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Parametric learning of probabilistic graphical models from multi-sourced data

by David CATALÁN CEREZO

In Machine Learning, it is common to encounter scenarios where learning a
model from a scarce dataset may not be feasible. In these cases, data from multi-
ple different sources have to be collected. When data from multiple sources is dis-
tributed differently, the benefit of a bigger sample size trades off with the difficulty
to model together data sampled from different distributions. A similar framework
is presented in fairness analysis, where subpopulations defined by the protected at-
tributes might show different underlying distributios. In this work, we study the
use of hierarchical Bayesian methods to learn Bayesian network (BN) models from
all the available data while being aware of the presence of unequally distributed
data sources. We propose a variation of a previous hierarchical Bayesian approach
for learning BN parameters which naturally accommodates into the framework of
BNs. The comparison with the state-of-the-art methods is done in two dimensions:
the amount of samples available to train a model, and the divergence of the underly-
ing distribution of the different data sources. Experimental results suggest that our
model is competitive when data is scarce and the multiple sources are distributed
differently.
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Chapter 1

Introduction

Data collection is a fundamental aspect that poses challenges to the application of
machine learning techniques in various domains. In cases where the phenomena
under study are limited in prevalence, it may not be feasible to obtain a sufficient
number of cases from a single source. As a result, researchers often rely on data col-
lected from multiple sources. However, there is a trade-off with this approach: the
data collected may not always be standardised or collected in the same way in differ-
ent sources. As a result, it may not be distributed in the same way or may come from
different data generation processes. This makes it difficult to model and analyse data
from multiple sources. The fact that data comes from different data generation pro-
cesses means that the distribution of the data may vary between sources. This leads
to complexity in developing a unified model that can effectively capture the inherent
relationships and patterns within the data. When enough data comes from each data
source, we could model them separately in an efficient way. However, in sparse data
scenarios, where we have access to a few data samples from each source, it might be
unfeasible to model them separately. In those cases, it can be more efficient to model
them together using an alternative technique that allows to combine data coming
from different sources.

A domain that often faces these challenges is healthcare research, where con-
ducting robust studies often requires collecting data from different hospitals due
to the cost of data collection. Incorporating data from multiple healthcare cen-
ters introduces additional complexity due to differences in data collection proto-
cols, patient populations and institutional practices. Consequently, it is crucial to
explore methodologies that can effectively address the inherent challenges of mod-
eling multi-source data in scarce data scenarios.

It is interesting to note that a potentially important application of the multi-
source learning approach is fairness analysis. When the problem involves a sensible
attribute, the classification model should treat different sub-populations in a simi-
lar way, so that the algorithm does not discriminate on the basis of that protected
attribute. In this scenario, we would ideally want to extract information from the
whole population but adapt at a local level to each subpopulation so that the model
is as robust as possible with any subgroup. In the spirit of data coming from multiple
sources (like different hospitals), the sensible attribute can analogously be viewed as
an auxiliary variable defining the different sources (subpopulations).

In this work, our aim is to explore the use of probabilistic graphical models
(PGMs), specifically Bayesian networks (BN), to derive valuable insights from multi-
source data. For the sake of simplicity, in this study we assume that all the variables
in the datasets are categorical. The learning process in BN consists of a structural
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learning stage and a parametric learning stage. By assuming that the structure of
the graph is already known, we focus on the parametric learning stage in the con-
text of multi-sourced data. Our objective is to use Bayesian estimation to learn a BN
classifier that can adapt well to multi-sourced data scarcity scenarios. The Maximum
Likelihood Estimation (MLE) of the parameters of a BN has a closed form. However,
when there is data scarcity the MLE estimation can be problematic due to overfitting.
Alternatively, the Bayesian estimation of the parameters deals with data scarcity by
integrating prior knowledge about the parameters of interest into the modeling pro-
cess. This is particularly beneficial when data are limited, as the prior can serve as
a valuable source of information and regularization. For categorical data, the most
used prior is the Dirichlet distribution due to the conjugacy of the Dirichlet and the
multinomial distributions. The conjugacy ensures that the maximum a posteriori is
also a Dirichlet distribution, and allows to obtain a closed-form solution of the pa-
rameters of the categorical. Henceforth, the choice of the Dirichlet distribution as a
prior ensures that we can do Bayesian estimation in an efficient way, as discussed
in (Bernardo, 1994).

When dealing with multi-sourced data that may come from different data gen-
eration processes, we would ideally want a predictive model that learns from the
full distribution of the whole population, but also takes into account the presence
of data having different distributions, so that it can adapt locally to each subpop-
ulation. The main methodologies that deal with this problem when learning BNs
are the hierarchical-Dirichlet models proposed by Azzimonti, Corani, and Zaffalon
(2019). The presented methodologies define a variation of the multinomial-Dirichlet
approach in which there is a hierarchical hyperprior that performs together the esti-
mation of the probability distributions of the same CPD, in the case of a single data
source, or the estimation of the analogous distributions from different data sources,
in the case of multiple data sets. According to (Azzimonti, Corani, and Zaffalon,
2019), these kinds of models will render better parameter estimations compared to
other models in data scarce multi-source scenarios. We also hypothesize that they
will give better parameter estimations compared to other models when data are dif-
ferently distributed in the different sources. The model will be able to capture the
differences in the underlying distributions of the sources while, at the same time, it
will use statistical power from the other sources. This idea is referred to as “borrow-
ing statistical strength” by Azzimonti, Corani, and Zaffalon (2019).

This project deals with the problem of the parametric learning of BNs from multi-
sourced scarce data in two ways. First, we propose a method to learn the parame-
ters of a BN from multi-sourced data complementary to the ones proposed in (Azz-
imonti, Corani, and Zaffalon, 2019). Second, we compare this new method with
the state-of-the-art methods in two different axes: as data become scarce, and as
different sources diverge in distribution. To achieve this goal, we assume that the
structure of the BN is known and focus on the comparison of different methods for
parameter estimation given a structure. The different methodologies are then com-
pared in terms of the accuracy of the learned classifiers. Additionally, we design a
synthetic data generation process that allows us to test these methods in different
experimental conditions. We basically control for data sample size and divergence
of the underlying distribution of the multiple sources.

The project is structured as follows: Chapter 2 reviews related works in the liter-
ature, Chapter 3 defines the methodology used, Chapter 4 presents the experimental
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setting where we explore our hypotheses, and finally Chapter 5 concludes our find-
ings.



4

Chapter 2

Related Work

In this project, we treat the case of learning with data coming from multiple sources,
assuming that all of them provide the same set of variables. These can potentially
be distributed differently. Estimating models from multi-sourced datasets and over-
coming the challenges associated with heterogeneity in data distribution have been
topics of considerable interest in various research areas. For instance, Strømsø and
Bråten (2009) evaluate classifiers’ accuracies in the context of multi-sourced datasets.

In our project, we focus on learning Bayesian Network models for three reasons.
First, they allow to obtain the value of the class we want to predict given the fea-
tures, while reducing the number of parameters that have to be estimated. Second,
they can be used as generative models, by modeling the joint distribution of the class
and the features they can generate new instances. Bielza and Larranaga (2014) dis-
cuss different types of Bayesian Networks and their possible uses as generator mod-
els. Thirdly, in the context of databases composed of categorical variables, Bayesian
Networks are one of the most used models for classification. Unfortunately, there are
not so many works that make use of Bayesian Networks to learn from multi-sourced
data.

Learning a general model from multi-sourced data has received considerable at-
tention in the context of learning from distributed data, where data are distributed
across a set of devices and aggregated in a central server. In the context of dis-
tributed data, McMahan et al. (2017) propose an estimation method called federated
learning, where for each device (or source) a model is trained locally and only the
model updates or aggregated model parameters are shared with the central server
in a way that preserves privacy. Konstantinov and Lampert (2022) focus on fairness
in federated learning. While this method is very useful in several applications, such
as fairness awareness, it does not exactly serve our goal, where we want to learn a
general model and then adapt it at the local level.

In the context of Bayesian networks learned from multi-sourced datasets, some
works have focused on structure learning and others on parametric learning. For
the former, Tillman (2009) use statistical tests to discover the general structure of a
directed acyclic graph from IID data coming from different sources. Tillman and
Spirtes (2011) extend the method to handle non-IID data by obtaining statistics for
each data source and then obtaining a general common graph from them. Other
works, such as (Oates et al., 2014) and (Oates et al., 2016), first pool the data and then
learn a common structure. Azzimonti, Corani, and Scutari (2022) build on their pre-
vious work on parameter estimation using Hierarchical models (Azzimonti, Corani,
and Zaffalon, 2019) and define a new scoring method, called BHD, for structural
learning. It is a modification of the Bayesian Dirichlet equivalent uniform score that
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takes into account the Hierarchical structure of the model to learn a common struc-
ture from multi-sourced data. In our case, we assume that the structure of the net-
work is already known to focus on the comparison of parametric learning methods.

Apart from hierarchical models, another interesting methodology proposed by
Geiger and Heckerman (1996), called multinets, can be used to learn BN structures
from multi-sourced data. This methodology, instead of using a single network struc-
ture, proposes a Hierarchical Bayesian network structure that allows for the consid-
eration of a specific structure for each domain. Therefore, unlike hierarchical multi-
nomial Dirichlet, they learn more than one structure and do not share conditional
probability tables, as hierarchical models do by using the hyperprior. In our case,
we focus on learning a single common structure (which we take as given) and esti-
mate the parameters of the model being aware of the presence of multiple sources.

The literature on parameter learning of BNs from multi-sourced data is scarce.
To the best of our knowledge, the first contribution to parameter learning that can
be used given any Bayesian network structure was presented by Azzimonti, Corani,
and Zaffalon (2019). They propose to add a hyperprior to the classical multinomial-
Dirichlet so that distributions within a conditional probability table are linked by
the hyperprior and they are drawn from a mixture of Dirichlet distributions. This
approach leads to an exchange of information between all the available data, which
they refer to as the ability of the distributions to “borrow statistical strength” from
each other. This term is originally coined in (Teh et al., 2004) in the context of Hi-
erarchical Dirichlet Processes. This concept can be adapted to learning from multi-
sourced data. In this case, the distributions of the analogous conditional distribu-
tions obtained from the different sources are linked between them. The conditional
distributions obtained from different sources should resemble each other because
they represent the same probabilistic relationships. The only thing that differenti-
ates them is that they pertain to different sub-populations defined by the auxiliary
variable. A difficulty encountered in Hierarchical Bayesian Dirichlet estimation is
that the posterior cannot be estimated directly due to the lack of a closed form and
the costly exact inference process. It must be approximated using Markov Chain
Monte Carlo (MCMC) methods or variational inference. Azzimonti, Corani, and
Zaffalon (2019) propose their own method for performing efficient variational infer-
ence when applied to these hierarchical models.
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Chapter 3

Methods

In this project, we build on top of the two different methodologies for parameter esti-
mation of Bayesian networks that use a hierarchical multinomial-Dirichlet Bayesian
network proposed by Azzimonti, Corani, and Zaffalon (2019) and propose a novel
variation of these methodologies.

3.1 Probabilistic Graphical Models and Bayesian Networks

PGMs represent a factorization of a joint probability distribution according to a
graph. The graph allows for reading the conditional independences that the en-
coded distribution fulfills. Thanks to these conditional independences, the joint dis-
tribution can be represented with a reduced number of parameters. In this work, we
focus on Bayesian Networks, which are graphical models with a DAG structure that
factorize the distribution into a product of conditional probability distributions.

Directed acyclic graphs: A DAG G is a pair (V, E), where V = (v1, ..., vn) represents
the set of vertices and E is a set of directed edges, where each of them is a pair (u, v)
with u 6= v, meaning that u→ v. A DAG has no directed cycles.

Bayesian Networks: A Bayesian Network M is conformed by a DAG, G, and a set of
parameters Θ = (θX1 , ..., θXn). From here on, we denote the set of random variables
as X = (X1, ..., Xn), where each one has its own set of possible values xi ∈ Xi. Also
denote x = (x1, ..., xn) the instantiations of X, where x ∈ X = X1 ∗ ... ∗ Xn and (∗)
represents the Cartesian product. In this work, we focus on categorical variables,
where Xi = (1, ..., ri). We also denote the set of parents Pa = (Pa1, ..., Pan) and
pa = (pa1, ..., pan) its possible values. The joint probability distribution of a Bayesian
Network factorizes as:

pM(X) =
n

∏
i=1

p(xi|pai, θXi) (3.1)

Each Xi is associated with a node vi in the graph G and the set Pai of parent vari-
ables of Xi are those connected through directed edges with the node vi (∀vj ∈
Pai, (vj, vi) ∈ E). Each node Xi has an associated conditional probability distribution
given its parents in the graph: p(Xi|Pai, θXi). The set of parameters Θ represents the
parameters of all these conditional distributions. The factorization as a product of
conditional probabilities allows for the reduction of the number of parameters that
have to be estimated to represent the joint distribution of the data. The local distri-
bution associated with each node only depends on the configuration of its parents.
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Learning a Bayesian Network from data has two main steps: Structural learning
and parametric learning.

Structural Learning consists of learning the graph of the BN from data. There are
two main methodologies in order to find the best structure:

• Constrained based methods: they involve statistical independence tests that
try to identify the structure that better represents the conditional independen-
cies observed in the data.

• Score-based methods: they evaluate different network structures based on a
scoring metric that measures its goodness-of-fit. Popular greedy approaches
use an iterative method that evaluates the score of the structure once we add or
subtract edges. Amongst the penalized scores, there is the family of Bayesian
scores. One of the most popular scores is the Bayesian Dirichlet Equivalent
Uniform score.

In this work, we assume that the structure of the model is given and focus on
parametric learning. For the sake of simplicity, we will focus on Naive Bayes (NB)
and Tree-augmented Naive Bayes (TAN) structures, two types of graphs of increas-
ing complexity that are popular in supervised classification.

• Naive Bayes (NB): it assumes conditional independence among the descrip-
tive features given the class variable, which is the only parent. Figure 3.1 shows
a general Naive Bayes structure:

FIGURE 3.1: NB structure

• Tree-Augmented Naive Bayes (TAN) is an extension of the Naive Bayes that
incorporates a tree structure to capture dependencies among the descriptive
features. The class variable is still the root node. A TAN structure is shown in
Figure 3.2:

FIGURE 3.2: A TAN structure

Parametric Learning consists of finding the parameters Θ of the factorization de-
fined by the structure. The parameters can be either estimated in closed form with
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MLE or or Bayesian inference with a conjugate prior. Section 3.2 describes the two
main methods used for parametric learning.

3.2 Parametric Learning with categorical data

As noted in section 3.1 parametric learning can be done either using Maximum
Likelihood Estimation (MLE) or Bayesian Estimation. In this work, we assume that
variables are categorical. Here, we present MLE and Bayesian estimation for cate-
gorical data.

3.2.1 Maximum Likelihood Estimation (MLE)

MLE is a statistical method used to estimate the parameters of a probability distri-
bution based on observed data. The likelihood function L(θ|D) is defined as the
probability of the data given the model with parameters Θ = (θX1 , ..., θXn). In BNs,
the likelihood is given as:

L(Θ|D) = p(D|Θ) =
N

∏
s=1

n

∏
i=1

p(x(s)i |pa(s)i , θXi) (3.2)

Then, the log-likelihood function l(Θ; D) is:

l(Θ|D) =
N

∑
s=1

n

∑
i=1

log(p(x(s)i |pa(s)i , θXi)) (3.3)

Taking partial derivatives with respect to each θXi and setting them to zero we can
find the estimates of θXi that maximize the log-likelihood function. That is:

θMLE
i = argmax

θXi

l(Θ|D) (3.4)

where Θ are the parameters of all the CPDs of the Bayesian Network, including θXi .
Using a general notation, denote Nxy the counts in the data for X = x and Y = y.
Denote Ny the counts of Y = y (Ny = ∑x Nxy). The MLE of the parameter θx|y is:

θMLE
x|y =

Nxy

Ny
(3.5)

and the MLE of the distribution P(X|Y = y) is:

θMLE
X|y = (θMLE

x|y )x∈X (3.6)

Therefore, to obtain the parameters using MLE we only need the counts for each
variable given its parents.

3.2.2 Bayesian Estimation: Dirichlet-Multinomial conjugate prior (BMD)

Using a conjugate prior allows for obtaining a maximum a posteriori estimate in
closed form. As it is well known, the Dirichlet prior is a conjugate prior of the multi-
nomial distribution. Henceforth, using a Dirichlet prior ensures that the posterior
distribution will also be a Dirichlet distribution if we model the parameters ΘX|pa
with a multinomial distribution. Formally, if the prior is:

θXi |pa|α ∼ Dirichlet(α1, ..., αr) (3.7)
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for pa ∈ Pi represents the set of all possible values for the parent variables, Pai, and
the data is modeled with a Categorical distribution as:

Xi|pa, θXi |pa ∼ Categorical(θXi |pa) (3.8)

the maximum a posteriori is also a Dirichlet distribution as:

θXi |pa|α ∼ Dirichlet(α1 + Nx1 pa, ..., αr + Nxr pa) (3.9)

where Nxl pa are the counts of Xi = xl and Pai = pa as defined in Section 3.2.1. These
counts are also known as sufficient statistics. The posterior of θXi |pa has an expected
value given by:

E[θXi |pa] =
(αl + Nxl pa

α + Npa

)
l∈{1,...,r}

(3.10)

where α = ∑r
l=1 αl is known as the equivalent sample size and Npa = ∑r

l=1 Nxl pa.
Note that all this procedure is carried out given a fixed value pa ∈ Pi for the parent
variables. It actually holds for any pa ∈ Pi.

3.3 Hierarchical Bayesian Estimation

The Hierarchical Dirichlet-Multinomial models proposed by Azzimonti, Corani, and
Zaffalon (2019) can be used to pool data from distributions in the same CPD (first
approach), but they have been proposed to learn from multi-sourced data too (sec-
ond approach). In both methods they introduce a latent vector α0 = (α0

1, ..., α0
r )

as an hyperprior that models the α present in the Dirichlet prior on the Dirichlet-
Multinomial. however,due to this hyperprior a closed form solution for the maxi-
mum a posteriori cannot be obtained, instead, it has to be approximated using Vari-
ational inference. Before giving an explanation of the different hierarchical models
we give a brief introdduction to Variational inference, as it is a key part for the esti-
mation procedure of hierarchical models.

Variational Inference:

Variational inference (VI) is a technique used in probabilistic modeling and Bayesian
statistics to approximate complex probability distributions. It is used to compute the
posterior distribution of the latent variables given the observed data when the exact
posterior distribution is intractable. Variational inference offers an alternative ap-
proach by approximating the true posterior distribution with a simpler distribution
from a predefined family of distributions.

In the context of HDM models, denote the posterior distribution as p(Θ, α|D)
where D denotes our dataset. Denote q(Θ, α) a family of distributions used to ap-
proximate p(Θ, α|D). Our goal is to find the optimal parameters φ∗ for the varia-
tional distribution that minimizes the KL divergence between the variational distri-
bution q(Θ, α) and the true posterior p(Θ, α|D), that is:

φ∗ = argmin
φ

KL(qφ(Θ, α)||p(Θ, α|D)) (3.11)
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where φ is the parametrization of the approximation q. The KL divergence mea-
sures the dissimilarity between distributions by comparing the relative entropies.
Formally:

KL(qφ(Θ, α)||p(Θ, α|D)) = Eqφ(Θ,α)[log qφ(Θ, α)]−Eqφ(Θ,α)[log p(Θ, α|D)] (3.12)

After some manipulations, it can be shown that minimizing the KL divergence is
equivalent to maximizing the following expression, known as the Evidence Lower
Bound (ELBO):

ELBO(qφ(Θ, α)) = Eqφ [log p(Θ, α, D)]−Eqφ [log qφ(Θ, α)] (3.13)

Therefore, in order to obtain estimates for the posterior of the HDM model, we
can maximize the ELBO with respect to the distribution parameters φ:

φ∗ = argmax
φ

ELBO(qφ(Θ, α)) (3.14)

In this work, we use the Automatic Differentiation Variational Inference algo-
rithm (ADVI) provided by Carpenter et al. (2017) in the STAN interface. The ADVI
algorithm combines automatic differentiation techniques with variational inference
to efficiently optimize the variational distribution. It does so by optimizing the
ELBO using stochastic gradient ascent.

3.3.1 Hierarchical Dirichlet-Multinomial: single dataset (HDS)

As explained in section 3.3 the HDS presented in (Azzimonti, Corani, and Zaf-
falon, 2019) has the same form as the Dirichlet-Multinomial except that it assumes
that there is also a Dirichlet hyper-prior with a latent vector of parameters α0 =
(α0

1, ..., α0
r ) that models the α present in the Dirichlet prior. That is:

α|s, α0 ∼ s ∗ Dirichlet(α0
1, ..., α0

r ) (3.15)
θXi |pa|α ∼ Dirichlet(α1, ..., αr), ∀pa ∈ Pi (3.16)

Xi|pa, θXi |pa ∼ Categorical(θXi |pa) (3.17)

This methodology assumes that all the data comes from the same underlying
distribution. Hence, we apply the hierarchical model to the whole dataset in order
to learn the parameters of a single Bayesian Network model. The hyperparameter
α0 serves as a hyperprior of the Dirichlet distribution. It is used to make all the
conditional probability distributions within the same conditional probability table
correlated, and thus all of them will tend toward each other.

This model assumes that the priors of all the distributions of the CPD P(Xi|Pai)
(for different values pa ∈ Pi) come from the same hyper-prior α0. The purpose of the
vector α is to link the estimation procedure for the different distributions in the same
conditional probability table. In fact, the α0 hyperprior serves as a prior that shrinks
the parameters of the different distributions towards each other, making them closer
to the mean between the distributions. The difficulty of the HDM is that due to the
correlation induced by the hyperprior α0, the posterior does not have a closed-form
solution, as it has the classical Multinomial-Dirichlet model and cannot be estimated
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directly. However, this posterior can be approximated by means of approximate in-
ference techniques, such as Variational Inference.

The generative model is represented as a factor graph in Figure 3.3:

FIGURE 3.3: Factor graph describing the hierarchical model for
single-soruce data (HDS). Source Azzimonti, Corani, and Zaffalon,

2019

Implementation

Given a DAG structure, we apply the following procedure for each node Xi and
its parents Pai. We first compute the sufficient statistic Nxpa and Npa for all possi-
ble combinations (x, pa) ∈ (Xi,Pi) as explained in Section 3.2.1 and apply Laplace
smoothing, which adds artificial pseudo-counts to all the possible combinations, so
that no combination has a probability of exactly zero. The mentioned statistics are
the inputs of the variational inference algorithm, which returns the posterior distri-
bution of the CPDs one node at a time. Then, we reconstruct the CPD of each node
in our model with the new parameters provided by the VI method. Pseudocode in
Table 3.1 summarizes the process.

HDS( G: structure)
for each node Xi in model G:

Compute Nxpa ∀x ∈ Xi, pa ∈ Pi
Nxpa = Nxpa + 1 ∀x ∈ Xi, pa ∈ Pi
Npa = ∑x∈Xi

Nxpa ∀pa ∈ Pi
θXi |Pai

= STAN-ADVI({Nxpa}, {Npa}) (Approximate posterior’s mean)
Update CPD P(Xi|Pai) with θXi |Pai

TABLE 3.1: HDS procedure to learn a Bayesian Network given a
structure G

3.3.2 Hierarchical Dirichlet-multinomial multi data: joint states (HDMJS)

This methodology does assume the multi-sourced data scenario. A different model
is learned for each subpopulation (defined by means of an auxiliary variable F),
that is, each CPD is learned separately for each subpopulation or source. However,
it is done in a way that the CPDs from each subpopulation are linked through a
hyperprior, which allows the CPDs to "Borrow Statistical Strength" from each other.
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The model in subsection 3.3.1 can be modified to estimate parameters from multiple
datasets by liking the CPDs with an auxiliary variable F.

The generative model is based on on the transformation X′i = (Xi, Pai), with r′

possible values as Xi ∗ Pi. The generative process in this case is as follows:

α|s, α0 ∼ s ∗ Dirichlet(α0
1, ..., α0

r′) (3.18)
θX′i | f |α ∼ Dirichlet(α1, ..., αr′), ∀ f ∈ F (3.19)

X′i | f , θX′i | f ∼ Categorical(θX′i | f ) (3.20)

where F includes all the possible values of the auxiliary variable F that identifies
the sources. The auxiliary variable allow to link the columns of the analogous joint
distribution tables. That is, the probabilities p(Xi = xi, Pai = pai)

f are linked be-
tween different datasets by means of f . The modified model presented in (Azzi-
monti, Corani, and Zaffalon, 2019) is presented as a factor graph in Figure 3.4:

FIGURE 3.4: Factor graph describing the hierarchical model for multi-
sourced data (HDMJS). Source Azzimonti, Corani, and Zaffalon, 2019

The hyperprior α0 now links the distributions analogous distributions from ta-
bles pertaining to the same variable but from differen sources.

Note the difference with the methodology presented in the 3.3.1. Before, in a
single-source scenario, the conditional distributions of the same CPD were linked be-
tween them with the Hierarchical model. The assumption was that the distributions
of the same CPD should be similar to each other. In this section, the Hierarchical
model links the conditional probability distributions for the same node across mod-
els (sources). This induces a correlation between tables and makes the analogous
distributions tend toward each other. This assumes that, even across the different
sources, the CPD of the same node should be similar in the different models.

Implementation:

The VI estimation procedure, in this case, receives the joint states of all the pos-
sible combinations of the node Xi with its parents Pai, conditional on the auxiliary
variable F. We first create a new variable X′i that combines Xi with its parents Pai,
with possible values x′ ∈ X ′i = Xi ∗ Pi. Then, the sufficient statistic Nx′ f and N f
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for all possible combinations (x′, f ) ∈ (X ′i ,F ) as explained in Section 3.2.1 and ap-
ply Laplace smoothing. These two elements are the inputs for STAN’s ADVI algo-
rithm. The output of the VI algorithm is the posterior P(X′| f ). We need to divide
by the marginal probability P(Pai) to obtain the CPD P(Xi|Pai, f ). Finally, the CPD
p(Xi|Pai, f ) is recovered for each configuration of the auxiliary variable F on the
corresponding model. These steps are summarised in Table 3.2.

HDMJS (G: structure, F: auxiliary variable)
for each node Xi in model G:

Define X′i = (Xi, Pai) with X ′i = Xi ∗ Pi
Compute Nx′ f ∀x′ ∈ X ′i , f ∈ F
Nx′ f = Nx′ f + 1 ∀x′ ∈ X ′i , f ∈ F
N f = ∑x′∈X ′i Nx′pa ∀ f ∈ F
θX′i |F = STAN-ADVI({Nx′ f }, {N f })

Compute θXi |Pai ,F =
θX′i |F

∑x∈Xi
θx,Pai |F

Update CPT P(Xi|Pai) for model F = f with ΘXi |Pai ,F= f

TABLE 3.2: HDMJS procedure to learn a Bayesian Network given a
structure G

3.3.3 Hierarchical Model multi data: conditional states (HDMCS*)

The following methodology is our proposal, which was motivated by the observa-
tion that the previous method, proposed by Azzimonti, Corani, and Zaffalon (2019),
might be failing to incorporate the auxiliary variable F as a parent in a natural way
to the BN structure.

The methodology we propose is also expressed as a factor graph in Figure 3.5.
The difference with the later method is that we use the auxiliary variable F as the
parent of all the variables on the original BN graph, which allows us to model the
conditional distribution p(Xi|Pai, F).

FIGURE 3.5: Factor graph: hierarchical model: conditional states
(HDMCS*)

Our methodology applies the hierarchical model in the multi-sourced data sce-
nario and explicitly adds the auxiliary variable F as a parent of all the other variables.
We do not use the transformation Zi = Xi ∗ Pai as Azzimonti, Corani, and Zaffalon
(2019) to adapt the hierarchical model of Section 3.3.1 to multi-sourced data. In prac-
tice, this transformation joins the estimation of the parameters of all the distributions
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of the node Xi given any value of the parents Pai and the auxiliary F. It requires
the subsequent use of the Bayes rule to obtain the conditional distributions of the
BN. On the contrary, our methodology allows us to express the dependencies of the
variables in a Bayesian Network structure, using explicitly F as a parent of all the
variables.

Our methodology is actually more similar to that of Section 3.3.1, but the set of
distributions that are affected by a common hyper-prior are those with the same
parent values pa ∈ Pi but different source f ∈ F . The generative process is:

α|s, α0 ∼ s ∗ Dirichlet(α0
1, ..., α0

r ) (3.21)
θXi |pa, f |α ∼ Dirichlet(α1, ..., αr), ∀ f ∈ F (3.22)

Xi|pa, f , θXi |pa, f ∼ Categorical(θXi |pa, f ) (3.23)

Note that, as in Section 3.2.2, this procedure is carried out given a fixed variable
Xi and value pa ∈ Pi for the parent variables. It actually holds for any Xi and
pa ∈ Pi.
Implementation:

The estimation of the CPDs of Xi is similar to that of the hierarchical model of
Section 3.3.3 assuming that F is an extra parent, for each parent configuration pa ∈
Pi. The steps are summarised in Table 3.3.

HDMCS* (G: structure)
Add F as parent of each node.
for each node Xi in model G:

for each configuration pa in Pi:
Compute Nxpa f ∀x ∈ Xi, f ∈ F
Nxpa f = Nxpa f + 1 ∀x ∈ Xi, f ∈ F
Npa f = ∑x∈Xi

Nxpa f ∀ f ∈ F
θXi |pa,F = STAN-ADVI({Nxpa f }, {Npa f }) (Approximate posterior’s mean)
Update distribution P(Xi|pa) for model F = f with ΘXi |pa,F= f

TABLE 3.3: HDMCS* procedure to learn a Bayesian Network given a
structure G
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Chapter 4

Experiments

In this section, we carry out the experimental comparison of the methods presented
in the previous chapter. We describe the experimental setting, including the used
datasets and the synthetic data generation to control on two dimensions: the num-
ber of samples available for training and the divergence between the underlying
distributions of the different subpopulations. Finally, we present and discuss our
results.

4.1 Experimental Setting

We use two real-world datasets, Adult and Diabetes, which are popular in the fair-
ness analysis literature. We transform them synthetically to create the experimental
conditions that we want to test.

Adult Dataset

The Adult dataset from the UCI Machine Learning Repository is a widely used
dataset for classification tasks. It contains information about individuals from the
1994 US Census, and the goal is to predict whether an individual’s income exceeds
50, 000$ per year or not based on their demographic and employment-related fea-
tures. Table A.1 in Appendix A lists all the variables of the original dataset consid-
ered for this study. We use simple imputation to fill in missing values: for categorical
variables, we use the mode. This decision is motivated by our intention of preserv-
ing the sample size, although it may result in a loss of variability.

The class variable we want to predict is "income" and the sensible attribute that
we have used as the auxiliary variable F is the variable "gender". However, there
are other potential sensible attributes that we could have used, for instance: race,
native-country or education could have been potentially considered as protected at-
tributes. The distributions of the class variable and the auxiliary variable, as well
as the distribution of their combination, are shown in Figure 4.1. Both income and
gender are unbalanced. Furthermore, when we look at the distribution of income
given gender we see how the proportion of females with lower income with respect
to the whole sample of females is much lower than that of men.
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(A) (B) (C)

FIGURE 4.1: Distribution of Class variable (A), auxiliary variable (B)
and combination of both variables (C) in the Adult dataset

Diabetes Dataset

The Diabetes dataset from the UCI Machine Learning Repository contains medi-
cal information about patients from 130 different hospitals. The classification task is
to predict whether a patient will be readmitted within 30 days or if it will be read-
mitted in more than 30 days. Only the readmitted patients are kept. From among
the 50 attributes contained on the original dataset, we keep the variables selected
by Le Quy et al. (2022), which are summarized in Table A.2 from Appendix A.

We show the distribution of the class variable, "readmitted", and the auxiliary
variable, "gender" in Figure 4.2. Both the class variable and the auxiliary variable
are unbalanced, although the auxiliary variable is not as highly unbalanced as in the
adult dataset. The proportion people readmitted within 30 days does not change
much when we condition on gender.

(A) (B) (C)

FIGURE 4.2: Distribution of Class variable (A), auxiliary variable (B)
and combination of both variables (C) in the Diabetes dataset

4.2 Simulation of multi-sourced data

Our experiments explore two dimensions: sample size and distribution divergence.
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4.2.1 Simulation of different sample sizes

To simulate datasets with different numbers of samples, we simply generate random
stratified subsamples. Stratification is carried out regarding both the class and the
auxiliary variables.

4.2.2 Simulation of multi-sourced data with diverging distributions

In order to test the different estimation methods in datasets of the multi-source sce-
nario, we have designed a simulation procedure to artificially generate data with the
required characteristics. Basically, we exploit the ability of PGMs to serve as gener-
ative models. We first fit a model with the specified characteristics and then we use
a sampling method like Forward Sampling to generate new data that reflects the
probabilistic relationships specified by the model.

The procedure works as follows. We first pick a real-world dataset, a variable F
as an auxiliary variable that defines subsamples of a dataset (or multiple-sources),
and a fixed DAG structure for the model. We estimate the parameters of the model
with pooled data, that is, all the data from all the multiple sources. We also estimate
the parameters for each source (from its corresponding data subset) separately.

For the sake of simplicity, let us assume that there are only two sources, F ∈
{ f0, f1}. Thus, we will obtain three CPDs for each node Xi: θ

f0
Xi

, θ
f1
Xi

and θPooled
Xi

. Then,

for each node, we calculate the deviation θ
f1
Xi
− θPooled

Xi
. The sign of the element in

this vector with the largest absolute difference |θdi f f
Xi=x| is used as the direction of the

divergence, s = sign(maxx |θdi f f
Xi=x|). Consequently, the divergence of θ

f0
Xi

from θPooled
Xi

will go in the opposite direction, −s, as the pooled estimates must lie between both.

The next step is to make the parameters of the model with F = f1 diverge as
much as we like. Let us define δ ∈ [0, 1] to denote the "amount of divergence".
Given the original value, θ0 = θ

f1
Xi=x, the new value of the parameter is:

θ∗ = (1− θ0) ∗ δ + θ0 if s > 0 (θ∗ −→ 1)

θ∗ = θ0 − θ0 ∗ δ if s < 0 (θ0 −→ 0)

However, when we change the value of some θ∗Xi=x, the other values θXi=y in the
same probability distribution have to be changed accordingly so that the probabili-
ties add up to 1. We assume proportional covariation (Ballester-Ripoll and Leonelli,
2022), that is, the rest of values in the distribution change proportionally to the
change of θ∗ but in the opposite direction:

θ∗Xi=y(θ
∗
Xi=x) =

1− θ∗Xi=x

1− θ0
Xi=x

θ0
Xi=y, ∀y ∈ Xi), y 6= x (4.1)

We apply these steps for all the CPDs in the models, and obtain a BN model for
each F = f , all with the same structure and diverging from each other according to
δ.
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The final step is to generate the data using each of the models. We use the stan-
dard Forward sampling algorithm for BNs to generate samples while maintaining
the original proportions of samples according to the auxiliary attribute, F.

4.3 Evaluation

In these experiments, we measure and compare the performance of the methods
(MLE,BMD,HDS,HDMJS and HDMCS*) in terms of accuracy. In the methods that
involve, in practice, the use of different models for each source f , the class prediction
for each test sample is carried out using the corresponding model. The results of
each model are pooled to compute the global accuracy of the approach so that it can
be compared with the other methodologies using the same amount of observations.

To analyze the sample size dimension in Section 4.4.1, we first carry out the train-
ing/test split stratifying them by the class variable and the auxiliary variable. The
test set is left untouched and it is used for all the experiments. Second, to perform
experiments with different sample sizes, we take the first N observations of the train-
ing subset, learn the model with these N samples, and test it against the test set. We
repeat this step by taking training subsamples of increasing size, but the models are
always tested against the same (complete) test set. We test different training sam-
ple sizes, N ∈ {20, , 60, 120, 260, 500}. This procedure is repeated five times and the
mean accuracies and standard deviation are reported.

In Section 4.4.2, we generate a synthethic dataset following the procedure from
Section 4.2.2, we generate it using pre-trained networks for multiple-sources (gender
equal male or female). The generated data has the same sample size as the original
data and the same proportions for the protected attribute.

In Section 4.4.3, we first generate synthetic data following the procedure from
Section 4.2.2 using a constant random seed and apply the same procedure explained
above to do the analysis depending on the sample size. The amount of samples
generated areN ∈ {20, , 60, 120, 260}. As above, they are generated so that the pro-
portion of male and female is respected.

4.4 Results

In this section, we present the results obtained using the Adult and Diabetes datasets.
First, we present the results along the sample size dimension, and then along the
distribution divergence dimension. The last part explores a combination of both
dimensions.

4.4.1 Experimental results along the first axis: sample dimension

Following the experimental setup defined in Section 4.1, we present the results in
terms of accuracy of the models depending on the number of samples of the train-
ing dataset. The models’ comparison using a Naive Bayes structure are shown in
Figures 4.3 and 4.4 for the Adult and Diabetes datasets, respectively. Two values of
α are considered (α ∈ {1, 10}). It represents the value s given to the hyperprior in the
hierarchical models and the value of the equivalent sample size in the Multinomial-
Dirichlet model. The larger α the more confidence we have in our prior and the
less we let data move the estimation away from the prior. Throughout all the ex-
periments, HDMJS is always the best-performing method. However, it shows a
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behaviour that could be considered as suspicious: it is almost constant and seems
independent of the sample size or the structure of the model.1

(A) α = 1 (B) α = 10

FIGURE 4.3: Comparison of the methods on the first axis: sample
dimension, for the Adult dataset (NB structure)

(A) α = 1 (B) α = 10

FIGURE 4.4: Comparison of the methods on the first axis: sample di-
mension, for the Diabetes dataset in terms of accuracy (NB structure)

In the Adult dataset, the HDMJS performs better than the other models. For
an α = 1, our proposal HDMCS* shows similar performance as the other models.
When α = 10 and the number of samples increases, HDMCS* becomes the second-
best model. All methods tend to a similar solution as the sample sizes increase.

In the Diabetes dataset, the comparisons are more dependent on the number of
samples. As expected, MLE performs worse when the sample size is small and is
outperformed by Bayesian approaches. The HDMCS* model is the worse perform-
ing when the number of samples increases. Although all methods tend to the same
solution as the sample size increases, the convergence seems to be slower in the case
of the HDMCS*

Similar results when using a TAN structure are presented in Figures 4.5 and 4.6.

1This behaviour is consistent with a coding error. Unfortunately, we have not been able to find any
mistakes.
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(A) α = 1 (B) α = 10

FIGURE 4.5: Comparison of the models on the first axis: sample di-
mension, for the adult dataset in terms of accuracy (TAN structure)

(A) α = 1 (B) α = 10

FIGURE 4.6: Comparison of the models on the first axis: sample di-
mension, for the diabetes dataset (TAN structure)

Using a TAN instead of naive Bayes, the HDMJS still performs better than the
other models. The HDS and the HDMCS* are close in performance, with HDS
performing slightly better (mainly when the sample size is larger). Finally, non-
hierarchical models are the ones that perform worse. Taking into account the results
for both naive Bayes and TAN, it seems that the more complex the structure of the
model is the better the hierarchical models perform compared to non-hierarchical
models. As we add more complexity to the model the magnitude of the counts Nx,pa
for each feature decreases. The sharing of information between the CPDs that hier-
archical models perform becomes more relevant when the magnitude of the counts
Nx,pa is low. That is, the "borrowed statistical strength" by the CPDs, as explained in
(Azzimonti, Corani, and Zaffalon, 2019), is more effective.

As shown in Tables 4.1 and 4.2, when we do the same comparison but using all
data available in the datasets, all the methods perform similarly, as expected.
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Model Accuracy Precision Recall F1-score
BMD 0.815 0.612 0.723 0.663
HDS 0.815 0.612 0.725 0.652

HDMJS 0.821 0.626 0.716 0.669
HDMCS 0.820 0.625 0.709 0.664

MLE 0.805 0.593 0.725 0.652

TABLE 4.1: Comparison of the models on the first axis: sample di-
mension, for the adult dataset (TAN structure, full dataset)

Model Accuracy Precision Recall F1-score
BMD 0.759 0.76 0.999 0.863
HDS 0.759 0.76 0.999 0.863

HDMJS 0.76 0.76 0.999 0.863
HDMCS 0.759 0.76 0.998 0.863

MLE 0.759 0.76 0.998 0.863

TABLE 4.2: Comparison of the models on the first axis: sample di-
mension, for the diabetes dataset (TAN structure, full dataset)

When the amount of samples is sufficiently large it is enough to estimate by
means of MLE or simple Bayesian Estimation to capture the underlying distribution
of the data. The intuition is that the counts Nx,pa become sufficiently large and the
effect of the priors loses relevance.

To better understand the comparisons between the different models we refer to
Section 4.4.2, where we analyze how the difference in distributions of the multiple
data sources affects the performance of the learned models.

4.4.2 Experimental results along the second axis: diverging multi-source
distributions

In this section, we apply the methodology from Section 4.2.2 and generate synthetic
stratified data with the same sample size as the original data. Due to the way in
which our experiment is conducted the distributions of all conditional probabilities
of the explanatory variables diverge with δ. As we generate the samples using the
diverged distributions, the models’ accuracies will, in general, improve because, as
δ increases, more unbalanced distributions are generated, which are easier to learn
from data. Hence, it is important to analyze the distance between the accuracies of
the models and not their magnitude. An important observation is that in real-world
data, we would not expect data to diverge by a factor of δ close to 1. Therefore,
we will focus our comparison on intermediate values of δ. Figures 4.7 and 4.8
show the results for the Adult dataset and the Diabetes dataset, respectively, using a
naive Bayes structure. We can observe that HDMJS and HDMCS* perform similarly
and better than the others when data starts to diverge, both in Adult and Diabetes
datasets. The other three methods perform similarly.
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(A) α = 1 (B) α = 10

FIGURE 4.7: Comparison of the models on the second axis: diverging
multi-source distributions, for the Adult dataset (NB structure)

(A) α = 1 (B) α = 10

FIGURE 4.8: Comparison of the models on the second axis: diverging
multi-source distributions, for the Diabetes dataset (NB structure)

(A) α = 1 (B) α = 10

FIGURE 4.9: Comparison of the models on the second axis: diverging
multi-source distributions, for the adult dataset (TAN structure)
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(A) α = 1 (B) α = 10

FIGURE 4.10: Comparison of the models on the second axis: diverg-
ing multi-source distributions, for the diabetes dataset (TAN struc-

ture)

Figures 4.9 and 4.10 show the same analysis but using a TAN instead of a Naive
Bayes. Again, HDMJS and HDMCS* perform better when data starts to diverge.
They perform almost equally, with minimal variations. This improvement in per-
formance is driven by the fact that now data coming from multiple sources are dif-
ferently distributed. When this happens, both HDMJS and HDMCS* are equipped
with a hierarchical Bayesian prior that allows their models to adapt better to multiple
sources that are differently distributed. The other three models do not incorporate
this mechanism, or use it differently, and perform worse (BMD is not visible in the
plot because it performs equally as the HDS). Another important observation is that
models that do not incorporate the auxiliary variables do substantially worse when
data starts to diverge if naive Bayes is used instead of TAN.

As explained above, from both datasets, our results suggest that our method,
HDMCS*, and HDMJS are the ones that adapt better to divergences of distributions
between multiple datasets, as expected. However, as we defined synthetic datasets
with the same amount of samples as the real datasets, the number of samples used
is very large. We would like to analyze how the divergence in distribution affects
the results when the number of samples available from each data source is smaller.
In the following section, we generate smaller synthetic samples and compare the
models’ performances along both axes.

4.4.3 Experimental results along both axes

In this section, we analyse how the performance of the models changes depending
on both the sample size and the divergence in the distribution of the subpopula-
tions. Figures 4.11 and 4.12 show, for Adult and Diabetes, respectively, the accuracy
of the different methods as the amount of divergence δ increases for different sam-
ples sizes. In both cases, the structure is a TAN and α = 10. Figures A.3, A.2 in
Appendix A show the results with naive Bayes and α = 1.
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(A) N = 20 (B) N = 60

(C) N = 120 (D) N = 240

FIGURE 4.11: Comparison of the models on both axes: sample dimen-
sion and diverging multi-source distributions, for the Adult dataset

(NB structure, α = 10)

(A) N = 20 (B) N = 60

(C) N = 120 (D) N = 240

FIGURE 4.12: Comparison of the models on both axes: sample di-
mension and diverging multi-source distributions, for the Diabetes

dataset (NB structure, α = 10)

With the Adult dataset, the results for naive Bayes suggest that, for smaller sam-
ple sizes, even if the distribution of the multiple sources diverges by a lot, our
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method performs worse than non-hierarchical models. With the Diabetes dataset,
even with smaller sample sizes our model performs better when distributions start
to diverge. In both datasets, as the number of samples increases, smaller values of δ
make the HDMCS* better compared to the methods that do not explicitly consider
the existence of multiple sources.

Figures 4.13 and 4.14 show the same analysis but using TAN instead of naive
Bayes, and α = 10. Figures A.4 and A.5 in Appendix A show the results for TAN
and α = 1.

(A) N = 20 (B) N = 60

(C) N =
120,α = 10

(D) N = 240

FIGURE 4.13: Comparison of the models on both axes: sample dimen-
sion and diverging multi-source distributions, for the adult dataset

(TAN structure, α = 10)
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(A) N = 20 (B) N = 60

(C) N = 120 (D) N = 240

FIGURE 4.14: Comparison of the models on both axes: sample di-
mension and diverging multi-source distributions, for the diabetes

dataset (TAN structure, α = 10)

With the Adult dataset, our results suggest that when the underlying distribu-
tions diverge considerably, HDMJS is the best method. Our method, HDMCS*, per-
forms very similarly as HDS. With Diabetes, the HDMCS is again the best model
followed by HDMCS*. The results suggest that when data is not very scarce and
the subsamples diverge from each other, our proposed methodology could be a
reasonable method to learn a Bayesian network model. This result could be more
exacerbated in the case where the auxiliary attribute had more than two possible
categories.

Overall, when the distribution of the multiple data sources diverges, HDMJS
and our method HDMCS* perform better, as they take into account the existence of
the multiple sources represented by the auxiliary variable F. HDMJS and HDMCS*
perform similarly but, when the number of samples reduces, the performance of
our method moves away from that of HDMJS. A possible explanation is that, by
definition, HDMJS uses all the available data to compute the joint distribution tables
corresponding to each data source. In that sense, they "borrow statistical strength"
from each other using all the available data. Our proposed methodology only links
the conditional probability distributions column-wise, that is, for distributions with
the same parent configuration, pa. Thus, the shared information is more limited.
When the sample size is very small, i.e., the counts Nx,pa can become very small, this
lack of information to share is more relevant. When the sample size increases, this
effect becomes less dominant and both HDMJS and HDMCS* perform similarly.
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Chapter 5

Conclusions

In this project, we study the problem of learning the parameters of a Bayesian net-
work model from data provided by multiple sources. The objective is to learn a
model that can generalize well and is able to model together data sampled from
different distributions. This problem links directly with the problem of fairness in
machine learning, where a protected attribute can be viewed as an auxiliary variable
that defines different data sources.

We propose a new method (HDMCS*) to learn from a dataset with multiple
sources as a natural alternative to previous methods. We compare our methodology
against the state-of-the-art on two dimensions: the sample size, and the divergence
in the underlying distribution of each data source. We test our results on transforma-
tions of two popular datasets (Adult and Diabetes) using "gender" as the protected
attribute. That is, we work in the fairness-analysis context.

A previous method, HDMJS, seems to systematically outperform our HDMCS*,
although ours proposes an approach that is more natural for the BN framework.
Our method generally outperforms other competitors. When the number of sam-
ples from each data source is small, our model performs better than non-hierarchical
models, and very similarly to HDS. When the structure of the network is more com-
plex our model also outperforms non-hierarchical models. Furthermore, when the
underlying distributions of the multiple subsets diverge, HDMCS* performs even
better when compared to those competitors. These results could be amplified if the
number of sources would be higher.

5.1 Future Work

There are several open lines of research regarding our work. Firstly, it would be
interesting to do a comparison with a higher number of sources as defined by the
auxiliary attribute, as we limited our experiments to two subsets (according to the
sensible attribute "gender"). Second, whereas we assumed two simple structures for
the models (Naive Bayes and TAN), future research could try to find the best struc-
ture for the pooled dataset before conducting parameter estimation, and analyse
how the results would change in that scenario. Third, we have used STAN’s off-
the-self variational inference algorithm. It would be interesting to use a specifically
designed method, such as the one proposed by Azzimonti, Corani, and Zaffalon
(2019), to better exploit the particularities of our method.

Future work could delve more in the effect of the hyper-parameters on the mod-
els comparisons. The performance of the HDMJS should be analysed in more detail.
The accuracy of this method in some experiments is almost invariant to the number
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of samples used to train it. A possibility is that there exists a coding error, although
our careful checking was not able to find any. Future work should also consider
other performance measures, like the brier-score, and do a more extensive analysis
with other measures, such as precision and recall.

Finally, it would be interesting to explore a method to generate synthetic data with
diverging distributions that does not lead to models that are, on average, more ac-
curate.
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Appendix

Variable Type Missing Values Values
age numerical 0 [17-90]

workclass categorical 2799 7
fnlwgt Numerical 0 [13492-1490400]

education categorical 0 16
educational-num Numerical 0 [1-16]

marital-status categorical 0 7
occupation categorical 2809 14
relationship categorical 0 6

race categorical 0 5
gender categorical 0 2

hours-per-week categorical 0 [1-99]
native-country categorical 857 41

income categorical 0 2

TABLE A.1: Adult dataset: variables description

Variable Type Missing Values Values
race categorical 2273 6

gender categorical 0 3
age categorical 0 10

time_in_hospital categorical 0 [1-14]
num_procedures numerical 0 [0-6]
num_medications numerical 0 [1-81]

number_outpatient numerical 0 [0-42]
number_emergency numerical 0 [0-76]
number_inpatient numerical 0 [0-21]

A1Cresult numerical 0 4
metformin categorical 0 4

chlorpropamide categorical 0 4
glipzide categorical 0 4

rosiglitazone categorical 0 4
acarbose categorical 0 4
miglitol categorical 0 4

diabetesMed categorical 0 2
readmitted categorical 0 3

TABLE A.2: Diabetes dataset: : variables description
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(A) N = 20 (B) N = 60

(C) N = 120 (D) N = 240

FIGURE A.1: Comparison of the models on both axes: sample dimen-
sion and diverging multi-source distributions, for the adult dataset

(Naive Bayes structure, α = 1)

(A) N = 20 (B) N = 60

(C) N = 120 (D) N = 240

FIGURE A.2: Comparison of the models on both axes: sample dimen-
sion and diverging multi-source distributions, for the diabetes dataset

(Naive Bayes structure, α = 1)
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(A) N = 20 (B) N = 60

(C) N = 120 (D) N = 240

FIGURE A.3: Comparison of the models on both axes: sample dimen-
sion and diverging multi-source distributions, for the adult dataset

(Naive Bayes structure, α = 1)

(A) N = 20 (B) N = 60

(C) N = 120 (D) N = 240

FIGURE A.4: Comparison of the models on both axes: sample dimen-
sion and diverging multi-source distributions, for the diabetes dataset

(TAN structure, α = 1)
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(A) N = 20 (B) N = 60

(C) N = 120 (D) N = 240

FIGURE A.5: Comparison of the models on both axes: sample dimen-
sion and diverging multi-source distributions, for the diabetes dataset

(TAN structure, α = 1)
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