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ABSTRACT

Context. The internal kinematics of the Large Magellanic Cloud (LMC) have been studied in unprecedented depth thanks to the
excellent quality of the Gaia mission data, thus revealing the disc’s non-axisymmetric structure.
Aims. We seek to constrain the LMC bar pattern speed using the astrometric and spectroscopic data from the Gaia mission.
Methods. We applied three methods to evaluate the bar pattern speed by measuring it via: the Tremaine-Weinberg (TW) method, the
Dehnen method, and a bisymmetric velocity (BV) model. These methods provide additional information on the bar properties, such
as the corotation radius as well as the bar length and strength. We tested the validity of the methods with numerical simulations.
Results. A wide range of pattern speeds are inferred by the TW method, owing to a strong dependency on the orientation of the
galaxy frame and the viewing angle of the bar perturbation. The simulated bar pattern speeds (corotation radii, respectively) are well
recovered by the Dehnen method (BV model). Applied to the LMC data, the Dehnen method finds a pattern speed of Ωp = −1.0 ±
0.5 km s−1 kpc−1, thus corresponding to a bar that barely rotates and is only slightly counter-rotating with respect to the LMC disc. The
BV method gives a LMC bar corotation radius of Rc = 4.20±0.25 kpc, corresponding to a pattern speed of Ωp = 18.5+1.2

−1.1 km s−1 kpc−1.
Conclusions. It is not possible to determine which global value best represents an LMC bar pattern speed with the TW method, due
to the strong variation with the orientation of the reference frame. The non-rotating bar from the Dehnen method would be at odds
with the structure and kinematics of the LMC disc. The BV method result is consistent with previous estimates and gives a bar
corotation-to-length ratio of 1.8 ± 0.1, suggesting that the LMC is hosting a slow bar.
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1. Introduction

The angular speed of stellar bars is a fundamental param-
eter in dynamics of galaxies from which the principal bar-
disc resonances can be identified and the structure of stellar
orbits can be studied in a given gravitational potential (e.g.
Contopoulos & Grosbol 1989; Binney & Tremaine 2008). Fur-
thermore, the bar pattern speed is thought to reflect certain prop-
erties of the halo density at low radius because bars and haloes
of stars and/or dark matter are believed to continuously interact
during galaxy evolution through dynamical friction. Numerical
models and observations suggest that the bar speed is slower
when the inner halo is denser (Debattista & Sellwood 2000;
Buttitta et al. 2023). The pattern speed of simulated bars is also
seen to slow down with the secular evolution, in contrast to its
growing length and strength (Sellwood 2014).

The importance of measuring bar pattern speeds in the
dynamics and evolution of galaxies has thus grown signifi-
cantly with the emergence of large-scale long-slit and 3D spec-
troscopic surveys, which have enabled the estimations of a
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few hundreds of pattern speeds (Cuomo et al. 2019; Guo et al.
2019; Géron et al. 2023, and references therein). These works
found that most stellar bars are fast, namely, bars show a
ratio of corotation-to-bar radius smaller than 1.4 (following
Athanassoula 1992), and that high angular speeds are for small
and weak bars, and within faint galaxies (Cuomo et al. 2020).
However, the large occurrence of fast bars is a critical issue for
the simulations made in a cosmological context, as the inner den-
sity of simulated dark matter halos is so cuspy that the parent
discs are expected to host mostly slow bars. This discrepancy
suggests a failure in cosmological simulations (Roshan et al.
2021) or, perhaps, a bias in estimating pattern speeds of bars
from observations (Fragkoudi et al. 2021). This highlights the
difficult part of measuring pattern speeds from observation since
it represents a single time instant in the entire evolution of
galaxies.

Bar pattern speeds from these studies have been inferred
exclusively by means of the Tremaine-Weinberg method
(Tremaine & Weinberg 1984, hereafter TW). Its direct applica-
tion makes use of integrals of kinematics and positions of a
tracer that should obey the continuity equation, such as stars.
Alternatively, Dehnen et al. (2023) proposed a new method for
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determining bar pattern speeds in numerical simulations using a
single time snapshot. This involves measuring the Fourier ampli-
tudes of particle positions and velocities within the bar region. In
another work, Gaia Collaboration (2023a) proposed an indirect
measurement of the bar angular speed by fitting a bisymmet-
ric model to the tangential velocities to get the bar phase angle
and corotation radius. Unfortunately, these last two methods
have limited applicability due to their reliance on the avail-
ability of objects with individually measured planar (tangen-
tial and radial) velocities, which are rare. Only the Milky Way
(MW) and the Large Magellanic Cloud (LMC) offer this pos-
sibility. To our knowledge, the Dehnen et al. (2023) formalism
has never been applied to observations, while the method in
Gaia Collaboration (2023a) estimated the bar corotation, orien-
tation and pattern speed for the MW, using data from the Gaia
mission (Gaia Collaboration 2016, 2021a). Interestingly, they
found a Galactic bar speed consistent with the value inferred
with the TW method (Bovy et al. 2019).

Our objective in this study is to determine the pattern speed
and corotation region of the stellar bar in the LMC. The LMC
is a dwarf spiral (or irregular) galaxy and one of the closest
and brightest satellites of the MW, in interaction with the Small
Magellanic Cloud (SMC) and the MW. It could thus be a chal-
lenge to study the properties of a system like the LMC, because
of its structure and velocity field impacted by the interaction,
at least in the outermost regions (e.g. Belokurov & Erkal 2019;
Gaia Collaboration 2021b). It is, however, a unique object of its
kind for testing the three aforementioned methods due to the
availability of different kinds of kinematic data for the entire
disc. To achieve this objective, we make use of the opportu-
nity to use both astrometric and spectroscopic data from the
Gaia mission. First, the TW method can be applied to line-
of-sight (LoS) velocities of thousands of LMC stars, as mea-
sured by the Gaia Radial Velocity Spectrometer (Katz et al.
2023; Jiménez-Arranz et al. 2023), yielding a single value of the
LMC bar pattern speed, similarly to other galaxies. Second, the
Gaia astrometric data allow us to estimate the two components
of the velocity tensor for millions of stars in the LMC plane
(Gaia Collaboration 2021b). Unlike the LoS velocities given in
the sky frame, these two components make it possible to apply
the Dehnen method, the bisymmetric model, as well as a modi-
fied version of the TW method, adapted to the disc plane. In this
latter case, multiple values of the LMC bar pattern speeds can be
inferred, corresponding to multiple orientations of the Cartesian
frame of the LMC plane, thus multiple viewing angles of the bar
in the disc reference frame. This allows us to compare various
estimates of the bar pattern speed, and assess the validity of the
methods.

The paper is organised as follows. In Sect. 2, we describe
the methods used to measure the bar pattern speed. In Sect. 3,
we validate the methods using two N-body simulations: one
representing an isolated disc and the other an interacting disc.
In Sect. 4, we apply the three methods to the LMC sample
(Jiménez-Arranz et al. 2023), to try to determine the pattern
speed of the LMC bar. In Sect. 5, we discuss the implications
of our findings for our understanding of the LMC and barred
spiral galaxies in general. Finally, in Sect. 6, we summarise the
main conclusions of this work.

2. Methods

In this section, we describe the three methods applied to the Gaia
data to infer the bar pattern speed of the LMC. The first is the
Dehnen method (Sect. 2.1), which can be applied to astromet-

ric data. Secondly, we describe the Tremaine-Weinberg method
(TW, Sect. 2.2), which can be applied to astrometric or spec-
troscopic data. Finally, we describe the bisymmetric velocity
method (BV, Sect. 2.3), which can only be applied to astrometric
data.

In the Cartesian frame of the galaxy, the methods assume that
the disc is in equilibrium (which may not be fully the case for the
LMC), rotation is done around the z-axis, the kinematic center is
located at the origin of the Cartesian coordinate frame, and the
density is stationary in the frame rotating at Ωp. Furthermore, it
is also assumed that the region where Ωp is constrained should
only contain the bar, that is well distinguishable from other struc-
tures in the galaxy, such as spiral arms. It is worth mentioning
that other density perturbations may exist in the region where
the bar influences the stellar dynamics, and thus could impact
the estimation of the bar Ωp.

2.1. The Dehnen method

The first method we use in this work is that of Dehnen et al.
(2023). We use the version of the code made publicly available
with the paper. Here we summarise some of the main aspects of
the method.

Dehnen et al. (2023) developed an unbiased, precise, and
consistent method that simultaneously measures Ωp and the ori-
entation angle φb of the bar from single snapshots of simulated
barred galaxies. These parameters are found assuming that the
continuity equation applies:

∂Σvx

∂x
+
∂Σvy

∂y
+
∂Σ

∂t
= 0, (1)

where vx and vy are the disc’s velocity components in Cartesian
coordinates (x, y), where Σ = Σ(x, y, t) = Σ(R, φ − Ωpt) is the
disc surface density, (R, φ) the corresponding cylindrical coor-
dinates, and Ωp is the angular speed of the rotating frame of
the bar perturbation, considered invariant with time. The method
assumes that the centre of rotation is known, that the rotation is
around the z-axis and that the density is stationary in the rotating
frame. With these assumptions, ∂Σ/∂t = −Ωp∂Σ/∂φ and Eq. (1)
becomes:

Ωp
∂Σ

∂φ
=
∂Σvx

∂x
+
∂Σvy

∂y
· (2)

This expression is the traditionally used in the TW method
(see Sect. 2.2 below). Here we use the Fourier method, as imple-
mented in the public code, which consists of multiplying Eq. (2)
by the weight function w(x) = W(R)e−imφ, where m is the
azimuthal wave number and W(R) a smooth window function
(see their Eq. (25)), and integrating over all space. The smooth
window function is necessary to avoid issues at the edges of
radial bins. The resulting expression for the pattern speed of
an N-body model is the real value form (see details in their
Appendix A) of the following equation:

Ωp +
i
m

Σ̇m

Σm
=

Σiµi

[
φ̇iWi + i

m Ṙi(∂W/∂R)i

]
e−imφi

ΣiµiWie−imφi
, (3)

where µi are the individual particle masses.
In fact, the method is divided in two steps. First, it defines

which particles belong to the bar region, [R0,R1], defined as
a continuous range of radial bins with large amplitude of the
bisymmetric density perturbation of second order, and having a
roughly constant phase angle (see their Appendix B for details).
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Hereafter we will refer to R1 as the bar radius or length, as it
agrees well with the definition of best estimates for bar lengths in
numerical simulations (Ghosh & Di Matteo 2023). Second, once
the bar region is determined, it computes the bar pattern speed
and the bar phase angle together with their uncertainties using
the covariance matrix of the real part of Eq. (3) with m = 2 (their
Eq. (A.4)).

Dehnen et al. (2023) applied their method to a suite of
N-body models of isolated barred spiral galaxies. By comparing
the results to Ωp calculated using time-centred finite-differences
from three consecutive snapshots, they found that their method
is reliable and accurate, provided that the bar region is well-
determined and a smooth window function is utilised.

2.2. The Tremaine-Weinberg method

The second method we use is the Tremaine-Weinberg (TW)
method (Tremaine & Weinberg 1984). As mentioned above, the
main assumption of the method developed is that the density and
kinematics of the tracer obey the continuity equation (Eq. (1)).
The method is designed for galactic systems in equilibrium and
with a single pattern (see its application to a simulated disc with
a bar perturbation in Appendix A). The best kinematic tracer
satisfying this condition is the old stellar population of galax-
ies. Estimates of Ωp of galaxies using the TW method were
thus mostly obtained from absorption lines of stellar popula-
tions, as observed by means of optical long-slit or integral field
spectroscopy (e.g. Merrifield & Kuijken 1995; Gerssen et al.
1999; Aguerri et al. 2003, 2015; Debattista & Williams 2004;
Cuomo et al. 2019), although emission lines of interstellar gas
for a few galaxies were used as well (e.g. Bureau et al. 1999;
Hernandez et al. 2005; Rand & Wallin 2004; Meidt et al. 2008;
Chemin & Hernandez 2009; Williams et al. 2021).

As shown in Gaia Collaboration (2021b) and
Jiménez-Arranz et al. (2023), we can select millions of
stars in the LMC disc with proper motions, from which the
in-plane components vx and vy can be measured. Therefore,
Eq. (2) can be solved directly for the LMC, unlike any other
galaxies. Integrating it with respect to x yields:

Ωp =
〈vy〉

〈x〉
, where 〈vy〉 =

∫ +∞

−∞
vy(x, y)Σ(x, y)dx∫ +∞

−∞
Σ(x, y)dx

,

〈x〉 =

∫ +∞

−∞
xΣ(x, y)dx∫ +∞

−∞
Σ(x, y)dx

· (4)

These integrals can be numerically solved by discretising the
space, namely, by summing the surface density and kinematics
along x-wedges at different y positions (hereafter, pseudo-slit).
Then, the pattern speed Ωp can be determined by doing a linear
fit of 〈vy〉 vs. 〈x〉. Interestingly, a permutation of x and y can be
done in Eq. (4), so that Ωp can also be estimated from 〈vx〉 vs.
〈y〉. To keep the analysis simple, we defer to another study the
test of this alternative derivation.

The continuity assumption is independent on the choice of
the Cartesian frame. This implies that we can choose arbitrarily
the orientation of the reference x−y plane by rotating it around
the z-axis, and measure the TW integrals of Eq. (4) at various
orientations. Only astrometric data can make such analysis pos-
sible, unlike spectroscopic data. This is thus a good opportunity
for us to assess for the first time the effect of the viewing angle of
the bar in the disc plane on the TW integrals of Eq. (4) (Sect. 3),
and on the LMC bar pattern speed (Sect. 4).

To get an unbiased value of the bar angular speed, we must
restrict the linear regression by selecting exclusively the integrals
from the bar region. This is defined as the points located out
to the radius R1 obtained with the Dehnen method (Sect. 2.1),
and the best fit of the pattern speed Ωp arises from selecting the
integrals with (〈x〉2+y2)1/2 < R1, thus avoiding the outer disc that
mostly traces the spiral structure, which is expected to show a
lower angular speed from the bar (see e.g. Merrifield et al. 2006,
with the example of the grand design spiral NGC 1068).

Additionally, the LMC is the only galaxy for which
both transverse and LoS kinematics are available. Because of
such a lack of galaxies having observed planar kinematics,
Tremaine & Weinberg (1984) have historically adapted Eq. (4)
to work with sky plane coordinates (X,Y) = (x, y cos i) and the
LoS velocity Vlos = vy sin i + vz cos i, where i is the galaxy incli-
nation, leading to:

Ωp sin i =
〈Vlos〉

〈X〉
, where 〈Vlos〉 =

∫ +∞

−∞
Vlos(X,Y)Σ(X,Y)dX∫ +∞

−∞
Σ(X,Y)dX

,

〈X〉 =

∫ +∞

−∞
XΣ(X,Y)dX∫ +∞

−∞
Σ(X,Y)dX

, (5)

with 〈Vlos〉 and 〈X〉 being the intensity-weighted means of the
LoS velocity and position of the tracer, respectively. These inte-
grals can numerically be solved by discretising the space, select-
ing the disc areas parallel to the disc major axis, yielding a value
of 〈X〉 and 〈Vlos〉 for each Y . Unlike the previous case, we can-
not vary the orientation of the reference frame here because the
LoS kinematics is firmly attached to the unique position angle
of line of nodes (disc major axis). Then, Ωp sin i is the result
of the linear fit of 〈Vlos〉 vs. 〈X〉. Similarly to the planar veloci-
ties, only 〈X〉 and 〈Vlos〉 from the bar region must be considered,
thus by selecting the TW points inside the sky region where R1
is projected. For clarity, we hereafter refer to the version of the
TW method involving the planar velocities as the In-Plane TW
method (IPTW, Eq. (4)), and the one using Vlos data as the LoS
TW method (LTW, Eq. (5)).

2.3. Bisymmetric model of the tangential velocity

In Gaia Collaboration (2023a), indirect measurements of the pat-
tern speed Ωp were performed by searching for the corotation
radius Rc within a simulated barred galaxy. Here, a second order
asymmetry of the tangential velocity field Vφ was fitted. Varia-
tions at low radius of the phase angle φ2,kin of the bisymmetry
were then studied to locate Rc. Ignoring the first-order pertur-
bation (lopsidedness), the Fourier decomposition Vφ,mod is given
by:

Vφ,mod(R, φ) = V0(R) + V2(R) cos(2(φ − φ2,kin(R))), (6)

where V0 and V2, which only depend on the galactocentric
radius R, are the rotation curve of the disc and the amplitude of
the bisymmetric perturbation, respectively. Despite its empirical
nature, this method is based on the principle that the bar pattern
heavily influences, if not entirely governs, the structure of stellar
orbits and the velocity field within Rc. In the ideal case of only
a barred perturbation, with no spiral arms, the periodic orbits
inside corotation, called the x1 family, are elongated with the
bisymmetric perturbation (they are the back-bone of bars), while
beyond corotation, the orbits are elongated perpendicularly to
the bar major axis (Contopoulos & Papayannopoulos 1980;
Contopoulos & Grosbol 1989). Inside corotation, the tangential
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velocity is maximum (minimum) perpendicularly to (along) the
direction of elongation of the orbits, and the opposite outside
corotation. We thus expect φ2,kin roughly constant within the
bar, then changing significantly its orientation near corotation,
by an angle of ∼90◦. This variation can be even larger in pres-
ence of a winding spiral structure beyond corotation which per-
turbs the orbits and kinematics as well. Furthermore, the possible
existence of other resonances before corotation, like the ultra-
harmonic one (Buta & Combes 1996), and the development of
spiral arms before or near the bar ends complicate the shapes,
orientations and kinematics of periodic orbits inside corotation.
In these cases, we can also expect a variation of φ2,kin between
the bar ends and the corotation radius. Once Rc is determined
near the location where φ2,kin changes significantly, we can infer
Ωp with the angular velocity curve, Ω(R) = V0/R, since stars
move at the same speed as the bar at Rc, thus Ωp = Ω(Rc). One
should note that the harmonic decomposition is reminiscent of
the bisymmetric flow model applied to LoS kinematics of barred
spirals (Spekkens & Sellwood 2007).

Gaia Collaboration (2023a) applied their recipe to data from
the Third Data Release of Gaia (DR3, Gaia Collaboration 2021a,
2023b). They evidenced a region of steep change of phase angle
of the kinematic bisymmetry of ∼70◦ over a range of 2 kpc. A
comparison with a test-particle simulation in which the Gaia
errors model was propagated made them find the MW coro-
tation at the radius where φ2,kin is at the minimum, just after
the location of the sharp transition of phase angle mentioned
above. Gaia Collaboration (2023a) estimated a Galactic bar ori-
entation with respect to the Galactic Center-Sun direction of
∼20◦, the Galactic bar corotation at R ∼ 5.4 kpc, and a pat-
tern speed of ∼38 km s−1 kpc−1, in good agreement with previous
measurements involving a modified version of the TW method
(Bovy et al. 2019).

3. Testing the methods with simulations

In this section we use a snapshot of a simulation of a MW-mass
galaxy, with no external perturbations, and a snapshot of a sim-
ulation of a LMC-like system interacting with a SMC-mass and
MW-like systems to apply and validate the Dehnen method, the
two variations of the TW method, and the BV model.

First, we use the B5 N-body simulation of an isolated barred
galaxy from Roca-Fàbrega et al. (2013), which consists of a live
disc of 5 million particles and a Toomre parameter of Q = 1.2,
and a live NFW halo. The disc to halo mass ratio is the appro-
priate so that the simulation develops a strong bar and two
spiral arms which are transient in time. The snapshot we use
has a counter-clockwise rotating bar with a pattern speed of
Ωp = 21.5±0.1 km s−1 kpc−1 determined as the average of finite-
differences on the rate of change of the phase angle of the bar
major axis in three consecutive snapshots over the radial range
of the bar. The quoted uncertainty on the bar pattern speed refers
to the standard deviation of the pattern speeds derived from the
three successive snapshots. The simulation time step is 16 Myr,
representing 6% of the bar period, which is appropriate to infer a
robust bar pattern speed. The pattern speed places the bar corota-
tion resonance at Rc = 8.3 ± 0.05 kpc, computed as the radius at
which the angular frequency curve, Ω(R) = V0/R, of the particles
is equal to the bar pattern speed, with V0 given by the bisymmet-
ric model (see Eq. (6)). It corresponds to a fast bar with a rotation
rate of Rc/R1 = 1.1+0.01

−0.01.
Second, we use the K6 simulation of the KRATOS (Kine-

matic Reconstruction of the mAgellanic sysTem within the
OCRE Scenario) suite, a comprehensive suite of 11 sets of pure

N-body simulations of isolated or single-interacting galaxies, for
a total of 28 models (Jiménez-Arranz et al., in prep.). Here-
after, we refer to the K6 simulation of the KRATOS suite as
the KRATOS simulation. The simulation we use in this paper
models both an LMC-like and an SMC-mass system in the pres-
ence of a MW-mass system. We model the LMC-like system
as a stellar exponential disc of 1.2 M stars embedded in a live
dark matter NFW halo. We consider a disc and DM halo with a
mass of 5×109 M� and 1.8×1011 M�, respectively, in agreement
with observations as discussed in Lucchini et al. (2022, and ref-
erences therein). The disc’s Toomre Q parameter is 1.0, namely
slightly gravitationally unstable. The SMC-mass system is mod-
elled as a simple NFW halo. Both dark matter and stellar parti-
cles in the SMC-mass system are generated at once following the
NFW profile with a total mass of 1.9 × 1010 M� (Lucchini et al.
2022, and references therein). For the MW-mass system, we only
model its DM content since we are not interested in its stellar
component but only in its gravitational effects on the LMC-
SMC-like system. The DM mass of the MW-mass system is
considered to be 1012 M� (Bobylev & Bajkova 2023, and ref-
erences therein). In this work, we analyse a snapshot of the
simulation taken just after the LMC-like system suffered a sec-
ond close encounter with the SMC-mass system that generated
an off-centred and out-of-equilibrium bar in the LMC-like sys-
tem. The bar has a counter-clockwise rotation with a pattern
speed of Ωp = 17.2 ± 1.6 km s−1 kpc−1 measured as the differ-
ence of the rate of change of the phase angle of the bar per-
turbation, using three consecutive snapshots with a time inter-
val of 2 Myr. The pattern speed places the bar corotation reso-
nance at Rc = 3.6+0.8

−0.5 kpc. It corresponds to a bar rotation rate of
Rc/R1 = 1.3+0.3

−0.2.
Figure 1 shows the surface density (left column), the radial

velocity (middle column) and the residual tangential velocity
maps for the B5 and KRATOS simulations (top and bottom
rows, respectively). The map of the residuals has been obtained
by subtracting the rotation curve to the Vφ map. In the surface
density plot, the B5 simulation shows a strong bar accompa-
nied by two strong spiral arms. In the KRATOS simulation, we
observe a strong bar accompanied by a broken interacting arm.
The radial and residual tangential velocity maps show the char-
acteristic kinematic imprint of the bar, namely a quadrupole pat-
tern. Larger velocities are observed in the B5 simulation than in
the KRATOS simulation (see also Sect. 3.3).

We show first the results when applying the Dehnen method
(Sect. 3.1) because it defines the bar region in the simulations,
which are used by the TW method (Sect. 3.2). Finally, the results
corresponding to the BV method are presented in Sect. 3.3.

3.1. Results of the Dehnen method

Dehnen et al. (2023) made their numerical tool to infer some
bar properties from a single simulation snapshot available to the
community. We thus used the Python code they provide, and,
for both simulations we have set various parameters. We fixed a
minimum and maximum number of particles in the radial bins
to 104 and 5 × 104 (respectively) for the B5 and KRATOS sim-
ulations. We adopted a maximum size of the sampling of the
radial bins of 1.25 kpc, a minimum ratio of the strength of the
surface density in the bar region of Σ2/Σ0 = 0.1 (Σ0 and Σ2
being the amplitudes of the axisymmetric and bisymmetric sur-
face density components), a maximum angular width of the bar
of 10◦, a minimum size of the bar of 1.25 kpc, respectively, with
a minimum required number of particles in bar region of 1000.
Following Dehnen et al. (2023) recommendations, we assumed
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Fig. 1. Application of the Dehnen method to B5 (top) and KRATOS (bottom) simulations. Surface density (left), median radial velocity map
(centre) and median residual tangential velocity map (right). The bar region identified by Dehnen method (see values in Table 1) is indicated by
green dashed circles. The grey dashed lines trace the bar minor and the major axes.

a top-hat weighting function to constrain Σ2/Σ0 and φb in each
bin from the surface density, and a smooth window to estimate
Ωp and the bar orientation in the entire bar region. We refer the
reader to Dehnen et al. (2023) for more complete information of
the code. The application of the Dehnen method to a simulated
disc with a barred perturbation and no spiral structure is given in
Appendix A.

Figure 1 shows the performance of the Dehnen method
with both simulations. Left, centre and right panels show the
surface density, the median radial velocity map and median
residual tangential velocity map, respectively. In every panel,
we highlight the bar region identified by the method by green
dashed circles, with inner and outer circles corresponding to
R0 and R1, respectively. The grey dashed lines trace the bar
minor and the major axes found by the method. For both sim-
ulations φb is in agreement with the orientation observed in
the surface density, and separates remarkably the quadrupole
patterns in two parts. For the B5 simulation (top panels), the
method infers a value of Ωp = 21.2 ± 0.1 km s−1 kpc−1, in good
agreement with the value found using finite-differences. For the
KRATOS simulation (bottom panels), the method infers a value
of Ωp = 16.5 ± 0.1 km s−1 kpc−1, also in agreement with the
value obtained using finite-differences. Values are summarised in
Table 1. These tests are thus another way to validate the method,

in agreement to those performed in Dehnen et al. (2023). It can
be concluded that, under ideal conditions in which data are
devoid of observational and numerical noise, the Dehnen method
successfully recovers the imposed values of Ωp.

This method yields a corotation radius of 8.3 kpc for the B5
simulation, corresponding to the ground-truth value. It gives a
corotation radius of 4.0 kpc for KRATOS, which is very close to
the ground-truth value.

3.2. Results of the TW method

As mentioned above, the applicability of the TW method in
either of the two versions is designed for galaxies in equilibrium
and, moreover, with a single pattern speed. We can nevertheless
evaluate their performance by applying them to the simulations
of isolated and interacting spiral discs. Application of the meth-
ods to a simulated disc with a barred perturbation and no spiral
structure is given in Appendix A.

Hereafter, the domain [−∞/+∞] of the numerical integration
of Eqs. (4) and (5) is the maximum extent of the disc allowed
inside each pseudo-slit parallel to the x-axis at a given y coor-
dinate, or the line-of-nodes for the LTW method. Within this
maximum range, the integrals have converged to stable values.
Furthermore, we investigated the impact of the width of the
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Table 1. Results of the Dehnen and the BV methods applied to B5 and KRATOS simulations, compared to the reference value (obtained using
finite-differences).

Reference Dehnen method BV method

Simulation Ωp R0 R1 Ωp φb Rc Ωp

B5 21.5± 0.1 0.73 7.38 21.2± 0.1 163.5± 0.1 8.0± 0.5 22.2+0.7
−1.2

KRATOS 17.2± 1.6 0.40 2.80 16.5± 0.1 23.4± 0.1 3.3± 0.5 18.2+2.9
−1.3

Notes. The inner, outer, and corotation radii, R0, R1, and Rc are in kpc. The bar pattern speed Ωp and phase angle φb are in km s−1 kpc−1 and
degrees, respectively.

pseudo-slits. Within a range of 50−500 pc, we found that the
width has no effect on the results described below. Only the
uncertainties on Ωp are seen to increase for wider pseudo-slits,
by a factor of 3.5 from 50 pc to 500 pc width. In this Section, we
show the results obtained for a width of 200 pc.

3.2.1. Results of the LTW method

We simulated a galaxy observation by projecting the particles
from each simulation onto a galactic plane with arbitrary incli-
nation (i) and position angle (PA) of the semi-major axis of the
receding half. For the result described here, we adopted a disc
projected with PA = 60◦, and inclinations of i = 25◦, 45◦
and 75◦. Assuming a mock disc distance of 10 Mpc, which is
well suited to mock galaxies on which the LTW method can
been applied, the maps of the projected density and LoS veloc-
ity have 512 × 512 pixels sampled at 1′′ (∼50 pc pix−1). We do
not investigate the impact of varying the distance of the mock
disc on the results. We chose the x-axis aligned with the line
of nodes, so that the reference of the azimuthal angle φ = 0◦
is along the semi-major axis of receding disc half. The small
angle approximation can be applied, and the LoS kinematics
of each particle simply resumes to Vlos = Vz cos i + Vy sin i =
Vz cos i + (VR sin φ+ Vφ cos φ) sin i. The adopted velocity in each
pixel of the map is the mean of the Vlos of the particles. The LTW
integrals of Eq. (5) are performed at each Y-coordinate, select-
ing all pixels from the maps within pseudo-slits parallel to the
disc major axis. The derivation of the slope Ωp sin i is performed
using the 〈X〉−〈Vlos〉 points located inside the region encompass-
ing the projected value of the bar radius R1 from in Table 1.

We investigated the impact of the variation of the orientation
of the Cartesian frame on the results, by rotating the reference
x and y axes around the z-axis in the simulation. The rotation
of the Cartesian frame before projection on the sky plane allows
the TW integrals to view the bar and spiral perturbations through
various angles. In practice, this is achieved by adding a ∆φ to the
angular position φ of each particle in the disc plane, from which
new x and y positions are derived. Then, new density maps and
LoS kinematics and Ωp can be inferred. A range of ∆φ spanning
180◦ has been probed, with a step of 3◦. Figure 2 (upper panel)
shows the resulting bar pattern speed as a function of the frame
orientation ∆φ for the case i = 45◦ only (red open symbols) and
the B5 simulation. The quoted uncertainties correspond to the
1σ error of the covariance matrix of the fitting. We highlight the
frame orientations parallel and perpendicular to the bar major
axis as orange and navy vertical lines, respectively. Results for
the KRATOS simulation are shown in the lower panel of Fig. 2
for the three assumed inclinations.

The variation of the pattern speed with ∆φ is very impor-
tant in both simulations, and makes it rarely consistent with the
ground-truth values (shown as horizontal green dashed lines),

whatever the adopted disc inclination. The strongest disagree-
ment occurs at frame orientations very close to the major axis of
the bar, and ∼15◦ before its minor axis. For the B5 simulation,
the LTW results are consistent with the real value only at frame
orientations ∆φ ∼ 70−75◦, thus when the x-axis in the galaxy
plane makes an angle of ∼55−60◦ with respect to the bar major
axis. The LTW pattern speeds agree with the ground-truth value
only occasionally for the KRATOS simulation, within the quoted
uncertainties (shown as shaded areas). A strong dependency with
the inclination of the disc is observed. The best agreement with
ground-truth is for a mock disc at i = 45◦, for 7◦ < ∆φ < 38◦,
thus when the x-axis in the galaxy plane makes an angle of
∼30−60◦ with respect to the bar major axis. Another interesting
result is that no symmetry around the bar minor axis is observed,
indicating that having a wide range of agreement with ground-
truth is unlikely (see Sect. 3.2.2 for more details).

3.2.2. Results of the IPTW method

As in the LTW method, we varied ∆φ between 0◦ and 180◦ to
study the dependency of the in-plane TW integrals of Eq. (4)
with the frame orientation. Figure 3 shows results for the B5
simulation for two examples of frame orientations1. The upper
row corresponds to the original frame orientation, with ∆φ = 0◦,
while in the bottom row, the x-axis is chosen aligned with the
bar major axis, corresponding to a frame orientation of 16.5◦,
which corresponds to ∆φ = 16◦. The left panels show the surface
density maps, with the bar region outer radius R1 identified with
the Dehnen method highlighted by a green dashed circle. The
coloured dots represent the 〈x〉 integrals for each slice in y, with
greener (redder) colours for larger (smaller) values of |y|. In the
case where the bar major axis is parallel to the x-axis, 〈x〉 is
observed close to the x = 0 axis in the bar region, thus rather
aligned with the bar minor axis. In the case where the bar major
axis is 30◦ rotated counter-clockwise with respect to the x-axis,
〈x〉 varies significantly in the bar region, almost tracing the bar
major axis.

The right panels show the TW integrals, 〈x〉 vs. 〈vy〉, with the
same colour code for the various y as those in the left panels.
The points with a black circle are those located inside R1, while
the rest of the points are the ones outside the bar region, there-
fore, not considered for fitting Ωp. In the case with ∆φ = 0◦,
thus the original frame orientation, there is a clear linear trend
with small dispersion for points inside the bar region, as shown
by the dashed straight line fit. In the case where the bar major
axis is parallel to the x-axis, several linear trends are observed,
hence a significantly larger dispersion. The fitted slope of the
TW integrals is 10.3 ± 2.1 km s−1 kpc−1, as shown by a dashed

1 Animations of the variation of the pattern speed Ωp inferred by the
IPTW with different frame orientations ∆φ are available online, for both
simulations and data.
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Fig. 2. Variation of Ωp as as function of the reference frame orientation
∆φ. Results for the B5 and KRATOS simulations are shown in the upper
and lower panels, respectively. Results of the IPTW method are shown
as open symbols, while those of the LTW method are drawn as a solid
line (for the i = 45◦ case, upper panel), and as dotted, solid and dashed
lines (for the i = 25, 45 and 75◦ cases, lower panel). Horizontal dashed
green lines are the ground-truth bar pattern speeds. The vertical orange
(navy) vertical line corresponds to the frame orientation where the
x-axis of the disc lies along the major axis of the bar (y-axis,
respectively).

straight line. However, none of these values are consistent with
the real pattern speed of 21.5 ± 0.1 km s−1 kpc−1, or the value of
21.2 ± 0.1 km s−1 kpc−1 from the Dehnen method.

Figure 4 presents results of the IPTW method for the
KRATOS simulation. Again, we show here two different ref-
erence frame orientations: the original one, with ∆φ = 0◦ (top
row) and the one with the bar major axis parallel to the x-
axis, ∆φ = 156◦ (bottom row). In the first case, there is a
linear trend and the IPTW recovers a bar pattern speed Ωp =

15.5 ± 1.7 km s−1 kpc−1, compatible with the real pattern speed.
In the second case, the TW x-integrals are perfectly aligned with
the bar major axis, as expected in the presence of only a bar
potential. The 〈x〉 values are then very close to zero, so there is
not a clear trend in this case (it would give similar results when
the TW integrals are evaluated at another viewing angle along
the bar minor axis). We recovered a clockwise pattern speed of
Ωp = −4.2 ± 4.0 km s−1 kpc−1 which differs from the real value.
We note also that in this configuration, the linear trend is more

scattered, not as clear as the configuration from the upper panel,
in agreement with what was seen with for the B5 simulation.

We then assess whether there is (or not) a favoured frame
orientation where the IPTW method works better, by plotting
the fitted Ωp as a function of ∆φ (filled blue symbols in Fig. 2).
Qualitatively, the IPTW and LTW methods show similar trends:
the agreement with the ground-truth bar pattern speed is rarely
observed, no symmetry with respect to the bar major axis is
found, and stronger discrepancies are near the positions of the
major and minor axes of the bar. The B5 simulation (upper panel)
shows that ∆φ ∼ 135◦ is also a location of stronger disagreement,
which was not observed for the LTW method. Since the IPTW
method works directly with coordinates and velocities in the
Cartesian frame of the disc, no variation with inclination needs
to be evaluated here. It is interesting to note that the LTW pattern
speeds with better agreement with the IPTW method are for the
intermediate inclination of 45◦ (lower panel for the KRATOS
simulation). It is important to remind that the Dehnen method
does not show such systematic variation with ∆φ, as its results
are invariant with respect to the frame orientation.

The median and mean absolute deviation of all the IPTW
values are 17.9 ± 1.9 km s−1 kpc−1 and 11.0 ± 3.7 km s−1 kpc−1

for the B5 and KRATOS simulations, respectively. We note that
the difference is larger in the KRATOS simulation. While the B5
simulation presents a strong spiral pattern in the outer disc, the
KRATOS simulation additionally is not in equilibrium.

Finally, we can estimate the incidence of finding a bar pat-
tern speed consistent with the ground-truth value for both the
LTW and IPTW methods, with the two simulations. We define
this likelihood as the number of frame orientations where the
measured and real Ωp agree within the quoted (1σ) uncertainties
on measured and ground truth values. For the B5 simulation, the
IPTW and LTW methods give a correct Ωp in 5% and 8% of the
cases only. For the KRATOS simulation, the incidence is 37%
(IPTW case), 57% (LTW case at i = 25◦), 48% (LTW case at
i = 45◦) and 42% (LTW case at i = 75◦). Larger inclinations
are thus less prone to the LTW method. More generally, our two
sets of simulations show it is highly unlikely to find a consistent
Ωp by means of the TW method. It is also hard to reconcile the
strong variations with ∆φ seen here, i.e the bar orientation with
respect to the disc x-axis, with the wide range of “allowed” ori-
entations quoted in other studies (e.g. Zou et al. 2019, see also
Sect. 5 for the LMC).

3.3. Results of the bisymmetric velocity model

Bayesian inferences of Fourier coefficients to the tangen-
tial velocities were performed in radial bins through Markov
chain Monte Carlo fits, using the Python library Emcee
(Foreman-Mackey et al. 2013). The model is fitted to a map of
Vφ (pixel size of 50 pc), where the velocity at each pixel of the
map is the median of the velocity distribution from all parti-
cles/stars inside the given pixel. Defining the residual velocity
as Vφ,res = Vφ − Vφ,mod, the conditional likelihood function at
each radial bin is expressed by:

L(V0,V2, φ2,kin,Vs) = −
1
2

npix ln(2π)
npix∑(

V2
φ,res/ξ

2 + ln(ξ2)
) ,

(7)

where V0,V2 and φ2 are as in Eq. (6), ξ2 = σ2
Vφ

+ V2
s , σVφ are

the Vφ uncertainties, Vs is the scatter of the modelling, and npix
the number of pixels of the map inside the corresponding radial
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Fig. 3. Application of the IPTW method to B5 simulation. Top: bar major axis at φb = 163.5◦, as in the original snapshot and shown in Fig. 1.
Bottom: after applying a rotation of ∆φ = 16.5◦ to put the bar major axis along the x-axis. Left: surface density where the bar region (obtained
using Dehnen method) is indicated by the green dashed circle. A scatter plot representing the value of 〈x〉 for each slice in y is overlapped. The
scatter plot varies its colour as function of the distance to the centre in the y-axis, being the red points close to the centre and the green close to the
external parts of the galaxy. Right: scatter plot of the Tremaine-Weinberg integrals 〈x〉 and 〈vy〉 for the different slices in the y-axis. The colour of
the scatter plot is the same in both left and right panels. In the right panel, the points with a black circle are inside of the bar region and, therefore,
the only considered for fitting Ωp.

bin at which parameters are fitted. No uncertainties are measured
while making the velocity map, thus σVφ = 0. Therefore, mea-
suring Vs is an indirect way to take into account the lack of uncer-
tainties (Hogg et al. 2010).

The left column of Fig. 5 shows the results of the model
to the B5 simulation. In the top panel, we show the rotation
curve of the simulated disc (gray solid line, measured as the
median velocity in the map a each R), the fitted axisymmet-
ric velocity component (black solid line, V0), the amplitude of
the bisymmetry V2 (blue dashed line), and the scatter in Vφ,res
(orange dotted line, Vs). The bar strength is maximum at R ∼
2 kpc, reaching more than 50% of V0. Within R = 5 kpc, V0
and the median rotation curve can differ by up to ∼20 km s−1,
which indicates the significant impact of the bisymmetry on the
rotation curve. In the middle panel, we show the phase angle
φ2,kin of the bar recovered from the modelling of the tangen-
tial velocity map. The phase angle of the bar is well recov-
ered by the bisymmetric model at low radius, then smoothly
varies. At R ∼ 7.5 kpc, an abrupt change in φ2,kin is observed.

Following prescriptions given in Sect. 2, we can identify the
corotation radius just after the steep change of phase angle,
Rc = 8.0 ± 0.5 kpc, which corresponds to a bar pattern speed
is Ωp = 22.2+0.7

−1.2 km s−1 kpc−1 (bottom panel, the Ω curve being
derived from the solid curve of the upper panel, namely the
0th order Fourier coefficient). This agrees with the value com-
puted using finite-differences. By construction, the bisymmetric
velocity model is invariant with the frame orientation, as φ2,kin
are shifted by ∆φ when a rotation of ∆φ is applied to the x−y
plane.

Similarly, in the right panels of Fig. 5, we show the results of
applying this method to the KRATOS simulation, the value for
corotation we derive is Rc = 3.3 ± 0.5 kpc, and the bar pattern
speed is Ωp = 18.2+2.9

−1.3 km s−1 kpc−1, which is consistent with the
true value of 17.2 ± 1.6 km s−1 kpc−1, within the quoted uncer-
tainties. The values are summarised in Table 1. This method
yields a bar rotation rate of Rc/R1 = 1.1 and 1.2 for the B5
and KRATOS simulations, respectively, in agreement with the
ground-truth values.
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Fig. 4. Same as Fig. 3, but for the KRATOS simulation.

4. Measuring the LMC bar pattern speed

In the previous section, we assess the performance, robustness
and limitations of the methods when applied to simulated data.
The TW method, in both versions using either LoS or in-plane
velocities, shows a clear dependence of the measured pattern
speed on the frame orientation, and significant differences with
the ground-truth values. The recovered value can be lower or
higher than the simulated speed when both bar and spiral arms
intervene in the simulation. These results already warn us to
take the value of the LMC pattern speed inferred from the TW
method with caution.

The LMC stars we use in this study are those in the NN
complete sample of Jiménez-Arranz et al. (2023). The selection
of LMC stars was based on a supervised neural network clas-
sifier, using full astrometric and photometric data from Gaia
DR3. Based on this classifier, the authors select three samples
of candidate LMC stars with different degrees of completeness
and purity. The NN complete sample corresponds to the sam-
ple that prioritises not missing LMC stars at the price of a
possible increased MW contamination. It contains 12 116 762
stars. The sample is dominated by older stellar populations (see,
e.g. Fig. 3 from Gaia Collaboration 2021b), thus fulfilling the
continuity equation necessary to the TW and Dehnen methods.

Combining the selection function of the Gaia parent catalogue
(Cantat-Gaudin et al. 2023) and the selection effects from the
generation of the LMC NN complete sample (estimated as in
Castro-Ginard et al. 2023), the completeness estimates of our
sample are above 50% in the bar region for G = 19−19.5 mag.
As seen in Fig. 6 of Jiménez-Arranz et al. (2023), 60% of stars in
the LMC NN complete sample have magnitude below G < 19.5.
To better estimate the completeness and purity of the LMC NN
complete sample, and their effect on the inner kinematics, a more
detailed study of the selection function is required, which is
beyond the scope of this paper.

For each star, we applied the coordinate transformation
detailed in Jiménez-Arranz et al. (2023) to express the depro-
jected positions and velocities in the in-plane coordinate system
of the LMC, using the inclination, position angle, systemic veloc-
ity, and position of the LMC centre given in Jiménez-Arranz et al.
(2023), assuming all stars lying in the z = 0 plane. The LMC
centre used is the same as in Gaia Collaboration (2018, 2021b),
which corresponds to the LMC photometric center (van der Marel
2001). The infinitely thin disc approximation is inherent to any
studies of the kinematics of disc galaxies because the 3D position
space of stars in galaxies is never available, unlike stars in the MW
(e.g. Gaia Collaboration 2023a) or a few variable young stars in
the LMC (Ripepi et al. 2022).
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Fig. 5. Results of the BV model of the stellar tangential velocity map of the B5 (left panels) and KRATOS (right panels) simulations: amplitude
(upper panels), phase angle, φ2,kin of the Fourier modes (middle panels), and angular frequency Ω (bottom panels). In the top panels, the black solid
line is the fitted axisymmetric velocity component V0 (the rotation curve), the grey line is the median velocity (initial value for the model), the blue
dashed curve is the amplitude of the tangential bisymmetry V2, and the orange dotted line is the scatter of the model Vs. In the middle and bottom
panels, the vertical light coral area and dashed line shows the adopted bar corotation radius, Rc = 8.0 ± 0.5 kpc for B5 and Rc = 3.3 ± 0.5 kpc for
KRATOS simulations. In the bottom panel, the black solid line is the angular velocity derived from V0, while the horizontal green area and dotted
line shows the corresponding bar pattern speed Ωp = 22.2+0.7

−1.2 km s−1 kpc−1 and Ωp = 18.2+2.9
−1.3 km s−1 kpc−1, for the B5 and KRATOS simulations,

respectively. Values are summarised, and compared with the reference values, in Table 1.

Figure 6 shows the results of the application of the Dehnen
method to the LMC. The left, middle, and right panels show the
surface density, the median Galactocentric radial velocity, and
residual of the median tangential velocity, respectively. Both the
radial and residual tangential velocity maps show the imprint of a
rigidly rotating bar in the galactic centre, as clear hints of x1 stel-
lar orbits (see also Gaia Collaboration 2021b; Niederhofer et al.
2022; Jiménez-Arranz et al. 2023). The quadrupole pattern is the
natural reflex of the motion of stars in elliptical orbits present in
the bar potential. In contrast to the simulations, the method was
not able to find the bar region [R0,R1] on its own, probably due to
the fact that the quadrupole is not perfectly symmetric, or that the
contrast of the bar region with respect to the disc is not as clear as in
simulations because of the presence of dust lanes and spiral arms
at low radius. We solved this issue by analyzing the outputs of the
numerical code of Dehnen et al. (2023) which, in addition to the

bar parameters and pattern speed, provide results of a second order
Fourier model of the stellar density. Figure 7 shows the amplitude
Σ2 of the m = 2 Fourier coefficient, relatively to the axisymmetric
density Σ0, and the phase angle φ2 of the bisymmetric density per-
turbation. In the upper panel, a peak of the relative strength ∼0.2
is observed at R ∼ 2 kpc. This amplitude is comparable to that at
larger radius, meaning a small contrast between the LMC bar and
the spiral arm(s) within the selected sample of stars. This prob-
ably explains why the Dehnen method cannot establish properly
the bar region in its automated way. The phase angle (bottom panel
of Fig. 7) has a constant value of φ2 ' 15−20◦ from R = 0.75 kpc
to R ∼ 2.3 kpc. We can establish that the bar region is therefore
[R0,R1] = [0.75, 2.3] kpc. Within this region, the Dehnen method
gives a value of Ωp = −1.0 ± 0.5 km s−1 kpc−1, thus correspond-
ing to an almost non-rotating stellar bar, seemingly in counter-
rotation.
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Now for the TW method, we adopted an pseudo-slit length
and width of [−∞,+∞] and 50 pc, respectively. For both ver-
sions of the method, the slopes of the integrals are fitted using
only points located inside the bar radius (for the IPTW case) and
projected radius (for the LTW case), as defined by R1 = 2.3 kpc.

60708090100
[deg]

76

74

72

70

68

66

64

62

[d
eg

]

40

20

0

20

40

V
los  [km

/s]

Fig. 8. Stellar line-of-sight velocity field of the LMC NN complete Vlos
sub-sample, corrected from the systemic motions. Data are from Gaia
RVS (Katz et al. 2023; Jiménez-Arranz et al. 2023).

In Fig. 8, we show the stellar LoS velocity field corrected
for the systemic motion of the LMC NN complete Vlos sub-
sample, which contains 30 749 stars. These are predominantly
the AGB stars from Gaia Collaboration (2021b). This is in good
agreement with the LoS velocity field traced by carbon stars
(van der Marel et al. 2002). We apply the LTW method to this
LoS velocity map, as described in Sect. 2.2, with pseudo-slits
parallel to the line-of-nodes. Figure 9 shows the linear fit to the
LTW integrals, yielding a bar pattern speed of Ωp = 30.4 ±
1.3 km s−1 kpc−1, using an inclination of i = 34◦.

Figure 10 shows the results of the IPTW method applied to
the LMC Cartesian velocity fields (not shown here, but obtained
from the cylindrical velocities shown in Fig. 6). We recover as
many values as adopted orientations ∆φ of the Cartesian frame in
the LMC plane. Interestingly, a good agreement is seen between
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the LTW Ωp (open red dot at ∆φ = 0◦) and the IPTW Ωp inferred
at this orientation. However, and unsurprisingly, the estimated
values of the IPTW method display a strong variation with the
frame orientation. A wide range of possibilities is found for the
LMC Ωp, from 0 to 55 km s−1 kpc−1. Note also the clear correla-
tion between the bar major and minor axis with the orientations
where the shape of the Ωp curve vary significantly. The median
of all IPTW values seen in this graph is 23 ± 12 km s−1 kpc−1,
adopting here the mean absolute deviation as the uncertainty.
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Fig. 11. Results of the BV model of the stellar tangential velocity map
of the LMC NN complete sample: strength (upper row) and phase angle
(lower row, φ2,kin) of the bisymmetric Fourier mode. The black solid
line is the fitted axisymmetric velocity component (the rotation curve),
the grey line is the median velocity (initial value for the model), the
blue dashed curve is the strength of the tangential bisymmetry, and the
orange dotted line is the scatter of the model. The vertical light coral
area and dashed line shows the adopted bar corotation radius of the
LMC, Rc = 4.20 ± 0.25 kpc. In the bottom panel, we show the angular
velocity of the LMC as a function of radius. The vertical light coral area
and dashed line show the corotation radius of the bar. The horizontal
green area and dotted line shows the corresponding bar pattern speed
Ωp = 18.5+1.2

−1.1 km s−1 kpc−1.

Finally, in Fig. 11 we show the results of the BV method
applied to the LMC tangential velocity map of Fig. 6. The LMC
rotation curve from the NN complete sample (upper panel, light
grey) is very similar to the 0th order Fourier component of the
BV model (black solid line). The amplitude of the LMC bar per-
turbation is stronger at R = 0.75 kpc (blue line). The orange
dotted line showing the scatter in the residual tangential veloc-
ity is often larger than the bisymmetric mode. It thus shows that
the bar is not the only perturber in the LMC disc, but this does
not prevent the bisymmetry from being detected efficiently by
the method. Note that seeing the scatter in the model stronger

A102, page 12 of 20



Jiménez-Arranz, Ó., et al.: A&A, 683, A102 (2024)

Table 2. Results of applying the method used in this work to the LMC
complete sample.

Method R1 Rc Ωp

LTW 30.3± 1.3
IPTW 23.1± 12
Dehnen 2.3 −1.0± 0.5
BV 4.20± 0.25 18.5+1.2

−1.1

Notes. Bar radius and bar corotation are in kpc and the bar pattern speed
is in km s−1 kpc−1.

with radius is reminiscent to the finding of the KRATOS sim-
ulation (top right panel of Fig. 5). This is consistent with the
observed complex stellar morphology in this region. A roughly
constant value of φ2,kin ' 15−20◦ is seen out to R = 2 kpc, in
good agreement with the phase angle of the bisymmetry of the
density (Fig. 7, bottom panel), followed with a smooth decrease
out to R = 3.95 kpc, as evidence of the impact of arms in the
kinematics even in the bar region. This radius is the location
from where the amplitude V2 starts to increase. At this radius,
φ2,kin changes by ∼100◦ to recover a constant value compara-
ble to the bar phase angle at low radius. Following prescriptions
from the numerical modelling, we adopt the radius just after
the sharp transition of phase angle as the bar corotation radius,
placing the LMC bar corotation at Rc = 4.20 ± 0.25 kpc. Rel-
ative to the angular velocity curve Ω (solid line in the bottom
panel of Fig. 11), it corresponds to a LMC bar pattern speed of
Ωp = 18.5+1.2

−1.1 km s−1 kpc−1.

5. Discussion

Table 2 provides a summary of the LMC bar properties obtained
with the different methods in the previous section. At first glance,
it is difficult to conclude the pattern speed of the stellar bar
of the LMC given the large range of values. Only a few stud-
ies have provided estimates of the LMC bar pattern speed.
Shimizu & Yoshii (2012) derived a value for the bar pattern
speed based on the idea that the Shapley Constellation III star
forming region (Shapley 1951) is located at the L4 Lagrangian
point of the non-axisymmetric bar potential rotating frame. The
authors found Ωp = 21 ± 3 km s−1 kpc−1. Unfortunately, they
did not report on the distance to the LMC they have assumed,
which makes the comparison with our results not trivial. Nev-
ertheless, the value they quote is in good agreement with the
one inferred from the BV method. In another work, Wan et al.
(2020) used SkyMapper (Wolf et al. 2018) data to study the
internal kinematics of the LMC populations, following coor-
dinate transformations described in van der Marel (2001) and
van der Marel et al. (2002), thus, the same transformations we
applied here. For their Carbon Stars, Wan et al. (2020) fit a rota-
tion curve built on a constant angular speed of stars as a func-
tion of radius. This may seem a simplistic assumption because
Ω must vary with radius (see e.g. Fig. 11). Therefore, they did
not constrain the pattern speed of the bar, but their result gives
an estimate of what the rough angular frequency of stars should
be within R ∼ 8 kpc, thus on Ωp since at corotation Ω equals the
desired pattern speed. They found Ω = 24.6 ± 0.6 km s−1 kpc−1,
which is not far from the BV value derived in our
work.

An additional important result is that the TW method is
extremely sensitive to the orientation of the x−y frame, and
therefore to the way the integrals view the bar perturbation in

the disc. Finding a dependency of the TW integrals with view-
ing angles in galaxies is not a new result. Using a numerical
simulation, Zou et al. (2019) found that the accuracy on bar pat-
tern speeds could be kept under ∼10% for a bar orientated by
10◦−75◦ and 105◦−170◦ with respect to the reference axis of
the disc, while configurations where the integrals are measured
perpendicularly to the bar major axis were shown to imply val-
ues systematically different from reality. This led for instance
Cuomo et al. (2019) to define their sample of barred galaxies
with bar position angles by 10◦ or more apart from the disc
major and minor axes. With our simulations, although frame ori-
entations near the principal axes of the bar should be avoided,
which agrees with the findings of Zou et al. (2019), the results
of Sects. 3 and 4 did not allow us to identify any particular wide
range of orientations where the bar pattern speed estimates are
reliable, and that the probability of agreement is low. It is worth
mentioning here that bar pattern speeds of galaxies, as measured
with the LTW method, are also known to be sensitive to the
orientation of the pseudo-slits with respect to the disc line-of-
nodes (Debattista 2003). Still with the help of numerical simu-
lations, these authors showed that assuming an incorrect posi-
tion angle for the disc major axis can lead to large errors on Ωp
when performing the numerical LTW integrals. Of course, this
is not directly linked to the viewing angle of the bar itself in the
considered disc plane, as shown above in the IPTW case, but it
illustrates nicely how sensitive to orientations the TW method
can be.

The origin of the strong variations with the bar angle, and
of the large discrepancy with true values, may be the impact of
patterns other than the bar in the TW integrals, like spiral arms
in the N-body simulation and the LMC. A possible solution to
overcome this issue could be to measure Ωp as a function of
radius, as done in Merrifield et al. (2006) or Meidt et al. (2008)
for other galaxies. However, such analysis is beyond the scope
of this article.

Nevertheless, the impact of other patterns than the bar on Ωp
can be tested by studying the convergence of the TW integrals
as a function of the aperture |∆x| in which the integrals are mea-
sured. This is achieved by progressively increasing |∆x| (see e.g.
Chemin & Hernandez 2009; Zou et al. 2019). In particular, if the
outer LMC spiral arms contaminate the TW integrals when the
maximum range of |∆x| allowed by the extent of the observation
is adopted (as we did in previous sections), then the derived pat-
tern speed is mixing both the bar and spiral patterns, and the bar
speed may be underestimated. Indeed, pattern speeds of spiral
arms are expected to be lower than those of bars (Merrifield et al.
2006; Zou et al. 2019). But with a smaller domain of integration,
chosen wisely, the pattern speed could converge to another Ωp,
that of the bar only. We thus varied |∆x| within 1 to 9 kpc in
the LMC, for two examples of frame orientations, ∆φ = 30◦
and ∆φ = 105◦ (directions outside the LMC principal bar axes,
see Fig. 10). Figure 12 presents results of this test for the IPTW
method. We find that the integrals have converged at |∆x| = 6 kpc
at the constant values reported in Fig. 10 at the selected ∆φ (∼25
and ∼10 km s−1 kpc−1, respectively). But, for |∆x| < 6 kpc, Ωp
varies significantly, either increasing and/or decreasing. In other
words, we do not find hints of secondary convergence regions
of the integrals that would correspond to the LMC bar Ωp only.
To the benefits of the TW method, we can nonetheless see that
a rough LMC pattern speed Ωp found by averaging the TW
values over all ∆φ orientations is 23.1 km s−1 kpc−1, but with a
large scatter of 12 km s−1 kpc−1. This compares with the value
found with the BV model, but not with the one from the Dehnen
method.
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As consequence, without agreement among the trends found
with the various simulations used in the previous works and our
present study, and without an identifiable region of bar orien-
tation where ground-truth and measured pattern speeds agree
within simulations, the individual pattern speeds found by the
TW method in Fig. 10 cannot be representative of the real LMC
bar Ωp. The agreement of Ωp found by the LTW method with
the value found by the IPTW method for the LMC also indicates
that the pattern speed of bars measured by means of the LTW
method may likely be only representative of any value stemming
from random frame orientations fixed by the position angle of
the major axis of discs on the sky plane, but not of a global bar
angular frequency. The reason of the failure of the TW method in
giving a coherent LMC bar pattern speed is unclear. It could be
that the tidal interaction with the SMC has broken the conditions
of applicability of the method, the disc being no more in full
equilibrium. However, both isolated and interacting discs in the
simulations show similarities with the observations. It could also
indicate that the impact of the spiral arms on the TW integrals is
not as negligible as initially thought. More work will be neces-
sary to investigate the origin of this issue with the TW method
applied to the simulations and the LMC data.

The pattern speed obtained with the Dehnen method is sig-
nificantly different from the one of the BV model. Unlike the
TW method, we have shown that the Dehnen method performs
nicely with an idealised simulation with a well defined rotation-
ally supported stellar disc and no external perturbations and a
simulation of an interacting and out-of-equilibrium disc, as it is
insensitive to the bar orientation and the outer spiral perturba-
tion, by construction. Applied to the LMC NN complete sample,
it surprisingly results in a bar with null rotation, perhaps slightly
counter-rotating with respect to the LMC disc. Is this finding
realistic? Peculiar bars with such property exist in numerical
simulations. In a recent work, it was shown how a bar embed-
ded in a counter-rotating dark matter halo can decelerate, then
flip its pattern speed, and finally decoupling its rotation from the
disc (Collier & Madigan 2023). After the sign flip, the bar suffers
from a large inclination and develops a warped disc. This sce-
nario is difficult to test in real data because we need an observ-
able to check the dark matter halo rotation. Evidence exists that
LMC disc is warped (e.g. Choi et al. 2018; Ripepi et al. 2022),

however we do not observe in the kinematic maps a decoupling
of the bar motion from that of the disc. Another possible origin
of the bar deceleration and counter-rotation could be external
and due to the interaction with the SMC and/or the MW. This
scenario could be tested with appropriate numerical simulations
such as the KRATOS suite of simulations of LMC-SMC-MW-
like tidal encounters (Jiménez-Arranz et al., in prep.).

This result does not come without issues, however. An
almost non-rotating LMC bar would indeed not show any coro-
tation within the disc since such Ωp should never cross the Ω
curve. It is not an easy task to imagine how the orbits and the
disc structure would respond to this peculiar circumstance. An
absence of corotation could allow the bar to increase its length
and strength out to the disc outskirts, that is, make the orbits
of stars and the LMC stellar gravitational potential very elon-
gated throughout the whole LMC disc. Indeed, nothing could
prevent it here from growing significantly owing to the absence
of corotation and the expected destructive orbits perpendicular to
the bar beyond corotation. The LMC stellar density map shows
that the outer LMC disc is elliptical (see Fig. 6, and also e.g.
Gaia Collaboration 2021b), but the elongation occurs along a
direction that is not aligned with the LMC bar. The elongated
potential of the LMC likely comes from the tidal interaction with
the MW and the SMC. Furthermore, the absence of bar reso-
nances in the inner disc in this framework would make it difficult
to interpret the strong variation of the orientation of the velocity
bisymmetry evidenced in Fig. 11, which is expected to occur nat-
urally around corotation. We think that the method may be sensi-
tive to dust extinction and completeness effects in the inner LMC
region, perhaps more strongly than the other methods. Also, the
inner disc is not fully traced by a bar pattern, and the density map
clearly shows pieces of spiral arms inside the circle encompass-
ing the bar region. The inner kinematics is not fully dominated
by the bar either, due to the smoothly varying phase angle of the
velocity bisymmetry within R = 2−4 kpc (see Fig. 11), likely
caused by a winding spiral structure near the tips of the bar. All
of these effects may hamper the method from yielding a Ωp rep-
resentative of the bar.

Assuming that the corotation radius Rc = 4.20 ±
0.25 kpc measured by the BV model is more representa-
tive of the bar properties, it corresponds to a pattern speed
of 18.5+1.2

−1.1 km s−1 kpc−1. The LTW pattern speed of 30.4 ±
1.3 km s−1 kpc−1 would thus be discrepant by 64% from the
one inferred here. When compared to its radius of 2.3 kpc, the
LMC stellar bar has Rc/R1 = 1.8 ± 0.1, thus corresponding
to a slow bar, according to numerical methods (Athanassoula
1992). Finally, if we assume that the pattern speed has to be
estimated using a velocity curve tracing more closely the cir-
cular velocity (the rotation curve of the younger stellar popula-
tions in Jiménez-Arranz et al. 2023) than the tangential veloc-
ity of the whole sample dominated by older stars (upper panel
of Fig. 11), then Rc = 4.2 kpc would translate into Ωp =

20.9±1.1 km s−1 kpc−1, which still compares well with the value
found for the whole sample.

6. Conclusions

In this work, we use three different methods to determine the
LMC bar pattern speed, namely: the TW method in its original
form, when only LoS velocities are available (LTW), as well as a
variation on that method that also makes use of astrometric data
and in-plane velocity fields (IPTW); the Dehnen method, which
was recently published and tested using single snapshots of
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N-body simulations; and the bisymmetric velocity (BV) method,
which is based on the Fourier decomposition of the tangen-
tial velocity of a bisymmetric model to constrain the corotation
radius of the bar. In order to characterise the strengths and limi-
tations of each of the methods, we applied them to two different
simulated barred galaxies. One snapshot of an N-body simula-
tion of an isolated disc galaxy (B5, Roca-Fàbrega et al. 2013)
and one snapshot of a N-body simulation of an interacting disc
galaxy (KRATOS, Jiménez-Arranz et al., in prep.). The results
show that:

– The TW method shows a large dependency on the frame ori-
entation when applied to both B5 and KRATOS simulations.

– The Dehnen method recovers with good accuracy and pre-
cision the true pattern speed when applied to both: an ide-
alised simulation with a well defined rotationally supported
stellar disc and no external perturbations and a simulation of
an interacting and out-of-equilibrium disc.

– The BV method determines the corotation radius and pat-
tern speed of both simulations. The accurate constraint of
the strong variation of the kinematic phase angle is crucial
for the determination of the corotation radius and thus the
bar pattern speed.

From these points, and when applying the methods to the LMC
sample, we are inclined to:

– Discard the pattern speeds found with the TW method,
because no obvious privileged value is found with the IPTW
method, owing to the strong variation of the integrals with
the orientation of the x−y plane, thus with the bar viewing
angle inside the LMC disc. Also, the unique pattern speed
found by the LTW method cannot be representative of a
global bar frequency either.

– Evaluate the validity of the bar pattern speed obtained with
the Dehnen method. It corresponds to a non-rotating bar,
with implications hard to reconcile with the structure and
kinematics of the LMC disc.

– Provide a first tentative value of the LMC bar corotation radius
at R = 4.20 ± 0.25 kpc with the BV method, as the sharp
change of the kinematic phase angle measured through a
Fourier modelling is very reminiscent to the signature of coro-
tation seen in numerical simulations. It gives a bar corotation-
to-size ratio of Rc/R1 = 1.8 ± 0.1, which places the LMC
bar in the slow rotation regime. The corresponding LMC bar
pattern speed is Ωp = 18.5+1.2

−1.1 km s−1 kpc−1, reasonably con-
sistent with other estimates found in the literature.

This research sets novel constraints on the corotation and pat-
tern speed of the stellar bar of the LMC. Our intention is to
continue this investigation, taking advantage of forthcoming
releases from the Gaia mission that will offer improved data
quality. With enhanced angular resolution, more precise proper
motion measurements, and increased access to LoS velocities,
we anticipate it will become easier to establish an LMC sam-
ple with reduced limitations, such as the crowding of stars at
low radius, or contamination from foreground MW stars. More-
over, working with the 3D velocities of LMC stars will offer
new opportunities. These approaches have already been initiated
by Jiménez-Arranz et al. (2023). By doing so, we will obtain
more reliable estimates of the LMC pattern speed and potentially
alleviate tensions that exist among the Dehnen and bisymmet-
ric velocity methodologies tested in this study, which may arise
because of the perturbed equilibrium of the LMC. This could
be tested with various numerical simulations of the LMC, SMC,
and MW encounters. We will also study possible variations of
the bar pattern speed among various stellar evolutionary phases
of the LMC.
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Appendix A: Test-particle simulation

In this section, we apply the methods described in Section 2 to an
idealised simulation of a barred disc galaxy in statistical equilib-
rium with the imposed potential. We briefly describe the charac-
teristics of the simulation and the results of the methods applied
to it.

We use a 5 million test particle simulation with initial con-
ditions, galactic potential, and steps performed in the integra-
tion process as described in Romero-Gómez et al. (2015). We
refer to this simulation as the TP simulation. The initial con-
ditions for positions and velocities were drawn for a disc den-
sity distribution following a Miyamoto-Nagai disc potential
(Miyamoto & Nagai 1975) with a typical scale-height (hz =
300 pc) and radial velocity dispersion (σU = 30.3 km s−1) of a
red clump star. Then we integrate the initial conditions in the
axisymmetric potential of Allen & Santillan (1991) for 10 Gyr,
after that we introduce the Galactic bar potential adiabatically
during four bar rotations, and we integrated another 16 bar rota-
tions so that the particles achieve a statistical equilibrium with
the final bar potential. The galactic bar consists of the superpo-
sition of two aligned Ferrers ellipsoids (Ferrers 1877), one mod-
elling a triaxial bulge with a semi-major axis of 3.13 kpc, and
the second modelling a long thin bar with a semi-major axis of
4.5 kpc, with an angular orientation of 20◦. In the TP simula-
tion, we impose that the bar rotates counter-clockwise as a rigid
body with a constant pattern speed of 42 km s−1 kpc−1, placing
the corotation resonance at Rc = 4.9 kpc, measured as in the B5
simulation. The TP simulation represents the ideal configuration
to estimate a bar pattern speed with the different methods due to
the only barred perturbation and being in statistical equilibrium
with the imposed potential.

Figure A.1 shows the surface density (left panel), the radial
velocity (middle panel) and the residual tangential velocity (right
panel) maps for the TP simulation. The map of the residuals
has been obtained by subtracting the rotation curve to the Vφ

map. We observe the bar and no obvious spiral arms, which is
expected because only a bar potential is modelled. In both radial
and residual tangential velocity maps, we also observe a kine-
matic quadrupole caused by the stellar orbits shaping the bar. In
every panel, we highlight the bar region identified by the Dehnen
method by green dashed circles, with inner and outer circles cor-
responding to R0 and R1, respectively. The grey dashed lines
trace the bar minor and the major axes found by the method. The
bar orientation φb is in agreement with the orientation observed

in the surface density, and separates remarkably the quadrupole
patterns in two parts. The Dehnen method infers a value of
Ωp = 42.0 ± 0.2 km s−1 kpc−1, in agreement with the imposed
value. Values are summarised in Table A.1.

Figure A.2 shows the impact of the variation of the orienta-
tion of the Cartesian frame on the derived pattern speed using
the LTW and IPTW methods, by rotating the reference x and
y axes around the z−axis in the simulation. The rotation of the
Cartesian frame before sky projection allows the TW integrals
(measured parallel to the major axis) to view the bar and spi-
ral perturbations through various angles. Note that in this case,
where no other non-axisymmetric component but the bar, and
being in statistical equilibrium, the recovered pattern speed using
both versions of the TW method show comparable trends. As a
known issue of the TW, the integrals do not converge when the
slit is aligned with the bar axes (Tremaine & Weinberg 1984).
The IPTW shows a pattern speed systematically lower by ∼ 10%
from the true value, about twice as large as the systematic shown
by the LTW method.

Figure A.3 presents results of the IPTW method for the TP
simulation. Again, we show here two different reference frame
orientations: the original one, with ∆φ = 0◦ (top row) and the
one with the bar major axis parallel to the x-axis, ∆φ = 159◦
(bottom row), for illustrative purposes. In the first case, there
is a clear linear trend and the IPTW recovers a bar pattern
speed of Ωp = 39.9 ± 0.4 km s−1 kpc−1, with a relative dif-
ference smaller than 5% from the imposed value. In the sec-
ond case, the TW x−integrals are perfectly aligned with the bar
major axis, as expected in the presence of only a bar potential.
The 〈x〉 values are then very close to zero, so there is no clear
trend in this case (it would give similar results when the TW
integrals are evaluated at another viewing angle along the bar
minor axis). We recover here a counter-clockwise pattern speed
of Ωp = 23.4 ± 2.8 km s−1 kpc−1 which differs by almost 50%
from the imposed value. The TW method thus performs better
when no prominent sub-structures exist in the disc, as a well-
known issue, integrals should not be made along the major or
minor axes of the bar.

Finally, in Fig. A.4, we show the results of applying the
BV method to the TP simulation, the value for corotation we
derive is Rc = 4.8 ± 0.5 kpc, and the bar pattern speed is
Ωp = 43.3+5.0

−4.2 km s−1 kpc−1, which exceeds the true value of
42 km s−1 kpc−1, although remaining comparable with it given
the lower quoted uncertainties. The values are summarised in
Table A.1.

Table A.1. Results of the Dehnen and the BV methods applied to TP simulation, compared to the reference value (obtained using finite-
differences).

Reference Dehnen method BV method

Simulation Ωp R0 R1 Ωp φb Rc Ωp

TP 42.0 1.33 3.30 42.0± 0.2 19.8± 0.1 4.8± 0.5 43.35.0
−4.2

Notes. The inner, outer, and corotation radii, R0, R1, and Rc, are in kpc. The bar pattern speed, Ωp, and phase angle, φb, are in km s−1 kpc−1 and
degrees, respectively.
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Fig. A.1. Application of the Dehnen method to the TP simulation. Surface density (left), median radial velocity map (center) and median residual
tangential velocity map (right). The bar region identified by Dehnen method (see values in Table A.1) is indicated by green dashed circles. The
grey dashed lines trace the bar minor and the major axes.
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Fig. A.2. Same as Fig. 2, but for the TP simulation.
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