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Microscopic calculation of the pinning energy of a vortex in the inner crust
of a neutron star
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The inner crust of a cold, nonaccreting neutron star is composed of a lattice of nuclei coexisting with a sea of
superfluid neutrons. The interaction between one of the nuclei and a vortex induced by the rotation of a pulsar is
calculated microscopically, based on the axially deformed Hartree-Fock-Bogolyubov framework, using effective
interactions. The present work extends and improves previous studies in four ways: (i) it allows for the axial
deformation of protons induced by the large deformation of neutrons due to the appearance of vortices; (ii) it
includes the effect of Coulomb exchange; (iii) it considers the possible effects of the screening of the pairing
interaction; and (iv) it improves the numerical treatment. We also demonstrate that the binding energy of the
nucleus-vortex system can be used as a proxy to the pinning energy of a vortex and discuss in which conditions
this applies. From our results, we can estimate the mesoscopic pinning forces per unit length acting on vortices.
We obtain values ranging between 1014 to 1016 dyn/cm, consistent with previous findings.
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I. INTRODUCTION

Pulsars are characterized by the regular emission of elec-
tromagnetic radiation. These stars spin down steadily, but
sudden spin ups, called glitches, have been observed. Such
events were recorded first in the Vela pulsar and subsequently
in many other stars (see Ref. [1] for a statistical study of the
properties of glitches observed in 141 stars). Soon after the
first observations, it was proposed that the glitch phenomenon
was closely associated with the existence of a neutron su-
perfluid in the interior of the star [2], see Refs. [3,4] for a
review. According to the current theoretical understanding of
neutron-star structure, the layer extending from a density of
about 10−3 to 0.08 fm−3, called the inner crust, is composed
of a lattice of heavy nuclei immersed in a sea of free neutrons
and electrons [5,6].

Negele and Vautherin carried out a seminal study [7] within
the Wigner-Seitz approximation. They determined the optimal
radius of a spherical cell with a nucleus at its center, the
number of protons and of neutrons bound to the nucleus and
the number of unbound neutrons, as a function of the density
of the neutron gas far from the nucleus, denoted by n∞. Their
results have been refined and extended in many subsequent
works, see Refs. [8–14] and references therein. Moreover,
given the typical range of temperature expected in the inner
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crust of mature neutron stars (from 107 to 109 K, that is, from
1 to 100 keV, a very low value with respect to the Fermi
energy ranging from 10 to 100 MeV), neutrons are likely to
be superfluid [15].

Due to the rotation of the star, the superfluid neutrons form
a (possibly disordered) array of quantum vortices [16], whose
average density is closely linked to the pulsar angular velocity
via a generalization of the so-called Feynman-Onsager rela-
tion [17]. Anderson and Itoh [18] proposed that the interaction
between the heavy nuclei at the lattice sites and the vortices
can anchor the vortices in particularly energetically favorable
positions, a phenomenon referred to as “pinning.” If this is
the case, the superfluid component cannot follow the regular
slowdown of the crust and rotates faster, becoming a reservoir
of angular momentum. This gives rise to hydrodynamical lift
forces (Magnus forces), which act on the vortex lines and tend
to push them away from their sites. The glitch phenomenon
would then occur when Magnus forces take over and a catas-
trophically large number of vortices suddenly unpin from their
positions, releasing their angular momentum to the crust.

There are still some unanswered questions regarding sev-
eral central aspects of this model. First of all, the trigger which
leads to the collective vortex unpinning is not well established
yet; there are several possibilities advanced in the literature,
like vortex avalanches [18,19] or hydrodynamical instabilities
[20,21]. Second, it has been pointed out that the angular mo-
mentum contained in the crust may not be sufficient [22,23]
to explain glitches, albeit this conclusion is less clear if the
statistical uncertainty on the observed glitch activity [24] or
the possible presence of lattice defects [25] are taken into ac-
count. Finally, there is no definitive answer on the strength of
the pinning interaction throughout the inner crust. The greater
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the ability of pinning to withstand the hydrodynamical lift, the
higher the amount of angular momentum that the superfluid
can store, so that it is possible to constrain the unpinning
threshold (i.e., the theoretical upper limit of the distribution of
pinning forces [26]) with observations of large glitches [17].

The microscopic computation of the single-nucleus pin-
ning potential is very challenging and has never been
performed in the literature. In fact, existing studies resorted
to the pinning energy [27–29], defined as the energy differ-
ence between two extreme situations: One where the vortex
is on top of the nucleus (nuclear pinning), and one where the
vortex is equidistant between two adjacent nuclei in the lattice
(interstitial pinning). A negative (positive) value of this quan-
tity indicates that the former (latter) situation is energetically
favorable.

Different methods have been used to estimate the single-
nucleus pinning potential. Epstein and Baym [29] used hy-
drodynamic considerations in combination with the Ginzburg-
Landau theory of superfluidity to compute the free energy
of a nucleus as a function of the distance from a vortex
line, ignoring the internal structure of the nucleus and using
instead schematic expressions for the kinetic and condensa-
tion energies. They found that vortices pin on nuclei in the
deeper layers of the inner crust, while they are repelled in
the low-density regions. The model by Epstein and Baym was
later improved [30], providing estimates of pinning energies
obtained by making use of a semiclassical treatment based on
the local density approximation [27].

The first microscopical quantum calculation was then car-
ried out by Avogadro et al. [28,31] based on the solution of
the axially symmetric Hartree-Fock-Bogoliubov (HFB) equa-
tions for various densities in the crust. Specifically, it was
found that the nuclear shell structure has relevant effects on
the spatial configuration of the vortex and that pinning occurs
only in the less dense regions of the inner crust. The solution
of the HFB equations was carried out assuming spherical sym-
metry for the proton density, thus breaking self-consistency.
In the present paper, we remove this assumption, which was
based on the fact that proton orbitals are deeply bound. Fur-
thermore, we include the effect of the Coulomb exchange,
which was previously neglected, and improve the numerical
treatment, devoting particular attention to the convergence of
our results. We are then able to present new and more reliable
values of the binding energy and, based on them, we present
our best estimation of the pinning energy. We also show de-
tailed results for neutron and proton deformation at different
densities. We also study the dependence of our results on the
strength of the pairing interaction, in keeping with the analysis
carried out in Ref. [27].

Due to the fact that hydrodynamics is nonlinear, the pin-
ning potential is not immediately related to the pinning
“landscape” that defines the dynamics of a finite-size vortex
segment [26]. We then estimate the typical strength of the
pinning landscape by taking the mean value of the pinning
force for unit length acting on a vortex line [32], see also the
discussion in Ref. [26].

Other recent efforts, based on a microscopic quantal pic-
ture, have also been made. The most significant advance con-
cerns a three-dimensional dynamical simulation of the vortex

motion, based on the time-dependent superfluid local density
approximation (TDSLDA), leading to an estimate of the force
between the vortex and the nucleus as a function of their
separation [33,34] (see also Ref. [35]). Results were obtained
for two densities and showed that the vortex is repelled by
nuclei. At the same time, it was found that the vortex-nucleus
interactions induce a deformation of the nucleus and lead to a
bending of the vortex lineshape. These findings represent an
important confirmation of our results and extend them toward
a complete characterization of the vortex-nucleus interaction.
On the other hand, TDSLDA computations are very costly,
while we are able to present systematic calculations of the pin-
ning energy with different functionals and pairing forces and
to provide a detailed description of the nuclear deformation.
We also report that the properties of a quantum vortex were
recently studied at finite temperature in infinite matter using
Brussels-Montreal energy functionals [36].

We begin in Sec. II by explaining the general features of
the calculation and giving some details about the computation
of the pinning energy. Our results are presented in Sec. III.
Finally, in Sec. IV we give our closing remarks.

II. METHOD

A. General description

In this paper, we expand and improve the work done in
Ref. [28] (hereafter referred to as Paper I). There, the authors
approached the problem of pinning energy by solving the
Hartree-Fock-Bogolyubov (HFB) equations in a cylindrical
cell of radius Rbox and height hbox in four different configu-
rations. HFB equations (also called Bogoliubov-De Gennes
equations) are well suited to study the pairing properties of
quantal inhomogeneous systems, like the inner crust of a neu-
tron star, where a lattice of heavy nuclei coexists with a sea of
superfluid neutrons. With this technique both the nuclear po-
tential and the pairing correlations are treated simultaneously
and self-consistently. Explicitly, the HFB equations read

(h(x) − λ)ui(x) + �(x)vi(x) = Eiui(x),
(1)

�∗(x)ui(x) − (h(x) − λ)vi(x) = Eivi(x),

where Ei is the quasiparticle energy of level i and ui and
vi are the quasiparticle amplitudes relative to that level, λ

is the chemical potential, which is adjusted to obtain the
desired density of the nucleon superfluid, �(x) is the pairing
field and h(x) = T + U HF is the single particle Hartree-Fock
Hamiltonian, which is the sum of the kinetic term T and the
self-consistent potential U HF .

From the solutions of (1), one can compute the normal and
abnormal densities of the system

n(x) =
∑

i

|vi(x)|2,

κ (x) =
∑

i

ui(x)vi(x)∗, (2)

from which one can find new h(x) and �(x) which in turn
give rise to a new set of equations (1) (see Appendix A). The
HFB equations are therefore solved via an iterative process.
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As for the interaction chosen in the HF sector, we adopt the
Skyrme SLy4 and the SkM∗ parametrizations (see Ref. [37])
and neglect the spin-orbit term, because we expect that the
pinning energy is not significantly affected by this term (cf.
Paper I and our discussion below).

For the pairing field, we start from a neutron pairing poten-
tial, adopting a density-dependent contact interaction of the
form

Vpair (x) = V0

[
1 − η

(
n(x)

0.08

)a]
, (3)

where V0 = −481 MeV fm3, η = 0.7, and a = 0.45 have been
used. This leads in turn to the pairing field

�(x) = −Vpair (x)κ (x). (4)

The adopted parameters, together with a cutoff energy Ecut =
60 MeV, reproduce the pairing gap of uniform neutron matter
as predicted by a realistic nucleon–nucleon interaction [38],
and are the same as those used in Paper I. We also perform
calculations with two weaker pairing interactions. We aimed
for pairing gaps reduced by a factor β = 2 and β = 3; we
found V β=2

0 = 432.9 MeV fm3 and V β=3
0 = 408.85 MeV fm3.

These interactions are introduced only to have a rough qual-
itative assessment of the effects of correlations beyond the
mean field, which generally lead to a reduction of the pairing
gaps (see Refs. [39,40] for recent reviews). However, such
reductions show a dependence on the neutron density which
is not taken into account by the constant reduction factors
considered here.

The pairing interaction has been neglected in the case of
protons since Z = 40 is used throughout this work and this
value corresponds to a magic number in our calculations.

We carry out our calculations in a cylindrical box, so it
is natural to use cylindrical coordinates x = (ρ, z, ϕ). Equa-
tions (1) are expanded on a single-particle basis. All the
calculation details are presented in Appendix A. The pairing
field (4) is defined as (Paper I and Ref. [41])

�(ρ, z, ϕ) = �(ρ, z) eiνϕ, (5)

so that the vortex is created along the z axis keeping the cylin-
drical symmetry. The integer parameter ν can be interpreted
as the number of units of angular momentum carried by each
Cooper pair along the z axis. The standard solution of the HFB
equations corresponds to ν = 0 and to Cooper pairs coupled
to zero angular momentum while ν = 1 defines an excited
solution in which Cooper pairs of different parity couple to
one unit of angular momentum. This solution describes a
vortex because it gives rise to an azimuthal velocity field V
of the form

V (ρ, z, ϕ) = − ih̄

m0nρ

∑
i

v∗
i (ρ, z, ϕ)

∂vi(ρ, z, ϕ)

∂ϕ
. (6)

where m0 is the nucleon mass and n denotes the local density.
Note that nuclear shell effects act quite differently on the
ν = 1 gap as compared with ν = 0. This point is discussed at
length in Paper I. In particular, one expects that the spin-orbit
interaction, which is neglected in the present work, tends to
shift the energy of the single-particle pairs involved in the

formation of S = 0, ν = 1 Cooper pairs by the same amount
(see Fig. 21 in Paper I).

We have changed considerably the part of the computation
relative to protons with respect to Paper I. In Paper I, the
proton density was forced to be spherically symmetric. This
was achieved by taking spherical averages of the cylindrical
neutron densities to compute the proton potential U HF

prot at each
step of the iterative process. The reasoning behind this choice
was that protons are deeply bound and one does not expect
them to be much affected by the neutron density deviation
from sphericity. As we will show, this is an accurate approxi-
mation only for the outermost layers of the inner crust.

Summarizing, we have extended and improved the calcu-
lations of Paper I as follows:

(i) We add the Coulomb exchange term in the proton
potential using the Slater approximation.

(ii) We adopt cylindrical symmetry also in the case of
protons.

(iii) We consider, although schematically, the effects as-
sociated with the possible reduction of the pairing
interaction due to screening effects.

(iv) We improve the numerical aspects of the code,
namely the derivation and integration techniques.
Improving the numerical precision is crucial for com-
puting the pinning energy, as we show in the next
section.

B. Binding and pinning energy

We solve the HFB equations in the following configura-
tions (see Fig. 1 for a sketch):

(i) Neutron sea (NS): The neutron sea, with neither a
nucleus (Z = 0) nor a vortex (ν = 0);

(ii) Nucleus (Nu): A nucleus (Z �= 0) with no vortex (ν =
0), surrounded by the neutron sea;

(iii) Interstitial pinning (IP): a vortex (ν = 1) with no
nucleus (Z = 0), surrounded by the neutron sea;

(iv) Nuclear pinning (NP): A nucleus (Z �= 0) and a vortex
(ν = 1) on top of it, surrounded by the neutron sea.

By comparing the total energies of each configuration, we
computed the binding energy of the vortex onto the nucleus.
This quantity is defined as the difference between the energy
needed to build a vortex on top of a nucleus and the energy
necessary to build a vortex in uniform matter. Equivalently, the
binding energy can be defined as the energy needed to move
the vortex from its site on top of the nucleus to an infinite
distance from it (see Fig. 1). A negative value means that the
favorable position for the vortex is on top of the nucleus, while
a positive value means that the favorable position is far away
from it.

A simple combination of the total energies of each config-
uration gives the explicit expression of the binding energy:

Eb = ENP + ENS − (EIP + ENu)

− λn[NNP + NNS − (NIP + NNu)], (7)

where Ei is the total energy of the specified configuration. We
added a correction term proportional to the neutron chemical
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FIG. 1. Visual representation of (7). The binding energy is shown as the energy cost to move a vortex from its position on top of a nucleus
to an infinite distance from it.

potential λn to ensure that we compare calculations with the
same number of particles, since the vortex, if present, reduces
the number of neutrons Ni found in the cylindrical box.

Numerical precision is crucial to compute the binding en-
ergy. The energy terms in (7) range from some hundreds of
MeVs up to tens of thousands MeVs as a function of neutron
density in the inner crust. The values of the nucleus-vortex
binding energy, on the other hand, range from some hundreds
of keVs up to tens of MeVs. Even small numerical errors
can have substantial effects on the final values of the binding
energy.

We remark that we calculate the binding energy associated
with a single nucleus immersed in the neutron sea, using hard
wall boundary conditions. Practitioners often adopt different
boundary conditions, following Negele and Vautherin, ensur-
ing that the neutron density goes to an asymptotic value at
the boundaries, representative of the neutron density in the
physical Coulomb lattice. But if the results of the physical
quantities significantly depended on the assumed boundary
conditions, this would mean that our basic approximation
to treat a single nucleus would be flawed at the start. We
explicitly verified that the value of the pairing gap does not
depend on the assumed boundary conditions for the densities
we consider in the present work (see paper I).

To use the binding energy as a reasonable proxy to the
pinning energy Ep, it is important that the interaction of the
vortex with the neighboring nuclei, which is not considered in
our approach, plays indeed a negligible role. This point was
also considered in detail in Paper I. There it was shown that
the radius of the vortex in the interstitial configuration, defined
as the distance from the axis at which the pairing gap regains
90% of its asymptotic value (named R90% in Paper I), can be
approximated by

R90% ≈ ξ + 3 fm, (8)

where ξ = h̄2kF /πm0� denotes the coherence length, with kF

the Fermi momentum. For the densities studied here, and β =
1, ξ ranges between 3 and 10 fm approximately. Moreover, we
introduce a critical distance

ρ∗ = R90% + RN , (9)

which should always be smaller than RW S in order that a
vortex in the interstitial configuration can fully develop its

structure without being distorted by the neighboring nuclei.
The radius of the vortex in the pinned configuration is larger
by about 6 fm, but in this case the distance to the neighboring
nuclei is of the order of 2RW S . From the values of ρ∗ and
RW S reported in Appendix C, we conclude that, in most of
the cases considered in our calculations, ρ∗ < RW S and the
neighboring nuclei lie outside of the vortex core. On the
other hand, the computation of the pinning energy requires
rather large boxes, often larger than the physical spacing
between nuclei, Rbox > RW S , in order to take into account
the kinetic contributions associated with the vortex veloc-
ity, which asymptotically displays a slow decrease, following
the Onsager dependence V ≈ h̄/2mρ. The influence of the
neighboring nuclei in this situation can be estimated following
Epstein and Baym [29] (see also Ref. [27]), who computed the
change in kinetic energy caused by the presence of a nucleus
lying in the asymptotic region at a distance R from the vortex
axis.

This quantity is positive and reads

Kn(R) = 3

2
Ms

(
ζ − 1

ζ + 2

)(
h̄

2m0R

)2

, (10)

where Ms is the mass of the neutron superfluid of density n∞
displaced by a sphere of radius Rn (i.e., the nuclear radius),
and ζ is the ratio of the nucleus density nn to the neutron
superfluid density n∞. This expression was derived making
use of very schematic approximations, and the most important
fact is that in practice, the value of Kn(RW S ) is of the order
of a few tens of keV, so that it usually represents a very
small correction to the energy of the interstitial configuration,
while the effect can be neglected for the pinned configuration.
We then add the contribution Kn(RW S ) to the energy of the
interstitial configuration, and then subtract this term from the
binding energy, to obtain a better estimate for the pinning
energy:

Ep � Eb − Kn(RW S ). (11)

We conclude that the binding energy Eb can be used as a
proxy of the pinning energy Ep, if the value of ρ∗ is smaller
than the Wigner-Seitz radius RW S . We also stress that it is im-
portant to distinguish among three different quantities: Rbox,
namely, the radius of the cylindrical cell in which a given
computation is carried out; ρ∗, namely, the critical distance
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FIG. 2. Contour plots of the pairing gaps of the NP (left), Nu (center), and IP (right) configurations. Note that the oscillations visible close
to the z edges in the NP and IP configurations are due to the hard-wall boundary conditions. Their effects cancel out in the pinning energy,
obtained from the subtraction of the two configurations.

for the validity of the calculation of the pinning energy; and
finally RW S , namely, the physical spacing of the Coulomb
lattice in the Wigner-Seitz approximation.

C. Computational details

Similarly to Paper I, we present the calculated value of
the pinning energy as a function of the density of the neutron
sea far from the nucleus, n∞. We investigated eight different
density zones, from n∞ = 0.001 fm−3 to n∞ = 0.038 fm−3.
At each density, we have carried out six sets of calculations,
using two different Skyrme models, namely SLy4 and SkM∗,
and three different pairing strengths (marked by the pairing-
interaction reduction factor β). For each set, we iteratively
solved two HFB equations, one for protons and one for neu-
trons, for each of the four different configurations.

The neutron chemical potential was chosen so as to repro-
duce the external densities predicted in Ref. [7] and studied in
Paper I. On the other hand, the proton chemical potential was
adjusted to give the proton number Z = 40 [7].

We took special care in estimating the errors due to the
convergence of the calculations and also those due to the size
of the box, which is essential for our results to be reliable.
Specifically, we adopted the following convergence criterion
for the computation of a given configuration: The program
halts when the relative total-energy difference between the
last and second-to-last iteration is less than 5 × 10−6 for
three consecutive iteration cycles. In some cases, we observed
that this criterion was not stringent enough; we therefore let
the computation continue until the relative energy difference
reached 5 × 10−8 for three consecutive iteration cycles. As
for the dimensions of the cylindrical box in which a given
computation is carried out, the height hbox is 40 fm, with the
nucleus placed at z = 0 fm; the radial dimension Rbox ranges
approximately between 2 to 3 times that of ρ∗, for numerical
stability reasons.

After the binding energy was obtained, we computed the
critical distance ρ∗ (9) as well as the kinetic contribution

(10) (which within our approximation does not depend on
the box radius). If the criterion ρ∗ < RW S was met, we were
able to compute the corresponding pinning energies via (11);
otherwise, we concluded that our method could not produce a
result for the particular parameter set. In Appendix C we show
the values of ρ∗ we obtained.

III. RESULTS

A. Vortex effects on pairing gaps and proton deformation

In Fig. 2 we compare contour plots of the pairing gaps
associated with the NP (left), Nu (center), and IP (right)
configurations in the (ρ, z) plane, calculated with the SLy4
interaction for β = 1 at the density n∞ = 0.008 fm−3. One
can see that the gap acquires its asymptotic value for ρ � 10
fm in the IP configuration, while the presence of the nucleus
distorts the gap profile in the NP configuration so that the vor-
tex enlarges and incorporates the nucleus, and the gap reaches
its asymptotic value only for ρ � 15 fm. Our results are qual-
itatively consistent with those obtained in Ref. [33], where
the vortex-nucleus interaction was studied with dynamical
simulations (see Fig. 2 in Ref. [33], where one can actually
observe the vortex bending to avoid the nuclear region). The
gap profiles for the NP, Nu, and IP configuration along the
equator z = 0 are shown in Fig. 3 for the SLy4 interaction
and the three values of β we have considered. The density
is n∞ = 0.026 fm−3. In all cases, the gap is suppressed for
ρ � 10 fm and rapidly reaches the asymptotic value corre-
sponding to the given value of β. There is a slight dependence
on the interaction, which essentially depends on the different
values of the effective mass associated with the SLy4 and with
the SkM∗ interaction.

In Fig. 4 we present contour plots in the (ρ, z) plane of the
differences between the density distributions calculated in the
NP and in the Nu configuration with the SLy4 interaction (see
also Ref. [42]). Upper and lower panels refer to neutrons and
to protons respectively. We have set the same color scale for
both neutrons and protons and we display results obtained at

035808-5



P. KLAUSNER et al. PHYSICAL REVIEW C 108, 035808 (2023)

FIG. 3. Typical pairing gaps obtained in our calculations for the NP, Nu, and IP configurations, for the SLy4 interactions and for the three
adopted values of β as a function of the distance from the vortex axis in the z = 0 plane.

four different neutron sea densities corresponding to varying
depths in the inner crust. Deformation effects increase as a
function of density. The deformation of the nucleus tends to
be prolate; that is, aligning the nuclear density with the axis
of the vortex. In the absence of the nucleus, the vortex causes
a density depletion close to its axis (see Paper I and [36] for
more details). In the presence of the nucleus, which lies in
the region ρ � 7 fm and z � 7 fm, this depletion takes place
instead at the surface of the nucleus (circular blue shadow), at
all densities and of the three β factors. This is the counterpart
of the tendency of the vortex to surround the nucleus, already
observed in the case of the pairing gap. On the other hand,
the density in the interior of the nucleus tends to increase,
revealing a tension exerted by the vortex. The only exceptions
are found in the case of the SkM∗ interaction where one
observes some penetration of the vortex into the nucleus at the
two highest neutron sea densities (not shown in the figures).

In general, the deformation of the distribution of protons
is similar in shape and magnitude to that of neutrons (giv-
ing rise to variations in the density up to 5%–10% in the
case of high-density cells). This can be considered to be the
result of the general tendency of the nucleus to maximize
the overlap between the distribution of neutrons and protons.
We assess the effect of the deformation on pinning energies
below.

B. Pinning energies

In Fig. 5 we show our results for the pinning energy as a
function of the neutron sea density n∞ for both SLy4 (straight
line) and SkM∗ (dotted line) interactions. The corresponding
numerical values are reported in Tables I and II.

The value of the pinning energy depends considerably on
the value of the interstitial pairing gap, which could be much
lower than the bare gap (especially at high densities) due to

FIG. 4. Difference between the densities calculated in the NP and Nu configurations, expressed in fm−3, as a function of (ρ, z) in a
ϕ-constant plane. Each column corresponds to a different neutron sea density n∞; from left to right: 0.004, 0.011, 0.026, and 0.037 fm−3. In
the top half, we show neutron quantities, while in the bottom half we show proton quantities.
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FIG. 5. Pinning energies as a function of the neutron sea density n∞, for three values of β and for both SLy4 (straight line) and SkM∗

(dotted line) interactions. The highest-density point with SLy4 and β = 3 is absent because it does not satisfy our requirement ρ∗ > RW S (see
Sec. II B).

screening effects. For this reason, we have carried out calcu-
lations with β = 2 and 3.

We first point out that with β = 3 and the SLy4 interaction
we find ρ∗ > RW S at the highest density, so the criteria we
explained in Sec. II B are not met. Therefore our method
cannot produce a pinning energy value for that point.

Generally, the pinning energy has the same qualitative
behavior for both interactions, with SkM∗ systematically pre-
dicting higher values. At the lowest densities, the pinning
energy is slightly negative and therefore nuclear pinning is
favored. On the other hand, the pinning energy grows con-
siderably with n∞ up to about n∞ = 0.02 fm−3, implying
that vortex lines are repelled at intermediate densities. At the
highest densities, the pinning energy either becomes roughly
stable, as in the case of SkM∗, or decreases, as for SLy4, where
it even becomes negative again for β = 2 and 3.

At a given density the pinning energy decreases as a func-
tion of β. This can be understood, considering that the vortex
radius (expressed in terms of its coherence length ξ ) grows
with n∞ and with β, as a larger value of β corresponds to a
lower pairing field �. We have previously seen that the vortex
tends to incorporate the nucleus. This costs less energy if the

TABLE I. Pinning energy and its uncertainty for eight different
values of the neutron sea density. We show our results with the SLy4
interaction for the three different values of β. The highest-density
point with β = 3 is absent because it does not satisfy our requirement
ρ∗ > RW S (see Sec. II B).

Ep [MeV] (SLy4)

n∞ [fm−3] β = 1 β = 2 β = 3

0.001 −0.72 −0.48 −0.27
0.002 −0.91 −0.75 −0.70
0.004 −0.89 −0.97 −0.93
0.008 2.73 0.40 −0.43
0.011 3.01 0.63 −0.26
0.017 10.00 3.90 1.06
0.026 11.78 3.77 −0.94
0.037 9.85 −1.49

vortex radius is larger; that is, for larger values of β, because
the deformation needed is clearly less significant. The nu-
clear pinning configuration, while still being not convenient,
becomes less unfavorable and the pinning energy decreases
considerably with β. It is reasonable to think that this trend
should continue as we move to deeper and denser areas of
the crust, where the pasta phase will likely produce negative
pinning energy, thus giving rise to a hitherto unexplored hy-
brid mode of pinning, with consequences for the macroscopic
hydrodynamic behavior of the superfluid in the pasta layers
[26], usually expected to be present at higher densities than
those studied here [43]. Although the density of rods is much
larger than the estimated number of vortices, one can specu-
late that the vortex-nucleus interaction may have some impact
on the dynamics that generates the phase transition leading
to the appearance of pasta. This interesting subject is left for
future studies.

We carefully checked the dependence of our results on
the radius Rbox of the cylindrical cell. We have found that
generally, the computed pinning energies tend to stabilize
for Rbox larger than 35 fm. For each set of parameters, we
performed three calculations for ρbox = 38, 40, and 42 fm,
and the same height (hbox = 40 fm). The resulting pinning
energies differ by less than ≈10 keV at the lowest density

TABLE II. Pinning energy and its uncertainty for eight different
values of the neutron sea density. We show our results with the SkM∗

interaction for the three different values of β.

Ep [MeV] (SkM*)

n∞ [fm−3] β = 1 β = 2 β = 3

0.001 −0.19 −0.30 −0.27
0.002 −0.10 −0.35 −0.50
0.004 1.63 0.18 −0.23
0.008 7.47 2.72 1.19
0.011 8.06 3.41 1.68
0.017 11.12 5.81 3.59
0.026 19.07 10.31 6.47
0.037 18.69 12.07 6.43
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FIG. 6. Comparison between our new results (blue dots) on the pinning energy and the results of Paper I [28] (purple triangles). As
previously, we show the values as a function of the exterior neutron sea density n∞ for both Sly4 (left) and SkM∗ (right) interactions and for
β = 1.

we have considered; that is, n∞ = 0.001 fm−3, and by less
than 300 keV at n∞ = 0.017 fm−3. For a given density, we
report the value averaged over the three boxes. We have found
that, at the two largest computed densities, namely, n∞ =
0.026 fm−3 and n∞ = 0.037 fm−3, the convergence pattern
is more complicated, and we considered also larger values of
Rbox, up to 48 fm. The HFB self-consistent process for the
NP configurations can lead to two solutions having a different
pairing and density spatial dependence, according to the box
radius, and differing from each other by about 1.5 MeV. For
these two densities, the boxes displaying the deepest minima
were selected, in keeping with the variational nature of our
approach. The resulting uncertainty on the pinning energy is
equal to about 500 keV.

We conclude this section comparing our results with those
reported in Paper I in Fig. 6. The pinning energies computed
with the SLy4 and the SkM∗ interaction are shown in the
left and right panel, respectively. Only the value β = 1 was
considered in Paper I. The results obtained for the SkM∗

interaction are similar, aside from a sharp fall of the pinning
energy in the second density zone. On the other hand, for
SLy4 the situation is rather different: The new results are more
regular and grow monotonically with n∞, while the previous
ones present a distinct oscillatory behavior. Quantitatively,
the difference with the results of Paper I is substantial at the
largest densities, where the present pinning energies are larger
by 5–10 MeV.

To study these differences in more detail, in Fig. 7 we
consider first the effect of proton deformation and of Coulomb
exchange, which were not taken into account in Paper I. Pro-
ton deformation decreases the energy of the NP configuration;
on the other hand, it does not affect the Nu configuration,
in which we consider a spherical, closed-shell nucleus. As a
consequence [see Eq. (7)] the pinning energy decreases, and
therefore this effect cannot explain why the pinning energies
are larger than those calculated in Paper I. In any case, one
sees in Fig. 7 (see in particular the inset) that this effect is
significant only for the largest densities, where it amounts
to about 600–700 keV. Neglecting deformation but including
Coulomb exchange, on the other hand, decreases the pinning
energy by at most about 100 keV.

We then conclude that the differences with Paper I must be
related to the improvements in the computational algorithms.
This point is further considered in Appendix B.

C. Mesoscopic pinning forces

The pinning energy contains information about the mi-
croscopic interaction between a vortex and a single nucleus.
Nonetheless, inner crust vortices are much longer than the
lattice spacing and are expected to interact with many pinning
sites [26,32], giving rise to pinning at the mesoscopic scale
(an intermediate scale in between the lattice spacing and the
typical distance between two vortices in a pulsar).

Seveso et al. [32] found a simple prescription to estimate
the mesoscopic pinning force per unit length, fL, acting on
a vortex segment of length L, which is a better representa-
tive of the vortex-lattice interaction than the single-nucleus
pinning energy, see the discussion in Ref. [26]. They found

FIG. 7. The pinning energy calculated with the SLy4 interaction
for β = 1 as a function of neutron density, already shown in Fig. 5.
Our results (blue line) are compared with the one obtained neglecting
both proton deformation and Coulomb exchange (green line) or
neglecting only proton deformation (red line). The results obtained
at the highest densities are shown in more detail in the inset.

035808-8



MICROSCOPIC CALCULATION OF THE PINNING ENERGY … PHYSICAL REVIEW C 108, 035808 (2023)

FIG. 8. Absolute value of the pinning force per unit length as a function of the neutron sea density n∞, for both SLy4 (upper half) and
SkM∗ (lower half) interactions. Where it is attractive, we used a hollow circle, while where it is repulsive we used a dot. The values have
been found using the prescription in Ref. [32] for three different maximum-straight lengths L = 1000 (straight line), 2500 (line-dot), and 5000
(dotted line) RW S . We plotted the results for the three different values of β used. As for the corresponding pinning energy, the highest density
point with SLy4 and β = 3 is absent because it does not satisfy our requirement ρ∗ > RW S (see Sec. II B).

an analytic approximation where the force per unit length
fL = fL(Ep, RW S, L) is a function of the pinning energy Ep

and the dimension of the WS cell RW S . This function depends
also on the parameter L, the typical length over which a
vortex filament in the inner crust could be approximated as
straight. Finally, the estimate of fL(Ep, RW S, L) also depends
on the geometrical properties of the lattice and on whether
there is nuclear or interstitial pinning. However, the authors
found that this distinction has a low impact on the pinning
strength results, a result that is confirmed also by the dynami-
cal simulations of an ensemble of vortices in complex pinning
landscapes performed in Refs. [26,44].

By following the procedure in Ref. [32], we can calculate
new estimates for the typical pinning force for three different
values of the parameter L that defines the scale on which a vor-
tex can be considered straight (L = 1000, 2500, 5000 RW S ,
see Ref. [32]). Our results are shown in Fig. 8. We plot the
absolute value of the force per unit length; where it is marked
with dots, it is repulsive, otherwise, it is attractive where
marked by circles. The mesoscopic pinning force values are
of the same order of magnitude as the results of Ref. [32]:
The force per unit length ranges from ≈1013 dyn/cm up to
≈1016 dyn/cm.

While most of the remarks present in Ref. [32] are valid for
our results, too, we briefly underline the following aspect. The
force decreases as the vortex length increases. Note that for
an infinitely long and rigid vortex, the pinning force should
vanish. In fact, if the vortex were to move, the number of
nuclei with which it interacts would not change [32,45].

We can also compare our findings with the results of
Ref. [33], which are obtained through a different method.
In particular, from inset (b) in Fig. 3 of their work, we can
see that they found a repulsive force of the order of ≈0.5
MeV/fm when the vortex-nucleus distance is approximately
20 fm; after conversion to appropriate units, this is broadly
consistent with our results.

IV. CONCLUSIONS

Microscopic pinning energies are a crucial ingredient in
the dynamics of vortex-mediated pulsar glitches. The stronger
the pinning of a vortex line, the larger the amount of angular
momentum that can be stored in the inner crust in the form of
a persistent (dissipationless) neutron current, which can then
be potentially released in a glitch [4].

Most of the past estimates of the pinning energies relied
on a classical or semiclassical picture and had to use sig-
nificant approximations to describe nuclei. Working in the
microscopic HFB framework solves these problems, as was
done in Paper I [28]. We have expanded and improved the
latter work in four respects: We have (i) allowed for the
axial deformation of protons; (ii) included the effect of the
Coulomb exchange; (iii) considered, although schematically,
the effects of the screening of the pairing interaction; and (iv)
improved the numerical treatment giving special attention to
the convergence of our results. Based on these improvements,
we found new and more reliable results on the pinning energy.
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Our results show that nuclei attract vortices for the lower
external neutron sea densities, while the situation is the op-
posite at higher densities unless the pairing gap is strongly
screened. From our estimates of the pinning binding energy,
we then extracted the typical force per unit length acting on a
vortex, consistently with the procedure developed in Ref. [32].
This force defines a theoretical upper limit on the depinning
threshold [26] and, accordingly, an upper limit on the glitch
amplitude in general relativity [17]. Therefore, in Sec. III C
we have checked that our mesoscopic pinning forces are
sufficiently large to be consistent with observations of giant
glitches in the Vela pulsar.
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APPENDIX A: NUMERICAL DETAILS

Within the HF approximation, one can obtain an explicit
expression for the self-consistent potential of the Skyrme po-
tential,

h(x) = −∇ h̄2

2m∗
q (x)

∇ + Uq(x) + δq,pVC, (A1)

where q can stand for p (protons) or n (neutrons). Remem-
bering that nq and τq are the density and the kinetic density
of either protons or neutrons, and that n = np + nn and τ =
τp + τn, we write the terms in (A1) following [37]. The effec-
tive mass m∗

q is

h̄2

2m∗
q (x)

= h̄2

2m0
+ 1

8
[t1(2 + x1) + t2(2 + x2)]n(x)

− 1

8
[t1(1 + 2x1) + t2(1 + 2x2)]nq(x), (A2)

the self-consistent potential Uq reads

Uq(x) = 1
2 t0[(2 + x0)n + (1 + 2x0)nq]

+ 1
24 t3

{
(2 + x3)(2 + α)nα+1

− (2x3 + 1)
[
2nαnq + αnα−1(n2

p + n2
n

)]}
+ 1

8 [t1(2 + x1) + t2(2 + x2)]τ

+ 1
8 [t2(1 + 2x2) − t1(1 + 2x1)]τq

+ 1
16 [t2(2 + x2) − 3t1(2 + x1)]∇2n

+ 1
16 [t2(1 + 2x2) + 3t1(1 + 2x1)]∇2nq. (A3)

Lastly, the Coulomb potential, with the Slater approximation
for the exchange part, reads

VC (x) = e2

[∫
np(x′)d3x′

|x − x′| −
(

3

π

) 1
3

np(x)
1
3

]
. (A4)

In the code, we neglect the spin-orbit interaction, taking into
account the spin simply with a degeneracy factor g = 2.

Each term of the potentials contributes to a term of the
energy density of the system HHF (x), which in turn is subdi-
vided into different components:

HHF = K + H0 + H3 + Heff + Hfin + HC, (A5)

where each term reads

K = h̄2

2m0
τ,

H0 = 1

4
t0

[
(2 + x0)n2 − (2x0 + 1)

(
n2

p + n2
n

)]
,

H3 = 1

24
t3nα

[
(2 + x3)n2 − (2x3 + 1)

(
n2

p + n2
n

)]
,

Heff = 1

8
[t1(2 + x1) + t2(2 + x2)]τn

+ 1

8
[t2(2x2 + 1) − t1(2x1 + 1)]

(
τpnp + τnnn

)
,

Hfin = 1

32
[3t1(2 + x1) − t2(2 + x2)](∇n)2

− 1

32
[3t1(2x1 + 1) + 3t2(2x2 + 1)][(∇np)2+(∇nn)2],

HC = e2

(
np

2

∫
np(x′)d3x′

|x − x′| − 3

4

(
3

π

) 1
3

np(x)
4
3

)
.

(A6)

We solve (1) in a cylindrical box with height hbox and radius
ρbox. We search for a solution expanded on a single-particle
basis so that the amplitudes uqm(ρ, z, ϕ) and vqm(ρ, z, ϕ) for
the quasiparticle level q with projection of angular momentum
along the z axis m are

uqm(ρ, z, ϕ) =
∑

nl

U nl
qm fnm(ρ)gl (z)eimϕ,

vqm(ρ, z, ϕ) =
∑

nl

V nl
qm fnm−ν (ρ)gl (z)ei(m−ν)ϕ. (A7)

where the index n labels the number of nodes of the function
fnm(ρ).

On the ρ axis, functions fnm(ρ) are the solution of the
Schrödinger equation for free particles:

− h̄2

2m0

[
1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
− m2

ρ2

]
fnm(ρ) = enm fnm(ρ). (A8)

On the z axis, functions gl (z) are normalized plane waves

gl (z) =
√

2

hbox
sin

[
kl

(
z + hbox

2

)]
, kl = π

hbox
,

2π

hbox
, . . . ,

(A9)

so that we have

− h̄2

2m0

[
∂2

∂z2
+ 1

ρ2

∂2

∂ϕ2
+ 1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)]
fnm(ρ)gl (z)eimϕ

=
(

enm + h̄2k2
l

2m0

)
fnm(ρ)gl (z)eimϕ. (A10)

035808-10



MICROSCOPIC CALCULATION OF THE PINNING ENERGY … PHYSICAL REVIEW C 108, 035808 (2023)

As for the boundary condition, each single-particle func-
tion vanishes at the edge of the box.

To solve (1), we project it onto generic basis states
|mi, ni, li〉 = |αi〉. Therefore our system of equations becomes,
in matrix form,(〈α2|h − λ|α1〉 〈α2|�|α1〉

〈α2|�∗|α1〉 −〈α2|h − λ|α1〉
)

. (A11)

Since h depends only on the density, and the density does
not depend on the azimuthal angle ϕ, it holds

〈m2, n2, l2|h|m1, n1, l1〉 = δm1,m2〈n2, l2|h|n1, l1〉. (A12)

On the other hand, � = �(ρ, z)eiνϕ . It follows that

〈m2, n2, l2|�|m1, n1, l1〉 = δm1,m2+ν〈n2, l2|�(ρ, z)|n1, l1〉.
(A13)

We can now rewrite (1) explicitly. From (A1) and (5), we
find ∑

n2l2

(
hm

n1l1n2l2
− λ

)
U qm

n2l2
+ �m

n1l1n2l2
V qm

n2l2
= EqmU qm

n1l1
,∑

n2l2
�m

n1l1n2l2
U qm

n2l2
− (

hm
n1l1n2l2

− λ
)
V qm

n2l2
= EqmV qm

n1l1
,

(A14)

where

hm
n1l1n2l2 = 2π

∫ hbox

0
2dz

∫ ρbox

0
ρ dρ

{
fn2m(ρ)gl2 (z)

[
U (ρ, z) +

(
m0

m∗(ρ, z)

)(
en1m + h̄2k2

l1

2m0

)
− λ

]
fn1m(ρ)gl1 (z)

+ fn2m(ρ)gl2 (z)

[
∂

∂ρ

(
h̄2

2m∗(ρ, z)

)
∂ fn1m(ρ)

∂ρ

]
gl1 (z) + fn2m(ρ)gl2 (z)

[
∂

∂z

(
h̄2

2m∗(ρ, z)

)
∂gl1 (z)

∂z

]
fn1m(ρ)

}
, (A15)

and

�m
n1l1n2l2 = 2π

∫ hbox

0
2dz

∫ ρbox

0
ρ dρ

[
fn2m−ν (ρ)gl2 (z)�(ρ, z) fn1m(ρ)gl1 (z)

]
. (A16)

Since protons and neutrons feel different self-consistent
potentials (A3), they give rise to two systems (A14). From
the solution of such systems, we then compute new densities,
which we can use to write a new set of equations (A14).
This iterative process stops once the relative energy difference
between subsequent iterations is lower than an appropriate
value. Since protons are confined in the nucleus, the dimen-
sion of their box is smaller, fixed at 15 fm: So that it is big
enough to contain all the protons but small enough to shorten
the calculation times. Finally, we do not consider proton
pairing.

APPENDIX B: NUMERICAL TEST

We test the accuracy of our axially deformed HFB code
by applying it to the spherical nucleus 40Ca and comparing

TABLE III. All contributions to the total energy (Etot). Values are
expressed in MeV. δE is the relative energy difference (in percentage)
between each value and the standard HF equivalent. We divided the
energy in its main contributions, as in (A6), except for E12, which is
defined as E12 = Efin + Eeff . The interaction used was SLy4 and the
spin-orbit terms were neglected, as well as the Coulomb exchange
potential.

Ref. [46] Present work δE (%)

K 640.21 638.93 0.1
E0 −3716.80 −3707.01 0.3
E3 2398.00 −2391.19 0.3
E12 279.59 278.83 0.3
EC 78.94 78.72 0.3
Etot −320.03 −319.33 0.2

the results with those obtained with the spherical code HFBCS-
QRPA [46]. For this test, we use the SLy4 interaction without
the spin-orbit terms.

In Table III we show the total energy, divided among its
contributions, as listed in (A6); the only exception being E12,
which is defined as E12 = Efin + Eeff . The relative difference
between the HFBCS-QRPA results and our program amount to
0.1%–0.3%.

In Table IV we list the single-particle energy levels of neu-
trons and protons. We see that the present code reproduces the
degeneracy of the levels with the same values of the angular
momentum l within a few keVs, while deviations of the order
of 100 keV are found in the original code.

TABLE IV. Energies of each single-particle level, both for pro-
tons and neutrons, expressed in MeV.

Neutrons Protons

Ref. [46] Present work Ref. [46] Present work

2s lz = 0 −16.95 −16.889 −9.48 −9.459
lz = 2 −18.85 −18.785 −11.40 −11.361
lz = 1 −18.85 −18.786 −11.40 −11.362

1d lz = 0 −18.85 −18.789 −11.40 −11.371
lz = −1 −18.85 −18.786 −11.40 −11.362
lz = −2 −18.85 −18.785 −11.40 −11.361

lz = 1 −33.21 −33.184 −25.29 −25.282

1p lz = 0 −33.21 −33.182 −25.29 −25.277
lz = −1 −33.21 −33.184 −25.29 −25.282

1s lz = 0 −47.82 −47.799 −39.36 −39.356
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TABLE V. Critical distance ρ∗ from our calculations with the
SLy4 Skyrme parametrization. For β = 2, the value of ρ∗ is almost
equivalent to RW S . We still show the results for this density, even
though it is at the limits of our approximation. For β = 3, the value
of ρ∗ is bigger to the dimension of the WS cell; therefore our method
cannot estimate the pinning energy for this case.

ρ∗ [fm] (SLy4)

n∞ [fm−3] RW S [fm] β = 1 β = 2 β = 3

0.001 43.7 14.8 19.3 24.0
0.002 41.5 14.9 19.0 23.0
0.004 38.8 14.4 17.2 19.7
0.008 33.7 14.1 17.1 17.9
0.011 31.8 14.2 17.1 17.7
0.017 28.9 14.6 17.6 18.3
0.026 25.6 15.5 18.0 20.2
0.037 21.4 17.5 21.5 24.7

APPENDIX C: CRITICAL DISTANCE CRITERION

We show here the values of the critical distance ρ∗ = RN +
ξ [see Eq. (9)] obtained with the SLy4 (see Table V) and the

TABLE VI. Critical distance ρ∗ from our calculations with the
SkM∗ Skyrme parametrization.

ρ∗ [fm] (SkM∗)

n∞ [fm−3] RW S [fm] β = 1 β = 2 β = 3

0.001 43.7 14.3 18.9 23.6

0.002 41.5 14.7 19.3 24.0

0.004 38.8 14.5 16.9 22.7

0.008 33.7 13.7 15.7 17.2

0.011 31.8 13.7 15.4 16.9

0.017 28.9 13.7 15.4 16.8

0.025 25.6 14.2 15.9 17.3

0.038 21.4 15.3 17.0 17.0

SkM* (see Table VI) interactions and for three values of the
gap-reduction factor β.

We observe that the value of ρ∗ is mostly determined by the
pairing gap. As a consequence, ρ∗ has a minimum at interme-
diate densities, where the pairing gap reaches its maximum
value.
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