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a b s t r a c t

We propose a daily growth-at-risk (GaR) approach based on high-frequency financial
and real indicators for monitoring downside risks in the US economy. We show that
the relative importance of these indicators in terms of their forecasting power is time
varying. Indeed, the optimal forecasting weights of our variables differed clearly between
the Global Financial Crisis and the recent Covid-19 crisis, reflecting the dissimilar nature
of these two events. We introduce LASSO, elastic net, and adaptive sparse group LASSO
into the family of mixed data sampling models used to estimate GaR and show how
they outperform previous candidates explored in the literature. Moreover, equity market
volatility, credit spreads, and the Aruoba–Diebold–Scotti business conditions index are
found to be relevant indicators for nowcasting economic activity, especially during
episodes of crisis. Overall, our results show that daily information about both real and
financial variables is key for producing accurate point and tail-risk nowcasts of economic
activity.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Many recent studies have analyzed the predictive
ower of financial variables as indicators of real economic
ctivity in times of crisis. One stream of this literature
as emphasized the significant role played by financial
ndicators in forecasting low quantiles of the real GDP
rowth rate (e.g., Adrian et al., 2019; Giglio et al., 2016),
hile another reports that, having controlled for real
ariables, financial indicators have little to add to the mix
e.g., Plagborg-Møller et al., 2020; Reichlin et al., 2020).

✩ This work was supported by the Spanish Ministry of Science and
Innovation under Grant PID2019-105986GB-C21, and by the Depart-
ment of Business and Knowledge of the Generalitat de Catalunya under
Grant 2020-PANDE-00074.

∗ Correspondence to: Av. Diagonal, 690, 08034, Barcelona, Spain.
E-mail addresses: hchulia@ub.edu (H. Chuliá), igarron@ub.edu

(I. Garrón), juribeg@uoc.edu (J.M. Uribe).
ttps://doi.org/10.1016/j.ijforecast.2023.05.008
169-2070/© 2023 The Author(s). Published by Elsevier B.V. on behalf of Inte
he CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
And yet, at the same time, a number of studies actually
make the opposite claim and conclude that after financial
variables have been incorporated into the forecasting
equation, real variables have little to add (see Carriero
et al., 2022).

This lack of consensus arises because forecasting real
economic activity (or any part of the growth distribution,
for that matter) using financial variables is a uniquely
challenging problem: first, because financial and real vari-
ables are generally sampled at different frequencies, the
former at a considerably higher frequency than the latter;
and second, because quantifying just how much financial
variables add in terms of forecasting power seems to be as
much a causal question as a predictive one, inseparable in
this regard from the recurring controversy in economics
concerning the dichotomy between nominal and real vari-
ables, and how (and the extent to which) the former
influence the latter. Furthermore, this second concern
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highlights the tension between what can be considered
tasks of pure prediction and pure causal inference in the
social sciences in general, and in economics in particular
(Athey, 2017). This theoretical distinction is far from clear
when it comes to undertaking macroeconomic studies
that are, out of necessity, observational and in which
forecasting can generally be improved by using domain
knowledge that is causal. Moreover, forecasting exercises
are generally expected to improve our understanding of
the causal mechanisms at work in the economy. In short,
we tend to trust forecasts more than we can actually
fathom.

Given the complexity of this relationship and the mul-
iplicity of aims that a researcher or policymaker may
ave when making a forecast, we recommend adopting
n eclectic approach. In so doing, both financial and real
ariables should ideally be used for forecasting episodes
f economic crisis, while the data should be allowed to
ighlight the relative importance of each set of variables
n a time-varying basis. By adhering to such an approach,
e are able to make two major contributions to the

ield. First, we show that the informational content of
aily financial and real economy indicators differs across
ime. Thus, in certain circumstances, forecasting accuracy
epends heavily on such financial indicators as the equity
arket volatility (VXO) index or credit spreads; however,

n other circumstances, real economic indicators, such
s the Aruoba–Diebold–Scotti business conditions (ADS)
ndex (Aruoba et al., 2009), are better at enhancing fore-
asts. Here, our results clearly point to the time-varying
mportance of real and financial variables. We compute
he optimal weights that our nowcasting growth-at-risk
GaR) models assign to the ADS index or to financial
ariables when combining forecasts, and we show that in
eriods such as the aftermath of the Global Financial Crisis
GFC), financial indicators play a far more relevant role
han the ADS index, while the opposite holds true for the
ecent Covid-19 crisis. This finding is in agreement with
he general consensus reached by the macro-financial
iterature which highlights the financial nature of the
FC, during which financial markets and intermediaries
cted as amplifiers of systemic shocks (Brunnermeier &
annikov, 2016; Gertler & Gilchrist, 2018; Isohätälä et al.,
016). It is also in agreement with studies claiming that
he Covid-19 crisis was simply a product of the sup-
ly restrictions imposed to contain the pandemic, which
ere real and supply-side in nature, albeit with reper-
ussions for aggregate demand (Guerrieri et al., 2022).
hus, it is apparent that understanding the mechanisms
nderpinning a crisis is a purely causal task that can en-
ble researchers to interpret the results of the forecasting
xercise and to improve the actual forecast.
Second, we also contribute to the GaR literature, as

ioneered by Adrian et al. (2019), by using high-frequency
inancial and real indicators. Unlike most of the literature
hat employs either quarterly (e.g., Adrian et al., 2019;
rownlees & Souza, 2021) or weekly indicators (Carriero
t al., 2022) to forecast tail risk to GDP growth, we es-
imate our models using daily right-hand-side variables.
his means our results are based on more real-time in-
ormation than is usually the case in the extant literature.
763
Exceptions exist – most notably Ferrara et al. (2022) and
De Santis and Van der Veken (2020) – but in the cited
instances, real variables are neglected and the number
of financial indicators included is limited. Thus, our re-
sults are supported by richer cross-sectional information
at the intended frequency than is the case in previous
studies, and so we present models of considerably greater
accuracy.

One significant concern that needs to be addressed
when working with daily predictors, yet without exclud-
ing any variables (financial or real) a priori, is the rate
at which the number of parameters to be estimated in-
creases. In this instance, shrinkage, regularization, and di-
mensionality reduction techniques, such as those afforded
by LASSO, elastic nets (ENs), the adaptive sparse group
LASSO, or principal components analysis (PCA), become
essential. Here, we introduce these methods into mixed
data sampling (MIDAS)-quantile models for estimating
GaR and use quantile regression for high-dimensional
spaces, as proposed by Belloni and Chernozhukov (2011),
and PCA to reduce the dimensions of our problem even
further. In line with the warnings reported by Lima et al.
(2020) and Lima and Meng (2017), parameter-reduction
techniques are critical when operating at such high fre-
quencies. The LASSO-quantile (LASSO-Q) model is de-
scribed as outperforming other alternatives proposed in
the literature, for example, traditional MIDAS quantile
regression, where the vector of high-frequency terms
takes an arbitrary form, estimated by either frequentist
(Ghysels et al., 2016) or Bayesian methods (Ferrara et al.,
2022; Mogliani & Simoni, 2021), both in-sample and out-
of-sample. In addition, in line with Stock and Watson
(2004), Andreou et al. (2013), and Ferrara et al. (2022),
we show that combined forecasts using all indicators are
more accurate, especially out-of-sample.

We validate our conclusions using a battery of statis-
tics drawn from different fields of forecasting and quan-
titative risk management. Here, rather than relying on
a single statistic taken from the forecasting literature
which, for instance, may not take into account when the
value at risk (VaR) of a series is estimated (low or high
conditional quantile), we seek to ensure two properties:
unconditional coverage and independence (Christoffersen,
1998). This is important because, as shown by Brownlees
and Souza (2021) in a multi-country setting, original in-
dicators of GaR frequently fail to pass basic tests designed
in finance to measure the precision of VaR estimates. This,
in turn, can call into question the utility of the whole
enterprise.

We show that this is not the case for our indicators.
In fact, on the vast majority of occasions, daily finan-
cial information together with daily information on real
activity are especially useful for anticipating adverse sce-
narios for GDP growth. Moreover, we show that our GaR
statistics are adequate and satisfy expectations in terms
of performance.

The rest of this paper is organized as follows. Sec-
tions 2 and 3 present our data and methodology, respec-
tively. Section 4 presents our main results, while Section 5
concludes.
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2. Data

Here, we seek to nowcast the conditional tail of the
istribution of real GDP growth (or GNP for some of the
ample period)1 on a pseudo-real-time basis. To do this,
e use the quarterly real-time data set reported by the
ederal Reserve Bank of Philadelphia (FRBP) spanning the
eriod from 1986Q1 to 2020Q4. Specifically, this data set
aptures the advance estimate for the previous quarter,
eleased towards the end of the month of the current
uarter.2
In the case of our high-frequency variables, we include

2 daily predictors to make the GaR forecasts (11 financial
ariables and one real variable). Of this set, eight series are
he same as those employed by Pettenuzzo et al. (2016):
) the ADS daily business cycle index designed by Aruoba
t al. (2009), which comes from a dynamic factor model
t daily frequency; ii) the interest rate spread between
he 10-year government bond rate and the federal fund
ate (ISPREAD); iii) the change in the effective Federal
unds rate (EFFR); iv) the BAA-AAA-rated corporate bond
ield credit spread (CSPREAD); v) the excess return on
he market (RET); vi) the returns on the portfolio of small
inus big stocks (SMB); vii) the returns on the portfolio
f high minus low book-to-market ratio stocks (HML);
nd viii) the returns on a winner minus loser momen-
um spread portfolio (MOM). In addition, we include four
inancial indicators: the equity market volatility index
VXO), which has previously been used as a risk indica-
or3; the spread between the yield of 10-year constant
aturity Treasury bonds and three-month Treasury bills

TERM), as a predictor of US recessions4; the spread be-
ween the three-month LIBOR based on US dollars and
he three-month Treasury bill spread (TED), as a proxy
f credit risk5; and the Composite Indicator of Systemic
tress (CISS) for the US, which is a systemic risk measure
ased on 15 raw market indicators, following a computa-
ion analogous to the CISS for the euro area (Holló et al.,
012). This last variable is used as a benchmark indicator
n our models, as the standard GaR framework considers
composite financial condition index (Adrian et al., 2019;
igueres & Jarociński, 2020). Again, our data sample spans
he period from 1986Q1 to 2020Q4 and is restricted by
he availability of data for all indicators.

The ADS index is used in our nowcasting exercise
ith weekly vintages starting 30 November 2008. Al-
hough this approach reduces uncertainty at the sample

1 In December 1991, the Bureau of Economic Analysis switched from
reporting GNP to reporting GDP as its output measure. Later, in January
1996, they also switched from calculating GDP using fixed-weight
aggregation to chain-weight methods.
2 Faust et al. (2013) use this data set to forecast real-time measures

of economic activity using Bayesian model averaging with a large
number of real and financial indicators.
3 Rey (2015) shows that this indicator comoves with global capital

flows, global credit growth, and global asset prices. Longstaff et al.
(2011) also document that the price of sovereign risk is strongly
correlated with VXO.
4 Estrella and Mishkin (1998) and the subsequent literature have

shown the forecasting power of the term spread for recessions.
5 Gunay (2020) shows that the TED spread is superior to credit

default swap indexes as an early-warning indicator for the credit
market.
 1
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endpoints (Amburgey & McCracken, 2022), uncertainty
remains due to the estimation of the ADS index in a
previous step. Maldonado and Ruiz (2021) emphasize the
importance of measuring this type of uncertainty accu-
rately in empirical applications. This means, for instance,
that favorable economic conditions (i.e. better than aver-
age) can only be confidently asserted if both the point
estimate of the ADS index and its confidence intervals
are positive. This uncertainty is, therefore, inherent in
our GaR models, given that they use the ADS index as
an input variable, and may, as such, produce overstated
results (i.e. providing estimates that appear more precise
than what they actually are). This limitation applies to
all nowcasting exercises that use an index estimated in
a prior step (and not only the ADS index), and needs to
be acknowledged. We include up to one year of daily lags
of the high-frequency indicator in all our specifications.
A detailed description of these indicators is provided in
Table 1.

3. Methodology

To nowcast tail risks in GDP growth, we extend Adrian
et al.’s (2019) formulation to account for high-frequency
(daily) predictors. In this section, we show briefly how
we adapt the standard GaR to incorporate daily financial
and real indicators using mixed data sampling. To this
end, we compare the respective performance of a tra-
ditional MIDAS (with Almon lag polynomials), Bayesian
MIDAS, LASSO, EN, adaptive sparse group LASSO, and soft
and hard thresholding methods. We also show how we
combine forecasts, an approach that has been shown to
improve forecast accuracy. Finally, we present the tools
used to evaluate tail-risk forecasts. A quick note on nota-
tion: bold letters and symbols refer to multivariate objects
such as vectors and matrices.

3.1. Growth-at-risk framework

As in the standard framework of quarterly GaR pio-
neered by Giglio et al. (2016) and Adrian et al. (2019),
we rely on quantile regressions (Koenker & Bassett, 1978).
Specifically, we assess the combined effect of past GDP
growth (yt−h) and a given financial condition indicator
xt−h) at quarter t and forecast horizon h on current
utput growth (yt ). At this point it is important to recall
hat even though xt−h is observed daily, it is aggregated
o quarterly frequency by simple averaging.

The baseline quantile regression is given by:

t = β0 (τ ) + β1 (τ ) yt−h + β2 (τ ) xt−h + ϵt (τ ) , (1)

here β (τ ) = (β0 (τ ) , β1 (τ ), β2 (τ ) )′ denotes the vector
f parameters corresponding to the τ th quantile, and
t (τ ) is random noise.
The parameters in Eq. (1) are estimated by minimizing

he tick loss (TL) function:

Lτ =
1
T

T∑
t=h+1

[ρτ (yt − Qτ (yt |yt−h, xt−h))] , (2)

where ρτ (ϵt) = (1 − τ) 1{ϵt<0} |ϵt | + τ1{ϵt>0} |ϵt |, with
taking a value of 1 when the subscript is true
{ϵt<0}
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Table 1
Detailed description of variables.
Variable Frequency Sample Lag Description Source

ADS Daily Jan. 1, 1986,
to Dec. 31,
2020

1 year ADS index weekly
vintages collected in
real time from 30
November 2008

Federal Reserve
Bank of
Philadelphia

ISPREAD Daily Jan. 1, 1986,
to Dec. 31,
2020

1 year Interest rate spread
between the 10-year
government bond
rate and the federal
fund rate

Federal Reserve
Bank of St.
Louis

EFFR Daily Jan. 1, 1986,
to Dec. 31,
2020

1 year Effective Federal
Funds rate, first
difference

Federal Reserve
Bank of St.
Louis

CSPREAD Daily Jan. 1, 1986,
to Dec. 31,
2020

1 year BAA-AAA-rated
corporate bond yield
credit spread

Federal Reserve
Bank of St.
Louis

RET Daily Jan. 1, 1986,
to Dec. 31,
2020

1 year Excess return on the
market, value-weight
return of US stocks

Fama and
French (1993)

SMB Daily Jan. 1, 1986,
to Dec. 31,
2020

1 year The average return
on the three small
portfolios minus the
average return on the
three big portfolios

Fama and
French (1993)

HML Daily Jan. 1, 1986,
to Dec. 31,
2020

1 year The average return
on the two value
portfolios minus the
average return on the
two growth portfolios

Fama and
French (1993)

MOM Daily Jan. 1, 1986,
to Dec. 31,
2020

1 year The average return
on the two high prior
return portfolios
minus the average
return on the two
low prior return
portfolios

Fama and
French (1993)

VXO Daily Jan. 1, 1986,
to Dec. 31,
2020

1 year Option-based implied
volatility measure of
S&P 100

Federal Reserve
Bank of St.
Louis

TERM Daily Jan. 1, 1986,
to Dec. 31,
2020

1 year Spread between the
yield of 10-year
constant maturity
Treasury bonds and
of 3-month Treasury
bills

Federal Reserve
Bank of St.
Louis

TED Daily Jan. 1, 1986,
to Dec. 31,
2020

1 year Spread between
three-month LIBOR
based on US dollars
and three-month
Treasury bills

Federal Reserve
Bank of St.
Louis

CISS Daily Jan. 1, 1986,
to Dec. 31,
2020

1 year Daily systemic risk
measure based on
Holló et al. (2012).

European
Central Bank

GDP growth Quarterly Q1, 1986, to
Q4, 2020

1 quarter Real GDP or gross
national product,
percent change from
preceding period,
quarterly, seasonally
adjusted.

Federal Reserve
Bank of
Philadelphia
and 0 otherwise. The mathematical formulation in Eq. (2)
leads to the solution of a linear programming optimiza-
tion problem that we have not included here. Its basic
structure and the counterpart algorithm solution can be
found in Koenker (2005).

The predicted value from Eq. (1) is the quantile of
, which is conditional on the information available
T |T−h

765
up to T − h,

Qτ (yT |yT−h, xT−h) = β0 (τ )+β1 (τ ) yt−h +β2 (τ ) xt−h. (3)

Koenker and Bassett (1978) further prove that the
predicted value Qτ (yT |yT−h, xT−h) is a consistent linear
estimator of the conditional quantile function of yt . In
this setting, we are particularly interested in the GaR(10%)
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measure defined as the conditional 10% quantile forecast
(see Carriero et al. (2022), Ferrara et al. (2022), Figueres
and Jarociński (2020)), namely Qτ=10% (yT |yT−h, xT−h)

6.
This last equation can be interpreted as the 10% quan-

tile of GDP growth, which is conditional on the infor-
mation set available up to T − h for the predictors. On
the one hand, a vast corpus of literature documents that
financial conditions constitute strong predictive informa-
tion for the lower quantiles of future GDP growth (see,
e.g., Adrian et al., 2019; Brownlees & Souza, 2021; Ferrara
et al., 2022; Figueres & Jarociński, 2020; Prasad et al.,
2019). On the other, Plagborg-Møller et al. (2020) and
Reichlin et al. (2020) state that controlling for real factors
is necessary to accurately measure the real-time effect
of financial indicators on real activity. We take these
two results into account in the framework we develop
here by incorporating, as a high-frequency indicator of
the real sector, Aruoba et al.’s ADS daily business cycle
index (2009) in addition to the financial indicators. We
then adopt a combination approach, aimed at producing
a better point forecast, and we verify the optimal weights
of individual high-frequency predictors by following the
literature in this field (see Andreou et al., 2013; Ferrara
et al., 2022; Pettenuzzo et al., 2016; Stock & Watson,
2004).

3.2. Adapting the standard GaR approach to high-frequency
indicators

The handicap of the formulation as stated in Eq. (1)
is that by aggregating the high-frequency indicator, the
model cannot respond to daily shocks. Thus, in line with
Ferrara et al. (2022), we adapt it so as to account for the
daily information flow of the high-frequency indicator up
to the latest available observation (minus hd days), based
on the following regression:

yt = β0 (τ ) + β1 (τ ) yt−1 + XD′

t−hdφ (τ ) + ϵt (τ ) , (4)

where φ (τ ) is a p × 1 vector of daily parameters, and
XD

t = (x0t , x
1
t , . . . , x

p−1
t )′ is a p × 1 vector of the high-

frequency variable available on a daily basis, with xjt , j =

(0, 1, 2, . . . , p − 1), which is updated d times between
quarters t and t − 1. In this setup, we consider yt as
being affected by up to one year (q = 4 quarters) of
past daily shocks and past GDP growth, giving a total
number of parameters (including the constant) approxi-
mately equal to K = q × d + 2 = 4 × 60 + 2 = 242,
assuming a five-day working week (d = 60 days); that
is, XD

t−hd = (x0t , x
1
t− 1

60
, . . . , x239

t− 239
60

)′, with xjt−hd
. Notice that

in this formulation, the forecast horizon is expressed in
high-frequency terms; that is, hd = (0, 1/d, 2/d, . . . , (p−

1)/d).
Our estimation window is wider than that employed

by Ferrara et al. (2022), the latter considering a 60-day
lag window for the high-frequency indicator. This enables
the model to capture up to one year’s worth of daily

6 Alternatively, Adrian et al. (2019) use the 5% quantile forecast as
the measure of tail risk. However, due to our shorter sample period,
we opt to use the 10% quantile.
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information. In our case, the number of parameters K is
relatively higher than the total number of observations T ,
so we are faced with a parameter proliferation problem,
which invalidates the standard estimation procedure of
the quantile regression. Thus, in what follows, we discuss
the four alternative methods used in our results section
to estimate the above regression.

3.2.1. MIDAS-Q
The MIDAS-quantile model (MIDAS-Q) offers an ef-

fective solution for incorporating high-frequency indica-
tors into Eq. (4), relying on a restriction of the form in
which the distributed lags of the high-frequency variable
are included in the regression. Specifically, we introduce
the high-frequency lagged vector XD

t−hd in a quantile re-
gression for the low-frequency dependent variable yt as
ollows:

t = β0 (τ ) + β1 (τ ) yt−1 +

p−1∑
j=0

b(j; θ(τ ))L
j
d xjt−hd

+ ϵt (τ ) ,

(5)

where b(j; θ(τ )) =
∑c

i=0 θi,j (τ ) ji is the Almon lag polyno-
ial weighting function, which depends on the vector of
arameters θ(τ ), where j = (0, 1, 2, . . . , p − 1), and the
rder of the Almon lag polynomial is given by c. While
hysels et al. (2016) propose the beta lag polynomial
unction for the quantile weighting function, we consider
he Almon lag polynomial, as in other more recent works
see Ferrara et al., 2022; Lima et al., 2020; Mogliani &
imoni, 2021). Under the so-called direct method, Eq. (5)
an be reparameterized as follows:

t = β0 (τ ) + β1 (τ ) yt−1 + X̃D′

t−hdφ (τ ) + ϵt (τ ) , (6)

here X̃D
t−hd : = Q × XD

t−hd is a (c + 1) × 1 vector
representing the transformed high-frequency predictor,
Q is a ((c + 1) × p) weighting matrix with the (ith + 1)
row element of Q equal to

(
0i, 1i, 2i, . . . , (p − 1)i

)
for

i = 0, . . . , c. Following Ferrara et al. (2022), we set
c = 3 (third degree Almon lag) and impose two end-
point zero restrictions on the slope and the value of the
lag polynomial (r = 2), such as b

(
p − 1; θj (τ )

)
= 0

and ∇jb
(
j; θj (τ )

)
|j=p−1 = 0, as in Mogliani and Simoni

(2021). This causes the weighting structure to reduce
slowly to zero. Consequently, the number of parameters
of the high-frequency indicator to be estimated is reduced
from (c + 1) to (c + 1 − r) parameters.

3.2.2. BMIDAS-Q
The Bayesian version of the MIDAS-quantile model

(BMIDAS-Q), based on the asymmetric Laplace distri-
bution (ALD) estimation pioneered by Yu and Moyeed
(2001), offers a convenient alternative for estimating
Eq. (6). This approach is adopted by Ferrara et al. (2022) to
nowcast GaR for the eurozone when using high-frequency
financial indicators. Yu and Moyeed (2001) showed that
the minimization problem of quantile regressions (see
Eq. (2)) is equivalent to maximizing the likelihood func-
tion using the ALD for the error term ϵt (τ ). Here, we use
the Gibbs sampling method as implemented by Kozumi
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and Kobayashi (2011), alongside their mixture represen-
tation of ALD.

In this framework, the error term ϵt (τ ) in Eq. (6)
an be represented as a location-scale mixture of normal
istributions in which the mixing distribution follows an
xponential distribution (see Kozumi & Kobayashi, 2011).
This implies that Eq. (6) can be expressed as:

t = β0 (τ ) + β1 (τ ) yt−1 + X̃D′

t−hdφ (τ )

+ ϕ1(τ )vt + ϕ2(τ )
√

σvtut , (7)

where ϕ1 and ϕ2 are fixed parameter functions of the
quantile τ , vt = σ zt follows a standard exponential
function, and ut is a standard normal function. This leads
to the following likelihood function (to simplify assume
X t contains all covariates):

f
(
yt |X ′

tφ (τ ) , vt , σ
)

∝ exp

(
−

T∑
t=1

(
yt − X ′

tφ (τ ) − ϕ1 (τ ) vt
)2

2ϕ2 (τ )2
√

σvt

)

×

T∏
t=1

1
√

σv
,

ith posterior densities for φ, v and σ given by:

φ|X, v, σ , τ ∼ N (̃β, Ṽ ),

v|X, φ, σ , τ ∼ GiG

(
1
2
,

(
yt − X ′

tφ (τ )
)2

σϕ2 (τ )2
,
2
σ

+
ϕ1 (τ )2

σϕ2 (τ )

)
,

|X, v,φ, τ∼Inv − Gamma(a, b),
here

= Ṽ

(
T∑

t=1

X t (yt − ϕ1(τ )vt )
ϕ2 (τ )2 σvt

)
and

V−1
=

T∑
t=1

X ′

tX t

ϕ2 (τ )2 σvt
+ Ṽ−1

0 ,

and a and b are shape and scale parameters of the inverse
gamma distribution, respectively. In our framework, as in
that employed by Carriero et al. (2022), we are interested
in using the posterior mean of the coefficient vector φ (τ )
to produce point forecasts.

3.2.3. Soft thresholding: LASSO-Q and EN-Quantile (EN-Q)
One caveat of the restricted MIDAS approach pre-

sented above is that the predetermined choice of the
weighting function might result in a lag structure for the
high-frequency predictor that fails to maximize forecast
accuracy. Thus, as an alternative, we propose estimating
GaR by using either the LASSO or EN regularization for
choosing a lag structure for the high-frequency predictors
(Bai & Ng, 2008; Lima et al., 2020).

Accordingly, we select the lags of the high-frequency
variable, based on the LASSO-Q algorithm proposed by
Belloni and Chernozhukov (2011). The model can be sum-
marized as follows:

min
β,φ

E[ρτ (yt − β0 (τ ) − β1 (τ ) yt−1 − XD′

t−hdφ(τ ))]

+ λτ

[√
τ (1 − τ )

T

] p−1∑⏐⏐φj(τ )
⏐⏐ , (8)
j=0

767
where the optimization problem is the sum of the stan-
dard quantile minimization function (as in Eq. (2)) and a
penalty function given by a scaled l1-norm of the daily
vector of parameters φj(τ ). The overall penalty is given
by λτ [

√
τ (1 − τ)/T ], where T is the sample size. The

optimal level of λτ (LASSO-Q penalization) is calculated as
in Belloni and Chernozhukov (2011). The LASSO-Q penalty
has the distinctive feature of making the coefficients of
insignificant predictors exactly equal to zero, retaining
only the informative predictors for the forecast.

Zou and Hastie’s (2005) EN estimator seeks to address
two potential drawbacks of the original LASSO. First, if
K > T , LASSO can select T variables at most. Second, if
there is a group of variables with high pairwise correla-
tion coefficients, LASSO tends to select only one variable
from the group and does not care which one. Both LASSO
and EN shrink the estimates and perform model selec-
tion. However, while the LASSO penalty is convex, the EN
penalty is strictly convex, which means that predictors
must be grouped to have similar coefficients. The EN-Q
objective function is given by:

min
β,φ

E[ρτ (yt − β0 (τ ) − β1 (τ ) yt−1 − XD′

t−hdφ(τ ))] +

λ1,τ

p−1∑
j=0

⏐⏐φj(τ )
⏐⏐+ λ2,τ

p−1∑
j=0

φj (τ )2 ,
(9)

here λ1,τ and λ2,τ are two tuning parameters that satisfy
λ2,τ

λ1,τ +λ2,τ
> 0. This restriction implies that the EN-Q

is strictly convex, so it forces high pairwise correlated
predictors to have similar coefficients. As a result, EN-
Q stretches the net so as to retain all the important
predictors, even if they are highly correlated.

As Zou and Hastie (2005) show, the EN objective func-
tion can be reformulated as a LASSO problem.7 This has
appealing computational properties, since we can use the
Belloni and Chernozhukov (2011) algorithm to estimate
the EN-Q model. To implement this, let us first define
(where for the sake of simplicity, we assume that X t
contains all the covariates): y+

t (τ ) =
(
ytOp

)′ and X+

t (τ ) =

1√
1+λ2,τ

(
X t
√

λ2,τ Ip
)′
, where Op represents a p× 1 vector

of zeros, and Ip is a p × p identity matrix.
Based on this new formulation, Eq. (9) can be re-

expressed as follows:

min
φ++

E[ρτ (y+

t − X+
′

t φ (τ ))] + γτ

p−1∑
j=0

⏐⏐φj(τ )
⏐⏐ , (10)

where γτ =
λ1,τ√
1+λ2,τ

. Notice that now the sample size is

equal to T + p, which enables EN to select all p high-
frequency predictors in all cases. To remove the dou-
ble shrinkage effect from LASSO, the EN-Q estimator is
φ+ (τ ) = (1 + λ2.τ )φ++ (τ ) (see Zou and Hastie (2005)).
In our application, we only apply this correction if we
use the EN-Q model to produce the conditional quantile
nowcasts directly.

7 Bai and Ng (2008) and Lima et al. (2020) use this approach to
produce conditional mean forecasts with different loss functions. The
former apply the mean square error and the latter the TL function.
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3.2.4. Soft and hard thresholding methods: LASSO-PCA-Q
and EN-PCA-Q

In line with Lima et al. (2020) and Bai and Ng (2008),
e apply soft and hard thresholding methods when mak-

ng forecasts with many predictors. To implement this
pproach, we estimate principal components from the
on-zero coefficients selected by LASSO-Q or EN-Q and,
sing these selected variables, we can estimate factors by
CA and select the optimal number of factors using the
igenratio (Ahn & Horenstein, 2013). Finally, we retain the
actors associated with p-values lower than 0.01 (or the
ost statistically significant). To differentiate these mod-
ls from those that only use the soft threshold to make
heir forecasts (i.e. LASSO-Q and EN-Q), we label models
f this type as LASSO-PCA-Q or EN-PCA-Q, with the first
tep being selected by LASSO-Q or EN-Q, respectively.

.2.5. Adaptive sparse group LASSO (ASGL-Q)
In line with Mendez-Civieta et al. (2021), we intro-

uce a novel framework based on an adaptive sparse
roup LASSO-quantile (ASGL-Q) regression framework.8

This technique is particularly suited to high-dimensional
problems where (p ≫ T ) and, therefore, for dealing with
multiple groups of high-frequency variables, with sparsity
allowed within the high-frequency lagged vector. It also
uses adaptive weights in the penalization scheme, in line
with Zou (2006). For simplicity of notation, we refer to
TLτ (φ(τ )) as the TL function of the vector of parameter
φ(τ ) (see Eq. (2)).

The ASGL-Q objective function is given by:

min
φ

E[TLτ (φ(τ )) + αλ

p−1∑
j=0

w̃j
⏐⏐φj (τ )

⏐⏐
+ (1 − α)λ

m−1∑
l=0

√
plυ̃l

φ (τ)l

2 ],

(11)

where w̃j is the weight of the jth parameter φj (τ ), υ̃l
is the weight of the lth group of parameters (or high-
frequency variable) φ (τ)l, and pl is the size of the lth
group. Overall, these weights assign a low weight to a
relatively important high-frequency variable (or to a given
lag) and thus penalize less. Notice that Eq. (11) is a linear
combination of LASSO and group LASSO, given by λ and
the tradeoff between them, α ∈ [0, 1]. Specifically, a value
close to 1 leads to the additive LASSO while a value close
to 0 leads to the additive sparse group LASSO. Thus, this
formulation provides solutions that are both between and
within groups. Also, as pointed out by Mendez-Civieta
et al. (2021), this formulation defines a convex func-
tion which ensures that the solution of the minimization
process is a global minimum.

3.3. Forecast combination

Extensive literature reports the superior performance
of forecast combinations, reflecting the fact that they
draw on information from all the underlying models as

8 We thank an anonymous reviewer for suggesting this model.
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opposed to relying on just one specific model (e.g., An-
dreou et al., 2013; Ferrara et al., 2022; Pettenuzzo et al.,
2016; Stock & Watson, 2004). Indeed, selecting just one
model can be both inconvenient and misleading in the
presence of a misspecification (Hansen et al., 2011). While
different methods have been developed for implementing
forecast combinations, here we opt for the discounted
mean-squared forecast error combination approach (An-
dreou et al., 2013; Stock & Watson, 2004), using the TL as
the objective function.

Combination weights are computed recursively on a
daily basis as follows:

wi,t−hd =
λ−κ
i,t−hd∑N

i λ−κ
i,t−hd

,

i,t−hd =

Tf∑
s=To

δTf −s (ys − GaRi,s(10%)
)
×
(
τ − 1ys<GaRi,s(10%)

)
,

(12)

where wi,t−hd is the weight corresponding to the indi-
vidual GaRi,s(10%) measure based on the high-frequency
indicator i, which depends on the discounted TL given
by λi,t−hd , with discount factor δ = 0.9 and κ = 1.
mportantly, s = To is the point at which the first pre-
iction is computed, and s = Tf is the point at which the
ost recent prediction can be evaluated with the high-

requency indicator up to the latest available observation.
y using this framework, we can compute a combined
aR(10%) for each model.

.4. GaR evaluation

We evaluate tail-risk forecasts using a battery of in-
icators developed in the forecast and risk management
iterature. Our main tool for assessing GaR(10%) point
orecasts is the average TL, which has been shown to
e particularly appropriate when the object of interest is
he forecast of a certain quantile of the dependent vari-
ble’s conditional distribution (see Giacomini & Komunjer,
005; Gneiting & Raftery, 2007; Gneiting & Ranjan, 2011;
anzan, 2015). Carriero et al. (2022) specifically use this

oss function to evaluate the predictive capacity of their
odels for quantifying tail risks.
The average TL for τ = 0.10 is specified as follows,

Lτ=10% =
1
T

T∑
t=1

(yt − GaRt (10%)) ×
(
τ − 1yt<GaRt (10%)

)
,

(13)

where yt is the actual GDP growth, GaRt (10%) is the 10%
predictive quantile of GDP growth, and the indicator func-
tion 1(yt<GaRt (10%)) takes a value of 1 if it is below the 10%
forecast quantile and 0 otherwise.

Following convention (see Clark & McCracken, 2013;
Corradi & Swanson, 2006), we use the Diebold and Mar-
iano (DM) (1995) test9 to assess the relative forecasting

9 We use the variance adjustment proposed by Harvey et al. (1997),
which is supported by the results in Clark and McCracken (2013).
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accuracy of our GaR models. In all instances, the models
compared are non-nested. In the recent literature, An-
dreou et al. (2013), Pettenuzzo et al. (2016), and Carriero
et al. (2022) adopted the same approach.

In addition, we employ two coverage tests commonly
sed in the risk management literature to assess interval
orecasts. In line with Christoffersen (1998), the prob-
em of assessing the adequacy of a VaR model can be
educed to the problem of determining whether the in-
icator of excess sequence (i.e. the 1yt<GaRt (10%)) has two

properties: (i) an unconditional coverage property, and
(ii) an independence property. In this setting, GaR fore-
casts are evaluated using the TL, a loss function generally
used to assess the accuracy of VaR predictions (Giacomini
& Komunjer, 2005). We evaluate these two conditions
using the unconditional coverage (UC) and dynamic quan-
tile (DQ) tests (Engle & Manganelli, 2004), respectively.
Specifically, the DQ is estimated using four lags of the
excess sequence indicator (see Engle & Manganelli, 2004).
Brownlees and Souza (2021) follow a similar approach
for a multi-country GaR evaluation. Note that these two
conditions can be achieved by more than one model; thus,
ultimately, the TL is used in the final selection of the best
performing model.

4. Empirical analysis

This section presents the statistical details for the com-
putation of each model and the outcomes of the nowcast-
ing exercise.

4.1. Parameterization and computational approach

We consider different high-frequency GaR measures
covering different variables and models. Below, we dis-
cuss our choice of parameters for each model:

• MIDAS-Q: Eq. (6) is estimated by adopting the quan-
tile approach described in Section 3.2.1, in which
we consider a third-degree Almon lag polynomial
(c = 3) with two end-point restrictions (r = 2), so
that the number of parameters of the high-frequency
indicator is reduced substantially to c+1−r . This lag
structure has good economic properties, as it slowly
decays towards zero (see Mogliani & Simoni, 2021).

• BMIDAS-Q: Based on the aforementioned constrained
Almon lag structure for the high-frequency variable,
Eq. (7) is estimated using the Bayesian method-
ology considered in Section 3.2.2. Specifically, the
model considers standard uninformative priors on
the coefficient vector to have a mean equal to 0
and a variance where all elements in the diagonal
are equal to 9, except for the autoregressive lag
of GDP, whose prior mean and variance are set at
0.5 and 0.1, respectively. Also, the scale and shape
parameters of the inverse gamma function are set
at 0.01. The Gibbs sampler is used to estimate the
model parameters with 10,000 repetitions (for com-
putational efficiency), after a burn-in period of 1000
iterations, using the normal approximation, which
769
simplifies the algorithm (Yang et al., 2015).10 The
choice of these parameters closely resembles those
made by Ferrara et al. (2022), which constitutes a
natural benchmark model for our work.

• LASSO-Q: In line with the model presented in Sec-
tion 3.2.3, we set the penalty parameter λ equal
to the 0.9 quantile of the pivotal distribution (see
Belloni & Chernozhukov, 2011). Figure A1 shows the
selected lags for LASSO-Q using each high-frequency
predictor. Interestingly, historically LASSO-Q tends
to select not only the most recent daily lag of the
given quarter (as one would expect) but also others
from past quarters. This is a key difference of this
technique when compared to MIDAS-Q and BMIDAS-
Q, as the latter models have an arbitrary decaying
weighting scheme.

• EN-Q: Based on the model presented in Section 3.2.3,
λ1,τ is set as the penalty parameter of the LASSO-
Q model, defined as above, and λ2,τ is obtained by
minimizing the mean cross-validated errors of the
model, with the EN mixing parameter set at α =

0.5 (Friedman et al., 2010). Figure A2 shows the
selected lags for EN-Q using each high-frequency
predictor. Analogous to LASSO-Q, we observe that
this model historically selects different daily lags for
each high-frequency variable.

• LASSO-PCA-Q and EN-PCA-Q: Based on the non-zero
high-frequency lags selected with either LASSO-Q or
EN-Q, we estimate factors by PCA, select the opti-
mal number of factors using the eigenratio (Ahn &
Horenstein, 2013), and retain the factors associated
with p-values lower than 0.01 (or the most statisti-
cally significant). The final step in this procedure is
estimated using the quantile approach described in
Section 3.1.

• ASGL-Q: Based on the model presented in
Section 3.2.5, we consider the following parameteri-
zation procedure. First, we carry out cross-validation
checks for different values of λ and α to obtain
their optimal values. By estimating this model with
the full sample and all the high-frequency variables
(except the CISS, which is used as a benchmark), we
obtain the optimal values of λ = 0.010 and α =

0.25, which minimize the TL function. Second, we
compute recursively both LASSO weights and group
LASSO weights based on the regression on a subset
of principal components. As suggested by Mendez-
Civieta et al. (2021), this method achieves better
results in terms of prediction error and the stability
of the variables selected when used in real data sets.

or each of these models,11 we construct the individual
aR(10%) nowcasts by estimating the 10% quantile fore-
ast Q̂τ=10%

(
yT |yT−1,XD

i,T−hd

)
conditional on one lag of

10 See Kozumi and Kobayashi (2011) for details on the estimation
procedure.
11 In the case of the AGSL-Q model, since it allows for multiple
groups of variables, we compute the conditional 10% quantile us-
ing all the high-frequency indicators (except the CISS, which is the
benchmark); thus, it directly produces a combined GaR forecast.
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GDP growth and the respective high-frequency indicator,
as described in Table 1. This measure is computed recur-
sively on a daily basis for each specification including a
high-frequency indicator XD

i,T−hd . The estimation sample
spans the period from 1986Q1 to 2020Q4, and the daily
nowcasts start on 1 January 2007.

Then, we use the forecast combination approach
explained in Section 3.3 to summarize the information
originating from different daily indicators. By using the
combination weights (see Eq. (12)), we compute the com-
bined GaR(10%) recursively for each model (except for the
ASGL-Q) as follows:

GaR∗

T (10%) =

∑
i

wi,T−hd × Q̂τ=10%
(
yT |yT−1,XD

i,T−hd

)
.

(14)

Eq. (14) allows us to capture the relative importance
of individual GaR(10%) estimates and to deal with the
potential problem of introducing many, potentially corre-
lated, series into a common framework. It should again be
stressed that the combined GaR(10%) does not include the
CISS, as it is the benchmark financial composite indicator.
Figure A3 provides a recursive plot of the combination
weights assigned to the various models using the forecast
combination approach. We find that both high-frequency
real and financial indicators are important for providing
accurate GaR(10%) nowcasts, and that the importance of
each is time varying.

4.2. Nowcasting GaR

We recursively estimate all the specifications identi-
fied above for each quarter spanning the period from
1986Q1 to 2006Q4 and construct daily GaR nowcasts
in pseudo-real time as of 1 January 2007. We begin by
showing the combined GaR(10%) forecasts made by our
LASSO-Q model12 and compare these to two alternative
specifications: the individual GaR(10%) using the CISS,
and the combined GaR(10%) estimated by ASGL-Q. Recall
that while LASSO-Q combines forecasts as explained in
Section 3.3, ASGL-Q uses all the information directly in
the estimation. Fig. 1a shows the preliminary real-time
estimates of the quarterly US growth rate along with
the combined GaR(10%) and the two alternative models.
Overall, it is evident that the large negative growth rates
recorded during periods of recession, such as the GFC in
2008–2009 and the Covid-19 pandemic (that started in
2020), are captured effectively by our combined GaR(10%),
while this is not the case for the second event when
using the alternative specifications. First, the difference in
predictive power between LASSO-Q and ASGL-Q is due in
part to the difference in their combination schemes (see
Figs. 1b and 1c); thus, while the weights of the former
are more volatile, those of the latter are more stable.
Interestingly, in both frameworks, at the onset of the

12 We opt to report here the combined GaR nowcasts of the LASSO-Q
model as, in general, it performs relatively well in terms of the average
TL function compared to the rest of the models (see Table 2). The
results for the other models are available upon request.
770
Covid-19 pandemic, a larger weight is assigned to the ADS
indicator, highlighting the benefits of using real indicators
in a GaR framework. Second, relative to the individual
GaR using the CISS and the standard GaR framework that
uses only a composite financial condition index (Adrian
et al., 2019), an evident strength of our framework is that
it permits the use of a wider range of indicators, which
improves the accuracy of our predictions. Fig. 1b provides
a clearer indication of this by presenting the daily com-
bination weights assigned to the different individual GaR
nowcasts. Here, it is apparent that the relative importance
of real and financial indicators is time varying. In the
case of the 2008 GFC, the ADS, VXO, and CSPREAD indi-
cators receive a relatively high weight across all models;
in contrast, at the onset of the Covid-19 pandemic, all
the models assign higher weights to the ADS. This first
result is in line with the general consensus in the macro-
financial literature stressing the financial nature of the
GFC, in which both financial intermediaries and financial
markets amplified the shocks to the real economy (Brun-
nermeier & Sannikov, 2016; Gertler & Gilchrist, 2018;
Isohätälä et al., 2016). However, the second result indi-
cates that the Covid-19 crisis was a product of the supply
restrictions imposed to contain the pandemic, which were
real and supply-side in nature (Guerrieri et al., 2022).
Consequently, our optimal estimated weights suggest that
it is fundamental to include both real and financial daily
indicators to improve GaR nowcasts. Interestingly, the
closely related studies conducted by Ferrara et al. (2022)
and De Santis and Van der Veken (2020), which only
include daily financial variables in the GaR framework,
fail to capture the real magnitude of the risks during the
Covid-19 epidemic. This indicates that financial variables
alone play only a modest role in gauging the effect of this
last recession.

4.3. Evaluation

In this section we assess the relative performance of
(i) combined GaR nowcasts based on real and financial
indicators vs. individual GaR nowcasts using a financial
condition index (i.e. CISS) as a benchmark; and ii) indi-
vidual GaR nowcasts of financial and real indicators vs.
the combined GaR nowcasts, in line with Figueres and
Jarociński (2020).

4.3.1. Combined GaR (using financial and real variables) vs.
standard GaR

Table 2 reports the relative average TL function of
a given combined GaR model compared to that of the
benchmark model (an individual GaR using the CISS),
together with their DM test statistic values. A TL value
lower than one implies that the combined model outper-
forms the benchmark, while in the case of the DM test,
the alternative hypothesis is that the indicated forecast
is more accurate than that of the benchmark (i.e. rejec-
tion of the null is our preferred outcome). Notably, most
models outperform the benchmark and so we can reject
the hypothesis of equality of forecasts according to the
DM test with a 10% confidence level. This provides strong
evidence of the benefits of combining multiple real and



H. Chuliá, I. Garrón and J.M. Uribe International Journal of Forecasting 40 (2024) 762–776

c
D

Fig. 1. GaR results for LASSO-Q and ASGL-Q.
Note: The estimation sample spans the period from 1986Q1 to 2020Q4, and the daily nowcasts start as of 1 January 2007. In Panel a, the area
shaded red represents NBER recessions at the end of the period. In Panel c, we omit the weight of the lagged GDP growth, as it is close to zero.
financial indicators within the GaR framework. Interest-
ingly, the LASSO-Q model tends to provide a lower av-
erage TL function and often rejects the null hypothesis
of the DM test for different daily horizons, for both pe-
riods (that is, before and after the Covid-19). We provide
evidence that the LASSO lag selection improves forecast
accuracy while imposing fewer restrictions than those
imposed by traditional MIDAS models.

Table 3 reports the tests commonly used in the finan-
ial risk management literature, namely the UC and the
Q tests, to assess interval forecasts for the combined
771
GaR models. Specifically, the UC tests the probability of
the null hypothesis that the proportion of exceedances is
equal to the quantile (non-rejection is our preferred out-
come), while the DQ tests the probability of the null hy-
pothesis that the exceedance indicator is an i.i.d. process
(non-rejection is again our preferred outcome). Overall,
models using LASSO or EN perform better than MIDAS
on these adequacy tests, with a higher number of non-
rejections at the 10% level of probability. These results
hold for both the period before Covid-19 and the period
including it.
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Table 2
Out-of-sample forecast accuracy based on the relative TL.
Model: hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

TL DM TL DM TL DM TL DM TL DM

Panel A. Before Covid-19 (2007Q1 to 2019Q4)

GaR∗,MIDAS
T 0.641 0.001 0.655 0.001 0.653 0.000 0.686 0.001 0.683 0.001

GaR∗,BMIDAS
T 0.606 0.000 0.616 0.000 0.631 0.001 0.643 0.001 0.654 0.001

GaR∗,LASSO
T 0.590 0.001 0.559 0.000 0.569 0.000 0.769 0.145 0.843 0.232

GaR∗,EN
T 0.956 0.415 0.978 0.461 0.932 0.366 0.853 0.273 0.858 0.277

GaR∗,LASSO−PCA
T 0.617 0.001 0.638 0.002 0.706 0.010 0.830 0.225 0.857 0.266

GaR∗,EN−PCA
T 0.617 0.001 0.691 0.010 0.741 0.039 0.809 0.176 0.844 0.251

GaR∗,ASGL
T 1.102 0.646 1.037 0.559 0.983 0.471 0.945 0.419 1.221 0.744

Panel B. Including Covid-19 (2007Q1 to 2020Q4)

GaR∗,MIDAS
T 0.855 0.027 0.82 0.005 0.804 0.022 0.558 0.094 0.943 0.201

GaR∗,BMIDAS
T 0.878 0.021 0.849 0.000 0.839 0.005 0.558 0.087 0.932 0.141

GaR∗,LASSO
T 0.864 0.002 0.773 0.006 0.458 0.096 0.501 0.121 0.895 0.092

GaR∗,EN
T 0.953 0.243 0.969 0.330 0.822 0.153 0.563 0.139 0.917 0.173

GaR∗,LASSO−PCA
T 0.940 0.263 0.733 0.041 0.488 0.116 0.593 0.133 0.927 0.120

GaR∗,EN−PCA
T 0.911 0.102 0.850 0.013 0.841 0.064 0.691 0.116 0.903 0.123

GaR∗,ASGL
T 1.106 0.790 1.002 0.506 1.027 0.614 1.056 0.687 1.085 0.766

Note: This table shows the TL for each combined GaR relative to the individual GaR considering the CISS, for different daily horizons. We also report
the p-values of the DM test for the null hypothesis of equality of forecasts, conducted on a one-sided basis, such that the alternative hypothesis is
that the indicated forecast is more accurate than the benchmark (a rejection of the null is preferred). If the p-value is below 0.10 (bold values), we
conclude that the forecast from a combined GaR model is more accurate than that of the benchmark.
Table 3
Out-of-sample forecast accuracy based on coverage tests.
Model: hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

UC DQ UC DQ UC DQ UC DQ UC DQ

Panel A. Before Covid-19 (2007Q1 to 2019Q4)

GaR∗,MIDAS
T 0.001 0.619 0.019 0.164 0.019 0.144 0.019 0.141 0.001 0.619

GaR∗,BMIDAS
T 0.001 0.619 0.001 0.619 0.001 0.619 0.001 0.619 0.001 0.619

GaR∗,LASSO
T 0.019 0.849 0.273 0.014 0.273 0.018 0.095 0.590 0.019 0.272

GaR∗,EN
T 0.273 0.180 0.273 0.218 0.926 0.126 0.273 0.045 0.273 0.107

GaR∗,LASSO−PCA
T 0.095 0.316 0.095 0.344 0.273 0.378 0.095 0.630 0.095 0.011

GaR∗,EN−PCA
T 0.019 0.842 0.565 0.021 0.273 0.386 0.095 0.603 0.095 0.631

GaR∗,ASGL
T 0.427 0.013 0.226 0.071 0.226 0.044 0.926 0.200 0.226 0.493

Panel B. Including Covid-19 (2007Q1 to 2020Q4)

GaR∗,MIDAS
T 0.208 0.001 0.455 0.045 0.455 0.085 0.455 0.024 0.208 0.003

GaR∗,BMIDAS
T 0.068 0.040 0.068 0.063 0.068 0.080 0.068 0.080 0.068 0.080

GaR∗,LASSO
T 0.068 0.917 0.786 0.000 0.786 0.021 0.786 0.042 0.208 0.266

GaR∗,EN
T 0.786 0.007 0.786 0.009 0.547 0.029 0.786 0.042 0.786 0.076

GaR∗,LASSO−PCA
T 0.455 0.235 0.455 0.009 0.786 0.036 0.455 0.118 0.455 0.008

GaR∗,EN−PCA
T 0.208 0.468 0.547 0.000 0.860 0.202 0.455 0.130 0.455 0.677

GaR∗,ASGL
T 0.160 0.015 0.031 0.000 0.031 0.000 0.312 0.237 0.031 0.371

Note: This table shows the following two interval tests for different combined GaR models: Kupiec’s (1995) unconditional coverage test (UC), where
the null hypothesis is that the proportion of exceedances is equal to the quantile (non-rejection of the null is preferred); and the dynamic quantile
test (DQ) of Engle and Manganelli (2004), where the null hypothesis is that the exceedance indicator is an i.i.d. process (non-rejection of the null
is preferred). Bold values indicate that model passes the test with a 10% level of probability.
4.3.2. Combined GaR (using financial and real variables) vs.
individual GaR

Next, we address the question as to whether combined
r individual indicators provide more accurate nowcasts,
lso building on Figueres and Jarociński (2020). Table 4 re-
orts the relative average TL function of an individual GaR
s. that of the combined GaR (benchmark) using LASSO-
, together with their DM test statistic values. Again, a
L value lower than one implies that the individual GaR
utperforms the benchmark (the combined GaR), while
n the case of the DM test, the alternative hypothesis
s that the indicated forecast is more accurate than the
772
benchmark. In this setting, we would prefer to obtain a
TL with a value greater than 1 and, thus, not reject the
null hypothesis, in order to have evidence of the greater
accuracy of our combined GaR framework. Overall, our
results suggest that we cannot reject the null hypothesis
of the DM test with a 10% confidence level, indicating that
our combined GaR is indeed more accurate. However, the
individual GaR specification using the ADS indicator is the
only model to present a relative TL value lower than one
for daily horizons greater or equal to 10 days and for the
period including the Covid-19 pandemic. This suggests, in
line with Pettenuzzo et al. (2016) and Lima et al. (2020),



H. Chuliá, I. Garrón and J.M. Uribe International Journal of Forecasting 40 (2024) 762–776

a
G
t
e
o
t
n
F
d
m

t
i
w
(
V
p
r
a
P
p
i

Table 4
LASSO-Q: Out-of-sample forecast accuracy based on the relative TL.
Model: hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

TL DM TL DM TL DM TL DM TL DM

Panel A. Before Covid-19 (2007Q1 to 2019Q4)

GaRISPREAD
T 2.232 0.978 2.072 0.990 1.768 0.988 1.772 0.997 1.692 0.996

GaREEFR
T 2.000 0.965 2.392 0.935 1.819 0.972 1.711 0.971 1.649 0.968

GaRRET
T 2.107 0.973 2.049 0.962 1.792 0.946 2.200 0.994 1.594 0.971

GaRSMB
T 2.079 0.991 2.202 0.991 1.833 0.994 1.930 0.986 2.069 0.990

GaRHML
T 2.200 0.957 1.447 0.916 1.570 0.973 1.514 0.968 1.655 0.916

GaRMOM
T 1.448 0.987 2.076 0.959 1.578 0.987 2.072 0.960 1.756 0.973

GaRVXO
T 1.813 0.991 1.550 0.995 1.521 0.997 1.258 0.921 1.268 0.886

GaRCSPREAD
T 2.242 0.979 1.789 0.993 1.367 1.000 1.275 0.963 1.259 0.951

GaRTERM
T 2.198 0.984 1.946 0.991 1.728 0.989 1.754 0.990 1.684 0.989

GaRTED
T 1.643 0.918 1.603 0.968 1.485 0.964 1.440 0.960 1.397 0.931

GaRADS
T 1.678 0.950 1.496 0.910 1.175 0.717 0.939 0.375 1.263 0.915

Panel B. Including Covid-19 (2007Q1 to 2020Q4)

GaRISPREAD
T 1.445 0.968 1.555 0.995 1.530 0.990 1.837 0.973 1.346 0.983

GaREEFR
T 1.449 0.982 1.707 0.992 1.550 0.987 1.855 0.963 1.367 0.979

GaRRET
T 1.408 0.992 1.556 0.989 1.503 0.976 1.776 0.964 1.208 0.957

GaRSMB
T 1.271 0.948 1.510 0.989 1.301 0.991 1.667 0.960 1.302 0.996

GaRHML
T 1.453 0.995 1.504 0.983 1.281 0.913 1.834 0.942 1.300 0.975

GaRMOM
T 1.274 0.981 1.712 0.971 1.510 0.969 1.722 0.934 1.307 0.988

GaRVXO
T 1.196 0.908 1.335 0.995 1.317 0.994 1.426 0.893 1.129 0.950

GaRCSPREAD
T 1.336 0.991 1.351 0.993 1.280 0.939 1.501 0.888 1.133 0.956

GaRTERM
T 1.42 0.974 1.502 0.995 1.432 0.993 1.789 0.971 1.334 0.989

GaRTED
T 1.315 0.960 1.433 0.994 1.420 0.985 1.731 0.950 1.279 0.980

GaRADS
T 1.375 0.923 0.595 0.174 0.655 0.159 0.504 0.152 0.743 0.260

Note: This table shows the TL for each individual GaR forecast relative to the combined GaR forecast, for different daily horizons. We also report the
p-values of the DM test for the null hypothesis of equality of forecasts, conducted on a one-sided basis, such that the alternative hypothesis is that
the indicated forecast is more accurate than the combined GaR (non-rejection of the null is preferred). If the p-value is above 0.10 (bold values),
we conclude that the forecast from the combined GaR is more accurate than that of the individual GaR.
that individual GaR models that include the ADS index
perform relatively better than their counterparts that do
not include it. Moreover, this result recognizes that the
Covid-19 crisis was a product of the supply restrictions
imposed to contain the pandemic, which were real and
supply-side in nature (Guerrieri et al., 2022). Results for
alternative models are presented in Appendix B.

Table 5 reports the UC and the DQ test results when
ssessing interval forecasts for the different individual
aR specifications estimated by LASSO-Q. Again, the UC
ests the probability that the proportion of exceedances is
qual to the quantile (where non-rejection of the null is
ur preferred outcome), and the DQ tests the probability
hat the exceedance indicator is an i.i.d. process (where
on-rejection of the null is again our preferred outcome).
or individual GaR specifications, the evidence is mixed,
epending on the daily horizon. Results for alternative
odels are presented in Appendix C.
Overall, the evidence we present here supports the

ime-varying importance of both daily financial and real
ndicators for estimating GaR. Our results are consistent
ith those for the eurozone reported by Ferrara et al.
2022) and for the US reported by De Santis and Van der
eken (2020), insofar as daily financial variables provide
olicymakers with timely warnings about the downside
isks of GDP. Nevertheless, we are able to provide further
nd clearer evidence, in line with the suggestions made by
ettenuzzo et al. (2016), that stress the benefits of incor-
orating a high-frequency real indicator, such as the ADS
ndex, in the forecasting regressions. Furthermore, when
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comparing our combined GaR framework with that of the
standard GaR using a financial condition index (specifi-
cally the CISS), we show that our framework performs
significantly better. This is also true when comparing our
combined GaR framework with different individual GaR
specifications, although the performance of those that
only include the ADS index is similar when considering
the Covid-19 period. This evidence suggests that finan-
cial variables alone played a limited role in gauging the
downside risk for GDP during the Covid-19 pandemic and
highlights the complex ways in which real and financial
variables interconnect to determine economic growth in
what is a causal fashion.

5. Conclusions

We showed that both real and financial variables re-
ported with a daily frequency provide valuable informa-
tion for monitoring periods of economic vulnerability.
Here, our main contribution has been to demonstrate that
by incorporating both types of variables simultaneously
in the GaR framework, it is possible to provide an early
warning of a downturn in GDP in pseudo-real time, and
that this framework works well for both the GFC and the
Covid-19 episode.

The flexible approach reported allows us to emphasize
the importance of both economic theory and economic
intuition when interpreting the results of forecast com-
binations and for improving the point forecast itself. By
acknowledging the complexity of the nowcasting task in
macroeconomics, especially when using high-frequency
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Table 5
LASSO-Q: Out-of-sample forecast accuracy based on coverage tests.
Model: hd = 0 hd = 10 hd = 20 hd = 40 hd = 60

UC DQ UC DQ UC DQ UC DQ UC DQ

Panel A. Before Covid-19 (2007Q1 to 2019Q4)

GaRISPREAD
T 0.926 0.161 0.926 0.072 0.926 0.121 0.565 0.070 0.565 0.052

GaREEFR
T 0.717 0.131 0.226 0.012 0.427 0.070 0.226 0.089 0.107 0.014

GaRRET
T 0.226 0.001 0.001 0.000 0.046 0.000 0.046 0.000 0.001 0.000

GaRSMB
T 0.046 0.001 0.427 0.015 0.226 0.103 0.006 0.001 0.107 0.002

GaRHML
T 0.046 0.050 0.107 0.000 0.226 0.001 0.018 0.006 0.018 0.003

GaRMOM
T 0.427 0.781 0.717 0.146 0.046 0.099 0.046 0.000 0.226 0.003

GaRVXO
T 0.107 0.066 0.046 0.812 0.018 0.063 0.046 0.067 0.046 0.707

GaRCSPREAD
T 0.226 0.036 0.226 0.038 0.717 0.741 0.717 0.799 0.565 0.921

GaRTERM
T 0.565 0.087 0.565 0.088 0.565 0.080 0.926 0.280 0.273 0.701

GaRTED
T 0.226 0.011 0.107 0.003 0.107 0.003 0.046 0.003 0.046 0.023

GaRADS
T 0.107 0.067 0.018 0.050 0.107 0.043 0.226 0.186 0.226 0.230

Panel B. Including Covid-19 (2007Q1 to 2020Q4)

GaRISPREAD
T 0.312 0.003 0.312 0.002 0.312 0.002 0.547 0.001 0.547 0.001

GaREEFR
T 0.160 0.007 0.031 0.000 0.074 0.001 0.031 0.002 0.012 0.000

GaRRET
T 0.074 0.000 0.000 0.000 0.004 0.000 0.004 0.000 0.000 0.000

GaRSMB
T 0.012 0.001 0.160 0.004 0.074 0.083 0.001 0.000 0.031 0.001

GaRHML
T 0.004 0.000 0.012 0.000 0.031 0.001 0.001 0.000 0.004 0.002

GaRMOM
T 0.160 0.425 0.160 0.018 0.004 0.001 0.004 0.000 0.074 0.000

GaRVXO
T 0.031 0.338 0.004 0.267 0.001 0.011 0.004 0.042 0.004 0.215

GaRCSPREAD
T 0.031 0.005 0.031 0.011 0.160 0.204 0.160 0.427 0.547 0.921

GaRTERM
T 0.547 0.002 0.547 0.001 0.547 0.002 0.312 0.008 0.860 0.021

GaRTED
T 0.031 0.003 0.012 0.000 0.012 0.000 0.004 0.000 0.004 0.001

GaRADS
T 0.074 0.137 0.004 0.003 0.031 0.001 0.074 0.230 0.031 0.018

Note: This table shows the following two interval tests for different individual GaR(10%) models: Kupiec’s (1995) unconditional coverage test (UC),
where the null hypothesis is that the proportion of exceedances is equal to the quantile (non-rejection of the null is preferred); and the dynamic
quantile test (DQ) of Engle and Manganelli (2004), where the null hypothesis is that the exceedance indicator is an i.i.d. process (non-rejection of
the null is preferred). Bold values indicate that model passes the test with a 10% level of probability.
data, we contribute to a better understanding of the eco-
nomic signals that can be extracted from this daily in-
formation when seeking to anticipate downturns in the
economy. More specifically, here, we showed that dur-
ing the GFC and the Covid-19 pandemic, the optimal
forecasting weights of real and financial variables un-
derwent a marked change. In the earlier of these two
periods, financial indicators such as credit spreads and
the VXO were fundamental; however, they failed to cap-
ture the magnitude of the decline in GDP observed with
the onset of the Covid-19 pandemic. This difference in
behavior is attributable to the specific nature of each of
the two crises, something we can only grasp because we
understand (to some extent) the economic mechanisms
underpinning these two events.

Interestingly, among the set of financial variables, VXO
and CSPREAD were especially relevant for all models dur-
ing the GFC, highlighting the prominent role played by
uncertainty in determining economic outcomes. However,
as discussed, the financial indicators alone were unable to
forecast low quantiles of GDP growth during the Covid-
19 pandemic. Indeed, only by including the ADS index
were we able to gauge both the sign and magnitude of
the downside GDP risk in this period.

We showed that our combined GaR model outper-
forms the standard GaR model, which only takes financial
indicators into consideration (Adrian et al., 2019; Ferrara
et al., 2022). We were able to evaluate this outcome
by comparing the performance of combined GaR now-
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casts with that of i) individual GaR nowcasts using the
CISS as a benchmark, and (ii) individual GaR nowcasts
using different financial and real indicators relative to
the combined GaR nowcasts. Our specific implementation
uses different dimension-reduction techniques, including
MIDAS and shrinkage.

In this study, we compared seven different models and
12 high-frequency predictors using a forecast combina-
tion approach with time-varying optimal weights. In addi-
tion, we used a novel approach based on adaptive sparse
group LASSO for quantile regressions, which allows for
multiple groups and sparsity within the high-frequency
lagged vector (Mendez-Civieta et al., 2021). While this
model has some good properties for addressing high-
dimensional problems, we found that LASSO-Q tends to
outperform the rest of the models in terms of forecast
accuracy at different daily horizons. This is probably a
consequence of traditional MIDAS restrictions on the lag
structure of the high-frequency indicator, which do not
necessarily improve forecast accuracy. As such, our results
lend further support to past evidence, inasmuch as shrink-
age models should ideally be used to select the number
of lags of the high-frequency predictors. Additionally, the
ASGL-Q model displays more stable weights than those
displayed by the LASSO-Q model, which is arguably a
potential cause of the difference in accuracy. Nonetheless,
these two weighting schemes emphasize the importance
of the ADS indicator for forecasting during the Covid-19
period.
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Here, we used a single indicator to capture the role of
eal economic activity – that is, the ADS index – essen-
ially because it is the only one that is available at a daily
requency. We also introduced weekly vintages of this
ndicator to perform the nowcasting exercise in pseudo-
eal time. Nevertheless, we believe that more indicators
auging the informational content of different facets of
conomic activity and the credit markets will prove to be
undamental in the future, not only for achieving greater
orecasting accuracy in real time, but also for understand-
ng the causes of ongoing crises, before, that is, the actual
ausal mechanisms become clear to the professionals. In
hort, our models can be considered as making a contribu-
ion to anticipating and understanding economic dangers
hile the latter are actually unfolding.

eclaration of competing interest

The authors declare that they have no known com-
eting financial interests or personal relationships that
ould have appeared to influence the work reported in
his paper.

ppendix A. Supplementary data

Supplementary material related to this article can be
ound online at https://doi.org/10.1016/j.ijforecast.2023.
5.008.

eferences

drian, T., Boyarchenko, N., & Giannone, D. (2019). Vulnerable growth.
American Economic Review, 109(4), 1263–1289. http://dx.doi.org/10.
1257/aer.20161923.

hn, S. C., & Horenstein, A. R. (2013). Eigenvalue ratio test for the
number of factors. Econometrica, 81(3), 1203–1227. http://dx.doi.
org/10.3982/ECTA8968.

mburgey, A. J., & McCracken, M. W. (2022). On the real-time pre-
dictive content of financial condition indices for growth. Journal of
Applied Econometrics, 38(2), 137–163. http://dx.doi.org/10.1002/JAE.
2943.

ndreou, E., Ghysels, E., & Kourtellos, A. (2013). Should macroeconomic
forecasters use daily financial data and how? Journal of Business
& Economic Statistics, 31(2), 240–251. http://dx.doi.org/10.1080/
07350015.2013.767199.

ruoba, S. B., Diebold, F. X., & Scotti, C. (2009). Real-time measurement
of business conditions. Journal of Business & Economic Statistics,
27(4), 417–427. http://dx.doi.org/10.1198/JBES.2009.07205.

they, S. (2017). Beyond prediction: Using big data for policy
problems. Science, 355(6324), 483–485. http://dx.doi.org/10.1126/
SCIENCE.AAL4321.

ai, J., & Ng, S. (2008). Forecasting economic time series using targeted
predictors. Journal of Econometrics, 146(2), 304–317. http://dx.doi.
org/10.1016/J.JECONOM.2008.08.010.

elloni, A., & Chernozhukov, V. (2011). ℓ1-Penalized quantile regression
in high-dimensional sparse models. The Annals of Statistics, 39(1),
82–130. http://dx.doi.org/10.1214/10-AOS827.

rownlees, C., & Souza, A. B. M. (2021). Backtesting global growth-at-
risk. Journal of Monetary Economics, 118, 312–330. http://dx.doi.org/
10.1016/j.jmoneco.2020.11.003.

runnermeier, M. K., & Sannikov, Y. (2016). Macro, money, and fi-
nance: A continuous-time approach. Handbook of Macroeconomics,
2, 1497–1545. http://dx.doi.org/10.1016/BS.HESMAC.2016.06.002.

arriero, A., Clark, T. E., & Marcellino, M. (2022). Nowcasting tail risk
to economic activity at a weekly frequency. Journal of Applied
Econometrics, 37(5), 843–866. http://dx.doi.org/10.1002/JAE.2903.
775
Christoffersen, P. F. (1998). Evaluating interval forecasts. Interna-
tional Economic Review, 39(4), 841–862. http://dx.doi.org/10.2307/
2527341.

Clark, T., & McCracken, M. (2013). Advances in forecast evaluation.
Handbook of Economic Forecasting, 2, 1107–1201. http://dx.doi.org/
10.1016/B978-0-444-62731-5.00020-8.

Corradi, V., & Swanson, N. R. (2006). Chapter 5 predictive density
evaluation. Handbook of Economic Forecasting, 1, 197–284. http:
//dx.doi.org/10.1016/S1574-0706(05)01005-0.

De Santis, R. A., & Van der Veken, W. (2020). Forecasting macroe-
conomic risk in real time: Great and Covid-19 Recessions. In
ECB working paper series. (2436), http://dx.doi.org/10.2866/019813,
2020.

Diebold, F. X., & Mariano, R. S. (1995). Comparing predictive accuracy.
Journal of Business & Economic Statistics, 13(3), 253–263. http://dx.
doi.org/10.1080/07350015.1995.10524599.

Engle, R. F., & Manganelli, S. (2004). CAViaR. Journal of Business
& Economic Statistics, 22(4), 367–381. http://dx.doi.org/10.1198/
073500104000000370.

Estrella, A., & Mishkin, F. S. (1998). Predicting U.S. recessions:
Financial variables as leading indicators. The Review of Eco-
nomics and Statistics, 80(1), 45–61. http://dx.doi.org/10.1162/
003465398557320.

Fama, E. F., & French, K. R. (1993). Common risk factors in the returns
on stocks and bonds. Journal of Financial Economics, 33(1), 3–56.
http://dx.doi.org/10.1016/0304-405X(93)90023-5.

Faust, J., Gilchrist, S., Wright, J. H., & Zakrajšek, E. (2013). Credit spreads
as predictors of real-time economic activity: A Bayesian model-
averaging approach. The Review of Economics and Statistics, 95(5),
1501–1519. http://dx.doi.org/10.1162/REST_A_00376.

Ferrara, L., Mogliani, M., & Sahuc, J. G. (2022). High-frequency moni-
toring of growth at risk. International Journal of Forecasting, 38(2),
582–595. http://dx.doi.org/10.1016/J.IJFORECAST.2021.06.010.

Figueres, J. M., & Jarociński, M. (2020). Vulnerable growth in the euro
area: Measuring the financial conditions. Economics Letters, 191,
Article 109126. http://dx.doi.org/10.1016/j.econlet.2020.109126.

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for
generalized linear models via coordinate descent. Journal of Sta-
tistical Software, 33(1), 1–22. http://dx.doi.org/10.18637/JSS.V033.
I01.

Gertler, M., & Gilchrist, S. (2018). What happened: Financial factors in
the Great Recession. Journal of Economic Perspectives, 32(3), 3–30.
http://dx.doi.org/10.1257/JEP.32.3.3.

Ghysels, E., Plazzi, A., & Valkanov, R. (2016). Why invest in emerging
markets? The role of conditional return asymmetry. The Journal of
Finance, 71(5), 2145–2192. http://dx.doi.org/10.1111/JOFI.12420.

Giacomini, R., & Komunjer, I. (2005). Evaluation and combi-
nation of conditional quantile forecasts. Journal of Business
& Economic Statistics, 23(4), 416–431. http://dx.doi.org/10.1198/
073500105000000018.

Giglio, S., Kelly, B., & Pruitt, S. (2016). Systemic risk and the macroecon-
omy: An empirical evaluation. Journal of Financial Economics, 119(3),
457–471. http://dx.doi.org/10.1016/J.JFINECO.2016.01.010.

Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring
rules, prediction, and estimation. Journal of the American Sta-
tistical Association, 102(477), 359–378. http://dx.doi.org/10.1198/
016214506000001437.

Gneiting, T., & Ranjan, R. (2011). Comparing density forecasts using
threshold- and quantile-weighted scoring rules. Journal of Business
& Economic Statistics, 29(3), 411–422. http://dx.doi.org/10.1198/
JBES.2010.08110.

Guerrieri, V., Lorenzoni, G., Straub, L., & Werning, I. (2022). Macroeco-
nomic implications of COVID-19: Can negative supply shocks cause
demand shortages? American Economic Review, 112(5), 1437–1474.
http://dx.doi.org/10.1257/AER.20201063.

Gunay, S. (2020). Seeking causality between liquidity risk and credit
risk: TED-OIS spreads and CDS indexes. Research in International
Business and Finance, 52, Article 101189. http://dx.doi.org/10.1016/
J.RIBAF.2020.101189.

Hansen, P. R., Lunde, A., & Nason, J. M. (2011). The model confi-
dence set. Econometrica, 79(2), 453–497. http://dx.doi.org/10.3982/
ECTA5771.

Harvey, D., Leybourne, S., & Newbold, P. (1997). Testing the equality of
prediction mean squared errors. International Journal of Forecasting,
13(2), 281–291. http://dx.doi.org/10.1016/S0169-2070(96)00719-4.

https://doi.org/10.1016/j.ijforecast.2023.05.008
https://doi.org/10.1016/j.ijforecast.2023.05.008
https://doi.org/10.1016/j.ijforecast.2023.05.008
http://dx.doi.org/10.1257/aer.20161923
http://dx.doi.org/10.1257/aer.20161923
http://dx.doi.org/10.1257/aer.20161923
http://dx.doi.org/10.3982/ECTA8968
http://dx.doi.org/10.3982/ECTA8968
http://dx.doi.org/10.3982/ECTA8968
http://dx.doi.org/10.1002/JAE.2943
http://dx.doi.org/10.1002/JAE.2943
http://dx.doi.org/10.1002/JAE.2943
http://dx.doi.org/10.1080/07350015.2013.767199
http://dx.doi.org/10.1080/07350015.2013.767199
http://dx.doi.org/10.1080/07350015.2013.767199
http://dx.doi.org/10.1198/JBES.2009.07205
http://dx.doi.org/10.1126/SCIENCE. AAL4321
http://dx.doi.org/10.1126/SCIENCE. AAL4321
http://dx.doi.org/10.1126/SCIENCE. AAL4321
http://dx.doi.org/10.1016/J. JECONOM.2008.08.010
http://dx.doi.org/10.1016/J. JECONOM.2008.08.010
http://dx.doi.org/10.1016/J. JECONOM.2008.08.010
http://dx.doi.org/10.1214/10-AOS827
http://dx.doi.org/10.1016/j.jmoneco.2020.11.003
http://dx.doi.org/10.1016/j.jmoneco.2020.11.003
http://dx.doi.org/10.1016/j.jmoneco.2020.11.003
http://dx.doi.org/10.1016/BS. HESMAC.2016.06.002
http://dx.doi.org/10.1002/JAE.2903
http://dx.doi.org/10.2307/2527341
http://dx.doi.org/10.2307/2527341
http://dx.doi.org/10.2307/2527341
http://dx.doi.org/10.1016/B978-0-444-62731-5.00020-8
http://dx.doi.org/10.1016/B978-0-444-62731-5.00020-8
http://dx.doi.org/10.1016/B978-0-444-62731-5.00020-8
http://dx.doi.org/10.1016/S1574-0706(05)01005-0
http://dx.doi.org/10.1016/S1574-0706(05)01005-0
http://dx.doi.org/10.1016/S1574-0706(05)01005-0
http://dx.doi.org/10.2866/019813
http://dx.doi.org/10.1080/07350015.1995.10524599
http://dx.doi.org/10.1080/07350015.1995.10524599
http://dx.doi.org/10.1080/07350015.1995.10524599
http://dx.doi.org/10.1198/073500104000000370
http://dx.doi.org/10.1198/073500104000000370
http://dx.doi.org/10.1198/073500104000000370
http://dx.doi.org/10.1162/003465398557320
http://dx.doi.org/10.1162/003465398557320
http://dx.doi.org/10.1162/003465398557320
http://dx.doi.org/10.1016/0304-405X(93)90023-5
http://dx.doi.org/10.1162/REST_A_00376
http://dx.doi.org/10.1016/J. IJFORECAST.2021.06.010
http://dx.doi.org/10.1016/j.econlet.2020.109126
http://dx.doi.org/10.18637/JSS.V033.I01
http://dx.doi.org/10.18637/JSS.V033.I01
http://dx.doi.org/10.18637/JSS.V033.I01
http://dx.doi.org/10.1257/JEP.32.3.3
http://dx.doi.org/10.1111/JOFI.12420
http://dx.doi.org/10.1198/073500105000000018
http://dx.doi.org/10.1198/073500105000000018
http://dx.doi.org/10.1198/073500105000000018
http://dx.doi.org/10.1016/J. JFINECO.2016.01.010
http://dx.doi.org/10.1198/016214506000001437
http://dx.doi.org/10.1198/016214506000001437
http://dx.doi.org/10.1198/016214506000001437
http://dx.doi.org/10.1198/JBES.2010.08110
http://dx.doi.org/10.1198/JBES.2010.08110
http://dx.doi.org/10.1198/JBES.2010.08110
http://dx.doi.org/10.1257/AER.20201063
http://dx.doi.org/10.1016/J. RIBAF.2020.101189
http://dx.doi.org/10.1016/J. RIBAF.2020.101189
http://dx.doi.org/10.1016/J. RIBAF.2020.101189
http://dx.doi.org/10.3982/ECTA5771
http://dx.doi.org/10.3982/ECTA5771
http://dx.doi.org/10.3982/ECTA5771
http://dx.doi.org/10.1016/S0169-2070(96)00719-4


H. Chuliá, I. Garrón and J.M. Uribe International Journal of Forecasting 40 (2024) 762–776

I

K

K

K

K

L

L

L

M

M

M

M

P

P

P

R

R

Holló, D., Kremer, M., & lo Duca, M. (2012). CISS – a composite indicator
of systemic stress in the financial system: Working Paper Series, (p.
1426). https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp1426.pdf.

sohätälä, J., Klimenko, N., & Milne, A. (2016). Post-crisis macrofinancial
modeling: Continuous time approaches. The Handbook of Post Crisis
Financial Modeling, 23, 5–282. http://dx.doi.org/10.1007/978-1-137-
49449-8_10.

oenker, R. (2005). Quantile regression. In Quantile regression.
Cambridge University Press, http://dx.doi.org/10.1017/
CBO9780511754098.

oenker, R., & Bassett, G. (1978). Regression quantiles. Econometrica,
46(1), 33. http://dx.doi.org/10.2307/1913643.

ozumi, H., & Kobayashi, G. (2011). Gibbs sampling methods for
Bayesian quantile regression. Journal of Statistical Computation and
Simulation, 81(11), 1565–1578. http://dx.doi.org/10.1080/00949655.
2010.496117.

upiec, P. H. (1995). Techniques for verifying the accuracy of risk
measurement models. The Journal of Derivatives, 3(2), 73–84. http:
//dx.doi.org/10.3905/JOD.1995.407942.

ima, L. R., & Meng, F. (2017). Out-of-sample return predictability:
A quantile combination approach. Journal of Applied Econometrics,
32(4), 877–895. http://dx.doi.org/10.1002/JAE.2549.

ima, L. R., Meng, F., & Godeiro, L. (2020). Quantile forecasting with
mixed-frequency data. International Journal of Forecasting, 36(3),
1149–1162. http://dx.doi.org/10.1016/j.ijforecast.2018.09.011.

ongstaff, F. A., Pan, J., Pedersen, L. H., & Singleton, K. J. (2011).
How sovereign is sovereign credit risk? American Economic Journal:
Macroeconomics, 3(2), 75–103. http://dx.doi.org/10.1257/MAC.3.2.
75.

aldonado, J., & Ruiz, E. (2021). Accurate confidence regions for prin-
cipal components factors. Oxford Bulletin of Economics and Statistics,
83(6), 1432–1453. http://dx.doi.org/10.1111/OBES.12436.

anzan, S. (2015). Forecasting the distribution of economic variables
in a data-rich environment. Journal of Business & Economic Statistics,
33(1), 144–164. http://dx.doi.org/10.1080/07350015.2014.937436.

endez-Civieta, A., Aguilera-Morillo, M. C., & Lillo, R. E. (2021). Adap-
tive sparse group LASSO in quantile regression. Advances in Data
Analysis and Classification, 15, 547–573.
776
ogliani, M., & Simoni, A. (2021). Bayesian MIDAS penalized regres-
sions: Estimation, selection, and prediction. Journal of Econometrics,
222(1), 833–860. http://dx.doi.org/10.1016/j.jeconom.2020.07.022.

ettenuzzo, D., Timmermann, A., & Valkanov, R. (2016). A MIDAS
approach to modeling first and second moment dynamics. Jour-
nal of Econometrics, 193(2), 315–334. http://dx.doi.org/10.1016/J.
JECONOM.2016.04.009.

lagborg-Møller, M., Reichlin, L., Ricco, G., & Hasenzagl, T. (2020). When
is growth at risk? Brookings Papers on Economic Activity, 2020(1),
167–229. http://dx.doi.org/10.1353/ECA.2020.0002.

rasad, A., Elekdag, S., Jeasakul, P., Lafarguette, R., Alter, A., Feng, A.
Xiaochen., & Wang, C. (2019). Growth at risk: Concept and appli-
cation in IMF country surveillance: IMF Working Paper 19/36, http:
//dx.doi.org/10.5089/9781484397015.001.

eichlin, L., Ricco, G., & Hasenzagl, T. (2020). Financial variables as
predictors of real growth vulnerability. Documents de Travail de
L’OFCE 2020-06. https://ideas.repec.org/p/fce/doctra/2006.html.

ey, H. (2015). Dilemma not trilemma: The global financial cycle and
monetary policy independence: CEPR Discussion Papers, 10591. https:
//ideas.repec.org/p/cpr/ceprdp/10591.html.

Stock, J. H., & Watson, M. W. (2004). Combination forecasts of output
growth in a seven-country data set. Journal of Forecasting, 23(6),
405–430. http://dx.doi.org/10.1002/FOR.928.

Yang, Y., Wang, H. J., & He, X. (2015). Posterior inference in Bayesian
quantile regression with asymmetric Laplace likelihood. Interna-
tional Statistical Review, 84(3), 327–344. http://dx.doi.org/10.1111/
INSR.12114.

Yu, K., & Moyeed, R. A. (2001). Bayesian quantile regression. Statistics &
Probability Letters, 54(4), 437–447. http://dx.doi.org/10.1016/S0167-
7152(01)00124-9.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of
the American Statistical Association, 101(476), 1418–1429.

Zou, H., & Hastie, T. (2005). Regularization and variable selection via
the elastic net. Journal of the Royal Statistical Society. Series B.
Statistical Methodology, 67(2), 301–320. http://dx.doi.org/10.1111/J.
1467-9868.2005.00503.X.

https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp1426.pdf
http://dx.doi.org/10.1007/978-1-137-49449-8_10
http://dx.doi.org/10.1007/978-1-137-49449-8_10
http://dx.doi.org/10.1007/978-1-137-49449-8_10
http://dx.doi.org/10.1017/CBO9780511754098
http://dx.doi.org/10.1017/CBO9780511754098
http://dx.doi.org/10.1017/CBO9780511754098
http://dx.doi.org/10.2307/1913643
http://dx.doi.org/10.1080/00949655.2010.496117
http://dx.doi.org/10.1080/00949655.2010.496117
http://dx.doi.org/10.1080/00949655.2010.496117
http://dx.doi.org/10.3905/JOD.1995.407942
http://dx.doi.org/10.3905/JOD.1995.407942
http://dx.doi.org/10.3905/JOD.1995.407942
http://dx.doi.org/10.1002/JAE.2549
http://dx.doi.org/10.1016/j.ijforecast.2018.09.011
http://dx.doi.org/10.1257/MAC.3.2.75
http://dx.doi.org/10.1257/MAC.3.2.75
http://dx.doi.org/10.1257/MAC.3.2.75
http://dx.doi.org/10.1111/OBES.12436
http://dx.doi.org/10.1080/07350015.2014.937436
http://refhub.elsevier.com/S0169-2070(23)00051-1/sb45
http://refhub.elsevier.com/S0169-2070(23)00051-1/sb45
http://refhub.elsevier.com/S0169-2070(23)00051-1/sb45
http://refhub.elsevier.com/S0169-2070(23)00051-1/sb45
http://refhub.elsevier.com/S0169-2070(23)00051-1/sb45
http://dx.doi.org/10.1016/j.jeconom.2020.07.022
http://dx.doi.org/10.1016/J. JECONOM.2016.04.009
http://dx.doi.org/10.1016/J. JECONOM.2016.04.009
http://dx.doi.org/10.1016/J. JECONOM.2016.04.009
http://dx.doi.org/10.1353/ECA.2020.0002
http://dx.doi.org/10.5089/9781484397015.001
http://dx.doi.org/10.5089/9781484397015.001
http://dx.doi.org/10.5089/9781484397015.001
https://ideas.repec.org/p/fce/doctra/2006.html
https://ideas.repec.org/p/cpr/ceprdp/10591.html
https://ideas.repec.org/p/cpr/ceprdp/10591.html
https://ideas.repec.org/p/cpr/ceprdp/10591.html
http://dx.doi.org/10.1002/FOR.928
http://dx.doi.org/10.1111/INSR.12114
http://dx.doi.org/10.1111/INSR.12114
http://dx.doi.org/10.1111/INSR.12114
http://dx.doi.org/10.1016/S0167-7152(01)00124-9
http://dx.doi.org/10.1016/S0167-7152(01)00124-9
http://dx.doi.org/10.1016/S0167-7152(01)00124-9
http://refhub.elsevier.com/S0169-2070(23)00051-1/sb55
http://refhub.elsevier.com/S0169-2070(23)00051-1/sb55
http://refhub.elsevier.com/S0169-2070(23)00051-1/sb55
http://dx.doi.org/10.1111/J.1467-9868.2005.00503.X
http://dx.doi.org/10.1111/J.1467-9868.2005.00503.X
http://dx.doi.org/10.1111/J.1467-9868.2005.00503.X

	Daily growth at risk: Financial or real drivers? The answer is not always the same
	Introduction
	Data
	Methodology
	Growth-at-risk framework
	Adapting the standard GaR approach to high-frequency indicators
	MIDAS-Q
	BMIDAS-Q
	Soft thresholding: LASSO-Q and EN-Quantile (EN-Q)
	Soft and hard thresholding methods: LASSO-PCA-Q and EN-PCA-Q
	Adaptive sparse group LASSO (ASGL-Q)

	Forecast combination
	GaR evaluation

	Empirical analysis
	Parameterization and computational approach
	Nowcasting GaR
	Evaluation
	Combined GaR (using financial and real variables) vs. standard GaR
	Combined GaR (using financial and real variables) vs. individual GaR


	Conclusions
	Declaration of competing interest
	Appendix A. Supplementary data
	References


