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Abstract 

Technological innovations have transformed healthcare, offering new avenues for disease diagnosis and 

treatment. Among these advancements, radiomics analysis of MRI images holds great promise for 

improving the early detection and characterization of ovarian masses. Ovarian cancer, with its high 

mortality rates attributed to late-stage diagnosis, stands to benefit significantly from these developments. 

This study focuses on exploring various pathways before applying radiomics analysis to ovarian masses 

in MRI images. By investigating different preprocessing methods, such as intensity normalization and 

registration of MRI images, the project aims to determine their impact on the evaluation of radiomic 

features.  

Through a comparative analysis of the radiomic feature results obtained from these pathways, this 

research seeks to understand how variations in preprocessing approaches affect the evaluation of 

radiomic features. Despite challenges such as limited patient samples and time constraints, the study 

anticipates significant outcomes.  

It aims to provide understanding about how various preprocessing techniques impact the assessment of 

radiomic features. Additionally, it explores the potential for developing a specialized pipeline that 

incorporates the most effective preprocessing methods for practical use in clinical environments. 

By advancing the field of ovarian cancer diagnosis through radiomics and MRI analysis, this research has 

the potential to improve patient outcomes and healthcare practices. Ultimately, the goal is to contribute to 

early detection and personalized treatment strategies, ultimately reducing the burden of ovarian cancer 

on patients and healthcare systems.  
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1. INTRODUCTION 

1.1. MOTIVATION 

Nowadays, cancer is still one of the leading causes of mortality worldwide, laying a significant challenge 

to humanity’s health. The global burden of cancer is immense, with millions of new cases and deaths 

occurring each year, which is increasing exponentially [1]. This huge problem called cancer highlights the 

urgent of need for improved diagnostic and treatment strategies in all types of cancer.  

Among various types of cancer, ovarian masses stand out due to its often-late diagnosis, which leads to 

a high mortality rate. This explains why it is the 11th most common cancer among women, and the fifth 

leading cause of cancer-related death among women [2].  

Figure 1 represents the 5-year survival rate of women with ovarian cancer. Grey people represent those 

who have died from ovarian cancer, and green figures represent those who have survived 5 years or 

more. The survival rate for ovarian cancer is notably lower compared to other cancers, primarily because 

it is often diagnosed at an advanced stage. An early-stage ovarian cancer has a much better prognosis, 

but unfortunately, only about 20% of cases are detected at this stage [3]. 

Therefore, one of the primary challenges in combating ovarian cancer is the difficulty in diagnosing the 

disease at an early stage. Symptoms are often vague and non-specific, such as bloating, pelvic pain, and 

urinary urgency, which can be easily attributed to benign conditions [4]. Consequently, there is a 

significant delay in having a diagnosis, leading to an advanced stage of the disease. 

Indeterminate ovarian masses cannot be classified as benign or malignant based on initial imaging 

studies. Current methods, including CA-125 blood tests and transvaginal ultrasonography, are limited for 

diagnosing which often leads to invasive procedures such as biopsies or surgeries, that have risks and 

complications [5].  

 

As a woman, I am aware of the health challenges faced by women, particularly in the realm of reproductive 

health. This project holds special significance, as ovarian cancer exclusively affects women and women’s 

health issues have historically been under-researched and underfunded [6]. 

Women often encounter biases in healthcare, leading to delayed diagnoses and inadequate treatment. 

By focusing on ovarian cancer, this project addresses a critical area of women’s health, aiming to bridge 

the gap in diagnostic accuracy and improve the standard of care for women. 

Figure 1: 5-year survival rate of ovarian cancer (Based on data from SEER 22 2013-2019)  
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My personal motivation stems from a desire to contribute to a field that directly impacts women's lives. 

Having witnessed the struggles of women battling cancer, I am driven to leverage my skills in biomedical 

engineering to make a tangible difference. The development of a reliable, non-invasive predictive model 

has the potential to revolutionize the diagnostic process, offering women a quicker, safer, and more 

accurate assessment of their health. 

 

1.2. OBJECTIVES 

The main goal of this project is to design a pipeline to discriminate malignant and benignant ovarian 

masses from MRI images by using radiomics. To reach this main objective, the project aims to study all 

the possible paths that can be followed before applying radiomics, to find in the end, which ones give 

similar radiomic results, which one is more comfortable for the doctors, which one is faster, etc.  

Therefore, this project pretends to define the steps needed before the development of a predictive model 

that will use radiomic features to classify the malignancy of ovarian masses. 

 

In order to achieve the main goal, the project aims to accomplish the following sub-objectives: 

• Stablishment of the best software for segmenting ovarian masses in magnetic resonance 

images. 

This involves evaluating various segmentation tools to determine which software provides the most 

accurate, reliable, and user-friendly experience for segmenting ovarian masses from MRI scans. This 

step is critical as the quality of segmentation directly impacts the subsequent analysis. 

• Study of the preprocessing tools that can be applied to the magnetic resonance images. 

This sub-objective focuses on identifying and evaluating different preprocessing techniques that can be 

applied to MRI images to enhance their quality and ensure they are suitable for radiomic analysis. 

• Development of a method for extracting texture analysis variables in magnetic resonance 

images. 

This involves creating or refining methods to extract texture analysis variables from MRI images. Texture 

analysis is a key component of radiomics, as it helps quantify the heterogeneity of the tissue within the 

ovarian masses, providing crucial data that can be used to differentiate between malignant and benign 

masses. 

• Analysis of the radiomic parameters extracted from all the possible paths. 

Once various paths have been explored and data has been collected, this sub-objective involves a 

comprehensive analysis of the radiomic parameters extracted from these different methods. The goal is 

to compare and contrast the results to determine which pathways offer the most accurate, reliable, and 

clinically relevant information. 
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1.3. METHODOLOGY 

As previously mentioned, the primary aim of this project is to systematically compare the different 

methodologies that can be employed before applying radiomics analysis to the target masks in MRI 

images. This comparative study is crucial to determine the most efficient, accurate, and clinically practical 

approach for discriminating between malignant and benign ovarian masses.  

The following image provides a visual representation of the various paths explored and how these paths 

are constructed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As seen in Figure 2, the project involves a comprehensive examination of the preprocessing steps for 

each patient. Specifically, both T2-weighted imaging (T2WI) and the images resulting from the registration 

of T2-weighted and T1-weighted imaging (T1WI) are considered for analysis. This dual consideration 

allows for a robust comparison of the impact of different image types on the final radiomic analysis. 

For each type of image (T2WI and registered T2WI-T1WI), two intensity normalization processes are 

applied from different sources: a python script, and directly from Pyradiomics. Intensity normalization is a 

critical preprocessing step that adjusts the voxel intensity values of the images to a common scale, 

thereby reducing variability and enhancing the comparability of the radiomic features extracted from 

different patients. This normalization is essential for ensuring that the subsequent radiomics analysis is 

not biased by variations in image acquisition parameters or patient anatomy. Additionally, the project 

incorporates the MINT preprocessing technique, but it is applied exclusively to the T2WI images due to 

its closed-software nature. 

Figure 2: Methodology of the project. 
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The final step in the methodology workflow involves the application of segmentation masks. Segmentation 

is the process of delineating the regions of interest (in this case, the ovarian masses) from the MRI images. 

The project uses segmentation masks generated by two different segmentation software tools. By 

superimposing these masks onto the preprocessed images, the radiomic features of the tumors can be 

calculated. This dual segmentation approach allows for a thorough assessment of the variability and 

reliability of the segmentation methods, providing insights into which software yields the most consistent 

and accurate delineations of the ovarian masses. Again, to the MINT preprocessed images, only the 

segmentations from the same software can be superposed to calculate the radiomics features. 

With the preprocessed images and segmentation masks in place, the project proceeds to the extraction 

of radiomic features. Radiomics involves the quantification of texture, shape, and intensity characteristics 

of the tumors from the MRI images. These features are probably going to be able to differentiate between 

malignant and benign ovarian masses, as they capture subtle patterns and variations that are not 

discernible through visual inspection alone. By analyzing these features across the different 

preprocessing paths, the project aims to identify the most informative and predictive radiomic parameters, 

along with the best path for applying this technique. 
 

1.4. PROJECT LOCATION 

The project aims to define a pipeline of the steps of another project from a radiologist which works in the 

same hospital where this work is carried out, the Hospital Clinic in Barcelona, which will be explained in 

more detail at section 2.3 (State of the situation). Biological images have a really important role in the 

development of this project, that’s why the CDI (Imaging Diagnostic Center) from the hospital and the 

BIG-UB (BioImaging Group) from the Faculty of Medicine of the University of Barcelona had been involved 

in it. Weekly online meetings were set up with the tutors, Aida Niñerola and Raúl Tudela, along with Marc 

Centelles and Gemma Saumell, biomedical engineering students developing their Final Degree Project 

also about the application of radiomics in Bioimages. In this way they could follow the progress of the 

project and any doubts that arose were discussed and resolved.  
 

1.5. SCOPE AND LIMITATIONS 

The main objective of this research project, as mentioned previously, is to design a pipeline for 

discriminating between malignant and benign ovarian masses from MRI images using radiomics. The 

overarching goal is to explore various pathways before applying radiomics analysis, aiming to identify the 

most effective approach. Additionally, the project seeks to determine if these pathways yield comparable 

results in terms of accuracy and practicality. In terms of expected outcomes, it is anticipated that the 

exploration of different pathways will reveal insights into their effectiveness and efficiency. There is a 

possibility that all paths may demonstrate promising results or produce similar outcomes.  

However, despite the project's objectives and anticipated outcomes, certain limitations must be 

acknowledged. Firstly, the list of patients available for this study is very limited, which may impact the 

generalizability of the findings. Additionally, the time allocated for conducting the research is constrained, 

potentially limiting the depth of the analysis. These limitations may influence the scope of the study and 

the extent to which conclusions can be drawn from the research findings. 

  



 Biomedical Engineering Anna Làzaro Llorens 

 13 

2. BACKGROUND 

2.1. GENERAL CONCEPTS 

2.1.1. OVARIAN CANCER 

Ovarian masses or tumors are abnormal growths that develop in the ovaries, which are the female 

reproductive organs responsible for producing ovules and female sex hormones as shown in Figure 3. 

These masses can be formed due to various factors, including genetic predisposition, hormonal factors, 

environmental factors, and inflammation. The exact cause of ovarian tumors isn't always clear, but certain 

risk factors, such as family history of ovarian cancer, age, and certain genetic mutations can increase the 

likelihood of developing ovarian masses. 

 

 

 

 

 

 

 

 

 

They can be categorized based on their behavior into three main types: benign, malignant, and borderline. 

• Benign Ovarian Tumors: These are non-cancerous growths that typically do not invade nearby 

tissues or spread to other parts of the body. They tend to have a well-defined structure and often 

remain localized within the ovary. Benign ovarian tumors can include various types, such as 

cystadenomas, fibromas, and mature teratomas. While they are generally not life-threatening, 

they may still cause symptoms or complications depending on their size and location. 

• Malignant Ovarian Tumors: These ones are cancerous growths that have the potential to invade 

nearby tissues and spread (metastasize) to other parts of the body. They are more aggressive 

and can be challenging to treat, especially if they are diagnosed at an advanced stage. The most 

common type of malignant ovarian tumor is epithelial ovarian cancer, which includes serous, 

mucinous, endometrioid, and clear cell carcinomas. 

• Borderline Ovarian Tumors: These are a type of tumors that exhibit some characteristics of 

malignancy but lack invasive behavior. They are considered to have a lower potential for 

spreading compared to malignant tumors. Borderline tumors often have features such as 

abnormal cellular growth patterns or cellular atypia but do not penetrate the ovarian capsule or 

invade surrounding tissues. They are typically managed with surgical removal, and the prognosis 

is generally favorable compared to invasive ovarian cancer. 

 

Figure 3: Female reproductive system with a 

tumon in one ovary [33]. 
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Ovarian cancer (OC) is the most lethal gynecological cancer and the fifth-leading cause of cancer-related 

deaths among women. Moreover, this pathology is also related with the loss of fertility in a lot of cases. 

That’s why it is important to detect those tumors at an early stage, allowing a wider range of treatment 

options, including less invasive surgical procedures and a higher likelihood of successful treatment 

outcomes [7].  

 

2.1.2. DIAGNOSTIC METHODS OF OVARIAN MASSES 

The discrimination of ovarian masses is a common clinical problem, and only a small proportion of these 

are malignant (30%). Percutaneous biopsy of ovarian masses is a contraindicated technique due to 

the risk of dissemination, so it is not possible to have a preoperative confirmation of their nature. This 

failure to determine whether we are dealing with a benign or malignant ovarian mass before surgery 

causes delays in treatment and inappropriate surgical approaches to malignant ovarian masses that 

worsen the prognosis and survival of patients. [8] 
 

Transvaginal ultrasound has been a technique of choice for the characterization of ovarian masses 

during many years. However, up to 25-30% of ovarian tumors are classified as indeterminate, and up to 

70% of those classified as high risk turn out to be benign. Therefore, benign masses that could be 

treated in non-oncological centers occupy oncological surgery spaces in hospitals with the problem of 

waiting lists and unnecessary healthcare expenses involved [8]. Figure 4 shows how this technique is 

done. 

 

 

 

 

 

 

 

 

 

 

Radiomics from Magnetic Resonance Images (MRI) have recently opened new insights in ovarian 

cancer tumor detection and discrimination. The most important advantage of this tool is the capability to 

do an evaluation of the whole tumor which is, in contrary, impossible by doing a biopsy [9]. 

Moreover, radiomics has recently embraced a more automated pathway with texture analysis (TA). TA 

includes the extraction, analysis, and interpretation of quantitative features from medical images, 

leading to an exponential amount of data that can be correlated with tumor diagnosis, genomics and/or 

prognosis [10]. 

 

Figure 4: Transvaginal ultrasound technique application [34]. 
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2.1.3. MAGNETIC RESONANCE IMAGING 

Magnetic resonance imaging is a medical imaging technique used in medicine as a diagnostic tool. It 

forms anatomical and physiological images from inside the body. To form images of the patients’ organs, 

MRI scanners use strong magnetic fields, magnetic field gradients, and radiofrequency waves. 

These magnetic fields and radiofrequency waves interact with the hydrogen atoms in the body, which 

are abundant in water and fat [11]. 

When a patient is placed in the MRI scanner, the strong magnetic field aligns the hydrogen atoms' 

protons. A radiofrequency current is then pulsed through the patient, knocking the protons out of 

alignment. As the protons realign with the magnetic field, they emit signals that are picked up by the 

scanner's detectors. These signals are used to generate cross-sectional images of the body. By adjusting 

the magnetic field gradients and radiofrequency pulses, different tissues can be highlighted, providing 

detailed images of organs and structures within the body. 

MRI images are typically classified based on their weighting: T1-weighted and T2-weighted images. T1-

weighted images are produced by using short echo times and repetition times, making them ideal for 

visualizing anatomical detail and fat tissue, as fat appears bright, and water appears darker. T2-weighted 

images, on the other hand, are generated using longer echo and repetition times, highlighting 

differences in water content. In T2-weighted images, fluid-filled structures such as edema, cysts, and 

tumors appear bright, making them useful for identifying pathology.  

Figure 5 shows an example of a pelvic MRI, and by looking at the bladder (the big structure in the middle), 

it can be deduced that the left image corresponds to a T1 because the water inside the bladder appears 

darker. 

By combining T1 and T2-weighted images, radiologists can obtain comprehensive information about 

tissue composition and pathology, aiding in accurate diagnosis and treatment planning [12]. 

 

 

 

 

 

 

 

 

  
Figure 5: T1WI (left) vs T2WI (right) axial MRI pelvic images from a patient. 
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2.1.4. RADIOMICS 

Radiomics is an advanced field in medical imaging that involves extracting many quantitative features 

from medical images using data-characterization algorithms. These features, which can include shape, 

texture, intensity, and spatial relationships, are not visible to the naked eye but provide detailed 

information about the underlying tissue structure and function [13]. 

In oncology, radiomics has significant applications. It enhances the ability to diagnose, characterize, 

and monitor tumors through non-invasive imaging techniques such as MRI, CT, and PET scans [14]. 

By analyzing the extracted features, radiomics can distinguish between benign and malignant tumors, 

predict tumor behavior, and assess treatment response. This detailed analysis allows for more 

personalized treatment plans, potentially improving patient’s outcome. Figure 6 shows what are the steps 

followed in a radiomic study or analysis. 

 

 

 

 

 

 

 

 

 

 

 

Radiomics also plays a critical role in predicting prognosis. By identifying specific imaging biomarkers, 

radiomics can help estimate survival rates and the likelihood of disease recurrence. Furthermore, it aids 

in the development of predictive models that integrate radiomic data with other clinical and genetic 

information, providing a comprehensive understanding of the tumor biology [15]. 

Overall, radiomics represents a significant advancement in oncology, offering a deeper insight into tumor 

characteristics and enhancing the precision and personalization of cancer treatment and management. 

 

2.2. STATE OF THE ART 

As explained, radiomics in MR pelvic images has recently been implemented in ovarian cancer tumor 

detection and discrimination, because of its non-invasiveness, its capacity extracting and analyzing 

numerous quantitative features and its ability to identify subtle patterns that might indicate early stages of 

malignancy, among others. 

A comprehensive literature review has been conducted to analyze and understand the studies performed 

to date regarding the use of radiomics in the assessment of ovarian masses in MR pelvic images. This 

review involved an extensive search of PubMed using the query: "radiomics ovarian masses” and found 

Figure 6: Application of radiomics workflow. 
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a publication that conducts a systematic review of the literature reporting the application of radiomics to 

imaging techniques in patients with ovarian lesions [16].  

I found 6 articles that studied similarly the objective of this project, and I read them. The goal was to gather 

and synthesize the available evidence on the effectiveness and limitations of radiomics in this specific 

application. The results of this search, including the objective of the study and how is the feature extraction 

in radiomics applied, are presented in Table 1.  

Table 1: Summary table of articles related to radiomics in ovarian masses. 

REF. OBJECTIVE SEGMENTATION FEATURE EXTRATION 

[17] 

Develop a preoperative MRI-
based radiomic-clinical 

nomogram for prediction of 
residual disease in patients 
with advanced high-grade 
serous ovarian carcinoma. 

MITK software was used, and 
the segmentations were 

manually performed by one 
gynecological radiologist. The 
VOI was delineated along the 
tumor contours slice-by-slice 

on T2WI and CE-T1WI. 

PyRadiomics 

841 radiomic features were 
extracted from each 
sequence and were 

subdivided into eight classes. 

[18] 

Develop and validate an 
objective MRI-based ML 
assessment model for 

differentiating BEOT from 
MEOT and compare the 

performance against 
radiologists' interpretation. 

The VOI was delineated 
manually on the T2WI series in 
a slice-by-slice manner by an 
experienced radiologist using 

the Medical Imaging Interaction 
Toolkit (MITK) software. 

PyRadiomics 

Multiple MRI features were 
extracted and were 

subdivided into eight classes. 

[19] 

Evaluate the efficiency of 2- 
and 3-class classification 

predictive tasks constructed 
from radiomics features 
extracted from MRI and 

pharmacokinetic protocol in 
discriminating among benign, 

borderline, and malignant 
ovarian tumors. 

The VOI were manually 
contoured along the boundary 
of the tumor in every 2D MRI 
slice of each ovarian tumor by 

a radiologist (9 years of 
experience in MRI) by using 

ITK-SNAP software. 

PyRadiomics 

Six classes of radiomics 
features were extracted: 14 

shape features, 18 first-order 
statistical features, 22 GLCM 
features, 16 GLRLM features, 
16 GLSZM features, and 14 

GLDM features. 

[20] 

Investigates whether the 
texture-based radiomics 

analysis of magnetic 
resonance images of the fluid 
content within ovarian cysts 

can function as a noninvasive 
tool in differentiating between 
benign and malignant lesions. 

For image segmentation, a 
researcher with 15 years of 
experience in pelvic MRI, 

reviewed the retrieved 
sequence and, from every 

examination, selected a single 
slice with the largest cross-

section area of the previously 
selected lesion. It doesn’t 
specify the segmentation 

software. 

TexRAD software 



 Biomedical Engineering Anna Làzaro Llorens 

 18 

[21] 

To evaluate the ability of T2-
weighted imaging (T2WI)-

based radiomics to 
discriminate ovarian 

borderline tumors (BOTs) 
from malignancies based on 

two-dimensional (2D) and 
three-dimensional (3D) lesion 

segmentation methods. 

All lesion segmentations were 
performed by an experienced 

radiologist. The lesion 
segmentation on MRI was 

manually outlined using ITK-
SNAP software. 

Analysis Kit, version 3.0.0, 
GE Healthcare 

[22] 

To evaluate the ability of MRI 
radiomics to categorize 
ovarian masses and to 

determine the association 
between MRI radiomics and 

survival among ovarian 
epithelial cancer (OEC) 

patients. 

All lesion segmentations were 
performed by an experienced 
radiologist. They chose one 
slice with the largest lesion 

diameter in each protocol as 
the premium picture for 

segmenting the whole lesion. 
The segmentation was 
manually outlined using 

MATLAB software. 

It doesn’t specify the 
software. 

 

2.3. STATE OF THE SITUATION 

As said, this final degree project is the beginning of a project that aims to develop a radiology doctor at 

the Hospital Clínic in Barcelona. This first approach, as told before, pretends to study all the possible 

paths that can be followed before applying radiomics to the ovarian masses in the pelvic magnetic 

resonance images from patients. Then, having these steps defined, the doctor aims to create a database 

to define a predictive model of malignancy of the ovarian masses. 

The need for this methodology is driven by the critical importance of early and accurate detection of 

ovarian masses. Ovarian cancer is known for its asymptomatic nature in the early stages, often leading 

to diagnoses at advanced stages when the prognosis is poor. Therefore, having a robust and reliable tool 

to identify and characterize ovarian masses as benign or malignant as early as possible is crucial. Early 

detection significantly improves the chances of successful treatment and can greatly enhance patient 

outcomes. 

Moreover, in the future, there's the intention of writing a paper that details the development and validation 

of the predictive model for ovarian mass malignancy using radiomics. This paper will aim to share the 

findings with the broader medical and scientific community, highlighting the innovative methodologies 

used and the clinical implications of the results. 

Therefore, it is important to emphasize that this project does not end here, but that it aims to lay the 

groundwork for ongoing research and development in the field of medical imaging and oncology. 
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3. MARKET ANALYSIS 

3.1. MARKET SECTOR 

The market sector for this project lies within the healthcare and medical diagnostics industry, specifically 

targeting the medical imaging and radiology segment with a focus on oncology and gynecology.  

By integrating a predictive model with MR imaging technologies, the project aims to enhance diagnostic 

accuracy, thereby supporting radiologists in making more informed decisions when dealing with ovarian 

tumors. This is particularly crucial for women suffering from ovarian cancer, as early and accurate 

detection significantly improves treatment outcomes.  

Furthermore, the project has substantial relevance in gynecological health, aiding gynecologists and 

oncologists in distinguishing between benign and malignant ovarian tumors preoperatively. Consequently, 

this enhances operational efficiency and reduces the time and resources required for conclusive 

diagnoses. By improving diagnostic accuracy and preoperative planning, this work ultimately contributes 

to better patient outcomes and streamlined healthcare processes. 

 

3.2. RADIOMICS MARKET EVOLUTION 

Radiomics is an emerging field that leverages imaging techniques to extract a large number of quantitative 

features from medical images, which can provide valuable insights into tumor biology, behavior, and 

pathophysiology. This technology holds significant promise in the field of oncology, as it enables the 

extraction of data that may not be apparent through traditional radiologic and clinical interpretation.  

The radiomics market has experienced exponential growth in recent years. The concepts of image feature 

extraction have existed for decades, but it is only recently that the application of these techniques has 

surged, driven by advancements in imaging technology, data analysis, and computational power [23]. As 

seen in Figure 7, in 2020 there were about 3250 publications referencing radiomics, indicating a rapidly 

growing interest and research output in the field.  

Figure 7:  Chronological distribution of publications in radiomics for oncology from 2011 to 2020 [23]. 
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As deduced from the diagram, the number of articles and reviews grew steadily in the first 4 years. From 

2015 to 2020, the annual number of publications grew exponentially and peaked in 2020. 

According to the results shown in Figure 7, the ten leading countries in the field of radiomics research 

include a diverse mix of four Asian countries, two American countries, and four European countries. 

Among these, the United States stands out by contributing a substantial volume of publications, totaling 

2,280. Additionally, the USA has been notable for its frequent collaborations with researchers from other 

nations, enhancing the global exchange of knowledge and expertise. Together, publications from the USA 

and China account for more than 40% of all research papers in this area, underscoring the significant 

contributions and influence of these two countries in advancing the field of radiomics [23]. 

The demand for radiomics in oncology is fueled by its potential to enhance personalized medicine. By 

analyzing imaging data at various time points, radiomics can track tumor progression and response to 

treatment, enabling more tailored therapeutic approaches. This has significant implications for improving 

the accuracy of cancer diagnoses and the efficacy of treatments, ultimately leading to better patient 

outcomes. 

 

3.3. OVARIAN CANCER MARKET ANALYSIS 

The global ovarian cancer diagnostics market was valued at USD 4.41 billion in 2022 and is projected to 

grow at a compound annual growth rate (CAGR) of 4.93% during the forecast period. This growth is driven 

by an increase in research and development activities aimed at developing novel diagnostic tests for 

ovarian cancer. 

Innovations in diagnostic technologies are a significant market driver. For instance, scientists from the 

University of Gothenburg and Uppsala University have developed a blood test that can accurately 

diagnose ovarian cancer, potentially reducing the need for exploratory surgeries. This advancement can 

facilitate early detection and treatment, significantly impacting patient outcomes [24]. 

Figure 8: Ovarian cancer diagnostics type market analysis [25]. 
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As seen in Figure 8, imaging techniques accounted for the largest market share in 2018, primarily due to 

their crucial role in early diagnosis and cancer staging. Transvaginal ultrasound continues to be the 

preliminary imaging technique for visualizing a tumor internally and measuring its size. Although CT scans 

are preferred for cancer staging, they have limitations with detecting small tumors. More advanced 

imaging techniques, such as MRI and PET scans, are increasingly utilized to detect metastasis and 

assess disease severity. 

The growth of the imaging segment can be attributed to several factors. Firstly, there is an increasing 

patient inflow for cancer diagnosis in hospitals, driven by a growing awareness among consumers about 

the importance of early detection. Additionally, rising investments in healthcare infrastructure, particularly 

in developing and underdeveloped countries, are contributing to the segment's expansion. These 

investments are enhancing the availability and accessibility of advanced imaging technologies, thereby 

improving diagnostic capabilities and patient outcomes [25]. 
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4. CONCEPTION ENGINEERING 

This section conducts a conceptual engineering analysis to evaluate all possible solutions for the project 

procedure. The evaluation aims to identify and select the best options to achieve the project objectives.  

It is important to say that there are options that haven’t been discarded in this step of the project. In fact, 

as this project aims to define the steps to create a pipeline, the study has been carried out using all 

possible paths to, in the end, carry out a concordance study to analyze if there’s similarity between paths 

to finally decide which one is the most comfortable and simple for those who will use this pipeline in the 

future. 

4.1. STUDY OF THE SOLUTIONS 

Creating a pipeline for the classification of ovarian masses means evaluating many tool and method 

options to obtain an optimal result. In the following table, there are exposed the different solutions 

proposed for each step of the project. 
 

Table 2: Proposed solutions for each step of the project. 

Studied solutions 

MRI sequence 
- T2WI 

- T1WI 

Segmentation software 

- 3D Slicer 

- MINT Lesion 

- Syngo.via 

Preprocessing 
- Registration of T2 and T1 

- Intensity normalization 

Radiomic tool 

- PyRadiomics 

- MINT Lesion radiomics 

- Syngo.via (Frontiers) radiomics 

Type of radiomic features 

- First order 

- Shape 

- GLCM 

- GLSZM 

- GLRLM 

- NGTDM 

- GLDM 
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4.1.1. MRI SEQUENCE 

As explained in more detail in the background section, T1WI and T2WI are types of MRI sequences that 

provide different contrasts and information about tissue properties. T1-weighted images highlight fat and 

make anatomical structures appear with high contrast, showing clear detail of organs and tissues. T2-

weighted images, on the other hand, emphasize fluid content and are particularly useful for detecting 

edema, inflammation, and other pathological changes. This section pretends to find which MRI sequence 

is better for segmenting the tumor. 

Table 3 outlines the 2 possible solutions proposed for the pipeline. 

Table 3: Comparison of the MRI sequence proposed options for the project 

Options Properties 

T2WI 

• Better visualization of the lesion in comparison with T1- weighted 
images. 

• Enhanced contrast between pathological tissues and normal 
tissues. 

• A lot of studies show a better accuracy using T2-weighted images 
in comparison with T1 [21]. 

• Can be more susceptible to motion artifacts, which can affect the 
quality of the images and the accuracy of radiomic analysis. 

• The acquisition typically takes longer compared to T1-weighted 
images. 

T1WI 

• Provide excellent anatomical detail and high spatial resolution. 

• Less sensitive to fluid content compared to T2-weighted images, 
which may limit their effectiveness in detecting cystic components 
within ovarian masses. 

• Do not provide as high contrast between pathological tissues and 
normal tissues as T2-weighted images, making it harder to identify 
certain types of pathologies. 

 

 

4.1.2. SEGMENTATION SOFTWARE 

The evaluation of the segmentation software is a crucial step in this project. Segmentation tools are 

essential for doctors as they enable the precise delineation of structures of interest, such as ovarian 

masses in our case.  

Each segmentation software comes with its own unique set of features, algorithms, and user interfaces, 

but they all share the common objective of improving diagnostic accuracy and efficiency. This evaluation 

involves comparing various software options to determine which one offers the best combination of 

accuracy, ease of use, and compatibility with existing medical imaging systems. All this information, 

including a detailed comparison of different software packages, is summarized in Table 4.  
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Table 4: Comparison of the segmentation softwares proposed options for the project. 

Options Properties 

3D Slicer 

• Free, open-source software platform for medical image analysis and 
visualization.  

• Able to read DICOM (Digital Imaging and Communications in 
Medicine) files. 

• Wide range of tools for image segmentation, registration, and 
visualization, including 3D reconstruction of medical images.  

• It has semi-automatic segmentation tools, but the best one for the 
delimitation of ovarian masses is the layer-by-layer contour of the 
lesion. 

• Multiple exporting formats, including NifTi (Neuroimaging Informatics 
Technology Initiative). 

• Has plugins and extensions available to enhance its functionality.  

• Doesn’t have CE marking. 

• Not the smoothest. 

Mint Lesion 

• Software platform developed by Mint Medical that evaluates and 
reports imaging studies, particularly in oncology. 

• Direct access to PACS. 

• Has a semi-automatic tool that segments the lesion by applying a 
threshold when it sees a change in intensity in a region delimited in 
the form of a circle. It is applied in all the layers, so it is quite fast. 

• Has a radiomic tool that calculates first order and GLCM features and 
saves them in a CSV. 

• Has CE marking. 

• DCM, Planar Figure and NRRD as export format. 

• Closed software. 

• Each license and its annual maintenance are quite expensive. 

Syngo.via 

• Software platform developed by Siemens Healthineers for medical 
imaging and healthcare information technology.  

• Direct access to PACS. 

• Has some tools for image segmentation, but the best one for the 
delimitation of ovarian masses is the layer-by-layer contour of the 
lesion. 

• Has CE marking. 

• Only STL (Standard Triangle Language) as export format. 

• Closed software. 
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4.1.3. PREPROCESSING 

Preprocessing is essential in radiomics to ensure the reliability and comparability of the extracted features, 

considering that pelvic images come from different MRI machines. Table 5 shows two preprocessing 

steps that can be done (one or both) to the images to ensure, as told, reliability. 
 

Table 5: Comparison of the preprocessing options for the project. 

Options Properties 

Registration of T2 and T1 

• Allows the integration of the high-contrast fluid-sensitive information 
from T2 with the detailed anatomical information from T1. 

• Registering T1 images to the T2 space can help mitigate the impact 
of the mentioned artifacts by providing additional anatomical context.  

• Movement of the patient due to inspiration and expiration between the 
acquisitions may lead to a bad registration of the sequences. 

• Requires a script for registration, which takes time to fully execute. 

Intensity normalization 

• Reduces the variability in signal intensity across different MRI scans, 
which can be caused by differences in acquisition protocols, scanner 
types, and patient-specific factors. 

• It makes radiomic features less sensitive to variations in image 
acquisition parameters, leading to more stable and reliable features. 

• There are many types of intensity normalization: z-score, min-max, 
etc. and the choice of method can influence the results. 

 

4.1.4. RADIOMIC TOOL 

Choosing the right software/tool for applying radiomics to the MR images can have an influence on the 

results and, that is why, it is important to check if they lead to the same or similar values. Two of the 

segmentation softwares provide their own radiomic tool and can lead to a reduction of the overall time. 

The 3 proposed options are described in more detail in Table 6. 
 

Table 6: Comparison of the implemention of radiomic options for the project. 

Options Properties 

PyRadiomics 

• Open-source tool. 

• A python script and the image with the segmented mass are needed. 

• Provides a wide array of radiomic features and they can be chosen 
by interest. 

• The adjustments/preprocessing applied to the image can also be 
chosen before the calculation of the features. 

• It requires well-preprocessed and segmented images. 
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MINT Lesion radiomics 

• Only calculates first order and GLCM features. 

• You don’t need a script to calculate them, so it is a fast step. 

• You can choose the preprocessing applied to the image before 
calculating the features. 

• It requires well-segmented images to ensure a good implementation. 

Syngo.via (Radiomics 
Frontiers) 

• Calculates approximately between 300 and 400 features. 

• You don’t need a script to calculate them, so it is a fast step. 

• It is based on PyRadiomics. 

• It requires well-segmented images to ensure a good implementation. 

 

4.1.5. TYPE OF RADIOMIC FEATURES 

Radiomics provides us with a lot of information about the ROI, since it allows us to calculate different 

types of characteristics from the images and their segmentation. Table 7 describes the properties of each 

group of radiomic characteristics. 

 

Table 7: Comparison of the groups of radiomic features for the project. 

Options Properties 

First order 

• Describe the distribution of voxel intensities within the image region 
defined by the mask through commonly used and basic metrics. 

• Are relatively simple to calculate and interpret. 

• Its extraction is computationally less demanding compared to higher-
order texture features.  

• Provide a basic quantitative summary of the image. 

• Only describe the distribution of individual voxel intensities within the 
ROI and not the spatial relationships between them. 

• Due to their simplicity, they may have lower discriminative power 
compared to higher-order texture features.  

Shape 

• They include descriptors of the two and three-dimensional size and 
shape of the ROI. 

• They are independent from the gray level intensity distribution in the 
ROI. 
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GLCM 

(Gray Level Co-
occurrence Matrix) 

• Capture the spatial relationships between pixel intensities, providing 
detailed information about the texture of the ROI. 

• Have higher discriminative power compared to first-order features. 

• The calculation of them is more computationally intensive than first-
order features. 

• Are very dependent on the accuracy of the ROI segmentation. 

• Can be more difficult to interpret than first-order features. 

GLSZM  

(Gray Level Size Zone 
Matrix) 

• Capture the size of homogeneous zones of connected pixels with the 
same gray level. 

• They often have strong discriminative power for differentiating 
between different tissue types and pathological conditions. 

• Their calculation is computationally intensive.  

• They are also dependent on the accuracy of the ROI segmentation. 

GLRLM 

(Gray Level Run Length 
Matrix) 

• Quantify the texture of an image by calculating the length of 
consecutive pixels that have the same gray level value. 

• Are useful for distinguishing between homogeneous and 
heterogeneous tissues. 

• Their calculation is computationally intensive.  

• The accuracy and reliability of them can be affected by the resolution 
and quality of the input images. 

NGTDM 

(Neighbouring Gray Tone 
Difference Matrix) 

 

• Quantifies the texture of an image based on the differences between 
a pixel's gray level and the average gray level of its neighboring pixels. 

• Are sensitive to contrast variations, enabling the detection of 
variations in the tissue density and structure. 

• It involves analyzing each pixel and its neighborhood’s, which can be 
computationally intensive, particularly for large 3D images. 

• Its accuracy depends on the quality and resolution of the input 
images. 

GLDM 

(Gray Level Dependence 
Matrix) 

• Evaluates the number of connected voxels within a certain distance 
that have a similar gray level. 

• Their calculation can be computationally intensive, particularly for 
large 3D images. 

• Its accuracy depends on the quality and resolution of the input 
images. 
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4.2. PROPOSED SOLUTION 

Considering all the options and the methodology implemented in this project, this section aims to discard 

those options that are not suitable but, does not necessarily stay with just one solution in each step. 

Table 8 shows the proposed solutions of each step. 

Table 8: Proposed solutions of the project in each step. 

Proposed solutions 

MRI sequence - T2WI 

Segmentation software 

- 3D Slicer 

- MINT Lesion 

- Syngo.via 

Preprocessing 
- Registration of T2 and T1 

- Intensity normalization 

Radiomic tool 
- PyRadiomics 

- MINT Lesion radiomics 

Type of radiomic features 
- First order 

- GLCM 

 

 

4.2.1. MRI SEQUENCE 

Although both T2WI and T1WI options exhibit advantageous properties, T2WI images are generally 

superior to T1WI images when it comes to segmenting ovarian lesions and applying radiomics to the 

acquired images. This fact is supported not only by the numerous articles referenced in section 2.2, the 

state of the art, but also by the radiologist involved in the project. 

T2WI images provide enhanced contrast between pathological and normal tissues, which is particularly 

beneficial for visualizing ovarian lesions. In T2 images, fluids appear bright, and most tumors have higher 

water content than the surrounding normal tissues, making them more conspicuous. This increased 

visibility facilitates more precise segmentation of the lesions, which is critical for accurate radiomic 

analysis. By distinguishing the lesion more clearly from the surrounding tissue, T2WI enables a more 

accurate and reliable extraction of radiomic features, which are essential for the development of predictive 

models of malignancy. 
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4.2.2. SEGMENTATION SOFTWARE 

The project aims to comprehensively compare the effectiveness, functionality, accuracy, reliability, and 

user interface of the three proposed segmentation software tools. It is important to note that none of the 

software tools have been eliminated from the options; all have been rigorously tested and evaluated. 

All three segmentation tools—3D Slicer, Radiomics Frontiers from Syngo.via, and Mint Lesion—have 

been rigorously tested and evaluated during the course of the project. Each tool offers unique features 

and capabilities that can potentially impact the segmentation process and the subsequent radiomic 

analysis. By developing different methods using these three tools, the project aims to highlight how each 

software handles the task of segmenting ovarian lesions and then compare the radiomic features from all 

the different methods. 

 

4.2.3. PREPROCESSING 

Regarding the preprocessing procedures, both approaches have been thoroughly explored and 

implemented during the development of the project. Each method has been carefully evaluated to ensure 

the most accurate and reliable outcomes. 

The registration of T2WI and T1WI can integrate of the high-contrast fluid-sensitive information from T2 

with the detailed anatomical information from T1. This integrated approach may improve the accuracy of 

tumor segmentation and characterization, leading to more precise diagnostic and prognostic 

assessments. 

Additionally, regarding the normalization of intensities, it has been chosen to make a z-score. This method 

centers the average intensity at 0 and scales the standard deviation to 1, effectively standardizing the 

intensity values across all images. By doing so, it ensures that the radiomic features extracted from 

different images are comparable, reducing the potential for bias and improving the reliability of the 

subsequent analysis. 

 

4.2.4. RADIOMIC TOOL 

For the radiomic tool, the first to be discarded was Syngo.via (Radiomics Frontiers) by Siemens, as it 

calculates an overwhelming number of features without allowing the user to select specific ones. 

Consequently, MINT Lesion and PyRadiomics were chosen. MINT Lesion is preferred for calculating a 

manageable set of 42 features, which can be thoroughly analyzed, while PyRadiomics allows users to 

select specific features for extraction, offering greater flexibility and control. 

 

4.2.5. RADIOMIC FEATURES 

Finally, only first order and GLCM features have been chosen to evaluate the results of all the possible 

paths in this study. This decision is primarily driven by the capabilities of the MINT Lesion radiomic tool, 

which is specifically designed to extract these features. To ensure a consistent and fair comparison across 

different methods, it is crucial that all approaches utilize the same set of radiomic features. By focusing 

on first order and GLCM features, the study can maintain a standardized framework for analysis, allowing 

for a more accurate assessment of each method's performance.  
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5. DETAIL ENGINEERING 

In order to carry out the project and meet the objectives, a series of steps had to be taken, which will be 

described in this section with detail. 

5.1. PREPARATION OF THE DATA 

The first step was to download from the PACS (Picture Archiving and Communication Systems), that 

holds patient’s imaging records, the pelvic MRI files in DICOM format. The radiologist who intends to 

continue with the project had previously provided an excel sheet (Table 9) with the clinical history numbers 

of 12 patients with ovarian masses, their diagnosis, and the MRI machine brand that captured the image.  

 

 Table 9: Patient's diagnostic and MRI machine acquisition. 

Patient Diagnostic MRI machine 

1 Benign SIGNA Explorer 

2 Benign Signa HDxt 

3 Malign Signa 

4 Benign Aera 

5 Malign Aera 

6 Borderline MAGNETOM Vida 

7 Malign MAGNETOM Vida 

8 Malign Signa HDxt 

9 Benign Prisma_fit 

10 Borderline MAGNETOM Vida 

11 Benign Aera 

12 Malign SIGNA Explorer 

 

At this point in the work, it was not yet known which MRI series we would use to carry out the study. It is 

for this reason that all the DICOM files of each patient were downloaded.  

When you download a Magnetic Resonance acquisition in DICOM format from a PACS, it may happen 

that image metadata, such as series names, are hidden or not directly visible. Figure 9 shows how every 

patient’s data was stored in the computer. 



 Biomedical Engineering Anna Làzaro Llorens 

 31 

 

 

 

 

 

 

 

 

 

 

Therefore, a Python script was developed to convert these DICOM files to NifTi (Neuroimaging Informatics 

Technology Initiative), because is a more flexible format and is easier to analyze it.  

The series were saved with its corresponding name by accessing at the DICOM metadata stored in the 

files. The function created in the script, not only converted the images, and saved them with the correct 

name, but kept only those that met the following conditions: 

• T1 or T2 was in their name. 

• “Ax” (from axial) or “Tra” (from transversal plane) was also in their name. 

 

The function had as inputs, the directory with the patient folders containing the DICOM images and the 

directory where the NifTi images were to be saved with the name filtering done. 

The transformation of the images was made using DCM2NIIX, a software tool, that can be easily used in 

Python, designed to convert medical images from the DICOM format to the NIfTI format. This software is 

available on GitHub, where users can access the source code, documentation, and updates [26]. The 

repository provides detailed information on how to use the tool, supported features, and any known issues. 

 

 

 

 

 

 

 

 

 

Figure 9: DICOM MRI sequences saved on the 

computer with hidden names. 

Figure 10: NifTi MRI sequences after the filtration by 

name. 
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As seen in Figure 10, the filtration of the series’ name was not exact, and one or more than 2 images were 

converted to NifTi format for T2 and T1 series. Depending on the MRI machine, the series had different 

names, as patient 2 and 4, that show different metadata description of the series. 

“FS” stands for fat suppression, and those series were not necessary for this project. So, the next step 

included another filtration of the name but, the complicity was greater because “fs” could not be a removing 

condition, because patients like number 2 had in every serie’s name this exact character string. 

 

5.2. REGISTRATION OF T2 AND T1 

Having in consideration the filtration condition mentioned in the previous section, a registration function 

was developed in another Python script.  

For every patient, two empty lists were created: one to save the paths that contained ‘t1’ and the other 

for the paths that contained ‘t2’ in their name. As the desired series were the ones that didn’t have the 

“FS” term in their name, the easiest solution was to save only the shortest term of each list. In Figure 11 

there’s a screenshot of this part of the explained function.  

Finally, with only the desired T2WI and T1WI series, the next step consisted of the registration of these 

2, that was applied using the ANTs (Advanced Normalization Tools) module for Python [27]. It is a set of 

open-source software tools designed for medical image processing, especially for image registration and 

normalization. This software is also available on GitHub, where users can access the source code, 

documentation, and updates. 

T2 were taken as the fixed images in all cases, and T1 were the moving ones. The type of registration 

applied was the SyN (Symmetric Normalization), which is a nonlinear deformation method that aligns two 

images by finding a transformation that minimizes the differences between them. The distinctive feature 

of SyN is that it performs the registration symmetrically, which means that it treats both images equally 

during the alignment process.  

Figure 11 shows a comparison between a T2 image and the registered T2 with T1 of the same patient. 

 Figure 11: T2WI (left) vs the registration of T2WI and T1WI (right). 
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It was a necessary step because the registered images (T2 + T1) could yield better results when applying 

radiomics compared to using only T2 images. By integrating information from both T2 and T1 modalities, 

a more comprehensive set of features that reflect the underlying tissue characteristics can be captured 

more accurately. 

 

5.3. INTENSITY NORMALIZATION 

The application of intensity normalization to the MRI images was a necessary step due to the variability 

in intensity levels resulting from differences in acquisition protocols and imaging parameters across the 

MRI machines variety. As these images were originated from diverse machines, it was probable that they 

had inconsistencies in intensity values.  

A normalization function was created using Python, which aimed to mitigate these discrepancies by 

standardizing the intensity ranges across all images, thereby ensuring comparability and consistency in 

the radiomic feature extraction. 

A z-score normalization was the one described in the function, which rescales the data so that its mean 

is 0 and standard deviation is 1, enabling comparison between different datasets by placing them on a 

common scale. It subtracts the mean from each data point and then divides by the standard deviation, as 

seen in the following equation: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑑𝑎𝑡𝑎 =
𝑋 − 𝜇

𝛿
 

Being: 

• X the image data 

•  the mean value of the image data 

•  the standard deviation of the image data 

 

In the normalizing function created with Python programming software the image path, the output directory 

and the patient ID were taken as the inputs.  

The image was read using the Nibabel package, that can read and write imaging data in various file 

formats, including NifTi. Through the utilization of the "get_fdata()" function, the image data was retrieved 

as an array, thereby facilitating its subsequent manipulation. Therefore, employing NumPy, a Python 

library used for working with arrays, calculations were performed to determine the mean and standard 

deviation of each image to calculate, in the end, using the mentioned formula, the normalized data was 

calculated. 

Finally, the new image was created from the normalized array and saved in the output directory in NifTi 

format using the affine transformation matrix of the initial image. 

 

 

 

  



 Biomedical Engineering Anna Làzaro Llorens 

 34 

5.4. PREPARATION OF SEGMENTATIONS 

In this project, a radiologist segmented tumors in 12 patients using the three software tools studied in the 

previous section. Each software provided unique tools for segmentation and offered different formats for 

exporting the segmented data. It is important to note that the segmentations were not perfect, primarily 

due to the depth of each imaging cut, which was approximately 4mm. As illustrated in Figure 12, the 

resulting masks were not as continuous and smooth as anticipated, exhibiting a somewhat scaled 

appearance. 

 

 

 

 

 

 

 

 

 

 

 

5.4.1. 3D SLICER MASKS  

The segmentations performed using 3D Slicer involved delineating the tumor layer by layer for each 

patient. These segmented images were then directly exported into NifTi format.  

Before proceeding with the extraction of radiomic features, it was essential to verify that the mask and the 

corresponding image aligned correctly. This verification was achieved by plotting the overlay of the image 

with its corresponding segmentation using the matplotlib package in Python, as shown in Figure 13. 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 12: Example of a tumor mask segmented 

with Radiomics Frontiers (Syngo.via). 

Figure 13: MRI image and tumor mask from 3D Slicer 

incorrectly overlayed. 
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As deduced from Figure 13, the segmentation was flipped along the X-axis, with the X-axis being the 

horizontal axis. When dealing with medical imaging data, particularly in formats like NIfTI, it is crucial to 

understand the spatial orientation conventions used by different software packages and imaging devices. 

These conventions can vary, leading to issues such as flipped images when visualizing or processing 

them together. The common axis conventions include: 

• Radiological Convention: Images are viewed as if looking from the feet of the patient towards 

the head. The left side of the image corresponds to the right side of the patient. 

• Neurological Convention: Images are viewed as if looking from the top of the patient's head 

down towards the feet. The left side of the image corresponds to the left side of the patient. 

To correct this misalignment, a Python script was written to flip the segmentation along the X-axis, 

ensuring that both the image and the segmentation followed the same orientation. The resulting 

superposed images, after correction, are shown in Figure 14. 

This detailed approach highlights the importance of understanding and addressing the orientation 

conventions in medical imaging. Proper alignment is crucial for accurate radiomic analysis and 

subsequent data interpretation. Despite the initial challenges with segmentation continuity and orientation, 

the methodological corrections implemented ensured reliable and consistent results across the different 

software tools used in this study. 

 

 

 

 

 

 

 

 

 

5.4.2. SYNGO.VIA (RADIOMICS FRONTIERS) MASKS 

The segmentations performed using Radiomics Frontiers, a module from Syngo.via, were delineated layer 

by layer for each patient. These segmentations were exported in STL (Standard Triangle Language) 

format. Unfortunately, a Python script to convert these segmentations to NifTi format could not be 

developed in time. Consequently, 3D Slicer software was employed to perform this conversion due to its 

ability to quickly import STL files and export them to NifTi format. 

Following the conversion process, it was essential to verify that the mask and the corresponding image 

were correctly aligned. This verification step was conducted by plotting the overlay of the image with its 

Figure 14: MRI image and tumor mask from 3D Slicer 

correctly overlayed. 
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corresponding segmentation using the matplotlib package in Python, as described previously. The 

resulting superposition can be observed in Figure 15. 

 

 

 

 

 

 

 

 

 

 

 

This process underscores the importance of ensuring proper alignment between segmented masks and 

their corresponding images, particularly when different formats and software tools are involved. Despite 

the initial format incompatibility, the use of 3D Slicer facilitated a swift and efficient conversion, allowing 

for the continued application of radiomic analysis. 

To correct the axis orientation of the mask, the same Python script was used. Figure 16 shows the result 

of this last process. 

 

 

 

 

 

 

 

 

 

 

 

5.4.3. MINT LESION MASKS 

Mint Lesion software demonstrated superior performance in segmenting regions of interest (ROIs) when 

compared to the other two segmentation tools evaluated in this project. This software employed an 

advanced tool that identified intensity thresholds to delineate the ROIs. Specifically, it segmentated the 

Figure 15: MRI image and tumor mask from Radiomics 

Frontiers incorrectly overlayed. 

Figure 16: MRI image and tumor mask from Radiomics 

Frontiers correctly overlayed. 
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target region within a predefined circular area, where the object of interest, such as a tumor, was located. 

The segmentation process is fully automated and applied across all layers of the image, resulting in a 

highly accurate three-dimensional (3D) segmentation of the entire tumor. 

Figure 17 shows the software’s interface and the segmented tumor delineated with a very thin red line 

that is almost not appreciated in the image. 

 

 

 

 

 

 

 

 

 

 

 

 

One of the standout advantages of Mint Lesion software is its integrated radiomics module. This feature 

facilitates the automatic extraction of radiomic features, including first-order statistics and Gray Level Co-

occurrence Matrix (GLCM) features, directly from each segmented region. The software further simplifies 

the process by providing an option to export the extracted data in CSV (Comma-Separated Value) format. 

This capability significantly streamlines the workflow for radiomic analysis, making it more efficient and 

user-friendly. A more comprehensive discussion and analysis of the radiomic features extracted using 

this software are presented in the subsequent section of this project (Section 5.5: Application of 

Radiomics). 

Despite its many advantages, Mint Lesion software has a notable limitation: it does not support exporting 

segmentations in the NifTi format, which is widely used in many medical imaging applications. Instead, 

the segmentations were exported in the DICOM RT-Struct format. Due to this constraint, and the fact that 

a suitable Python script to convert DICOM RT-Struct to NifTi format was not developed in time, the 

segmentations could not be automatically converted to this format and, again, 3D Slicer was the solution 

proposed for this problem. 

However, another significant problem emerged during the process. Due to the proprietary nature and 

closed framework of the software, 3D Slicer was unable to import the masks generated by the MINT 

Lesion. This incompatibility supposed a big challenge, as it severely limited the flexibility and scope of the 

radiomics analysis. As a direct consequence of this limitation, only a single radiomics analysis could be 

performed using the segmentations created in the MINT interface. The inability to integrate masks into 

3D Slicer underscores the importance of software compatibility and highlights a critical area for future 

improvement in radiomics workflows. 

Figure 17: MINT Lesion segmentation interface with 

delineated tumor. 
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5.5. APPLICATION OF RADIOMICS 

Once the masks were adequately prepared, the next crucial step in the workflow was the extraction of 

radiomic features. This step is fundamental in the radiomics pipeline, as it involves quantifying various 

aspects of the tumor's texture, shape, and intensity from the MRI images. These features are critical for 

subsequent analyses and model development. 

5.5.1. MINT LESION 

As previously mentioned, the MINT Lesion software provides an automatic feature extraction tool, which 

greatly simplifies and speeds up this process. The tool is designed to efficiently extract radiomic features. 

Specifically, it focuses on first-order statistics and Gray Level Co-occurrence Matrix (GLCM) features.  

The automated nature of the MINT Lesion software's extraction tool means that obtaining these features 

from the MINT segmentations was considerably faster compared to the other segmentation methods. This 

efficiency in the workflow not only saves time but also reduces the potential for human error during feature 

extraction. 

MINT software offers a variety of preprocessing options that can be applied to MRI images before the 

extraction of radiomic features. These preprocessing steps are crucial for enhancing the quality of the 

images and ensuring the accuracy and reliability of the extracted features. Among the available options 

are the Laplacian of Gaussian (LoG) filter, a threshold filter, and a discretization configuration. 

In this project, however, no preprocessing filters were applied to the images. This decision was made to 

maintain the original image characteristics and avoid introducing any potential biases or alterations that 

might affect the radiomic analysis. The only preprocessing step applied was the discretization of the image 

intensities. 

Discretization is a process where continuous intensity values of the image are grouped into discrete bins. 

This step is important for standardizing the intensity values across different images and enhancing the 

robustness of the radiomic features. In the MINT software, the bin width for discretization was set to 20. 

This means that the continuous range of intensity values in the MRI images was divided into intervals of 

20 units each. As a result, each pixel intensity in the image was assigned to one of these bins based on 

its value. 

 

5.5.2. 3D SLICER AND RADIOMICS FRONTIERS 

To extract features from the 3D Slicer and Radiomics Frontiers masks, a custom Python script was 

developed utilizing PyRadiomics as the core tool for feature extraction. PyRadiomics is a versatile and 

powerful library that facilitates the extraction of a wide array of radiomic features from medical imaging 

data. As detailed in the Conception Engineering section, this tool is capable of calculating up to seven 

distinct types of radiomic features, including first-order statistics, shape-based features, and texture 

features such as Gray Level Co-occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), and 

others. 

The features extracted from the MINT software served as a reference for feature selection due to their 

suitability and reliability for subsequent analysis. This comparative approach ensured that the feature sets 

from different preprocessing paths could be consistently evaluated. Consequently, the bin width for 

discretization in the Python script was set to 20, mirroring the configuration used in the MINT radiomic 
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extraction. This consistency in the bin width ensured that the discretization process was uniform across 

different tools, facilitating a fair comparison of the extracted features. 

In addition to setting the bin width, the PyRadiomics tool offers numerous settings and preprocessing 

options to enhance the images before feature extraction. One significant preprocessing step available in 

PyRadiomics is the normalization of image intensities. Normalization is a critical step that adjusts the 

intensity values of the images to a common scale, reducing variability due to differences in image 

acquisition and improving the robustness of the extracted features. Therefore, normalization was applied 

to the images that did not already have z-score normalization, described in Section 5.3.  

In summary, the integration of PyRadiomics for feature extraction from 3D Slicer and Radiomics Frontiers 

masks, with careful consideration of preprocessing steps such as bin width and intensity normalization, 

ensured that the radiomic features were robust and comparable across different preprocessing paths.  
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6. RESULTS AND STATISTICAL ANALYSIS 
To facilitate the explanation and understanding of the results a scheme has been created (Figure 18), 

where a number has been assigned to each of the methods that have been carried out for the extraction 

of radiomics characteristics.  

 

 

 

 

 

 

 

 

 

 

 

 

 

From each of the methods, an excel document with 42 radiomic features in the rows and 12 patients in 

the columns was created. 

If the results obtained from each excel were compared at a glance, it could be seen that there were 5 

methods that did not have the normalized intensity values. These were methods 1, 4, 5, 8 and 9. 

Method 1, the one created with the MINT software, did not offer any intensities normalization tool and 

considering that the patients' images came from different MRI acquisition machines, we could not trust 

the results we got gave the method. 

On the other hand, what methods 4, 5, 8 and 9 had in common was that the intensity values had been 

normalized with the PyRadiomics package itself. This is most likely the fault of the author of the Python 

code, as the normalization tool must not have been implemented properly. Since there was not enough 

time to try to fix the problem, it was decided to remove the affected methods and continue the analysis 

with the remaining 4. 

 

One clear thing that had to be done was to reduce the dimensionality of the features, as there were too 

many compared to the number of patients. It was likely that many of the characteristics were correlated 

with each other regardless of the patients' diagnosis. For this reason, a python code was created that 

Figure 18: Scheme that indicates the number of each of the methods. 
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showed the correlation matrix of the features. Figure 19 shows the correlation matrix of the features from 

Method 2. The other three are shown in the Annex section. 

As seen in Figure 19, lots of features were correlated between them so, another Python function was 

created to eliminate one of the features when two of them were correlated more than 0.8 in absolute 

value. Therefore, another correlation matrix was created with the non-eliminated features to see which 

one were not correlated in each of the methods. In Figure 20, there’s represented the filtrated correlation 

matrix of Method 2. The other three are shown in the Annex section.  

Figure 19: Correlation matrix of the features from Method 2. 

Figure 20: Correlation matrix of the features from Method 2 after the filtration. 
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Of course, this procedure was also done in the excels corresponding to the methods 3, 6 and 7. 

After saving the correlation matrices of the 3 other methods, a table was created to be able to compare 

between methods, which features had remained in each case. Table 10 shows this comparison. 
 

      Table 10: Comparison of conserved features between methods. 

FEATURES METHOD 2 METHOD 3 METHOD 6 METHOD 7 

10th X X X X 

90th X X X X 

Energy X X X X 

Entropy X X   

Kurtosis X X X X 

Min X X X X 

Max X X X  

Skewness  X X  

ClusterShade X X X X 

Correlation   X  

Contrast X X   

InterquartileRange X    

RootMeanSquare   X  

 

As seen in Table 10, there are many features that are conserved in the four methods: 10th percentile, 90th 

percentile, Energy, Kurtosis, Minimum intensity, Maximum intensity, and Cluster Shade. In the Annex 

section there’s a table which shows how the features were calculated. 

What was done next was to create a new excel for each method with the 13 calculated characteristics, so 

that they all had the same number of rows. The objective of this new step was to check how different the 

values of the features of each method were. Therefore, the average and standard deviation of the values 

of each characteristic were calculated, for example, the average of the Energy values of the 12 patients 

of each method was calculated, as well as the standard deviation, and so with the remaining 

characteristics. 

These calculations made it possible to make a bar graph for each characteristic and to compare the 

average and the standard deviation of the 4 methods. 

Figure 21 and 22 show the mean and the standard deviation values of the 4 methods for the Skewness 

feature. 
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From Figure 21, and the other mean feature’s chart it was deduced that maybe Method 2 and Method 3 

were correlated between them, as well as Method 6 and Method 7, because they had similar average 

values in most cases. 

To verify this fact, a function was created with python which made a pairwise correlation of the 4 methods. 

In the context of this project, this pairwise correlation involved comparing each pair of features across the 

different datasets (Excel files) to determine how similar or dissimilar they are. By calculating the correlation 

coefficients for each pair, it can be found which features or metrics are consistently related across different 

methods and which ones vary significantly. This helps in understanding the consistency and reliability of 

the segmentation and analysis tools the project is comparing. This technique is called Pearson 

Correlation, and Figure 23 shows a matrix of correlations between the methods. 
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Figure 21: Skewness average values 
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Figure 22: Skewness standard deviation values. 
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This matrix shows that, indeed, Method 2 and 3, give very similar radiomic values, as well as Method 6 

and 7. 

Finally, a Scatter Plot Matrix was created using Python to see the relationships between pairs of variables 

in a dataset. Taking into account the patients diagnose, this tool would help seeing if the relationship of 

all the pair’s combination of a dataset are able to make visible clusters. 

Here's a detailed explanation of what a scatterplot matrix does and how it is used: 

Each cell in the grid represents a scatterplot of two variables plotted against each other. If you have N 

variables, the matrix will be NxN in size.  

• Diagonal Elements: The diagonal cells typically show the distribution of each variable, often 

using histograms or density plots. This allows you to quickly see the distribution of each individual 

variable. 

• Off-Diagonal Elements: The off-diagonal cells show scatterplots of each pair of variables. This 

allows you to visually inspect the relationships between every possible pair of variables in the 

dataset. 

 

The Scatter Plot was tested on Method 2 and Method 6 but there were no interpretable results.  

 

  

Figure 23: Pearson correlation matrix between methods. 
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7. EXECUTION SCHEDULE 

To minimize the preparation time of the project and not encounter many obstacles during the process, it 

was necessary to meticulously design and adhere to a comprehensive execution schedule. By 

strategically allocating resources and delineating clear objectives, this approach ensures an efficient 

progress and facilitates the achievement of project milestones, ultimately contributing to enhanced 

diagnostic capabilities in oncology. 

Thus, this section presents the Work Breakdown Structure (WBS) and the phases of the project, with the 

PERT-CPM and the Gantt diagram.  

 

7.1. WORK BREAKDOWN STRUCTURE (WBS) 

The Work Breakdown Structure (WBS) is a comprehensive and systematic representation of all the tasks 

required to develop a project, presented in a hierarchical decomposition. This structured approach 

facilitates a clear understanding of the project's scope by breaking it down into manageable sections.  

At its core, the WBS consists of multiple levels, with the primary two levels being particularly crucial. The 

first level provides an overarching view of the project, outlining the major components and deliverables. 

The second level dives deeper into these components, detailing the specific tasks and activities necessary 

to achieve each principal point. 

 By organizing tasks in this manner, the WBS not only helps in assigning responsibilities but also in 

tracking progress and ensuring that all aspects of the project are covered comprehensively. 

Figure 24 shows the WBS of this project. 

 

 

 

 

 

 

 

Figure 24: WBS of the project. 
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7.2. PERT DIAGRAM 

As it’s seen in Figure x, the project is divided into 7 packages of work. Each of them has several tasks to 

be accomplished. Therefore, to coordinate them and reach the deadline of the project, the PERT- CPM 

diagram has been developed. This diagram visually represents the tasks, their timing and their 

relationship. The chronological dependence of each task and its duration has been defined in Table 11.  
 

Table 11: Tasks and timings of the project. 

WBS ID PERT ID 
Previous 
activity 

Following 
activity 

Time 
(days) 

1.1 Bibliographic research A - B, M 10 

1.2 Familiarization with the problem B A G, H 4 

2.1 Series exportation from PACS C - D, F 1 

2.2 DICOM to NifTi function development D C E 15 

2.3 Filtration of series function development E D K 3 

3.1 Segmentation of ROIs with 3D Slicer F C I 5 

3.2 Segmentation of ROIs with MINT Lesion G B O 5 

3.3 Segmentation of ROIs with Radiomics 
Frontiers (Syngo.via) 

H B I 5 

3.4 NifTi transformation of the ROIs I F, H J 3 

3.5 Rotation of ROIs function development J I N 4 

4.1 Registration of T2 + T1 function development K E L 15 

4.2 Intensity normalization function development L K N 8 

5.1 Feature selection M A N 4 

5.2 Feature extraction function development N L, J, M, O P 10 

5.3 Feature extraction from MINT Lesion O G N 4 

6.1 Correlation matrix’s function development P N Q 5 

6.2 Scatter plots’ function development Q P R 5 

6.3 Interpretation of the results R Q S 10 

7.1 Elaboration of the memory of the project S R T 15 

7.2 Elaboration of the oral exposition T S - 5 
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From the precedencies in Table 11, the chronological order of the tasks has been set, and the PERT-

CPM has also been drawn in Figure 25. By calculating the early time and last time for each task, it can 

be determined the critical path of the project. This one represents the sequence of tasks that must be 

completed for the project to be finished on time. It ensures that a task cannot start until its predecessor 

has been completed but allows for simultaneous execution of multiple tasks.  

To understand better the concept, a proper definition of each term is provided: 

• Early time: minimum necessary time to perform a task. 

• Last time: latest time in which a task can be developed. It is the maximum time that an activity 

can reach. 

• Critical path: group of activities that, in case of there being a delay, would modify the final timing 

of the project. 

 

 

 

 

 

 

 

 

As deduced from Figure 25, the critical path of this project consists of tasks C, D, E, K, L, N, P, Q, R, S, 

and T. This sequence is obviously the critical one as it includes the final writing task and the preparation 

of the presentation. It is clear that the project cannot be completed until the writing portion is finished, 

which needs a considerable amount of time.  

Additionally, the development of the DICOM to NifTi function using Python is another lengthy task. This 

involves complex coding and validation to ensure the conversion is accurate and reliable. Similarly, the 

creation of a registration code for T2 and T1 series is a time-consuming process. These tasks, along with 

the writing task, each require approximately 15 days to complete. The registration code task involves 

aligning images from different modalities (T2+T1), which is technically challenging and necessitates 

meticulous attention to detail. 

These critical tasks are essential for the project's success and are essential in determining the project's 

overall timeline. Each task's duration and complexity highlight the importance of careful planning to ensure 

that deadlines are met and the project is completed in time. 

Figure 25: PERT diagram of the project. 
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7.3. GANTT DIAGRAM 

A gantt diagram is a work planning tool, since it presents all the activities that must be carried out and 

when they must be carried out. It also allows to have an idea of how the project is progressing and if it is 

necessary to reschedule the planned actions in order to adapt the project to the new environment or 

needs. 

All the tasks that define the project are illustrated in the GANTT diagram seen in Table 12, to provide a 

clear visualization of the project's timeline. As told, this diagram allows us to see the precise start and end 

dates for each activity, understand the duration of each task, and identify any overlapping activities. Most 

importantly, it helps in establishing the overall start and finish dates for the project. This visual 

representation ensures we have a comprehensive view of the project's progression over time. 

 

The grey lines during the final days of March indicate the Easter holidays, ranging from March 23rd to April 

1st, while the grey line on May 1st marks Worker’s Day, which is also a public holiday. In Table 12, the 

pink lines represent the critical path of the project. This critical path started on February 19th and concluded 

on May 31st. Given that the final submission of the project report was scheduled for June 5 th, with the 

presentation following on June 10th, the critical path had a maximum flexibility of approximately 10 days. 

This margin underscores the importance of adhering to the timeline, as any delays in the critical path 

tasks would significantly impact the overall project completion, leaving little room for unforeseen setbacks. 

Table 12: GANTT diagram of the project. 
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The careful planning and identification of these key dates ensure that all essential activities are completed 

on schedule, thereby mitigating the risk of overruns, and ensuring a timely project delivery.  

8. TECHNICAL VIABILITY 

This section shows the SWOT (Strengths, Weaknesses, Opportunities and Threats) analysis, which 

provides a comprehensive overview of the project's internal strengths and weaknesses, as well as the 

external opportunities and threats it faces. By addressing these factors, the project aims to make a 

significant contribution to the early diagnosis and treatment of ovarian cancer. 

The following table shows the schematic SWOT analysis of the project. 
 

Table 13: SWOT analysis of the project. 

IN
T

E
R

N
A

L
 

STRENGTHS WEAKNESSES 

• High motivation of the author. 

• Previous development of code/ 
programming knowledge. 

• Periodic meetings to share the progress 
and discuss possible improvements. 

• Small list of patients. 

• Lack of reality since not all the radiomics 
features have been taken into account. 

• Lack of experience in image processing. 

E
X

T
E

R
N

A
L

 

OPPORTUNITIES THREATS 

• Increasing interest and investment in 
radiomics research and applications. 

• Potential for its integration into clinical 
workflows. 

• Limited time. 

• Unexpected technical difficulties. 

 

8.1. STRENGTHS 

One of the key strengths of this project is the high motivation of the author. This enthusiasm drives the 

project forward and ensures a committed approach to problem-solving and achieving the project goals. 

Additionally, the previous development of code and programming knowledge is a significant advantage. 

This expertise allows for the efficient handling of technical challenges and the development of 

sophisticated functions required for radiomics analysis. 

Moreover, periodic meetings to share progress and discuss possible improvements provide a structured 

framework for the project. These meetings facilitate continuous feedback and collaboration, ensuring that 

the project remains on track and benefits from diverse perspectives. 

8.2. WEAKNESSES 

Despite these strengths, there are some notable weaknesses. The small list of patients is a limitation, as 

it can affect the generalizability of the results. A larger dataset would provide more robust and reliable 

findings. 
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Furthermore, there is a lack of reality since not all the radiomics features will been taken into account. 

This omission could result in an incomplete analysis, potentially overlooking important data insights. 

Additionally, the lack of experience in image processing is also going to suppose a challenge. Although 

the author has programming skills, specific expertise in image processing is crucial for accurately 

analyzing MRI data and extracting meaningful features. 

 

8.3. OPPORTUNITIES 

However, there are significant opportunities that can be leveraged. There is an increasing interest and 

investment in radiomics research and applications. This growing field offers numerous possibilities for 

innovation and collaboration, enhancing the project's potential impact. 

Moreover, the potential for integrating radiomics into clinical workflows presents a substantial opportunity. 

Successful implementation of this project could lead to improved diagnostic processes and personalized 

treatment plans, directly benefiting patient care. 

 

8.4. THREATS 

Despite the opportunities, there are threats that must be considered. Limited time is a major constraint, 

as the project must be completed within a set timeframe. This pressure can affect the thoroughness of 

the research and the quality of the outcomes. 

Additionally, unexpected technical difficulties can arise, potentially disrupting progress. These challenges 

can be unpredictable and may require additional resources and time to resolve, impacting the overall 

success of the project. 
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9. ECONOMIC VIABILITY 

In this section, information is provided on the financial requirements necessary to be able to adequately 

achieve the project's objective. 

The following table includes various cost elements associated with the development and implementation 

of the radiomics pipeline for discriminating malignant and benign ovarian masses from MRI images. 
 

Table 14: Total cost of the project. 

ITEM DESCRIPTION COST PER UNIT TOTAL COST 

IMAGE ACQUISITION 

MRI Num of patients = 12 200€ [28] 2.400€ 

SEGMENTATION SOFTWARES 

MINT LESION Closed software 

1 license = 13.000€ 

Annual revision = 
7.000€ 

20.000€ 

SYNGO.VIA Closed software * 0€ 

3D SLICER Open software Free 0€ 

DATA PROCESSING 

PYTHON Python 3.11 Free 0€ 

ANTs MODULE Registration module Free 0€ 

PYRADIOMICS 
MODULE 

Radiomic module Free 0€ 

HUMAN RESOURCES 

BME STUDENT 300 hours 15€/hour 4.500€ 

DIRECTORS 
40 hours/director 

2 directors 
20€/hour 1.600€ 

RADIOLOGIST 12 hours 20€/hour 240€ 

TOTAL 28.740€ 

*Free if the hospital has bought a machine from Siemens 

 

Therefore, the project’s total cost is 28.400€. It is important to note that a huge portion of the budget was 

allocated to the segmentation software, since one of them is closed and has a considerable cost. 

Additionally, the human resources budget was also expensive. 
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10. REGULATIONS AND LEGAL ASPECTS 

Ensuring compliance with regulatory and legal requirements is crucial for the successful development and 

implementation of the radiomics pipeline for discriminating malignant and benign ovarian masses from 

MRI images. Given that this project is located at the Hospital Clinic in Barcelona, it must adhere to 

regulations and legislation imposed by both the European Parliament and the Spanish Government. 

As this project serves as a final degree project for the Universitat de Barcelona, it must follow the 

regulations declared in the Royal Decree 1393/2007 [29], which governs the structure and organization 

of official university education in Spain. This decree outlines the standards and procedures for academic 

projects, ensuring they meet the educational and scientific requirements set by the institution. 

In addition to academic regulations, the project must comply with Spanish laws related to biomedical 

research. The law 14/2007 [30] regulates biomedical investigation in the country, establishing the 

principles that researchers must follow and the rights of patients, including non-discrimination, informed 

consent, and data confidentiality. This law ensures that all biomedical research conducted within Spain 

adheres to ethical standards that protect patient rights and promote scientific integrity. 

The project involves using pelvic MRI scans from patients to develop and validate the radiomics pipeline. 

That’s why it follows GDPR, an European regulation 2016/679 on the protection of natural persons 

regarding the processing of personal data [31] and a Spanish data protection law (Ley Orgánica 3/2018) 

also about the protection of patients’ data [32], which dictates that all the information should be 

anonymised and nonpersonal information should be visualized by the researchers like locations, ethnicity, 

among others. Measures such as encryption, secure data storage, and access controls were implemented 

to protect patient data.  

Therefore, data anonymization techniques were employed to safeguard patient identities. Internally, the 

Hospital Clínic has strict data protection protocols. The anonymization of patients is handled by creating 

an independent file that links each patient's anonymous ID to their respective National Health Identifier 

(NHI). This file is kept secure within the hospital’s network and is not accessible outside, adhering to the 

European Union Regulation 2016/679 [31], mentioned before in the text. 

By rigorously following these regulations and implementing robust data protection measures, the project 

not only meets legal requirements but also ensures the ethical treatment of patient data. This compliance 

is fundamental to maintaining the trust of patients and the integrity of the research. The commitment to 

these standards underscores the project's dedication to advancing medical research while safeguarding 

the rights and privacy of individuals. 
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11. CONCLUSIONS AND FUTURE LINES 

In this study, a comprehensive analysis was conducted to evaluate the effectiveness of different 

segmentation and radiomic analysis methods for discriminating between benign and malignant ovarian 

masses from MRI images. Several methods were tested, and various challenges were encountered, 

particularly with intensity normalization and the limited sample size. The following conclusions summarize 

the key findings and insights from the project. 

Firstly, it is likely that if the intensity normalization had been correctly implemented, the results obtained 

from the methods that were eliminated would have been similar to those achieved. Specifically, methods 

4 and 5, as well as methods 8 and 9, would probably have shown comparable outcomes. 

Secondly, the choice of segmentation software appears to be somewhat indifferent, as the radiomic 

results were very similar across different tools. For instance, methods 6 and 7 produced almost identical 

results, indicating that the segmentation process is not significantly affected by the software used. 

Furthermore, the study had too few patients to definitively determine whether the features were effective 

in classifying tumors into benign, malignant, and borderline categories. This limitation hindered the ability 

to make robust conclusions about the classification capabilities of the extracted radiomic features. 

Additionally, it is probable that many radiomic features that were discarded during the conceptual 

engineering phase could have been more effective in classifying the types of tumors. This suggests that 

a broader inclusion of radiomic features might improve the accuracy and reliability of tumor classification 

in future studies. 

In conclusion, addressing the issues of intensity normalization, increasing the sample size, and re-

evaluating the discarded radiomic features could potentially enhance the accuracy and reliability of the 

radiomics pipeline for discriminating between benign and malignant ovarian masses from MRI images. 

 

The radiologist who intends to further develop this project is already segmenting additional tumors to 

create a larger database. This expansion is crucial, as it would allow the application of more advanced 

artificial intelligence algorithms capable of distinguishing between the three types of tumors. With a more 

extensive patient dataset, the statistical analysis presented in this project's report would become 

significantly more reliable and robust. The initial sample of 12 patients is too small to draw definitive 

conclusions, but a larger dataset would provide a more accurate representation and validation of the 

findings. 

Additionally, there is an intention to write and publish an article about the project. The goal is to 

standardize the methods developed in this project for tumor detection and classification, ensuring that 

they can be utilized in hospitals. Such standardization would pave the way for wider adoption of these 

techniques, potentially improving diagnostic accuracy and patient outcomes in clinical settings. Moreover, 

a published article would contribute to the scientific community by providing detailed insights and 

methodologies that other researchers and clinicians can build upon. 

Furthermore, with a larger dataset, there would be opportunities to explore and validate additional 

radiomic features that were initially discarded during the conception phase of the project. These features 

might enhance the classification accuracy and provide deeper insights into the tumor characteristics. This 
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continuous improvement and validation process is essential for advancing the field of radiomics and 

integrating these techniques into routine clinical practice. 

In summary, the next steps involve not only expanding the database and refining the methods but also 

disseminating the findings through publication and advocating for the clinical adoption of these advanced 

radiomic techniques. This comprehensive approach will ensure that the project's outcomes have a lasting 

and meaningful impact on the diagnosis and treatment of ovarian tumors. 
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Annex 

 Figure A 1: Correlation matrix of the features from Method 3. 

Figure A 2: Correlation matrix of the features from Method 3 after the filtration. 
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Figure A 3: Correlation matrix of the features from Method 6. 

Figure A 4: Correlation matrix of the features from Method 6 after the filtration. 
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Figure A 5: Correlation matrix of the features from Method 7. 

Figure A 6: Correlation matrix of the features from Method 7 after the filtration. 
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Feature Mathematical Formula Pyradiomics function 
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Figure A 7: Formulas and functions of the final 13 features. 
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