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abstract

The use of classical bonus^malus systems entails very high maluses and other problems
which, during recent years, have been criticised by actuaries. To avoid these problems, new
bonus^malus models have been developed. For instance, it is well known that the use of an
exponential loss function reduces the differences between overcharges and undercharges,
solving the problem of high maluses. In order to measure the sensitivity of the exponential
bonus^malus system, and according to robust Bayesian analysis, we first model the structure
function by specifying a subclass of the generalised moments class. We then examine the range of
relativities for each prior. Finally, we illustrate our method with a numerical example based on
real data.
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". Introduction and Motivation

The aim of the actuary is to design a tariff system that will distribute the
exact weight of each risk fairly within the portfolio when policyholders
provide different risks. For instance, in the automobile insurance market, the
first approach to solving this problem, called tariff segmentation, consists in
dividing policyholders into homogeneous classes according to some variables
chosen as influencing factors (a priori factors): model and use of the car, age
and sex of the driver, duration of driving licence, etc. Once the actuary has
classified policyholders, he/she should fix the premium for each type of risk.

However, there are some factors that cannot be measured or introduced
into the rates to calculate premiums according to tariff-segmentation
methods. Consequently, heterogeneity still remains in every class defined
with a priori factors. Some of these unmeasured or unknown characteristics
have a significant effect on the claim amount; for instance, in automobile
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insurance, swiftness of reflexes, knowledge of the Highway Code or behaviour
of the driver.

Given that many claims could be explained by these hidden features, it is
necessary to include them in the tariff system. This is the aim of experience
rating or credibility theory, the idea behind which is that past claims
experience reveals information about hidden features. In automobile
insurance, such methods are mostly called bonus^malus systems (BMS). The
mechanism of experience rating systems (BMS) consists in rewarding
discounts, called bonuses, to policyholders without claims, and penalising,
with surcharges called maluses, those policyholders who have made one or
more claims. This type of system is now in operation in many developed
countries.

However, it is important to take into account the criticisms that these
types of systems have received, and the differences in the way in which they
are applied by actuaries. Although it seems correct to use as many classifying
variables as possible, and then to adapt the inadequacies of the a priori system
by using an appropriate BMS, this methodology presents some problems and
errors in practice. For instance, one of these problems arises from the fact
that a priori premiums vary from one type of risk to another, and the same
bonus^malus factor is applied to all drivers. This point has previously been
addressed, e.g. in Dionne &Vanasse (1992), in Gisler (1996) and in Bermu¤ dez et
al. (2001).

Moreover, most theoretical BMS lead to very high maluses that are not
commercially understood by the insured. Consequently, the BMS used by
companies are often not correct from a technical point of view, even though
they are commercially accepted. Certainly, the premiums obtained with a
commercial BMS are not suitable for evaluating each policyholder. In
Lemaire (1979) and in Morillo & Bermu¤ dez (2003), attempts have been made
to reduce maluses with new theoretical approaches.

In recent years, as a result of this process of discussion and
criticism, many new models which try to solve the problems detected
have appeared in actuarial literature. However, it is difficult to prove
that the changes introduced in such models do not affect their efficiency and
fairness.

The aim of this paper is to illustrate notions and techniques for global,
robust Bayesian analysis that enable the sensitivity of new models to be
evaluated in terms of their usefulness and profitability. The most common
approach to Bayesian robustness in actuarial science is through sensitivity
analysis, wherein we simply interchange the prior with a class of possible
prior distributions. The sensitivity is assessed by calculating the bounds of
the premium when the prior runs in that class. If the range obtained is small
enough, the conclusion is that the model is declared to be robust. Now, the
actuary has a range of premiums, perhaps more competitive, to be charged.
If we have non-robust results, further investigation will be necessary. We
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base our study on the global robust Bayesian analysis under the subclass of
the generalised moments class (Betro' et al., 1994; Moreno et al., 2003).

The study is set out in the following way. First, in Section 2, we describe
the exponential BMS whose robustness we have chosen to discuss. In Section
3, we propose and explain the methodology used in order to estimate and
measure the sensitivity of this model. New results arise from this procedure,
and in Section 4, with a numerical application, we show the results obtained.
Finally, in the last section we present our conclusions.

Æ. Exponential Bonus^Malus Model

As mentioned above, two points have traditionally been discussed
regarding BMS: the maluses are very high; and they are higher still when the
risks have a priori low frequency and the actuary uses the same bonus^
malus rules for all risks. In Morillo & Bermu¤ dez (2003) these two points were
tackled using the following assumptions:
(1) First, types of risk ðKj; j ¼ 1; . . . ;mÞ according to a priori variables are

defined, and then the premiums ðP j; j ¼ 1; . . . ;mÞ that will be charged to
new policyholders classified as belonging to risk type Kj are calculated
according to a priori number of claims distribution chosen.

(2) Second, a bonus^malus model is applied for each j risk type, where Kij is
the claim number of risk i in the period j with a risk parameter yi. Given yi,
the Kij; i ¼ 1; 2; . . . ; t are independent, with Kij j yi � Poisson ðyilijÞ.

(3) In such a bonus^malus model, the prior distribution is given by yi � p0ðyiÞ ¼

IG ð1; bÞ, where IGdenotes the inverseGaussian distribution. The posterior
distribution is therefore a generalised inverse Gaussian distribution, with
updated parameters p0ðy jkÞ ¼GIG kÿ 1

2 ; 1þ2bli*ð Þ
ÿ12; b 1þ2bli*ð Þ

� �
, where

k ¼
Pt

j¼1 kij and li* ¼
Pt

j¼1 lij. This is the well known Poisson^Inverse
Gaussian model, which has been used by Morillo & Bermu¤ dez (2003) and
Tremblay (1992), among others.

(4) However, an exponential loss function (i.e. the exponential principle) is
used in the minimisation problem. Thus, the solution of the problem,
under constraint Ep0 g1ðyÞ½ � ¼ Ep0 ðyÞ, is given by:

Pp0 ðk; tÞ ¼ Ep0ðg1ðyÞÞ þ
1
c

Ej ln E gðyÞ j jð Þ ÿ ln Ep0ðyjkÞ gðyÞ j kð Þ
� �

ð1Þ

which is shown in Morillo & Bermu¤ dez (2003) and Lemaire (1979) when
g1ðyÞ ¼ y and gðyÞ ¼ eÿcy; c > 0, in the bonus^malus setting.

In practical situations, and because of the segmentation of the portfolio,
where N policyholders are divided into m classes with Nm policyholders in a
given period t, (1) can be rewritten as:
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Pp0 ðk; tÞ ¼ Ep0 ðg1ðyÞÞ þ
1

cN

Xm

j¼0

N j ln
Ep0ðyjjÞ gðyÞ j jð Þ

Ep0ðyjkÞ gðyÞ j kð Þ

Xm

j¼0

N j ¼ N:

Then, it is well known that a bonus^malus premium can be obtained as:

BMPp0 ðk; tÞ ¼ 100
Pp0 ðk; tÞ

Pp0ð0; 0Þ

¼ 100þ
100

cNEp0ðg1ðyÞÞ

Xm

j¼0

N j ln
Ep0ðyjjÞ gðyÞ j jð Þ

Ep0ðyjkÞ gðyÞ j kð Þ

¼ 100þ
100

cNEp0 g1ðyÞ½ �

Xm

j¼0

N j ln
Ep0 gðyÞf ðj j yÞ½ �Ep0 f ðk j yÞ½ �

Ep0 f ðj j yÞ½ �Ep0 gðyÞf ðk j yÞ½ �Xm

j¼0

N j ¼ N : ð2Þ

Observe that this expression is a relative premium, therefore it is the
premium that the policyholder has to pay if its initial premium (t ¼ 0) is
BMPp0 ð0; 0Þ ¼ 100.
In other terms, the aim of BMPp0 ðk; tÞ is to adjust the amount of a priori

premium (P j) according to past claim experience, in order to reduce the residual
heterogeneity that remains in the different risk classes of the portfolio.
Therefore, the a posteriori premium for the policyholder is given by:

Ptþ1 ¼ P j � BMPp0ðk; tÞ = 100:

The aim of the present paper is the robustness study of this model where
we move the prior distribution (p0) into a plausible class of distributions.

â. Bayesian Robustness Framework

Robustness of the prior distribution is considered in this section.
Variations of the bonus^malus premium given in (2) are studied when the
prior distribution belongs to a certain class; this topic is known as global
robustness. Bayesian robustness consists in replacing a given prior
distribution by a class G of prior distributions, and in analysing oscillations
of a given posterior magnitude. In our case, this posterior magnitude is the
bonus^malus premium given in (2). Then we focus on computing the extreme
values inf BMPpðk; tÞ and supBMPpðk; tÞ when p moves into a class of
distributions.

The problem of robustness or sensitivity has always been an important
element of a Bayesian framework. However, only in recent decades have
attempts been introduced into actuarial settings. Eichenauer et al. (1988),
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Makov (1995), Young (1998), R|¤ os et al. (1999) and Go¤ mez et al. (2001,
2002) are some examples.

A simple way of incorporating this Bayesian robustness study in a
parametric model for K, f ðk j yÞ; y 2 Y

� 	
, is through a prior distribution pðyÞ

for the parameter y, such that pðyÞ 2 G, G ¼ p : p ¼ p0 þ u
� 	

. Here p0 is the
base specified prior, and u is a signed measure, with uðYÞ ¼ 0. Then we
consider u of the form u ¼ e qÿ p0ð Þ, where q 2 Q and e 2 ½0; 1� reflects the
amount of error in p0, that is the uncertainty in the base elicited prior. This
is the well known class of e^contamination (Sivaganesan & Berger (1989) and
Go¤ mez et al. (2002) among others). Obviously, Q must be compatible with
the base elicited prior p0.
If, in expression (2), we replace p0 by p ¼ p0 þ eðqÿ p0Þ, then moment

conditions in the form:

Eq gðyÞf ðj j yÞ½ � Eq f ðj j yÞ½ � Eq g1ðyÞ½ � ð3Þ

appear. Then the class Q of generalised moment conditions (Betr�o et al.,
1994 and Moreno et al., 2003), which is given by:

QM ¼ q :

Z
Y

HiðyÞqðyÞdy ¼ ai; i ¼ 1; 2; . . . ; n

� �
ð4Þ

will be used.
Now, suppose that we are interested in calculating the range of variation

of the following posterior ratio quantity:

rp ¼
rp
1

rp
2

¼
Epðyj~kÞ g1ðyÞ½ �

Epðyj~kÞ g2ðyÞ½ �

when p 2 G and q 2 QM, pðy j ~kÞ being the posterior distribution of p after
observing the data ~k, and giðyÞ; i ¼ 1; 2, functions such that expectations
under p exist.

From the moment theory (Winkler, 2000), the extrema of rp are attained
for a discrete density that concentrates its mass in nþ 1 points. Then we have
the following result.

Theorem 1
If the system of equations:

aiÿHiðy1Þ
f ð~kjy1Þ

. . . aiÿHiðynþ1Þ

f ð~kjynþ1Þ

Hiðy1Þ . . . Hiðynþ1Þ

1 . . . 1

24 35
p1

�

�

�

pnþ1

266664
377775 ¼

0
ai

1

24 35 i ¼ 1; . . . ; n ð5Þ

has a solution, where yj ¼ y* for some j; j ¼ 1; . . . ; nþ 1, then it is the value
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when the suprema of the function FðyÞ ¼ R1ðyÞ=R2ðyÞ;RjðyÞ ¼ ð1ÿ eÞ�
pð~k j p0Þr

p0
j

Pn

i¼1HiðyÞ þ ef ð~k j yÞgjðyÞ
Pn

i¼1 ai; j ¼ 1; 2, is attained, then:

sup
q2QM

rp ¼ sup
y

FðyÞ ¼ Fðy*Þ:

The same result is obtained when sup is replaced by inf .

Proof
Taking into account that

R
YHiðyÞqðyÞdy ¼ ai; i ¼ 1; . . . ; n, then:

pð~k j qÞ
Xn

i¼1

Z
Y

HiðyÞ

f ð~k j yÞ
qðy j ~kÞdy

where pð~k j qÞ ¼
R
Y f ð~k j yÞqðyÞdy is the marginal distribution. Now, it is simple

to show that rp has the expression:

rp ¼

R
YR1ðyÞqðy j ~kÞdyR
YR2ðyÞqðy j ~kÞdy

and, applying the well known Lemma A.1 in Sivaganesan & Berger (1989),
the suprema is obtained by maximising FðyÞ.

The first equation in system (5) ensures that qðy j ~kÞ is a probability
measure, the second is the general moment conditions, and therefore the
theorem is proved.

Now, the robustness of the bonus^malus premium in (2) can be studied
using Theorem 1. For this purpose, we consider the following class for s
fixed, with s 2 0; 1; . . . ;mf g:

Q
*
M ¼

�
q :

Z
Y

gðyÞf ðs j yÞqðyÞdy ¼
Z
Y

gðyÞf ðs j yÞp0ðyÞdy ¼ gsZ
Y

f ðs j yÞqðyÞdy ¼ pðs j qÞ ¼ pðs j p0Þ ¼ bsZ
Y

g1ðyÞqðyÞdy ¼
Z
Y

g1ðyÞp0ðyÞdy ¼ d0Z
Y

gðyÞf ðl j yÞqðyÞdy ¼
Z
Y

gðyÞf ðl j yÞp0ðyÞdy ¼ glZ
Y

f ðl j yÞqðyÞdy ¼
Z
Y

f ðl j yÞp0ðyÞdy ¼ bl

l 2 f0; 1; . . . ;mg l 6¼ s; l 6¼ rg

for some r 2 0; 1; . . . ;mf g.
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This class Q*
M is a particular case of the moment generalised conditions

class QM, and reflects the particular moment conditions in expression (2)
which appear in (3).

Now, the following proposition presents the upper and lower bound for
BMPpðs; tÞ.

Proposition 1
The upper and lower bound of BMPpðs; tÞ is given by:

sup
p2Q*

M

BMPpðs; tÞ ¼100þ
100

cN d0
ln

bs

gs

� �NÿN rYm
i¼0
i 6¼r

gi

bi

� �N i

24 358<:
þN r ln sup

y

ð1ÿ eÞgrcrðyÞ þ ecrgðyÞ
ð1ÿ eÞbrcrðyÞ þ ecr

9=;
where:

cr ¼ d0 þ
Xm

i¼0
i 6¼r

gi þ bið Þ

crðyÞ ¼
1

f ðr j yÞ
gðyÞ þ 1ð Þ

Xm

i¼0
i 6¼r

f ði j yÞ þ g1ðyÞ

24 35
and r 6¼ s, r 6¼ l.

Proof
Using Theorem 1, it is easy to find that:

pðr j qÞ ¼ gs þ bs þ gl þ bl þ d0ð Þ

� Z
Y

1
f ðr j yÞ

½ gðyÞ þ 1ð Þ f ðs j yð Þ

þ f ðl j yÞÞ þ g1ðyÞ�qðy j rÞdyg
ÿ1:

Now, taking into account that:R
Y gðyÞf ðr j yÞpðyÞdyR

Y f ðr j yÞpðyÞdy
¼
ð1ÿ eÞgr þ epðr j qÞ

R
Y gðyÞqðy j rÞdy

ð1ÿ eÞbr þ epðr j qÞ

and simple calculations, these provide the desired result.
The infimum is obtained when sup is replaced by inf .
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Interchanging the conditions given in Q*
M and using Proposition 1, we can

obtain a chain of infimums and supremums in the form:

inf
p2Q*

M

rBMPpðs; tÞ; r ¼ 0; 1; . . . ;m

( )

sup
p2Q*

M

rBMPpðs; tÞ; r ¼ 0; 1; . . . ;m

( )

respectively.
Now, the values of infimums and supremums can be chosen by

considering the maximum change of inference of the bonus^malus premium
as:

min
r

inf
p2Q*

M

rBMPpðs; tÞ; r ¼ 0; 1; . . . ;m

( )
¼ BMP

1
p

max
r

sup
p2Q*

M

rBMPpðs; tÞ; r ¼ 0; 1; . . . ;m

( )
¼ BMP

2
p

respectively.

ª. Numerical Example

In order to show the robustness of the Poisson^Inverse Gaussian model
described in Section 2, we have chosen some real car insurance data from a
Spanish company. The data concern the number of claims made in one
year.

In order to apply a tariff segmentation a priori, as seen in Table 1, the
observations have been categorised according to the age of the driver and the
power of the car. The first risk factor ðqÞ is divided into three categories:
drivers younger than 35 years ðq ¼ 1Þ; drivers between 35 and 49 ðq ¼ 2Þ; and
drivers older than 50 years ðq ¼ 3Þ. The second risk factor ðpÞ is divided into
four categories: the power of car less than 53 cv ðp ¼ 1Þ; between 54 and 75
cv ðp ¼ 2Þ; between 76 and 118 cv ðp ¼ 3Þ; and more than 119 cv ðp ¼ 4Þ.

We have used the estimator proposed by Gisler (1996) for the structural
parameter b based on available data: bb ¼ ðbs2

Kij
ÿ blj ÿ bs2

Lj
Þ = ðbl2j þ bs2

Lj
Þ,

obtaining bb ¼ 0:9290279582 for these data.
Table 2 shows the distribution of the policyholders in all the subportfolios

of the portfolio, where we have the subportfolios in the same position as in
Table 1.
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Using Proposition 1, Table 3 shows the range of the relative premiums
for e ¼ 0 (in bold) and e ¼ 0:1 for the class p ¼ 4, q ¼ 1. In this table, the
infimum, the base premium, the supremum and RS factor ö which appears
in Go¤ mez et al. (2002) ö are shown in this order. Relative sensitivity (RS) is
a standarised factor, defined as:

RS ¼ 100 2BMPp0 ðk; tÞ
� �ÿ1

BMP
2
p ÿ BMP

1
p

� 	
:

This RS factor represents the amount of variation, in percent, in BMPp

as p varies over Q*
M. For example, in Table 3 for ðk; tÞ ¼ ð1; 1Þ, the RS

factor 12.75 means that BMPp; p 2 Q
*

� 	
can vary 12.75% on either side of

the centre of its range over Q*. If this RS factor is small enough, the
conclusion is that the model is declared to be robust. If not, further
elicitation, data collection or analysis is necessary. Obviously, the particular
situation for e ¼ 0 corresponds to that when no errors arise in the process
of elicitation, i.e. we obtain the premium given in (2).

The RS factor is particulary low for class k ¼ 0, therefore we have robust
results in this class. However, the RS factor takes a higher value for the rest
of the classes, so we can conclude that we have no robust results for the
classes k > 0. This particular situation is similar to that which occurs in the
rest of the classes of the portfolio, as can be seen in Figure 1, which shows us
the RS factor for the twelve classes of the portfolio. These appear in the
same position as in Table 1. The graphics correspond to t ¼ 1:ÿÿ; t ¼ 2: ^;
t ¼ 3:ÿ � ÿ and t ¼ 4:ÿ.

In all classes, the results show that the lower RS factor is always given
for k ¼ 0 and the higher for k ¼ 1, decreasing smoothly from here.
Furthermore, the RS factor decreases when t increases, except for the k ¼ 0
class.

Looking at each subportfolio in Figure 1, we can now see that the RS
factor decreases when the value of lij increases. This is so, because the lower
value of lij is less compatible with the prior distribution than with the higher

Table 1. Number of policyholders in subportfolio and claim averages
q ¼ 1 q ¼ 2 q ¼ 3

p ¼ 1 3,945
0.1850

9,023
0.1564

11,758
0.1277

p ¼ 2 11,947
0.2639

25,719
0.2252

27,287
0.1969

p ¼ 3 8,447
0.2917

19,609
0.2495

18,688
0.2345

p ¼ 4 1,486
0.3135

5,762
0.2769

5,812
0.2424
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value. Observe that the unconditional mean of the number of claims is
E½Kij� ¼ E E Kij j yi

� �� �
¼ lij, and the mean of the prior distribution is one.

Because a low value of the RS factor indicates robustness, and a high
value lack of robustness, the lower and higher values of the RS factor for
each subportfolio can be summarised as in Table 4. These values are always
achieved in period t ¼ 1 for k ¼ 0 and k ¼ 1, respectively.

We can conclude that the actuary may feel reassured when tariffing an
insured person of any class who belongs to position ðk; tÞ ¼ ð0; 1Þ. On the
other hand, the actuary must tariff very carefully when the person insured is
at position ðk; tÞ ¼ ð1; 1Þ. The rest of positions are obviously intermediary
situations.

A second aspect should also be taken into account by the actuary. As
mentioned above, the subportfolios with a priori low values of lij present a
higher RS factor. Furthermore, as is well known, for a priori low frequency

Table 3. Range of relative premiums, base premiums and RS factor for
p ¼ 4, q ¼ 1

k

t 0 1 2 3

0 100

1
95.457
95.716
95.935
0.25

107.118
108.441
134.780
12.75

123.491
124.814
151.154
11.08

143.841
144.019
170.430

9.22

2
92.189
92.375
92.843
0.35

102.676
103.674
122.032

9.33

117.012
118.010
136.369

8.20

133.839
134.837
153.195

7.17

3
89.314
89.599
90.340
0.57

99.079
99.845

112.734
6.83

111.942
112.708
125.597

6.05

126.994
127.760
140.649

5.34

4
86.942
87.318
88.284
0.76

96.148
96.737

105.819
5.00

107.872
108.461
117.543

4.45

121.554
122.143
131.224

3.95

Table 4. Lower and higher RS factor in all the subportfolios
0.12 - 14.11 0.11 - 14.19 0.09 - 14.88
0.20 - 13.34 0.16 - 13.74 0.14 - 14.02
0.13 - 13.10 0.18 - 13.41 0.12 - 13.64
0.24 - 12.75 0.20 - 13.31 0.29 - 13.54
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risks the maluses are even higher than for those risks with a high frequency,
which is not understood by the customer. Although theoretically correct,
such a point must still be treated carefully by the actuary because of the
chosen prior distribution.

Observe that this situation occurs when using, as we have done, a very
reduced class, which incorporates many conditions which must be elicited by
the practitioner. As Moreno et al. (2003) point out: “the range of the
posterior inference on a given quantity of interest as the prior varies over the
generalised moments class is generally too large.’’

Nevertheless, if the actuary has enough information to incorporate into
class QM, he can achieve robustness. In any case, the model described in
Section 2, which has an inverse^Gaussian as a prior distribution and
exponential premium principle, is much more robust than that applied in
Go¤ mez et al. (2002), which has a gamma as a prior distribution and net
premium principle.

Figure 1. RS in all the subportfolios of the portfolio
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ä. Conclusions and Extensions

This paper deals with the advantages of combining the most commonly
used methods of robust Bayesian methodology, and presents a practical
situation in a BMS using the Poisson^inverse Gaussian model extended to
expression (2). We study how the choice of the prior can critically affect the
relative premiums.

Obviously, the approach used here can be applied to other distributions;
for example, Lemaire (1979), among others, uses the Poisson^Gamma model
and Meng & Whitmore (1999) use the Negative Binomial^Pareto model.

The specification of a concrete class of prior distributions seeks to be a
model about the uncertainty in which the actuary has a base prior
distribution. If RS is small, the actuary can be satisfied with his conclusions
about uncertainty on the prior distribution. If RS is large, the actuary must
be careful about the ratemaking procedure. Otherwise, he/she should follow
some other strategy, such as obtaining a more robust model by considering
other premium principles, other distributions, and the consideration of
properties which allow him/her to use a more reduced class, including expert
opinion and historical data.

A matter which deserves treatment is the incorporation of the unimodality
condition to the class QM. This is a characteristic which can easily be elicited
by an actuary, but, for the moment, it is intractable in this class.
Of course, an extension of the result presented here can be obtained for

those premium principles which are expressed as a ratio of later expectations,
such as the Esscher and variance principles (see Go¤ mez et al., 2001).
Although the common approach to assessing sensitivity or robustness
analysis is to measure the size of the class of later expectations (referred to as
a global sensitivity analysis), local sensitivity analysis is also possible.

The idea of local sensitivity is to examine the rate at which the posterior
changes, relative to the prior (Gustafson, 1996a). This technique is
appropriate for our problem, and it again has connections with the e^
contamination class (Gustafson, 1996a). In this regard, Gustafson (1996b)
states: “When studying sensitivity to prior distribution, there is always a
trade-off: classes of priors that are too large have poor behaviour, and classes
of priors that are too small may understate sensitivity. This is especially so
for local diagnostics.’’

Although local analysis involves a complicated mathematical treatment in
the field of functional analysis, we nevertheless believe that its use in our
model is appropriate and should be used here, leaving further consideration
of this point for a forthcoming paper.
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