assume the fermions to be in a harmonic trap
and their pair-wise interactions are characterized via a finite-
range interaction. This exploratory work acts as a stepping
stone towards the creation of NQSs that describe more com-
plex nuclear systems [29–33].

Under certain circumstances, bosons and fermions can
hold similar properties. This phenomenon is referred to as
the Fermi-Bose duality and is particularly prominent in one
spatial dimension settings [34,35]. The duality manifests itself
with strongly interacting fermions acting like weakly interact-
ing bosons and vice versa [36]. Traditionally, the duality has
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been discussed in terms of spin-1/2 particles with contact in-
teractions [37,38]. In the case of fully polarized fermions, the
Pauli exclusion principle restricts our wave function Ansatz
to be antisymmetric with respect to particle position, which
results in the physical effect of forbidding s-wave interactions.
The corresponding interactions primarily consist of p-wave,
odd-parity terms [36,39–42]. We build a toy model here,
which neglects some physically relevant information by uti-
lizing an even-parity interaction, and we discuss benchmarks
between several different methods to ascertain the quality of
the NQS Ansatz.

Interestingly, the considered quantum many-body problem
is nowadays within reach experimentally in ultracold atomic
laboratories worldwide [43,44]. Starting from the production
of degenerate Fermi gases [45], experimentalists are able to
tune the interactions among fermions and study the equa-
tion of state [46] and even produce few-fermion systems in
a controlled way [47].

In this paper, we benchmark a minimalist implemen-
tation of the FermiNet NQS in Ref. [15] to represent
one-dimensional trapped fermionic systems. In Sec. II, we
define the system and the toy model Hamiltonian we consider.
We provide a detailed explanation of the NQS and the bench-
mark many-body methods in Sec. III. A detailed analysis of
the obtained results is provided in IV. We provide conclusions
and an outlook of future research in Sec. V.

II. SYSTEM AND HAMILTONIAN

We study a system of A identical fermions with mass m
trapped in a harmonic trap of frequency ω. We neglect spin
in the following, assuming that the system is fully polarized.
We focus on a finite-range Gaussian interparticle interaction,
which yields the following Hamiltonian in real space:

Ĥ = − h̄2

2m

A∑
i=1

∇2
i + 1

2
mω2

A∑
i=1

x2
i

+ V√
2πσ

∑
i< j

exp

[
− (xi − x j )2

2σ 2
0

]
. (1)

The Gaussian interaction is characterized by an interaction
strength V and an interaction range σ . We choose these so
that, in the limit σ → 0, the potential becomes a contact
interaction, → V δ(xi − x j ).

We use harmonic oscillator (HO) units throughout the re-
mainder of this work: lengths are defined in terms of aho =√

h̄/mω and energies are measured in units of h̄ω. The Hamil-
tonian becomes

Ĥ = − 1

2

A∑
i=1

∇2
i + 1

2

A∑
i=1

x2
i

+ V0√
2πσ0

∑
i< j

exp

[
− (xi − x j )2

2σ 2
0

]
. (2)

The interaction range is redefined, so that σ0 = σ/aho. The
dimensionless interaction strength V0 is related to the dimen-
sionful constant V by V0 = V/(ahoh̄ω).

For spinless fermions, the presence of a finite-range inter-
action is a necessary condition to observe interaction effects.
Indeed, without spin, the many-body wave function is anti-
symmetric on the space variables {xi, i = 1, . . . , A}. For pairs
of particles i �= j, the wave function cancels whenever xi =
x j . As a consequence, contact interactions do not contribute to
the energy of the system. Naïvely, one expects such interaction
effects to be relatively small compared with interactions of the
same strength in the spinful case.

The specific choice of a Gaussian form factor for the inter-
action is dictated mostly by practical reasons [37,43]. First and
foremost, because of the simplicity of the associated integrals,
Gaussians can be easily handled in many-body simulations,
including exact diagonalization [48] as well as stochastic
methods [49]. Second, as already noted above, normalized
Gaussian interactions can be used to approach the contact-
interaction limit by tuning the range parameter σ0 → 0. Third,
our ultimate goal is to simulate nuclear physics systems.
Finite-range interactions are particularly relevant for nuclear
physics applications, where the range of the interaction is
related to the mass of meson force carriers [50]. There are
examples of nuclear interactions with a Gaussian (or a sum
of Gaussians) form factor, like the Gogny force [50]. We also
note that Gaussian interactions have been extensively used in
the analysis of several many-body systems, including the so-
called “Gaussian characterization” of universal behavior [51].

Previous literature on spinless fermions has employed odd-
parity interactions, which in the zero-range limit behave as
V (x) ≈ ←−

∂x δ(x)
−→
∂x . This is the correct limit for the interaction

of spinless fermions and it cannot be reproduced with a Gaus-
sian potential. As such, our results should be considered as an
academic toy model, and for this reason we focus on method-
ological benchmarks as opposed to experimental applications.
We leave the study of odd-parity potentials within an NQS
framework for further study.

A. Noninteracting case

Before providing more details on how interactions are
considered, we turn our attention briefly to the analytically
solvable, noninteracting case. In the absence of spin, each
fermion can occupy a single-particle level with energy εn =
n + 1/2 characterized by a single quantum number n. The
single-particle wave functions are HO eigenstates,

ϕn(x) = Nne− x2

2 Hn(x), (3)

with Hn(x) the nth Hermite polynomial and Nn =
1/(2nn!

√
π )1/2, a normalization constant. The many-body

wave function is a pure Slater determinant. It factorizes into
an overall Gaussian envelope times a determinant involving
only Hermite polynomials:

	(x1, . . . , xA) = 1√
A!

[

A−1

n=0Nne− x2
i
2
]

×

∣∣∣∣∣∣∣∣
H0(x1) H0(x2) . . . H0(xA)
H1(x1) H1(x2) . . . H1(xA)

...
...

. . .
...

HA−1(x1) HA−1(x2) . . . HA−1(xA)

∣∣∣∣∣∣∣∣
.

(4)
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This, in turn, may be further simplified in terms of Vander-
monde determinants [37,52].

The total energy of the many-body system is easily ob-
tained by adding up all the occupied single-particle state
energies,

EA =
A−1∑
n=0

εn = A2

2
, (5)

and it scales with A2. These noninteracting benchmarks are
useful, especially in setting up the NQS Ansatz. In particular,
as we explain below, we pretrain neural networks to the non-
interacting solution. This provides an initial confined, stable,
and physical result from which we can start the relatively
demanding variational simulations.

B. Density matrices

We can further characterize correlations in the system by
employing many-body density matrices [53,54]. The one-
body density matrix (OBDM) for the A-body system is defined
as the following A − 1 integral over the many-body wave
function,

ρ(x′
1, x1) = A

∫
dx2 · · · dxA	∗(x′

1, x2, . . . , xA)

× 	(x1, x2, . . . , xA). (6)

The diagonalization of ρ in the space representation,∫
dx̄ρ(x, x̄)φα (x̄) = nαφα (x), (7)

gives rise to the so-called natural orbitals φα (x) as well as
the occupation numbers nα . α is a discrete index running, in
principle, from α = 0 to infinity. The spectral decomposition
of the OBDM allows for the following expansion:

ρ(x′
1, x1) =

∞∑
α=0

nαφ∗
α (x′

1)φα (x1). (8)

We work with a normalization such that
∑

α nα = A.
In a noninteracting or a Hartree-Fock (HF) ground-state,

one finds

nα =
{

1, α < A
0, α � A.

(9)

The sum in Eq. (8) is thus naturally truncated to A terms. In
addition, for the noninteracting case, the natural orbitals cor-
respond to the single-particle states of Eq. (3). Performing the
sum for a noninteracting system, one finds that the OBDMs
have the form

ρ(x′
1, x1) = exp

(− x′2
1
2 − x2

1
2

)
√

π
R(A)(x′

1, x1), (10)

where R(A)(x′
1, x1) is a polynomial of at most order A − 1 in

both x1 and x′
1 [55–57].

One can also prove that a system with the occupation
numbers described by Eq. (9) has a Slater determinant as a
many-body wave function [58]. In other words, deviations
from the uncorrelated values nα = 0 and nα = 1 provide a
solid metric for intrinsic correlations in the system [42].

The two-body density matrix is also an excellent indicator
of intrinsic correlations. It is usually defined as [53]

�(x′
1, x′

2; x1, x2) =
(

A

2

) ∫
dx3 · · · dxA	∗(x′

1, x′
2, . . . , xA)

× 	(x1, x2, . . . , xA).

The positive-definite diagonal elements of this matrix provide
the pair correlation function (PCF) of the system,

g(x1, x2) = �(x′
1 = x1, x′

2 = x2; x1, x2), (11)

which has a direct physical interpretation in terms of the prob-
ability of finding a particle at position x1 when another one
lies at x2 [54]. Closed expressions can be found for this object
in the noninteracting case, too. In this case, the correlation
function has a structure of the type

g(x1, x2) = exp
(− x′2

1
2 − x2

1
2

)
√

π
(x1 − x2)2G (A)(x1, x2), (12)

where G (A)(x1, x2) is again a polynomial of at most order
2(A − 2) in both x1 and x2 [57].

III. METHODS

We now describe the different quantum many-body ap-
proaches that we have used to benchmark our few-body
solutions. We start by providing a description of the NQS
Ansatz, and then move on to describe briefly the exact diag-
onalization method and the Hartree-Fock approximation for
the cases with A > 1. We end the section with a description
of two additional numerical methods employed to benchmark
specifically the A = 2 case.

A. Neural quantum states

1. Architecture

Our NQS Ansatz is a fully antisymmetric neural network,
inspired by the implementation of FermiNet [15]. The in-
put to our network are the A positions of fermions in the
system, {xi, i = 1, . . . , A}, and the output is the many-body
wave function 	θ (x1, . . . , xA), which depends on a series
of network weights and biases, succinctly summarized by a
multidimensional variable θ . We provide a schematic repre-
sentation of the network architecture in Fig. 1. The network is
composed of four core components: equivariant layers, gener-
alized Slater matrices (GSMs), log-envelope functions, and a
summed signed-log determinant function. We now proceed to
describe each of the four core components of the NQS.

In order for the NQS to respect antisymmetry, we en-
force permutation equivariance across the network. The inputs
to our network are an A-dimensional vector, x ∈ RA. The
outputs of an equivariant layer, hi, are such that any per-
mutation of the input variables π permutes the outputs, too,
hi(xπ (1), . . . , xπ (A) ) = hπ (i)(x1, . . . , xA).

To ensure equivariance, we follow the methodology of
Ref. [59]. We preprocess the input layer by adding a
permutation-invariant feature, which in our case is the mean
many-body position, μ(0) = 1

A

∑A
i=1 xi. The input to the first

layer is then a concatenation of x ∈ RA, and the correspond-
ing mean position, μ(0) ∈ R. This defines an input feature
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FIG. 1. The NQS Ansatz of this work for L = 2 equivariant layers of H hidden nodes. The input to the network are the {xi, i = 1, . . . , A}
particle positions. These are processed by two equivariant layers (light gray areas), to ensure that the NQS maintains equivariance throughout
its forward pass. The gray dashed lines denote the row-wise application of the shared layer. The nonlinear activation function is a hyperbolic
tangent (blue area). The output of the second intermediate equivariant layer h(2) is passed through a shared linear layer to yield an A × A matrix
M which is element-wise multiplied with the log-envelope layer (orange area) thus yielding a GSM φ (green area). In a final step, an LU
decomposition is used to find the sign and logarithm of the absolute value of the many-body wave function, 	θ .

f (0) ∈ RA×2, such that

f (0)
i j =

{
xi if j = 1

μ(0) if j = 2.
(13)

The first equivariant layer (L = 1) of the network is shown
in a gray area in Fig. 1. Each row of the input feature
is passed through a shared layer to build an intermediate
H-dimensional representation of the positions, h(1) ∈ RA×H

(yellow area in Fig. 1). This layer consists of a linear trans-
formation with weights W (1) ∈ RH×2 and biases b(1) ∈ R1×H

combined with a nonlinear activation function. We choose a
hyperbolic tangent activation function, since this is continuous
and differentiable, a requirement when it comes to computing
many-body kinetic energies. Explicitly, each row h(1)

i ∈ R1×H

reads

h(1)
i = tanh

(
f (0)
i W (1)T + b(1)). (14)

The second equivariant layer (L = 2) takes the output of the
first layer, h(1), and their column-wise averages μ(1) ∈ RH to
define a new input feature f (1) ∈ RA×2H such that

f (1)
i j =

{
h(1)

i j if j � H

μ
(1)
i if j > H.

(15)

Similarly to the first layer, the input feature is passed through a
shared layer with weights W (2) ∈ RH×2H , biases b(2) ∈ R1×H ,
and the same nonlinear activation function. A residual connec-
tion is also added so that each row of the output h(2)

i ∈ R1×H

explicitly reads

h(2)
i = tanh

(
f (1)
i W (2)T + b(2)) + h(1)

i . (16)

After the second equivariant layer, h(2) goes through a linear
layer (see beige area in Fig. 1) with shared weights W (M ) ∈
RA×H and biases b(M ) ∈ R1×A to output a matrix M ∈ RA×A.
Each row Mi ∈ R1×A reads

Mi = h(2)
i W (M )T + b(M ). (17)

At this stage, asymptotic boundaries conditions, such as the
wave function decaying at infinity, are not yet incorporated. To
this end, we employ an envelope function [60], implemented
in the log-domain for numerical stability. The log-envelope
matrix has the form

ln(ei j ) = −(
xiW

(e)
j

)2
, (18)

where i and j represent the index for the particle and the or-
bital, respectively, and W (e) ∈ RA is the weight that is learned
to determine the log-envelope of each orbital. We use Gaus-
sian envelopes, instead of the exponential ones of Ref. [15],
which are closer to the noninteracting solution of Eq. (4).

We then take an element-wise product of M with the cor-
responding envelope,

φi j = Mi jei j, (19)

which yields a GSM. Each element of this matrix, φi j =
φ j (xi; {x/i}), may be understood as a generalized single-
particle orbital on state j. This orbital depends not only on
the position of the particle i but also on the positions of other
particles in a permutation-invariant way, as indicated by the
notation {x/i} [15]. This has the significant benefit of making
all orbitals depend on all particle positions, which amounts
to an efficient encoding of backflow correlations in the wave
function [10,15,61], as discussed further in Sec. III A 4.

Finally, we take the determinant of the GSM φ to obtain
an antisymmetric wave function. This is generically referred
to as a generalized Slater determinant (GSD). In principle, a
single GSD is sufficient to represent any antisymmetric wave
function [62]. Empirically, we also observe that one GSD
captures nearly all the correlations in this system [30]. We
note that the GSD is computed within the log-domain via an
lower-upper (LU) decomposition. This choice is dictated by
numerical stability.

Our computational framework is general, and we can mod-
ify both the number of equivariant layers, L, and the number
of hidden nodes, H . Our NQS uses L = 2 equivariant layers
of H = 64 hidden nodes each. This choice shows optimal
results in terms of convergence according to numerical tests
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that can be found in Ref. [30]. Our code can also work with
more than one GSM and GSDs. If we were to employ D
GSDs to describe the system, each determinant would have
its own envelope through a D dependence of the envelope
weights W (e) in Eq. (18) [30]. In the D > 1 case, the GSDs
are summed via a signed-log-sum-exp function. We direct the
reader to Appendix A of Ref. [30] for a complete and detailed
explanation of the numerical implementation in the D > 1
case.

2. Variational Monte Carlo

Having defined the NQS Ansatz, we now turn to discussing
the details of how we implement a quantum many-body solu-
tion to our problem. We solve the Schrödinger equation via
a VMC approach in two phases: a pretraining to an initial
target wave function, and an energy minimization to the un-
known ground-state wave function. The pretraining step can
be thought of as a supervised learning exercise, where we
demand that the network reproduces the many-body wave
function of the noninteracting system. The idea is to obtain
an initial state that is physical and somewhat similar, in terms
of spatial extent, to the result after interactions are switched
on. To do so, we minimize the loss,

LPre(θ ) =
∫

dx1 · · · dxA|	θ (x1, . . . , xA)|2

×
∑

i j

[φi(x j ; {x/ j}) − ϕi(x j )]
2,

where φi(x j ; {x/ j}) is an element of the GSM and ϕi is the
ith HO single-particle state, see Eq. (3). The loss can be
reformulated via MC sampling as

LPre(θ ) = EX∼|	θ |2

⎡
⎣∑

i j

[φi(x j ; {x/ j}) − ϕi(x j )]
2

⎤
⎦, (20)

where we define X = (x1, . . . , xA) as an A-dimensional ran-
dom variable (or walker) distributed according to the Born
probability of the many-body wave function |	θ |2.

Initially, a set of NW = 4096 walkers are independently
distributed at the origin of configuration space using a zero-
mean and unit-variance A-dimensional Gaussian distribution.
The pretraining phase is then iterated for 104 epochs. Each
epoch has three different phases. First, the NW walkers are
distributed in proportion to the Born probability of the NQS
via a Metropolis-Hastings (MH) algorithm [63,64]. We run 10
iterations of the MH algorithm per epoch. Second, we com-
pute the local loss values and back-propagate to evaluate the
gradients of the loss in Eq. (20) with respect to the parameters
θ . Third, we update the parameters using the Adam optimizer
of Ref. [65], with default hyperparameters except with a learn-
ing rate of 10−4. Once the pretraining is complete, the NQS
represents an approximate solution to the noninteracting case.

The next stage of our VMC approach is to minimize
the expectation value of the energy to find the ground-state
wave function in a reinforcement learning setting. Using stan-
dard quantum Monte Carlo notation, the expectation value of
the energy is formulated as a statistical average over local

energies,

E (θ ) = 〈	θ |Ĥ |	θ 〉
〈	θ |	θ 〉 = EX∼|	θ |2 [	θ (X )−1Ĥ	θ (X )]. (21)

Within statistical uncertainties, this expectation value abides
by the variational principle and E (θ ) is larger than the true
ground-state energy Eg.s..

We compute the kinetic energy in the log domain, which
leads to a local energy

EL(X ) ≡ 	θ (X )−1Ĥ	θ (X )

= −1

2

A∑
i=1

[
∂2 ln |	θ |

∂x2
i

∣∣∣∣
X

+
(

∂ ln |	θ |
∂xi

)2
∣∣∣∣∣
X

]

+
A∑

i=1

x2
i

2
+ V0√

2πσ0

∑
i< j

e
− (xi−x j )2

2σ2
0 . (22)

The walkers are propagated using an MH algorithm. With this
stochastic process, walkers can sample the arbitrary probabil-
ity distribution dictated by the wave function Born probability.
Furthermore, we follow the methodology of Ref. [19] to adapt
on the fly the width of the proposal distribution in the MH
sampler. The aim is to ensure that, on average, approximately
50% of the walkers accept the proposed configuration at each
step of the MH algorithm. This allows for the proposal distri-
bution to effectively scale with the system size, leading to a
more efficient thermalization of the Markov chain.

For the sake of numerical stability, we follow Ref. [15] and
use an �1 norm clipping, in which we calculate a window of
“acceptable” local-energy values. We choose an �1 norm as it
is more robust to outliers. For a batch of local energies, we
compute the local energy median, 〈EL〉, with an associated
�1 norm deviation σ�1 . The acceptable window is defined as
the range 〈EL〉 ± 5σ�1 . Any values outside the window are
replaced by the maximally accepted value in each side.

Once the expectation value of the energy is computed, we
update the parameters of our Ansatz using its gradients with
respect to θ ,

∇θE (θ ) = 2EX∼|	θ |2{[EL(X ) − E (θ )]∇θ ln |	θ (X )|}. (23)

The gradient of the energy is computed by applying reverse-
mode AD on the auxiliary loss function,

Laux(θ ) = 2EX∼⊥(|	θ |2 )
[⊥(

EL(X ) − EX∼|	θ |2 [EL(X )]
)

× ln |	θ (X )|], (24)

where ⊥(. . .) denotes the detach function [66]. The detach
function is a common ML implementation tool that allows
us to combine conveniently analytical calculations of gradi-
ents with an AD algorithm. When applying AD, the detach
function is, by definition, equivalent to the identity function
except that its derivative is equal to zero, i.e. ⊥(x) = x but
∂⊥(x)/∂x = 0. While the expectation value of Eq. (24) does
not equal the energy in Eq. (21), the derivatives of both
expressions with respect to the parameters of the NQS are
equal. The motivation for this auxiliary loss function over the
naïve implementation of Eq. (24) is numerical stability, as
it allows for a calculation avoiding higher-order derivatives.
One can prove that, by exploiting the detach function, the
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FIG. 2. Convergence of the expectation value of the energy for
the A = 6 system with V0 = −20 and σ0 = 0.5, as a function of the
epoch. The NQS Ansatz is shown as a blue solid line. The 99.7%
(three standard deviations) confidence interval of the MC energy
integral is shown with a shaded blue region. The final energy of the
NQS, calculated via the blocking method, is shown in the red dashed
line. For clarity, we show every 100th epoch in the convergence.

highest-ordered derivative that is required to compute the
gradient is the second-order derivative with respect to x for
the kinetic energy. A naïve application of AD on Eq. (21)
to compute the gradient of the energy would have led to a
third-order mixed derivative instead.

Just as in the pretraining phase, we use NW = 4096 walkers
and minimize the energy for 105 epochs. Each epoch starts
with 10 MH sampling steps, computes the local energies
through Eq. (22), and back-propagates the local gradients of
Eq. (24) in order to converge the NQS towards the ground-
state wave function. The parameters are updated using the
Adam optimizer with default hyperparameters except with a
learning rate of 10−4 [65]. We show in Fig. 2 the evolution
of the energy for one of the minimization runs, for A = 6,
V0 = −20, and σ0 = 0.5. This represents one of the most chal-
lenging cases presented here, with a relatively large number
of particles and a strong deviation from the noninteracting
case. We show both the average value of E (solid line) and
the 99.7% confidence interval of the integral of Eq. (21). We
find that in about 10 000 epochs the energy is within 0.15% of
the final value. The energy converges towards the ground state
steadily, with relatively small oscillations around a central
value (see inset of Fig. 2).

We assume that the NQS reaches the ground state after 105

epochs and freeze the parameters θ at that stage. To compute a
final estimate of the energy, we follow Ref. [67] and calculate
it over multiple batches via the “blocking” method. We use
104 batches of 4096 walkers each, for a total of ≈4.1 × 107

samples. We remove the aforementioned �1 norm clipping, so
as to not bias the final energy measurement. The final energy
(and its standard deviation) is taken by averaging over these
measurements. The total standard deviation is also obtained
employing the blocking method of Ref. [67]. The standard
deviation of an individual chain is defined as

σ 2
B = σ 2/(LB/Ncorr ), (25)

with σB and σ being the empirical standard deviation of a
block B and of all samples, respectively. LB is the length of
a given block B, with correlation length Ncorr. This standard
deviation is usually extremely small and does not affect our

conclusions. All the observables throughout this paper are
computed with this superset of samples, which allows for
sufficiently accurate measurements. More details on the im-
plementation of our NQS can be found in Ref. [30] as well as
the GitHub repository [68].

3. Scaling with particle number

We now briefly comment on the scaling of the NQS method
with the number of particles A. To assess the scaling, we
estimate the memory and time requirements of the four main
layers of our NQS in their forward pass. The first two layers
(gray areas in Fig. 1) have, including biases, H × (2 + 1)
and H × (2H + 1) parameters, respectively. We stress that
the number of parameters here is independent of the particle
number. These two layers are shared and applied on A row-
vectors, each corresponding to a different particle, so the size
of those layers is constant in A, while the time complexity
is linear in A. The two remaining layers, the GSM and log-
envelope layers, have, including biases, D × (H + 1) × A and
D × A parameters, respectively. For these two layers, the size
is linear in A, while the time complexity is quadratic in A.
Lastly, the final evaluation of the determinants of the GSMs is
parameter-free, but with a time complexity scaling as D × A3.

In practice, we have set H = 64, L = 2, and D = 1 while A
varies from two to six. Memory-wise, the dominant cost is the
storage of the intermediate layer weight matrix (quadratic in
H) despite being constant in A. For example, the A = 2 NQS
has 8580 parameters and the A = 6 NQS has 8844 parameters,
which corresponds to a small 3% increase due to the linear
dependence on A of the number of parameters. Regarding the
computational cost, the asymptotically dominant term is the
evaluation of the determinants (cubic in A for the forward
pass). In our simulations, however, we find that the increase
of walltime per epoch with A for our NQS is relatively small
for the system sizes studied. In the A = 2 case, the walltime
is approximately 0.1 s per epoch, whereas it raises to 0.3 s per
epoch in the A = 6 system. This linear scaling suggests that
we have not yet reached the asymptotically large A behavior.
Further profiling of our VMC simulations indicates that, for
A � 6, the dominant contribution in terms of walltime actually
comes from the MH sampling [69]. This part of the VMC
algorithm is significantly more time consuming than any of
the forward or backward network passes and hence should be
addressed in any time-optimization strategy. For reference, we
have run all our experiments on a single P4000 Quadro GPU
and the overall walltime may be significantly accelerated with
hardware improvements.

Finally, in all the above considerations we have assumed
H is kept fixed while A increases. The mild scaling laws that
are resulting from this assumption are of course limited by
the degradation of the expressivity of the network when A
increases. As a minimal requirement one must have A � H
to ensure that the GSMs are full-rank and the NQS is not
vanishing. To test how the expressivity of the network evolves
with A, we have performed some additional numerical tests
for the A = 12 system with the same values of L and D, but
changing H . While we do not have exact benchmarks to com-
pare with, we have found that, in this case, the NQS Ansatz
still reaches an energy lower than the corresponding HF upper
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bound for H > 16. The final energy values for H = 64, 128,
and 256 are essentially converged. We interpret this as a sign
that the network expressivity can still be kept under control
even if an increase of H might be needed to ensure that the
NQS bias remains negligible. Further explorations for larger
particle numbers need to be carried out to better characterize
any expressivity limits in our NQS Ansatz.

4. Backflow correlations

Our approach is different to previous ML implementa-
tions [15,31–33], particularly FermiNet, in various ways. We
drop the convolution layers, omit any accommodation of spin
dependency, use Gaussian envelopes instead of exponential
ones, and work with improved numerical stability on the sum
of GSDs. Crucially, we also do not incorporate any explicit
Jastrow factor. This does not hamper the quality of the corre-
sponding wave function, as we shall see below.

The most relevant aspect underlying the success of our
NQS implementation is its ability to incorporate backflow
correlations. In the noninteracting and the HF descriptions, the
many-body wave function is a Slater determinant of orbitals
that depend on single-particle positions alone [58,60,70]. In
our NQS implementation, we exploit the permutation equiv-
ariance together with a determinant layer, which introduces a
form of backflow to the wave-function representation [71–73].
This converts single-particle orbitals into quasiparticle or-
bitals with an extended, permutation-invariant dependence on
the position of all particles, and allows for a shift of the nodal
surface of the NQS wave function [74]. Backflow transforma-
tions allow us to incorporate correlations into the many-body
wave functions. Our NQS representation, in particular, pro-
vides a flexible, numerically cheap, and relatively universal
representation of these correlations [10,15], which can be
efficiently learned during the VMC process.

We perform an insightful numerical experiment to clarify
the importance of backflow capabilities in our NQS. The NQS
Ansatz can be easily modified to remove any backflow, by
eliminating the dependence on μ in the equivariant layers.
This procedure roughly reduces by a half the number of pa-
rameters of the model. Moreover, in a network with a single
Slater determinant and without backflow transformation, one
expects the variational process to simply lead to the HF de-
terminant. This is exactly what we observe in Fig. 3, where
we show energy minimization curves for A = 2 particles with
an interaction strength of V0 = −20 and a range σ0 = 0.5. The
figure provides results for the standard NQS architecture (with
backflow, blue solid lines) and for a modified NQS without
backflow (orange solid lines). The NQS without backflow
reaches the Hartree-Fock energy, which is the corresponding
optimal energy within a pure single-particle framework. It
also shows substantial oscillations around the energy mini-
mum. In contrast, after incorporating backflow correlations,
the NQS can reach (and, in fact, outperform) a direct diago-
nalization benchmark with minimal oscillations. We take this
as an indication that the presence of backflow in the Ansatz,
which is a consequence of permutational equivariance, gives
the NQS a remarkable ability to accurately represent beyond
mean-field correlation between fermions. Furthermore, the
statistical fluctuations of the energy are mitigated with the

FIG. 3. Convergence of the expectation value of the energy for
the A = 2 system with V0 = −20 and σ0 = 0.5, as a function of
the epoch. The standard NQS Ansatz (with backflow) is shown as
a blue solid line and overcomes the exact diagonalization benchmark
(dashed red line). An NQS Ansatz without backflow (orange line)
converges to the HF solution instead.

addition of backflow, which indicates that backflow is funda-
mental in achieving accurate ground-state energies.

B. Direct diagonalization

We have employed a direct diagonalization (or configu-
ration interaction) method to provide a benchmark for the
A-body NQSs. Specifically, we use the HO as the single-
particle basis. We express the Hamiltonian of Eq. (2) in second
quantization,

Ĥ =
A∑

α=1

εα n̂α + 1

2

∑
α,β,γ ,δ

Vαβ,δγ â†
α â†

β âγ âδ, (26)

where Vαβ,δγ is the matrix element in the single-particle HO
basis, with an analytical expression given in Ref. [75]. n̂α =
â†

α âα is the number operator, and â†
α (âα) are the fermionic

creation (annihilation) operators of the HO state α.
In our implementation, we truncate the basis according

to the many-body noninteracting energy, which also defines
a single-particle basis truncation. We consider only the first
Nmax = 20 single-particle HO modes for all particle numbers.
This is the maximum number of states allowed by our current
resources, which are limited by the precision in the calculation
of the interaction matrix elements. Even with these limita-
tions, the results of the repulsive regime are converged. In
general, the convergence is slower for attractive interactions,
as reported for instance in the zero-range case in Ref. [76].
Having created the many-body basis, we then construct the
Hamiltonian matrix and diagonalize it using the standard
Lanczos algorithm. For details of this method, please refer to
Refs. [48,77].

Our calculations are limited by the basis truncation Nmax,
which means that the results obtained through diagonalization
are not exact and can only provide upper-bound energies.
Using a larger basis would lead to better results, but the many-
body basis dimension scales exponentially with the number of
particles, making it impractical for large systems.

As a consequence of using the HO basis, we obtain less
error in the energy calculation for the repulsive interaction
regime than for an attractive interaction. As we shall see
below, this can be understood in terms of the spatial rear-
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rangement of the system. However, as the number of particles
increases even without changing the single-particle basis, the
accuracy of the results diminishes. In this article, we have only
considered the ground state, but we stress that this method also
provides predictions for excited states.

C. Hartree-Fock

We provide an additional benchmark by looking at the HF
ground state, which is a minimal uncorrelated Ansatz for the
many-body wave function. We solve the problem in coordi-
nate space, in keeping with the NQS implementation. This
representation is particularly useful in capturing the relatively
large changes in shape of the density distribution, which may
otherwise be hard to describe with fixed-basis approaches.

The HF orbitals φα (x) with α = 0, . . . , A − 1 are fully
occupied, with occupation numbers nα = 1. All the remaining
states with α � A are empty, nα = 0. The HF orbitals are used
to construct a one-body density matrix,

ρHF(x′
1, x1) =

A−1∑
α=0

φ∗
α (x′

1)φα (x1), (27)

and the corresponding density profile nHF(x) = ρHF(x′
1 =

x, x1 = x). The orbitals are obtained from the HF equations,[
−1

2
∇2 + 1

2
x2

]
φα (x) +

∫
dx̄�(x, x̄)φα (x̄) = εHF

α φα (x).

(28)

In the case of a finite-range interaction, the HF equations are
a set of A integro-differential equations. The HF self-energy is
the sum of a direct and a (nonlocal) exchange term,

�(x′
1, x1) = δ(x1 − x′

1)
∫

dx V (x1 − x)nHF(x)

+ V (x′
1 − x1)ρHF(x′

1, x1). (29)

The corresponding HF energy is computed from the sum of
single-particle energies and, as a consistency check, it can also
be obtained from the direct integral of the mean-field, with the
associated antisymmetry corrections [78].

We solve this set of self-consistent equations by iteration
on a discretized mesh of equidistant points. The kinetic term
is represented as a matrix using the Fourier grid Hamiltonian
method [79], which works so long as the mesh extends well
beyond the support of the wave functions. The mean-field can
be computed efficiently with matrix operations, and Eq. (28) is
reduced to an eigenvalue problem. We typically employ N =
200 grid points extending from x = −5 to 5 for small systems.
For systems with A > 4, which have larger sizes, the mesh
limits are extended to ±6 and we choose N = 240 points to
keep the same mesh spacing. A computational notebook for
the solution of the HF equations is available in Ref. [80].

D. Real-space solution for A = 2

In the following section, we use the A = 2 system to de-
termine which values of interaction strength and range are
interesting. We have exploited two more numerical methods
to solve specifically this problem.

For A = 2 particles, the Hamiltonian in Eq. (1) is partic-
ularly easy to handle. Following Refs. [41,81], we introduce
a center of mass (CoM), R = 1√

2
(x1 + x2), and relative co-

ordinate, r = 1√
2
(x1 − x2). With these, the Hamiltonian Ĥ =

ĤCM + Ĥrel separates into two commuting components,

ĤCM = −1

2
∇2

R + 1

2
R2, (30)

Ĥr = −1

2
∇2

r + 1

2
r2 + V0√

2πσ0

exp

(
− r2

σ 2
0

)
. (31)

The center-of-mass component is just an HO. The relative
Hamiltonian includes an HO as well as the Gaussian inter-
action component. We note that the Gaussian form factor in
relative coordinates has a different width and it is effectively
wider than the original interaction.

The CoM and relative Hamiltonians can be diagonal-
ized separately, providing eigenstates ϕα (R) and ψβ (r) with
eigenenergies εα and εβ , respectively. For the relative coordi-
nate, we need to solve the eigenvalue problem[

−1

2
∇2

r + 1

2
r2 + V0√

2πσ0

exp

(
− r2

σ 2
0

)]
ψβ (r) = εβψβ (r).

(32)

Because of the Pauli principle, the only acceptable solutions
are those that are antisymmetric in the relative coordinate,
ψβ (−r) = −ψβ (r). These correspond to odd values of β, and
hence the ground state will necessarily correspond to β = 1
rather than lowest-energy, space-symmetric β = 0 state. To
solve this problem numerically, we discretize the relative co-
ordinate in an evenly spaced mesh. As in the HF case, the
kinetic term is discretized as a matrix using the Fourier grid
Hamiltonian method [79]. We employ N = 200 grid points
extending from r = −5 to 5. A computational notebook for
this problem is also available in Ref. [80].

If a numerical solution to ψβ is available, the total two-
body wave function is the product,

	α,β (x1, x2) = ϕα

(
1√
2

(x1 + x2)

)
ψβ

(
1√
2

(x1 − x2)

)
. (33)

The total energy of the ground state is given by E = ε0 + ε1 =
1
2 + ε1. We only discuss the ground state of the system, but
note that this method can also provide the rest of the spectrum
for A = 2.

E. Perturbation theory for A = 2

Alternatively, one can solve for the energy εβ in Eq. (32)
using standard perturbation theory tools. We take the HO as
a reference state, so that ψ (0)

α = ϕα and ε(0)
α = εα , where ϕα

and εα are HO eigenstates and eigenvalues. The Gaussian
interaction term is then treated as a perturbation. We employ
known analytical expressions for the matrix elements Vαβ =

V0√
2πσ0

〈ϕα|e−r2/σ 2
0 |ϕβ〉 [82]. The zero-order results are just the

eigenvalues of the noninteracting confined two-particle sys-
tem, Eq. (5), which in the ground state yields E (0) = 2. Noting
that antisymmetry constraints force α and β in the matrix
elements Vα,β to take odd values, we find that the first-order
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perturbation theory (PT1) expression for the total energy is

E (1) = E (0) + V11 = 2 + V0√
2π

σ 2
0(

1 + σ 2
0

)3/2 . (34)

As expected, this expression is linear in the perturbation
strength V0. The slope of the energy dependence on V0 is
dictated by σ0. For small values of σ0, the slope grows
quadratically. In other words, the departure from the nonin-
teracting case is quadratic in σ0. For large values of σ0, in
contrast, the slope decreases like 1/σ0. This is to be expected
since, by construction, the parametrization of our interaction
term has such a 1/σ0 dependence.

Second-order (PT2) and third-order (PT3) perturbation
theory results can be readily obtained from the corresponding
matrix elements Vαβ . We use up to eight additional states in
the intermediate sums, which are already converged for all
practical purposes. We provide a computational notebook in
Ref. [80]. As we shall see below, these PT estimates allow
us to find regions of parameter space where nonperturbative
effects are particularly important.

IV. RESULTS

In this section, we show the results obtained for spin-
less fermionic systems from A = 2 to A = 6 with different
methods. We start with a discussion of the two-body case in
the first subsection, Sec. IV A. This allows us to perform an
exploration of the dependence of the results in V0 and σ0.
Results for A > 2 are discussed in the following subsection,
Sec. IV B.

A. Two-body sector

The two-body case in our Gaussian toy model is already
relatively complicated. The solution for a zero-range inter-
action is well known [81], and semi-analytic solutions for
specific finite-range interactions are also available [41].

1. Energy

The dependence on V0 and σ0 of the energy of the A = 2
mimics that of heavier systems. We are particularly interested
in finding regions of nonperturbative behavior, to test the
performance of the NQS Ansatz in the most challenging sce-
narios. We start by looking at the dependence on the range of
the interaction, σ0. We note that our pursuit here is mostly the-
oretical and that the values of interaction range and strength
that we explore may not be directly accessible by near-term
experiments.

We start by considering a very attractive interaction, with
V0 = −20. The results for the ground-state energy are shown
in Fig. 4. In this plot, we show the NQS Ansatz with a solid
line, which includes the statistical VMC uncertainty that is
typically smaller than 10−5 in the same units. We also show
the exact diagonalization (dashed line), HF (short-dashed-
dotted purple line), and the real-space (filled circles) solutions.
To analyze how perturbative the results are, we also display
the PT1, PT2, and PT3 predictions for the energy with differ-
ent line styles.

For A = 2 particles, the noninteracting case corresponds
to E = 2, shown in the figure as a horizontal dotted line. As

FIG. 4. The ground-state energy of the A = 2 system as a func-
tion of the range σ0 for a large and attractive interaction strength
V0 = −20. The NQS Ansatz energy for H = 64, L = 2, and D = 1
is shown as a solid line. The orange circles represent the real-space
solution. The short-dash-dotted purple line is the Hartree-Fock so-
lution. The double-dotted-dashed, dotted-dashed, and dashed green
lines show the perturbation theory results to first (PT1), second
(PT2), and third (PT3) orders, respectively. The horizontal dotted line
is the noninteracting energy baseline.

expected, all the methods agree with this value as the range
tends to zero, σ0 → 0. As a function of the range, all energy
predictions subsequently decrease, reach a model-dependent
minimum value and eventually increase to reach an asymp-
totic σ−1

0 behavior.
The comparison between different methods provides an

insight on the complexity of the problem. First, we note
that the NQS solution agrees perfectly well with the real-
space solution along a wide range of values. Second,
the minimum of energy as a function of σ0 for these
two methods lies around σ0 ≈ 0.5 and yields E ≈ −2 for
this particular value of V0. We conclude that the net-
work is performing well across a wide range of values
of σ0.

The NQS outperforms variationally the exact diagonal-
ization and HF solutions across a wide range of values. In
particular, the HF solution has a somewhat shallower mini-
mum at a larger value of σ0. Note that the HF prediction is the
optimal solution for a Slater determinant formed of single-
particle orbitals, φα (x) [58,60,70]. The HF single-particle
orbitals depend on a single position. The NQS outperforms
this solution by exploiting backflow correlation in the gener-
alized orbitals of the GSM, as explained in Sec. III A 4. The
NQS prediction is also better than the exact diagonalization
results at very small values of σ0, where the truncated basis
may have difficulties capturing the very narrow structures
appearing in the σ0 → 0 limit.

The convergence of the perturbation theory results pro-
vides an indication of the “perturbativeness” of the two-body
problem. The PT1 (dashed-double-dotted line) result of
Eq. (34) is far too repulsive across all values of the range. It
only gets close to the NQS and real-space results well beyond
its shallow minimum, which happens at σ0 = √

2. The PT2
results for small values of σ0 are substantially closer to the
NQS ones, but they cannot reproduce the correct dependence
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FIG. 5. The same as Fig. 4 but for a large and repulsive interac-
tion strength V0 = +20

with σ0 below about σ0 ≈ 2. In contrast with the PT1 predic-
tion, the PT2 result is more attractive than the NQS prediction
beyond about σ0 ≈ 0.7. Something similar happens with PT3,
which is well below the NQS solution from σ0 ≈ 0.5 onwards.
We find that these third-order results are still rather far from
the true values and, in particular, the convergence pattern is
relatively erratic for σ ∈ [0.5, 0.9]. This challenging region in
parameter space may be a good test bed for the NQS solution.

We confirm that this region of ranges is particularly non-
perturbative by looking at a very repulsive case. We show
in Fig. 5 the predictions for the ground-state energy of the
A = 2 system for a value of V0 = +20. The shape of the
energy predictions here is substantially different. The NQS
energy departs from the noninteracting baseline at σ0 = 0, and
increases to a maximum of around E ≈ 4 at σ0 = 2. Just as in
the attractive case, large values of the range lead to relatively
perturbative results, in the sense that PT1, PT2, and PT3
predictions agree with the exact benchmarks. In contrast, for
values of the range below σ0 = 1, the PT predictions follow
a complex pattern. In particular, the PT2 and PT3 results
show anomalous oscillations around σ0 = 0.5. All in all, we
conclude that for values of interaction strength of the order
of V0 ≈ ±20, nonperturbative behavior occurs for interaction
ranges of the order of σ0 = 0.5. While we do not show them
for brevity here, we stress that the dependence of the NQS
and HF energies on the range σ0 for systems with A > 2 has
a behavior very similar to those shown in Figs. 4 and 5. The
interested reader can find this information in Ref. [30].

The analysis of the σ0 dependence of our results leads
us to conclude that a value of σ0 = 0.5 is well within the
nonperturbative regime. We now explore the dependence of
the ground-state energy on the interaction strength V0 to an-
alyze the performance of the NQS Ansatz. The results for
A = 2 are shown in the three panels of Fig. 6. Figure 6(a)
shows a comparison between the NQS ground-state energy
(solid lines) and the different PT results. This provides an
idea of the perturbative nature of the system as a function of
V0, rather than σ0. The PT1 prediction (dashed-double-dotted
line) of Eq. (34) is, as expected, linear in V0 and captures the
full dependence on V0 only for small values of V0, |V0| < 4.
PT2 results (dashed-dotted line) are valid in a wider strength

FIG. 6. Energy of the A = 2 system as a function of interac-
tion strength V0 for a fixed range, σ0 = 0.5. (a) Comparison of the
NQS ground-state energy (solid line) to perturbation theory results.
(b) Comparison of the NQS ground-state energy (solid line) to the
real-space solution of the A = 2 system (filled circles); direct di-
agonalization results (dashed red line); and the HF approximation
(short-dashed-dotted purple line). (c) NQS, real-space solution, and
direct diagonalization predictions for the correlation energy Ec =
E − EHF.

range, but overpredict (underpredict) the true ground-state
energy at large negative (positive) values of V0. PT3 results
(short-dashed line) work well within a range −15 < V0 < 10,
but fail beyond this range. Again, this analysis indicates that
the most attractive and repulsive values of V0 are in a nonper-
turbative regime.

We compare the NQS results to more realistic benchmarks
in Fig. 6(b). Overall, we find an excellent agreement between
the real-space solution and the NQS prediction. The direct
diagonalization result also provides a good energy predic-
tion, although minor deviations with respect to the NQS are
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FIG. 7. The density profile n(x) of the A = 2 system as a function of position x. (a)–(e) Results for values of V0 from −20 to 20 in steps of
10. See Fig. 6 for an explanation of the legend.

observed at large negative values of the coupling. The NQS
provides better variational results than the HF approximation
thanks to backflow correlations.

We now comment on the overall dependence of the energy
on V0. In the noninteracting limit V0 = 0, all methods agree
exactly with the baseline value E = 2. In the repulsive side,
as the interaction strength increases in magnitude, the energy
generally increases above the baseline and seems to saturate
to a value that lies close to E ≈ 2.5. On the attractive side,
in contrast, the energy decreases relatively rapidly. At around
V0 ≈ −10, the system energy becomes attractive. The total
energy then decreases in absolute value as V0 becomes more
and more attractive. It is immediately clear from the energetics
of the system that the attractive and the repulsive regimes are
very different from each other.

This difference becomes even more evident in Fig. 6(c),
which shows the correlation energy Ec of the system. We
follow textbook conventions [60] and define Ec as the differ-
ence in ground-state energy of a given method and the HF
prediction, Ec = E − EHF. We note that this may not be a
very insightful quantity at the two-body level, since the HF
prediction is not expected to work well in the A = 2 sector.

The correlation energy departs from zero at V0 = 0. In the
repulsive side, Ec slowly increases in absolute magnitude.
At V0 = 20, we find Ec ≈ −0.15, which is about 6% of the
total energy. In contrast, in the attractive regime, the NQS
prediction is Ec ≈ −0.6, which is a substantial contribution
to the total energy of E ≈ −2 at that same value. There is no
sign of saturation of the correlation energy in either side of
V0. We also note that the direct diagonalization result departs
from both the real-space and the NQS prediction for values
of V0 < −10. This discrepancy is due to the truncation of the
model space, as we shall see next.

2. Density profile

To further understand the origin of the correlations of the
system, we look at the density profile of the system, n(x).
Figure 7 shows the density profile obtained with the differ-
ent many-body approaches for five different values of V0,
ranging from −20 to 20 in steps of 10. Figure 7(c) shows
the noninteracting result, V0 = 0. Here, all methods agree,
as expected. The density profile has a well-understood dip at
the center, due to the interplay between the α = 0 and α = 1
HO orbitals. These density modulations are typical in fermion

systems [41]. Figures 7(d) and 7(e) show the same densities
in the repulsive regime, at interaction values of V0 = 10 and
20, respectively. We find that the central dip of the density
decreases, while the overall size of the density profile is rel-
atively constant. We observe a very clear agreement between
the real-space solution of the A = 2 problem, the direct diag-
onalization method and the NQS prediction. In contrast, the
HF result seems to overestimate the fermionic structures, with
a lower dip and higher density maxima. In other words, the
HF orbitals appear to be more localized than their correlated
counterparts. A similar difference in the localization patterns
of HF and fully correlated predictions was observed in the
three-dimensional (3D) Wigner crystal of an electron gas [83].

Physically, the picture that arises in the repulsive regime is
akin to that of localization or (Wigner) crystallization [23,84–
89]. As the interparticle interaction strength increases, the
system minimizes the interaction energy by keeping particles
beyond the interaction range. Doing so, however, may come
at the price of increasing the potential energy if particles were
moved away from the center of the HO well. Instead, the
system prefers to localize orbitals more strongly in a periodic
structure, reducing the interparticle density in the intermediate
troughs.

In contrast, the density profile in the attractive regime,
shown in Figs. 7(a) and 7(b), is characterized by a relatively
featureless structure. The fermionic dip disappears around
V0 ≈ −10 and, for more attractive strength values, the density
profile is a simple peak that narrows down and increases in
height as V0 becomes more negative. In fact, a longstanding
prediction in one-dimensional systems suggests that spinless
fermionic systems with strongly attractive interactions should
behave like noninteracting bosonic systems [35,36,39–42,90–
92]. The density profile for the A = 2 system clearly supports
this hypothesis. It is worth stressing that the NQS grasps the
bosonization transition without any further adjustments. We
also stress that our results are qualitatively similar to the semi-
analytical solution of Ref. [41], where a soft-core, square-well
interaction was used.

Overall, the density profile of the system is extremely
useful because it provides direct evidence of two very dif-
ferent phases of the toy model. The attractive regime shows
signs of a bosonic nature in the density of the system, a
prediction that bodes well with previous studies employing
odd-symmetry interaction potentials [35,36,39,40,42,90–92].
Very few predictions exist for parity-even potentials [41,55],
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but the agreement between our different benchmarks in the
bosonic phase indicates that the picture is relatively robust. A
previous theoretical study employing an even-parity soft-core
potential in the A = 2 case [41] identified similar features in
the repulsive phase. There, particles tend to localise beyond
the interaction range, to move away from the repulsive core
and thus minimise the energy. In fact, for repulsive interac-
tions, the same study indicates that the localized phase is
identical for both fermions and bosons [41]. All in all, the
existing evidence at the two-body level for an even-parity po-
tential indicates that there are signs of fermion-boson duality
both in the attractive and the repulsive regimes.

3. Occupation numbers

The density profile n(x) is just a component of the OBDM.
We can access the OBDM with the benchmark methods
discussed so far. With NQSs, we calculate ρ(x′

1, x1) stochas-
tically using the ghost-particle method of Ref. [93]. For the
real-space solution, we perform the integral in Eq. (6) over
the uniform mesh grid. The solution of Eq. (7) can then be
easily obtained as a matrix diagonalization problem in a spa-
tially uniform grid. With the direct diagonalization method,
we calculate ρ in the second-quantization formalism, with the
definition

ραβ = 〈	|â†
α âβ |	〉, (35)

where |	〉 is the precomputed ground-state wave function and
ραβ are the matrix elements of the OBDM, ρ. Finally, we
diagonalize ρ to obtain the eigenvalues nα in the many-body
basis.

Figure 8(a) shows the evolution of the occupation numbers
for the A = 2 system as a function of interaction strength. We
benchmark the NQS results (solid circles) to the real-space so-
lution (empty circles) and the direct diagonalization approach
(solid lines). We find an excellent agreement between all three
methods. We note that we do not include a comparison to the
HF benchmark, which provides a relatively good description
of the energy of the system. For occupation numbers, how-
ever, the HF approach is limited to either fully occupied or
fully unoccupied states and it cannot capture deviations in the
occupation numbers from the noninteracting case.

For A = 2, there is a double degeneracy in the natural
orbital occupations, which the NQS can handle seamlessly.
The hole occupation values nα<A depart from 1 as the absolute
value of V0 increases. We find that the rate of change is
different depending on whether we are on the attractive or
the repulsive side, a result that mimics the correlation energy
displayed in Fig. 6(c). In the repulsive side, for V0 = 20, the
occupation is about ≈96%, indicating a relatively uncorre-
lated system. The tendency to deviate from 1 as V0 increases,
however, indicates that even in the crystalline phase, particles
are not entirely described by locally confined individual or-
bitals [41]. In contrast, in the attractive case, for V0 ≈ −20,
the occupation number is nα ≈ 0.9. This suggests a stronger
role of correlations in the bosonized phase.

Figure 8(b) shows a similar figure for “unoccupied” or-
bitals, nα�A. The plot is given in a logarithmic scale and
includes the first 14 orbitals in the NQS diagonalization. Due
to the stochastic nature of the OBDM estimation in the NQS

FIG. 8. Occupation probabilities for the A = 2 system as a func-
tion of interaction strength for a fixed range σ0 = 0.5. (a) Occupa-
tions for the two hole states below the Fermi surface. (b) Occupations
of particle states (in logarithmic scale). We compare the NQS results
(solid circles) to real space results (empty circles). Solid lines corre-
spond to the direct diagonalization results.

approach, there is a prominent statistical noise floor of the
order of ≈10−2. While this limits some of the conclusions
that can be drawn, we stress that the NQS many-body wave
function is comparable (if not better) variationally than the
other estimates. The values of nα above the statistical thresh-
old should therefore provide a more faithful representation of
the true occupation numbers.

Just as in Fig. 8(a), we find that the repulsive and attractive
sides are qualitatively different. On the repulsive regime, we
only see one doubly degenerate particle state with an oc-
cupation larger than 10−3 that reaches values close to nα ≈
0.02–0.03 for V0 = 20. In the attractive regime, in contrast,
we find two doubly degenerate states with occupations above
10−3. The more populated states here reach values nα ≈ 0.08
for V0 = −20. The second doubly degenerate state is observed
as a prediction of the exact diagonalization and real-space
solutions. It has an occupation which is roughly 10 times
smaller than the most occupied state. The NQS cannot resolve
this occupation, as it lies within its statistical floor. Overall,
however, the picture reinforces the idea that correlations have
a very different nature on the attractive and the repulsive
side. A priori, it appears that the bosonized phase has a more
complex structure, admixing more single-particle modes than
the corresponding crystalline phase.

B. Few-body sector

We now turn our discussion to the results obtained in the
few-body sector, for systems with A = 3 up to A = 6 particles.
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FIG. 9. The ground-state energy of the A-particle system as a
function of interaction strength V0, for a fixed range σ0 = 0.5. (a)–
(d) Systems of A = 3 to A = 6 particles. See Fig. 6 for an explanation
of the legend.

We continue to benchmark NQS results against the direct
diagonalization approach as well as the HF method. The real-
space solution is not available for A > 2. We advance that
several of the physics conclusions we drew on the two-body
system remain the same in the few-body domain.

1. Energy

We start by considering the energy of the system. Fig-
ures 9(a)–9(d) show the energy for A = 3 to 6 particles as a
function of V0. We focus on the case with a range value of
σ0 = 0.5. The qualitative behavior of the energy in all these
systems is very similar to that in the A = 2 case. On the
repulsive side, the system energy increases slowly and tends
to plateau at a value which is about 1.25–1.6 times the non-

interacting value. In this repulsive range, a power-law scaling
with the particle number E ≈ A2.2 approximates the complete
results well. The saturation of the energy as V0 becomes very
repulsive bodes well with the physical picture of a crystal.
This picture is further reinforced by the density profiles, which
we present later. In the attractive regime, in contrast, the en-
ergy per particle decreases much more steeply as a function of
V0, with no signs of saturation as V0 becomes more negative.
In terms of benchmarks, we notice two different remarkable
tendencies. First, the HF results overestimate the ground-state
energy, as expected due to the lack of backflow. The difference
between the HF and the NQS prediction becomes less no-
ticeable as the particle number increases. In other words, the
HF approximation becomes more reliable in relative energy
terms as the number of particles increases. This is not so
surprising, since the mean-field picture should work better as
the number of particles increases. Second, we find that the
exact diagonalization technique is always less bound than the
NQS prediction for values V0 < −10. We interpret this as a
consequence of the finite model space, which is insufficient
in this strongly attractive regime. Anticipating the result of
Fig. 10, in the bosonized regime the density of the system is
substantially more compressed than in the noninteracting HO
case. One may thus expect to need many more single-particle
modes to describe the density profile and the energetics of the
system.

To quantify further the importance of correlations in the
system, we look at the correlation energy for the A = 3 to
6 particles as a function of V0 in Fig. 11. We stress that
the energy scale is the same for all panels. In other words,
the difference between the HF and the full result appears to
be relatively constant independently of the particle number.
On the repulsive regime at V0 = 20, the energy increases by
about 0.2 units every time that we add one more particle to
the system. In contrast, the increase on the attractive size is
less steep. We stress that in the NQS the nonzero correlation
energy is a direct consequence of the backflow correlations in
the Ansatz. It is remarkable that this extension allows the NQS
to capture the asymmetric dependence on correlation energy
with V0 due to the different phases of the system.

In the attractive side, the direct diagonalization approach
yields a relatively poor description of the correlation energy.
Nonphysical, positive values of Ec are achieved for coupling
constants below V0 < −10 or −15. On the repulsive size,
we also find signs of a relatively poorer description of the
correlation energy with the direct diagonalization approach
for A ≈ 6. Having said that, it is clear that the direct diago-
nalization approach works much better in the repulsive side,
where deviations from the NQS prediction are within 0.05 in
absolute energy terms.

2. Density profiles

It is also very useful to inspect the density profiles n(x) of
the systems with A = 3 to 6 particles. We summarize these
results in Fig. 10, where the columns correspond to differ-
ent interaction strengths and the rows correspond to different
numbers of particles. We compare predictions from the NQS
(solid), the direct diagonalization approach (dashed) and the
HF approximation (short-dash-dotted lines).
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FIG. 10. Density profiles n(x) as a function of position x for different values of V0 and a fixed range σ0 = 0.5. From left to right, V0 goes
from −20 to 20 in increments of 10 units. From top to bottom, we show the results for A = 3, 4, 5, and 6 particles.

The middle panels, corresponding to the noninteracting
case (V0 = 0), show A peaks on top of a Gaussian-like overall
behavior. This is an expected behavior, which arises as a result
of Eqs. (3) and (27). In the attractive regime, the peak-like
fermionic structure in the density profile disappears from
V0 ≈ −10 onwards. The NQS results show a single peak that
becomes narrower as V0 becomes more attractive. This is in
line with the HF prediction, which approaches the NQS result
as the number of particles increases. In contrast, the direct
diagonalization approach is unable to grasp the narrow density
distribution beyond V0 � −10. At V0 = −20, the NQS and
HF density distributions are almost a factor of two narrower
than the noninteracting case. It is thus naïvely expected that
a model space truncation in the direct diagonalization cannot
capture such strong density rearrangements.

In the strongly repulsive limit V0 � 0, the interaction ef-
fectively separates the fermions apart, leading to the full
crystallization of the system [85,88]. The separation of single-
particle orbitals, however, cannot proceed indefinitely because
the harmonic trap is more and more effective as |x| increases.
While the position of the A density peaks barely changes, the
troughs between them become more and more defined as V0

increases. In this repulsive regime, the direct diagonalization
for the density profile results coincide with the NQS predic-
tions. In contrast, the HF approach fails substantially. The
HF density profiles overestimate (underestimate) the peaks

(troughs) and the disagreement becomes more pronounced as
the number of particles increases. We stress that the differ-
ences in density profiles arise from the existence of backflow
correlations in our NQS Ansatz. More details on the density
profile and the average size of the system are provided in
Ref. [30].

The difference of the density profiles in the attractive and
repulsive regimes is reflected into the energetics of the system.
We show different contributions to the total energy as a func-
tion of the interaction strength V0 in Fig. 12. Panels from top
to bottom correspond to different numbers of particles, from
A = 2 (top) to A = 6 (bottom). We distinguish the contribu-
tions due to the kinetic energy,

〈K〉 = 〈	| ∑i − ∂2
i

2m |	〉
〈	|	〉 ,

the (external) harmonic-oscillator potential energy,

〈U 〉 = 〈	| ∑i
x2

i
2 |	〉

〈	|	〉 ,

and the interaction energy,

〈V 〉 = V0√
2πσ0

〈	| ∑i< j e−(xi−x j )2/2σ 2
0 |	〉

〈	|	〉 .
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FIG. 11. The correlation energy of the A-particle system as a
function of interaction strength V0, for a fixed range σ0 = 0.5. (a)–
(d) Systems of A = 3 to A = 6 particles. See Fig. 6 for an explanation
of the legend.

These components are all computed stochastically using the
NQS wave function probability.

We find a common picture, which is relatively independent
of the particle number. In the noninteracting case, the virial
theorem stipulates that 〈E〉 = 2〈K〉 = 2〈U 〉 (and 〈V 〉 = 0). In
the repulsive side, the harmonic oscillator and the interaction
energy components increase very slowly as V0 grows. We
interpret this slow growth in terms of localization. When the
single-particle orbitals become localized into A well-defined,
equidistant peaks, the sharpening of the fermionic features
only modifies these two components slightly. In contrast, the
kinetic-energy reduces substantially as a function of V0. In
fact, for particle numbers A > 4, we observe that 〈K〉 � 〈V 〉, a

FIG. 12. Different components of the NQS ground-state energy
as a function of interaction strength V0 for a fixed range σ0 = 0.5.
Solid, dashed, dash-dotted and dotted lines correspond to the total,
kinetic, harmonic oscillator, and interaction energies, respectively.
(a)–(e) Systems of A = 2 to A = 6 particles. The horizontal dotted
line is the noninteracting ground-state energy.

condition that is typically employed to characterize a (Wigner)
crystal [88].

The analysis in terms of different energy components in-
dicates that the energy in the attractive regime behaves rather

063320-15



J. W. T. KEEBLE et al. PHYSICAL REVIEW A 108, 063320 (2023)

differently. First of all, we find that the attractive total energy
in the regime where V0 � 0 is the result of the cancellation of
two large but opposite energy components. On the one hand,
the kinetic energy 〈K〉 increases substantially as V0 decreases,
as a result of the strong density rearrangement. On the other,
the interaction energy 〈V 〉 becomes extremely attractive as
all the particles are confined near the center of the trap and,
consequently, near each other. The central confinement also
leads to a near cancellation of the harmonic-oscillator poten-
tial energy 〈U 〉.

At this stage, we can draw some conclusions about the
nature of the correlations in the repulsive and attractive sides
of the spectrum. Clearly, the bosonic transition in the attrac-
tive side leads to a very strong rearrangement of the density
profile. This rearrangement is so strong, in fact, that the di-
rect diagonalization based on noninteracting single-particle
states struggles to capture it. An accurate description of this
transition requires instead the solution of the system in real
(or, possibly, momentum) space. We note that qualitatively
similar results for the density profiles of A = 3 and 4 spinless
fermions are reported by Schilling et al. [56] employing an
even-parity harmonium model. A universal bosonic peak for
attractive interactions was observed in that case, too.

In contrast, the rearrangement of the density in the repul-
sive regime mostly leads to a localization of single-particle
states that exaggerates the associated fermionic features. This
is also found in the few-body system with a harmonium model
[56]. The HF approach in this limit, however, overestimates
the fermionic features, which again highlights the importance
of backflow correlations.

3. Occupation numbers

We get further insight on the correlation structure of the
system by looking at the occupation numbers nα for differ-
ent single-particle states α. We show nα for systems with
A = 3 (top row) to A = 6 (bottom row) in Fig. 13. The left
(right) hand panels correspond to the occupation probabilities
of holes (particles), nα<A (nα�A). There are distinct common
structures appearing in the occupation numbers in the at-
tractive and the repulsive regimes. In the attractive case, the
NQS predicts the appearance of one doubly degenerate state
that becomes substantially depleted as V0 becomes more and
more negative. This result is commensurate with the direct
diagonalization occupation prediction, which also appears to
be double degenerate, although, somewhat less depleted. We
interpret the difference between the NQS and the direct diag-
onalization prediction, again, as a sign of the truncated model
space. Both the NQS and the diagonalization predictions in-
dicate that the remaining A − 2 hole states are fully occupied
to within a 2% accuracy, although, the statistical noise floor in
the NQS approach makes it difficult to quantify this statement.

The particle states shown in Figs. 13(e)–13(h) show the
appearance of a doubly degenerate state in the attractive
regime for all values of A. According to the NQS prediction,
these states reach an occupation of ≈10% at V0 = −20. These
doubly degenerate states are reminiscent of a bosonization of
the fermionic degrees of freedom. This happens in spite of
the absence of active spins and hence can only be observed
in the case of a finite-range interaction. Doubly degenerate
structures in the attractive regime have also been observed

FIG. 13. (a)–(d) Hole (α < A) occupation probabilities for the
A = 3 (top row) to the A = 6 (bottom row) systems as a function of
interaction strength V0 for a fixed range σ0 = 0.5. We compare NQS
results (solid circles) to the direct diagonalization predictions (solid
lines). (e)–(h) The same as panels (a)–(d) but in logarithmic scale for
particle (α � A) states up to α = 14.

in variational calculation of one-dimensional (1D) p-wave
fermions [42]. These simulations, however, have a harder time
describing the repulsive regime, which the NQS can access
seamlessly.

In the repulsive regime V0 > 0, no double degeneracy is
observed. Single-hole states [Figs. 13(a)–13(d)] and single-
particle states [Figs. 13(e)–13(h)] are all distinct, and one
can clearly distinguish A states on the repulsive branch of
each panel with occupations nα > 5 × 10−3. This prediction
is supported both by the direct diagonalization and the NQS
results. For the A = 3 system, Fig. 13(a), we find that three
distinct single-hole states appear with small depletions, with
occupations of more than 95% up to V0 ≈ 20. The correspond-
ing single-particles states in Fig. 13(e) are clustered into two
nearly degenerate states with populations of ≈5% at V0 ≈ 20,
and another state with a population of 2%. A similar picture
emerges as A increases. For even values of A, we find that
there is a near (but not complete) degeneracy of A/2 states.
In the single-hole cases, the occupations decrease steadily
with V0 in pairs. Similarly, the occupation of particle states
increases in pairs of similar values. For odd A, the picture
is essentially the same except that there is an odd single-
particle orbital with a specific occupation probability. We note
that there are similarities between this picture and the results
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FIG. 14. Density contour plots of the one-body density matrix ρ(x′
1, x1) of systems from A = 2 (top row) to A = 6 (bottom row) particles.

Columns correspond to different interaction strengths, from V0 = −20 (left column), to V0 = 20 (right). Contours are shown at density-matrix
values of −0.5, −0.1, 0.1, 0.5, 1.0, 1.5, and 2.0. The color coding is the same across all panels.

obtained in Ref. [56] for 1D spin-polarized trapped fermions
with harmonic pair interactions.

For both the single-particle and single-hole states, the sta-
tistical noise floor is on the order of ≈10−2. We find a slight
increase of this floor with particle number of about a factor
of two when moving from A = 3 to A = 6. Although one can
see the statistical noise within the single-particle states, their
effect is even more evident in the single-hole states, where
they lead to nonphysical fluctuations with nα > 1. We arbitrar-
ily limit the number of single-particle states to 14 within this
analysis. The noise floor is consistent for all values of V0, indi-
cating that its source stems from the stochastic methodology
used to calculate the OBDM. We limit the range of occupation
values shown for the single-hole states to be above 5 × 10−3,
which highlights a few of the lowest single-hole states ob-
tained with the direct diagonalization approach (solid lines).

4. One-body density matrix

So far, we have discussed local properties of the system.
We now turn our attention to nonlocal structures reflected

in the density matrices. We discuss the NQS results in
this and the following sections, and refer the reader to the
Appendix for the analogous HF and direct diagonalization
results. In Fig. 14, we show the OBDM ρ(x′

1, x1) of the
ground-state wave function for A = 2 (top row) to A = 6
(bottom row). The different columns correspond to interaction
strengths values from V0 = −20 to 20 (in steps of 10). The
central panels correspond to the noninteracting case, V0, which
can be understood in relatively simple analytical terms from
a combination of Eq. (27), valid in the noninteracting case,
and the HO eigenstates of Eq. (3), leading to Eq. (10) [57]. In
all cases, the density matrix is purely real and covers a more-
or-less square area in the x′

1-x1 plane. This is a consequence
of the combination of single-particle terms ϕ∗

n (x′
1)ϕn(x1) in

the sum of Eq. (27), which naturally provide a limit both
within and outside the diagonal of the x′

1-x1 plane [94]. This
is clearly seen in Eq. (10), which indicates that ρ(x′

1, x1) is
given by a Gaussian envelope in the x′

1-x1 plane modulated by
a polynomial.

Moreover, one finds that there is a relatively narrow area
of positive values near the diagonal, where ρ(x′ = x, x) ≡
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FIG. 15. Density contour plots of the pair correlation function g(x1, x2) for systems from A = 2 (top row) to A = 6 (bottom row) particles.
Columns correspond to different interaction strengths, from V0 = −20 (left column), to V0 = 20 (right). Contours are shown in steps of 0.05
from 0 to 0.35 (solid lines), and in steps of 0.2 from 0.4 to 2 (dashed lines). The color coding is the same across all panels.

n(x) > 0 is positive definite. As one moves away from the
diagonal, definite ripples appear in areas with consecutive
positive and negative values. These ripples reflect the nodal
structure of the single-particle states. In fact, there are as many
changes of sign along the x′

1 = −x1 direction in one side of the
diagonal as particles in the system. Equation (10) provides an
explanation of this in terms of the roots of the polynomials of
order 2(A − 1) along the x′

1 = −x1 direction.
In the attractive case, shown in the left panels of Fig. 14,

the overall size extent of the system decreases (see Fig. 10).
Similarly, the support of the OBDM in the x′

1-x1 plane also
diminishes. Moreover, the peaks and troughs associated with
the changes of sign in the off-diagonal direction move closer
to the diagonal. Importantly, these interference effects appear
to increase in magnitude as the interaction strength becomes
more negative. We stress that the diagonalization of this
strongly oscillating OBDM leads to occupation numbers with
a dominant doubly degenerate structure, more reminiscent of
a coherent picture (see Fig. 13).

In the strongly repulsive case, in the panels on the right,
one can clearly distinguish the localization of single-particle

orbitals along the diagonal in the form of well-defined equidis-
tant peaks. The off-diagonal oscillations and change of signs
observed in the noninteractive and the attractive regimes are
substantially damped in this case. At V0 = 20, for instance,
one only observes a well-defined series of A − 1 quasicircular
regions with negative values in a direction parallel to the
diagonal. While there are additional oscillations along the
off-diagonal direction, these have a much smaller amplitude,
to the point that they can hardly be distinguished in the scale
of the figure.

5. Pair correlation function

Finally, we present in Fig. 15 the PCF g(x1, x2) of Eq. (11)
for different particle numbers. The panels are organized in
the same way as in Fig. 14. The PCF provides information
of correlations due both to the antisymmetric nature of the
system and to the presence of interactions [54]. The function
g(x1, x2) is very different in the attractive and the repulsive
regimes but there are common structures across all panels.
Specifically, we find a ridge around x1 ≈ x2 where the pair
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correlations vanishes. This is a consequence of the Pauli ex-
clusion principle, which in the spinless fermion case imposes
the condition g(x, x) = 0. In the noninteracting system, the
condition is enforced by the (x1 − x2)2 term of Eq. (12). The
width of this “Pauli ridge,” however, changes substantially
with interaction strength, which indicates that part of it is also
a consequence of interaction effects. On the repulsive side,
shown on the panels to the right of the center, one clearly finds
that the ridge becomes wider with V0. This effect is a reflection
of the spatial localization of the orbitals observed in Figs. 7
and 10. We expect the size of the ridge in the repulsive side to
be sensitive to both V0 and the range of the interaction, σ0. As
V0 is more repulsive, particles try to localize more, leading to
more distant and well-defined peaks in the PCF.

In contrast, on the attractive regime displayed on the left
panels of the figure, we find that the ridge becomes narrower
as V0 becomes more attractive, to the point that, for A > 5, the
ridge is difficult to see on the leftmost panels with V0 = −20.
The pair distribution function in the attractive side is relatively
featureless and, other than the ridge, it is extremely peaked in
an almost square region around the center. This indicates a
high likelihood of finding one particle in a region within a few
units of position of the center, a picture that is reminiscent of
a Bose-Einstein condensate. This picture is in line with the
PCF of two spinless fermions with a soft-core potential [41]
and of the correlation structure of p-wave fermions observed
in Ref. [42].

In contrast with this relatively featureless peak, g(x1, x2)
on the repulsive side has a much richer structure, with sev-
eral well-defined peaks. These peaks are clear indications
of the emerging localized structure of the system, and have
been observed in analogous simulations of one-dimensional,
few-body Wigner crystals [85]. For odd particle numbers, we
find that there is always a peak to the right (or left) of the
Pauli ridge along the x1 = 0 direction. For these systems, the
density has a peak at x = 0 (see Fig. 10), so one particle
sitting at x1 = 0 will have a large probability of finding A − 1
particles at fixed intervals in x2. For A = 3, this occurs at
x2 = ±2, whereas for A = 5 this happens at about x2 = ±1.5
and ±3.

The structure for an even number of particles is relatively
different. For an even number of particles, there is a depletion
in the density distribution at the center of the trap, see Figs. 7
and 10. Consequently, the PCF along xi = 0 does not show
any peaks. Instead, the lines of horizontal or vertical A − 1
peaks are found at around xi ≈ ±1. Whereas for A = 4 par-
ticles a second set of three peaks is found at xi = ±2.5, for
A = 6 particles this is localized at xi = ±2. The well-defined
single-particle peaks are therefore more compressed as A in-
creases, in line with the results of Fig. 10.

All in all, the PCF for all systems indicates a well-defined
localized phase in the repulsive regime, and a Bose-like phase
in the attractive regime. This complex behavior is obtained
with an NQS formed by a single determinant with back-
flow correlations. In other words, for a fixed particle number,
the same NQS is capable of describing systems with very
different spatial extents, correlation structures and underly-
ing physical pictures. We take this as a promising sign for
the performance of NQS approaches in the description of
condensed-matter systems.

V. CONCLUSION AND OUTLOOK

To conclude, we have applied the NQS method to solve
the Schrödinger equation for one-dimensional systems of A
harmonically trapped, interacting fermions without spin de-
grees of freedom. We model the interaction using a toy model
Gaussian form factor, motivated by nuclear physics applica-
tions and such that, in the zero-range limit, we recover the
noninteracting case. We purposely choose a set of interaction
strengths and ranges where perturbation theory may not con-
verge easily. In particular, we find that an interesting choice
for the interaction range is half the natural oscillator length.

The NQS that we employ provides a fully antisymmetric
Ansatz to represent one-dimensional “spinless” fermions. The
NQS has two equivariant layers of H = 64 hidden nodes
each. These layers embed the one-dimensional positions of A
particles into a H-dimensional space. These layers are then
projected into a single GSD. This approach benefits from
backflow correlations from the outset and does not explicitly
require a Jastrow factor. The number of parameters of the
NQS remains nearly constant when going from A = 2 to A =
6 particles. By combining the NQS with VMC techniques, we
obtain a wave function that is able to represent many-body
correlations and can accurately describe very different physi-
cal regimes without any specific modifications to the network
architecture.

The focus of our paper is on benchmarking the new NQS
approach with other well-known many-body methods. For all
values of A, we compare against the mean-field Hartree-Fock
method and the direct diagonalization approach. Moreover,
in the A = 2 case we have access to an exact solution in
real space as well as a perturbative treatment of the Gaussian
interaction. The results for all values of A indicate that the
NQS can efficiently provide an accurate representation of the
many-body wave function. One benefit of the NQS approach
formulated in the real-space continuum is its variational per-
formance, that surpasses mean-field approaches and does not
suffer from basis truncation effects like the direct diagonaliza-
tion method does. We characterize our benchmarking process
using several properties, including the ground-state energy,
density profiles, single-particle occupation numbers, as well
as the one-body density matrix and the PCF.

The NQS can accurately describe the ground-state wave
function across different physical regimes. In particular, we
find two very different pictures that arise as the strength of the
interaction goes from very attractive to very repulsive values.
We find a common, method-independent interpretation for
these two phases of 1D trapped spinless fermionic systems.
On the attractive side, the density distribution of the system
is a single peak centered at the origin, reminiscent of a Bose-
Einstein condensate. The peak becomes narrower and higher
as the strength becomes more negative. This represents a
substantial density rearrangement in the system, that is hard to
capture with a truncated basis direct diagonalization approach
based on a harmonic-oscillator basis. A real-space implemen-
tation of the Hartree-Fock method, however, describes well
this phase for sufficiently large A. In this regime, the one-body
density matrix is strongly oscillating off the diagonal and the
pair distribution function is narrow and square shaped. We
find that a degenerate set of two single-particle orbitals are
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FIG. 16. The same as Fig. 14 but for the Hartree-Fock approximation.

strongly depleted, whereas the remaining A − 2 states remain
fully occupied.

In contrast, for large and repulsive values of the interac-
tion strength we find a completely different picture. In this
limit, we reach the regime of a localized crystal, and fermions
spontaneously order in a periodic fashion. This is reflected
in the density distribution, which has a well-defined periodic
structure with A peaks, as well as the PCF, which shows asso-
ciated crystalline structures. In terms of occupation numbers,
the repulsive regime exhibits quasidegeneracies in pairs of or-
bitals. We note that this regime is well described by the direct
diagonalization approach, but the HF approximation predicts
density distributions with exaggerated localization features.

We foresee several applications of this work in the near
future, and distinguish between applied and formal develop-
ments. On the applied side, we have found clear signatures
of two physical phases in relatively simple fermionic systems.
When spin is not present, finite-range interaction effects are
necessary and lead to very different behavior in the attrac-
tive and repulsive regime. Here, one may exploit NQSs to
investigate physical features that have not been explored yet,
like higher-order density matrices. Moreover, one could also

employ the NQS wave function to compute matrix elements
of other relevant operators employing standard Monte Carlo
techniques [61]. Having access to the full wave function of
the system, we should also be able to characterize the evo-
lution of entanglement measures as a function of interaction
parameters. It would be interesting to perform NQS simu-
lations with odd-parity potentials, which resemble the more
realistic interactions employed in the past in spinless fermion
studies [35,37,39]. We stress that there is no fundamental
limitation hampering the applicability of the NQS method for
derivative odd-parity potentials. In addition, one could extend
this approach to other trapped systems, with hard boundary
conditions [95], or to infinite systems incorporating periodic
boundary conditions [20,96,97].

On the formal side, there are interesting step forwards to
take in a variety of directions. First, it would be interesting
to quantify the quality of the wave function Ansatz in more
formal terms. In other words, one could try and gauge what
information is lost when introducing this NQS Ansatz. A po-
tential avenue may involve the quantification of entanglement
measures on NQS. In applications of one-dimensional ultra-
cold atoms, spin degrees of freedom are relevant and often
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FIG. 17. The same as Fig. 15 but for the Hartree-Fock approximation.

manipulated experimentally. This calls for an explicit, gen-
eral spin-dependent representation of NQSs, along the lines
recently explored in lattice systems [98], nucleons [33], the
electron gas [20,96], or unitary fermions [97], but potentially
applicable to SU(N) interactions. A comparison with the rich
variety of experiments in nonperturbative regimes here may
provide a fertile ground for tests of the applicability of NQS
Ansätze. Finally, our findings indicate that an NQS originally
pretrained in a noninteracting case can eventually learn at
least two different phases of a quantum system. It would
be interesting to analyze whether this result is general, and
whether NQSs can indeed perform across complex quantum
phase-transition boundaries.

Our ultimate aim is the study of nuclear physics systems
employing NQSs. To this end, we need to extend our cur-
rent technology to treat three-dimensional systems. This also
requires the inclusion of spin and isospin degrees of freedom.
All studies so far indicate that nuclei in the few-body sector
can be theoretically accessed by employing NQSs [29,31–
33]. It remains to be seen whether the promising scaling with
particle number that we have found in this work can be effi-
ciently transferred into a nuclear physics setting and deliver a
substantial change in ab initio nuclear theory.
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FIG. 18. The same as Fig. 14 but for the direct diagonalization approach.
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APPENDIX: NONLOCAL PROPERTIES

In this Appendix, we look at the nonlocal properties ob-
tained with our benchmarks models. We provide, specifically,
an analysis of the OBDM and PCF obtained within the HF ap-
proximation and within the direct diagonalization framework.
On the one hand, this provides a useful cross-check with the
NQS results of the main text. On the other, it allows us to
identify the effect of correlations in the nonlocal properties of
the system.

1. Hartree-Fock

We start by discussing the results of Fig. 16, which shows
the OBDM in the HF approximation. The format and panel
structure is the same as shown for the NQS data in Fig. 14:
different rows correspond to particle numbers from A = 2
to A = 6 and different columns indicate different interaction
strengths for σ0 = 0.5. Qualitatively, Figs. 14 and 16 are very
similar. In the attractive regime (panels to the left of the

center), we find that the system becomes more compact as
V0 becomes more negative. Just as in the NQS case, the HF
solution shows a strong oscillatory behavior off the diagonal.
In contrast with the NQS solution, however, the central ridge
in the HF results is higher and the overall support of the
density matrix has a more well-defined, square shape.

The central column shows the same results for the NQS
and the HF solution, as expected since this is a noninteracting
case. Nonetheless, this is nontrivial check on the numerical
accuracy of the NQS solution, which thus reproduces not only
the energy but also the nonlocal properties of the noninteract-
ing wave function. On the repulsive side, shown in the panels
to the right of the center, the HF results are also very similar
to the NQS data shown in Fig. 14. In the HF solution, we find
that there is more structure concentrated along the diagonal,
with more localized solutions and clearly identifiable peaks
compared with the NQS simulations. This bodes well with
the findings of the density profiles shown in Fig. 10. Off the
diagonal, the NQS results show a slightly stronger oscillatory
behavior than the HF predictions.

We now discuss the PCF within the HF approximation,
which we show in Fig. 17. Here, the format is the same as
Fig. 15 in the main body of the text. Just as in the case of the
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FIG. 19. The same as Fig. 15 but for the direct diagonalization approach.

OBDM, the central column of the two cases is the same. This
indicates, again, that the noninteracting case is under control
with the NQS Ansatz. This benchmarks indicates that the NQS
Ansatz does not lose any significant amount of information at
the two-body level.

Differences between the HF and NQS pair distribution
functions can be observed in both the attractive and repul-
sive regimes. In the attractive case, the support for the HF
correlation functions is smaller than in the NQS case. This
is in line with the corresponding density distributions, which
are narrower in the HF case. In addition, the HF case shows
a sharper, square-like behavior in the attractive cases and a
somewhat narrower Pauli ridge.

In the repulsive case, the HF densities show a much more
localized state. In the pair distribution function, this translates
into very well-defined peaks. The peaks in the HF distribution
lie close to those predicted by the NQS, but are generally
rounder and higher.

2. Direct diagonalization

We have also computed the OBDM and the PCF for the
direct diagonalization simulations. We already know from

the analysis of the energetics, the local densities and the
occupation numbers that the exact diagonalization solution
has convergence issues in the attractive regime. We therefore
expect to see differences in this sector, which should be taken
as indications of the lack of numerical convergence associated
with the truncation of the finite model space as opposed to any
actual physical limitations.

We show in Fig. 18 the OBDM obtained from the exact
diagonalization approaches in the same format as Figs. 14 and
16. As expected, there are virtually no observable differences
in the central and right panels of the figures. In this regime,
the exact diagonalization results are well converged and the
agreement with the NQS can be taken as a solid qualitative
benchmark. In other words, the one-body nonlocal properties
of the NQS wave function are well under control.

On the attractive regime, in the panels left of the center,
we observe increasing differences as the interaction strength
V0 and the particle number A increase. The lowest-left panel,
with V0 = −20 and A = 6, is the most affected in this case.
We find a density matrix with extended support in the x1-x′

1
plane. Off the diagonal, we observe the same number of os-
cillations in the NQS and the exact diagonalization cases, but
the latter shows a larger, less compact oscillation structure. We
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assume that this is due to the absence of high-energy modes
in the active space, which may be able to account for faster
off-diagonal oscillations.

Finally, Fig. 19 shows the PCF extracted from the exact
diagonalization approach. On the noninteracting and the re-
pulsive columns, there are no notable differences between the
NQS results of Fig. 15 and the direct diagonalization results.
Again, this can be taken as an indication of the high-quality
NQS wave function. Just as in the case of the OBDM, the

differences between the NQS and the exact diagonalization
method increase with A and are more visible for the more
attractive values of V0. In accordance with the observations
of the local density profiles of Fig. 10 and the OBDM of
Fig. 14, the direct diagonalization results tend to have a
more compact PCF, which also features some very faint os-
cillations off the diagonal. We attribute these again to the
truncation of the many-body basis in the exact diagonalization
approach.
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