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A B S T R A C T

We propose novel Bitcoin-denominated derivatives contracts on carbon bonds. We consider a
futures contract on carbon bonds where its price is expressed in terms of bitcoins. Then, we put
forward options on a futures contract of the former type. Governments can use such contracts to
hedge climate change and influence the prices of carbon bonds and cryptocurrencies. We show
how these derivatives transfer volatility to the bitcoin market without a negative effect in the
carbon bonds market. Since the aforementioned options are not yet traded in the market, we
price them by assuming that the underlying is driven by the well-known Heston model, where
the model parameters are estimated by a novel method based on Shannon wavelets. Heston
model belongs to the class of stochastic volatility (SV) models. The discrete observations from
the SV model can be seen as a state-space model, that is, a stochastic model in discrete-time
which contains two sets of equations, the state equation and the observation equation. While
the first describes the transition of a latent process in time, the second shows how an observer
measures the latent process at each time period. We infer the properties of the latent variable
by means of a filtering algorithm, and we estimate the parameters of the model via maximum
likelihood. The evaluation of the likelihood function is a time-consuming task that involves
updating and prediction steps of the state variable, leading to the computation of complicated
integrals. We calculate these integrals by means of an integration method based on Shannon
wavelets, and compare the root mean square error (RMSE) of the estimation with state-of-the-art
methods. The results show that the RSME is dramatically reduced in a short CPU time with the
use of wavelets.

1. Introduction

Climate change has been one of the main concerns for policymakers for the last 20 years. One of the main effects of climate
change, as stated in [1], is its impact on agriculture and food production. In addition, climate change has clear consequences for
human health. As detailed in [2], the direct and indirect health consequences include excessive heat-related illnesses, vector and
waterborne diseases, increased exposure to environmental toxins, exacerbation of cardiovascular and respiratory diseases due to
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declining air quality, and mental health stress, among others. Another consequence of climate change, as explained in [3], is the
impact on dryland productivity and dynamics.

In this work, we develop novel financial products to mitigate climate risk. To be more precise, we consider futures contracts on
ne unit of carbon bond (CB) with price given in bitcoins (BTC), as well as options on such futures. An important task associated to
he launch of new options contracts is the modeling of the dynamics of the underlying asset and the pricing of the derivative. We
onsider the well-known Heston model (see [4]) for the underlying due to its mean reverting and stochastic volatility features. Since
hese contracts are not yet quoted in the market, we must estimate the parameters of the model directly from the underlying asset
ata, instead of performing the classical calibration based on minimizing the sum of the squared differences between the quoted
ption prices and the model prices.

We propose a maximum likelihood approach to estimate the parameters of the Heston model. Generally speaking, the SV model
an be seen as a state-space model, that is, a stochastic model in discrete-time which contains two sets of equations, the state equation
nd the observation equation. While the first describes the transition of a latent process in time, the second shows how an observer
easures the latent process at each time period. We infer the properties of the latent variable by means of a filtering algorithm. The

valuation of the likelihood function is a very time-consuming task that involves updating and prediction steps of the state variable,
eading to the computation of complicated integrals, which poses a serious computational challenge. There are several attempts in
he literature for estimating the parameters of SV models, like for instance [5–10] who work on the autoregressive model of order
ne (among others). The Heston model is considered for instance in [11–13] within the framework of likelihood estimation, as well
s in [14] where the authors use option price data. Importance sampling techniques are used in [15] for likelihood evaluation. Our
ontributions can be summarized as follows.

• We design novel financial contracts to help governmental authorities to manage climate risk, being one of the main utilities
of these novel contracts the increase in the volatility of BTC.

• We carry out an econometric analysis with real data to show that the volatility transfer from the derivatives to the BTC spot
price does not have a negative side effect in the form of volatility spillover from BTC to CB.

• We use a filtering algorithm to estimate the parameters of SV models via computation of the log-likelihood function, where the
main challenge here is the efficient calculation of integrals on the entire real line. We propose a novel method for computing
them by means of Shannon wavelets.

• We test our methodology for estimating the three parameters of an autoregressive SV model of order one. The parameters of
our numerical method can be fixed a priori based on the error analysis provided.

• We perform numerical experiments and compare the results with the literature. We show that the RMSE is dramatically reduced
in a short computation time.

• We apply our method to the estimation of parameters of Heston model and we perform an error analysis. We present numerical
experiments and compare the results with the extended Kalman filter (EKF) method, which is well-known and used in the
literature. We show that the wavelet method can estimate particularly well the correlation parameter.

• We estimate the parameters of Heston model with real data, and compare again with EKF estimation. A Kolmogorov–Smirnov
test shows the ability of Shannon wavelets for the estimation.

This work is organized as follows. Section 2 is devoted to the design of novel futures and option contracts along with the volatility
pillover analysis. We develop in Section 3 the methodology to estimate the log-likelihood function by means of Shannon wavelets.
e estimate the parameters of two SV models in Section 4, accompanied with an error analysis. A wide variety of numerical

xperiments either with simulated or with real data is presented in Section 5. Finally, Section 6 concludes.

. Definition of climate-related derivatives and their rationale

As detailed in [16], city governments are increasingly developing policies and programs designed to reduce greenhouse gas (GHG)
missions and adapt to the consequences of climate change. As stated in [17], energy production accounts for almost three-quarters
f GHG emissions. A large part is devoted to producing computational power for different industries. Over the last decade, the
lockchain sector has become a prominent consumer of computational power and energy. This has given rise to concerns about the
ustainability of this technology and the hazards it could impose on society in terms of climate change and global warming. With
his concern in mind, we design novel financial instruments aiming to help the regulatory authorities impact the climate change
y causing a volatility transfer from derivatives to bitcoin’s spot markets. A high volatility in these markets would disincentive
nvestments and potentially diminish the amount of energy devoted to the mining of these coins. In what follows, we describe the
tructure and potential utility of the novel contracts for regulators and financial authorities.

We define a novel futures contract with one unit of CB as underlying and its price expressed in terms of BTC. The mechanics of
he contract is as follows. Suppose that at inception, a futures contract without delivery is traded at 0.40 BTC/CB. At maturity, if
he spot BTC price is 200,000 dollars and the spot CB price is 50,000 dollars then, these prices imply that the last settlement price
s 0.25 BTC/CB. Sovereign authorities may have short positions in BTC (since they prefer its price to fall) and long positions in CB
since they prefer its price to increase so that pollution is more expensive for industries). In contrast, miners have a long position
n BTC as they receive bitcoins for their mining activities, and they may also have a short position in CB if they need to pay for
ollution. Sovereign authorities could buy the future on CB, which would increase the price of CB and decrease the price of BTC,
431
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Furthermore, we propose the listing of European calls and puts on futures contracts. The underlying of each option is a futures
ontract of the type described in the former paragraph. A call/put holder exercising an option gets a long/short futures contract at
aturity. The writer will receive the opposite futures position. The utility of the option for sovereign authorities is similar to the
tility of its underlying futures contract. By buying a call, the governmental authority gets the right to have a long position on the
nderlying futures contract for climate management, while limiting the maximum loss to the premium.

By influencing CB and BTC prices, these derivatives will transfer volatility to BTC markets, which is consistent with the objectives
f regulatory authorities. However, while the volatility transfer from derivatives to the spot markets is in line with the objectives of
limate risk management, it is an unwanted effect the transfer of volatility from BTC markets to CB markets. We show in Section 2.1
hat there is no relation between the volatility of CB and the volatility of BTC. Therefore, such an undesirable scenario is unlikely
o occur. For this analysis we perform a vector autoregression with the two volatility series (BTC and CB). The volatility modeling
s carried out with GARCH models for which a previous and necessary step is the modeling of returns, which is performed with
RMA models. This type of models are routinely employed for time series volatility modeling.

After the econometric analysis of Section 2.1 about the consistency of these novel derivatives on the underlying CB with price
n BTC, we tackle the problem of their pricing. A popular model for driving the dynamics of the underlying is the well-known
eston stochastic volatility model put forward in Section 4. In this case, we recall that the underlying is the CB (with price in BTC).
ince there are no market prices for these novel derivatives on the underlying considered, we cannot calibrate the parameters of
he Heston model to those prices as usual. Instead, we propose a calibration method in Section 3 based on maximum likelihood
stimation where the likelihood function is evaluated via a filtering algorithm that can be potentially used to estimate any other
tochastic volatility model. Our contribution to the literature is the use of Shannon wavelets to efficiently compute the integrals
ppearing in the filtering steps. This new methodology is developed in Section 3.3 and tested with a well-known AR-(1) model in
ection 4 for which there are many references in the literature to compare with.

It is worth remarking that this is not a fair price for the options on CB with price in BTC, since there is no market trading
hat underlying and therefore the classical risk-neutral pricing theory does not apply. The computation of the price by means of
he expected discounted payoff can be used to propose a price for this derivative within the framework of climate-related risk
ssessment. A similar argument is underlined in [18] in the context of pricing derivatives on temperature.

.1. Volatility spillover analysis in the spot markets

One of the intended consequences of both the futures and the options contracts is the increase in the volatility of BTC. Now
e want to check the absence of negative side effects. One potential side effect would be an increase in the volatility of CB. A
isturbance of the CB market would be an unintended consequence. In what follows we check whether there is further volatility
ransfer between BTC and the CB spot prices. To check this, we obtain historical prices of BTC and CB (both expressed in dollars),
nd we consider their logarithmic returns. The BTC prices are obtained from www.coingecko.com, and the CB prices correspond

to EUA daily futures from ENDEX exchange, and they are obtained from www.barchart.com The period ranges from 16/12/2019
to 17/12/2021. Since this period of data contains the COVID-19 outbreak, the lockdown measures could have potentially affected
the carbon bond market due to a reduction in the consumption during the year 2020, as stated in [19–21]. Therefore, the period
considered in this work includes the data from the lockdown measures in 2020 plus the additional year 2021, which is not affected
by an abnormal use of carbon. It would be advisable to assess again the volatility spillover when new data becomes available to
see whether these conclusions are still valid.

We choose a model for the returns, denoted by 𝑦𝑡. We restrict ourselves to an ARMA(𝑝, 𝑞) process of the form,

𝑦𝑡 = 𝛿 +
𝑝
∑

𝑖=1
𝜙𝑖𝑦𝑡−𝑖 +

𝑞
∑

𝑗=1
𝜃𝑗𝜖𝑡−𝑗 + 𝜖𝑡, (1)

with 𝑝 autoregressive terms and 𝑞 moving-average terms. As for the volatility process of each series, we carry out the estimation by
fitting a GARCH model. In the case of the BTC volatility, we use an exponential GARCH (1, 1) model of the form,

ln(𝜎2𝑡 ) = 𝜔 +
𝑝
∑

𝑗=1

(

𝛼𝑗𝑧𝑡−𝑗 + 𝛾𝑗
(

|𝑧𝑡−𝑗 | − E
(

|𝑧𝑡−𝑗 |
)))

+
𝑞
∑

𝑗=1
𝛽𝑗 ln

(

𝜎2𝑡−𝑗
)

, (2)

where 𝜎𝑡 is the conditional volatility at time 𝑡, the coefficient 𝛼𝑗 captures the sign effect, 𝛾𝑗 the size effect and 𝛽𝑗 the persistence of
volatility. A standard normal innovation is given by 𝑧𝑗 . For the CB volatility, we use a standard GARCH (1, 1) model given by,

𝜎2𝑡 = 𝜔 +
𝑝
∑

𝑗=1
𝛼𝑗𝜀

2
𝑡−𝑗 +

𝑞
∑

𝑗=1
𝛽𝑗𝜎

2
𝑡−𝑗 . (3)

For the BTC returns, we found the best fit with an ARMA(2, 2), while for the CB returns, we chose an ARMA(2, 0). We display
in Table 1 the values of the parameters estimated for the BTC series, while parameters corresponding to CB series are shown in
Table 2. Note that 𝛼1 of BTC volatility estimate is negative, allowing asymmetry in the variance. We believe that this is congruent
with the nature of the asset.

We take the daily volatilities time series produced by the GARCH models of BTC and CB and set a vector autoregression (VAR)
scheme to analyze whether there is a statistically significant relation between the two. Volatility spillovers between assets are
432
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Table 1
BTC parameters corresponding to the returns of
expression (1) and volatility of expression (2).
ARMA Estimate p-value

𝛿 0.00307 0.154
𝜙1 −0.16459 < 0.001
𝜙2 −0.93476 < 0.001
𝜃1 0.08388 < 0.001
𝜃2 0.94757 < 0.001

GARCH Estimate p-value

𝜔 −0.57865 0.016
𝛼1 −0.06490 0.033
𝛽1 0.90285 < 0.001
𝛾1 0.19474 < 0.001

Table 2
CB parameters corresponding to the returns of
expression (1) and volatility of expression (3).

ARMA Estimate p-value

𝛿 0.00275 0.008
𝜙1 −0.14449 0.003
𝜙2 0.06744 0.151

GARCH Estimate p-value

𝜔 0.00009 0.008
𝛼1 0.14617 < 0.001
𝛽1 0.75515 < 0.001

Table 3
VAR of BTC volatility expression.

Coefficient Estimate p-value

𝑎111 0.80278 < 0.001
𝑎112 −0.04304 0.247
𝑎211 0.07311 0.200
𝑎212 0.06423 0.190
𝑎311 0.05093 0.258
𝑎312 −0.07047 0.056
𝑐1 −0.40399 < 0.001

commonly studied by means of VAR, like for instance in [22]. A VAR(𝑝) in two variables, where 𝑝 is the maximum lag, can be
ritten in matrix form as,

[

𝑣1,𝑡
𝑣2,𝑡

]

=
[

𝑐1
𝑐2

]

+

[

𝑎111 𝑎112
𝑎121 𝑎122

]

[

𝑣1,𝑡−1
𝑣2,𝑡−1

]

+⋯ +

[

𝑎𝑝11 𝑎𝑝12
𝑎𝑝21 𝑎𝑝22

]

[

𝑣1,𝑡−𝑝
𝑣2,𝑡−𝑝

]

+
[

𝑒1,𝑡
𝑒2,𝑡

]

, (4)

where 𝑣1,𝑡 is the volatility of BTC at 𝑡 and 𝑣2,𝑡 is the volatility of CB at 𝑡. In our analysis we select the optimal number of lags
by means of four information criteria: the Akaike information criterion, the Schwartz criterion, the Hannan and Quinn criterion,
and the final prediction criterion. We select the mode of these 4 values, which in our analysis is 𝑝 = 3. The estimation results for
the parameters of the BTC and CB volatility equations are given in Tables 3 and 4, respectively. The covariance and correlation
matrices of residuals are given in Tables 5 and 6, respectively. Overall, results shown in Table 3, 4, 5 and 6 do not support a
significant transfer of volatility between BTC and CB, since the coefficients 𝑎11,2, 𝑎

2
1,2, 𝑎

1
2,1, 𝑎

3
2,1 are all small, have high p-values and

the residuals show very low covariance and correlation, meaning that there is no pattern left to explain in the VAR model. These
econometric results suggest that the volatility transfer from the derivatives to the BTC spot price does not have a negative side effect
in the form of volatility spillover from BTC to CB.

3. Maximum likelihood estimation of stochastic volatility models

In this section, we consider stochastic volatility models, in which the price process {𝑦𝑡} is governed by a stochastic differential
equation depending on the log-volatility process {ℎ𝑡}, which, in turn, is considered stochastic. We present the filtering problem
and likelihood evaluation in Section 3.1. The methodology to estimate the likelihood by means of Shannon wavelets is detailed
in Section 3.3. For sake of completeness, a brief description of multi-resolution analysis and Shannon wavelets is put forward in
Section 3.2.
433
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Table 4
VAR of CB volatility expression.

Coefficient Estimate p-value

𝑎121 −0.05814 0.272
𝑎122 0.86375 < 0.001
𝑎221 0.19117 0.005
𝑎222 0.09143 0.117
𝑎321 −0.05521 0.304
𝑎322 −0.07591 0.085
𝑐2 −0.19429 0.040

Table 5
Covariance matrix of residuals.

BTC CB

BTC 0.00628 0.00050
CB 0.00050 0.00895

Table 6
Correlation matrix of residuals.

BTC CB

BTC 1 0.06693
CB 0.06693 1

3.1. Filtering and evaluation of the likelihood

In order to estimate the likelihood, we carry out the so-called filtering algorithm, summarized as follows. Given 𝑡 = 1,… , 𝑇 , the
likelihood contribution at time 𝑡 of return 𝑦𝑡, conditional on the past returns 𝑌𝑡−1 reads,

𝑓 (𝑦𝑡|𝑌𝑡−1) = ∫R
𝑓 (𝑦𝑡, ℎ𝑡|𝑌𝑡−1)𝑑ℎ𝑡 = ∫R

𝑓1(𝑦𝑡|ℎ𝑡)𝑓3(ℎ𝑡|𝑌𝑡−1)𝑑ℎ𝑡, (5)

where 𝑌𝑡 =
(

𝑦𝑡, 𝑦𝑡−1,… , 𝑦1
)

, 𝑌0 is empty, R is the domain of the latent state variable ℎ𝑡, and 𝑓1(𝑦𝑡|ℎ𝑡) is the density of the return 𝑦𝑡
given ℎ𝑡. The posterior distribution of the state variables at time 𝑡, conditional on 𝑌𝑡, can be obtained as follows,

𝑓 (ℎ𝑡|𝑌𝑡) = 𝑓 (ℎ𝑡|𝑦𝑡, 𝑌𝑡−1) =
𝑓 (𝑦𝑡, ℎ𝑡|𝑌𝑡−1)
𝑓 (𝑦𝑡|𝑌𝑡−1)

=
𝑓1(𝑦𝑡|ℎ𝑡)𝑓3(ℎ𝑡|𝑌𝑡−1)

𝑓 (𝑦𝑡|𝑌𝑡−1)
, (6)

nd finally, the one-step ahead prediction of ℎ𝑡, conditional on the past returns, is given by,

𝑓3(ℎ𝑡+1|𝑌𝑡) = ∫R
𝑓 (ℎ𝑡+1, ℎ𝑡|𝑌𝑡)𝑑ℎ𝑡 = ∫R

𝑓2(ℎ𝑡+1|ℎ𝑡)𝑓 (ℎ𝑡|𝑌𝑡)𝑑ℎ𝑡, (7)

where 𝑓2(ℎ𝑡+1|ℎ𝑡) is the transition probability distribution of ℎ𝑡+1 given ℎ𝑡 and the past returns. If we have 𝑓 (𝑦𝑡|𝑌𝑡−1), 𝑡 = 1,… , 𝑇 ,
we can calculate the log-likelihood,

𝐿(𝜣|𝑌𝑇 ) =
𝑇
∑

𝑡=1
log 𝑓 (𝑦𝑡|𝑌𝑡−1), (8)

where 𝜣 stands for the set of model parameters.

3.2. Multi-resolution analysis and Shannon wavelets

Consider the space,

𝐿2(R) = {𝑓 ∶ ∫

+∞

−∞
|𝑓 (𝑥)|2 𝑑𝑥 < ∞},

of square integrable functions. A general structure for wavelets in 𝐿2(R) is called a multi-resolution analysis. We start with a family
of closed nested subspaces,

⋯ ⊂ 𝑉−2 ⊂ 𝑉−1 ⊂ 𝑉0 ⊂ 𝑉1 ⊂ 𝑉2 ⊂ ⋯ ,

in 𝐿2(R) where,
⋂

𝑉𝑗 = {0},
⋃

𝑉𝑗 = 𝐿2(R),
434
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and,

𝑓 (𝑥) ∈ 𝑉𝑗 ⟺ 𝑓 (2𝑥) ∈ 𝑉𝑗+1.

If these conditions are met, then a function 𝜙 ∈ 𝑉0 exists such that {𝜙𝑗,𝑘}𝑘∈Z forms an orthonormal basis of 𝑉𝑗 , where,

𝜙𝑗,𝑘(𝑥) = 2𝑗∕2𝜙(2𝑗𝑥 − 𝑘).

n other words, the function 𝜙, called the scaling function or father wavelet, generates an orthonormal basis for each 𝑉𝑗 subspace.
For any 𝑓 ∈ 𝐿2(R), a projection map of 𝐿2(R) onto 𝑉𝑚, 𝑚 ∶ 𝐿2(R) → 𝑉𝑚, is defined by means of,

𝑚𝑓 (𝑥) =
∑

𝑘∈Z
𝑐𝑚,𝑘𝜙𝑚,𝑘(𝑥), (9)

where 𝑐𝑚,𝑘 = ∫ +∞
−∞ 𝑓 (𝑥)𝜙𝑚,𝑘(𝑥) 𝑑𝑥 are the scaling coefficients (see [23] for general theory on multi-resolution analysis and wavelets).

We here use Shannon wavelets (see [24]). The sinc function or Shannon scaling function is the starting point for the definition
of the Shannon wavelet family. A set of Shannon scaling functions or father wavelets in the subspace 𝑉𝑚 is defined as,

𝜙𝑚,𝑘(𝑥) = 2𝑚∕2
sin(𝜋(2𝑚𝑥 − 𝑘))
𝜋(2𝑚𝑥 − 𝑘)

, 𝑘 ∈ Z. (10)

It is clear that for 𝑚 = 𝑘 = 0, we have the basic scaling function or father wavelet,

𝜙(𝑥) = sinc(𝑥),

where,

sinc(𝑥) =
{

sin(𝜋𝑥)
𝜋𝑥 , if 𝑥 ≠ 0,

1, if 𝑥 = 0.
(11)

The following theorem will be used in Section 3.3 to compute some integrals in the entire real line in a very efficient way. A
generalization of this theorem can be found in [25].

Theorem 1 (Theorem 1.3.2 of [26]). Let 𝑓 be defined on R, and let its Fourier transform, denoted by 𝑓 , be such that, for some positive
constant 𝑑,

|𝑓 (𝜉)| = 
(

𝑒−𝑑|𝜉|
)

, 𝜉 → ±∞ . (12)

Then, as 𝑎 → 0,

1
𝑎 ∫R

𝑓 (𝑦)(𝑘, 𝑎)(𝑦)𝑑𝑦 − 𝑓 (𝑘𝑎) = 
(

𝑒−
𝜋𝑑
𝑎
)

,

where (𝑘, 𝑎)(𝑦) ∶= sinc
(

𝑦
𝑎 − 𝑘

)

.

.3. Likelihood estimation with Shannon wavelets

We start by computing,

𝑓 (𝑦1|𝑌0) = ∫R
𝑓1(𝑦1|ℎ1)𝑓3(ℎ1|𝑌0)𝑑ℎ1, (13)

and approximate 𝑓3(ℎ1|𝑌0) by means of a finite combination of Shannon wavelets,

𝑓3(ℎ1|𝑌0) ≈
𝑘2
∑

𝑘=𝑘1

𝑐1𝑚,𝑘𝜙𝑚,𝑘(ℎ1), (14)

with,

𝑐1𝑚,𝑘 = ∫R
𝑓3(ℎ1|𝑌0)𝜙𝑚,𝑘(ℎ1)𝑑ℎ1 ≈

1
2𝑚∕2

𝑓3
( 𝑘
2𝑚

|𝑌0
)

, 𝑘 = 𝑘1,… , 𝑘2, (15)

where the approximation in expression (15) is justified by the application of Theorem 1. Finally,

𝑓 (𝑦1|𝑌0) ≈
𝑘2
∑

𝑘=𝑘1

𝑐1𝑚,𝑘 ∫R
𝑓1(𝑦1|ℎ1)𝜙𝑚,𝑘(ℎ1)𝑑ℎ1 ≈

1
2𝑚∕2

𝑘2
∑

𝑘=𝑘1

𝑐1𝑚,𝑘𝑓1
(

𝑦1|
𝑘
2𝑚

)

, (16)

here the last approximation in expression (16) comes again from the application of Theorem 1.
Now, we compute,

𝑓 (𝑦2|𝑌1) = 𝑓1(𝑦2|ℎ2)𝑓3(ℎ2|𝑌1)𝑑ℎ2, (17)
435
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and approximate 𝑓3(ℎ2|𝑌1) by means of a finite combination of Shannon wavelets,

𝑓3(ℎ2|𝑌1) ≈
𝑘2
∑

𝑘=𝑘1

𝑐2𝑚,𝑘𝜙𝑚,𝑘(ℎ2), (18)

with,

𝑐2𝑚,𝑘 = ∫R
𝑓3(ℎ2|𝑌1)𝜙𝑚,𝑘(ℎ2)𝑑ℎ2, 𝑘 = 𝑘1,… , 𝑘2. (19)

If we take into account expression (7), we have,

𝑐2𝑚,𝑘 = ∫R
𝑓3(ℎ2|𝑌1)𝜙𝑚,𝑘(ℎ2)𝑑ℎ2 = ∫R

(

∫R
𝑓2(ℎ2|ℎ1)𝑓 (ℎ1|𝑌1)𝑑ℎ1

)

𝜙𝑚,𝑘(ℎ2)𝑑ℎ2. (20)

We apply Fubini’s theorem to interchange the order of integration, and apply Theorem 1 to the inner integral,

𝑐2𝑚,𝑘 = ∫R

(

∫R
𝑓2(ℎ2|ℎ1)𝜙𝑚,𝑘(ℎ2)𝑑ℎ2

)

𝑓 (ℎ1|𝑌1)𝑑ℎ1 ≈
1

2𝑚∕2 ∫R
𝑓2

( 𝑘
2𝑚

|ℎ1
)

𝑓 (ℎ1|𝑌1)𝑑ℎ1. (21)

inally, by means of expression (6), expression (14), and Theorem 1, we find that,

𝑐2𝑚,𝑘 ≈ 1
2𝑚∕2

1
𝑓 (𝑦1|𝑌0) ∫R

𝑓2
( 𝑘
2𝑚

|ℎ1
)

𝑓1(𝑦1|ℎ1)𝑓3(ℎ1|𝑌0)𝑑ℎ1 ≈
1
2𝑚

1
𝑓 (𝑦1|𝑌0)

𝑗2
∑

𝑗=𝑗1

𝑐1𝑚,𝑗𝑓1

(

𝑦1|
𝑗
2𝑚

)

𝑓2

(

𝑘
2𝑚

|

𝑗
2𝑚

)

, (22)

nd,

𝑓 (𝑦2|𝑌1) ≈
1

2𝑚∕2

𝑘2
∑

𝑘=𝑘1

𝑐2𝑚,𝑘𝑓1
(

𝑦2|
𝑘
2𝑚

)

. (23)

We iterate this process following the steps summarized in Algorithm 1. It is worth remarking that, although different 𝑚, 𝑘1, 𝑘2 can
be estimated at each step of Algorithm 1, that is, for each contribution of the likelihood function, we consider them constant after
the first choice.
Algorithm 1: Likelihood estimation
Data: 𝑌𝑇 =

(

𝑦𝑇 , 𝑦𝑇−1,… , 𝑦1
)

Determine the scale of approximation 𝑚 and the truncation range 𝑘1, 𝑘2
ompute 𝑓 (𝑦1|𝑌0) by means of expression (15) and expression (16)

nitialize 𝐿(𝜣|𝑌𝑇 ) = log𝑓 (𝑦1|𝑌0)
for 𝑡 = 2,… , 𝑇 do

Compute log 𝑓 (𝑦𝑡|𝑌𝑡−1)
Update 𝐿(𝜣|𝑌𝑇 ) with log 𝑓 (𝑦𝑡|𝑌𝑡−1)

return 𝐿(𝜣|𝑌𝑇 )

4. Stochastic volatility models

In this section, we estimate the parameters of two well-known stochastic volatility models, the standard AR(1)-SV model of
ection 4.1 and the Heston model of Section 4.2. The estimation of parameters is a complex procedure that involves two main
asks: the computation of the likelihood function and the maximization of the likelihood function. The optimization part is an
terative process that starts with an initial seed of parameters and evaluates the likelihood function at each step. The selection of
he initial values of these parameters might determine whether the optimal set of parameters is reached. On top of that, we deal
ith models for which the existence of a global optimal value for their parameters is yet an open problem. Furthermore, since we
sed an iterative optimization method that needs to evaluate many times the likelihood function, and we also typically deal with a
arge data vector, the likelihood computation is a crucial step that must be carried out very efficiently. For these reasons, we focus
n the likelihood estimation and select as initial seed for the optimization step the values of parameters used to simulate the data
or, in some cases, small perturbations of these parameters) as it is a common practice in the references cited in this work.

.1. The standard AR(1)-SV model

We consider the popular stochastic volatility model studied, for instance, in [6–10]. We carry out an error analysis in
ection 4.1.1, and a wide range of numerical experiments1 in Section 5.1. The model is formulated as follows,

𝑦𝑡 = exp(ℎ𝑡∕2)𝜖𝑡, 𝜖𝑡 ∼  (0, 1),

ℎ𝑡+1 = 𝛼 + 𝛽ℎ𝑡 + 𝜂𝑡+1, 𝜂𝑡+1 ∼  (0, 𝜎2𝜂 ),
(24)

1 Computations were performed in R code on a personal computer with a 3.40 GHz Intel Core i7-6700 processor and 32.0 GB of RAM. Function optim
436

with Nelder–Mead method of the R package nloptr is used for optimization.
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where {𝜖𝑡}, {𝜂𝑡+1} are independent processes, 𝜎2𝑡 = 𝑒ℎ𝑡 is the volatility of 𝑦𝑡, and the distribution of ℎ1 ∼ 
(

𝛼
1−𝛽 ,

𝜎2𝜂
1−𝛽2

)

, typically

nown as an initial condition, with probability density function,2

𝑓3(ℎ1|𝑌0) =
1

√

2𝜋𝜎
𝑒−

(ℎ1−𝜇)
2

2𝜎2 ,

here 𝜇 = 𝛼
1−𝛽 , 𝜎

2 =
𝜎2𝜂

1−𝛽2 , denotes the unconditional distribution of the process {ℎ𝑡} for 𝑡 = 1. The density function of 𝑦𝑡 given ℎ𝑡
nd the density function of ℎ𝑡 given ℎ𝑡−1 are, respectively,

𝑓1(𝑦𝑡|ℎ𝑡) =
1

√

2𝜋
𝑒−

𝑦2𝑡
2 𝑒−ℎ𝑡− ℎ𝑡

2 , 𝑓2(ℎ𝑡|ℎ𝑡−1) =
1

√

2𝜋
𝑒
− (ℎ𝑡−𝛼−𝛽ℎ𝑡−1)

2

2𝜎2𝜂 .

In this case, the set of parameters to be estimated is 𝜣 = (𝛼, 𝛽, 𝜎𝜂).

.1.1. Error analysis
We compute the corresponding Fourier transforms3 to assess whether the hypothesis of Theorem 1 is satisfied. Let 𝑓1(𝑦𝑡|𝜉) be

he Fourier transform of 𝑓1(𝑦𝑡|ℎ𝑡),

𝑓1(𝑦𝑡|𝜉) =
1

√

2𝜋 ∫R
𝑒−𝑖𝜉ℎ𝑡𝑒−

𝑦2𝑡
2 𝑒−ℎ𝑡− ℎ𝑡

2 𝑑ℎ𝑡, (25)

and let us approximate 𝑓1(𝑦𝑡|ℎ𝑡) by 𝑓 𝑎
1 (𝑦𝑡|ℎ𝑡),

𝑓1(𝑦𝑡|ℎ𝑡) ≈ 𝑓 𝑎
1 (𝑦𝑡|ℎ𝑡) ∶=

1
√

2𝜋
𝑒−

𝑦2𝑡
2 (

ℎ2𝑡
2 −ℎ𝑡+1)−

ℎ𝑡
2 = 1

√

2𝜋
𝑒−

𝑦2𝑡
4 ℎ2𝑡 +

1
2 (𝑦

2
𝑡 −1)ℎ𝑡−

𝑦2𝑡
2 , (26)

where we have replaced the term 𝑒−ℎ𝑡 of expression (25) by its second order Taylor expansion ℎ2𝑡
2 − ℎ𝑡 + 1 in order to facilitate the

Fourier transform computation. Then, the Fourier transform 𝑓1(𝑦𝑡|𝜉) of 𝑓1(𝑦𝑡|ℎ𝑡) is approximated by the Fourier transform 𝑓 𝑎
1 (𝑦𝑡|𝜉)

f 𝑓 𝑎
1 (𝑦𝑡|ℎ𝑡),

𝑓 𝑎
1 (𝑦𝑡|𝜉) =

1
√

2𝜋 ∫R
𝑒−𝑖𝜉ℎ𝑡𝑒−

𝑦2𝑡
4 ℎ2𝑡 +

1
2 (𝑦

2
𝑡 −1)ℎ𝑡−

𝑦2𝑡
2 𝑑ℎ𝑡 =

1
𝑦𝑡
𝑒
−

𝑦2𝑡
2 +

( 1
2 (𝑦

2
𝑡 −1)−𝑖𝜉
𝑦𝑡

)2

. (27)

We observe that |𝑓 𝑎
1 (𝑦𝑡|𝜉)| = 

(

𝑒
− 1

𝑦2𝑡
𝜉2
)

, from which the hypothesis of Theorem 1 is satisfied for 𝑓 𝑎
1 . This gives us the intuition

hat Theorem 1 might work out well for 𝑓1 although this fact has not been proved theoretically, since we have employed the
pproximation 𝑓 𝑎

1 of 𝑓1 to ease the computation of the Fourier transform. Let us perform some numerical experiments to show that
he integral in expression (16) is computed very efficiently when it is calculated following Theorem 1.

We define the integral,

𝐼 = ∫R
𝐺𝑚,𝑘(𝑥)𝑑𝑥, (28)

here,

𝐺𝑚,𝑘(𝑥) ∶= 𝑔(𝑥)𝜙𝑚,𝑘(𝑥), 𝑔(𝑥) ∶= 1
√

2𝜋
𝑒−

1
2 𝑒

−𝑥− 𝑥
2 . (29)

In our experiments, we approximate the integral of expression (28) for values of scale 𝑚 = 0, 2 and translation parameters 𝑘 = 0, 1,
respectively. We plot 𝐺𝑚,𝑘 in Fig. 1 for 𝑚 = 𝑘 = 0 as well as in Fig. 2 for 𝑚 = 2, 𝑘 = 1. We observe that 𝐺2,1 is a highly oscillatory
function and it is more peaked than 𝐺0,0. While increasing the scale 𝑚 represents a challenge for numerical quadrature methods,
we will show that integral 𝐼 is very efficiently computed following Theorem 1.

We use the R function called integrate to solve the integral of expression (28). If one or both limits are infinite (as it is
our case) the infinite range is mapped onto a finite interval. For a finite interval, globally adaptive interval subdivision is used
in connection with extrapolation by Wynn’s Epsilon algorithm, with the basic step being Gauss–Kronrod quadrature (see [27] for
details). We refer to this method with the acronym GK.

Since the integral 𝐼 cannot be calculated exactly, we also perform Monte Carlo simulation to have an estimation for comparison,
since the order of approximation error in that case is known to be (1∕

√

𝑛), whe 𝑛 is the sample size. If we truncate the entire real
line and consider the integration interval [𝑎, 𝑏], then,

𝐼 ≈ ∫

𝑏

𝑎
𝐺𝑚,𝑘(𝑥)𝑑𝑥 = (𝑏 − 𝑎)∫

1

0
𝐺𝑚,𝑘((𝑏 − 𝑎)𝑦 + 𝑎)𝑑𝑦, (30)

2 Note that we use the same letter for the random variable of the stochastic volatility model and for the variable of the density function.
3 The Fourier transforms have been calculated with WolframAlpha software.
437



Mathematics and Computers in Simulation 225 (2024) 430–445A. Blanc-Blocquel et al.
Fig. 1. Function 𝐺0,0(𝑥).

Fig. 2. Function 𝐺2,1(𝑥).

Table 7
Values of the approximated integral 𝐼 . The truncation interval to perform Monte Carlo simulation is [𝑎, 𝑏] =
[−10, 10]. Parameter tol is defined as the absolute error in R documentation for routine integrate without
further details. Given a value of tol, integrate returns the number of subintervals used.
Method 𝑚 = 0, 𝑘 = 0 Subintervals 𝑚 = 2, 𝑘 = 1 Subintervals

GK, tol=10−1 0.1151907 2 0.0543461 3
GK, tol=10−3 0.1211707 10 0.0605648 25
GK, tol=10−6 0.1209852 21 0.0604349 75
MC, 𝑛 = 106 0.1217226 – 0.0607478 –
MC, 𝑛 = 108 0.1208844 – 0.0605098 –
TH 0.1209854 – 0.0604349 –

and the integral in the right hand side of expression (30) can be approximated by the Monte Carlo sum,

∫

1

0
𝐺𝑚,𝑘((𝑏 − 𝑎)𝑦 + 𝑎)𝑑𝑦 ≈ 1

𝑛

𝑛
∑

𝑖=1
𝐺𝑚,𝑘((𝑏 − 𝑎)𝑈𝑖 + 𝑎), (31)

with 𝑈𝑖 independent and identically distributed uniform random variables in [0, 1]. We refer to this method with the acronym MC.
Finally, we compute the integral of expression (28) by means of the one point approximation of Theorem 1,

𝐼 = ∫R
𝐺𝑚,𝑘(𝑥)𝑑𝑥 ≈ 1

2𝑚∕2
𝑔
( 𝑘
2𝑚

)

. (32)

We refer to this method with the acronym TH.
Results are presented in Table 7. We can observe that TH and GK give very similar results when many subintervals are considered

for GK integration. In this case, MC results with 𝑛 = 108 agree with GK and TH up to the third decimal place. These outcomes confirm
the impressive accuracy and efficiency of TH method, where only one evaluation function is required without domain truncation.

Following similar steps for 𝑓2(⋅|ℎ𝑡−1), 𝑓2(ℎ𝑡|⋅) and 𝑓3(ℎ1|𝑌0), we obtain,

𝑓2(𝜉|ℎ𝑡−1) = 𝑒−
𝜎2𝜂
2 𝜉2−𝑖(𝛼+𝛽ℎ𝑡−1)𝜉 , 𝑓2(ℎ𝑡|𝜉) =

1 𝑒
−

𝜎2𝜂
2𝛽2

𝜉2−𝑖 ℎ𝑡−𝛼𝛽 𝜉
, 𝑓3(𝜉|𝑌0) = 𝑒−

𝜎2
2 𝜉2−𝑖𝜇𝜉 . (33)
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Then,

|𝑓2(𝜉|ℎ𝑡−1)| = 

(

𝑒−
𝜎2𝜂
2 𝜉2

)

, |𝑓2(ℎ𝑡|𝜉)| = 
⎛

⎜

⎜

⎝

𝑒
−

𝜎2𝜂
2𝛽2

𝜉2
⎞

⎟

⎟

⎠

, |𝑓3(𝜉|𝑌0)| = 𝑒−
𝜎2
2 𝜉2 , (34)

and the hypothesis of Theorem 1 is satisfied for all three functions.
It remains to compute the scale of approximation 𝑚 and the truncation parameters 𝑘1 and 𝑘2.

Proposition 1. Let 𝜖𝑚 be a given tolerance error. Then, for all 𝑚 ∈ Z, 𝑚 > log2
(

− 1
𝜋𝜎𝛷

−1
(

𝜎
√

𝜋
2 𝜖𝑚

))

, the projection error
𝑓3(ℎ1|𝑌0) − 𝑚𝑓3(ℎ1) satisfies |𝑓3(ℎ1|𝑌0) − 𝑚𝑓3(ℎ1)| < 𝜖𝑚, where 𝛷−1 represents the inverse of the cumulative distribution function of
the standard normal distribution.

Proof. Lemma 3 of [28] states that,

|𝑓3(ℎ1|𝑌0) − 𝑚𝑓3(ℎ1)| ≤
1
2𝜋 ∫

|𝜉|>2𝑚𝜋
|𝑓3(𝜉|𝑌0)|𝑑𝜉. (35)

Then, the result follows by integrating the Fourier transform 𝑓3(𝜉|𝑌0) of 𝑓3(ℎ1|𝑌0) detailed in expression (34). □

Proposition 2. Let 𝜖𝑘1 , 𝜖𝑘2 be given tolerance errors. Then for all 𝑘1, 𝑘2 ∈ Z, 𝑘1 < 2𝑚(𝜇 + 𝜎𝛷−1(𝜖𝑘1 )), 𝑘2 > 2𝑚(𝜇 + 𝜎𝛷−1(1 − 𝜖𝑘2 )), the
umulative distribution function 𝐹3(ℎ1|𝑌0) of ℎ1 satisfies 𝐹3(𝑘1∕2𝑚|𝑌0) < 𝜖𝑘1 and 1 − 𝐹3(𝑘2∕2𝑚|𝑌0) < 𝜖𝑘2 .

Proof. The result follows straightforwardly since ℎ1 is normally distributed. □

Based on Propositions 1 and 2, in what follows, we select 𝑚 = ⌈log2
(

− 1
𝜋𝜎𝛷

−1
(

𝜎
√

𝜋
2 𝜖𝑚

))

⌉, 𝑘1 = ⌊2𝑚(𝜇 + 𝜎𝛷−1(𝜖𝑘1 ))⌋, and

2 = ⌈2𝑚(𝜇 + 𝜎𝛷−1(1 − 𝜖𝑘2 ))⌉, where ⌈𝑥⌉ ∶= min{𝑘 ∈ Z ∶ 𝑘 ≥ 𝑥} and ⌊𝑥⌋ ∶= max{𝑘 ∈ Z ∶ 𝑘 ≤ 𝑥}.

.2. Heston model

We consider the celebrated Heston stochastic volatility model studied in [4]. The parameters estimation problem via the
ikelihood function has been studied, for instance, in [11,13]. We carry out an error analysis in Section 4.2.1, and we show some
umerical results in Section 5.2. The model is formulated as follows,

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 +
√

𝑣𝑡𝑆𝑡𝑑𝐵𝑡,

𝑑𝑣𝑡 = (𝜔 − 𝜃𝑣𝑡)𝑑𝑡 + 𝜉
√

𝑣𝑡𝑑𝑍𝑡,
(36)

where, 𝐵𝑡 and 𝑍𝑡 are two correlated Brownian motions with correlation parameter 𝜌,

𝜌𝐵𝑡 +
√

1 − 𝜌2𝑍̃𝑡 = 𝑍𝑡, (37)

where 𝑍̃𝑡 is a Brownian motion independent of 𝐵𝑡. In this case, the set of parameters to be estimated is, 𝜣 = (𝜔, 𝜃, 𝜉, 𝜌), where 𝜔
𝜃

represents the long-run average variance of the asset, 𝜃 the rate at which 𝑣𝑡 reverts to the mean, and 𝜉 is the volatility of volatility.
or sake of convenience, we transform the model in (36) into the log-asset and log-variance form by means of the Itô lemma, and
e end up with,

𝑑
(

ln𝑆𝑡
)

=
(

𝜇 − 1
2
𝑣𝑡
)

𝑑𝑡 +
√

𝑣𝑡𝑑𝐵𝑡,

𝑑
(

ln 𝑣𝑡
)

= 1
𝑣𝑡

(

(𝜔 − 𝜃𝑣𝑡) −
1
2
𝜉2
)

𝑑𝑡 + 𝜉 1
√

𝑣𝑡
𝑑𝑍𝑡.

(38)

This representation of the model fits with the form of the integration domain of volatility in the filtering algorithm of Section 3.1.
In order to be able to compute the likelihood function, we discretize the model in expression (38),

ln𝑆𝑡+𝛥𝑡 = ln𝑆𝑡 +
(

𝜇 − 1
2
𝑣𝑡
)

𝛥𝑡 +
√

𝑣𝑡
√

𝛥𝑡𝐵𝑡,

ln 𝑣𝑡+𝛥𝑡 = ln 𝑣𝑡 +
1
𝑣𝑡

(

(𝜔 − 𝜃𝑣𝑡) −
1
2
𝜉2
)

𝛥𝑡 + 𝜉 1
√

𝑣𝑡

√

𝛥𝑡𝑍𝑡,
(39)

where 𝛥𝑡 is the time step (for daily data we will consider 𝛥𝑡 = 1
252 as in [29]). If we define,

𝑦𝑡 ∶= ln𝑆𝑡+𝛥𝑡 − ln𝑆𝑡, and, ℎ𝑡 = ln 𝑣𝑡,

then the system in expression (39) can be written as,

𝑦𝑡 =
(

𝜇 − 1
2
𝑒ℎ𝑡

)

𝛥𝑡 + 𝑒
ℎ𝑡
2
√

𝛥𝑡𝐵𝑡,

ℎ = ℎ + 𝑒−ℎ𝑡
(

𝜔 − 𝜃𝑒ℎ𝑡 − 1 𝜉2
)

𝛥𝑡 + 𝜉𝑒−
ℎ𝑡
2
√

𝛥𝑡𝑍 .
(40)
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We eliminate the correlation in the system of expression (40). To do this, we start by replacing 𝑍𝑡 of expression (37) in the second
quation of the system (40),

ℎ𝑡+1 = ℎ𝑡 + 𝑒−ℎ𝑡
(

𝜔 − 𝜃𝑒ℎ𝑡 − 1
2
𝜉2
)

𝛥𝑡 + 𝜉𝑒−
ℎ𝑡
2
√

𝛥𝑡
(

𝜌𝐵𝑡 +
√

1 − 𝜌2𝑍̃𝑡

)

, (41)

and then, we replace 𝐵𝑡 of expression (41) by using the first equation of the system (40). Finally, after some algebraic manipulation
we obtain the system,

𝑦𝑡 =
(

𝜇 − 1
2
𝑒ℎ𝑡

)

𝛥𝑡 + 𝑒
ℎ𝑡
2
√

𝛥𝑡𝐵𝑡,

ℎ𝑡+1 = ℎ𝑡 +
(

𝑒−ℎ𝑡
(

𝜔 − 𝜃𝑒ℎ𝑡 − 1
2
𝜉2
)

− 𝜉𝜌𝑒−ℎ𝑡
(

𝜇 − 1
2
𝑒ℎ𝑡

))

𝛥𝑡 + 𝜉𝜌𝑒−
ℎ𝑡
2 𝑦𝑡

√

𝛥𝑡 + 𝜉𝑒−
ℎ𝑡
2
√

1 − 𝜌2
√

𝛥𝑡𝑍̃𝑡.
(42)

he density function of 𝑦𝑡 given ℎ𝑡 and the density function of ℎ𝑡 given ℎ𝑡−1 are, respectively,

𝑓1(𝑦𝑡|ℎ𝑡) =
1

√

2𝜋𝑠
𝑒−

(𝑦𝑡−𝑚)2
2𝑠2 , 𝑓2(ℎ𝑡|ℎ𝑡−1) =

1
√

2𝜋𝑠̄
𝑒−

(ℎ𝑡−𝑚̄)2
2𝑠̄2 ,

where,

𝑚 ∶=
(

𝜇 − 1
2
𝑒ℎ𝑡

)

𝛥𝑡, 𝑠 ∶= 𝑒
ℎ𝑡
2
√

𝛥𝑡,

nd,

𝑚̄ ∶= ℎ𝑡−1 +
(

𝑒−ℎ𝑡−1
(

𝜔 − 𝜃𝑒ℎ𝑡−1 − 1
2
𝜉2
)

− 𝜉𝜌𝑒−ℎ𝑡−1
(

𝜇 − 1
2
𝑒ℎ𝑡−1

))

𝛥𝑡 + 𝜉𝜌𝑒−
ℎ𝑡−1
2 𝑦𝑡−1

√

𝛥𝑡,

𝑠̄ ∶= 𝜉𝑒−
ℎ𝑡−1
2

√

1 − 𝜌2
√

𝛥𝑡.

It remains to define the distribution of ℎ1. As the initial variance, we select the exponential distribution of parameter 1, 𝑣1 ∼ exp(1)
as in [11]. The initial density function for the log-variance reads,

𝑓3(ℎ1|𝑌0) = 𝑒−𝑒
ℎ1+ℎ1 , ℎ1 ∈ R.

4.2.1. Error analysis
Following similar steps as those detailed in Section 4.1.1 for 𝑓1(𝑦𝑡|ℎ𝑡), 𝑓2(⋅|ℎ𝑡−1), 𝑓2(ℎ𝑡|⋅) and 𝑓3(ℎ1|𝑌0), we can see that the

ypothesis of Theorem 1 is again satisfied, and it remains to compute the scale of approximation 𝑚 and the truncation parameters
1 and 𝑘2.

roposition 3. Let 𝜖𝑚 be a given tolerance error. Then, for all 𝑚 ∈ Z, 𝑚 > log2
(

− 1
𝜋𝛷

−1
(

𝑒
2 𝜖𝑚

))

, the projection error 𝑓3(ℎ1|𝑌0)−𝑚𝑓3(ℎ1),
satisfies |𝑓3(ℎ1|𝑌0) − 𝑚𝑓3(ℎ1)| ≲ 𝜖𝑚, where 𝛷−1 represents the inverse of the cumulative distribution function of the standard normal
distribution.

Proof. Lemma 3 of [28] states that,

|𝑓3(ℎ1|𝑌0) − 𝑚𝑓3(ℎ1)| ≤
1
2𝜋 ∫

|𝜉|>2𝑚𝜋
|𝑓3(𝜉|𝑌0)|𝑑𝜉. (43)

We use the approximation 𝑒ℎ1 ≈
ℎ21
2 + ℎ1 + 1 to obtain 𝑓3(ℎ1|𝑌0) ≈ 𝑒−

ℎ21
2 −1 and an approximation to its Fourier transform,

|𝑓3(ℎ1|𝑌0) − 𝑚𝑓3(ℎ1)| ≤
1
2𝜋 ∫

|𝜉|>2𝑚𝜋
|𝑓3(𝜉|𝑌0)|𝑑𝜉 ≈ 1

√

2𝜋 ∫
|𝜉|>2𝑚𝜋

𝑒−
1
2 𝜉

2−1𝑑𝜉 = 2
𝑒
𝛷 (−2𝑚𝜋) . (44)

Then, the result follows immediately from expression (44). □

Proposition 4. Let 𝜖𝑘1 , 𝜖𝑘2 be given tolerance errors. Then for all 𝑘1, 𝑘2 ∈ Z, 𝑘1 < 2𝑚 ln
(

ln
(

1
1−𝜖𝑘1

))

, and 𝑘2 > 2𝑚 ln
(

ln
(

1
𝜖𝑘2

))

, the
cumulative distribution function 𝐹3(ℎ1|𝑌0) of ℎ1 satisfies 𝐹3(𝑘1∕2𝑚|𝑌0) < 𝜖𝑘1 and 1 − 𝐹3(𝑘2∕2𝑚|𝑌0) < 𝜖𝑘2 .

Proof. The result follows straightforwardly since the distribution function of ℎ1 is calculated in closed form. □

Based on Propositions 3 and 4, in what follows, we select 𝑚 = ⌈log2
(

− 1
𝜋𝛷

−1
(

𝑒
2 𝜖𝑚

))

⌉, 𝑘1 = ⌊2𝑚 ln
(

ln
(

1
1−𝜖𝑘1

))

⌋ and

𝑘2 = ⌈2𝑚 ln
(

ln
(

1
𝜖𝑘2

))

⌉, where ⌈𝑥⌉ ∶= min{𝑘 ∈ Z ∶ 𝑘 ≥ 𝑥} and ⌊𝑥⌋ ∶= max{𝑘 ∈ Z ∶ 𝑘 ≤ 𝑥}.

5. Numerical experiments

We devote Section 5.1 to numerical experiments on the standard AR(1)-SV model, while Section 5.2 is dedicated to Heston model.
Finally, parameters estimation with real data is performed in Section 5.3.
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Table 8
RMSE corresponding to the estimation of parameters 𝜣 = (𝛼, 𝛽, 𝜎𝜂 ) with 𝜣𝟎 = 𝜣, projection error 𝜖𝑚 = 10−6 and truncation errors
𝜖𝑘1 = 𝜖𝑘2 = 10−6.

𝑇 𝑁 𝑀 𝛼 𝛽 𝜎𝜂 𝛼̂ 𝛽 𝜎̂𝜂 (𝛼) (𝛽) (𝜎𝜂 )

500 500 10 −0.821 0.9 0.675 −0.814 0.901 0.696 0.0227 0.0034 0.0416
500 500 10 −0.736 0.9 0.363 −0.734 0.901 0.381 0.0083 0.0026 0.0391
500 50 20 −0.706 0.9 0.135 −0.695 0.902 0.154 0.0172 0.0031 0.0456
2000 500 10 −0.736 0.9 0.363 −0.736 0.900 0.370 0.0000 0.0000 0.0238

Table 9
RMSE corresponding to the estimation of parameters 𝜣 =
(−0.736, 0.9, 0.363) with 𝜣𝟎 = (−0.746, 0.89, 0.353), projection error
𝜖𝑚 = 10−6, truncation errors 𝜖𝑘1 = 𝜖𝑘2 = 10−6, 𝑇 = 2000, 𝑁 = 500
and 𝑀 = 10.
𝛼̂ 𝛽 𝜎̂𝜂 (𝛼) (𝛽) (𝜎𝜂 )

−0.720 0.902 0.379 0.0158 0.0026 0.0158

Table 10
RMSE corresponding to the estimation of parameters 𝜣 = (𝛼, 𝛽, 𝜎𝜂 ) for sample size 𝑇 = 500.
Source: All these results were taken from [6].
Method 𝛼 𝛽 𝜎𝜂 𝛼 𝛽 𝜎𝜂 𝛼 𝛽 𝜎𝜂
TRUE −0.821 0.9 0.675 −0.736 0.90 0.363 −0.706 0.90 0.135
GLQ [7] 0.28 0.03 0.08 0.43 0.05 0.08 1.72 0.24 0.12
RQ [5] 0.25 0.03 0.08 0.45 0.06 0.09 1.24 0.17 0.10
LA [9] 0.28 0.04 0.10 0.42 0.06 0.11 1.55 0.22 0.14
AGH [6] 0.23 0.03 0.15 0.17 0.02 0.04 0.21 0.03 0.08

5.1. The standard AR(1)-SV model

In what follows, the true parameter set used for data simulation is denoted by 𝜣 = (𝛼, 𝛽, 𝜎𝜂), while the estimated values are
epresented by 𝜣̂ = (𝛼̂, 𝛽, 𝜎̂𝜂). The initial parameter set used for the optimization process of the likelihood function is denoted by
𝟎 = (𝛼0, 𝛽0, 𝜎0𝜂 ). The number of samples is 𝑁 , the size of each sample is 𝑇 , and the number of iterations of the optimization method

s 𝑀 .
The parameters estimated for 𝜖𝑚 = 𝜖𝑘1 = 𝜖𝑘2 = 10−4, when 𝜣 = 𝜣𝟎 = (−0.821, 0.9, 0.675), 𝑁 = 1, 𝑇 = 2000, and 𝑀 = 30 are

̂ = (−0.801, 0.901, 0.656). If we consider 𝜖𝑚 = 𝜖𝑘1 = 𝜖𝑘2 = 10−6 then 𝜣̂ = (−0.803, 0.900, 0.662) and no differences are observed if we
urther reduce the tolerance errors to 10-8. For these reasons, we finally set 𝜖𝑚 = 𝜖𝑘1 = 𝜖𝑘2 = 10−6 for the next experiments.

Our next experiment consist of the estimation of three different sets of values corresponding to parameters (𝛼, 𝛽, 𝜎𝜂) taken
rom [9]. The estimated values 𝜣̂ = (𝛼̂, 𝛽, 𝜎̂𝜂) represent the mean of the estimations for 𝑁 simulations. We consider the values
= 50,500, 𝑇 = 500, 2000 and 𝑀 = 10, 20, and compute the root mean square error (RMSE) in each case associated with (𝛼, 𝛽, 𝜎𝜂)

nd denoted by (𝛼), (𝛽), (𝜎𝜂), respectively. The RMSE reported ranges from orders 10−3 to 10−2, except for the sample size
𝑇 = 2000, where (𝛼) = (𝛽) = 0.

This zero error, is due to an extremely accurate computation of the likelihood function by means of Shannon wavelets, since
the first iteration of the optimization method (the initial seed equals the set of parameters used for data simulation) gives us the
maximum value of the likelihood. We illustrate this fact in Fig. 3, where we compute and plot the likelihood in terms of one changing
parameter while the others two remain fixed (the vertical line represents the optimal value of the changing parameter).

If we repeat the experiment for 𝑇 = 2000 but this time with a small perturbation of the initial seed, then the RSME lies within
the range 10−3 to 10−2. This is illustrated in Table 9.

For sake of comparison, we collect some results on RMSE stated in [6] and present them in Table 10. The first row of the
table shows the real values of the parameters used for simulating the data, while the second, third, fourth and fifth rows refer
to the methods GLQ (Gauss–Legendre quadrature), RQ (rectangular quadrature), LA (Laplace approximation) and AGH (adaptive
Gaussian Hermite quadrature), which were developed by [5–7,9], respectively. In particular, the AGH method is implemented with
21 quadrature points, as stated by the authors of [6]. If we compare those figures with the results of Table 8, we realize that our
method is capable of recovering the parameter values with a reduction of the RSME by a factor ranging from 10 to 100. Further,
the execution time is illustrated in Fig. 4 for different sample sizes. For 𝑇 = 500 and 𝑀 = 10, the parameters are estimated in about
2 s.

5.2. Heston model

Non-zero correlation is the element that most distinguishes the Heston model from the previous stochastic volatility model that
assumed zero correlation between the asset and volatility. Heston model tries to reproduce the so-called leverage effect, that is, the
441

increase in volatility with the decrease of the returns of the underlying, which results in negative correlation between the returns of
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𝑇

Fig. 3. Likelihood function −𝐿(𝜣|𝑌𝑇 ) corresponding to: (a) 𝜣 = (𝛼, 0.9, 0.363), (b) 𝜣 = (−0.736, 𝛽, 0.363), (c) 𝜣 = (−0.736, 0.9, 𝜎𝜂 ). Vertical lines denote the true
alues of the parameters 𝛼, 𝛽, 𝜎𝜂 , respectively. The sample size is 𝑇 = 2000.

Fig. 4. CPU time in seconds employed in the estimation of parameters with 𝑁 = 1, varying sample size (circles for 𝑇 = 500, triangles for 𝑇 = 2500, squares for
= 5000) and different number of iterations 𝑀 = 10, 20, 30 in the optimization method. The tolerance of projection and truncation errors are 𝜖𝑚 = 𝜖𝑘1 = 𝜖𝑘2 = 10−6.

the underlying and their volatility. This negative correlation, among other factors, drives the skewness of the distribution of returns
in discrete time. This is especially pronounced in stock indexes. Correlation is much more difficulty to estimate than volatility. With
just a few observations, we can get a decent estimation of volatility. To estimate volatility, we work with one dimension, the returns
of one asset. However, to estimate correlation, we deal with two dimensions of risk. In the Heston model and its simulations, the
correlation between the returns of the asset and its volatility is driven by the correlation between two Brownian motions driving
each.
442
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Table 11
Results corresponding to the estimation of parameters 𝜣 = (𝜔, 𝜃, 𝜉, 𝜌) with the initial parameter set 𝜣𝟎 = (𝜔 = 0.15, 𝜃 = 15.0, 𝜉 =
0.02, 𝜌 = −0.40), projection error 𝜖𝑚 = 10−6, truncation errors 𝜖𝑘1 = 𝜖𝑘2 = 10−6, 𝑁 = 1, and 𝑀 = 50. The parameter set used for
simulation is 𝜣 = (0.10, 10.0, 0.03,−0.50). For the sake of comparison, results estimated by means of EKF taken from [29] are
presented (rounded to two decimal digits).
𝑇 Shannon wavelets EKF from [29]

𝜔̂ 𝜃̂ 𝜉 𝜌̂ 𝜔̂ 𝜃̂ 𝜉 𝜌̂

5000 0.132396 14.638018 0.024106 −0.610392 0.150854 15.294576 0.266175 −0.128835
50000 0.105109 15.218574 0.011538 −0.386075 0.126387 12.748852 0.020521 −1.000000
100000 0.182143 15.096761 0.009195 −0.521110 0.136023 13.700906 0.044353 −0.439961

We assess the performance of our method by comparing the outcomes with the results reported in [29], where the authors use
he EKF. We estimate the optimal values for the Heston model parameters by simulating large data series and choosing the same
erturbation as [29] to the true value of the parameters for the initial seed 𝜣𝟎. Results are presented in Table 11. We can observe
hat Shannon wavelets method is capable of accurately estimating the correlation parameter, while EKF is accurate only for the
argest 𝑇 . Further, when 𝑇 = 5000, the EKF method gives a very bad estimation of the volatility of volatility parameter 𝜉, while
hannon wavelets estimation is again accurate.

.3. Estimation of parameters with real market data and option valuation

We devote this section to the valuation of an option of the type defined in Section 2. To carry out this task, we need to select the
ynamics of the underlying asset. In the present work, we choose the Heston model described in Section 4.2 because it accounts for
tochastic and mean-reverting behavior of the volatility of the underlying asset and the correlation of its changes with the returns
f the underlying. We recall that, as it was defined in Section 2, the underlying asset is the price of CB in terms of BTC. As the
olatility and returns of the BTC are negatively correlated, we expect the volatility and return of the price of the CB in terms of
TC to positively correlate. The ability of the Heston model to capture the correlation is extremely important. Since the options
f interest do not exist in the market, we cannot obtain the parameters of the model by means of calibration with quoted option
rices. We therefore turn to estimate them from the time series of the underlying by EKF (see [29] for details) as well as by means
f the wavelet method proposed in Section 3.3.

The time series used for the filtering are the same described in Section 2.1, and we consider as the underlying the quotient
etween the price in dollars of CB and the price in dollars of BTC and then the differences of the logarithm of the resulting data
eries. This ratio synthesizes the price of CB in terns of BTC. The results obtained with EKF method are,

𝜔̂ = 0.828, 𝜃̂ = 0.707, 𝜉 = 0.982, 𝜌̂ = 0.573, 𝜇̂ = 1.180205𝑒 − 05. (45)

t is natural for 𝜇 to be close to zero since it represents the risk free rate in BTC. As BTC has a limited supply one would expect a
eturn on a risk free bond denominated in BTC to be close to zero, as there are no drawbacks of delaying consumption and purchase
ower in BTC (due to the limited supply).

Note the positive correlation 𝜌 between the returns and changes in volatility. As it happens with many risky assets, drops in
he price of BTC increases its volatility. But a drop in the value of the BTC produces an increase in the price of carbon bonds in
erms of BTC. Therefore, it is expected to find a positive correlation between the price of the CB in terms of BTC and its volatility.
urther, we note the high mean reversion 𝜃 of the volatility, also explained mostly by that of the BTC. Once the parameters have
een estimated, we proceed to price a call option with 1 day to maturity and strike 𝐾 = 0.0015 BTC/CB. The value obtained is
.0001625 BTC/CB. The pricing of the option under the Heston model is carried out by means of the method described in [30] with
he function callHestoncf of R package nmof.

This derivative can be used as a hedge against a position in the underlying. Assume that with a drop in the BTC price of the CB
0.00005 BTC/CB), the pollution produces losses of 10,000,000 USD, equivalent to 500 BTC. The delta of this position is 10,000,000
B, that is, 500 BTC/(0.00005 BTC/CB). Therefore, it can be hedged by selling 10,000,000 CB futures. Alternatively, a put can be
sed as a hedge. As an example, we consider a put with a strike of 0.0015 BTC/CB and three months to expiration while the futures
rice is 0.001660029 BTC/CB. The premium of this put is 0.0002497738 BTC/CB or a total of 2497.738 BTC (0.0002497738 BTC/CB
10,000,000 CB). To compute the premiums, we used the parameters of expression (45).
Next, we estimate the parameters using the wavelet method put forward in this work. We use as the initial seed the values

btained by EKF method (we set 𝜇 = 0 and 𝑀 = 50), the values of the estimated parameters are,

𝜔̂ = 0.801, 𝜃̂ = 1.089, 𝜉 = 0.304, 𝜌̂ = 0.979,

nd the call option price is 0.0001613 BTC/CB. We include in Table 12 option prices for different strikes.
As we can observe, there are significant differences between the two methods for the volatility of volatility parameter as well

s for the correlation parameter, which is the same behavior observed in the simulation experiments given in Table 11.
In order to check whether the wavelets parameters accurately reproduce the data we perform a Kolmogorov–Smirnov test against

he real returns and compare the results with the same test applied to the EKF simulation against the real returns. The null hypothesis
f this test is that the data comes from the same distribution. The 𝑝-value for the returns produced with the wavelets parameters is
.3682 and, hence, we cannot reject the null hypothesis that the data comes from the same distribution. The 𝑝-value for the returns
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roduced with the EKF parameters is 7.139𝑒 − 14 so we can reject the hypothesis that the data comes from the same distribution.
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Table 12
Prices of call options on CB.

Strike Price

0.0012 0.000460003
0.0013 0.000360003
0.0014 0.000260031
0.0015 0.000161283
0.0016 7.44e−05
0.0017 2.15e−05
0.0018 3.54e−06

6. Conclusions

In this work, we have developed novel financial instruments that could be a helpful tool for governments in designing and
mplementing climate management policies. The success of this type of instruments relies not only on the financial implementation
ut also on the body of legislation to support it. We believe that financial climate management by means of derivatives trading by
egulatory agencies is a promising strategy for improving social well-being. In regard to the option designed appropriate dynamics
or the underlying are needed when it comes to the pricing of the contract. We choose the Heston model because its volatility
s stochastic, mean reverting and correlated with price of the underlying, and we estimate its parameters by means of a novel
ethod based on Shannon wavelets. The numerical experiments show the high efficiency of the method in terms of speed and

ccuracy. Future research might be devoted to finding an initial seed for the maximum likelihood optimization step, which is the
ost challenging part when dealing with real data, regardless of the method used for computing the likelihood function. A possible

olution can be the method of moments (see for instance [31]). As stated in [32], these estimators are not optimal but they are
ften easy to compute, and they are also useful as starting values for other methods that require iterative numerical routines.
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