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Abstract 

Scoliosis is abnormal lateral curvature of the spine exceeding the 10 degrees, being adolescent 

idiopathic scoliosis (AIS) the most prevalent type, identified in children between 10 and 16 years of 

age. Depending on the severity of the curvature, there are different treatment methods, with 

surgical treatment being the one of choice for cases with a curvature greater than 45 degrees. 

However, it presents numerous perioperative complications, therefore, the surgical planning of 

these cases is used to give support to the surgeon when performing the surgery. Efforts have been 

made to develop Artificial Intelligence (AI) based models for automatic vertebrae and spine 

segmentation, as this task is time-consuming and repetitive, and is used in numerous medical 

applications, including surgical planning. The aim of this project, started from scratch at the Hospital 

Sant Joan de Déu, is to design and develop a pipeline that integrates automatic segmentation 

methods to be used in AIS cases. Different automatic segmentation methods have been studied, 

among which one has been chosen and is used in the present project. Each of the steps to be 

carried out to implement the pipeline proposed with the method chosen are indicated, explained 

and detailed, including data collection, setup of the working environment, use of image pre-

processing techniques, and the execution of the model. Additionally, this model has been re-trained 

with data from adolescents with scoliosis condition from the Hospital to improve its performance. 

Results show that the re-training of the model allows to obtain a better segmentation of the spine 

and vertebrae from the input CT images. 

 

Key words: Automatic segmentation, Computed tomography images, Adolescent idiopathic 

scoliosis (AIS), Surgery planning 
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1. Introduction 

1.1. Motivation and aim of the Project 

The spine, which keeps humans upright and connects the different parts of our skeleton – head, 

shoulders, ribcage, arms, pelvis, and legs – together, is the central support structure of the human 

being. Its natural S-shaped curvature makes it stable: it helps keeping the balance when being in 

an upright position, acts like a shock absorber when human walks, and protects the vertebrae from 

fractures [1]. In addition, the bones that make up the spine also protect the spinal cord, which runs 

through the vertebral foramen of the vertebrae from the brainstem to the lower back, and whose 

role is to conduct information from the brain to the periphery and vice versa [2]. Vertebral column 

conditions include traumatic or osteoporotic fractures, herniated disc, spinal deformities (scoliosis, 

lordosis and kyphosis), craniocervical junction instability, spinal cord damage (myelopathy), nerve 

compression or impingement (radiculopathy) and wear and tear of joint cartilage (facet arthropathy) 

[3]. These conditions cause pain and, in many cases, can limit movement, so appropriate treatment 

is necessary, which varies depending on the disease, but sometimes includes orthopaedic braces 

and surgery. 

This project focuses on scoliosis disease, which is an abnormal lateral curvature of the spine 

exceeding the 10 degrees and commonly combined with a rotation of the vertebrae, affecting 2-4% 

of the global population, and being more prevalent among girls [4]. This can be roughly translated 

to 162-324 million people, considering that the current world population is about 8.1 billion people. 

More specifically, it will be focused on Adolescent Idiopathic Scoliosis (AIS) condition, which is the 

type of scoliosis most prevalent worldwide, identified in children between 10 and 16 years of age. 

Scoliosis left untreated, it might lead to cardiopulmonary complications, causing shortness of breath 

and difficulty breathing. Also, to develop cardiovascular dysfunction, due to the decrease in space 

for the heart, causing pain and a reduction of the blood flow [5]. To prevent these disease-

associated problems from developing, there are different treatment methods depending on the 

degree of the curvature. Individuals with curves of 10 to 25 degrees are monitored for surveillance, 

usually at 3, 6 or 12-month intervals. AIS whose curvature is between 25 and 40 degrees are 

candidates for bracing, to keep the curve from progressing as the child grows. And those 

adolescents who are skeletally immature with curves over 40 to 45 degrees and those mature 

patients with a measurement of 50 degrees or greater, are candidates for surgical treatment. 

However, the latter presents numerous perioperative complications such as need for blood 

transfusions, incorrect implant placement, bar rupture, pulmonary, vascular or neurological injuries 

after surgery. Therefore, preoperative planning is essential in AIS surgery to perform the procedure 

with greater precision and diligence, allowing reducing the risks associated with it by forcing the 

surgeon to study the patient’s characteristics, history, and vertebral deformity, and to identify 

anatomical details and key technical points of the intervention. Moreover, to avoid unnecessary 

prolongation of operative time [6]. 

In addition, the integration of artificial intelligence (AI) into medical imaging has guided an era of 

transformation in healthcare. AI, and in particular deep learning algorithms, has demonstrated 

remarkable capabilities in extracting insights from medical images. It has opened new possibilities 

in image segmentation and quantification. By employing sophisticated algorithms, AI can 
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accurately delineate structures of interest within medical images, such as tumours, blood vessels, 

bone, or cells. Therefore, this segmentation capability is invaluable in treatment planning, as it 

enables clinicians to precisely target areas for intervention, optimize surgical procedures, and 

facilitate personalized treatment plans [7]. 

In view of the above, the importance of a safe, accurate and optimised surgical planning procedure 

for the surgical treatment of AIS is the main motivation for the development of the present project. 

Specifically, the aim of the project is to optimize the vertebrae segmentation procedure during 

surgical planning of adolescent idiopathic scoliosis cases by using AI models. 

1.2. Origin of the Project 

This project was born out of the need to automate the segmentation task during the surgical 

planning procedure of adolescent idiopathic scoliosis cases, at the Hospital Sant Joan de Déu. This 

project is the beginning of an innovative path towards automatic segmentation of vertebrae and 

spine of AIS cases, which currently does not exist in the Hospital Sant Joan de Déu. Therefore, the 

present project does not follow any other project, it has been started from scratch, so there is a lack 

of previous experience and knowledge of the topic on the part of the team. 

As indicated, this project has its origin in the Hospital Sant Joan de Déu and has been conducted 

in collaboration with the Paediatric Computational Imaging Center (PeCIC) and the 3D4H Unit of 

the Innovation Department. 

1.3. Objectives and scope of the Project 

The primary objective of this project is to design a pipeline that integrates solutions for automatic 

segmentation, with CT images, to be applied to the use case of adolescent idiopathic scoliosis for 

surgical planning. The pipeline will include the collection, preparation and pre-processing stages of 

the data to be used, the steps to setup the working environment and the execution processes of 

the proposed solution for automatic segmentation. Each of these steps and stages will be explained 

and detailed rigorously so that this pipeline can be reproduced and used by other users, who may 

or may not be familiar with the concepts, methods and techniques described in the present project. 

To accomplish this main goal, the secondary objectives are in the following order: 

i. Conduct a literature search on adolescent idiopathic scoliosis, and on the available 

automatic segmentation algorithms. 

ii. Study different software solutions for use in the segmentation task and to justify the solution 

chosen for the development of this project. 

iii. Study the chosen software solution in depth using different research tools such as web 

pages, online tutorials, discussion forums or recorded webinars available on the Internet. 

iv. Define the technical requirements and conditions necessary to setup the working 

environment where the chosen software will be used, and the corresponding pre-trained 

models. 

v. Test the chosen model with data from paediatric patients of the Hospital Sant Joan de Déu. 

vi. Re-train the model with data from paediatric patients of the Hospital Sant Joan de Déu. 
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vii. Evaluate the performance of the chosen segmentation model and the re-trained model 

using the Dice score metric. 

From the segmentations of each of the vertebrae, the planning engineer designs a customized 

surgical guide for each of them, so that the surgeon has a guide to ensure the correct placement 

of the pedicle screws in the intervention. However, this project does not detail how the design of 

these surgical guides is performed, therefore, the impact that the optimization of the segmentation 

process has on this stage of the indicated surgical planning is not evaluated. 

1.4. Structure and methodology 

For the achievement of the objectives previously described, this project integrates different stages, 

which are specified below. 

Firstly, a theoretical study on the vertebral column and vertebrae anatomy, the scoliosis condition 

and on the AIS surgical planning has been carried out. In addition, the main concepts related to 

medical imaging and image segmentation, and file formats are detailed. Moreover, literature 

research on the state of the art of automatic vertebrae and spine segmentation algorithms has been 

carried out. All previous information can be found in section 2. In the next section, the market 

analysis for automatic segmentation is studied. In relation to this, section 4 exposes and explores 

possible software and methods that can be developed to perform the task of segmentation 

automatically. The details of all the steps and stages implemented to develop the chosen solution, 

including the steps to setup the working environment where it will be devolped, as well as all the 

procedures, methods and techniques used in the different processes are indicated in Section 5. 

The different tasks to be performed in the project and their execution time, the technical feasibility 

of the proposed solution and the economic viability of the same, are defined in sections 6, 7 and 8, 

respectively. Finally, the legislation applicable to the project developed is indicated in Section 9. 

Being this a retrospective project, the CT images used are from 18 adolescent paediatric patients 

at Hospital Sant Joan de Déu who have already been treated for AIS by surgical intervention. In 

this scenario, the images used in this project are from the project with code APG001, approved by 

the Drug Research Ethics Committee (CEIm), a committee attached to the Fundació de Recerca 

Sant Joan de Déu [8]. 

The tasks involved in the review, correction and performance of the pre-processing technique of 

the segmentations of each of the cases for their subsequent use have been carried out in the 3D4H 

Unit department. On the other hand, the tasks focused on the development, setup and execution 

of the proposed automatic segmentation software have been carried out in the PeCIC Center, at 

the Hospital Sant Joan de Déu. The evaluation stage of the results obtained has been carried out 

at home. 

Furthermore, I have had the opportunity to observe from inside the operating theatre a surgical 

intervention of a case of adolescent idiopathic scoliosis, performed by surgeon Alejandro Peiró 

García, being able to observe how he used the 3D printed model of the spine and the patient’s 

personalised printed surgical guides for the placement of the pedicle screws. 
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1.5. Limitations 

The scope of the project has been defined considering three main limitations, defined below. Firstly, 

the temporal limitation, given that the Final Degree Project has an execution period of one semester 

and a corresponding delivery date must be met. In relation to the time constraint, the search for 

models that allow automatic segmentations from which to start the elaboration of the project has 

taken a long time, which has been a limitation for the development of the project.              

Secondly, the size of the dataset used. This is due to two factors: the first is that surgical planning 

for adolescent idiopathic scoliosis cases has been carried out since 2023, therefore, the number of 

patients for whom vertebrae segmentations are available is small. In addition, no open-source 

datasets of CT medical images of the spine, with or without scoliosis, of paediatric adolescents are 

available. The second factor is that all those paediatric cases in the Hospital Sant Joan de Déu 

dataset in which the curvature of the scoliosis had a Cobb angle (see section 2.1.3) greater than 

55 degrees were discarded from the study due to the vertebrae anatomy of these cases being very 

different from those in the medical images used to pre-train the model. Therefore, this second 

limitation not only restricts the generalizability of the findings but also the training of the proposed 

model.                    

There have also been limitations with the availability of the infrastructures to be used. As indicated 

in section 1.4, all the tasks, excluding the evaluation stage of the results, were carried out in the 

corresponding departments at the Hospital Sant Joan de Déu, using the computers provided by 

the directors, where they work, as the different tasks involved the use of licensed software that only 

those computers had. Therefore, we had to organise, which was sometimes difficult to coincide 

due to incompatibility of schedules, which delayed the execution of some tasks. 
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2. Background 

This chapter focuses on explaining the concepts that will allow a better understanding of the terms 

that will appear throughout the report. In addition, it will detail where the technology stands and 

what has been done so far. 

2.1. General Concepts 

This section presents various concepts for a better understanding of the terms used throughout the 

report for the development of the project. 

2.1.1. Vertebral Column and Vertebrae anatomy 

The vertebral column provides flexible support for the body’s physical structure, head and trunk, 

transmits the weight of the upper body to the lower limbs, and supports the nervous system, 

enabling movement and sensation. Its shape, viewed from the side, is not straight, it has four slight 

natural curvatures that distribute the effort required for movement in daily activity. These are: 

cervical, thoracic, lumbar, and sacral curves (Figure 1) [9]. 

In humans, the spine is composed of 33 vertebrae that include 7 cervical, 12 thoracic, 5 lumbar, 5 

sacral, and 4 coccygeal. The spine protects the spinal cord, located at the vertebral foramen, a 

central lumen within each vertebral body, and the spinal nerves, that emerge from the main cord at 

each vertebral level [10]. Between adjacent vertebrae there are intervertebral disks, that are the 

cartilaginous structures responsible for providing cushion and absorb the shock produced by 

movement. Each vertebra features a body, pedicle, transverse process, lamina, and spinous 

process (Figure 1). The first, is the thick anterior portion that supports most of the weight. Extending 

posteriorly from the lateral aspects of the vertebral body are the pedicles, that form most of the 

vertebral arch’s sides [5]. From the vertebral arch, they extend the transverse process, and the 

most posterior part of the arch are the laminae, that meet at the spinous process. 

    

Figure 1: Spine (A) and vertebra (B) anatomy [5]. 

A) 

B) 
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2.1.2. Scoliosis condition 

Scoliosis is an abnormal lateral curvature of the spine that affects the morphology of the trunk, and 

consequently, the vertebral column viewed from the front has a C- or S-shaped curve. This 

condition can be caused by a neurological or neuromuscular disease, or by a congenital 

deformation. However, when the cause is unidentifiable it is known as idiopathic. Scoliosis can 

appear at any age, although it is most often identified at an early age, typically at 10 to 16 years 

[4]. Below, the different types of scoliosis are defined: 

▪ Idiopathic scoliosis. It is the most common form, but the curvature’s origin is unknown. 

Moreover, studies suggest a genetic component in idiopathic scoliosis, which affects girls 

more that it does boys in all age groups [5]. 

▪ Congenital scoliosis. It is present at birth, and results from a vertebral malformation, where 

bones are asymmetrical, and the spine may be partially formed [11]. 

▪ Neuromuscular scoliosis. It results from insufficient muscle and tendon stabilization, 

caused by a neurological or degenerative muscular disorder such as muscular atrophy or 

dystrophy. 

Idiopathic scoliosis can be subdivided according to the age of onset as [12]: 

▪ Infantile idiopathic scoliosis. Is diagnosed in children between birth and 3 years of age. 

▪ Juvenile idiopathic scoliosis. Diagnosed between 3 to 9 years of age, and accounts for 12 

to 20 percent of all paediatric cases. 

▪ Adolescent idiopathic scoliosis. Diagnosed in children between the ages of 10 and 18 years 

old. 80% of all paediatric cases of idiopathic scoliosis fall into this category. 

2.1.3. Clinical Assessment, Diagnosis and Curve Measurement 

Symptoms associated with scoliosis may include uneven 

shoulders, pain in the back, one shoulder blade to be more 

prominent or visible than the other, one hip appearing higher 

than the other, or one side of the rib cage being higher than 

the other when bending forward [13]. In the initial evaluation 

of scoliosis, both the patient history and a physical 

examination, as well as radiographs are crucial. The latter is 

indicated when during the physical examination alterations in 

spinal alignment have been identified. On the imaging scans, 

such as X-rays, CT scans and MRIs, which have been taken 

on patients in a standing position, a physician measures the 

degree of spinal curvature to stablish a diagnosis of scoliosis. 

The most common quantification of scoliosis is the Cobb 

angle, and its measurement involves estimating the angle 

between the two tangents of the upper and lower endplates 

of the upper and lower end-vertebrae of the curve deformity, 

respectively (Figure 2) [14]. 

Figure 2: Cobb angle measurement [14]. 
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Table 1 shows the classification of scoliosis according to the magnitude of the curve using the Cobb 

angle. Scoliosis occurs when the scoliotic curve in the coronal plane is greater than 10 degrees. 

Table 1: Scoliosis classification according to Cobb angle. 

Cobb angle (degrees) Classification 

0º - 10º Spinal curve 

10º - 20º Mild scoliosis 

20º - 40º Moderate scoliosis 

40º - 45º Severe scoliosis 

> 45º Very severe 

 

In a diagnosis of adolescent idiopathic scoliosis, the spine shows a curvature in the coronal plane 

combined with reduced kyphosis in the sagittal plane and rotation in the axial plane [15]. To 

describe and classify AIS and recommend treatment, it is also used the Lenke Classification, which 

describes the type of curve. This classification system considers the coronal curve (1-6), the sagittal 

deformity (-, N, or +), and the lumbar spine modifier (A, B, C) [16]. However, the formal education 

of Lenke Classification is beyond the scope of this section. 

2.1.4. AIS Surgery Preoperative Planning 

The decision to surgically treat an AIS is based on the type of curve, the proximity to skeletal 

maturity and the balance in the coronal and sagittal plane. Most authors place the magnitude of the 

curve at 50º for the indication for surgical treatment. This premise is deduced from the fact that 

curves greater than 45º have a tendency towards progression and that from 50º onwards they are 

cosmetically more evident [17]. For patients their curve magnitude is lower than 45º, bracing can 

be an effective means of controlling some form of early onset idiopathic scoliosis. However, bracing 

is intended to prevent progression, not to correct the curve. 

The indications for surgical treatment are summarised below: 

▪ Curve > 50 degrees. 

▪ Curve > 40 in a skeletally immature patient. 

▪ Progression despite conservative treatment. 

▪ “Unacceptable” deformity. 

As indicated at the beginning of the report, preoperative planning is essential in AIS surgery to 

determine the fusion levels and to perform the procedure with greater precision and diligence. The 

surgical planning engineer has at his disposal the clinical radiographs, more specifically, the CT 

scans taken from the patient in a standing position and with the arms raised. The doctor indicates 

which vertebrae need to be fused, and therefore, which vertebrae require customized surgical 

guides, to be designed by the engineer, to determine the corresponding screw trajectories. The use 

of patient-specific 3D printed guides for pedicle screw insertion has been demonstrated to increase 

the effectiveness of pedicle screw placement by more than 95% [18] [19].  
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The planning engineer works mainly with segmentations, which represent the different parts or 

regions that can be divided from an image, in terms of volume and shape (Section 2.1.5). First, with 

the segmentation of the entire spine. This is obtained from the CT image and with the use of a 

threshold tool to determine which Hounsfield units (HU), which is a relative quantitative 

measurement of radio density used by radiologists in the interpretation of CT images [20], and 

therefore, which body structures are to be considered in the segmentation. From this initial 

segmentation, the vertebrae are separated into different segmentations using a semi-automated 

tool, to allow working with every vertebra independently and facilitate a better visualization of every 

part of it for the correct placement of the guide and screws. This segmentation procedure is time-

consuming for the engineer, for that reason, having an automatic segmentation tool to speed up 

this process will have an important improvement in surgical planning. 

In the operating room, screw placement is achieved by mounting the guide onto the posterior 

elements of the respective vertebra level to be instrumented. This enables mechanical guidance of 

a drill bit that is placed through a drill sleeve that is inserted into the cannulated portion of the guide 

[21]. 

 

Figure 3: On the left, a preoperative spine model with a 3D printed guide. On the right, an intraoperative photograph 
demonstrating the positioning of the guide [21]. 

2.1.5. Medical Imaging and Image Segmentation 

Medical Imaging is the use of imaging modalities and processes to represent the interior human 

body for clinical diagnosis and medical intervention by the visual representation of tissues and 

organs [22]. There are different types of medical imaging techniques which use different 

technologies. Among the most used techniques are X-ray, computed tomography (CT) and 

magnetic resonance imaging (MRI). 

Digital medical imaging is an f(x,y) function in a spatial coordinate-partitioned grey scale that can 

be represented by a matrix in which the intersection of each row and column identifies a single 

pixel within an image. The value of each pixel in the matrix identifies the grey level at that point 

(x,y) on a scale of integer values that represent black, white and shades of grey, being these the 

lowest value, the highest value and intermediate values, respectively [23]. Furthermore, CT images 

can be acquired volumetrically, in form of a volume of parallel spaced slices, so that a pixel in the 
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image represents a voxel, with a “height” equal to the thickness of the slice. This matrix of numerical 

values that represent the image, is what processing and analysis tools work with. 

A key step in image processing and analysis is segmentation. It is essential for accurately 

delineating anatomical structures and pathological regions of interest (ROIs) from medical images, 

allowing clinicians to isolate and analyse specific areas, facilitating accurate measurements, 

quantitative analysis, and treatment planning. Image segmentation is particularly valuable in areas 

such as tumour delineation, organ volume estimation, tissue characterization and surgical guidance 

[24]. Medical image segmentation involves classifying each pixel in the image with the correct label 

so that pixels shearing the same label have certain characteristics. 

2.1.6. DICOM, NIfTI and STL file formats 

In medical imaging annotation, imaging standards and file formats play an important role. The 

extraction of ROIs from medical images can be performed from CT scans, X-rays, and MRI files. 

However, two of the most common medical imaging data formats are DICOM and NIfTI. Digital 

Imaging and Communications in Medicine (DICOM) is one of the most widely deployed healthcare 

messaging Standards in the world and defines the formats for medical images that can be 

exchanged with the data and quality necessary for clinical use [25]. The Neuroimaging Informatics 

Technology Initiative (NIfTI) is a data format for the storage of medical images, focusing on 

Functional Magnetic Resonance Imaging (fMRI). The main difference between these two data 

formats is that DICOM image files and the associated data is made up of 2D layers, allowing to 

view different slices of an image, whereas NIfTI images and data are stored in a 3D format, to 

overcome spatial orientation challenges. Another file format commonly used are STL files, acronym 

for stereolithography, used for 3D printing and computer-aided design (CAD). A STL file is made 

up of a series of linked triangles that describe the surface geometry of a 3D model or object. The 

more complex the design, the more triangles used, and the higher the resolution [26]. 

2.1.7. Terminal, Local Environment, CPU and GPU 

The terminal provides a command line interface (CLI) for accessing files and giving instruction to 

the system. When it is executed, it opens a text window that displays a welcome message and the 

‘prompt’, which is a text string with the path to the current directory, initially the user’s home 

directory, ending with the character ‘>’. From this point, the user can give orders to the system by 

typing different commands [27]. 

Local environments are a type of Python environments that allow to create workspaces, where 

packages can be install without affecting other environments, and users can interact directly to 

accomplish specific tasks. A conda environment is a subtype of local environment, that is managed 

using the ‘conda’ package manager. To create a conda environment in the terminal, the command 

to be typed is the following: ‘conda create -- name <name-of-the-environment>’ [28]. 

A central processing unit (CPU) is a hardware component and the central computing unit of a 

server, which converts data into digital signals and perform mathematical operations on them. 

Therefore, the CPU is the main component that processes signals and makes computation possible 

[29]. On the other hand, a graphics processing unit (GPU) is composed of smaller and more 
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specialised cores that accelerate the execution of computationally intensive applications. While the 

CPU performs sequential serial processing, the GPU has a parallel architecture to solve multiple 

tasks at the same time [30]. 

2.2. State of the art 

Over the years, spinal imaging analysis has received sustained attention from the medical imaging 

community. The use of artificial intelligence (AI), machine learning (ML) and deep learning (DL) in 

healthcare has driven advances in the management of spinal diseases, although it was from the 

1980s onwards that image analysis became a significant root of AI in healthcare [31]. 

2.2.1. U-Net Model for Automated Spine and Vertebrae Segmentation 

U-Net is the most popular convolutional neural network model for the segmentation of biomedical 

image. It consists of two parts: an encoder and a decoder. The former, is used to extract features 

from the given dataset, and the latter, is used to predict the segmented mask [32]. The figure below 

shows the standard architecture of U-Net. 

 

Figure 4: U-Net architecture [33]. 

The encoder, which is the first half in the architecture shown in Figure 4, reduces the size of the 

image using max-pooling layers, that extract the maximum of 2x2 neighboring features [32]. 

Therefore, it extracts relevant features from the incoming data. The decoder, the second half of the 

architecture, uses the extracted features from the encoder part and predicts a segmentation mask. 

Contrary to the first part, the decoder uses up-convolutional layers to upscale the images to a size 

closer to the original. 
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Saeed et al. [32] proposed a model, that uses CT images, for the automated segmentation of the 

spine based on a modified version of the standard U-Net architecture. In the proposed model, 

CHASPP layers are used after each max-pooling layer in the encoder part to enhance the 

performance of the machine learning model as these focus on objects in the dataset. Moreover, in 

each encoder part, residual blocks are inserted that extract deep features from the dataset and 

pass it to the decoder layers. The decoder part of this proposed model contains attention modules 

that focus on the regions of interest. For the evaluation of the model, the VerSe dataset (see section 

5.1.2) was used. The model achieved 94.58% Dice score, coefficient that measures the similarity 

between two sets of data [34]. 

2.2.2. Fully Convolutional Network for Vertebrae Localization and 

Segmentation 

Payer et al. [35] proposed a fully automatic three-step approach for vertebrae localization and 

segmentation. First, a variant of the U-Net is used to perform heatmap regression of the spinal 

centerline, which is the line passing through all vertebral centroids, to localize the predicted x and 

y coordinates of the spine. This variant of the U-Net performs average instead of max-pooling in 

the encoder part. Second, the SpatialConfiguration-Net (SC-Net) proposed in [36] is used to 

localize the vertebrae. It performs heatmap regression of the N target vertebrae, and for each of 

the N target, the network predicts all N output heatmap volumes. For each predicted heatmap 

volume, multiple local maxima are detected using a threshold. From this, the first and last vertebrae 

are determined by taking the maxima with the largest value that is closest to the top or bottom of 

the volume, respectively. The final predicted landmark ensures that consecutive vertebrae are not 

closer than 12.5 mm and farther away than 50 mm [35]. For the last step, vertebrae segmentation, 

it is used a U-net set up for binary segmentation to separate each vertebra individually from the 

background. Finally, the individual predictions of the vertebrae are transformed and resampled 

back to their position in the original volume. 

   

Figure 5: Input CT image (A), final vertebrae segmentation superimposed on the input CT scan (B) [35]. 

Lessmann et al. [37] proposed an iterative fully convolutional neural network (FCN) for automatic 

vertebra segmentation and identification. The model approaches vertebra segmentation as an 

instance segmentation problem, therefore, all vertebrae are detected as instances within the same 

class. However, contrary to generic instance segmentation, in this model the instances are not 

independent of each other, these are known to be close to each other in the image. This knowledge 

A) B) 
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is incorporated into the algorithm. The method applies a patch-based vertebra-by-vertebra 

segmentation approach, following either a top-down or bottom-up scheme, in which the image is 

analysed in patches large enough to contain at least one vertebra. The network segments a single 

vertebra in this patch and the anatomical knowledge, incorporated previously to the algorithm, that 

the following vertebra must be located in close proximity is used to reposition the patch for 

segmentation of the following vertebra [37]. Moreover, the network combines a memory component 

that retains information about already segmented vertebrae and uses it to segment only the 

following not yet segmented vertebra. A binary label for each voxel in an image patch is predicted 

and indicates whether the voxel belongs to the current instance or not. The proposed model 

obtained a Dice score of 96.3% for vertebra segmentation. Figure 6 shows a graphical scheme of 

the model. 

 

Figure 6: Graphical scheme of the Lessmann et al. [37] proposed model. 

2.2.3. Deep Learning Approach for Automatic CT Vertebra Segmentation 

Qadri et al. [38] proposed a deep learning approach named patch-based deep belief networks 

(PaDBNs), that automatically selects the features from CT image patches and measures the 

differences between classes. Patch-based methods label each voxel in the target images by 

comparing image patches centered on the voxel, with patches from an atlas library, and assign the 

most probable label based on the closest and best match patch from the library. The deep belief 

network (DBN) is a deep learning model composed of Restricted Boltzmann Machines (RBMs), 

which are the primary units of DBN. It is trained in an unsupervised manner, it learns from unlabeled 

data, to extract features. The structure of the PaDBNs proposed model is composed of an input 

layer, two hidden layers and an output layer (Figure 7). The input layer and the first hidden layer 

construct the first RBM and the first and second hidden layers the second RBM. The two hidden 

layers are the ones used to extract the features from the vertebrae and the two nodes in the output 

layer enable the network to select the most relevant features for representation of each image patch 

[38]. To test the trained model, image patches that have not been seen by the model are introduced. 

First, it predicts the image class patch and generates a probability map by adding all distributions. 

From this, it reconstructs the image, obtaining the final segmentation image of the vertebra. This 

method achieved an accuracy of 93.3% and a sensitivity of 91.1%. 
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Figure 7: Structure of PaDBNs model [38]. 

2.3. State of the situation 

Regarding the previous section, it can be seen that the use of DL in spine imaging studies is the 

focus of attention for tasks related to the localization and segmentation of the vertebral column, as 

well as of each of the vertebral bodies that compose it. This is due to the fact that all subsequent 

analyses, such as the detection and grading of fractures and the analysis of spinal shape, 

curvature, and deformity such as scoliosis, rely on these initial tasks [39]. 

Surgical planning for scoliosis treatment allows having an estimate of the length of the implants, 

the density of the pedicle screws, and the strategic point of entrance and orientation to place them. 

Consequently, it has been observed to improve intraoperative precision and the speed with which 

the surgical procedure is performed. The shorter operative time has also been associated with a 

lower complication rate in spinal deformity surgery in paediatric patients [6]. 

With an incidence of screw misplacement as high as 15 - 30% [19] in spine deformity surgery, the 

need for technical tools to work with individual vertebrae to plan pedicle screw trajectories for each 

vertebra has become acute. Therefore, considering that the first task to be performed and from 

which the following planning steps are developed is vertebrae segmentation, having models that 

allow this task to be carried out accurately and quickly is crucial. 
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3. Market analysis 

The market for automatic image segmentation in healthcare is experiencing an important growth 

driven by the implementation of technologies that integrate AI models, specifically, those based on 

deep learning. The following sections aim to indicate which sectors are targeted by automatic 

segmentation of medical images, the main multinationals present in this market, the future 

perspectives of this market, and a product launched on the market focused exclusively on the task 

of vertebrae segmentation. 

3.1. Sectors targeted by Automatic Image Segmentation 

From the medical perspective, manual segmentation can be time-consuming, repetitive, subjective, 

and prone to inter-observer variability [40]. Therefore, the use of automated segmentation 

techniques with integrated DL-based approaches have gained significant attention in different 

specialities, beyond radiology, which is the most widespread. 

Among all the applications of medical image segmentation in different medical specialities, some 

are the following: aiding in segmentation for radiation therapy planning, assisting in surgical 

planning and navigation, facilitating organ segmentation for volumetric analysis and diagnosis, 

supporting cardiac image analysis, assisting in neuroimaging for brain structure delineation and 

lesion detection, and enabling precise image-guided interventions [40]. As can be observed, there 

are several medical specialities that can benefit from the use of automatic segmentation and the 

advantages that this AI-based technique offers. Therefore, the main specialities targeted by 

automatic segmentation are: radiotherapy, cardiology, neurology, also oncology and orthopaedics. 

3.2. Players in Medical Imaging 

North America is the leading region in the global AI in medical imaging market, due to the high 

adoption of advanced healthcare technologies, growing prevalence of chronic diseases, and 

important investments in research and development. In this region, is the United States the largest 

market, with leading players such as GE HealthCare, IBM Watson Health and Philips Healthcare 

[41]. However, the Asia-Pacific region, due to the growing geriatric population and rising healthcare 

expenditure in countries such as China, India and Japan, is expected to witness important growth 

in the market of AI medical imaging [41]. In this region, Hitachi and Fujifilm Holding Corporation are 

the major players. 

3.3. Bonescreen software 

In this section, it is presented a medical imaging software, Bonescreen, focused exclusively to 

assist radiologists and clinicians in assessing bone health. One of its products offered is SpineR. It 

is an AI-based technology that segments and labels all vertebrae, identifies subregions and special 

points of interest in CT scans [42], which are tasks commonly needed in automated surgery 

planning or 3D printing. Moreover, SpineR can identify if there are transitional vertebrae, which are 

a congenital vertebral anomaly of the L5-S1 junction in the spine. If this alteration is not correctly 

identified, it may contribute to incorrect identification of a vertebral segment, leading to wrong-level 
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spine surgery [43]. Figure 8 shows the different stages that can be achieved with SpineR, from the 

initial CT scan. 

     

Figure 8: Spine CT scan, vertebrae segmentation and labelling, vertebrae volume rendering, performed with SpineR 
technology, indicated from left to right [42]. 

3.4. Future market perspectives 

Although numerous advances have been made in the development of models for automatic image 

segmentation, their implementation and market launch face several challenges. These include the 

need for large annotated datasets, generalization across different imaging modalities, robustness 

to variations in image quality, and the interpretability of deep learning models [40]. 

The diagnostic imaging market is expected to register a Compound Annual Growth Rate (CAGR) 

of nearly 6.1% between 2023 and 2029 [44]. This increase is important for the further development 

of automatic segmentation models as the use of DL-based approaches for diagnosing spinal 

conditions is the most widely used clinical application in spine imaging, enhancing clinical decision-

making, improving patient outcomes, and facilitating personalized medicine and treatment planning 

[45] [40]. 
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4. Conception Engineering 

As indicated previously, segmentation in radiology is crucial for many applications such as 

visualization, radiotherapy or 3D printing. However, it is often considered tedious and uninteresting. 

With the advances in AI, semi-automatic segmentation and interactive segmentation tools can be 

used. Hereafter, the possible solutions to tackle the segmentation automatization and optimization 

process for use in CT imaging are specified in this section. However, it is important to note that one 

of the requirements for this search is that these tools are open-source and free. 

4.1. Python 

A possible solution to tackle the segmentation automatization process for use with CT images 

consists of developing code using the Python programming language. One approach consists of 

using one of the models explained in the Conception Engineering section. However, the code of 

the networks described in the different sub-sections of each corresponding model is not available 

in most cases. Other possibility is to create a Python code from scratch, in which different machine 

learning libraries such as PyTorch, Keras or TensorFlow, and different DL architectures, such as 

U-Net or CNN, would be used in its implementation. Therefore, this proposed solution implies a 

high level of knowledge in code programming, as well as considerable amount of time to carry it 

out, which is a limitation present in the project. Furthermore, a third approach considered is the 

adaptation of an available open automatic segmentation model, for use in paediatrics cases with 

scoliosis condition. This approach presents the same drawback as described above. The previously 

solutions indicated, although they allow automating the segmentation process, require a high 

computational level, as well as a high knowledge of code programming, in addition to being time-

consuming. The latter conflicts with one of the stated limitations of this project, the temporal 

constraint. Therefore, other solutions that include tools with the possibility to be applied or modified 

for automatic segmentation are searched and studied. 

4.2. ITK-SNAP 

ITK-SNAP is a free software application used to segment structures in 3D medical images. The 

images that can be processed by this software are MRI, CT, and PET images. The application 

provides semi-automatic segmentation with the use of active contour methods as well as tools for 

manual delineation of anatomical structures present in the image. Segmentations can take place 

in the three orthogonal cut planes, these are shown in separated view windows in the application, 

and the results can be visualized in a 3D volume rendering. Moreover, the software supports 

different input formats, among these are DICOM and NIfTI, which are the most widely used. The 

stages to implement the semi-automatic segmentation in ITK-SNAP are four: selection of the region 

of interest in the image, pre-segmentation, initialization, and evolution [46]. A ROI containing the 

structure of interest is defined, and it is on this that all subsequent segmentation operations will be 

applied. Then, the anatomical image is transformed to a new image called ‘speed image’ which has 

values that range from -1 to 1, with the aim to make the speed values closed to 1 inside of the 

structure of interest, and close to -1 for the rest of the image. In the initialization stage, several 

seeds are placed inside of this structure of interest, which will be grown in order to form the 

corresponding segmentation. Finally, in the last stage, the seeds evolve, and expand over the 
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regions with positive speed values, and on the contrary, they contract over the regions with negative 

speed values. This final segmentation generated can be displayed as a three-dimensional 

rendering for better visualization of its shape and can be saved in a variety of image formats, two 

of which are NIfTI and NRRD. However, although the steps to perform the semi-automatic 

segmentation are well defined, the software does not provide the option to generate a model to 

reproduce the procedure for other cases, so it would not be possible to automate the process 

directly with this program. 

4.3. Seg3D 

Seg3D is a free volume segmentation and processing tool developed by the National Institutes of 

Health (NIH) Center for Integrative Biomedical Computing. It combines a manual segmentation 

interface with image processing and segmentation algorithms from the Insight Toolkit (ITK) [47]. 

This last, ITK, is a cross-platform open-source library that offers a comprehensive set of software 

tools for image analysis. Seg3D can process CT and MRI images, and the common biomedical 

image formats that it supports are DICOM, NIfTI and NRRD. This software provides a semi-

automatic segmentation tool combined with manual contouring of the anatomical structures in the 

images. Its implementation consists of placing seeds in the region of interest, which the 

segmentation tool will use to find all connected tissues or structures of the same grey scale range, 

and segment them. These seed points can be placed in different slices of the image. The final 

segmentation obtained can be rendered in a 3D representation. If parts of the tissues or structures 

of interest are missing in the segmentation generated, more seed points can be added, and the 

segmentation tool can be run again. Finally, the correct segmentation can be exported to DICOM 

and NRRD formats. Nevertheless, Seg3D does not offer the option to generate or train a model to 

reproduce this procedure for other cases, consequently, it is not possible to automate this 

segmentation process with this program. 

4.4. MONAI Label and 3D Slicer 

MONAI Label is an intelligent image labelling and learning tool that uses AI assistance to address 

labelling and segmentation tasks in order to reduce the time and effort of annotating new datasets 

[48]. This tool is built under Project MONAI, an open-source, freely available collaborative 

frameworks for annotating, building, training, deploying, and optimizing AI workflows in healthcare, 

started initially by NVIDIA [49]. These frameworks provide high-quality, user-friendly, and 

reproducible software that facilitates easy integration. MONAI Label trains an AI model for a specific 

task, by utilizing user interactions, and continuously learns and updates that model as it receives 

additional annotated images. This tool is supported by several viewers, however, the platform used 

in the field of radiology is 3D Slicer. This platform is a free, open-source software for visualization, 

processing, segmentation, registration, and analysis of medical, biomedical, and other 3D images 

and meshes; for planning and for navigating image-guided procedures [50]. The 3D Slicer software 

offers different modules that can be installed for use on its platform, including the MONAI Label 

module. Therefore, to be able to work with the MONAI Label tool, it is necessary to have the 3D 

Slicer platform installed. The input image formats supported by this software are NIfTI and DICOM, 

and the most common images it can process are MRI and CT.       

MONAI Label offers three different template applications that can be downloaded in the local 
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environment. On of them is the Radiology template that uses the CNN U-Net as the default network. 

This application, Radiology, contains example models to do both interactive and automated 

segmentation of radiological (3D) images. Among these pre-trained models are the segmentation 

Spleen model, the DeepEdit model and the Multistage Vertebra Segmentation model. The latter is 

a multistage approach for segmenting several structures on a CT image, and has two different 

stages, the spine localization model, to localize the spine as a single label, and the vertebra 

localization model, to segment the vertebrae. These two stages can be used together or 

independently [51]. Considering the objective of the project, the vertebra localization model would 

be the one chosen. This model has been pre-trained over the VerSe dataset (see section 5.1.2), 

which contains a total of 374 CT scans from 355 patients with a mean age of ~ 59 (±17) years [52]. 

The vertebra localization model has as input one channel for the CT image, and as output N 

channels representing the segmented vertebrae. This solution proposed is engaging as it allows 

the segmentation process to be automated. 

4.5. Selection of the proposed solution 

With the possible solutions previously explained and defined, the benefits and drawbacks of each 

of them are resumed in the following table. 

 ADVANTAGES DISADVANTAGES 

Python 
Programming 

Can be used with CT images. 
Allows to create a reproducible 

model for automatic the 
segmentation process. 

Requires a high computational level 
and a high knowledge of code 

programming. 
Conflicts with the temporal limitation 
as it is a time-consuming solution. 

ITK-SNAP 

This software can process CT 
images. 

It is an open-source software. 
Has well defined literature. 

Can not generate a model to 
reproduce the automatic 
segmentation process. 

Seg3D 
It can be used with CT images. 
It is an open-source software. 

Does not offer the option to 
generate a model to make the 

automatic segmentation process 
reproducible. 

MONAI Label and 
3D Slicer 

It has open-source frameworks 
and software. 

Has pre-trained models on 
vertebrae automatic segmentation. 

Can process CT images. 

The available model is pre-trained 
with data of adult subjects with 
normal anatomy of the spine. 

Low literature on how to pre-train 
the available model. 

 

Considering the different points expressed in the previous table for each of the solutions, it has 

been concluded to use the MONAI Label and 3D Slicer approach, as it is the one that allows to 

automate the segmentation process and make it reproducible, being within the temporal constraints 

of the project. Therefore, it is on the basis of this solution I have found and studied, that this project 

has been carried out, with the supervision of the directors.  
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5. Detail Engineering 

In this section, the procedures carried out with the chosen solution, 3D Slicer and MONAI Label 

module, will be shown in the different corresponding subsections, which cover data collection, the 

setup of the working environment, the pre-processing methods to be applied on the medical images 

and segmentations, the execution of the pre-trained model in the Radiology application, the re-

training of this model and the execution of this last. 

5.1. Data collection 

Image annotation is the practice of labelling images in a given dataset to train AI and machine 

learning models. Therefore, image annotation generates the training data that supervised AI 

models can learn from. Consequently, an error in the manual labels will be replicated in the model. 

5.1.1. Hospital Sant Joan de Déu dataset 

Hospital Sant Joan de Déu (HSJD) performs surgery to treat AIS since 2019. However, it was not 

until 2023 that these were performed with surgical guides customized for each patient. Therefore, 

the available dataset consists of 38 CT scans from paediatric patients with adolescent idiopathic 

scoliosis. However, those subjects with a curvature greater than 55º have been considered 

complex cases and have not been considered for the final dataset. Therefore, the latter consists of 

18 CT scans. Nevertheless, in the final dataset, data from two patients with a high average spinal 

curvature (>55º) have been left to evaluate how the model would perform with these complex 

cases. The dataset has been anonymised and approved for the intended purposes by the CEIm. 

The dataset corresponds to data of patients who have already been treated for this pathology by 

surgery, therefore, the corresponding segmentation mask of the spine and vertebrae used for the 

surgical planning of these cases has already been done by the planning engineer in charge. 

However, to use the vertebra localization model in the Radiology application of MONAI Label and 

to evaluate the results with the highest accuracy, further pre-processing techniques will need to be 

applied to all CT images and segmentation masks in the HSJD dataset (see section 5.3). These 

final segmentation masks after pre-processing are considered the ground truths, for the evaluation 

of the performance of the model. These pre-processing steps will be carried out according to the 

different observations indicated in section 5.1.2.  

5.1.2. VerSe: Large Scale Vertebrae Segmentation Challenge 

The Large Scale Vertebrae Segmentation Challenge (VerSe) was organised in conjunction with 

the International Conference on Medical Image Computing and Computer Assisted Intervention 

(MICCAI) in 2019 and 2020, with a call for algorithms tackling the labelling and segmentation of 

vertebrae [52]. As indicated in section 4.4, the VerSe dataset consists of CT scans collected from 

355 patients with a mean age of ~59(±17) years and with normal anatomy of the spine. This 

information is important to consider as it is the dataset used for pre-training the vertebra localization 

model, that will be used in this project with the HSJD dataset. After analysing the structure of the 

VerSe dataset, the following observations are extracted: 
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▪ It contains a sub-directory-based arrangement for each subject, and for each patient 

directory, there is a NIfTI file with a vertebrae segmentation mask, see Figure 9, that is 

what the model returns after its execution, and a NIfTI file with the CT image. 

▪ The segmentation masks are of different spine coverages, and do not contain the ribs 

segmented, only the vertebrae. 

▪ The segmentation masks have the different vertebrae labelled from 1 to 24, starting with 

the cervical C1 up to the lumbar L5. Moreover, it contains some cases where the patient 

has one more lumbar, L6, which is assigned with the label 25. This is resumed as follows: 

o Labels 1 to 7 correspond to the cervical spine (C1-C7) 

o Labels 8 to 19 correspond to the thoracic spine (T1-T12) 

o Labels 20 to 25 correspond to the lumbar spine (L1-L6) 

▪ Each vertebra in the segmentation mask has a different level of intensity in the grey scale 

(Figure 9), corresponding to the label assigned to it. Therefore, the same vertebra in all 

segmentation masks in the VerSe dataset is labelled and assigned with the same label 

and intensity level, respectively. 

All these observations will be considered for the pre-processing of the ground truths of the HSJD 

dataset, which will be used for the evaluation of the segmentation masks obtained with the vertebra 

localization model. 

 

Figure 9: Sagittal image of the segmentation mask of 'sub-verse502' patient in VerSe dataset. 

 

5.2. Working Environment Setup 

This section details the different steps to be carried out to setup the environment where the 

programs and applications necessary for the development of this project must be installed and 

downloaded. Moreover, this section details how to install the MONAI Label module in 3D Slicer. 

5.2.1. System requirements 

Below are specified the technical requirements to be fulfilled for the correct functioning of the 

applications and programs, and in particular, for the correct functioning of the vertebra localization 

model in the MONAI Label module. 
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▪ MONAI Label supports Ubuntu and Windows operating systems (OS) with GPU/CUDA 

enabled [53]. Therefore, the device must have an NVIDIA graphics card. 

▪ Have installed PyTorch and the CUDA Toolkit [54]. 

▪ Have a least 12 GB of GPU RAM [54]. 

▪ Have Conda installed, which can be downloaded from the Anaconda official website. 

▪ Have python 3.8 or 3.9 version installed [53]. 

5.2.2. Local Environment Creation and Setup 

The steps below define the commands to create a local environment on a Windows OS and install 

the applications and packages needed for the development of the project. 

1. Open the System Terminal by searching in the OS search engine in the task bar the word 

Terminal. All the following steps will be performed on the terminal. 

 

2. Install MONAI from conda-forge. 

conda install -c conda-forge monai 

 

3. Create an Environment with Python version 3.9, the packages Torch, Torchvision, 

Torchaudio of PyTorch with the specific CUDA versions indicated, and the CUDA toolkit 

version 11.3. 

 

conda create -n <name-of-the-environment> -c pythorch python=3.9 

thorch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2   

-f https://download.pytorch.org/whl/torch_stable.html 

 

pip install cudatoolkit=11.3 

 

Where <name-of-the-environment> is the name that the environment will have. 

 

4. Activate the Python Local Environment. 

conda activate <name-of-the-environment> 

 

The next steps will be carried out in the environment that has been activated. 

 

5. Install MONAI Label. 

pip install monailabel 

 

6. Download the application Radiology from MONAI Label. 

monailabel apps --download --name radiology --output <app-

output-path> 

 

Where <app-output-path> is the path where the folder apps, containing the 

Radiology app, will be downloaded. 
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7. Start the Server. 

monailabel start_server --app <app-output-path> --studies 

<HSJD-images-path> --conf models <model-name> 

 

<HSJD-images-path> corresponds to the path of the images that will be used in the 

model, and <model-name> refers to the name of the corresponding model to be used, 

in this case the localization_vertebra model. 

After this step, the server is running locally and can be used in 3D Slicer. On the other 

hand, to stop the server, press Ctrl + C. 

Every time the MONAI Label is wanted to be used in 3D Slicer, the commands in steps 4 and 7 

must be executed in the Python local environment created. 

5.2.3. Installing 3D Slicer and MONAI Label Module 

The 3D Slicer software is the one used to interact with the MONAI Label module. The steps to 

setup the MOANI Label Slicer Module are below. 

1. Download and install 3D Slicer, from their main website slicer.org. The versions of 3D 

Slicer supported by the MONAI Label module are from version 5.0 onwards, this included. 

 

2. Install MONAI Label Module in 3D Slicer. With 3D Slicer opened, the following 

instructions must be followed. 

a. View → Extension Manager → Active Learning →MONAI Label → Install 

After these steps, restart 3D Slicer. 

  

Figure 10: Instructions to install the MONAI Label Module in 3D Slicer. 

To find the installed module, it can be searched using the Module Finder tool, which can 

be seen in Figure 10. Then, press switch to module, to be ready to be used. 

5.3. CT image and Vertebrae Segmentation mask pre-processing 

With the observations extracted from the VerSe dataset in the previous part, this section indicates 

the steps to follow to reproduce these observations in the HSJD dataset, therefore, the pre-

processing steps to be carried out. In addition to the 3D Slicer, other software are used to perform 
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the pre-processing, which are the Materialise Mimics Medical, Materialise 3-matic Medical software 

and MRIcron program. The first two are used by surgical planning engineers in HSJD to perform 

the surgery planning. Figure 11 shows a diagram indicating the programs to be used in each of the 

different steps, as well as a brief description of what is done in each of them, in the pre-processing, 

in the execution and in the results stages. In addition, the file format in which the images and/or 

masks are exported is indicated for each step. 

 

 

 

 

 

 

 

 

Figure 11: Diagram with the programs, file formats and a brief description for each of the steps performed in the pre-
processing, execution and results stages. 

5.3.1. Vertebrae Segmentation mask pre-processing 

Firstly, the ribs are removed from the vertebrae segmentation masks, and secondly, each of the 

vertebrae are labelled with the same criteria used in the VerSe dataset. These two steps are 

performed with the Materialise Mimics Medical software. With these steps, the individual masks of 
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the vertebrae, without ribs, for the same case are obtained, which must be pre-processed with other 

programs and techniques, as indicated in the upper part of the diagram in Figure 11. 

5.3.1.1. Removal of the ribs from the vertebrae segmentation masks and labelling 

In relation to the first step, the ribs appear segmented in the masks as in the surgical planning it 

does not influence the design process of the customized surgical guides. Figure 12 shows the 

phases (A, B, C, D) carried out to remove the ribs from the vertebra segmentation mask, for the 

concrete case of the T9 vertebra, in turquoise. Using the tool Split Mask in Mimics, different parts 

of the initial mask can be separated into different ones by indicating with different colours which are 

the regions to be treated separately (B). Therefore, the mask of no interest can be eliminated (C), 

and the starting mask can be replaced by the correct mask in which only the vertebra is segmented 

(D). This procedure is carried out for all the vertebrae where the ribs have also been segmented in 

the mask. Each vertebra is assigned a different colour to facilitate the visualization of each of them. 

     

            

Figure 12: T9 vertebra mask split into the main vertebra mask, in green, and the rib mask, in purple. 

However, there were cases in which the segmentation masks of the vertebrae did not have the 

transverse process correctly segmented. Being this a part of the vertebra that must be correctly 

segmented, the masks of these cases were redone. For this purpose, the patient’s CT image is 

opened in the Mimics program, and by means of the tool New Mask incorporated in the program, 

a mask of the entire bone structure present in the image is obtained. This is achieved by defining 

a threshold with a minimum and a maximum Hounsfield unit value, which delimit the organs and 

structures in the body that are not of interest from those that are, that is the bone. However, in this 

process, because the cancellous bone has many holes and therefore air, the latter has a different 

HU than bone, the inner part of the vertebrae is not segmented correctly (see image A) in Table 2). 

A) 

B) 

C) 

D) 
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This will be discussed below. Nevertheless, from this new generated mask, the steps to be carried 

out to have separate masks for each vertebra are the same as the ones explained above. 

Before exporting the vertebrae masks for each case, these are first labelled and then exported in 

STL format. STL files contain surface meshes, which consist of a set of polygonal faces, that taken 

together, form a surface covering of the object [55]. Therefore, those holes in the cancellous bone 

of the vertebrae, are not covered when exported into STL file format (see image A) in Table 2). 

Additional pre-processing techniques must be applied to these, explained in the following sections. 

5.3.1.2. Removal of the holes in the vertebra STL files with 3-matic software 

For this purpose, the Materialise 3-matic Medical software is used. Vertebra STLs, which is a file 

format supported by this software, are imported by dragging and dropping them into the main scene 

of the platform. Then, for each of the vertebrae, the Wrap tool is applied. This function allows to 

take into account the holes, that have not been considered in the surface mesh in the previous 

step, when exporting them with the 3-matic software in STL format. The latter are the STLs to be 

used in the following steps. Image B) in Table 2 shows the improvement in the vertebra mask 

achieved with this process. 

5.3.1.3. Assign grey scale intensities to the vertebrae masks 

The next step consists of assigning the correct intensity value to each vertebra mask, and exporting 

all the vertebra masks grouped in one, as shown in Figure 9. The indicated procedures are carried 

out in 3D Slicer. 

1. Import the STL files of a HSJD case by dragging and dropping them into the main scene. 

A tab will appear indicated how it is wanted to import the STLs. Choose Segmentation.  

These will appear in the Data module, separately. However, these must be grouped under 

a same segmentation, to be all exported in the same mask. 

   

Figure 13: On the left, tab where it is indicated how to import the STLs. On the right, it is displayed the Data module 
with the different segmentations grouped under the same. 
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2. Import the corresponding CT image for a better visualization of the vertebra segmentations. 

Drag and drop the image into the scene and choose Volume instead of Segmentation, in 

the tab shown in the right image of Figure 13. 

 

3. Create the ColorTable that will be used to assign the intensity labels to all vertebrae. Right 

click on “Vertebrae_segmentations” containing all the segmentations and choose Export 

visible segments to binary labelmap. The labelmap operation doesn’t allow overlap 

between two different structures, therefore, a voxel can only be assigned to one of the 

labels, ensuring that each vertebra will have its correct intensity value.    

With this action, a ColorTable is generated in All nodes section, indicated with an orange 

rectangle in Figure 13. Right click on the ColorTable and choose Edit properties. Figure 

14, on the left, shows the displayed scene. However, the ColorTable does not contain the 

labels for the 24 vertebrae the spine has, therefore, it needs to be modified. 

a. In Number of Colors indicate 25, where 0 is the background and the remaining 24 

colours are the different vertebrae. 

b. The Label of each Color is assigned from 1 to 24, as these are the labels of the 

vertebrae STLs (assigned with the Materialise Mimics software), which are the 

ones used in the VerSe dataset. Therefore, the labels of the ColorTable must be 

the same as the labels of the vertebrae STLs imported. Moreover, each of the 

labels can be assigned a different colour for a better visualization. In the right 

image of Figure 14, the correct ColorTable is shown. 

c. Save the ColorTable. 

   

Figure 14: Default ColorTable, on the left. Modified ColorTable with 24 labels, one for each vertebra, on the right. 

4. Apply the ColorTable created to ‘Vertebrae_segmentations’ and export it in NIfTI format. 

This is carried out in the Segmentations module (see Figure 15). 

a. Choose the Active segmentation. In this case, ‘Vertebrae_segmentations’. 
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b. In Export to files select as Reference volume the corresponding image previously 

imported, NIFTI as the File format, and the ColorTable created. 

c. Export to the specified Destination folder. The resulting mask is shown below. 

   

Figure 15: On the left, Indications for applying the ColorTable to the segmentations and exporting the latter in NIfTI 
format. On the right, the resulting mask with the corresponding intensity for each vertebra. 

5.3.1.4. Perform Erosion to the vertebrae masks 

After analysing the vertebrae masks, it is observed that the boundary of the vertebrae in the final 

mask obtained in step 4 of section 5.3.1.3. are larger after applying the Wrap tool with the 

Materialise 3-matic software, compared to the initial STLs of the vertebrae without any pre-

processing step. Since the morphology of the initial vertebrae is being modified, it needs to be 

solved. For this purpose, a Python code has been created, which can be seen in more detail in 

Annex A, which aims to shrink the vertebrae masks generated with Materialise 3-matic, by 

removing pixels from their boundary. This concept is known as erosion. Image C) in Table 2 shows 

the result after the erosion, for a concrete vertebra. 

5.3.1.5. Removal of the holes still present in the vertebrae masks 

Observed in image C) in Table 2, the mask is still presenting holes in the vertebrae, although the 

previous step with the Materialise 3-matic software has been performed (section 5.3.1.2). Another 

approach to remove the remaining holes is to use the Smoothing function available in 3D Slicer. 

This function is applied to imported STLs files in stage 5.3.1.3 grouped in 
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‘Vertbera_segmentations’. Therefore, the steps described in section 5.3.1.3. and 5.3.1.4. must be 

performed into the new ‘Vertebrae_segmentation’ mask exported. To apply the smoothing function: 

1. In Segment Editor, chose the Segmentation to be modified, and a vertebrae mask. 

2. Select the Smoothing function, and the Closing (fill holes) method. 

3. In the viewer part, ‘paint’ the holes present in the vertebra selected and click Apply. 

4. Repeat these steps for each of the vertebrae present in the grouped segmentation. 

Image D) in Table 2 shows the final vertebrae mask, after applying all pre-processing steps, 

including fill holes smoothing function. 

The following table summarises in images, of a vertebra viewed in the axial plane, the different pre-

processing steps described in the previous sections to obtain the most accurate ground truths, 

saved in NIfTI format, as the ground truths are the masks used to evaluate the performance of the 

localization_vertebra model. 

Table 2: Summary of the pre-processing steps with a corresponding illustrative image. 

PRE-PROCESSING METHODS APPLIED TO THE VERTEBRAE STLS MASKS 

A) Materialise Mimics - Export STLs 
 

 
 

B) Materialise 3-matic - Wrap 
 

 

C) Python - Erosion 
 

 
 

D) 3D Slicer - Smoothing 
 

 

 

5.3.2. CT image pre-processing 

HSJD CT images are cropped using the Materialise Mimics software. The crop is performed taking 

as reference for each different case the segmented vertebrae of the corresponding ground truth. 

Therefore, the image is cropped only along the Z-axis, so the upper vertebrae and those in the 
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lower part of the spine that are not segmented in the ground truth are not considered in the image.  

The cropping step is performed with the aim to obtain the most accurate result when evaluating the 

performance of the model, with the mask predicted by the model and the corresponding the ground 

truth, as the model will have segmented the same vertebrae than the ones in the ground truths. 

After the image cropping, the image is exported in DICOM format from the Mimics software. 

However, although this file extension is accepted by 3D Slicer, it is not the format in which MONAI 

Label module in 3D Slicer must receive the images, they have to be in NIfTI format. The conversion 

from DICOM to NIfTI is performed with MRIcron, a medical imaging visualization tool. 

5.4. Execution 

This section is divided into two main sections, one dealing with the execution of the 

localization_vertebra model of the Radiology application in the MONAI Label module, and the other 

with the re-training of this same model and its posterior execution. The predicted masks obtained 

after the execution of the models indicated in each of the sub-sections, are the masks to be used 

to compute the evaluation of the corresponding model. 

5.4.1. localization_vertebra model 

With the CT images of all HSJD cases in the same folder and the server running, the 

localization_vertebra model can be run in 3D Slicer MONAI Label module. The procedure is 

described below. 

1. To connect to the server, click on the green circle icon. 

2. Fetch one of the images of the folder indicated when starting the server, by clicking in the 

Next Sample button. The image will be displayed in the viewer scene. 

 

Figure 16: Initial steps to start with MONAI Label module in 3D Slicer, with the server running.  

3. By using the Auto Segmentation functionality, the pre-trained model specified, 

localization_vertebra, can be used to segment the vertebrae from the CT image displayed. 

To save the vertebrae mask predicted by the model after the execution of the auto 
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segmentation, click on Submit Label button, indicated with the green rectangle in Figure 

16. The mask is saved in a sub-folder generated inside the folder path specified when 

starting the server. 

4. Steps 2 and 3 above are repeated for all the images. However, only the predicted masks 

of the same subjects from the CT scans used to test the re-trained model will be used for 

the evaluation. 

5.4.2. Re-train the localization_vertebra model 

The pre-trained model localization_vertebra has been trained with data of patients with no 

pathological spine conditions (VerSe dataset). Therefore, the model does not correctly localise the 

vertebrae where the curvature of the scoliosis is more noticeable. To improve the performance of 

the pre-trained model for localising vertebrae of subjects with scoliosis, this is re-trained with the 

ground truths of the HSJD dataset. However, the re-trained model is saved as a new model inside 

the Radiology application folder. The percentages used for the training, validation and testing sets 

are 70, 20 and 30, respectively, so that in the training, excluding the validation, there is a minimum 

of 60% images with respect to the entire HSJD dataset. The 20% of the validations set is with 

respect to the train set and can be modified in the Options section (blue rectangle in Figure 16). 

These percentages in images correspond to 13, 2 and 5, respectively. Therefore, to prepare the 

data, train and test ground truths must be in separate folders.                  

The re-training procedure is carried out in the MONAI Label module in 3D Slicer. 

1. Open a new terminal and start another server, specifying the path in which there are the 

test CT scans. Connect to the server from 3D Slicer MONAI Label module. 

2. Name the folder containing the train ground truths as final, as this is the name by which 

the model recognises the masks to be used for re-training. Place this folder in the same 

path as the test CT scans, inside another folder named labels. Important to consider that 

the test CT scans and the corresponding ground truths must have the same name for the 

model to run, otherwise an error is raised. 

3. In MONAI Label module, inside Active Learning, click on Train to start the re-training of 

the model indicated. The model trains with the data placed in the final folder. 

 

Figure 17: Instructions to re-train a model in MONAI Label module. 

The Status bar moves according to the status of the training process of the model, and the 

Accuracy bar shows the accuracy of the model after the training. 
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5.4.2.1. Test the re-trained localization_vertebra model with the test CT scans 

After training the localization_vertebra model, the model is used to predict the new vertebrae mask 

of the test CT scans. For each of them, the following steps are carried out. 

1. Click Next Sample. The image displayed in the viewer corresponds to the test CT scans, 

as this is the folder specified on the running server. 

2. Use the Auto Segmentation functionality. The bar below Active Learning heading scrolls 

according to the number of test CT scans the model has segmented out of the total number 

of test CT scans. 

3. Save the new predicted mask by submitting the label using Submit Label. The mask is 

saved in a sub-folder generated inside the folder specified when starting the server. 

5.5. Results 

As firstly indicated in the diagram in Figure 11, the measure to evaluate the performance of the two 

models used, the localization_vertebra model and the re-trained localization_vertebra model, is the 

Dice score. This coefficient measures the similarity or overlap between two sets of data. The values 

provided by the Dice score range from 0 to 1, where a score of 0 indicates no overlap between the 

two sets, and a score of 1 indicates perfect overlap, therefore, the predicted segmentation is 

identical to the ground truth [34]. To compute the Dice scores the segmentation masks to be 

evaluated must be treated as sets of pixels and represented as binary masks, where every pixel is 

assigned either as part of the segment or as part of the background. These post-processing 

techniques have been performed using Python. The Python code implemented is detailed in Annex 

B. The two models previously indicated are evaluated in the different sub-sections below. 

5.5.1. localization_vertebra model of the Radiology application 

The Dice score is computed between the masks predicted by the localization_vertebra model 

without this being re-trained of the same subjects from the CT scans used in the test set, and the 

ground truths of the corresponding subjects obtained after performing all pre-processing steps, 

specified in section 5.3. 

Table 3 shows the performance in terms of Dice scores for each pair of predicted and ground truth 

masks of the subjects from the test CT scans. The average Dice score has also been computed. 

Table 3: Performance of the localization_vertebra model in terms of Dice Scores. 

Performance in terms of Dice Scores 
localization_vertebra model 

Test subject 1 0.50 

Test subject 2 0.83 

Test subject 3 0.69 

Test subject 4 0.60 

Test subject 5 0.67 

  

Average Dice Score 0.66 
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5.5.2. Re-trained localization_vertebra model 

In this section a similar procedure is carried out. The Dice score is computed between the masks 

of the test CT scans predicted by the re-trained localization_vertebra model, and the ground truths 

of the corresponding subjects. Table 4 shows the obtained Dice scores for each pair of predicted 

and ground truth masks. 

Table 4: Performance of the re-trained localization_vertebra model in terms of Dice Scores. 

Performance in terms of Dice Scores 
Re-trained localization_vertebra model 

Test subject 1 0.81 

Test subject 2 0.89 

Test subject 3 0.86 

Test subject 4 0.85 

Tests subject 5 0.87 

  

Average Dice Score 0.86 

 

Moreover, Table 5 shows the 3D volume rendering of the ground truth masks, the masks predicted 

by the localization_vertebra model, indicated under the header ‘Predicted mask 1’, and the masks 

predicted by the re-trained localization_vertebra model, under the header ‘Predicted mask 2’, of 

the test CT scans. 

3D Volume Rendering of the ground truths and the masks predicted by the two 
vertebra_localization models 

Ground truth Predicted mask 1 Predicted mask 2 

Test subject 1 
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Test subject 2 

 
  

Test subject 3 

  
 

Test subject 4 
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Test subject 5 

  
 

 

Qualitatively, it is observed that those predicted masks with the localization_vertebra model, under 

the header ‘Predicted mask 1’, in which a large majority of the vertebrae have not been segmented 

(pair 1 and pair 4), the corresponding Dice score is not higher than 0.65, the lowest value being 0.5 

for pair 1. However, after re-training the model, the minimum Dice score value obtained is 0.81, 

corresponding to pair 1, whereas the higher one is 0.89. Quantitatively and qualitatively, an 

improvement in the performance of the model after being re-trained with the HSJD dataset is 

observed. 

5.6. Discussion 

The evaluation metric used to assess the similarity between the ground truths and the predicted 

masks obtained after the execution of the corresponding models has been the Dice coefficient. 

Regarding the vertebrae segmentation task, the Dice scores obtained in Table 3 show that the 

localization_vertebra model has a very low accurate performance, as the average Dice Score 

obtained is of 0.66 out of 1. Therefore, vertebrae are either not segmented or partially segmented, 

as can be seen in Table 5. 

In comparison, from the results shown in Table 4, obtained with the re-trained model, the average 

dice score is higher than 0.66, being 0.86. This increase in the average Dice score translates into 

a better performance of the model in vertebrae segmentation. However, due to the small number 

of samples in the test set used, the resulting average Dice score is not reliable enough to extract 

results that can be generalised to other datasets. On the other hand, the Dice scores indicate that 

re-training the starting model, the localization_vertebra model, with the data of interest, allows to 

get results closer to 1 than without re-training, providing a better segmentation of the vertebrae 

than with the starting model. 
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The low value of the average Dice score of the pre-trained model may have several explanations: 

▪ The starting model has been pre-trained with the VerSe dataset. Therefore: 

o It has been pre-trained with CT scans of subjects with a mean age of ~59 (±17) 

years, not paediatric. 

o Those subjects have a normal anatomy of the spine, do not have spinal conditions. 

▪ A lack of data to train the model, as the surgical planning of Adolescent Idiopathic Scoliosis 

surgery were not performed until 2023. 

▪ A lack of data to test the model. Therefore, a coarse segmentation has a significant impact 

on the computation of the average Dice score. 

▪ Another possible consideration lies in the numerous pre-processing steps that must be 

carried out to obtain the most accurate ground truths possible, mostly manually, although 

Python code has been used in some techniques to reduce possible variability in the 

execution. 

o Subjectivity and inter-observer variability. To extract the initial mask from the CT 

scan, from which all pre-processing methods are performed, a threshold with a 

minimum and a maximum Hounsfield unit value, defined by the planning engineer, 

is used. 
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6. Execution Schedule 

The different systems used for the organization and planning of the tasks to be performed 

throughout the project are detailed in the following sub-sections. 

6.1. Work Breakdown Structure (WBS) 

WBS is a managing tool that breaks the project in different tasks, for a better organisation and 

planification of the execution of these. The corresponding WBS of this project has been carried out 

and is shown below. 

 

Figure 18: Work breakdown structure of the Project. 

6.2. GANTT Chart 

A Gantt chart is another strategy for the management of the project, and therefore, of the activities 

and tasks that are performed during the development of the same. It allows to visually recognise 

which are the activities being executed or have been completed, as they are represented against 

time. To be able to represent the Gantt chart, first it has been necessary to assign to each of the 

tasks defined in the WBS its corresponding duration, in weeks. In those tasks where the duration 

has been less than one week, it has been indicated in days. However, notice that the Gantt works 

on a weekly basis. This information is displayed in the following Table 5. 
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Table 5: Tasks duration definition. 

Tasks Duration (weeks) 

1.1. Contact with the Hospital Sant Joan de Déu 1 

1.2. Literature Review 3 

1.3. Research of studies and published articles about 
automatic segmentation 

5 

1.4. Writing of the project memory 11 

1.5. Presentation preparation 1 

2.1. Study different automatic segmentation solutions 2 

2.2. Familiarize with the chosen solution 14 

3.1. Define the system requirements 5 

3.2. Execute the working environment 1 

4.1. Data collection 2 

4.2. Data pre-processing 4 

4.3. Data organization 2 

5.1. Split data into train, validation and test sets 2 days 

5.2. Execution of the starting pre-trained model with the 
test set 

4 

5.3. Re-train the starting model 4 

5.4. Execute the re-trained model with the test set 1 

5.5. Define the evaluation metric be used 1 day 

5.6. Evaluate the performance of both models 3 

6.1. Interpretation and discussion of the results 1 

6.2. Conclusions and future lines  1 

 

Below is shown the Gantt Diagram performed using the table above. 
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Figure 19: Gantt chart of the Project. 



 Biomedical Engineering Marta Maldonado Montes 
 

45 

7. Technical Feasibility 

This section focuses on the analysis of both internal and external factors that can have an important 

impact on the feasibility of the project. For this purpose, the strengths of the project and the 

weaknesses to be addressed for improvement, as well as, from the external point of view, the 

threats surrounding the project and the opportunities that are presented to the same, are identified 

and exposed in the matrix below, known as SWOT matrix. This strategic planning technique allows 

to visually recognise each of the previous parts indicated. 

Table 6: SWOT matrix analysis of the Project. 

STRENGTHS WEAKNESSES 

- Innovative and unique. 
- Reproducible. 
- Use of paediatric data. 
- Accelerate the segmentation task. 

- Small size dataset. 
- Shortage of training samples. 
- Manual tasks in the pre-processing 

stage. 
- Lack of previous experience and 

knowledge of the topic by the team. 
- Lack of generalizability of the findings. 

OPPORTUNITIES THREATS 

- Increasing research and demand for the 
use of automated methods in medical 
imaging. 

- Demand within different medical 
specialities. 

- Few availability of models trained on 
paediatric data. 

- Expensive software licenses. 

 

Starting with the internal factors of the project, this presents both strengths and weaknesses. The 

pipeline design elaborated for the automatic vertebrae and spine segmentation of AIS cases, is 

unique and innovative, since these techniques are not currently used in the Hospital Sant Joan de 

Déu, but it is a need to be fulfilled to optimize the segmentation task performed during the surgical 

planning of this cases. On the other hand, the shortage of training data available for the training of 

the model does not allow to generalize the findings, which represents a weakness of the project. 

Also, the pre-processing tasks that are carried out manually, since these influence directly on the 

performance of both, the starting and the re-trained models. Moreover, the lack of previous 

experience and knowledge of the topic by the team, since this knowledge has been acquired during 

the development of the project. 

Analysing the external factors detailed in the SWOT matrix, which correspond to the lower part of 

the matrix, numerous opportunities are presented to this project. First due to the high demand for 

automatic segmentation models to be applied in the healthcare sector. In addition, as there are few 

available models trained with paediatric data, this enhances the project towards numerous 

possibilities for this designed pipeline to be used in other paediatric hospitals. On the other hand, 

the high licensing costs of some of the software to be used pose a threat for the project.  
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8. Economic Feasibility 

The aim of this section is to analyse the costs associated with the development of this project. 

These are presented in Table 7 and are organized according to whether they correspond to 

hardware, software or to human resources. 

Table 7: Hardware, software and human resources costs of the Project. 

 COSTS 

          SOFTWARE 

3D Slicer and MONAI Label module − 

Materialise Mimics Medical 
37.000 € 

Materialise 3-matic Medical 

MRIcron − 

          HARDWARE 

NVIDIA Quadro RTX 5000 16 GB 1.374 € 

HP 1920 x 1080 Monitor 240 € 

HP Workstation Z4 intel XEON 2.961 € 

HP Spectre laptop 2.499 € 

          HUMAN RESOURCES 

Biomedical engineering student 6.375 € 

          TOTAL: 50.449 € 

 

Referring to the software used for the development of this project, all of them are free with open 

access, except for those of the Materialise company, which require a license. However, both 

Materialise Mimics Medical and Materialise 3-matic Medical are available under the same license, 

and the corresponding price indicated in Table 7 is an estimate given by the surgical planning 

engineer, as these are the software used for surgical planification. 

As for the hardware used, the NVIDIA graphics card [56], the HP monitor [57] and HP workstation 

[58] are the components used in the installations of the 3D4H Unit and PeCIC departments. On the 

other hand, the HP Spectre laptop [59] is the personal laptop of the author of this project. 

Regarding human resources, only the author’s working hours have been taken into account to 

evaluate the costs, as the work of the supervisors during the development of the project has not 

implied an additional increase in their salary. The corresponding human resources cost has been 

calculated considering an average of 25 hours of work per week by the author, and a total of 17 

weeks, which is the period stablish for the development of the Final Degree Project. Therefore, 

considering a salary of 15 €/hour for a biomedical engineering student, the total cost of human 

resources amounts to: 6.375 €. 

The total cost of the project is 50.449 €.  
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9. Regulation and Legal aspects 

When working with medical data of patients, these could be the main medical images but also the 

information extracted from them, there are several regulations and laws that must be followed to 

ensure the correct data management and protection to guarantee the privacy of the patient 

personal information. 

Regarding the use of health data in research projects, the following law, published in the Boletín 

Oficial del Estado (BOE), must be complied: Ley Orgánica 3/2018, de 5 de diciembre, de Protección 

de Datos Personales y Garantía de los derechos digitales [60]. The purpose of this law is to 

increase the rights of individuals and the obligations of companies in the processing of personal 

data. Moreover, this regulation establishes data protection requirements and responsibilities in 

companies on how to proceed with personal information, as well as the rights of users and 

consumers [61].  

Another regulation to be considered, which has also been published in the BOE, is: Orden 

SSI/81/2017, de 19 de enero. This law stablishes the basic guidelines to ensure and protect the 

right to patient privacy for students and residents in the health sciences [62]. 

Moreover, concerning the use of AI-based models in this project, legal aspects regarding its 

application in healthcare must also be taken into account. Real Decreto 817/2023, de 8 de 

noviembre, also published in the BOE, establishes harmonized rules in the field of artificial 

intelligence with the aim of ensuring respect for the fundamental rights of citizens, and also 

generating confidence in the use and development of AI in the society and the economy [63].  
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10. Conclusions and Future lines 

The realization of this project has allowed the development of a detailed pipeline for the 

implementation of an automatic segmentation model of the vertebrae and spine form CT images, 

with the aim of optimizing the time spent by the planning engineer on the segmentation task during 

the surgical planning of adolescent idiopathic scoliosis cases. 

The literature in this filed shows how the use of artificial intelligence and deep learning in imaging 

studies has allowed significant advances in the management of spinal diseases, becoming DL-

approaches a widely used clinical application for treatment, diagnosis, clinical decision-making and 

treatment planning, as these algorithms have demonstrated important capabilities in extracting 

relevant data from medical images. In reference to the surgical treatment planning of idiopathic 

adolescent scoliosis cases, numerous articles state that the use of 3D printed surgical guides 

substantially reduces the misplacement of pedicle screws, and the complications associated to it. 

However, the manual segmentation procedure that is carried out during the planification is 

considered a repetitive task, subjective, and predisposed to inter-observer variability. The 

developed pipeline aims to tackle this issue, by indicating and defining the steps to be carried out 

to implement the proposed model for automatic vertebrae and spine segmentation, in order to 

optimize this task and make it reproducible, reducing the variability of results between users. 

This project has succeeded in finding an open-source automatic segmentation model that could be 

used for the main objective of the present project. Moreover, it has succeeded in describing in detail 

all the processes and steps to be carried out for the correct use of the propped model. Firstly, in 

defining the system requirements to be fulfilled to be able to use the model, otherwise, errors would 

raise when trying to use it. Moreover, in studying which was the working setup environment needed 

to correctly execute the model and be able to work with. In addition, this project has also achieved 

defining the pre-processing methods needed to be performed to obtain the vertebrae and spine 

segmentations masks with the same characteristics as those used to pre-train the model in the 

Radiology application of MONAI Label. After the implementation of all the previous steps, the 

project has succeeded in executing the model without any error while running, and therefore, 

obtaining the segmentation masks predicted by this model, to use them for their later evaluations. 

Furthermore, after an extensive research and numerous trials, the initial model has been 

successfully re-trained with data from paediatric cases with scoliosis from the Hospital Sant Joan 

de Déu, in order to give to the model algorithm data to learn from, expecting it to predict better the 

segmentation masks. The evaluation of the performance of the two models, initial and re-trained, 

has been computed using the Dice score metric, that evaluates the overlap between two given 

segmentation masks. Note that the resulting Dice scores are not of the individual vertebrae but 

correspond to each of the vertebrae together to form the spine, and score on this last. The results 

show that after re-training the initial model, a higher Dice score is obtained, therefore, the prediction 

of the segmented masks is better. 

As a project started from scratch, this is the beginning of an innovative path to implement the 

automatic vertebrae and spine segmentation models in the surgical planning procedure of AIS 

cases at the Hospital Sant Joan de Déu. In view of this, there are future lines for this project, which 

are indicated below. 
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▪ Re-train the model with a larger dataset of CT scans of AIS cases to obtain more accurate 

segmentation masks, as it has been concluded that the Dice score obtained for the test 

set with the re-trained model is higher than with the starting model, therefore, resulting on 

a better prediction of the segmentation mask. 

 

▪ Reduce the number of pre-processing steps that are carried out manually, by using other 

software or applications that allow performing these indicated processes with semi-

automated tools incorporated on them.  

 

▪ In relation to the above, simplify the pipeline by finding other possible programs or 

applications that allow performing different pre-processing tasks in the same step, taking 

into account the indicated characteristics the segmentations resulting from these tasks 

must fulfil for the correct use of the model. 
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Annexes 

Annex A. Erosion pre-processing technique Python code 

Python code used to apply the erosion (indicated in section 5.3.1.4) morphological operator function 

to the vertebra masks, after the Wrap operation has been applied with the Materialise 3-matic 

Medical software. 
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Annex B. Dice score evaluation metric Python code 

Python code executed to compute the Dice Scores, used to evaluate the overlap between the 

ground truths and the corresponding predicted masks by both, the localization_vertebra model and 

the re-trained localization_vertebra model. 
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