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Deep learning has revolutionized numerous domains by enabling the creation of
powerful models capable of learning complex patterns from vast amounts of data.
However, the intrinsic opacity of deep neural networks has raised concerns about
their decision-making processes, limiting their application in critical domains such
as healthcare, finance and justice.

The study of explainability in deep learning models aims to shed light on the
inner workings of these models, enabling us to understand how they arrive at their
predictions and uncovering emergent concepts that are not explicitly present in the
training data.

A study of the emergence of the concept of temperature was performed by forc-
ing a reconstruction and prediction of the next frame in images of physical systems
of balls with movement. The goal was to determine whether the neural network
could acquire an understanding of temperature.

Experimental observations were performed with architectures such as Convolu-
tional Autoencoders and U-Net, but the neural networks did not accomplish the task
of learning the temperature concept due to many needed concepts that were not con-
sidered initially. Despite that, a prediction of the temperature value was performed
by using the optical flow of the system.
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Chapter 1

Introduction

1.1 Motivation

Deep learning has revolutionized numerous domains by enabling the creation of
powerful models capable of learning complex patterns from vast amounts of data.
However, the intrinsic opacity of deep neural networks has raised concerns about
their decision-making processes, limiting their application in critical domains such
as healthcare, finance and justice.

The study of explainability in deep learning models aims to shed light on the
inner workings of these models, enabling us to understand how they arrive at their
predictions and uncovering emergent concepts that are not explicitly present in the
training data. These emergent concepts can hold invaluable insights, enabling novel
discoveries and advancing our understanding of complex phenomena. By delving
into the inner layers of deep neural networks, we can try to uncover these latent con-
cepts, providing new avenues for research and problem-solving. Furthermore, the
study of emergent concepts facilitates the development of more robust and transfer-
able models, allowing them to generalize better to new tasks and domains.

For instance, McGrath et al. (2021) present a groundbreaking study that show-
cases the discovery of emergent concepts within these models. By focusing on Al-
phaZero, an AI system developed by DeepMind and Silver et al. (2018), the paper
provides insights into how the model acquires chess knowledge and uncovers latent
concepts that were not explicitly present in the training data.

One of the remarkable aspects highlighted in the paper is that AlphaZero learns
various chess concepts, such as opening strategies, material evaluation and mobility,
without any prior human knowledge or explicit instruction. Through the process of
self-play and reinforcement learning, the model autonomously discovers and refines
these emergent concepts, thereby demonstrating its ability to acquire knowledge
beyond what was explicitly provided.

This finding is significant as it showcases the power of deep learning models
to extract meaningful and strategic insights from complex domains like chess. The
emergence of these concepts reveals the model’s capacity to capture and represent
high-level abstractions within its neural network, enabling it to make informed deci-
sions based on its understanding of the game and highlighting the potential of deep
learning models to uncover hidden patterns and strategies that were previously un-
known to human players.

We would like to emphasize the significance of explainability in deep learning
and the exploration of emergent concepts, as they enable us to comprehend the rea-
soning behind a model’s decisions and uncover novel insights that advance our un-
derstanding and utilization of AI systems. The journey towards explainable AI is not
only essential for unlocking the full potential of deep learning but also for ensuring
the ethical and responsible deployment of these powerful technologies.
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1.2 Objectives

In this study, our primary objective was to investigate the emergence of latent con-
cepts within neural networks. Specifically, we aimed to train a neural network to
learn the concept of temperature by employing an image reconstruction and predic-
tion task where we try to compress the relevant information into a low-dimension
meaningful space. As we could think when we want to explain something to any-
body, it is essential for the neural network to possess the capability to encapsulate
the concept within a concise and meaningful space that facilitates comprehension.
Consequently, to see temperature concept emergence we must first compress the
information and subsequently try to extract the concept from there.

The task involved providing the network with two images of a physical system
consisting of moving balls. The network’s challenge was to generate a reconstructed
image that accurately represented the system at a subsequent time point.

By designing the experiment in this manner, we sought to determine whether
the neural network could acquire an understanding of velocity, which in turn would
allow it to infer the concept of temperature. We were particularly interested in ob-
serving the emergence of temperature as a concept, as it was not explicitly present in
the provided data. The model had to deduce velocities solely by analyzing the pixel
values in the images, which served as the network’s input.

1.3 Findings

Following the completion of our experimentation, it became evident that the task at
hand was more challenging than initially anticipated, with the concept of tempera-
ture not emerging as clearly as expected. On the next chapters we will see what hap-
pened and we will go into the factors contributing to the increased difficulty of the
task. To provide a brief preview, the underlying issue stemmed from our assumption
that the neural network would inherently acquire a comprehensive understanding
of various foundational concepts required to grasp the temperature concept. Some
of these concepts were particle or body concept, movement, quantity, and space.

Consequently, we ended up trying to predict the temperature of the system by
using the optical flow of the frames, bypassing numerous intermediate tasks neces-
sary for bridging the gap between the frames and the temperature concept. In doing
so, we encapsulated some of these concepts hidden within the optical flow, which
also needs them to emerge.

1.4 Layout

The structure of this report is as follows: Firstly, it begins with an introduction where
the motivation behind this work, the objectives, and a brief summary of the findings
are explained. Then, it provides explanations about the background of the project,
including the concepts of emergence and emergent concepts, as well as the methods
employed to uncover them within black-box models.

Afterwards, a chapter is dedicated to explaining the methodologies used and the
experimentation process, with a particular focus on the path that was followed as a
result of the conclusions and findings obtained. Following this, there is a summary
of the conclusions drawn from the research. Lastly, the bibliography is included,
listing the sources referenced in this report.
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Chapter 2

Background

2.1 Emergence

Emergent concepts play a fundamental role in our understanding of the world around
us. These are concepts that emerge as a result of our observations and experiences,
allowing us to explain and make sense of various phenomena. Temperature is a
prime example of such an emergent concept.

Temperature is defined as a measure of the average kinetic energy of the par-
ticles in a substance or system (Bormashenko, 2020). It is a concept that has been
recognized and utilized by humans for centuries. However, it is not a concept we
invented, it was already present on the world and required careful observation, ex-
perimentation and definition to develop a comprehensive understanding of temper-
ature and its associated concepts. (Sándor Biró, 2011)

Moreover, as our understanding of temperature deepened, we discovered the
relationship between temperature and other physical properties. For instance, tem-
perature is closely linked to the concept of velocity, especially in the context of gases.
By definition, temperature measures the average kinetic energy and velocity of gas
molecules. As temperature increases, so does the average velocity of the molecules.

The concept of temperature has proven to be essential in explaining a wide range
of physical phenomena. It helps us understand the transfer of thermal energy, the
behavior of gases, the expansion and contraction of materials, and many other as-
pects of physics and chemistry. Temperature is also crucial in various practical ap-
plications, such as weather forecasting, thermodynamics, and the design of heating
and cooling systems.

Another pretty interesting emergent concept is emergent intelligence. Emergent
intelligence refers to the phenomenon where complex and intelligent behavior arises
from the interactions of simpler, individual components. It is the collective behavior
or intelligence that emerges from the interactions and organization of individual
elements or agents in a system.

One of the most fascinating examples of emergent intelligence can be found in
social insect colonies, such as ant colonies and beehives. Individually, ants or bees
may exhibit relatively simple behavior, but when they interact and work together,
they exhibit highly organized and intelligent behavior at the colony level. Tasks
such as foraging, building intricate nests, and defending the colony emerge from
the combined actions of many individuals following simple rules. (Wheeler, 1911;
Gordon, 2000; Schmid-Hempel, 2002; McCreery, 2017)

Another notable example of emergent intelligence is found in the field of artifi-
cial intelligence and machine learning. Neural networks, inspired by the structure
and function of the human brain, are composed of interconnected nodes that work
together to process information. Individually, these nodes may only perform basic
computations, but when they are connected and well-trained on large datasets, the
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network can exhibit complex behaviors such as image recognition, natural language
processing, and even learning concepts that were not explicit on the dataset.

Emergent intelligence can also be observed in human societies. Human beings,
as individuals, possess a range of cognitive abilities, but it is through social inter-
actions and collaboration that our collective intelligence emerges (Luo et al., 2008).
The exchange of ideas, knowledge, and perspectives leads to the generation of new
insights, innovations, and problem-solving strategies that surpass the capabilities of
any individual. By studying emergent intelligence, researchers seek to uncover the
underlying mechanisms that lead to the emergence of intelligent behavior, with the
potential to inspire new approaches in many fields (Woolley et al., 2010).

2.2 Interrogating black-box models

Interrogating black-box models, particularly deep learning models, is a valuable ap-
proach to uncover latent emergent concepts and gain insights into their internal
workings. This process involves examining the inner mechanisms and represen-
tations of the model to better understand how it operates and acquires knowledge.

McGrath et al. (2021) employs various techniques to interrogate the neural net-
work and understand its acquired knowledge. They delve into the neural network’s
representations and examine its response to specific chess positions and moves.

FIGURE 2.1: Value regression from human-defined concepts over
time. (with copyright permission from the journal)

One technique used in interrogating the model was training a sparse regression
model that learnt from the activations across different layers and training steps and
tried to predict both continuous and binary concepts that humans use when playing
chess (see figure 2.1). By scoring concept regression over the layers and temporal
axes as AlphaZero was trained, they were able to visualise the acquisition of con-
ceptual knowledge. This means that the accuracy of these models could be used
as a proxy to measure the presence or absence of (linearly-decodable) information.
By comparing accuracy scores across layers and checkpoints they aimed to under-
stand what concepts were encoded, when in training they emerged, and where in
the network they were strongly encoded.
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FIGURE 2.2: What-when-where plots for a selection of Stockfish 8 and
custom concepts (with copyright permission from the journal)

They also tried to examine where and when were these concepts learned (see
figure 2.2) and their relationship over time with the network’s ability to estimate
the value of chess positions. The value function in AlphaZero represents the pre-
dicted outcome or advantage of a particular chess position. The authors investi-
gated whether those concepts acquired by the network contributed to its ability to
estimate the value function effectively. It emphasized how the acquired knowledge,
represented by those concepts, influenced the network’s estimation of the value of
chess positions, ultimately impacting its gameplay performance.

Additionally, an expert complemented their experiments with a qualitative as-
sessment. This assessment was an attempt to identify themes and differences in style
of play between AlphaZero checkpoints in the early phase of training. The expert
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concluded that the neural network was learning a list of concepts and improving its
performance across training time.

FIGURE 2.3: Visualisation of Non-negative Matrix Factorisation fac-
tors in a fully-trained AlphaZero network, showing development of
threats and anticipation of possible moves by the opponent, as well
as a factor that may be involved in move selection (with copyright

permission from the journal).

Finally, they also took an alternative approach, using simple unsupervised ap-
proaches involving non-negative matrix factorisation and correlation analysis. From
there they tried to uncover what factors were involved in move selection (see figure
2.3). We will not focus on this approach for our experiments.

In our experiments we will try to compress the temperature concept into the low-
dimensional bottleneck layers and we will try to interrogate the model by predicting
the temperature concept with a neural network that uses as input the activation
layers of the main model.
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Chapter 3

Methods and Experimentation

3.1 Experimentation protocol

First and foremost, the code used for the experiments discussed in this section can
be accessed at the following GitHub repository.

3.1.1 Hypothesis

Let us consider a physical system of balls with movement. We assume that the task
of predicting how is the system going to look in a time instant by looking at two
previous instants needs the concept of temperature to be solved when compressing.
The human approach would be to look at the different balls, identify the correspon-
dence between balls of the first instant and second instants, compute their positions
and movement vectors and apply this vector by the time step to the positions on the
second instant. For this reason we would be learning the velocity concept, and there-
fore the temperature concept should emerge. To simplify this task we will assume
that the time step between instants is always the same.

We set as an hyphotesis that the temperature concept should emerge from the
training of the neural network on this task, while not being present on the input,
and we should be able to find this concept in the intermediate layers. To be able to
do this we will try to compress the information that goes through the encoder into a
low-dimensional bottleneck layer to force the neural network to learn relevant data.

3.1.2 Defining the experimental setting

The proposed experimental setting can be described as:

FIGURE 3.1: Experiment diagram

https://github.com/Dario-Gallego/Exploring-the-Emergence-of-Temperature-Concept-within-Deep-Neural-Networks
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We used images to represent the physical systems at each instant. Our intention
was to train a neural network to solve these tasks without having explicitly defined
the velocity or the temperature in the data.

We could solve this task following the two paths in figure 3.1:

1. In order to enforce the concept to emerge due to the compression of the infor-
mation we need a bottleneck strategy (e.g. an autoencoder-like architecture)

2. However, in order to verify whether this is even possible, we could force the
intermediate representation of both positions and velocities.

This gives rise to two different experiments answering "is it possible to regress
positions and velocities from the images?" and "is it possible to infer and reconstruct
the image from the intermediate representations?".

In the second approach we tried to regress both the coordinates learnt on the first
task of the other approach and the temperature of the system, defined as the mean
of the velocity norms of all balls.

Therefore, we set up different experiments to solve the different parts and paths
of the task. One experiment would be to use the first two images as input to predict
the third time instant, and then try to regress the temperature value of the system
from the intermediate layers of the neural network.

FIGURE 3.2: Diagram of the second task in the indirect path

The other two experiments would be to try to infer the coordinates of each one
of the balls and their velocity vectors using the previous two images as input, and
to predict the third instant image (as in figure 3.2) using as input the coordinates of
the balls, and also the image of the second instant, to have context about the type
of reconstructed image we want (to know the size of the balls, their color, have a
reference axis or axis origin, etc.)

In all experiments we tried different combinations of features in the images, such
as using one or multiple balls (but same amount for all images), and coloring the
balls or using gray-scale.

To be able to generate the images representing the physical systems we used a
simulations library called PyBullet.
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3.1.3 PyBullet

PyBullet (Coumans and Bai, 2016) is a physics engine and a Python interface to the
Bullet Physics library. It serves as a powerful tool for simulating and analyzing
physical dynamics in virtual environments. In the context of creating our dataset,
PyBullet was utilized to generate the simplified physical systems consisting of balls
with movement.

To create the dataset, PyBullet provided the necessary capabilities for physics
simulation and rendering. It allowed us to define the physical properties of objects,
such as size, shape, position, velocity and friction. We used PyBullet’s simulation
capabilities to model the behavior of the balls, specifying their initial positions and
velocities using a uniform distribution to encompass a wide range of movements,
including different directions and magnitudes. We also had to disable some proper-
ties that were automatically initialized (gravity, friction, damping, etc.) to keep the
same velocity vectors across all instants.

PyBullet’s physics simulation then evolved the system over time, updating the
positions and velocities of the balls based on their physical properties. At each time
instant, we stored the coordinates vector that served later to generate the images.

In summary, PyBullet is an incredibly comprehensive and extensive library that
offers a wide range of functionalities for physics simulation and robotic control, and
while our task didn’t require us to delve into the full depth of PyBullet’s capabili-
ties, the library proved to be a valuable asset in achieving our objectives efficiently,
serving as the foundation for generating our dataset.

3.2 Experiment 1: The direct approach. Regressing tempera-
ture from the bottleneck layer

Our first experiment consisted on two parts:
First we wanted to predict the third instant by inputting the previous two in-

stants and we tackled this task by training an autoencoder-like neural network to
predict and reconstruct this third image by looking at the images of the physical
system on the first and second instants. Autoencoders were introduced by Rumel-
hart, Hinton, and Williams (1985) and are very useful neural networks to compress
meaningul information into low-dimension latent spaces (Hinton and Salakhutdi-
nov, 2006).

Secondly, once we had a good enough model, we wanted to infer on the hidden
layers to regress the temperature. We expected to see the emergence of the tempera-
ture concept.

3.2.1 Dataset

The intended dataset was a collection of 2D images of 3 different instants in simpli-
fied physical systems consisting on a few circles that represented balls with move-
ment. All of them had the same magnitude in their movements (same norm in the
velocity vector) but different directions. Both the position of the balls and the ve-
locity of the vector were chosen by using a uniform distribution to ensure that all
possible movements (more movement, less movement, different directions and po-
sitioning across all the space) were considered. In the case of the velocity the uni-
form distribution was closed in an interval with big enough values to ensure that
there was always some movement. Another thing we took into account was to get a
square grid where all balls were contained and we set the grid space to the limits of
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this square to ensure that all balls were displayed and had the same axis, avoiding
that we had similar samples with the same directions of movement but at different
velocities.

FIGURE 3.3: Images of the 3 instants (ordered from left to right) of a
sample

The dataset consisted on 10000 samples (like the one in figure 3.3) with 3 frames
each, with 3 balls on each image, of size 32x32x1 (we used gray-scale for simplicity).

We also collected the velocity vectors (vx, vy) of the 3 balls. The velocity vectors
remained constant across time, so we only stored them once. From these velocity
vectors we computed the temperature of the system, which was the mean of the
norms of these vectors.

Initially, we stored the vectors relative to the simulation, but due to the pixeling
limitations of the image (pixels are a discrete value, and because of that we can have
notably different velocity vectors with the same visible movement in the collected
images) we ended up plotting each ball separately, in the same way we plotted to
save the images, just to collect the coordinates and velocities relative to the com-
pressed image, to then plot again with all the balls and store this image. By com-
pressed image coordinates we refer to the pixel indexes of the center of the ball. To
compute it we got all the pixels where there was a part of the ball (which was always
5 in both axis) and we got the mean. Then, we used directly these values to compute
the velocity vector.

3.2.2 Setting 1: Convolutional Autoencoder

Convolutional autoencoders (Zhang, 2018) are a type of neural network architecture
that combines convolutional neural networks (CNNs) with autoencoders. They ef-
ficiently learn and extract meaningful features from high-dimensional data, with a
specific emphasis on image data. They are primarily used for unsupervised learning
tasks, such as dimensionality reduction, feature extraction, and image denoising.

To understand a convolutional autoencoder, let’s first discuss its two main com-
ponents: the encoder and the decoder.

• Encoder: The encoder part of a convolutional autoencoder takes an input im-
age or data and gradually reduces its dimensionality through a series of convo-
lutional layers. These layers are designed to extract meaningful features from
the input by encoding it into a lower-dimensional latent space. Each convo-
lutional layer applies a set of learnable filters to the input, which convolves
across the image and produces feature maps. The filters capture different pat-
terns, such as edges, textures, or shapes, at various spatial scales. Pooling
layers are often inserted after convolutional layers to further downsample the
feature maps and retain the most salient information.
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• Decoder: The decoder component of a convolutional autoencoder takes the
low-dimensional representation produced by the encoder and reconstructs the
original input image or data. It uses transposed convolutional layers (also
known as deconvolutional layers or upsampling layers) to gradually upsam-
ple the feature maps back to their original dimensions. Similar to the encoder,
the decoder consists of a series of learnable filters that convolve across the fea-
ture maps and generate reconstructed outputs. The final output of the decoder
should ideally be as close as possible to the original input.

FIGURE 3.4: Convolutional Autoencoder

Therefore, a convolutional autoencoder (figure 3.4) consists on an encoder, that
compresses the latent concepts into a low-dimensional latent space that represents
the images, followed by a decoder, that reconstructs the images from the encoded
representation.

The training process of a convolutional autoencoder involves minimizing a loss
function that quantifies the difference between the input and the reconstructed out-
put. The most commonly used loss function is the mean squared error (MSE), which
measures the pixel-wise difference between the two images. By minimizing this loss,
the autoencoder learns to encode and decode the input data efficiently, capturing the
most important features while discarding unnecessary information.

Convolutional autoencoders have been widely used in computer vision tasks,
such as image reconstruction, denoising, inpainting, and anomaly detection. They
have also found applications in various domains, including medical imaging, au-
tonomous vehicles, and natural language processing.
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Experimentation

On this setting we built our own convolutional autoencoder.

FIGURE 3.5: Initial convolutional autoencoder. The number of chan-
nels is denoted on top of the layer. The x-y-size is provided at the

bottom of the layer.

As we can see in figure 3.5, we started with an encoder consisting on 3 down-
sample blocks, 1 bottleneck block and 3 upsample blocks. Each enconder block was
composed by a 3x3 convolution with ReLU activation and same padding followed
by a 2x2 MaxPooling and batch normalization. On the bottleneck layer we tried with
and without adding extra fully-connected layers to try to reduce the dimensionality
of the intermediate layer. Lastly, the decoder block were composed by 3x3 trans-
posed convolutions with ReLU and same padding followed by a 2x2 upsampling
using nearest interpolation and batch normalization. We ended with a 3x3 trans-
posed convolution with Sigmoid activation and just one filter to summarise all the
information into the output image.

The dense layers purpose was to further decrease the dimensionality of the bot-
tleneck and to break the spatial correlations associated to the image data structure.
However, they were worsening the predictions of the model since it was losing the
spacial information and was scattering the colored region (corresponding to the
balls). Consequently, we proceeded with an architecture that did not incorporate
fully-connected layers.

FIGURE 3.6: Two examples where we can see (from left to right) the
three frames and the prediction of the autoencoder. As we can see
the positions predicted are good but not perfect and there is some

scattering when multiple balls are near.
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After training the model and checking that the predictions (figure 3.6) were good
enough to consider the prediction task to be learnt, we tried to build some temper-
ature regressors feeding them with the flattened output of the bottleneck layer (the
previous layer to the first transposed convolution) of size 4x4x128.

We tried by building a neural network consisting on stacking dense layers with
no activation (using ReLU or other activations worsened the results), and by us-
ing multiple built-in Scikit-learn regressors such as LinearRegression, MLPRegres-
sor, GradientBoostingRegressor, RandomForestRegressor and KNeighborsRegres-
sor, and XGBRegressor from the XGBoost library.

The predicted temperatures were not accurate enough (the best mean squared
error we got was 0.0085, but the models were too far from the actual values in many
samples; in some cases the regressors were just predicting the same value for all
samples) to consider that the temperature concept was inside the bottleneck layer
and the regressor was able to learnt it from there. For that reason and acknowledg-
ing the subpar quality of the reconstructed images, we tried with a U-Net, a more
complex architecture that we expected to yield better reconstructions and hopefully
leading to the emergence of the desired concept.

3.2.3 Setting 2: U-Net

As our second setting we built a model using a U-Net architecture. Due to the incor-
poration of skip connections we expected a better performance against the one we
got with the convolutional autoencoder.

FIGURE 3.7: U-net architecture (example for 32x32 pixels in the low-
est resolution). Each blue box corresponds to a multi-channel feature
map. The number of channels is denoted on top of the box. The
x-y-size is provided at the lower left edge of the box. White boxes
represent copied feature maps. The arrows denote the different oper-

ations. (with copyright permission from the journal)
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The U-Net architecture is a convolutional neural network (CNN) architecture
that is widely used for image segmentation tasks, particularly in biomedical image
analysis. It was proposed by Ronneberger, Fischer, and Brox (2015) and has since
become a popular choice due to its effectiveness in capturing both local and global
image features.

The U-Net architecture derives its name from its U-shaped network design (fig-
ure 3.7). It consists of an encoder path and a decoder path, with skip connections
between corresponding encoder and decoder layers. This design allows the net-
work to combine low-level and high-level features from different scales of the input
image, enabling precise localization and segmentation.

The encoder path of the U-Net architecture resembles a typical CNN, where con-
volutional and pooling layers are used to progressively downsample the input im-
age. These layers extract hierarchical features, capturing both local and global con-
text. Each downsampling step in the encoder halves the spatial resolution while
increasing the number of feature channels.

The decoder path of the U-Net is responsible for upsampling and reconstructing
the segmented output. It consists of transposed convolutional layers, also known as
deconvolutional layers, to gradually upsample the feature maps. These layers per-
form the reverse operation of convolution, expanding the spatial dimensions while
reducing the number of feature channels.

The skip connections in the U-Net architecture are a key feature that enables the
fusion of multi-scale features. These connections directly connect corresponding lay-
ers between the encoder and decoder paths. By merging features at different scales,
the U-Net can capture fine-grained details while maintaining a holistic understand-
ing of the input image.

The final layer of the U-Net typically uses a 1x1 convolution to map the feature
maps to the desired number of output channels, representing the segmented output.
The activation function used in the final layer depends on the specific segmentation
task, such as sigmoid for binary segmentation or softmax for multi-class segmenta-
tion.

The U-Net architecture has shown excellent performance in various image seg-
mentation tasks, including cell segmentation, medical image segmentation, and se-
mantic segmentation. Its ability to capture multi-scale features and leverage skip
connections makes it particularly effective in scenarios where precise localization
and accurate segmentation boundaries are crucial.

In summary, the U-Net architecture is a convolutional neural network that com-
bines an encoder path for feature extraction with a decoder path for upsampling and
reconstruction. It utilizes skip connections to merge multi-scale features, enabling
precise image segmentation.

Experimentation

With the advantages of the U-Net in mind, we aimed to improve the predictions
and reduce some struggles we saw with the convolutional autoencoder, such as the
scattering in the images, as it focused primarily on capturing global image features.
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We used a U-Net architecture maintaining a similar structure of layers and size
of them to the one used with the convolutional autoencoder. Our U-Net (figure
3.8) consisted on 4 downsampling blocks (2 3x3 convolutions with same padding
and ReLU followed by a 2x2 MaxPooling) 1 bottleneck block (composed by 2 3x3
convolutions with same padding and ReLU) and 4 upsampling block (consisting on
a 2x2 transposed convolution with same padding and 2x2 strides, concatenated with
the MaxPooling output of the respective downsampling block and ended with 2 3x3
convolutions with ReLU and padding and a Batch Normalization to close it).

In contrast with the convolutional autoencoder, we added dropout in between
the 2 convolutions in some blocks to help generalize and only used batch normal-
ization on the upsampling blocks.

We reduced (increased) the dimensionality of the layers by half (by double) on
the downsampling (upsampling) blocks. Similarly we doubled (starting at 8) the
number of filters applied on each downsampling and reduced them by half (also
ending at 8) on each upsampling block, getting a bottleneck layer with dimension
2x2x128 (4 times smaller than the one we got with the convolutional autoencoder).

FIGURE 3.9: Predicted image and image to predict over the prediction
of 3 samples.

As we can see on figure 3.9, the U-Net captured the positions of the balls more
accurately and had less scatter. This time, to regress the temperature we used the
output from the last concatenation because we would be connecting the all the paths
that send processed information (all the skip connections and the processed infor-
mation through the downsampling). The used regressors consisted on a linear re-
gression, a completely fully-connected neural network and a convolution followed
by a fully-connected network. None of this regressors was able to predict the tem-
perature from the system, with the best model getting around a 0.008 mean squared
error (MSE). Consequently, we revised the intermediate layers by looking at the ac-
tivation layers and trying to understand what was happening.

FIGURE 3.10: Activation layer with checkerboard artifacts
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First, we saw that checkerboard artifacts were appearing on the activation layers
(figure 3.10). This was due to the MaxPooling. Thus, we changed the MaxPooling
layers by 3x3 convolutions with stride 2x2 to avoid this problem but still reduce
the dimensionality (we also added a 1x1 padding to reduce the dimensionality by
half). For this same reason we changed the transposed convolutions by just the
upsampling step interpolating with the nearest pixels.

Another modification was to remove the dropout layers and every batch normal-
ization from the neural network. This also led us to realize that we could simplify a
lot the neural network while not losing much precision (we would get more scatter
but the positions of the balls would still be well predicted). By doing this we reduced
the computation time and the dimensionality of the intermediate layer, being now
32x32x2 (because we were using the last concatenation layer) where it was 32x32x16
before.

FIGURE 3.11: From left to right: input images (first and second in-
stant), bottleneck layer (the one coming from the skip connection and

the one coming from the upsampling) and the output image.

After applying all this modifications and looking again at the activation layers
(figure 3.11) we could see that the neural network was learning the positions of the
balls at the first and second images in a way that looker very similar to the compu-
tation of the derivative of the position: the velocity. Nonetheless, we were still not
able to regress the temperature. At best we got a MSE around 0.0085, but we still
had some regressors that were predicting the mean of the values to predict.

FIGURE 3.12: Activation layers that were concatenated on the bottle-
neck layer. On the left the activation coming from the upsampling
and on the right the one coming from the dense layer of the skip con-

nection.

Another thing we tried was adding a two fully-connected layers on the bottle-
neck to force the neural network to compress the information but this had no success.
Even though, this showed us that, while the skip connection improved the predic-
tions, it was not really needed to get decent predictions. It was sending noise (figure
3.12), that helped generalize, but the real learning was happening on the other path.



18 Chapter 3. Methods and Experimentation

Trying with colored images

We generated a similar dataset with the only difference that now the images were
colored, going from 32x32x1 to 32x32x3 in the images dimensions. We thought this
could be useful to identify the correspondence between the values of the array and
the balls. The temperature value and velocity vectors were computed the same way
as before.

FIGURE 3.13: Sample of the colored dataset.

By using one different color for each ball, as it can be seen in figure 3.13, we
thought that it would be easier for the neural network to detect the correspondence
between balls in different instants.

We used the same architecture as with gray-scaled images (adapting both the in-
put and output layers) and after running the experiments we saw that this approach
did not yield any significative improvement over the previous.

3.2.4 Setting 3: Restricted Convolutional Autoencoder

Having seen that the skip connections were not really helping to regress the temper-
ature (the important information was slipping in through the residual path when
we added the fully-connected layer on the skip connections), we went back to the
convolutional autoencoder.

FIGURE 3.14: Simpler convolutional autoencoder. The number of
channels is denoted on top of the layer. The x-y-size is provided at

the bottom of the layer.
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Nevertheless we want back to a simpler convolutional autoencoder (figure 3.14)
with one downsample block (2 3x3 convolutions with padding and ReLU and a
strided convolution with 3x3 filter, 2x2 stride, padding and ReLU activation), one
bottleneck block (2 convolutional layers with same parameters as before) and an
umsampling block (one 2x2 upsampling layer and 2 convolutional layers).

The biggest simplifications on the dimensionality of this architecture were that
we only used one downsampling and one upsampling blocks, and the number of
channels used on each layer (having at most 2 channels per layer).

This model was able to reconstruct and predict correctly because the balls were
not moving more than 4 pixels, from one instant to the other, on any axis. Therefore,
the 2 3x3 convolutions were able to always capture this movement. If we considered
bigger images or balls moving faster we should increase the number of layers, as we
had in the convolutional autoencoder from the initial setting.

FIGURE 3.15: Activation layer from the simpler convolutional au-
toencoder

As we can see on figure 3.15, the position and its derivative still seemed to be
there, although the activation layer did not look as smooth as before.

With this simpler model we believed that by reducing the complexity we re-
moved redundant information while keeping the relevant. Although we were still
not able to infer the temperature from its activation layers. We even went back;
increasing the MSE to 0.024.

Trying with just one ball

We used a simpler approach (considering just images with one ball) to see if the
actual problem was having more than one ball and this was confusing the neural
network, because it might not be able to identify which ball on the second image
corresponded to another ball in the first one.

Unluckily, the neural network was just minimizing the error by giving the same
value to all the pixels. Having just one ball on the image meant having a lot of white
pixels in the image, and this impacted into that bad solution.

3.3 Experiment 2: From images to concepts. Regressing coor-
dinates from the bottleneck layer

After seeing that we were not able to extract the temperature concept from the
weights of the neural network, we tried to infer the coordinates of the ball and its
velocity vectors instead.
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On this experiment we took the already built model on the previous experiment
and try to infer from its activation layers.

3.3.1 Dataset

For this experiment we reused the images generated for the previous experiment
while adding the data respective to the coordinates of the balls on each image. To
get this data we took the same steps as we did when we got the velocity data: we
plotted each ball separately and collected the pixel corresponding to the center of the
ball as its position. These were the values we used to compute the velocity vectors,
but this time we stored them.

We had to keep an array of size 8n for each one of the samples, where n is
the number of balls in the image. This size comes out of having to store the 2-
dimensional position of each ball for the 3 instants (6n), and the velocity vectors
of all balls (2n). In fact, we actually only used the coordinates of the balls on the
second image and the velocity vectors, reducing by half the needed array. We re-
gressed these values because those would be the ones used (with the second image)
to predict the third instant, on the task represented in figure 3.2.

This experiment was run with the 2 image sets with multiple balls we had gen-
erated before (3 black balls and 3 balls with different colors).

3.3.2 Setting and results

We used the model we ended the previous experiment with. Thus, there were no
variations on the architecture and model aspects. One thing we did modify was the
way to extract the information from the intermediate layers. We saw that one prob-
lem that might be arising was that we were flattening the activation images (which
were outputs of convolutional layers) and loosing the spatial context. Hence, we
adopted a new way procedure with the regressor: we started with a convolutional
layer with the filter size being the same as the input size, just to get one value, and
applying many filters. Those values (with as many as filters applied) were then flat-
tened, to reduce the dimensions to one, and used in a fully-connected network.

After using this approach, we saw that in both datasets the coordinates and ve-
locity vectors were not accurately predicted. Against our initial belief, assigning one
color to each ball to distinguish them in the following images did not help the neural
network to predict the positions and coordinates of the ball. For instance, the array
contained the positions of the balls in an specific order, which was also present in
the coloring of the balls. Across all samples the first ball had always the same color,
and equivalently for the other balls.

While this could still be a problem the gray-scaled images with multiple balls
had that did not seem to be the only problem, because with colored balls we were
still not able to predict the coordinates.

Owing to that there were no good results (best MSE was around 0.08; the increase
in MSE was also due to predicting 8n instead of just one) on this task we aimed to
see if that was also happening on a dedicated task where the neural network was
using the initial images as input instead of an activation layer output.
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3.4 Experiment 3: Regressing coordinates from initial frames

On this third experiment we tried to regress the coordinates of the balls: their po-
sition (on the second instant) and their velocity vectors with a neural network that
used as input the images of the first two instants.

FIGURE 3.16: Diagram of the 3rd experiment.

With the approach in figure 3.16 we were actually asking the neural network to
solve this problem, while before we were solving another task completely different
(to predict and reconstruct the next instant) and then using its activation layers to
solve this second task.

What could have happened was that, due to not trying to solve this task from the
beggining, some of its relevant information was lost in the process. Therefore, we
expected the neural network to easily solve this task with this dedicated approach.

The dataset used for this experiment was the same as in the previous experiment
(it was the same task with a different approach) but this time we did not need the
3rd image, since we were not training a neural network to reconstruct and predict
the 3rd instant. Additionaly, this time we also used the imageset of physical systems
with one ball.

3.4.1 Settings and results

For this experiment we used the same architecture we had on the previous exper-
iment but adding the encoder from the convolutional autoencoder. By doing this
we ensured that there were no architecture deviations and the only difference was
on the training of the model, training all the layers on this experiment and using a
pre-trained block on the previous one.

The architecture utilized consisted on two 3x3 convolutional layers (of 1 filter)
with ReLU activation and no padding, followed by a 28x28 convolutional layer (of 6
filters) also with ReLU and no padding, and two dense layers with 64 and 2n nodes
respectively, where n was the number of balls on each image. Another thing to note
is that from now on we decided to consider the mean absolute error (MAE) instead
of the MSE when training the regressors. This decision was taken because the values
we were trying to predict were small and we wanted to avoid minimizing the loss
function by predicting the mean value for all samples.

3 black balls dataset 3 colored balls dataset 1 black ball dataset
MAE 0.20 0.20 0.15

TABLE 3.1: Table that shows the Mean Absolute Error when predict-
ing the coordinates of the system by using the two initial images as

input in the 3 datasets.
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The obtained results in 3.1 were the same as with the indirect approach (no good
results on both datasets with 3 balls per image). Besides that, we got good predic-
tions when we had just one ball, but only on the position coordinates.

3.5 Experiment 4: Introducing the optical flow

On the initial design of the experiments we thought that the task of predicting the
next frame and the emergence of the temperature concept would be much more
simpler. Nonetheless, after all the experimentation we encountered with a list of
concepts we had assumed but the neural network would need to acquire an un-
derstanding of to be able to learn the temperature concept, such as physical bodies,
counting, movement, space, axis, and central point, where some of them are local
concepts and some others are global concepts.

Therefore, we saw that this task was much harder than we thought and we
wanted to try to easen this task for the neural network by adding a new concept:
the optical flow.

By using the optical flow we aimed to shorten the path from the images to the
temperature value by skipping the step from images to optical flow and regressing
the temperature value using the synthetic optical flow we computed by hand.

3.5.1 Optical Flow

Optical flow refers to the pattern of apparent motion of objects, surfaces, and edges
in a visual scene caused by the relative motion between the observer and the scene
(Horn and Schunck, 1981). It is a fundamental concept in computer vision that aims
to understand and analyze the motion information present in video sequences or
image sequences.

FIGURE 3.17: Example of optical flows (in the left we have the dis-
placement vectors for each pixel, in the right the bounding boxes of

the movement of each body.

Optical flow algorithms estimate the displacement vector for each pixel or fea-
ture point between consecutive frames in a sequence (see figure 3.17). This displace-
ment vector represents the motion of that pixel or feature point from one frame to
another. The optical flow field provides information about the direction and magni-
tude of motion for each pixel in the image sequence.

Optical flow has numerous applications in computer vision, such as motion track-
ing, video stabilization, object detection and tracking, action recognition, and 3D
scene reconstruction. It is particularly useful in scenarios where understanding and
analyzing the motion dynamics of objects or scenes are important.
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3.5.2 Dataset

For this experiment we used the first two frames of each sample (already stored), the
temperature value for all samples (previously used) and the optical flow (new data),
computed from the first two images by hand.

FIGURE 3.18: On the left image we can see the ball on the first frame
(black) and on the second instant (purple). The central image is the
optical flow only considering the central point and the right image is

considering all points in the ball region.

When computing the optical flow we considered two different versions (see fig-
ure 3.18): one where we considered movement for all the pixels in the ball region
and another version where we considered movement only on the central pixel of a
ball.

FIGURE 3.19: Sample where occlusion happened between balls. As
we can see we still have three vectors. On the third image we have
the balls on the first frame (black) and on the second frame (purple).

The first version was only used for images with just one ball (we did this to
avoid the problem of assigning two velocity vectors to the same pixel where one ball
occluded another, as it can be seen in figure 3.19).

3.5.3 RAFT

To predict the optical flow from the images there are many deep learning models.
Nowadays, the state-of-the-art model is RAFT, which stands for “Recurrent, All-
Pairs Field Transforms” and was introduced by Teed and Deng, 2020. The architec-
ture of the RAFT model is designed to capture long-range dependencies between
pixels in an image sequence while maintaining spatial consistency.
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FIGURE 3.20: RAFT architecture (image taken with copyright permis-
sion from the journal).

RAFT consists of three main components (see figure 3.20): (1) a feature encoder
that extracts per-pixel features from both input images, along with a context encoder
that extracts features from only the first image; (2) a correlation layer that produces
a 4D correlation volume for all pairs of pixels, with subsequent pooling to produce
lower resolution volumes; (3) a recurrent GRU-based (Gate Recurrent Unit-based)
update operator that retrieves values from the correlation volumes and iteratively
updates a flow field initialized at zero.

• Feature Extraction Network: The first step in the RAFT architecture is to ex-
tract feature representations from input images. A convolutional neural net-
work is used as the feature extraction network to encode the appearance and
contextual information from the images.

• Correlation Layer: The correlation layer is a key component of the RAFT model,
which computes a cost volume by correlating the features from two consecu-
tive frames. This cost volume represents the similarity between pixels in the
two frames and helps to estimate the displacement of pixels. The correlation
layer is designed to be differentiable, allowing the model to learn the correla-
tion process during training.

• Recurrent Update Module: The recurrent update module is responsible for re-
fining the initial optical flow estimation iteratively. It takes the correlation vol-
ume as input and generates displacement vectors for each pixel. The update
module is recurrent, meaning it iteratively refines the flow estimation by pass-
ing information between iterations. This recurrent design allows the model to
capture long-range dependencies and improve the overall accuracy of optical
flow estimation.

During training, the RAFT model is optimized to minimize the photometric error
between the predicted flow and ground truth flow, since they are outputting the
bounding boxes of movement (as in figure 3.17). The model is trained on large-scale
datasets with ground truth flow annotations to learn to generalize well to various
scenes and motion patterns.

The RAFT model has achieved state-of-the-art performance on several bench-
mark datasets for optical flow estimation, surpassing previous methods in terms of
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accuracy and robustness. Its architecture, which combines feature extraction, corre-
lation, and recurrent updates, allows it to capture fine-grained motion details and
handle complex motion patterns in image sequences.

3.5.4 Settings and results

On this task we built a very simple fully-connected neural network with 2 hidden
layers of size 64 and 2n, where n was the number of balls per image. The first hidden
layer also had ReLU activation.

1 ball imageset
version 1

1 ball imageset
version 1

1 ball imageset
version 2

MAE 0.007 0.025 0.16

TABLE 3.2: Table that shows the Mean Absolute Error when regress-
ing the temperature from the optical flow for both 1-ball imagesets
(version 1 is considering all points in the ball region and version 2 is

with only the central point) and the 3-balls imageset.

In the case of the 1-ball imageset, both versions (all points and only central point)
produced great results, with a smaller mean absolute error for the version with op-
tical flow in all points (table 3.2). For the model with 3-balls imagesets we got worse
results but still decent.

Consequently, we was able to predict the temperature of the system by using
its optical flow on the first two frames. This means that this final task was simple
enough, and by simple enough we mean that it did not need too many inductive
biases nor concepts to be learned, to be able to extract the temperature concept from
the optical flow information.

This result highlights that the initial task was too hard for the model, showing
that the potential problem, or one of them, was the amount of concepts it needed to
learn to see the temperature concept emerge.
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Chapter 4

Conclusions

Despite the efforts, we were not able to regress the temperature from the weights in
any neural network we trained to reconstruct the third frame by using the two ini-
tial frames. Therefore, we ended up rejecting the initial hypothesis and showing that
further research is needed on this area. We have seen that the emergence of concepts,
in particular the temperature concept, within neural networks is a complex process
that requires numerous inductive biases. These biases are crucial for enabling neu-
ral networks to possess foundational knowledge and gain a needed head start in
acquiring the desired concept.

By looking at the activations of the bottleneck layer (see figures 3.11 and 3.15)
we could think that the velocity was learnt by the model. We could say that it was
computing the derivative of position, with the black region being the initial position
and the white region the position on the next frame. Therefore, it would seem that it
was learning the displacement of the balls in terms of the velocity and its direction
(more separate regions would mean higher velocities).

Nonetheless we could not state this due to not being able to regress the temper-
ature nor the coordinates (see sections 3.2 and 3.3). What it may be doing remains
unknown and it shows the task was not as simple as we thought, or at least not
solved in the way we expect the model to do so.

This has also happened in other studies. For instance, this occured to Lee and
Reddish (1981). They explored the behavior of gannets and their relationship with
ecological optics. One of the key findings of the study challenged the initial assump-
tion that gannets relied on computing velocity to time the closing of their wings
during their dives.

Contrary to this assumption, the research revealed that gannets actually uti-
lized a simpler mechanism than computing the acceleration, distance and velocity
to know the exact time to close their wings. This mechanism, that we have already
talked about, is the optical flow. Gannets relied on the optical flow information to
time the closing of their wings accurately during their dives.

Moreover, although we were able to predict the temperature of the system by
using the synthetic optical flow, a similar situation could be happening with the
temperature regression starting from the optical flow. One might assume that the
transition from optical flow to temperature is as straightforward as counting the
number of objects within the system, calculating their velocities, and predicting the
average velocity as the temperature. However, it is possible that this is not the case,
and the neural network may employ alternative mechanisms to accomplish this task.
For instance, numerous models addressing the optical flow problem exhibit intricate
patterns and do not solely rely on computing pixel correlations.

Now, let us outline the many concepts we took for granted and explain why they
were needed by the neural network to be able to learn the temperature concept.
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• Body and particle concepts: The model would need to be able to recognize the
different balls as separate bodies that possess distinct identities and interact
with each other and the surrounding environment. By recognizing the indi-
viduality of each ball, the model could learn their positions, velocities, and tra-
jectories throughout the system, which are individual properties of each ball.
This understanding would enable the model to discern the properties that de-
fine each ball, such as mass, size, and shape (in our imageset they are the same
for all balls).

By the definition of temperature we can see that the particle concept is essen-
tial, as it is actually present on its definition.

• Quantity: Counting the number of balls in the system allows the model to
quantify the objects present, which has implications for temperature and move-
ment. The model needs this concept to know how many balls are in the system.
If we have more balls in the system, it generally indicates a larger number of
particles engaged in motion. As a result, the overall movement and kinetic
energy within the system are likely to be higher. Conversely, if the number
of balls is reduced, there are fewer particles contributing to the overall mo-
tion and energy of the system. In such cases, the average kinetic energy and
temperature tend to be lower.

In summary, counting the number of balls in the system allows you to under-
stand the quantity of particles involved in the motion. More balls generally
lead to increased temperature due to a higher level of movement.

• Space / Size of the balls: The size of the space in which the balls are present
plays a significant role in understanding temperature emergence and the be-
havior of the system. The spatial dimensions of the system provide boundaries
within which the balls can move and interact. We can interchange space and
size of the balls by thinking on the same system but looked from closer (or
farther) for bigger (or smaller) balls.

If the system of balls is contained within a relatively small and confined space
the interactions among the balls may be more frequent and intense due to the
limited available space. This increased interaction can result in a higher tem-
perature within the system.

On the other hand, if the system of balls is situated in a larger space, the indi-
vidual balls may have more freedom to move without encountering other balls
as frequently. In this scenario, the overall motion among the balls may be less
intense, potentially leading to a lower temperature within the system.

We could think of a crowded street with tons of people crossing in different
directions and now take this same amount of people to a larger space. Now,
we would have a smaller temperature because the people (bodies) are more
separated across the space.

• Correspondence between balls: The model would need to know what ball cor-
responds to another in two distinct frames. Without this knowledge we would
have too many combinations of possible velocity and coordinates vectors and
the model would not be able to determine the correct velocities, and conse-
quently not being able to infer the temperature value. On the colored imageset
we used coloring to try to easen the learning of this concept.
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• Occlusion: A crucial concept because it addresses the problem of detecting
fewer balls when some of them are hidden or partially obstructed from view.
Occlusion occurs when one ball obscures another ball, making it difficult to
visually perceive and accurately count the entire set of balls in the system, re-
sulting in an incomplete understanding of the overall behavior and properties
of the system.

Occlusion poses challenges to tracking the particles. When a body is occluded,
its trajectory and movement cannot be directly observed. In some cases, oc-
cluded balls may still have a portion visible, but still poses a difficulty. Detect-
ing and recognizing these partially visible balls requires the model to adapt to
varying levels of visibility and develop robust object recognition capabilities.

Addressing occlusion is crucial for obtaining an accurate count and under-
standing the complete set of balls within the system. Techniques like extrapola-
tion, prediction, and contextual inference can assist in estimating the presence
of occluded balls and adjusting the count and the balls position and velocities
accordingly.

• Velocity: Velocity is a vector quantity that describes the speed and direction of
an object’s motion. The balls have velocities as they move in different direc-
tions within the system. In our dataset the speed was the same for all balls in
the same sample but the directions were different.

The velocity is needed to be able to determine the kinetic energy of the balls,
and consequently the temperature of the system. The kinetic energy of an
object is determined by its mass and the square of its velocity. Therefore, higher
velocities correspond to greater kinetic energy, indicating a more vigorous and
energetic motion.

• Distance: Distance and velocity are indeed interconnected concepts that can
influence each other in systems of balls. Velocity is a measure of the rate at
which an object changes its position with respect to time. By multiplying the
velocity of a ball by the time elapsed, you can determine the distance traveled
by the ball. Thus, the distance covered by a ball is directly related to its velocity
and the time interval over which it is measured.

• Smoothness: Smoothness is a concept that relates to the absence of abrupt
changes or irregularities in the motion of the balls within a system. Smooth-
ness refers to the regularity and continuity of the paths or trajectories followed
by the balls. When the motion of the balls is smooth, it indicates that they
move in a predictable and continuous manner without sudden stops, starts, or
jerky movements.

In a smooth system, where energy is conserved, there is less or no energy dis-
sipation, and the average kinetic energy of the balls is more likely to remain
constant. This stability in kinetic energy contributes to a more stable tempera-
ture within the system. In addition, smoothness allows for easier observation
and analysis of the system’s behavior. When the motion of the balls is smooth,
it becomes simpler to track their trajectories, measure velocities, and identify
patterns or regularities in their movement. This facilitates a better understand-
ing of the system’s dynamics and temperature characteristics.

It is clear that the emergence of the temperature concept was a undeniably more
complex than as we initially thought. From all the experiment we carried out, we
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was only able to predict the temperature by using the optical flow, but never with
the weights of the intermediate layers of the model.

This study shows that deep learning models are not end-to-end models that we
can input data to and expect them to solve any problem we present to them. For
many challenges, and this specific one, we need to teach them many inductive biases
to be able to get the correct output.

Despite the existence of this question for a long time, the research surrounding
this topic remains an active area with significant work yet to be undertaken. It has
sparked a renewed enthusiasm for investigating its intricacies and uncovering new
insights, and some articles have appeared recently (Räz, 2023). Hence, it is evident
that the question holds significant interest and continues to captivate researchers in
the present context. There is a recognized need to delve deeper into this subject,
exploring unexplored avenues and addressing unresolved aspects. Consequently, it
is clear that there is ample scope for further investigation and advancements in our
understanding of this topic.
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