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A B S T R A C T   

The frequency of armed conflicts increased during the last 20 years. The problems of the emergence of military 
disputes, not only concern social parameters, but also economic and financial dimensions. This study examines 
the potential impact of global geopolitical events on the stock market prices of the Dow Jones U.S. Aerospace & 
Defense Index and Foreign Exchange (FOREX) markets movements. We analyse whether defence stocks and 
exchange rate perform similarly during military incidents or geopolitical crises. We built an Autoregressive 
Moving Average Model with a Generalized Autoregressive Conditional Heteroskedasticity process (ARMA- 
GARCH) with the machine learning methods of Neural Networks, Deep Recurrent Convolutional Neural Net-
works, Deep Neural Decision Trees, Quantum Neural Networks, and Quantum Recurrent Neural Networks, aimed 
at detecting intraday patterns for forecasting defence stock market and FOREX markets disturbances in a market 
microstructure framework. The empirical results provide preliminary findings on the foreseeability of market 
disturbances and small differences are observed before and during geopolitical events. Additionally, we confirm 
the effectiveness of the hybrid model ARMA-GARCH with the machine learning approaches, being ARMA- 
GARCH-Quantum Recurrent Neural Network the technique that achieves the best accuracy results. Our work 
has a large potential impact on investment market agents and portfolio managers, as shocks from geopolitical 
events could provide a new methodology to support the decision-making process for trading in High-Frequency 
Trading.   

1. Introduction 

Financial markets have been recognized in the literature as strongly 
reacting to a range of geopolitical news/events, such as terrorist acts, 
military attacks, wars, or diplomatic conflicts all over the world. 
Geopolitical risks influence economic cycles and financial markets, and 
as a result, central bankers and corporate investors frequently mention 
geopolitical risks as a determinant of investment decisions [2]. For 
instance, following the September 11 attacks, the October 2001 Federal 
Open Market Committee meeting reported that "the events of September 
11 produced a marked increase in uncertainty that depressed investment 
by fostering an increasingly widespread wait-and-see attitude" [2]. 
Remarking that geopolitical shocks and, especially, terrorist events are 
mostly unforeseen, Balcilar et al. [5] highlight the relevance of a strong 
financial sector able to contribute to restoring stability to the market and 

an open economy for local investors to spread country-specific risks in 
their investment portfolios. Furthermore, these authors have shown that 
the impact of geopolitical risk differs according to the geopolitically 
sensitive sectors. For example, tourism and its associated areas may be 
affected greatly when geopolitical risk increases. In contrast, defense 
sectors can profit from an upsurge in geopolitical risk. 

The volatile environment induced by geopolitical risks leads in-
vestors to hope for higher dividends from the defense industry. Events in 
geopolitics often provide a learning mechanism for investors and risk 
managers, who re-evaluate the risk component of their portfolios in-
vestors try to mitigate the impact on their portfolio by diversifying into 
industries that are already stable and strong, and their activities are 
geared towards providing a sense of stability and security [3]. Besides, 
there are expectations of increased demand for military equipment of-
ferings toward customers who are considered targets of geopolitical 
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risks and events or who plan to take military action against such risks. 
Apergis et al. [4] examine the effect of geopolitical risks on the equity 
returns and volatility of defense firms, based on a geopolitical risk index. 
This index is a wide measurement of global uncertainty, including not 
only terrorist attacks, but other types of geopolitical pressures such as 
war risks, military threats, and tensions in the Middle East. It is therefore 
important to analyze the evolution of the share prices of defense com-
panies before and after armed conflicts, as these companies play a 
unique role in providing national governments with the latest genera-
tion of equipment and services necessary for national security as well as 
for conducting their military operations in the face of war or terrorist 
acts. 

On another note, given the importance of efficiency, liquidity, and 
volatility in defence securities markets, it is essential to identify why and 
how prices in this market change. The study of financial markets and 
their functioning is the focus of market microstructure, which is mainly 
concerned with price formation mechanisms, trading behavior, spreads, 
and transaction costs [36]. An important aspect of market microstruc-
ture is liquidity. Failure to consider the liquidity dimension in the 
modelling of financial questions could have serious consequences, for 
instance, mispricing and underestimation of risk. Liquidity plays an 
essential role in the price-formation process of defence markets [34]. 
Market microstructure theory proposes that markets with greater vol-
ume are less volatile and that an inverse relationship can be observed 
between liquidity and volatility, suggesting that higher volatility may 
induce a decrease in the liquidity of a stock market and vice versa [36]. 
Liquidity measures are used by many academic researchers and pro-
fessionals to estimate intraday market liquidity to predict market 
structure. In addition, financial market yields and their volatility 
(frequently linked to uncertainty) remain the most relevant signals for 
professionals in making capital budgeting and investment portfolio 
management decisions, since they provide a direct indicator of financial 
health of a corporation. The use of high-frequency intraday data pro-
vides real-time updates on the economy and crucial information in un-
certain market environments [34]. 

Several authors have applied Generalized Autoregressive Condi-
tional Heteroskedasticity (GARCH) techniques in the estimation and 
prediction of volatility in financial markets. Yapeng, Hui and Wenbiao 
[44] conclude that GARCH-type models can describe the behavior of 
volatility, but they consider volatility as a function of deterministic 
historical information, which means that they cannot be fitted flexibly to 
financial time series. Shakeel and Srivastava [34] analyse the intraday 
market liquidity and volume concentration of the S&P CNX NIFTY fu-
tures index using high-frequency financial time series data. Specifically, 
they analyse tightness, market depth, resilience and trading time using 
different indicators. They conclude that the intraday market tightness 
and the time dimension follow a GARCH and Threshold Autoregressive 
Conditional Heteroskedasticity (TARCH) model, while the depth and 
resilience dimensions follow an Autoregressive Conditional Hetero-
skedasticity (ARCH) and GARCH model. Apergis and Apergis [3] 
investigate the effect of the 11/13 terrorist attacks in Paris on the equity 
returns and volatility of the main participants in the global defence in-
dustry. They apply the GARCH model to measure the impact of the 
terrorist episode on both average and volatility of returns, together with 
day-to-day data for 22 global defence firms. Their results revealed the 
significant positive impact of these attacks on both yields and volatility. 

Moreover, related literature has examined the impact of geopolitical 
news or events, such as terrorist attacks, on the predictability of yield 
movements and volatility in financial markets. They conclude that 
geopolitical risks, such as domestic terrorist attacks, as well as attacks on 
major financial markets, are likely to influence domestic equity returns 
and volatility [4,5]. Apergis et al. [4] employ the k-order 
non-parametric causality test of Nishiyama et al. [32] on a sample of 
twenty-four large firms in the global defence industry at a monthly 
frequency over the period 1985:1 to 2016:06. They use squared returns 
to capture volatility with daily data on the equity prices of defence firms. 

Their results conclude that while lacking evidence of the predictability 
of returns of the shares of these defence companies derived from the 
measure of geopolitical risk, they find that the index predicts the ach-
ieved volatility of 50% of the firms. These authors propose, for future 
research, to analyse whether the results remain consistent over a period 
outside the sample, as in-sample forecasting predictability may not 
ensure predictive gains. 

In the last few years, the development of data-driven Machine 
Learning (ML) techniques has greatly improved the modelling of 
financial market dynamics. ML is gaining popularity in Finance field due 
to the complex decision-making and high risks [36]. According to 
Goldblum et al. [16], ML is playing an important and growing role in 
financial business applications as this method develops algorithms that 
can be used to train complex data and predict output. Using ML tech-
niques in their portfolio optimisation algorithms, Ban, El Karoui and Lim 
[6] achieved better performance in dealing with average variance and 
value-at-risk mean-conditional problems. Several authors have focused 
on investigating the use of neural networks (NNs) for financial appli-
cations based on their power to handle linear as well as nonlinear tasks 
by not depending on strong suppositions [38]. A number of them have 
been based on prediction problems, namely index prediction [10], and 
exchange rate prediction [24]. 

Cheng et al. [12] propose a new approach using a graph neural 
network that combines multiple modalities for forecasting financial time 
series. Their method addresses the main challenge of predicting prices in 
the financial industry by capturing the lead-lag effects using informative 
data sources. They achieve this through the use of inner-modality graph 
attention and inter-modality source attention mechanisms. They extend 
the graph attention model to handle scenarios involving multiple mo-
dalities and enhance financial forecasting by incorporating learning 
from alternative data. Ang and Lim [1], on the other hand, introduce a 
model that captures both global and local multimodal information for 
forecasting tasks related to investment and risk management. They 
present the Guided Attention Multimodal Multitask Network (GAME) 
model, which performs strongly on three forecasting tasks and two 
real-world applications. Their results demonstrate the value of guided 
attention learning in capturing both global and local multimodal in-
formation. They conclude that GAME can support better investment and 
risk management decisions and offer benefits across various real-world 
applications. Masini, Medeiros, and Mendes [29] provide a survey of 
the latest advancements in supervised machine learning (ML) and 
high-dimensional models for time-series forecasting. They consider both 
linear and nonlinear alternatives. Their conclusion highlights the use-
fulness of nonlinear ML models when combined with large datasets for 
economic forecasting. They also suggest a potential future research di-
rection, which involves evaluating ML techniques in highly unstable 
environments with frequent structural breaks. Emmanoulopoulos and 
Dimoska [13] compare the predictive power of quantum neural net-
works (QNNs), represented as parametrized quantum circuits (PQCs), 
with bidirectional long short-term memory (BiLSTM) neural networks 
for forecasting time series signals using simulated quantum forward 
propagation. Their findings reveal that for time series signals comprising 
small amplitude noise variations, PQCs, equipped with only a few pa-
rameters, perform similarly to classical BiLSTM networks, which have 
thousands of parameters, and surpass them for signals with higher 
amplitude noise variations. Consequently, QNNs can be effectively 
employed to model time series while simultaneously boasting the sig-
nificant advantage of being trained considerably faster than a classical 
ML model on a quantum computer. Kumar et al. [25] put forward two 
metrics, specifically mean weighted square error (MWSE) and mean 
weighted square ratio (MWSR), for dependable performance evaluation 
of cryptocurrency time series forecasting. Their findings have indicated 
that ARIMA and LSTNet are well-suited for medium-term forecasting, 
whereas Prophet is beneficial for long-term forecasting. 

Other authors have developed hybrid models. Tseng, Yu and Tzeng 
[42] employed the forecast results produced by Autoregressive 
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Integrated Moving Average (ARIMA) and residuals as NN inputs to 
forecast two seasonal time series of the total value of the output of 
Taiwan’s machinery industry. The results showed that the hybrid model 
outperformed ARIMA and NN. Khashei and Bijari [24] suggested hybrid 
approaches employing ARIMA residuals and original data as inputs to 
NNs. Their techniques improved ARIMA in forecasting weekly GBP/USD 
exchange rates. Charef [11] focuses on merging modeling techniques, 
specifically the GARCH model and ANN model, to predict financial se-
ries, particularly the exchange rate series in Tunisia. The findings indi-
cate that the hybrid model (GARCH-NN) outperforms and is more 
efficient than the individual models, yielding better results. Thus, it can 
serve as an alternative to the standard linear autoregressive model. 
Secondly, the combination of ARMA, GARCH, and NN methods enables 
the incorporation of various types of information and data sources, 
leading to more accurate and robust forecasts. Sun, Dong, and Shan [39] 
propose the ARIMA-GARCH-MLP model to predict the fluctuations of 
A-share stocks in 2021. They compare the predictions of the Shanghai 
Composite Index using ARIMA, GARCH, MLP, ARIMA-GARCH, 
MLP-ARIMA, and ARIMA-GARCH-MLP models at different time in-
tervals. The results demonstrate that the ARIMA-GARCH-MLP algorithm 
outperforms the other six algorithms, as evidenced by comparisons of 
control groups, R-Squared values, and Mean Absolute Error. This study 
verifies that the constructed weighted model improves the accuracy of 
stock predictions compared to using ARIMA, GARCH, and MLP algo-
rithms independently. The authors conclude that constructing various 
index prediction algorithms through weighted prediction models, 
combined with deep learning algorithms, will be a focus of future 
research. He et al. [21] put forward a novel financial time series fore-
casting model, which combines the ARMA model with the convolutional 
neural network-long short-term memory (CNN-LSTM) model. The 
CNN-LSTM model is introduced to handle the spatiotemporal data 
feature, while the ARMA model is used to address the autocorrelation 
data feature. Empirical findings using financial time series data 
demonstrate that the proposed deep learning ensemble-based financial 
time series forecasting model attained superior performance concerning 
forecasting accuracy and robustness when compared to the benchmark 
individual models. 

In this paper, we analyse the evolution of market microstructure with 
defence stock markets before and after armed conflicts. The aim is to 
predict shocks in intraday patterns with neural networks, specifically, 
we develop a model of Autoregression Analysis and Moving Average- 
Generalized Autoregressive Conditional Heteroskedasticity (ARMA- 
GARCH) with different machine learning approaches Neural Network 
(ARMA-GARCH-NN), Deep Recurrent Convolutional Neural Network 
(ARMA-GARCH-DRCNN), Deep Neural Decision Trees (ARMA-GARCH- 
DNDT), Quantum Neural Network (ARMA-GARCH-QNN) and Quantum 
Recurrent Neural Network (ARMA-GARCH-QRNN). The database col-
lects daily observations from 4 January to 19 December 2022 from the 
Dow Jones U.S. Aerospace & Defense Index, and we have considered the 
following international conflicts that have occurred in this period: The 
Afghanistan conflict (Oct 7, 2001 – Aug 30, 2021), Syrian Civil War 
(March 15, 2011-Present), The Libyan Revolution (15 February – 23 
October 2011), Yemeni Civil War (September 16, 2014-Present), 
Ukraine-Russia War (February 24, 2022-Present). This analysis is 
much more complicated to capture with econometric methods. So our 
study fills the gap in the literature by applying ML methods in finance to 
formulate and examine research questions that can be addressed by 
innovative computational methods, as traditional financial price-setting 
models exhibit imprecise prediction accuracy on real-world data owing 
to their restricted ability to represent complicated market movements. 
ML methods can uncover more valuable information, such as predicting 
occurrences, pricing assets, and forecasting returns [18]. 

Forecasting multivariate time series is a significant machine learning 
challenge spanning various domains. Deep neural networks have 
garnered growing attention in the analysis of time series data and have 
also been explored for time series prediction. Lai et al. [26] established 

that multivariate time series data are prevalent in our daily lives, 
encompassing areas such as stock market prices, traffic flow on roads, 
outputs of solar power plants, and temperatures in different cities, 
among others. They proposed an innovative deep learning framework 
for multivariate time series forecasting, which enhanced the best-known 
outcomes in time series prediction using several benchmark datasets. 
Therefore, in our study research, we also include time series of exchange 
rates to test and analyze the application of our developed methodology 
in this context, specifically focusing on the pound sterling and the Chi-
nese renminbi currencies, from 1990 to 2016. 

We make at least three further contributions to the literature. First, 
we analyse defence equity markets with high-frequency intraday pat-
terns as high-frequency intraday financial data contain refined infor-
mation about the local second moment of returns. In this way, one can 
locate the volatility estimation and focus only on the returns inside a 
small window to approximate the local second moment. Second, we 
apply neural networks methodology since most of the previous studies 
employ statistical and econometric methods. ML techniques are attrac-
tive to the financial sector because of their ability to effectively discover 
patterns, correlations, and anomalies in large and complex data sets. ML 
techniques enhance the capabilities of financiers by eliminating 
’momentary irrationality’ and can adapt to change as they enter a sys-
tem. This aspect in particular is vital for the investment and finance 
environment, constantly changing and in continuous movement [14]. 
Although artificial neural networks possess specific strengths that 
enable them to handle a considerable number of encountered problems, 
they still encounter logical limitations in certain models, hindering their 
standalone application in some cases or the enhancement of their re-
sults. Consequently, certain combinations are proposed to advance 
research and discover methods that can overcome the weaknesses and 
challenges associated with each approach, such as Lin, Koprinska and 
Rana [27]. Thus, we refer to the fusion of two approaches, specifically 
the GARCH-ANN combination in our case, which allows us to leverage 
the respective strengths of both methods. 

So, our third contribution is the combination of deep learning and 
statistical models. The advantage of the combination of these methods in 
our study is that we can address the issue of non-stationarity in the data. 
Financial time series often exhibit non-stationary behavior, character-
ized by changing means and volatilities over time. The ARMA and 
GARCH models can handle such non-stationarity to some extent. Thus, 
the combination of ARMA, GARCH, and NN in our proposed method 
offers an advantage, especially the strengths of both techniques, and that 
the combined model is an effective way to better the prediction quality 
whatever be the studied series. Consequently, by combining these two 
techniques, we harness the strengths of both models: the deterministic 
and theoretical aspects of the GARCH model, and the empirical nature of 
the ANN model. Our approach offers several advantages. Firstly, it 
benefits from the speed of empirical modeling, which contrasts with the 
complex and time-consuming calculations involved in deterministic 
equations. Secondly, the conceptual and theoretical model aspect re-
mains a static model. Hence, the neuronal network’s capability to adopt 
a holistic perspective can serve as data preprocessing, retaining only the 
most relevant and impactful information. On the other hand, the GARCH 
model’s capacity for information structuring facilitates refined pre-
dictions [11]. 

The rest of the paper is organized as follows. In Section 2, the 
methodology is described. Section 3 details the sample and data 
involved in the research. Section 4 points out the results and findings 
obtained. By last, Section 5 finishes explaining the conclusions reached. 

2. Methodology 

We apply the machine learning ARMA-GARCH-NN, ARMA-GARCH- 
DRCNN, ARMA-GARCH-DNDT, ARMA-GARCH-QNN, and ARMA- 
GARCH-QRNN techniques and these methods contain three main ele-
ments: estimation of market shocks, extraction and selection of 
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characteristics, and optimisation of the model. Firstly, we adjust an 
ARMA-GARCH model using high-frequency equity yields and derive the 
market disturbances. Next, we apply a process of feature extraction and 
selection to determine which variables are considered more relevant for 
forecasting market disturbances. Lastly, artificial neural networks and 
joint learning techniques to predict future market shocks are incorpo-
rated into our process. 

The combination of ARMA, GARCH, and NN approaches is recom-
mended to advance research and address the weaknesses and challenges 
associated with each approach, as this combination can capture both 
linear and nonlinear dynamics. Notably, authors like Charef [11], He 
et al. [21], Sun, Dong, and Shan [39], mentioned in the previous section, 
have concluded that the fusion of ARMA, GARCH, and NN methods leads 
to more robust results. The literature and empirical studies highlight the 
advantage of hybrid models in providing a robust modeling framework 
by leveraging the strengths of different techniques. Prediction methods 
based on hybrid models outperform traditional models, including neural 
networks and econometric models. Sun et al. [40] further demonstrate 
that the hybrid model (GARCH-NN) not only outperforms but also 
proves to be more efficient than the individual models. In conclusion, 
the hybrid model emerges as the most efficient and effective overall for 
financial time series forecasting. 

We have created an additional document to complement our 
manuscript, “Supplementary File. Within this supplementary file, we 
have included details regarding the input variables, the network struc-
ture and hyperparameters, and the codes for each methodology used. 

2.1. ARMA-GARCH model 

2.1.1. Estimation of market shock 
We compute market distortions relying on the classical ARMA- 

GARCH model, confirmed to be effective in many research studies of 
financial prices [37]. Since rt is the market return in period t, the general 
ARMA(p, q)-GARCH(m, s) model takes the following form: 

rt = c +
∑p

i=1
φirt− i + εt +

∑q

j=1
θjεt− j (1)  

εt = σtzt, zt ∼ N(0, 1) (2)  

σ2
t = ω +

∑m

k=1
αkε2

t− k +
∑s

l=1
βlσ2

t− l (3)  

in which Eq. (1) details the ARMA element, and Eqs. (2) and (3) describe 
the GARCH element; rt− i,…, rt− p are autoregressive terms representing 
the historical market returns over the last p periods; εt− 1,…, εt− q reflect 
the moving mean terms measuring the lagged q errors; φi, θj, αk, and βl 
refer to coefficients of the model; c and ω relate to the constant terms. 

The property of autocorrelation of εt , captured by the clustering 
characteristics of volatility in stock returns, is embodied by the GARCH 
element. In other words, εt stands for a product of σtand zt (see Eq. (2)), 
and zt also referred to as the innovation term of the ARMA-GARCH 
model. Observe that the lag orders (i.e. p, q, s, and m) could be fixed 
by the goodness-of-fit of the model, whereas they are usually assigned to 
be one. The ARMA(1,1)-GARCH(1,1) model has been deployed for 
studies of high-frequency financial data [23]. Hence, the 
ARMA-GARCH-based market shock can be estimated by the following: 

zt =
rt − (ĉ + φ̂1 tt− 1 + θ̂1 εt− 1)
̅̅̅̅
ω̂

√
+ α̂1 ϵ2

t− 1 + β̂1 σ2
t− 1

(4)  

2.1.2. Feature selection 
This component of the methodological process concerns the assem-

bly of a sample of explicative variables to be used as input to the fore-
casting models. We first build a pool of candidate characteristics that 
includes historical time series elements of the ARMA-GARCH model and 

information on market microstructure, including technical indicators, 
and high-frequency volatility measures, to obtain features from the 
historical information. 

We choose the optimal feature subset based on the mutual infor-
mation of Shannon [35], a machine learning principle. The mutual in-
formation between two variables, X and Y, can be defined as: 

I(X,Y) =
1
N
∑N

i=1
ln

PX,Y (Xi, Yi)

PX(Xi)PY(Yi)
(5)  

being PX(Xi), PY(Yi), and PX,Y(Xi, Yi) the marginal and joint density 
functions derived from the sample data. Observe this form of mutual 
information is nonparametric and requires no assumptions that are 
simplifying, for example, the Gaussian distribution. Mutual information 
means, intuitively, the mean reduction in surprise between information 
sources (for instance, a feature X and the target z), so that high mutual 
information indicates precise forecasts. Furthermore, we calculate the 
redundancy from a set of selected features like: 

RD(S) =
1
|S|2

∑

Xi ,Xj∈S
I
(
Xi,Xj

)
(6)  

being S the feature set. Based on mutual information and redundancy, 
we build a method of two-step feature selection that involves a screening 
process followed by the principal selection procedure. 

The first step is pre-selection noise filtering. Considering that our 
process seeks to deal with a great number of candidate features, the main 
objective of the pre-selection stage consists of efficiently discarding 
features with a reduced significance for the market shock. To this end, 
we perform a time series of white noise ut and calculate its importance 
for the purpose. If a characteristic proves in comparison to white noise to 
be weaker for the target, we determine that it holds poor information 
and should be discarded. To improve the comparison robustness, we 
perform random ut generation several times and rely on the mean 
mutual information between ut and the market shock zt . This pre- 
selection algorithm removes irrelevant candidates and decreases the 
computing cost for the second round of feature selection. 

The second step is the feature selection. Battiti [7] stated the problem 
of feature selection to be the procedure of identifying the best and most 
outstanding characteristics from a set of features. In this paper, we 
implement two known extensions of Battiti’s [7] research, regarding 
relevance and redundancy differently. Firstly, we adopt the Forward 
Selection Minimal-Redundancy-Maximal-Relevance (FSMRMR) crite-
rion of Meyer et al. [30], which employs the mean bivariate mutual 
information employed as a proxy in the feature selection process. Xinput is 
the set of selected variables, the FSMRMR continues to update Xinput 

replacing the next variable that optimizes the trade-off between mutual 
information and redundancy. Secondly, we also apply a different strat-
egy, Conditional Mutual Information Maximisation (CMIM) [15], giving 
redundancy greater weight to be addressed to study the significance of 
both relevance and redundancy for our forecasting issue. 
Minimal-Redundancy-Maximal-Relevance (MRMR), since it maintains a 
balance between high relevance and low redundancy simultaneously 
during the feature selection process, may perform better if applied to our 
problem. 

2.1.3. Ensemble neural networks 
Given the market disturbances z and the outstanding characteristics 

Ω, we optimize the prediction function g(.) to approximate the following 
equation: 

zt ∼ g(r, ε, σ,Ω|t − 1) (7) 

The principle driving the modeling of the g(.) function is to equili-
brate between under-fitting and over-fitting, in which an under-fitting 
function is not optimal in terms of prediction accuracy, and an over- 
fitting function is not effective in predicting out-of-sample events, like 
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market shocks in the future. NNs become capable of approaching 
complicated data dependencies, whereas a challenge is to avoid over-
fitting. For this purpose, we perform ensemble NNs for our forecasting 
work. 

In particular, for each mobile window, we split the historical data 
into the training set and the validation set. So, V NN models are then 
trained following the bootstrapping method, and only the models with 
selectable performance (say the best v% of models) in the validation set 
are selected for posterior estimation. Owing to the temporal sensitivity 
of our time series problem, we employ a new cross-validation approach, 
the nearest K cross-validation (NK-CV), to evaluate the output of each 
NN model. Assume that the sample size of each moving window is N. For 
time t, the samples from (t - kN + 1) to t become the validation set. 
Unlike cross-validation, NK-CV chooses the last kN samples to approve 
the model output rather than choosing samples at random. The reason 
for this is that our focus is on time series prediction, and our model is 
constantly adjusted to reflect the latest characteristics of the market. 

With the highest v% models in each moving window, our model 
returns several predictions of innovation and its direction at time t + 1. 
We then employ a joint voting technique to ultimately reach the fore-
casting outcomes. We regard every sub-model as an expert in a decision 
committee. Depending on the expected innovation value, members vote 
for the direction of innovation. In the end, the direction receiving the 
largest amount of votes becomes the final prediction. 

To enhance forecasting performance additionally, we implement a 
threshold approach for the system to decide when to forecast. The main 
concept is to activate the forecasting procedure if strong signals of 
innovation happen. Specifically, our method will make forecasting only 
when the following requirement is met. 

|positiveSign − V/2|
V/2

> threshold (8)  

being positiveSign the number of positive votes generated by the V NN 
models. 

2.2. Theoretical analysis 

We consider two propositions. The first proposition is premized on 
the fact that the market return is composed of a linear component and a 
non-linear component, the market crash calculated by ARMA-GARCH is 
expected to be non-linear. So, we assume that the yield of the market is 
expressed as: 

rt = L t + N t (9)  

where L t stands for the linear component and N t for the non-linear 
component. As ARMA-GARCH only catches the linear features in rt 
and its volatility σt, there should be an estimated bias. Furthermore, by 
disaggregating N t into the ARMA- and GARCH-related components, the 
real value of rt may be reported below. 

rt = (ĉ + cbias) +
∑p

i=1

(
φ̂i +φbias,i

)
rt− 1 + ε′

t +
∑q

j=1

(
θ̂i + θbias,j

)
ε′

t− j

(10a)  

ε′
t = σ′

tz
′
tbeing z′

t = zL
t + N

arma
t , zL

t ∼ N(0, 1) (10b)  

σ′2
t = (ω̂ +ωbias ) +

∑
k=1
m

(
α̂k + αbias,k

)
ε′2

t− k +
∑

l=1
s

(
β̂l + βbias,l

)
σ′2

t− l

+ N
garch
t (10c)  

being cbias, φbias,i, θbias,j, ωbias, αbias,k, and βbias,l estimated biases of ARMA- 
GARCH estimators ĉ, φ̂i , θ̂i , ω̂, α̂k , β̂l if we add a non-linear component 
to the data; N arma

t represents the non-linear auto-dependency of σt. 
Ordering the previous equations, we obtain an enlarged form of 

ARMA-GARCH: 

rt = r̂ t + N
arma
t + r̂bias, t (11a)  

ε′
t = σ′

tz
′
tbeing z′

t = zL
t + N

arma
t zL

t ∼ N(0, 1) (11b)  

σ2
t = σ̂2

t + N
garch
t − σ̂2

bias, t (11c)  

being r̂ t the estimation by ARMA, and σ̂ the estimation by GARCH; 
r̂bias, t = cbias +

∑p
i=1φbias,irt− 1 +

∑q
j=1θbias,jεt− j symbols the estimation 

bias of ARMA, and σ̂2
bias, t= ωbias+

∑s
k=1αbias,kε2

t− k +
∑m

l=1βbias,lσ2
t− l em-

bodies the estimation bias of GARCH 
The impact of the market shock may be assessed as: 

zt =
N

arma
t − r̂bias, t

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
t + N

garch
t − σ̂2

bias, t

√ (12) 

This suggests that the non-linear self-dependence of ARMA and 
GARCH is expected to prevail in the estimated market shock. 

In theory, the ARMA-GARCH model only catches the linear charac-
teristics of momentum in time series data, but market turmoil is a 
complicated phenomenon impacted by many variables, for example, 
macro- and micro-level economic factors as well as the perceptions and 
behaviors of investors. Therefore, inspired by current developments in 
research on artificial neural networks and machine learning, the prob-
lem of forecasting market disturbances is tackled by adopting a data- 
driven framework. 

The second proposition is based on the assumption that it is possible 
to make one-step forecasting of the direction of the market disturbance 
derived by the ARMA-GARCH model based on historical price infor-
mation, if there are non-linear patterns in the original price data, for a 
series of market disturbances. 

Non-linear constituents of the initial price data may not be charac-
terized by ARMA-GARCH methods, hence non-linear patterns, if pre-
sent, will persist in the expected market shocks. These standards could 
be caught by suitable non-linear models. Hence, one-step forecasting of 
the direction of market shocks becomes achievable. Because of the 
precision rate achieved for the forecasting of market shocks (R ), the 
hypotheses that are under test are 

H0 : R ≤ 0.5 (unpredictable market shock) 
Ha : R > 0.5 (predictable market shock) 
We explore the value of historical information to uncover the missing 

patterns hidden behind the ARMA-GARCH model by analyzing the hy-
potheses. Many non-linear regression-based models have been suggested 
to manage non-linear time series patterns, but the problem with these 
models remains that all of them are derived from a few specific formats 
(e.g. aXb). Given the complexity of market dynamics, market shocks 
need not necessarily consistently adopt these formats. 

2.3. ARMA-GARCH-Deep Recurrent Convolutional Neural Network 
(ARMA-GARCH-DRCNN) 

Following the previous development of ARMA-GARCH, RNNs have 
been deployed in many fields in time series forecasting with success 
owing to their enormous predictive power. The standard RNN frame-
work is structured by the output, which depends on its past estimations 
[43]. An input sequence vector x, the hidden states of a recurrent layer s, 
and the output of a unique hidden layer y can be obtained from formulas 
(13) and (14). 

st = σ(Wxsxt +Wssst− 1 + bs) (13)  

yt = o
(
Wsost + by

)
(14)  

being Wxs, Wss, and Wso the weights from the input layer x to the hidden 
layer s, the hidden layer to itself, and the hidden layer to its output layer, 
respectively. by represent the biases of the hidden layer and output layer. 
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Formula (15) points out σ and o as a symbol of the activation functions. 

STFT{z(t)}(τ,ω) =

∫+∞

− ∞

z(t)ω
(
t − τ)e− jωtdt

)
(15)  

where z(t) denotes the vibration signals, ω(t) symbols represent the 
implementation of the ARMA-GARCH in Eq. (4). T(τ, ω) represents a 
complex function defining the vibration signals over time and fre-
quency. To compute the hidden layers with the convolutional operation 
formulas (16) and (17) are used. 

St = σ(WTS ∗ Tt +WSS ∗ St− 1 +Bs) (16)  

Yt = o
(
WYS ∗ St +By

)
(17)  

being W the convolution kernels. 
To establish a deep architecture, the recurrent convolutional neural 

network (RCNN) can be stacked and form the DRCNN. In this combi-
nation case, the last part of the model is a supervised learning layer, set 
by formula (18). 

r̂ = σ(Wh ∗ h+ bh) (18)  

being Wh the weight and bh the bias, respectively. The error of predicted 
and actual observations in the prediction training data may be estimated 
and fed back into model training [28]. Stochastic gradient descent is 
implemented to optimize parameter learning. Assuming that the real 
data at time t is r, the loss function is given in the formula (19). 

L(r, r̂) =
1
2

r − r̂2
2 (19)  

2.4. ARMA-GARCH-Deep Neural Decision Trees (ARMA-GARCH- 
DNDT) 

DNDTs are Decision Tree (DT) models run by deep-learning neural 
networks. All parameters are optimized with stochastic gradient descent 
(SGD) instead of a complex greedy partitioning process; this enables 
large-scale processing with mini-batch-based learning and can be linked 
to any larger neural network (NN) model for end-to-end learning with 
backpropagation. In addition, conventional DTs learn by greedy, 
recursive feature partitioning [33]. This may have benefits for the se-
lection of functions; however, this greedy search may transform ineffi-
ciently. The algorithm starts by executing a soft binning function to 
evaluate the error rate for every node, enabling it to make decisions 
divided into DNDTs. Generally, the input of a binning function is a real 
scalar x building an index of the containers to which x belongs. 
Supposing x is a continuous variable, group it into n + 1 intervals. This 
requires n cut-off points which are trainable variables in this context. 
The cut-off points are denoted as (β1, β2,…, βn) and are strictly ascending 
such that β1< β2< … < βn. 

The activation function of the DNDT algorithm is based on the NN 
described in Formula (20). 

π = fw,ω(t), b, τ(x) = softmax((wxω+ b) / τ) (20)  

being w a constant with value w = [1, 2, …, n + 1], τ > 0 denotes a 
temperature factor, and b is illustrated in Eq. (21). 

b = [0, − β1, − β1, − β2…, − β1 − β2 − … − βn] (21) 

The NN defined in Eq. (29) gives a coding of the binning function x. 
Additionally, if τ tends to 0 (often the most common case), the vector 
sampling is implemented using the Straight-Through (ST) Gum-
bel–Softmax method [22]. 

According to the binning function indicated before, the key idea is to 
create the DT applying the Kronecker product. Assuming we have an 
input instance x ∈ RD with D characteristics. Associating each charac-
teristic xd with its NN fd(xd), we can determine all the final nodes of the 

DT as Eq. (22). 

z = f1(x1) ⊗ f2 (x2) ⊗ … ⊗ fD(xD) (22)  

where z represents a vector that specifies the index of the leaf node 
reached by instance x. The number of cut points per feature is the 
complexity parameter of the model and is not limited. For example, they 
are smaller than the minimum xd or greater than the maximum xd. 

2.5. ARMA-GARCH-Quantum Neural Network (ARMA-GARCH-QNN) 

The combination of CNNs and quantum computing could provide a 
computational technique with a high forecasting power [43]. In quan-
tum computing, a qubit is the smallest unit of information, which is a 
probabilistic representation. A qubit can be in either "1″ or "0″ or any 
superposition of the two [17]. The qubit state is described in Eq. (23): 

|ψ = α|o+ β|1 (23)  

being α and β the numbers that denote the amplitude of the corre-
sponding states such that |α|2 + |β|2 = 1. It is determined as a pair of 

numbers. 
[

α
β

]

The angleθ represents the specification of geometrical 

aspects, defined as such that: cos(θ) = |α| andsin(θ) = |β|. Quantum 
gates could be implemented to fit probabilities based on weight 
enhancement [45]. A rotation gate example is proposed in formula (24): 

U(Δθ) =
[

cos(Δθ) − sin(Δθ
sin(Δθ) cos(Δθ)

]

(24) 

A qubit state becomes upgradable via the application of the quantum 
gate described above. The application of the spin gate on a qubit is given 
below: 
[

α′

β′

]

=

[
cos(Δθ) − sin(Δθ
sin(Δθ) cos(Δθ)

][
α
β

]

(25) 

The process initiates with a quantum hidden neuron from the state |o, 
which prepares the superposition as specified in Formula (26). 

√p
⃒
⃒
⃒O+

̅̅̅
1

√
− p|1 with O ≤ |p| ≤ 1 (26)  

where p expresses the random probability of starting the system in the 
state |O. The classical neurons are inducted by random number gener-
ation [45]. The output from the quantum neuron is determined as fol-
lows in Eq. (27). 

vj = f

(
∑n

i=1
wji ∗ xi ∗ω(t)

)

(27)  

being f a problem-dependent sigmoid or Gaussian function and ω(t) is 
the signals of the ARMA-GARCH equation. The output from the network 
is described in the next formula: 

yk = f

(
∑l

j=1
wjk ∗ vj

)

(28) 

The desired output is the ok and the upgrading of output layer weight 
is given in Formulas (29) and (30): 

E2
k =

1
2
|yk − ok|

2 (29)  

Δwjk = ηekf ′vj (30)  

2.6. Quantum Recurrent Neural Network (ARMA-GARCH-QRNN) 

A quantum system on n qubits exists in the n-fold Hilbert space of 
tensor product H = (C2)

⊗d with resulting dimension 2d . A quantum 
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state represents a unit vector ψ ∈ H , commonly described in quantum 
computing in bra-ket notation |ψ ∈ H |; its conjugate transpose with 
ψ | = |ψ†; then the inner product ψ

⃒
⃒ψ = ψ2

2 means the square of the 2- 
norm of ψ . [ψψ ] then denominates the outer product, yielding a tensor 
of rank 2. The computational ground conditions correspond to |0 = (1, 
0), |1 = (0, 1), and compound ground states are for example set by |01 =
|0 ⊗ |1 = (0, 1, 0, 0). 

Thus a quantum gate becomes a unitary operation U on H ; where 
the operation nontrivially operates on a subset S ⊆ [n] of qubits, then 
UϵSU(2|S|); to operate on H we expand U to operate as identity on the 
remainder of the space, i.e. US ⊗ 1[n]\S. This extension is usually 
ignored, and indicates if the gate operates in a quantum circuit: the first 
gate R(θ) represents a unitary of a qubit that operates on the second 
qubit from below, and which depends on the parameter θ. The dotted 
line extending from the gate designates a "controlled" operation, if the 
control, for example, acts only on a single qubit denominates the single 
block-diagonal unitary map |00| ⊗ 1+ |11| ⊗ R(θ) = 1 ⊕ R(θ)it stands 
for “if the control qubit is in state |1 apply R(θ)“. The gate sequences are 
computed as matrix products, and the circuits. 

The projective measures of a single qubit are provided by a hermitian 
2 × 2 matrix P, such as M|11| = diag(0, 1); the complementary outcome 
is then M⊥ = 1 − M. They are measured by metres in the circuit. 
Considering a quantum state |ψ , the post-measurement state is M|ψ /p /p 
with probability p = M|ψ2. This is also the post-selection likelihood to 
ensure a measured result M; this likelihood may be extended close to 1 
using ~ 

̅̅̅̅̅̅
1/p

√
rounds of amplitude amplification [19]. 

The quantum recurrent neural networks within this proposal are all 
runnable on classical hardware in which the “hidden state” on n qubits is 
expressed by an array of size 2 n, and the set of parameters is provided by 
the collection of all parameterized quantum gates in the process, leading 
to matrices with parameterized inputs. To run a QRNN conventionally, 
we employ a series of matrix-vector multiplications for the gates, and 
matrix-vector multiplications with subsequent renormalisation of the 
status for norm 1 for the measure and post-select transactions. Running 
on quantum hardware, matrix multiplications are "free", and the hidden 
state in n qubits, which classically requires exponential memory, may be 
contained in ~ n qubits only. 

Quantum VQE circuits are very compact, meaning that they alternate 
single-qubit parameterized gates with entangled gates, such as 
controlled-no transactions. Hence, this offers the advantage of packing a 
large number of parameters in a rather dense circuit. Moreover, 
although these circuits are known to form a universal family, their high 
entanglement gate density, as well as the missing correlation between 
the parameters, results in very over-parameterized models which are 
difficult to train in sorting tasks for inputs of more than a few bits [8]. 

We build a highly structured parameterized quantum circuit in 
which a few parameters are reused again and again. It is mainly based on 
a new type of quantum neuron that spins its target lane following a non- 
linear activation function attached to the polynomials of its inputs. The 
cell consists of a composite of an input stage that, at every step, puts the 
actual input into the state of the cell. Multiple work steps follow which 
calculate the input and the cell state, plus a concluding output step that 
generates a density of probability on possible forecasts. The application 
of these QRNN cells in an iterative fashion over the input sequence in a 
recurrent model is very similar to traditional RNNs. 

In training, we implement quantum amplitude amplification [20]. on 
the output vias, to make sure we measure the right token of the training 
data at all steps. Although the measures are usually non-unitary oper-
ations, using the amplitude amplification step ensures that the measures 
while training remains as close to unitary as we want them to be. 

The power of classical neural networks arises from the imple-
mentation of non-linear activation factors to the related converse 
transformations in the layers of the network. Instead, because of the 
nature of quantum mechanics, any quantum circuit would inevitably be 
a linear operation. 

Nevertheless, nonlinear behavior does not happen anywhere in 
quantum mechanics: a simple example is a single-qubit gate R(θ)= exp 
(iYθ) for the Pauli matrix Y [31], acting as a: 

R(θ) = exp
(

iθ
(

0 − i
i 0

))

=

(
cosθ sinθ
− sinθ cosθ

)

(31)  

namely like a rotation within the two-dimensional space covered by the 
computational basis vectors of a single qubit, {|0, |1}. Meanwhile, the 
rotation matrix itself remains linear, we observe that the state ampli-
tudes — cosθ and sinθ—depend non-linearly on the angle θ. Lifting the 
rotation to a checked operation cR(i, θi) conditional on the ith qubit of a 
state |x for x ∈ {0,1}n, we obtain the next map: 

R(θ0)cR(1, θ1 )…cR(n, θn )|x|0= |x(cos(η)|0+ sin(η)|1)

for 

η = θ0 +
∑n

i=1
θixi (32) 

Hence, this corresponds to a rotation by an infinite transformation of 
the basis vector |xwith x = {x1,…,xn} ∈ {0,1}n, by a parameter vector 
θ = (θ0, θ1,…, θn ). The process is linearly expanded to the base and 
target state superpositions, and owing to the form of R(θ) all changes in 
amplitude just introduced are true-valued. 

This transformation of the cosine of the amplitudes through a 
checked transaction is already non-linear; however, a sine function is 
not especially sharp, lacking also a sufficient "flat" region where the 
activation stays constant, as is the case of a linear rectified unit. Cao, 
Guerreschi and Aspuru-Guzik [9] suggested an approach to implement a 
linear map into a set of qubits that produces amplitudes that exhibit 
these steeper slopes and plateaus, in a manner very similar to a 
sigmoidal activation function. The activation has a parameter of order 
ord ≥ 1 governing the tilt, the circuit resulting in the activation ampli-
tude. This quantum neuron in pure states is rotated by an angle f(θ) =

arctan(tan(θ)2ord
), where ord ≥ 1 is the order of the neuron. Assuming an 

affine transformation η for the input bitstring xi as shown in formula 
(33), this rotation is translated into the amplitudes. 

cos(f (η)) = 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + tan(η)2x2ord
√ and sin(f (η)) = tan(η)2ord

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + tan(η)2x2ord
√ (33)  

which arises by standardising the transform |0↦− → 

cos(θ)2ord
⃒
⃒
⃒0+sin(θ)2ord

⃒
⃒
⃒1 as can be seen clearly. For ord = 1, the circuit is 

shown on the left; for ord = 2 on the right. Superior orders are recur-
sively buildable. 

A so-called repetition-to-success (RUS) circuit is this quantum 
neuron, indicating that the measured ring signals if the circuit has been 
performed correctly. If the result is zero, the neuron has been 
committed. A correction circuit returns the state to its original config-
uration when the result is one. Beginning with a pure state (e.g. |x for x ∈

{0,1}2 and recurring every time a 1 is measured, an arbitrarily high 
probability of success is reached. 

For control in superposition, such as a state |x +|y /
̅̅̅
2

√
, this does not 

work for x ∕= y two bit-strings of length n. The amplitudes within the 
overlap, in this case, will rely on the success story. A technique called 
fixed-point oblique amplitude amplification [41], essentially 
post-selects in the measurement of result 0 while preserving the uni-
tarity of the operation with arbitrary precision. There is the additional 
cost of multiple rounds of these quantum circuits, whose number will 
depend on the chance of a zero being measured in the first place. This 
depends obviously on the parameters of the neuron, θ, and the input 
state is given. We stress that by selecting sufficiently large individual 
post-selection probabilities, there is no exponential reduction in the 
overall probability of success across the number of quantum neurons 
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employed. 
We extend this quantum neuron in this paper with an increase in the 

number of check terms. More precisely, η as provided in formula (32) is 
an affine transform of the boolean vector x = {x1,…,xn} for xi ∈ {0, 1}. 
When we introduce multi-control gates - having their own parameter-
ized rotation, where we can include the signals of ARMA-GARCH 
equation, labelled by a multi-index θ_I that varies depending on the 
qubits i ∈ I on which the gate conditions - we get the option of incor-
porating higher-degree polynomials, i.e. 

η′ = θ0 +
∑n

i=1
θixiω(t) +

∑n

i=1

∑n

j=1
θijxixjω(t) + … =

∑

I⊆[n]
|I|≤d

θI

∏

i∈I
xiω(t) (34)  

being d the degree of the neuron; for d = 2 and n = 4 an example of a 
checked rotation that increase to this higher-order transformation η′ on 
the bit string xi. So, higher degree boolean logic operations could be 
directly encrypted inside a unique conditional rotation: an AND opera-
tion between two bits x1 and x2 is simply x1x2. 

The identified quantum neuron becomes the central component in 
building our quantum recurrent neural network cell. As for conventional 
RNNs and LSTMs, we provide such a cell to be applied successively to the 
input submitted to the network. In particular, the cell consists of input 
and output lanes that are restored following each step, plus a cell- 
internal state that is transmitted into the next iteration of the network. 

To implement the constructed QRNN cell, we require an iterative 
application of the QRNN cell to a sequence of input words in1, in2, …,

inL .

The outgoing lanes outi label a discrete distribution measuring pi 
over the class labels (we could read the state vector weights if a simu-
lation is run on a classical computer, or through replicated measure-
ments on quantum hardware). The distribution could be entered into an 
assigned loss function, like cross-entropy or CTC loss. 

3. Sample and data 

The database collects daily observations from 4 January 2000 to 19 
December 2022, from the Dow Jones U.S. Aerospace & Defense Index, 
extracted from Thomson Reuters Eikon. Within this period there have 
been the following international conflicts: The Afghanistan conflict (Oct 
7, 2001 – Aug 30, 2021), the Syrian Civil War (March 15, 2011-Present), 
The Libyan Revolution (15 February – 23 October 2011), Yemeni Civil 
War (September 16, 2014-Present), Ukraine-Russia War (February 24, 
2022-Present). 

Besides, we have examined the methodologies using time series data 
related to exchange rates, specifically focusing on the British pound 
sterling and the Chinese renminbi currencies. The rationale behind 
selecting these two currencies lies in their distinctiveness: one hails from 
a developed nation, while the other originates from an emerging econ-
omy. Additionally, this choice was made to avoid excessive length in our 
article. The dataset covers the timeframe spanning 1990 to 2016. The 
data has been sourced from the GitHub repository accessible through the 
following link: https://github.com/laiguokun/multivariate-time-serie 
s-data. 

Regarding the input variables, in the supplementary file, we have 
included details about the input variables, the network structure and 
hyperparameters. We perform a pre-test based on randomly assigned 
samples to establish the optimal number of these variables. We execute a 
one-step ahead prediction for 100 moving windows using the samples 
selected randomly, but not used in the main training and testing process 
of the model. In the defense stock market case, Table 1 shows the dy-
namics of the root mean square error (RMSE) related to the training and 
testing results based on the selections of 10, 20, 30, and 40 variables. 
Figs. 1–5 show the average RMSE for each technique with different 
numbers of inputs. These figures are in another supplementary file that 
we have created. 

Although the goodness of fit in the training set improves as the 
number of inputs grows, it can lead to overfitting. We obtain a reversal 
of performance when increasing the number from 20 to 30 entries based 
on the results of the test set. In addition, we perform similar CMIM-based 
tests also leading to coherent results. Hence, we define 20 as the number 
of input variables. The best average RMSE in the testing set with 20 
features is in the DNDT technique (0.29853191) followed by the QNN 
method (0.30660715) and in third place the QRNN approach 
(0.36228718). 

In the exchange rate case, Table 2 presents the variations in the 
RMSE concerning both the training and testing outcomes for exchange 
rates, contingent upon the choices of 10, 20, 30, and 40 variables. The 

Table 1 
Average RMSEs for training and test sets with the different methods for defense 
stock market.  

Features Training Testing 

ARMA-GARCH-NN 
10 0.5946 0.6176 
20 0.2591 0.5616 
30 0.4559 0.4952 
40 0.3619 0.4577 
ARMA-GARCH-DCRNN 
10 0.4380 0.4615 
20 0.4746 0.5525 
30 0.4206 0.4221 
40 0.3237 0.3730 
ARMA-GARCH-DNDT 
10 0.4024 0.4255 
20 0.4202 0.2985 
30 0.2700 0.3722 
40 0.2761 0.3051 
ARMA-GARCH-QNN 
10 0.3826 0.4050 
20 0.3052 0.3066 
30 0.3074 0.3938 
40 0.3662 0.4439 
ARMA-GARCH-QRNN 
10 0.2765 0.2993 
20 0.2567 0.2817 
30 0.1891 0.2672 
40 0.1565 0.2481  

Table 2 
Average RMSEs for training and test sets for exchange rate with the different 
methods.  

British Pound Chinese Renmimbi 
Features Training Testing Feature Training Testing 

ARMA-GARCH-NN ARMA-GARCH-NN 
10 0.6207 0.6388 10 0.6473 0.6662 
20 0.4273 0.5809 20 0.4821 0.6058 
30 0.4759 0.5122 30 0.4963 0.5342 
40 0.3778 0.4734 40 0.3940 0.4937 
ARMA-GARCH-DCRNN ARMA-GARCH-DCRNN 
10 0.4572 0.4815 10 0.48662 0.51251 
20 0.4568 0.5113 20 0.48614 0.54412 
30 0.4391 0.4447 30 0.46729 0.47324 
40 0.3379 0.3858 40 0.35963 0.41063 
ARMA-GARCH-DNDT ARMA-GARCH-DNDT 
10 0.4201 0.4401 10 0.4471 0.4684 
20 0.4386 0.3088 20 0.4668 0.3286 
30 0.2819 0.3850 30 0.3000 0.4098 
40 0.2882 0.3156 40 0.3067 0.3359 
ARMA-GARCH-QNN ARMA-GARCH-QNN 
10 0.3677 0.3732 10 0.3902 0.3982 
20 0.3234 0.3422 20 0.3442 0.3654 
30 0.2946 0.3637 30 0.3135 0.3870 
40 0.2895 0.3222 40 0.3081 0.3429 
ARMA-GARCH-QRNN ARMA-GARCH-QRNN 
10 0.2642 0.2764 10 0.2911 0.3036 
20 0.2712 0.3151 20 0.2988 0.3462 
30 0.1813 0.2467 30 0.1991 0.2711 
40 0.1237 0.1801 40 0.1359 0.1979  
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average RMSE of several techniques, each with different input quanti-
ties, are shown in the Figs. 6–10 (supplementary file) for British pound, 
and Figs. 11–15 (supplementary file) for Chinese rebnmimbi. 

Drawing upon the outcomes derived from the test suite, the inclusion 
of 40 inputs generally yields the most favorable results for both cur-
rencies. As a consequence, we establish the count of 40 as the designated 
number of inputs. Notably, when considering the British pound scenario, 
the optimal average RMSE within the test dataset is achieved using the 
ARMA-GARCH-QRNN technique (0.1801), closely pursued by the 
ARMA-GARCH-DNDT approach (0.3088). Similarly, for the Chinese 
renminbi case, the methods delivering the smallest errors align with 
those of the British pound, attaining results of 0.1979 and 0.3286 
respectively. 

4. Results 

Using the MRMR and CMIM feature selection algorithms with 
random cross-validation and k-nearest cross-validation (denoted Rand- 
CV and NK-CV, respectively), we investigate the prediction perfor-
mance of our methods. MRMR is an algorithm that selects a subset of 
characteristics that have the highest correlation with the class (output) 
and the lowest correlation with each other. CMIM does not select a 
feature similar to those already chosen since it provides no further in-
formation about the class to be forecasted. Therefore, this criterion 
guarantees a good balance between independence and discrimination. 
The prediction output is evaluated in terms of the accuracy index for 
each method (see Table 3) and root mean square error (RMSE, see 
Table 4) for the defense market. 

We can observe that the CMIM can lead to significantly better per-
formance in predicting the direction of the market shock in all tech-
niques when applied in conjunction with the NK-CV method in the 
DNDT, QRNN, and QNNN techniques, and in the case of the NN and 
DCRNNN approaches when applied in conjunction with the Rand-CV 
method. Furthermore, the application of NK-CV leads to better results 
than the use of Rand-CV also for MRMR. Finally, in all methods, the 
RMSE results serve as evidence supporting that CMIM is superior to 
MRMR. 

In the exchange rate case, the prediction output is also evaluated in 
terms of the accuracy index for each method and for each currency (see 
Table 5) and root mean square error (RMSE, see Table 6). 

When considering both the British pound and the Chinese renminbi, 
a discernible trend emerges: the integration of CMIM with the Rand-CV 
method consistently yields notably enhanced performance across all 
techniques in predicting market shock direction. Additionally, in the 
context of both currencies, the utilization of Rand-CV outperforms NK- 
CV in the context of MRMR. Lastly, this pattern holds true across all 
methods and both currencies, as the RMSE results substantiate the su-
periority of CMIM over MRMR. 

We study the efficacy of the thresholded ensemble voting technique 
that we design to further improve the prediction performance. By using 
the CMIM -NK-CV model, accuracy rates can be improved by implying 
threshold adjustment in both bottom-up and top-down samples. Table 7 
illustrates for the defense stock market that for all methods the perfor-
mance improves systematically when the threshold is involved in the 
prediction process. For the uptrend, the accuracy rate increases by an 
average of all techniques up to 55.72%; for the downtrend, the accuracy 
rate achieves an average of 55.34%. These two results are both 
considerably higher than 50%, indicating accurate predictions of market 
disturbances. The results are consistent with our second proposition in 
the theoretical analysis section supporting the presence of patterns of 
market disruptions, that can be derived from historical price 
information. 

Compared to other previous research, Apergis [4] analyse the role of 
geopolitical risks in predicting movements in the stock returns and 

Table 3 
Comparison of performances in market shock direction prediction for defense 
stock market.  

ARMA-GARCH-NN  
MRMR CMIM 

Trend NK-CV Rand-CV NK-CV Rand-CV 

Upward 0.473 0.519 0.512 0.562 
0.116 0.041 0.037 0.000 

Downward 0.494 0.508 0.535 0.550 
0.028 0.003 0.013 0.009  

ARMA-GARCH-DCRNN  
MRMR CMIM 

Trend NK-CV Rand-CV NK-CV Rand-CV 

Upward 0.441 0.492 0.498 0.517 
0.071 0.018 0.024 0.019 

Downward 0.487 0.490 0.521 0.513 
0.006 0.034 0.018 0.024  

ARMA-GARCH-DNDT  
MRMR CMIM 

Trend NK-CV Rand-CV NK-CV Rand-CV 

Upward 0.466 0.519 0.532 0.527 
0.074 0.064 0.028 0.004 

Downward 0.506 0.525 0.527 0.533 
0.008 0.007 0.021 0.007  

ARMA-GARCH-QNN  
MRMR CMIM 

Trend NK-CV Rand-CV NK-CV Rand-CV 

Upward 0.475 0.535 0.565 0.546 
0.093 0.071 0.042 0.049 

Downward 0.547 0.534 0.550 0.540 
0.014 0.031 0.026 0.005  

ARMA-GARCH-QRNN  
MRMR CMIM 

Trend NK-CV Rand-CV NK-CV Rand-CV 

Upward 0.450 0.513 0.524 0.510 
0.054 0.070 0.019 0.048 

Downward 0.509 0.502 0.538 0.537 
0.022 0.022 0.018 0.026  

Table 4 
Comparison of forecasting performances based on root mean squared error 
(RMSE) for defense stock market.  

ARMA-GARCH-NN  
MRMR CMIM 

Trend NK-CV Rand-CV NK-CV Rand-CV 

Upward 0.834 0.821 0.804 0.785 
Downward 0.871 0.869 0.849 0.828  

ARMA-GARCH-DCRNN  
MRMR CMIM 

Trend NK-CV Rand-CV NK-CV Rand-CV 

Upward 0.760 0.734 0.731 0.694 
Downward 0.672 0.654 0.619 0.583  

ARMA-GARCH-DNDT  
MRMR CMIM 

Trend NK-CV Rand-CV NK-CV Rand-CV 

Upward 0.566 0.526 0.484 0.473 
Downward 0.542 0.497 0.494 0.454  

ARMA-GARCH-QNN  
MRMR CMIM 

Trend NK-CV Rand-CV NK-CV Rand-CV 

Upward 0.355 0.338 0.303 0.259 
Downward 0.470 0.466 0.455 0.440  

ARMA-GARCH-QRNN  
MRMR CMIM 

Trend NK-CV Rand-CV NK-CV Rand-CV 

Upward 0.350 0.327 0.286 0.246 
Downward 0.394 0.384 0.347 0.339  
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Table 5 
Comparison of performances in market shock direction prediction for exchange rate.  

British Pound Chinese Renminbi 
ARMA-GARCH-NN ARMA-GARCH-NN  

MRMR CMIM  MRMR  CMIM  

Trend NK-CV Rand-CV NK-CV Rand-CV Trend NK-CV Rand-CV NK-CV Rand-CV 
Upward 0.473 0.519 0.512 0.562 Upward 0.458 0.502 0.496 0.544 

0.087 0.053 0.049 0.002 0.084 0.051 0.047 0.002 
Downward 0.481 0.497 0.526 0.538 Downward 0.466 0.481 0.509 0.521 

0.023 0.001 0.008 0.003 0.022 0.001 0.008 0.003  

ARMA-GARCH-DCRNN ARMA-GARCH-DCRNN  
MRMR CMIM  MRMR  CMIM  

Trend NK-CV Rand-CV NK-CV Rand-CV Trend NK-CV Rand-CV NK-CV Rand-CV 
Upward 0.446 0.480 0.489 0.519 Upward 0.442 0.487 0.451 0.508 

0.045 0.032 0.034 0.023 0.045 0.008 0.026 0.035 
Downward 0.442 0.457 0.513 0.536 Downward 0.451 0.476 0.501 0.480 

0.018 0.032 0.034 0.011 0.007 0.027 0.021 0.023  

ARMA-GARCH-DNDT ARMA-GARCH-DNDT  
MRMR CMIM  MRMR  CMIM  

Trend NK-CV Rand-CV NK-CV Rand-CV Trend NK-CV Rand-CV NK-CV Rand-CV 
Upward 0.478 0.514 0.518 0.558 Upward 0.466 0.525 0.477 0.518 

0.045 0.069 0.058 0.021 0.066 0.017 0.044 0.032 
Downward 0.451 0.489 0.546 0.545 Downward 0.452 0.488 0.508 0.494 

0.017 0.030 0.003 0.004 0.006 0.009 0.003 0.007  

ARMA-GARCH-QNN ARMA-GARCH-QNN  
MRMR CMIM  MRMR  CMIM  

Trend NK-CV Rand-CV NK-CV Rand-CV Trend NK-CV Rand-CV NK-CV Rand-CV 
Upward 0.490 0.526 0.530 0.578 Upward 0.504 0.532 0.522 0.558 

0.075 0.081 0.084 0.041 0.069 0.031 0.080 0.000 
Downward 0.462 0.531 0.591 0.549 Downward 0.468 0.531 0.531 0.528 

0.016 0.011 0.030 0.001 0.040 0.022 0.034 0.011  

ARMA-GARCH-QRNN ARMA-GARCH-QRNN  
MRMR CMIM  MRMR  CMIM  

Trend NK-CV Rand-CV NK-CV Rand-CV Trend NK-CV Rand-CV NK-CV Rand-CV 
Upward 0.479 0.510 0.528 0.561 Upward 0.466 0.487 0.498 0.552 

0.061 0.057 0.058 0.009 0.057 0.014 0.079 0.044 
Downward 0.445 0.516 0.562 0.505 Downward 0.450 0.511 0.495 0.526 

0.055 0.043 0.012 0.030 0.018 0.015 0.016 0.018  

Table 6 
Comparison of forecasting performances based on root mean squared error (RMSE) for exchange rate.  

British Pound Chinese Renminbi 
ARMA-GARCH-NN ARMA-GARCH-NN  

MRMR CMIM  MRMR CMIM 

Trend NK-CV Rand-CV NK-CV Rand-CV Trend NK-CV Rand-CV NK-CV Rand-CV 
Upward 0.724 0.713 0.702 0.665 Upward 0.693 0.683 0.674 0.636 
Downward 0.865 0.848 0.817 0.812 Downward 0.828 0.827 0.815 0.770  

ARMA-GARCH-DCRNN ARMA-GARCH-DCRNN  
MRMR CMIM  MRMR CMIM 

Trend NK-CV Rand-CV NK-CV Rand-CV Trend NK-CV Rand-CV NK-CV Rand-CV 
Upward 0.678 0.651 0.616 0.583 Upward 0.460 0.438 0.438 0.433 
Downward 0.791 0.758 0.753 0.711 Downward 0.681 0.644 0.628 0.606  

ARMA-GARCH-DNDT ARMA-GARCH-DNDT  
MRMR CMIM  MRMR CMIM 

Trend NK-CV Rand-CV NK-CV Rand-CV Trend NK-CV Rand-CV NK-CV Rand-CV 
Upward 0.552 0.533 0.489 0.486 Upward 0.419 0.379 0.372 0.353 
Downward 0.774 0.746 0.706 0.671 Downward 0.636 0.604 0.575 0.570  

ARMA-GARCH-QNN ARMA-GARCH-QNN  
MRMR CMIM  MRMR CMIM 

Trend NK-CV Rand-CV NK-CV Rand-CV Trend NK-CV Rand-CV NK-CV Rand-CV 
Upward 0.521 0.499 0.495 0.472 Upward 0.405 0.389 0.347 0.317 
Downward 0.585 0.583 0.560 0.558 Downward 0.469 0.449 0.448 0.431  

ARMA-GARCH-QRNN ARMA-GARCH-QRNN  
MRMR CMIM  MRMR CMIM 

Trend NK-CV Rand-CV NK-CV Rand-CV Trend NK-CV Rand-CV NK-CV Rand-CV 
Upward 0.375 0.359 0.342 0.298 Upward 0.369 0.338 0.302 0.294 
Downward 0.360 0.323 0.313 0.312 Downward 0.313 0.267 0.258 0.222  

D. Alaminos et al.                                                                                                                                                                                                                               



Pattern Recognition 148 (2024) 110139

11

volatility of twenty-four firms in the defence industry. They use the k-th 
order non-parametric causality test of Nishiyama et al. [32] and find that 
the index predicts realized volatility in 50 percent of the firms. Their 
results indicate although global geopolitical events over some time are 
less likely to predict returns, the effect is more focused on modifying the 
future risk profile of defence firms. Apergis and Apergis [3] investigate 
the impact of the Paris terrorist attacks both on stock market returns and 
the volatility of major firms in the global defence industry. They use the 
General Autoregressive Conditional Heteroscedasticity (GARCH) meth-
odology. Their results strongly suggest that this terrorist event impacts 
positively the returns and volatility of these stocks. Sun et al. [40] 
develop a machine learning approach through ARMA-GARCH-NN to 
analyse the intra-day patterns for stock market shocks forecasting and 
confirm the predictability of this model. Their results conclude that for 
their upward trend, the accuracy rate is enhanced to 54.3%, and for the 
downtrend, the accuracy rate reaches 52.59%. Concerning the latter 
research, we can therefore conclude that our model improves the ac-
curacy ratio for both the uptrend and the downtrend. Furthermore, we 
analyse and compare the model with various computational 
methodologies. 

In the exchange rate case, Table 8 illustrates a consistent pattern 
across all methods wherein performance systematically improves upon 
the incorporation of thresholds into the prediction process. In the 
context of the British pound, during uptrends, the accuracy rate expe-
riences an average enhancement across all techniques, reaching 59.14%; 
conversely, for downtrends, the accuracy rate averages at 55.90%. 
Similarly, for the Chinese renminbi, uptrends witness an average accu-
racy rate augmentation across all techniques, reaching 55.34%, while 
downtrends achieve an average accuracy rate of 53.54%. These out-
comes significantly surpass the 50% mark, underscoring precise pre-
dictions of market disruptions. 

For the defense stock market, we re-run the same tests for robustness 

using a randomly defined sample covering periods from 4 January 2000 
to 19 December 2022. Fig. 16 (supplementary file) shows the results 
according to the MRMR-NK-CV model with and without a threshold. We 
conclude that the results are coherent as we obtain high accuracy rates 
in every method. In addition, we compare the average accuracy rate of 
each technique (see Table 9), with ARMA-GARCH-QRNN being the 
technique that achieves the best accuracy results (93.59%) followed by 
ARMA-GARCH-QNNN (88.86%) and third place ARMA-GARCH-DNDT 
(84.51%). So, we support the effectiveness of our model in predicting 
market shocks. 

Figs. 17 and 18 (supplementary file) illustrate the outcomes derived 
from the MRMR-NK-CV model, presenting results both with and without 
the integration of a threshold, for the British pound and the Chinese 
Renminbi respectively. Our analysis leads to a coherent conclusion, with 
consistently high accuracy rates observed across all methods. Further-
more, a comparative examination of the average accuracy rates for each 
technique in both currencies is detailed in Table 10. Evidently, the 

Table 7 
Enhanced performance with ensemble vote (NK-CV) by accuracy rate for defense 
stock market.  

ARMA-GARCH-NN 
Trend With threshold Without threshold 

Upward 0.563 0.562 
0.038 0.000 

Downward 0.565 0.550 
0.031 0.009  

ARMA-GARCH-DCRNN 
Trend With threshold Without threshold 

Upward 0.531 0.517 
0.014 0.019 

Downward 0.521 0.513 
0.018 0.024  

ARMA-GARCH-DNDT 
Trend With threshold Without threshold 

Upward 0.572 0.527 
0.006 0.004 

Downward 0.567 0.533 
0.038 0.007  

ARMA-GARCH-QNN 
Trend With threshold Without threshold 

Upward 0.583 0.546 
0.057 0.049 

Downward 0.575 0.540 
0.016 0.005  

ARMA-GARCH-QRNN 
Trend With threshold Without threshold 

Upward 0.537 0.510 
0.087 0.048 

Downward 0.539 0.537 
0.015 0.026  

Table 8 
Enhanced performance with ensemble vote (NK-CV) by accuracy rate for ex-
change rate.  

British Pound Chinese Renmimbi 
ARMA-GARCH-NN ARMA-GARCH-NN 
Trend With 

threshold 
Without 
threshold 

Trend With 
threshold 

Without 
threshold 

Upward 0.591 0.562 Upward 0.550 0.544 
0.047 0.002 0.035 0.002 

Downward 0.566 0.538 Downward 0.531 0.521 
0.004 0.003 0.032 0.003  

ARMA-GARCH-DCRNN ARMA-GARCH-DCRNN 
Trend With 

threshold 
Without 
threshold 

Trend With 
threshold 

Without 
threshold 

Upward 0.564 0.519 Upward 0.512 0.508 
0.017 0.023 0.027 0.035 

Downward 0.547 0.536 Downward 0.524 0.480 
0.030 0.011 0.022 0.023  

ARMA-GARCH-DNDT ARMA-GARCH-DNDT 
Trend With 

threshold 
Without 
threshold 

Trend With 
threshold 

Without 
threshold 

Upward 0.597 0.558 Upward 0.543 0.518 
0.027 0.021 0.022 0.032 

Downward 0.566 0.545 Downward 0.503 0.494 
0.009 0.004 0.024 0.007  

ARMA-GARCH-QNN ARMA-GARCH-QNN 
Trend With 

threshold 
Without 
threshold 

Trend With 
threshold 

Without 
threshold 

Upward 0.607 0.578 Upward 0.585 0.558 
0.085 0.041 0.025 0.000 

Downward 0.585 0.549 Downward 0.565 0.528 
0.037 0.001 0.043 0.011  

ARMA-GARCH-QRNN ARMA-GARCH-QRNN 
Trend With 

threshold 
Without 
threshold 

Trend With 
threshold 

Without 
threshold 

Upward 0.598 0.561 Upward 0.577 0.552 
0.052 0.009 0.007 0.044 

Downward 0.531 0.505 Downward 0.554 0.526 
0.014 0.030 0.026 0.018  

Table 9 
Average Performance comparison based on a long-period sam-
ple for defense stock market.   

Average (%) 

ARMA-GARCH-NN 67.72 
ARMA-GARCH-DCRNN 82.08 
ARMA-GARCH-DNDT 84.51 
ARMA-GARCH-QNN 88.86 
ARMA-GARCH-QRNN 93.59  
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ARMA-GARCH-QRNN technique emerges as the standout performer, 
achieving impressive accuracy results of 93.81% for the British Pound 
and 87.74% for the Chinese Renminbi. Following closely, the ARMA- 
GARCH-QNNN approach secures the second-best position with an ac-
curacy rate of 90.34% for the British Pound and 84.92% for the Chinese 
Renminbi. These findings collectively bolster the credibility and efficacy 
of our model in accurately predicting market shocks. 

In addition, we test our hybrid model to explore ways in which an 
optimal predictive approach to market disturbances could be employed 
in the development of trading strategies. We propose a trading strategy 
as a new trading signal besides the prediction based on ARMA (1,1)- 
GARCH(1,1). The trading strategy is challenged on a randomly selected 
sample of data of S&P500 5-min prices. Fig. 19 (supplementary file) 
shows the comparison of the final cumulative return based on the 
trading strategy with the signals of each method with different thresh-
olds. Our sample comprises 1000 5-minute time points, therefore the 
reported returns reflect the returns of approximately 14 trading days. 
The minimum return obtained is 1.7% in the ARMA-GARCH-NN 
method, followed by ARMA-GARCH-DCRNN (2.1%) and the maximum 
return reaches 3.6% in the ARMA-GARCH-QNN approach, having a 
close percentage of both ARMA-GARCH-QRNN and ARMA-GARCH- 
DNDT (3.4%). As can be observed, ARMA-GARCH-QNN and ARMA- 
GARCH-QRNN techniques significantly improve on the other methods 
concerning the cumulative return achieved. Additionally, in Fig. 20 
(supplementary file), we display the cumulative performances over time 
by setting a threshold = 0.00025. Again, we show that ARMA-GARCH- 
QNN and ARMA-GARCH-QRNN also consistently exceed the other 
techniques, having a maximum return of 2.2% and 2.3% respectively. 

Detailed comparisons of the cumulative returns stemming from the 
trading strategy against the signals generated by each method at various 
thresholds are presented in Figs. 21 and 22 (supplementary file) for the 
British pound and Chinese Renminbi, respectively. Moreover, Figs. 23 
and 24 (supplementary file) showcase the cumulative performance 
trends over time, with a threshold value set at 0.00025, for both the 
British pound and the Chinese Renminbi. 

5. Conclusions 

This study has developed a model that analyse the evolution of 
market microstructure with defence stock markets before and after 
armed conflicts. The aim is to predict shocks in intraday patterns with a 
machine learning approach, called ARMA-GARCH-NN, ARMA-GARCH- 
DRCNN, ARMA-GARCH-DNDT, ARMA-GARCH-QNN, and ARMA- 
GARCH-QRNN. The sample under study has been daily observations 
from the Dow Jones U.S. Aerospace & Defense Index in the period from 4 
January to 19 December 2022, and we have considered the following 
international conflicts that have occurred in this period: The 
Afghanistan conflict (Oct 7, 2001 – Aug 30, 2021), Syrian Civil War 
(March 15, 2011-Present), The Libyan Revolution (15 February – 23 
October 2011), Yemeni Civil War (September 16, 2014-Present), 
Ukraine-Russia War (February 24, 2022-Present). Besides, we have 
analyzed the methodologies utilizing time series data concerning ex-
change rates, with a specific emphasis on the currencies of the British 
Pound and the Chinese Renminbi. Our results indicate that our methods 
of ARMA-GARCH market shocks at the intraday level are predictable. 

Our results show that CMIM feature selection significantly performs 
much better in forecasting the direction of the market disturbance across 
all approaches if applied together with the NK-CV method in the DNDT, 
QRNN, and QNN techniques, and for NN and DCRNN techniques if used 
in combination with the Rand-CV method. Finally, in all methods, the 
RMSE results serve as evidence supporting that CMIM is superior to 
MRMR. Furthermore, RMSE results for all methods provide evidence to 
confirm that CMIM appears to be stronger than MRMR. In addition, the 
predictions of equity market shocks analysed have the potential to act as 
new trading signals to assist the financial investment decision-making 
process. Moreover, our computational methodologies achieve good ac-
curacy results despite having included breakpoints within the base ac-
cording to the Chow test performed. 

In contrast to previous research, our model improves accuracy rates 
by involving threshold adjustment in both upstream and downstream 
samples. In addition, we apply the neural network methodology in 
several techniques and compare them, with ARMA-GARCH-QRNN being 
the technique that achieves the best accuracy results. 

Our study can serve as a resource for practitioners, as a point of 
reference for evaluating high-frequency trading arguments, forecasting 
market crashes, and estimating liquidity for researchers. Our results are 
also of great importance for market participants the same as for in-
vestment portfolio managers as expected market disturbances could 
provide new commercial signs supporting the decision-making proced-
ure for financial investments. Furthermore, the results reported in this 
work could provide a better understanding of defence stock market and 
FOREX markets dynamics and volatility in various geopolitical events. 
Moreover, they may have relevance for both commodity analysts and 
macro-financial economists and forecasters. 

In summary, this research provides an essential contribution to the 
field of finance as our work could be a useful contribution to the 
financial industry as well as to academic research to further explore the 
microstructure of the defence stock market and price formation through 
a bottom-up perspective. 

This study acknowledges limitations for potential future research. 
Firstly, Quantum Neural Networks’ effectiveness may rely on ample 
quantum resources for extensive data. As quantum hardware advances, 
investigating their performance on larger financial datasets becomes 
relevant. Secondly, Deep Neural Networks and quantum circuits de-
mand significant computation and training time. Balancing model 
complexity and training duration warrants exploration. Economically, 
events like policy changes, trade agreements, and macro shifts impact 
financial markets. Future research could include more macro factors to 
anticipate such occurrences. Financial markets can experience abrupt 
shifts, challenging ARMA-GARCH models. Quantum Neural Networks 
might require adaptations for effective handling. 

In addition, further research should address the application of these 
techniques and trading strategies in other financial markets that have 
been affected by unique and large shocks, such as the effect of this same 
period studied where there have been armed conflicts or COVID-19 in 
the different commodity markets. With this, it will be possible to analyze 
the possible generalization of these methods for any financial market, as 
well as a greater specification of the trading strategies according to the 
nature of the volatility of the specific financial market studied. 
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Table 10 
Average performance comparison based on a long-period sample for exchange 
rate.   

British Pound Chinese Renminbi  
Average (%) 

ARMA-GARCH-NN 68.67 64.31 
ARMA-GARCH-DCRNN 83.19 77.95 
ARMA-GARCH-DNDT 85.66 81.41 
ARMA-GARCH-QNN 90.34 84.92 
ARMA-GARCH-QRNN 93.81 87.74  
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