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Abstract

Xenopus tadpoles offer a unique platform to investigate the function of the nervous system. They provide multiple experimental advantages,
such as accessibility to numerous imaging approaches, electrophysiological techniques and behavioral assays. The Xenopus tadpole olfactory
system is particularly well suited to investigate the function of synapses established during normal development or reformed after injury. Here,
we describe methodologies to evaluate the processing of olfactory information in living Xenopus larvae. We outline a combination of in vivo
measurements of presynaptic calcium responses in glomeruli of the olfactory bulb with olfactory-guided behavior assays. Methods can be
combined with the transection of olfactory nerves to study the rewiring of synaptic connectivity. Experiments are presented using both wild-
type and genetically modified animals expressing GFP reporters in central nervous system cells. Application of the approaches described to
genetically modified tadpoles can be useful for unraveling the molecular bases that define vertebrate behavior.

Video Link

The video component of this article can be found at https://www.jove.com/video/58028/

Introduction

Xenopus tadpoles constitute an excellent animal model to study the normal function of the nervous system. Transparency, a fully sequenced
genome1,2, and accessibility to surgical, electrophysiological and imaging techniques are unique properties of Xenopus larvae that allow
investigating neuronal functions in vivo3. Some of the multiple experimental possibilities of this animal model are illustrated by the thorough
studies performed on tadpole sensory and motor systems4,5,6. A particularly well-suited neuronal circuit to study many aspects of information
processing at the level of synapses is the Xenopus tadpole olfactory system7. Firstly, its synaptic connectivity is well defined: olfactory receptor
neurons (ORNs) project to the olfactory bulb and establish synaptic contacts with dendrites of mitral/tufted cells within glomeruli to generate odor
maps. Secondly, its ORNs are continuously generated by neurogenesis throughout life to maintain the functionality of olfactory pathways8. And
thirdly, because the olfactory system shows a great regenerative capability, Xenopus tadpoles are able to entirely reform their olfactory bulb after
ablation9.

In this paper, we describe approaches that combine imaging of olfactory glomeruli in living tadpoles with behavioral experiments to study the
functionality of olfactory pathways. The methods detailed here were used to study the functional recovery of glomerular connectivity in the
olfactory bulb after olfactory nerve transection10. Data obtained in Xenopus tadpoles are representative of vertebrates since olfactory processing
is evolutionary conserved.

The methods described are exemplified using X. tropicalis but they can easily be implemented in X. laevis. Despite the larger size of adult X.
laevis, both species are remarkably similar during tadpole stages. The main differences reside at the genomic level. X. laevis displays poor
genetic tractability, mostly determined by its allotetraploid genome and long generation time (approximately 1 year). In contrast, X. tropicalis is
more amenable to genetic modifications due to its shorter generation time (5–8 months) and diploid genome. The representative experiments are
illustrated for wild-type animals and three different transgenic lines: Hb9:GFP (X. tropicalis), NBT:GFP (X. tropicalis) and tubb2:GFP (X. laevis).

The methodologies outlined in the current work should be considered alongside the genetic progresses in the Xenopus field. The simplicity
and easy implementation of the techniques presented makes them particularly useful for evaluating already described mutants11, as well as
Xenopus lines generated by CRISPR-Cas9 technology12. We also describe a surgical procedure used to transect olfactory nerves that can
be implemented in any laboratory having access to Xenopus tadpoles. The approaches used for evaluating presynaptic calcium responses
and olfactory-guided behavior require specific equipment, albeit available at a moderate cost. Methodologies are presented in a simple form
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to promote their use in research groups and could set the bases of more complex assays either by implementing improvements or by the
association to other techniques, i.e., histological or genetic approaches.

Protocol

All procedures were approved by the animal research ethics committee at University of Barcelona.

NOTE: X. tropicalis and X. laevis tadpoles are reared according to standard methods13,14. Tadpole water is prepared by adding commercial
salts (see Table of Materials) to water obtained by reverse osmosis. Conductivity is adjusted to #700 µS and #1,400 µS for X. tropicalis and X.
laevis tadpoles, respectively. Larvae can be obtained either by natural mating or in vitro fertilization14. Embryos are dejellied with 2% L-cysteine
prepared in 0.1x Marc's Modified Ringers (MMR). 1x MMR contains (in mM): 100 NaCl, 2 KCl, 1 MgSO4, 2 CaCl2, 5 HEPES, 0.1 EDTA, pH 7.8.
Larvae are transferred after 2–3 days (stage 25) to 2 L tanks with tadpole water. When tadpoles reach stage 40 of the Nieuwkoop-Faber (NF)
criteria15, they are placed in 5 L tanks and maintained at a density of 10 animals/L. Temperature is kept constant at 23–25 °C and 18–20 °C for
X. tropicalis and X. laevis tadpoles, respectively. Animals found at stages 48–52 of the NF criteria are used for experiments.

1. Transection of Olfactory Nerves

1. Prepare an anesthetizing solution of 0.02% MS-222 in 50 mL of tadpole water at room temperature.
2. Prepare a small tank (1–2 L) with tadpole water to allow recovery of animals after surgery.
3. Cut rectangular pieces of cellulose qualitative filter paper (4 cm x 3 cm, see Table of Materials).
4. Wet 2 pieces of cellulose qualitative filter paper in 0.02% MS-222 solution and place them under the dissecting scope.
5. Pick a tadpole from the tank and immerse it into the anesthetizing solution. The animal stops swimming within 2–4 min and does not react to

mechanical stimuli applied at the tail level using tweezers.
6. Place the anesthetized tadpole on the rectangular pieces of filter paper. Position the animal with its dorsal side facing upward, so

brain structures can be visualized.
1. Using vannas scissors (see Table of Materials) cut one or both olfactory nerves (depending on the type of assay to be carried out).

Transect a single nerve for experiments that require an internal control of nerve injury.
2. For behavioral experiments, transect both nerves in order to suppress all odorant information arriving to the olfactory bulb. The

efficiency of sectioning of olfactory nerves can be easily observed under the dissecting scope; however, pigmentation or animal
position can be limiting factors.
 

NOTE: (Optional) The best way to certify the validity of the procedure is using transgenic tadpoles that express fluorescent reporters
on their nervous system (see representative results). To this aim, it is necessary to use a dissection scope equipped with fluorescence
(Figure 1). If only wild-type animals are available, tracing with CM-diI can be employed. Follow protocol 2 (see below) to inject a 0.5
mg/mL solution of CM-diI prepared in 0.3 M sucrose in the nasal capsule. See 16 for details on preparation and storage of CM-diI.
Leakage of dye out of the principal cavity must be minimize. To this aim, it is necessary to modify the pressure of injection and the
opening of micropipettes. Fluorescence at the level of the glomerular layer of the olfactory bulb becomes obvious 24 h after application
of CM-diI. The present work uses labeling with CM-diI just to certify the transection procedure; however, this method can also be used
to obtain morphological information of olfactory glomeruli using conventional histological procedures.

7. Transfer animals to the recovery tank. Tadpoles should recover normal swimming within ~10 min. Perform a careful inspection for the
presence of hemorrhages, which are expected in ~1% of animals subjected to surgery.

8. Euthanize injured animals in a 0.2% MS-222 solution.

2. Labeling of Olfactory Receptor Neurons with Fluorescent Calcium Indicators

1. Prepare a solution containing 12% Calcium Green-1-dextran (see Table of Materials), 0.1% Triton X-100, and 1 mM NaCl17. Store the
solution at -20 °C or at -80 °C if it is not to be used within a month.

2. Prepare glass pipettes with tip openings ~1–2 µm (similar diameter to microelectrodes used for patch-clamp experiments) for microinjection
using a micropipette puller (see Table of Materials).

3. Calibrate the volume of microinjections. Using distilled water, adjust pressure and injection time in order to obtain injection volumes of 0.15–
0.3 µL.
 

NOTE: A simple procedure consists in counting the number of pulses required to empty a pipette filled with 1 µL of water. Typical parameters
are a pressure of 30 psi and 50 ms injection time.

4. Place a pipette in the microinjector and load it with ~2 µL of calcium green-1 dextran solution.
5. Prepare a tadpole following steps 1.1 to 1.6.
6. Move the tip of the pipette into the principal cavity of the nasal capsule.

 

NOTE: See Figure 2A describing the location of olfactory pathways in a Xenopus tadpole.
7. Using settings obtained in 2.3, deliver a couple of puffs. Restrict dye presence to the nasal capsule.
8. Let the tadpole rest for 2–3 min. Using a Pasteur pipette, pour drops of 0.02% MS-222 solution on the more caudal parts of the animal to

avoiding drying.
9. Transfer the animal to the recovery tank.

 

NOTE: It should recover normal swimming within ~10 min. Manipulation of animals might cause injuries.
10. Euthanize tadpoles that do not recover normal swimming behavior 15 min after injection using a 0.2% MS-222 solution.
11. Observe fluorescence at the level of the glomerular layer of the olfactory bulb on the day after injection.
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3. Preparation of Tadpoles for Live Imaging of Presynaptic Responses

1. 24–48 h before conducting the experiment, coat 4–6 Petri dishes of 35 mm diameter with silicone elastomer (e.g., Sylgard). Once the
elastomer has polymerized, fabricate a rectangular well to fit the tadpole.
 

NOTE: Typical dimensions for X. tropicalis tadpoles found at NF stages 48–52 are 10 mm x 4 mm.
2. Prepare 100 mL of a 160 µM to 1 mM amino acid solution acting as an odorant stimulus for tadpoles. The solution can contain a mixture of

several amino acids: methionine, leucine, histidine, arginine and lysine. Dilute amino acids in Xenopus Ringer's solution, composed of (in
mM): 100 NaCl, 2 KCl, 1 CaCl2, 2 MgCl2, 10 glucose, 10 HEPES, 240 mOsm/kg, pH 7.8. Ensure that pH is maintained at 7.8.

3. Fill an elevated reservoir with 20 mL of the amino acid solution. Connect the reservoir with polyethylene tubing to a 28 G capillary tube (see
Table of Materials) placed above the nasal capsule.
 

NOTE: The capillary tube is mounted on a micromanipulator (see Table of Materials). Air bubbles must be absent from the perfusion system.
4. Achieve temporal precision in applying the amino acid solution using the transistor-transistor logic (TTL) control of solenoid pinch valves

(see Table of Materials). A stimulator is used to generate TTL pulses (see Table of Materials). Check the temporal precision to deliver the
odorant solution by changing the duration of TTL pulses, i.e., 0.1 to 1 s.

5. Fill another elevated reservoir with 100 mL of Xenopus Ringer's solution.
6. Anesthetize a tadpole and place it under the dissecting scope (steps 1.1 to 1.6).
7. Prepare a tadpole for imaging. If albino tadpoles are available proceed to step 3.9, otherwise remove the skin above the olfactory bulb

because it contains melanocytes that impair imaging (step 3.8).
 

NOTE: There are two ways to perform the experiment depending on the pigmentation of the animal. It is preferable to use albino animals.
Albino strains are available for X. laevis and albino X. tropicalis lines have recently been generated by CRISPR-Cas9 12 or TALENs18.

8. Using vannas scissors, make a lateral incision on the tadpole skin on the edge of the central nervous system. Make the cut should be made
at the level of the olfactory bulb and never reaching the position of tectum, which can be easily identified by the location of the optic nerve.

9. Pinch the cut skin using tweezers and pull it over the nervous system. Verify successful removal by the absence of melanocytes above the
olfactory bulb. Keep the animal moist by pouring drops of 0.02% MS-222 solution using a Pasteur pipette.

10. Place the tadpole into the well of the coated dish (see Table of Materials). Put a glass coverslip coated with high vacuum grease above the
animal. Position the coverslip to cover the top of the tectum to the end of the tail.

11. Ensure that the olfactory bulb and placodes remain exposed to the extracellular medium. Keep the tadpole immobile during imaging. Fill the
Petri dish with Xenopus Ringer's solutioncontaining 100 µM tubocurarine (see Table of Materials) to prevent muscle contractions.
 

NOTE: Tubocurarine is stored in aliquots at -80 °C no longer than 6 months.
12. Place the dish holding the tadpole under an upright microscope. Connect the reservoir containing Xenopus Ringer's solution with the dish

using polyethylene tubing (see Table of Materials) for continuous perfusion of Xenopus Ringer's solution to keep the animal alive for >1 h.
 

NOTE: Mini magnetic clamps (see Table of Materials) are very useful to stably connect tubing to the dish. Perfusion and suction tubes must
be located in ~180° angle.

13. Start perfusing Xenopus Ringer's solution. Maintain the level of the solution in the dish constant throughout the experiment. Continuously
evaluate tadpole viability by observing blood circulation through the vessels.

4. Live Imaging of Presynaptic Ca2+  Changes in Olfactory Glomeruli

NOTE: The imaging procedure is described for wide-field microscopy but could be easily adapted to a confocal microscope by adjusting the
acquisition settings. Imaging should be carried out in an upright microscope mounted on an anti-vibration table.

1. Visualize the tadpole with a low magnification objective, for example 5x.
2. Move the micromanipulator axes to place the capillary delivering the odorant solution on the top of one nasal capsule forming a 90° angle

with the olfactory nerve. The flow of odorant solution above the olfactory bulb should be avoided because it might cause turbulences that
distort imaging.

3. Find the olfactory bulb located ipsilaterally to the nasal capsule (subject to stimulation) using a high magnification, long working distance,
water immersion objective: 60Xx, 0.9 N.A.

4. Check the fluorescence emission by eye. Glomerular structures should be obvious (Figure 2B).
5. Perform live acquisition with a camera suitable for calcium imaging. Define a box containing the entire olfactory bulb, typically of 256 x 256 or

512 x 512 pixels. Set the acquisition frame rate acquisition to 20–40 Hz. Adjust the gain, so that the values of basal fluorescence are ~20% of
saturation. Acquire a 5 s video.

6. Visualize the movie. Check image focus, the absence of movement artifacts and regions containing saturated pixels. Typical fluorescence
values of glomerular regions should be of 5,000–20,000 a.u. if using a 16-bit camera. Proceed to the next step if imaging conditions are
optimal. Repeat step 4.6 if needed to improve the image quality or adjust gain settings.

7. Start a time-lapse acquisition to record responses evoked by olfactory stimuli.
 

NOTE: Precise application of the odorant solution is controlled by TTL stimuli. A typical experiment contains a baseline period of 4 s, followed
by stimulation times ranging from 0.1 to 0.5 s and a recovery period of 6–10 s.

8. Perform repetitive stimulations of odorants for time intervals >2 min. Set the flow rate to 1–1.5 mL·min-1. Since the global perfusion is on
during all experiments, locally applied amino acids are washed out.
 

NOTE: The volume of solution in the dish is ~3 mL.
9. Image analysis

1. Detection of responses
1. Export movies to ImageJ.

 

NOTE: The goal is detecting the presence of glomerular regions responding to stimuli.
2. Transform the raw sequence of fluorescence images to a ΔF/F0 movie. Measure relative changes in basal fluorescence

according to the following relationship: (F-F0)/F0, where F0 indicates baseline fluorescence levels.
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3. Draw regions of interest (ROI) around areas showing putative fluorescence increases during stimulation and record their
position in the ROI manager (Figure 2E). Draw an ROI to detect background fluorescence levels in an area devoid of glomerular
structures.

2. Quantification of responses.
1. Place the defined ROIs in the raw sequence of fluorescence images. Obtain the mean gray value of selected ROIs for each

frame. Transfer the sequence of values obtained to an analysis program (e.g., Igor Pro).
2. Subtract background fluorescence, and then calculate ΔF/F0 changes for each ROI (Figure 2F). Plot the increases in ΔF/F0 for

each one of the ROIs selected. Calculate the standard deviation of basal ΔF/F0 (before stimulation).
 

NOTE: A positive response is considered if increases in ΔF/F0 obtained during stimulation are larger than 2 standard deviations
of basal values.

5. Olfactory-guided Behavior Assay

NOTE: A schematic diagram of the setup for performing the assay is shown in Figure 3.

1. Make small holes to fit 1.57 mm O.D. x 1.14 mm I.D. tubing in the upper part of each well of a 6-well dish. Insert the tubing and seal using an
epoxy adhesive (see Table of Materials).
 

NOTE: The modified dish can be re-used many times after thorough wash with distilled water.
2. Prepare 50 mL of an amino acid solution containing methionine, leucine, histidine, arginine and lysine (see step 3.2 for details). The

concentrations can range from 160 µM to 1 mM. Place 20 mL of the solution in an elevated reservoir.
3. Do not feed tadpoles for at least 12 h before the assay. Take 6 tadpoles from their housing tank and place them in 2 L of clean tadpole water

to minimize the exposure to odorants.
4. Place the modified 6 wells dish on a white LED-transilluminator (Figure 3).
5. Couple the perfusion inlets to the reservoir containing the amino acid solution using a manifold (see Table of Materials). Check the perfusion

system and eliminate air bubbles. Fill the 6 wells simultaneously. Adjust the height of the reservoir to allow the delivery of ≥5 mL of odorant
solution within ~30 s.
 

NOTE: Wash each well 4 times with double distilled water after exposure to the odorant solution.
6. Fill each well with 10 mL of tadpole water. Place 1 tadpole/well. Leave to rest for >3 min.
7. Set up image acquisition. Use a conventional CCD camera that can acquire images at ≥5 Hz. Connect the camera to a computer. Here, use

a Zeiss MRC5 camera controlled by Zen software but other equivalent configurations can be used. If it is necessary to increase frame rate,
apply pixel binning. Images should show the whole 6-well dish.

8. Start image acquisition such that movies contain basal (30 s), stimulus (25–35 s) and recovery (30–60 s) periods.
9. Return animals from the 6 wells dish to tanks after imaging.
10. Analyze movies in ImageJ using plugins such as wrMTrck19,20 that provide multiple parameters associated to motility.
11. To prepare images for analysis, first select a well by drawing a rectangular ROI of 35 mm x 35 mm (Figure 4A). Obtain a background image

by calculating the maximum projection of the whole sequence. It should display an image of the well without the tadpole.
12. Subtract the maximum projection from the raw movie. Perform thresholding on the generated 32-bit movie and apply the wrMTrck plugin.

Adjust WrMTrck parameters to reliably track animal movements. Transfer the obtained X,Y coordinates into an analysis program.
13. Using X-Y coordinates, calculate the Euclidean distance to the odorant source (perfusion inlet in the well), by applying the following equation:

 

 

where os indicates the position of the odor source and tad indicates the tadpole position at a given time. See Figure 4A for details.

Representative Results

In this paper, we present a combination of two complementary approaches to perform in vivo study of the functionality of the Xenopus tadpole
olfactory system: i) a method for imaging presynaptic Ca2+ changes in the glomeruli of living tadpoles using a fluorescent calcium indicator, and
ii) an odor guided behavioral assay that can be used to investigate the response to specific waterborne odorants. Since these approaches have
been employed to evaluate the recovery of olfactory processing after injury10, a simple method for transecting olfactory nerves is also described.

Transection of olfactory pathways in Xenopus tadpoles
 

There are two ways to certify the validity of the procedure. Both rely on the visualization of olfactory nerves using fluorescent reporters. One
method is based on transgenic tadpoles that express fluorescent proteins on their nervous system. Two recommended lines that express GFP
under a neuronal β-tubulin promoter are X. laevis tubb2b-GFP and X. tropicalis NBT-GFP (Figure 1, see Table of Materials). If only wild-
type animals are available, CM-diI can be used (see step 1.8). Figure 1 shows images of tubb2-GFP X. laevis tadpoles. Images are from four
different animals where a single olfactory nerve was transected. The cut should be obvious under the dissection scope. The advantage of
using transgenic lines is that reformation of the olfactory nerve can be followed over a period of time. When doing sequential observations, it is
recommended to minimize exposure to fluorescent light to prevent photodamage. Sectioning of a single olfactory nerve is useful when an internal
control is required, as for example, to compare normally developed vs rewired glomerular units. Sectioning of both olfactory nerves should be
applied when the aim is completely suppressing the transmission of information.

https://www.jove.com
https://www.jove.com
https://www.jove.com


Journal of Visualized Experiments www.jove.com

Copyright © 2018  Journal of Visualized Experiments December 2018 |  142  | e58028 | Page 5 of 15

Live imaging of presynaptic responses to olfactory stimuli
 

The correct labeling of ORNs with calcium green-1 dextran can be observed at the level of the olfactory bulb (Figure 2A) using widefield
microscopy. Glomeruli are obvious (Figure 2B) and should appear distributed in different layers by moving the focus plane. The morphology of
glomerular structures can be better resolved if a confocal microscope is used instead (Figure 2C). The number of labeled glomeruli depends
on dye uptake at the level of the olfactory epithelium. Therefore, this procedure does not allow the visualization of all glomerular units. Animals
showing a more intense fluorescence staining of the glomerular region should be selected before performing imaging experiments, since they
contain more ORNs labeled. This maneuver is highly recommended in order to increase experimental throughput and should be performed
under a dissecting scope equipped with a fluorescence lamp. Reject animals that do not show labeled glomerular units or that show fluorescence
restricted to particular areas of the glomerular layer. Presynaptic Ca2+ responses can be observed as soon as 1 day after dye loading. For
carrying out imaging experiments it is desirable to use objectives of high numerical aperture, typically ≥0.9.

Increases of presynaptic calcium levels can be evoked exposing dendritic knobs of ORNs to amino acids. It is important to position the capillary
delivering the odorant solution above the nasal capsule. Care should be taken to avoid contact because it could clog the tip of the capillary and/
or cause mechanical stimulation of ORNs. Transient increases in presynaptic calcium levels can be observed for stimuli ≥0.1 s (Figure 2D) and
are indicative of a correct olfactory transduction. It is also important to visualize basal calcium levels with low camera gain. Presynaptic terminals
of ORNs display high fluorescent increases and it is essential to avoid signal saturation. High temporal resolution can be achieved with widefield
microscopy. For example, using an electron-multiplied CCD camera, it is possible to achieve frame rates of 50 Hz or higher. Use of confocal
microscopy reduces temporal resolution but allows a better definition of glomerular structures.

The high affinity of calcium green for binding calcium (190 nM) is particularly useful to detect small responses. Transient intracellular calcium
increases detected in the glomerular layer are variable. Some glomerular regions show changes in ΔF/F0 ≥0.2, while neighboring processes
might not even respond (Figure 2D). The following factors contribute to the variability of the response of glomerular units: i) the overall number
of labeled glomeruli, ii) the intracellular concentration of calcium green, and iii) the selectivity of ORNs to detect amino acids. Since a too
low number of labeled glomeruli might preclude observing responses, it is absolutely necessary to carry out these experiments with animals
containing as many labeled ORNs as possible.

Olfactory-guided behavior
 

Data analysis
 

Olfactory-guided behavior is studied using a custom-built system. Figure 3 shows a schematic drawing of equipment used to carry out the
assay. The test is based in the ability of tadpoles to detect the presence of amino acids, which act as odorants. A solution combining five different
amino acids (methionine, leucine, histidine, arginine and lysine) is used for stimulation. The solution is locally delivered during 30 s to a 35
mm well containing a free-swimming tadpole. The immediate response of tadpoles to the incoming solution is an increase in motility. Random
movements occurring during the initial #5–10 s of solution application are followed by a direct swim towards the source of odorants. Tadpoles
remain for several seconds in the vicinity of the nozzle during delivery of amino acids and gradually recover motility in random directions (see
Supplementary Videos 1, 2).

The experimental conditions described allow the normal swim of X. tropicalis tadpoles stages 48-52; however, it must be taken into account that
the motility of larger animals might be restricted in 35 mm wells. Tadpole movements are recorded with a CCD camera. Attraction for the odorant
solution can be detected as a reduction of the Euclidean distance separating perfusion inlet from tadpole position (Figure 4). Tracking of tadpole
head positions within an area of 35 mm x 35 mm (or the equivalent size in pixels) allows obtaining a quantitative analysis of olfactory-guided
behavior (Figure 4A). Individual plots of tadpole movements are constructed using X-Y coordinates obtained by image analysis (Figure 4B). The
extracted motility plots must faithfully reproduce video images.

There are two possible methods of interpreting olfactory-guided behavior experiments. The first approach is inspired on a previous study using
zebrafishes21. Measurement of the time spent in the vicinity of the nozzle delivering odorants evidences the presence of a positive tropism. A
region of interest of 8.75 mm radius (corresponding to ¼ of the well diameter) centered on the solution inlet it is used to classify the proximity of
the animals to the odorant source (Figure 4A, 4C). Binning the time spent by tadpoles in the vicinity of the nozzle during defined periods, i.e.,
15 s intervals, allows identifying the ability to detect amino acid solutions (Figure 4D). The overall behavior of a population of tadpoles can be
obtained by plotting the distribution of individual data (Figure 5A). A positive tropism can be detected when the solution of methionine, leucine,
histidine, arginine and lysine is prepared either at 1 mM or 160 μM (Figure 5A and 5B). Animals do not respond to water application (Figure
5C), thus discarding the participation of mechanosensitive mechanisms. Differences among time intervals defined in each experimental group
can be established using nonparametric repeated measures ANOVA with Dunn's multiple comparisons test. The disadvantage of binning data in
time intervals of 15 s is a reduced temporal resolution.

A way to increase temporal information of the behavioral response is by making average plots of Euclidean distances from the odor source.
Although tadpole movements show an intrinsic variability, the average motility of a population of animals (typically ≥40) shows the olfactory-
guided behavior. To carry out this analysis it is necessary to group animal positions before the onset of stimulation. Since tadpoles are found
in different locations when the odorant solution enters into the well it is required to set the Euclidean distance to 0 just before stimulation
(Figure 6A, see also the inclusion criteria in Figure 7). Negative and positive values therefore indicate an attraction or a repulsion from the
odor source, respectively. An attraction for odors is well described by a linear fit with regression coefficients ≥0.9. If water is delivered, the net
changes of Euclidean distance are distributed around 0 and it is not possible to fit a line during odorant stimulation, thus indicating the absence
of an olfactory-guided behavior (Figure 6B). Comparison of average plots of Euclidean distances for amino acid solutions prepared at 1 mM
and 160 µM suggest different delays in the olfactory-guided response (compare Figure 6A and C). The time interval required to initiate the
movement towards the source of odorants is shorter when amino acids are applied at a higher concentration. A lack of olfactory-guided behavior
is observed in tadpoles with both olfactory nerves transected (Figure 6D).
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A limitation of the described olfactory-guided behavioral assay is the establishment of complex fluid plumes. This can be seen if the amino
acid solution is substituted by a dye, such as Fast Green, when setting up the system. The use of colored solutions verifies the formation of
plumes and shows that waterborne odorants reach any region of the well within 5 s. Turbulences caused by the delivery of the solution are likely
detected by the lateral line of tadpoles and probably contribute to the variability observed in animal motility but do not interfere with olfactory
guided behavior. Control experiments carried out by using water instead of amino acid solutions reveal that tadpoles are capable to discriminate
olfactory from mechanical stimuli. The estimation of time spent in a region of interest (Figure 5) and the average plot of Euclidean distances
(Figure 6) are two complementary methods to describe the olfactory-guided response of tadpoles.

Inclusion criteria
 

Inclusion criteria must also be taken into account for data analysis. Some tadpoles show a resonant movement, which is illustrated by the fitting
of the plot of Euclidean distances to a sinusoidal function (Figure 7A). Tadpoles displaying this behavior must be discarded from all analysis.

The exclusion of animals that at the onset of the application of odorant solutions are at a maximum (>30 mm Figure 7B) or a minimum Euclidean
distance (<5mm, Figure 7C) from the nozzle allows decreasing the variability of the average plots. The example illustrated in Figure 7B shows
a positive tropism for the amino acid solution. The tadpole is located at a maximum distance of the solution inlet at the onset of stimulation.
Therefore, this relative position can only reveal an attraction for the odor source. Figure 7C shows the opposite situation. Here, a tadpole is
located in the vicinity of the nozzle delivering the amino acid solution. Quantification of the time spent near the odor source shows a response
(method used in Figure 5); however, it cannot show a net movement towards the inlet.

In summary, the proposed assay of olfactory-guided behavior defines a binary test. This method can be used to detect the ability of an
experimental group of tadpoles to respond to odorants. Further improvements are required if the aim is establishing differences among complex
olfactory-guided responses, as for example, determining preferences for given odors.

 

Figure 1: Transection of olfactory nerves. Representative images of tubb2-GFP X. laevis tadpoles obtained after transection of a single
olfactory nerve (arrows). Nerves of tubb2-GFP tadpoles display strong fluorescence. Nerve transection is obvious immediately after surgery
(D0). Regrowth of the olfactory nerve is evident 4 days after cut (D4). Eight days after surgery (D8) there is little difference between control and
reformed nerves. Tadpoles were anesthetized in 0.02% MS-222 to collect images. Olfactory bulb (O.B.), olfactory nerve (O.N.), nasal capsule
(N.C.), tectum (Tec), optic nerve (Op.N.). Arrows indicate the location of the transected nerve. Please click here to view a larger version of this
figure.
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Figure 2: Labeling of olfactory receptor neurons with calcium green dextran and visualization of presynaptic calcium influx upon
stimulation with amino acids. (A) Transmitted light image of a tadpole showing the location of the olfactory epithelium, olfactory nerves and the
glomerular layer of the olfactory bulb. (B) Image of an olfactory bulb visualized by widefield (wf) microscopy. Neurons were labeled by application
of calcium green-1 dextran at the nasal capsule. The fluorescence observed corresponds to presynaptic terminals from olfactory receptor
neurons forming glomeruli. O.N: olfactory nerve; O.B: olfactory bulb. (C) Confocal section located dorsally from the entry of the olfactory nerve
to the bulb. The presynaptic component of olfactory glomeruli was labeled using calcium green-1 dextran, as in B). (D) Presynaptic terminals
transiently increase their calcium levels upon exposure of the olfactory epithelium to a solution containing five different amino acids. Relative
changes in calcium fluorescence obtained before, during and after 1 s stimulation. (E) Distribution of 10 different regions of interest (ROIs) used
to quantify ΔF/F0 changes. ROI11 is outside of the glomerular layer and is used to define background levels of fluorescence. (F) Individual ΔF/F0
responses for ROIs defined in E). Please click here to view a larger version of this figure.
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Figure 3: Olfactory-guided behavior assay. (A) Schematic diagram showing the equipment used in the test. (B) Example of motility tracks
recorded over 90 s. Each circle represents a well containing a single animal. Please click here to view a larger version of this figure.
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Figure 4: Tracking of olfactory-guided behavior. (A) Example showing a well used for the behavioral assay. Blue dotted lines indicate the
location of X,Y coordinates (in mm) used to track tadpole movements (see also Supplementary Video 1). The green ellipse represents the
position of the solution inlet. The dotted black line indicates the proximal area to the tube delivering the amino acid solution (see text for details).
(B) Motility of the tadpole shown in A) during the behavioral assay. Color-coded traces indicate the position of the animal before (gray) and
after olfactory stimulation (violet). Movements during application of the odorant solution are illustrated in a temporal color gradient (30 s, red to
blue). (C) Using X,Y tadpole positions it is possible to calculate changes in the Euclidean distance from the tadpole head to the perfusion inlet.
Distances shorter than 8.75 mm correspond to the proximal area of the nozzle. (D) Plot of the time spent by tadpoles in the region defined by the
dotted line in A). Each dot indicates a 15 s period. The animal is attracted by the odorant solution. Please click here to view a larger version of
this figure.
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Figure 5: Tadpoles are attracted by amino acids. (A) Time spent by tadpoles in the vicinity of the odor source. Each bin comprises a 15
s period. Box plots represents the median (black horizontal line), 25 to 75% quartiles (boxes), and ranges (whiskers) of data. Delivery of a 1
mM amino acid solution attracted tadpoles to the odor source. (B) Tadpoles were attracted by the odorant solution when the concentration of
amino acids was reduced to 160 μM. (C) Delivery of water did not modify animal behavior. Repeated measures ANOVA with Dunn's multiple
comparisons test, p < 0.05. Please click here to view a larger version of this figure.
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Figure 6: Temporal response of tadpoles to odorants. (A) Plot of the average Euclidean distance to the odor source as a function of time.
The Euclidean distance was set to 0 before stimulation in each individual trace. Negative and positive values indicate a decrease and an
increase in distance to the odor source, respectively. Attraction to the odor source can be described by a linear fit (r2=0.98). (B) Delivery of water
does not modify the distance to the odor source. (C) Tadpoles respond to the application of a 160 μM solution of amino acids as revealed by a
linear fit (r2=0.96). (D) Tadpoles with both olfactory nerves transected do not respond to amino acids. Please click here to view a larger version of
this figure.
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Figure 7: Inclusion criteria for the olfactory-guided behavior assay. (A) Some tadpoles show a resonant movement. This behavior is
revealed by successful fit of a sinusoidal function to the plot of the Euclidean distance to the odor source. Tadpoles displaying this activity should
be excluded from the test. (B, C) A way to reduce variability in the average temporal response to odorants (Figure 6) is by excluding animals
located at a maximum (B) or a minimum (C) Euclidean distance at the onset of stimulation. Red dotted lines indicate the threshold value (30 mm
and 5 mm). The Euclidean distance before the onset of stimulation (arrow, left plots) is set to "0" to report attractive or repulsive behaviors as
negative or positive values (right plots), respectively. Please click here to view a larger version of this figure.

 

Supplementary Video 1: Olfactory-guided behavior triggered by delivery of an amino acid solution. The movie shows a tadpole freely
swimming on a 35 mm well. The blue ellipse indicates the position of the nozzle delivering the odorant solution. The onset and end of stimulation
are indicated by green and red dots, respectively. Figure 4 shows the analysis of the behavior observed. Please click here to view this video.
(Right-click to download.)
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Supplementary Video 2: Tadpole motility during delivery of water. The movie shows a tadpole freely swimming on a 35 mm well. The
blue ellipse indicates the position of the nozzle releasing MQ water. The onset and end of water delivery are indicated by green and red dots,
respectively. Please click here to view this video. (Right-click to download.)

Discussion

This paper describes techniques that are useful to investigate the functionality of olfactory pathways in living Xenopus tadpoles. The current
protocol is particularly useful for those laboratories that work, or have access to Xenopus; however, it is also interesting for those researchers
studying the cellular and molecular bases of neuronal regeneration and repair. Results obtained in Xenopus can be combined with data gathered
in other vertebrate models to identify conserved mechanisms. The methods described will benefit from the development of genetically modified
Xenopus18,22,23 and are applicable to experimental models of nervous system diseases in tadpoles24,25.

In order to obtain reproducible in vivo data, it is key to correctly rear Xenopus tadpoles. In particular, X.tropicalis is very sensitive to poor housing
conditions. For example, they do not tolerate temperatures below 20 °C and should be kept in tanks or water systems in the range of 24 to 28
°C. It is also important to not increase animal density above established limits, regularly feed tadpoles and keep an optimal water quality13.
Management of animal colonies following standardized conditions is absolutely required for gaining reproducibility of in vivo experiments.

The described method of calcium imaging is useful to detect a correct olfactory transduction of ORNs in vivo. Loading of ORNs with calcium
green-1 dextran is achieved by transient permeabilization of the plasma membrane using a low concentration of Triton X-100, as previously
reported17. The main advantage of this loading method is simplicity, because it only requires a microinjector. An important drawback is that
Triton X-100 causes the transient elimination of olfactory cilia and microvilli. The olfactory epithelium of zebrafish regenerates within 48 h after
treatment17. Regeneration in Xenopus tadpoles might be even faster since responses to odorants can be observed 1 day after dye loading
(Figure 2D). However, a detailed morphological analysis is required to accurately estimate the regeneration time of the olfactory epithelium after
Triton X-100 treatment.

Labeling ORNs with calcium green-1 dextran is only effective in a population of neurons, allowing the visualization of presynaptic terminals with a
high signal-to-noise ratio (Figure 2B and 2C). The almost complete absence of background is advantageous if compared to loading of the whole
olfactory bulb with AM ester forms of calcium dyes. The number of fluorescent ORNs differs from animal to animal. It is thus necessary to use a
broad olfactory stimulus of several amino acids. We have obtained successful results using a solution of methionine, leucine, histidine, arginine
and lysine. Other combinations of different amino acids could also be effective. An alternative method to load ORNs with calcium indicators is
electroporation26, which is widely used to express genetically encoded fluorescent reporters in tadpole neurons27. Electroporation can be done
using commercial or custom-made equipment and allows visualization of neuronal structures with an excellent signal-to-noise ratio28. Similarly
to the described approach, cell populations labeled are heterogeneous and differ from animal to animal. Transgenesis is desirable if the aim is
investigating a defined population of neurons22. For example, driving the expression of genetically encoded calcium indicators such as GCaMPs
in a restricted group of ORNs, could be very useful to investigate the response of a defined set of presynaptic terminals to odorants.

The described method using calcium-green 1 dextran reports presynaptic terminal function in vivo. The observation of intracellular calcium
increases is indicative of a correct olfactory transduction and release of glutamate at the level of glomeruli. Quantitative analysis of changes
in fluorescence is, however, limited. Stimulation of presynaptic terminals increases intracellular calcium levels to the micromolar range and
saturation of a high affinity calcium indicator such as calcium green must be taken into account. Results illustrated in Figure 2 are obtained using
widefield microscopy. This is the simplest approach and can be implemented in most laboratories. Improvement by using two-photon microscopy
or genetically encoded fluorescent reporters could allow obtaining more quantitative estimates of presynaptic function.

For live imaging of calcium responses, it is critical that there is appropriate positioning of the capillary delivering the odorant solution. It should
be located above the nasal capsule and always avoid direct contact with tissue. Both the correct delivery of the odorant solution and the flow
of the perfusion should be checked before placing the tadpole under the microscope. All tubing used for the perfusion must be inspected for
air bubbles. Flow changes of the amino acid solution have to immediately respond to successive opening and closing of the solenoid valve.
Delays are indicative of the presence of air. It is also desirable to check for correct volume increases or decreases of solution delivered after
changing the opening time, i.e., from 0.1 s to 1 s or vice versa. Use a low light intensity while setting experimental parameters (step 4.6) in order
to minimize photobleaching.

Although the importance of olfaction in the biology of tadpoles is well-established29, there is a lack of tests directly assessing olfactory-guided
behavior in Xenopus larvae. The method described in this paper is a simple test that allows the detection of a response to an odor stimulus in a
large population of animals. The recent description of the odorant sensitivity of Rana catesbeiana tadpoles for the presence of chemicals in water
illustrates the complex mechanisms coupling olfaction to motor behavior30. The assay described in this paper takes into account the intrinsic
variability of olfactory-guided behavior in tadpoles. The use of a 6-well dish instead of single wells increases experimental throughput. Factors
contributing to variability such basal motility, relative position to the perfusion inlet and plumes generated by the odorant solution are overcome

https://www.jove.com
https://www.jove.com
https://www.jove.com
https://www.jove.com/files/ftp_upload/58028/Movie2_Example_water.3gp


Journal of Visualized Experiments www.jove.com

Copyright © 2018  Journal of Visualized Experiments December 2018 |  142  | e58028 | Page 14 of 15

by averaging many tadpoles. Approximately 40 independent measurements are required to describe the control attractive response for amino
acids.

We propose two types of analysis for the olfaction test. The first approach quantifies the time spent near the odor source over a defined period. It
is particularly well suited for statistical analysis. The second approach is based on the average plot of Euclidean distances from the odor source
and is useful to describe the temporal response to odorants. Both types of analysis are complementary and come generated by the same data.
Interpretation is binary and allows distinguishing animals that sense odorants from those that do not10.

How could the methods described be useful to the Xenopus community? Although the methods are essentially illustrated for wild-type animals,
it should be taken into account that genetic possibilities are continuously expanding in the Xenopus field. The combined study of in vivo ORN
responses and the presence of olfactory-guided behavior can also be very useful to investigate the correct processing of olfactory information in
Xenopus mutants created either by forward or reverse genetic screens11. The information provided by calcium imaging and the behavioral assay
can be combined. For example, a mutation selectively affecting granule cells of the olfactory bulb would not modify the presynaptic response of
ORNs but would probably impair olfactory-guided behavior.

Methods associating cellular and behavioral responses in vivo are particularly relevant for the genetic dissection of neuronal circuits. The
interpretation of results can be aided by previous morphological works, which have provided an anatomical map of the glomerular layer in
tadpoles31. Information obtained from olfactory bulb slices of Xenopus tadpoles32 is also very valuable. Calcium imaging of mitral/tufted cells
in olfactory bulb slices has revealed fundamental characteristics of olfactory processing in Xenopus tadpoles, as for example the sensitivity of
ORNs to different amino acids33 or the relevance of response latencies in coding of olfactory information7. However, brain slices show a limited
capacity to reproduce the complex integrative mechanisms associating different neuronal circuits due to the sectioning of numerous neuronal
projections. Also, a characterization of the properties of individual glomerular units is yet elusive with the exception of the γ-glomerulus34. The
question of whether single glomerular units determine specific behaviors in tadpoles will only be answered by combining genetic tools, in vivo
imaging approaches and behavioral assays.
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