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Abstract Quantum entanglement offers a unique per-

spective into the underlying structure of strongly-cor-

related systems such as atomic nuclei. In this paper, we

use quantum information tools to analyze the structure

of light and medium-mass berillyum, oxygen, neon and

calcium isotopes within the nuclear shell model. We use

different entanglement metrics, including single-orbital

entanglement, mutual information, and von Neumann

entropies for different equipartitions of the shell-model

valence space and identify mode-entanglement patterns

related to the energy, angular momentum and isospin

of the nuclear single-particle orbitals. We observe that

the single-orbital entanglement is directly related to the

number of valence nucleons and the energy structure of

the shell, while the mutual information highlights sig-

natures of proton-proton and neutron-neutron pairing.

Proton and neutron orbitals are weakly entangled by

all measures, and in fact have the lowest von Neumann

entropies among all possible equipartitions of the va-

lence space. In contrast, orbitals with opposite angular

momentum projection have relatively large entropies.

This analysis provides a guide for designing more effi-

cient quantum algorithms for the noisy intermediate-

scale quantum era.

1 Introduction

Entanglement is a fundamental concept in quantum

mechanics [1]. It characterizes correlations between par-

ticles or, in general, partitions within a system that can

not be described independently of one another. Quan-
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tum many-body systems also show signatures of en-

tanglement, with specific features in many-fermion sys-

tems [2,3,4]. In addition, quantum entanglement is im-

portant from a theoretical point of view. Entanglement

properties typically undergo significant changes near

phase transitions, such as in spin and Fermi-Hubbard

[5] systems at their critical point. In high-energy physics,

maximal entanglement has been used to constrain the

coupling structure of QED [6]. In contrast, entangle-

ment suppression has been conjectured to be a property

of low-energy strong interactions [7].

Quantum or classical simulations of many-body sys-

tems may be hampered if the entanglement structures

couple different partitions. A sound understanding of

the entanglement features of quantum many-body sys-

tems may thus be key to more efficient simulations.

Consider, for instance, a single partition of a given fermionic

system. Low entanglement between two parts of a sys-

tem may allow for simpler simulations for each of the

subsystems. If these simulations can be complemented

with an effective way to integrate the residual entan-

glement between the partitions, such strategy may lead

to results with a minor loss in precision at a fraction

of the computational cost. Analogously, ground states

in condensed matter systems typically follow an area

law, meaning that entanglement scales with the bound-

ary of the partition, rather than with its volume [8].

This allows one to use techniques such as density ma-

trix renormalization group [9] or tensor networks [10,

11] to efficiently simulate large systems.

However, in nuclear physics, entanglement has been

much less studied. This is in part due to the complex na-

ture of the nuclear force, but also due to the difficulty to

relate entanglement to measurable observables. In very

light nuclei, like 4He and 6He, the entanglement struc-
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Fig. 1 Diagram illustrating the valence spaces employed to describe all nuclei considered in this work. Single-particle states,
shown in parallel if they correspond to the same nlj subshell, are labelled according to a numberm shown on top of them, for
convenience. Combinations of protons and neutrons occupying these single-particle states form the many-body basis of the
nucleus. For nuclei described in the sd shell, the p shell is assumed to be a fully occupied inert core, and the pf shell is assumed
to be completely empty. Excitations to states outside the valence space, marked in grey, are not allowed.

ture was found to be highly dependent on the many-

body basis [12]. In nucleon-nucleon scattering, proton-

neutron pairs are found to be entangled [13,14]. Yet,

nuclear shell model simulations of mid-mass isotopes

indicate that protons and neutrons show very little en-

tanglement [15]. Entanglement is also relevant for the

dynamics of nuclear reactions [16]. Interestingly, a pro-

posal has been recently put forward, indicating that

nuclear matter follows a volume law, instead of an area

law [17].

Entanglement plays a pivotal role in quantum-resource

quantification for quantum computation, communica-

tion, and sensing. In the context of quantum simu-

lations, variational algorithms have been devised and

tested to reproduce ground states of quantum many-

body systems. In particular, Ref. [18] analyzed single-

and double-orbital entanglement for 8Be within the nu-

clear shell model. Entanglement measures were found

to be almost maximal, as a consequence of the strong

correlations in the the p shell. Recently, single-orbital

entanglement within the nuclear shell model has been

studied with an adaptive variational quantum eigen-

solver [19] for various nuclei across the p, sd and pf

shells [20]. In addition, Ref. [21] explored entanglement-

based partitions using neural networks for optimal sim-

ulations of p−shell nuclei. In spite of this rapid progress,

no thorough analysis of the entanglement structure of

atomic nuclei across different shells has been carried out

yet.

In this work, we analyze mode entanglement in nu-

clear shell model ground states. We provide an overall

picture of the entanglement structure for the isotopic

chains of Be, O, Ne and Ca, studied in the p, sd, and pf

configuration spaces. Figure 1 shows a diagram repre-

senting the corresponding configuration spaces. We use

three different entanglement measures: single-orbital en-

tanglement, mutual information, and von Neumann en-

tropies, for the most natural equipartitions of these con-

figuration spaces, providing compelling insights into the

entanglement of the different divisions.

This article is organized as follows: in Section 2

we provide an introductory outline of the nuclear shell

model, our method of choice to find ground states of nu-

clei. In Section 3, we introduce the different measures

that we use to quantify the entanglement in the nuclear

configuration space. Finally, we present our results in

Section 4 and our conclusions in Section 5.

2 Overview of the nuclear shell model

The nuclear shell model is one of the most successful

theories of nuclear structure [22,23]. It considers nu-

clei as composite systems of protons and neutrons, or

nucleons, that interact with each other in a restricted

configuration space, customarily called valence space.

The nuclear interaction is rotationally invariant, and

it is usually considered to be symmetric under proton-

neutron exchange. One of the main features of the nu-

clear interaction is a spin-orbit term responsible for

the so-called magic numbers: special combinations of

protons (Z) and neutrons (N) building up particularly

stable, spherical nuclei [24,25]. This justifies the main

assumption of the shell model, that nuclear dynamics

can be approximated by the many-body configurations

built in a valence space limited by two magic num-

bers. The valence spaces considered in this work are
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presented in Fig. 1. Single-particle states below the va-

lence space are fully occupied and form an inert core,

whereas states above are truncated based on the large

energy gaps between magic number configurations.

Given the symmetries of the nuclear interaction be-

tween particles in the valence space, the single-particle

states (or single-particle orbitals) can be labelled using

a set of quantum numbers {n, l, j,m, tz}. These corre-

spond to the principal quantum number n, the orbital

angular momentum l, the total angular momentum j

(resulting from the coupling of l with the spin s = 1/2

of nucleons) and its third-component projectionm. The

third-component projection of the isospin, tz, specifies

if a nucleon is a proton or a neutron. The correspond-

ing 2j + 1 energy-degenerate single-particle states are

grouped into the nlj subshells, as shown in Fig. 1.

In a second quantization scheme, the effective Hamil-

tonian in the valence space reads

Heff =
∑
i

εia
†
iai +

1

4

∑
ijkl

v̄ijkla
†
ia

†
jalak, (1)

where εi is the energy of the single-particle state i,

v̄ijkl = vijkl − vijlk are antisymmetrized two-body ma-

trix elements and ai (a
†
i ) are particle annihilation (cre-

ation) operators associated to the state i. In this work,

we use standard phenomenological Hamiltonians, with

components adjusted to reproduce key properties of se-

lected nuclei [26]. These Hamiltonians describe very

well the low-energy properties of light and medium-

mass nuclei across the nuclear chart [27,28,29]. Effec-

tive Hamiltonians can also be derived based on an ef-

fective theory of the fundamental theory of the nu-

clear force, quantum chromodymamics, using so-called

ab initio techniques [30].

Many-body states in the valence space are described

employing antisymmetrized products of single-particle

states, also referred to as Slater determinants. A stan-

dard choice to build this many-body basis is to use the

M-scheme, in which Slater determinants have a well-

defined third component M of the total angular mo-

mentum J . Because of the properties of the SU(2) al-

gebra of angular momentum [31], M is simply the sum

of the total m components of the single-particle states

occupied by the nucleons. These many-body states form

a basis of the valence space, and the ground and excited

states of the nucleus can be expanded as

|JM TTz⟩ =
∑
α

cα|α,MTz⟩, (2)

where the cα coefficients are obtained by solving the

many-body Schrödinger equation, for instance through

the diagonalization of the Hamiltonian matrix in the

many basis [32,33,34,35]. These eigenstates have good

angular momentum J and isospin T quantum num-

bers, with corresponding third-component projections

M and Tz. State-of-the-art shell-model codes use so-

phisticated Lanczos methods for the Hamiltonian diag-

onalization, which often require classical supercompu-

tuing resources.

The nuclear shell model is a reference method for

light- and medium-mass nuclei, but calculations become

unattainable for heavy nuclei. As the number of valence

nucleons increases, the number of many-body states in

the valence space grows exponentially, quickly reaching

a bottleneck where calculations are no further feasible

with current classical supercomputers. Quantum infor-

mation tools may help identify crucial correlations in

the shell-model valence space and may facilitate sys-

tematic and well-controlled truncation protocols, that

include the most relevant degrees of freedom [36]. While

this challenge is important from a fundamental nuclear

structure point of view, it is also pertinent to optimise

the performance of quantum simulations in the noisy

intermediate-scale quantum era. Promising implemen-

tations of the nuclear shell model in digital quantum

computers have been proposed using variational quan-

tum eigensolvers [37,38] and quantum Lanczos [39] al-

gorithms.

3 Entropy and mutual information for

entanglement assessment

Entanglement quantifies the inseparability between quan-

tum systems. When two systems A and B, character-

ized by states |ψA⟩ and |ψB⟩, are entangled, the com-

plete state |ψ⟩ can not be written in the form

|ψ⟩ = |ψA⟩ ⊗ |ψB⟩ , (3)

that is, as a tensor product of the individual states. If

the states are separable, as opposed to entangled, the

statistics and behavior of each system can be treated

independently. This is why, when there is low entan-

glement, classical resources can simulate quantum sys-

tems efficiently (although this is not the only case [40]).

Therefore, finding partitions that exhibit low entangle-

ment is of utmost importance.

In fact, a natural split is already present in the nu-

clear shell model. As discussed in Sec. 2, the a priori

separation between the inert core, the valence space

and the excluded space assumes that there is no entan-

glement between these spaces. In this work, we focus

on entanglement measures in the valence space, where

additional insight of the entanglement structure could

improve nuclear shell-model calculations. We specifi-

cally consider bipartite entanglement, considering two
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generic partitions within the system. Although multi-

partite entanglement is complex and still a subject of

intensive study [41], the case of bipartite entanglement

is well understood [1] and linked to quantitative metrics

usually referred to as entropies.

In this context, a standard choice is the von Neu-

mann entropy S, defined as

S(ρ) = −Tr(ρ log2 ρ) = −
∑
i

ρi log2 ρi, (4)

where ρi are the eigenvalues of the density matrix ρ, and

where the logarithm basis is 2 for qubits. For a single

Slater determinant |ψ⟩, the density matrix is pure, ρ =

|ψ⟩ ⟨ψ|. Pure density matrices have a single non-zero

eigenvalue, and consequently no von Neumann entropy,

S(ρ) = 0. When considering a partition of the whole

system into subsystems A and B, the reduced density

matrix of subsystem A is obtained by tracing out the

degrees of freedom of subsystem B from ρ, that is ρA =

TrB(ρ). If the state of the whole system is separable,

as in Eq. (3), the corresponding trace results in a pure

state

ρ = |ψA⟩ ⊗ |ψB⟩ ⟨ψA| ⊗ ⟨ψB | → ρA = |ψA⟩ ⟨ψA| . (5)

As a consequence, the von Neumann entropies of the

subsystems are also zero, S(ρA) ≡ S(A) = 0. In con-

trast, for a Bell-type entangled state |ψ⟩ = (|0⟩A |0⟩B +

|1⟩A |1⟩B)/
√
2, we find

ρA =
1

2
|0⟩ ⟨0|+ 1

2
|1⟩ ⟨1| → S(A) = 1 . (6)

This highlights how the von Neumann entropy quanti-

fies our notions of entanglement for bipartitions.

An illustrative example is the partition of one single-

particle orbital and the rest of the system. In this case,

the entropy has already been linked to the occupation

number [2,4] and, more recently, to the choice of single-

particle basis in the shell model [12]. Starting from

Eq. (4) for this single-particle bipartition, one can show

that the entropy is

Si = −γi log2 γi − (1− γi) log2(1− γi), (7)

with γi = ⟨ψ|a†iai|ψ⟩ the occupation number (or oc-

cupation probability) of the single-particle orbital i in

a system described by |ψ⟩. Figure 2 shows the single-

orbital entropy Si as a function of the occupation num-

ber γi. Single-orbital entropies are maximal when the

occupation numbers are as likely to be filled than to

be empty, γi = 1/2. In contrast, states that are almost

fully occupied or fully unoccupied have near zero single-

orbital entropy.
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Fig. 2 Single-orbital entropy Si from Eq. (7) as a function of
the occupation probability γi of the single-particle state i. The
state is maximally entangled when the occupation probability
is 50%.

We also take into consideration other useful entan-

glement metrics. The conditional entropy, S(A|B), il-

luminates the dependence of subsystem A’s degrees of

freedom on subsystem B. It is calculated as

S(A|B) = S(AB)− S(B), (8)

where S(AB) is the entropy of the joint system. Using

this metric, we can describe the mutual information of

two systems A and B,

S(A;B) = S(A)− S(A|B)

= S(A) + S(B)− S(AB),
(9)

which we use in this work with the simplified notation

SA,B . The mutual information is symmetric under the

exchange of its arguments. It provides an insight on

how much subsystems A and B are correlated when ig-

noring the degrees of freedom of the rest of the system.

Specifically, in the context of A and B being subsys-

tems of a larger system ABC, a low amount of mutual

information unveils that, even if the state of the total

system is not separable in states of subsystems A and

B (and thus entangled), such entanglement is linked to

C and not contained in AB.

3.1 Fermionic systems

In the case of fermionic systems, quantifying entangle-

ment is especially challenging because we lack a well-

defined underlying separable space, as used in the def-

inition of Eq. (3). Fermions are identical particles which

fulfil Pauli’s exclusion principle, and a many-body fermionic

state must be antisymmetric. For example, two spin−1/2
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fermions can couple their spins to form a singlet state,

with total spin 0, in first quantization. In second quan-

tization, on the other hand, this corresponds to creating

two modes on the vacuum state, a†↑a
†
↓ |0⟩ , using mode

creation operators of spin projections up and down.

With the right encoding of fermions onto qubits, this

ends up as a separable state |11⟩,
1√
2

(
|↑↓⟩ − |↓↑⟩

)
︸ ︷︷ ︸

singlet state

= a†↑a
†
↓ |0⟩

encoding−−−−−→ |11⟩ . (10)

This separable expression is in contrast with the first-

quantization expression. In other words, the singlet state

in the first-quantized particle basis is considered max-

imally entangled, while the corresponding qubit state

has zero entanglement.

We note that these anomalies are directly related to

the indistinguishability of particles. In other words, any

partition that separates distinguishable particles, such

as neutrons and protons, does not exhibit this problem.

Entanglement quantification measures of bipartitions of

identical particles, however, need to address this issue.

Different approaches to a proper characterization have

been proposed [42,43], favouring those in second quan-

tization for their consistency. This motivates our choice

of encoding.

In the implementation of fermionic systems on quan-

tum circuits, the encoding between qubits and single-

particle degrees of freedom is very important. The ad-

vantages of different fermionic mappings have been stud-

ied extensively [44,45,46], although usually under the

scope of performance and scalability. In other words,

the focus has been on how efficiently one can encode a
specific system in terms of number of qubits and circuit

depth. Because operators on different qubits commute

freely, but operators on fermions do not, each encod-

ing must balance the locality of the original system’s

degrees of freedom against a method to modify the sys-

tem’s parity each time one acts on the state. One of the

most common fermionic mappings, the Jordan-Wigner

encoding [47], lies at one extreme. Qubits correspond

exactly to single-particle states in the fermionic system,

at the cost of local operators on the fermions becoming

completely delocalized on the qubits.

In our analysis of entanglement in the nuclear shell

model, we use the Jordan-Wigner encoding because it

becomes advantageous on two fronts. Firstly, it allows

us to simplify the treatment of fermionic entanglement

by using second quantization. Having a fixed particle

number avoids the need for more complex figures of

merit [4]. Secondly, it provides a direct connection be-

tween specific qubits and single-particle orbitals, as in-

dicated by the labels in Fig. 1. In actual circuit simu-

lations, the Jordan-Wigner encoding may increase the

circuit depth compared to other encodings, due to the

non-locality of the encoded fermionic operators. This

disadvantage, however, may be offset if one finds low-

entangled partitions, which allow for more efficient sim-

ulations.

3.2 Maximal entropy states

Entanglement measures can only be used to identify rel-

evant quantum features if there is a notion of maximal

entanglement. By construction, the nuclear shell model

constrains the number of allowed many-body states to

those included in the valence space, and therefore the

maximal entropy. This means that it is not sufficient to

focus on the dimension of the Hilbert space obtained

after the fermionic encoding.

For example, let us consider 8Be, with two valence

neutrons and protons in the p shell (see Fig. 1). The 8Be

ground state has J =M = 0. Since there are 12 single-

particle states, we need 12 qubits in the Jordan-Wigner

mapping to encode all the possible fermionic excita-

tions. The dimension of the Hilbert space in this compu-

tational basis is thus 212. After an arbitrary equiparti-

tion, the resulting spaces of the subsystems would have

a dimension of 26. However, to reach the maximal en-

tropy Smax between two partitions A and B, one must

actually be able to build a state of the form

|Ψ⟩shell =
2Smax∑

i

ci |ψi⟩A ⊗ |ϕi⟩B , (11)

according to the Schmidt decomposition [48]. This, how-

ever, is not possible for Smax = 6 in 8Be, due to proton

and neutron number conservation and the constraint

M = 0. Therefore, the dimension of this truncated

space after a partition is only an upper bound for the

von Neumann entropy, and is in fact unreachable. A

better bound would be the dimension of the many-body

basis when considering the modes in the partition.

We can find all possible product states by running

through each possible MZ ∈ {−2,−1, 0, 1, 2} value for

protons, and pairing them with any of the neutron states

with opposite MN = −MZ . In the proton-neutron par-

tition, there are 15 possible ways to arrange the 2 pro-

tons in 8Be, and we can pair each of these with the

neutron state that mirrors the occupations over the

sign of M to form a state of the form in Eq. (11).

Constructing a state with higher entropy is not pos-

sible because there are no more elements of the basis,

so S = log2(15) = 3.9 < 6 is the maximum limit.
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An additional caveat must be considered when look-

ing at general bipartitions. Let us consider the proton-

neutron partition again, in a nucleus with more neu-

trons than protons below the half-filling of the valence

space, as for example 10Be or 22Ne. Clearly, the neu-

tron many-body basis has a bigger dimension and con-

ditions which of the two partitions limits the entropy, S.

For general bipartitions, however, there is no guarantee

that the smallest dimension of the two bipartitions lim-

its the maximum entropy. Let us illustrate this with the

bipartition of orbitals with opposite m for 8Be, which

seems to maintain the symmetry across protons and

neutrons. We can find some combinations where two

states on the m > 0 partition ([1, 7, 10] and [4, 7, 10]

following the numbering of the p shell in Fig. 1) that

can only be paired with one basis element in the other

one ([3]), meaning that they can not contribute to S as

two separate elements of Eq. (11).

In principle, straightforward algorithmic efforts to

check all combinations for a given bipartition are un-

reachable by classical computation due to their expo-

nential scaling. A more naive approach is doing the

pairing only for a few examples. Even if this is non-

exhaustive, it already provides a lower bound for the

maximal entropy at a small computational cost. This is

enough to decide whether the entropy of that partition

is small in relative terms - it can only become smaller

by saturating the bound - and we can do so for all par-

titions. In addition, we systematically check that for

the most characteristic proton-neutron partition these

bounds are actually satisfied.

In the following section, we highlight two charac-

teristic partitions based on physical intuition. First, we

look into a proton-neutron partition. Moreover, we also

discuss bipartitions formed by states with opposite val-

ues ofm. In both cases, we can compute the correspond-

ing entropy bounds and compare whether shell-model

simulations are close to saturating them.

4 Results

We study the entanglement properties of selected beryl-

lium, oxygen, neon and calcium nuclei, all of which have

an even number of nucleons. The ground states of all

these nuclei have J =M = 0, as defined in Eq. (2). We

use this symmetry to build the many-body basis, in-

cluding only Slater determinants with M = 0. We em-

ploy the Cohen-Kurath interaction in the p shell [49],

USDB in the sd shell [50] and KB3G in the pf shell [51].

Nucleus Si (proton shells) Si (neutron shells)
8Be 0.95, 0.85 0.95, 0.85
10Be 0.98, 0.61 0.66, 0.92
12Be 0.99, 0.54 -
18O - 0.82, 0.67, 0.17
20O - 0.98, 0.66, 0.30
22O - 0.45, 0.68, 0.29
24O - 0.18, 0.21, 0.31
26O - 0.11, 0.14, 1.00
20Ne 0.73, 0.80, 0.36 0.73, 0.80, 0.36
22Ne 0.80, 0.71, 0.24 1.00, 0.71, 0.50
24Ne 0.86, 0.38, 0.21 0.64, 0.84, 0.50
26Ne 0.85, 0.50, 0.20 0.30, 0.63, 0.63
28Ne 0.88, 0.31, 0.15 0.14, 0.23, 0.99
42Ca - 0.78, 0.12, 0.07, 0.10
44Ca - 1.00, 0.16, 0.10, 0.15
46Ca - 0.86, 0.16, 0.11, 0.17
48Ca - 0.18, 0.13, 0.10, 0.14
50Ca - 0.18, 1.00, 0.44, 0.20

Table 1 Single-orbital entropies Si for Be isotopes in the p

shell, O and Ne nuclei in the sd shell and Ca isotopes in
the pf shell. The entropies are equal for the 2j + 1 single-
particle orbitals in the nlj subshells and they are shown in
energy order from left to right: 0p3/2 and 0p1/2 in the p shell;
0d5/2, 1s1/2 and 0d3/2 in the sd shell and 0f7/2, 1p3/2, 1p1/2
and 0f5/2 in the pf shell. Empty cells correspond to isotopes
with either an empty-proton shell (as for O and Ca) or a full
neutron shell (12Be), which trivially have Si = 0.

4.1 Single-orbital entanglement

We start our discussion quantifying the single-particle

entanglement in different isotopes. The single-orbital

entanglement entropy Si, defined in Eq. (7), is a di-

rect reflection of the single-orbital occupation number.

In turn, this is intertwined with the subshell energy

structure and the number of valence nucleons. The en-

tanglement between two sets of modes depends in the

first place on the single-orbital entanglement, which be-

comes the dominant factor whenever there is a large

energy difference between subshells, the so-called sub-

shell closures. For instance, in the pf shell, N = 28

is a magic number. As discussed above, completely oc-

cupied or empty states are directly linked to near-zero

single-particles entropies.

Consequently, isotopes with a number of neutrons

equal to the number of orbitals in the lowest-energy

subshells may have less entanglement entropy, while

those with half-filled subshells have much more poten-

tial to be entangled. Let us provide an illustrative ex-

ample using Ca isotopes. In 44Ca, with 4 valence neu-

trons in the pf shell, the lowest and degenerate or-

bitals of the 0f7/2 subshell have an occupation num-

ber γ0f7/2 = 0.477 and, in consequence, almost maxi-

mal single-orbital entanglement S0f7/2 = 0.998. In con-

trast, the modes in the remaining subshells, 1p3/2, 1p1/2
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Fig. 3 Mutual information Sij for 8,10,12Be in the p shell. Solid black lines divide the proton-proton (bottom-left), proton-
neutron (top-left), neutron-proton (bottom-right), and neutron-neutron (top-right) sectors,. The dashed lines correspond to
the two different subshells. Single-particle orbitals are sorted according Fig. 1, as explicitly shown for 8Be and reflected on the
corresponding numbering of the axes. All mutual information matrices are symmetric, as requested by Eq. (9). Elements in the
diagonal, corresponding to single-particle entropies Si, are arbitrarily set to 0 (white) to showcase the inter-orbital behaviour.

and 0f5/2, are mostly empty, with occupations γ1p3/2
=

0.023, γ1p1/2
= 0.013, γ0f5/2 = 0.022. All these modes

have low single-particle entropies, Si < 0.2. These en-

tanglement properties are in stark contrast to those of
50Ca, which has 6 more neutrons. Here, the orbital oc-

cupations for each subshell are γ0f7/2 = 0.972, γ1p3/2
=

0.465, γ1p1/2
= 0.091, and γ0f7/2 = 0.031. The 0f7/2

single-particle entropy is now substantially lower than

in 44Ca, with S0f7/2 = 0.184, whereas the 0p3/2 states

are almost maximally entangled, with S0p3/2
= 0.996.

That is, the 1p3/2 subshell shows the largest entangle-

ment, as expected from a naive filling of the pf shell.

Actually, N = 32 is also a magic number in Ca [52,53,

54].

We observe similar patterns for all the nuclei stud-

ied in this work. Table 1 lists the corresponding single-

particle entropies of different states for all isotopes. All

the results point to maximal single-particle entropies

appearing in mid-subshell isotopes. Single-orbital en-

tropy sets a bound for how much orbitals in a partic-

ular subshell can contribute to multi-orbital entangle-

ment. Let us stress that while Si provides a measure of

how much an orbital is entangled with the rest of the

modes, it does not specify with which part of the nu-

cleus it is entangled, nor distinguishes between single-

particle states in each subshell with different angular-

momentum projections, m.

4.2 Mutual information

A more general picture of the entanglement structure of

the nucleus is given by the mutual information matrix,

Sij . Figure 3 shows the mutual information between all

pairs of single-particle orbitals, (i, j), for 8,10,12Be. The

leftmost panel illustrates the structure of the mutual

information matrix by explicitly labelling each orbital

with the convention shown in Fig. 1. We organise the

orbitals in neutron and proton blocks, with black solid

lines separating proton-proton (bottom-left), proton-

neutron (top-left), neutron-proton (bottom-right), and

neutron-neutron (top-right) correlations. Proton-proton

and neutron-neutron mutual information is colored in

red and blue, respectively, while the proton-neutron and

neutron-proton sectors are shown in a purple colour

scale. The scale is the same for all isotopes and blocks

within each isotope, with darker shades implying larger

Sij values. The subshell structure of each proton-proton

and neutron-neutron block is illustrated by black dashed

lines which separate subshells. In the p shell, these cor-

respond to the 0p3/2 and 0p1/2 subsells. Finally, within

each subshell, the orbitals are sorted by the third com-

ponent of angular momentum, m, following the nota-

tion of Fig. 1.

The leftmost panel of Fig. 3 corresponds to 8Be,

with 2 protons and 2 neutrons in each of the 6-orbital

valence spaces. 8Be shows a relatively low mutual infor-

mation in all orbitals, although the like-particle mutual

information is more prominent than the correspond-
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Fig. 4 Mutual information Sij for 20−28Ne. Numbering of orbitals and their organization follows the same scheme as in Fig. 3,
except now the dashed lines correspond, from left to right (and bottom to top), to the 0d5/2, 1s1/2 and 0d3/2 subshells of the
sd shell.

ing neutron-proton values. The central panel focuses on
10Be, which has the largest neutron-neutron entangle-

ment among the three isotopes. In the rightmost panel,

for 12Be, neutrons completely fill the valence space and

proton-neutron, neutron-proton, and neutron-neutron

entanglement is trivially zero. Proton-proton entangle-

ment grows with the neutron excess, though, and the

proton-proton sector of 12Be shows the largest mutual

information values of all three isotopes. In contrast,

proton-neutron entanglement is relatively low or zero

for all three isotopes in comparison with the like-particle

entanglement.

The mutual information results for both 10Be and
12Be show a prominent feature that is shared by many

of the other nuclei we study. Specifically, we find that

the mutual information is largest for orbitals with op-

posite angular-momentum projection m. These orbitals

correspond to the diagonals in each subshell within the

proton-proton and neutron-neutron sectors. We find that

these diagonals are notably darker than the rest of the

matrix, indicating larger entanglement among these spe-

cific partitions.

The patterns that we have identified so far, namely

the relation of Sij with occupation numbers; the rel-

atively large mutual information among orbitals with

opposite m; and the increasing proton-proton entan-

glement with neutron excess, are even more evident

in neon isotopes. Figure 4 shows the mutual informa-

tion for 20−28Ne, using the same structure explained

in the first panel of Fig. 3. The values of Sij for each

isotope can again be roughly understood in terms of

a naive filling of the three subshells in the sd shell,

0d5/2, 1s1/2, and 0d3/2, with 6, 2 and 4 single-particle

orbitals, respectively. For 20Ne (leftmost panel), the

largest neutron-neutron correlations appear in the low-

est subshell, while for 28Ne (rightmost panel), with the

two lowest subshells mostly full, the largest neutron-

neutron mutual information is among the 0d3/2 states.

Just as in beryllium, proton-proton entanglement in

neon also increases notably with neutron number. In-

deed, Figure 4 shows that the bottom-left blocks, corre-

sponding to proton 0d5/2 states, become darker as the

number of valence neutrons increases. Similarly to what

was observed in beryllium isotopes, proton-neutron cor-

relations in neon are almost negligible in comparison

with like-particle correlations. Within each subshell, neon

isotopes present the largest correlation among orbitals

with oppositem, for both the proton-proton and neutron-

neutron sectors. The only exception is the 0d3/2 neutron

subshell in 28Ne (top right panel), where all orbitals

present relatively similar and large entanglement.

We continue our analysis by focusing on two addi-

tional isotopic chains. Figure 5 shows the mutual infor-

mation for 18−26O (top row) and 42−50Ca (bottom row).

These nuclei contain only valence neutrons in the sd and

pf shells, respectively. In these cases, the entanglement

of the opposite-m partitions is even more clear than

for beryllium and neon, as shown by the strong diago-

nals appearing in each subshell block. These diagonals

clearly stand out above the rest of the correlations.

As discussed earlier, the entanglement in each sub-

shell depends strongly on the number of valence neu-

trons. For the lightest oxygen isotopes, 18O and 20O,

with 2 and 4 valence neutrons, the 6 orbitals in the 0d5/2
shell are roughly half filled and present large orbital-

orbital entanglement. Likewise, the 0f7/2 orbitals in
42Ca, 44Ca, and 46Ca, show substantial mutual infor-

mation.

In contrast, 24O has the 0d5/2 and 1s1/2 subshells

mostly filled, and the remaining valence orbitals are

mostly empty. Consequently, the mutual information

across all orbitals is small. Equivalently, 48Ca, with 8

valence neutrons, has a mostly full 0f7/2 subshell. 24O

and 48Ca thus present low mutual information in all
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Fig. 5 Mutual information Sij for 18−26O (top) and 42−50Ca (bottom). The orbital numbering follows the scheme of Fig. 3
for single-neutron orbitals. Dashed lines correspond to the subshells of the sd shell for oxygen, as indicated in Fig. 4, and to
the 0f7/2, 1p3/2, 1p1/2 and 0f5/2 subshells of the pf shell, from left to right (and bottom to top), for calcium.

subshells, as expected from the single-orbital entangle-

ment values Si in Table 1. In addition, we observe that
48Ca shows the lowest mutual information computed

in this work, in agreement with the nuclear-structure

viewpoint as this nucleus is double magic.

The heaviest isotope studied in these two isotopic

chains, 26O and 50Ca, correspond again to half-full sub-

shells in a naive shell model ordering. For 26O, this is

the 0d3/2 subshell (top-right block), whereas for 50Ca it

is the 1p3/2 subshell (second antidiagonal block). Sim-

ilarly to 28Ne, these two isotopes present large mutual

information across the whole half-filled j = 3/2 sub-

shell (see the darker blocks in the two rightmost panels

of Fig. 5).

Overall, the mutual information shows two impor-

tant features. First, entanglement is largest between or-

bitals with opposite m. This is to be expected from

nucleon-nucleon pairing correlations, as the interaction

enhances the formation of isovector nucleon pairs which

are coupled to total J12 = 0, or equivalently,m1+m2 =

0 [55,56]. Previous studies including pairing correla-

tions in quantum simulations have been performed on

the Agassi model [57,58,59].

Second, the entanglement between proton and neu-

tron orbitals is notably low in comparison with like-

particle orbitals, as previously observed in Ref. [15].

Furthermore, as the number of excess neutrons increases,

proton-neutron entanglement diminishes while protons

become more entangled among themselves. We only ob-

serve subtle hints of proton-neutron entanglement in

cases with nearly the same number of protons and neu-

trons [60,61,62], such as 8Be or 20Ne.

4.3 Equipartition entanglement

The mutual information studied in section 4.2 provides

a global picture of the entanglement structure of dif-

ferent nuclei. This analysis, however, is restricted to lo-

cal, orbital-orbital correlations. To understand whether

these features translate into low or high entanglement
among all proton and neutron orbitals (Spn), or among

all m < 0 with all m > 0 modes (Sm), we addition-

ally compute the von Neumann entropies for these two

specific equipartitions.

Table 2 collects the values of Spn and Sm for all nu-

clei studied in this work. We compare these entangle-

ment measures to their potential maximum values de-

termined by the Fock subspace, as discussed in Sec. 3.2,

and show the relative entropies Spn/S
(max)
pn and Sm/S

(max)
m

in parenthesis. We find Spn < 2 for all beryllium and

neon isotopes, which corresponds to less than half of the

maximum bound for Spn. The entanglement between all

proton and neutron orbitals is indeed low, both in abso-

lute and relative value, compared to the corresponding

maximum. Importantly, this proton-neutron entangle-

ment measure decreases with neutron excess.

In contrast, the values of Sm are relatively large

for all nuclei. In particular, for light nuclei, Sm is close

to saturating the bound. This is to be expected from

the mutual information values of Figs. 3, 4, and 5. The
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Nucleus Spn Sm S σS

8Be 1.99 (0.51) 4.04 (0.95) 3.84 0.22
10Be 1.05 (0.27) 3.25 (0.83) 3.04 0.27
12Be - 1.42 (0.90) 1.32 0.24
18O - 2.22 (0.86) 1.99 0.31
20O - 2.85 (0.67) 2.66 0.34
22O - 1.67 (0.35) 1.66 0.15
24O - 0.80 (0.19) 0.80 0.08
26O - 1.41 (0.55) 1.30 0.24
20Ne 0.77 (0.13) 5.08 (0.81) 5.15 0.18
22Ne 1.25 (0.21) 5.80 (0.76) 5.88 0.28
24Ne 1.27 (0.21) 4.86 (0.61) 4.86 0.29
26Ne 0.51 (0.08) 4.20 (0.57) 3.99 0.31
28Ne 0.27 (0.04) 3.70 (0.63) 3.51 0.35
42Ca - 2.43 (0.73) 2.04 0.35
44Ca - 3.38 (0.58) 2.87 0.47
46Ca - 3.00 (0.40) 2.62 0.37
48Ca - 0.96 (0.11) 0.91 0.06
50Ca - 2.39 (0.27) 2.15 0.29

Table 2 Von Neumann entanglement entropies for the
proton-neutron, Spn, and opposite m, Sm, partitions (sec-
ond and third columns). The numbers in parenthesis are the
entropies normalized to the maximum possible value con-
strained by the Fock subspace. The fourth and fifth columns
show the average entropy and standard deviation of all the
calculated equipartitions. In the case of neon isotopes, we
have taken a sample of 1% of all possible equipartitions.

isotopic dependence of Sm is richer than that of Spn.

In particular, it reflects the corresponding subshell clo-

sures of isotopes like 22O, 24O and 48Ca.

It is also interesting to quantify how the entangle-

ment of the proton-neutron partition compares to the

entanglement of all the other partitions. To this end,

we compute the entropies for all possible equipartitions

for 8Be and 10Be, consisting of 12 single-particle or-

bitals in the p shell. This implies a total of 1
2

(
12
6

)
= 462

equipartitions for these isotopes.

Figure 6 shows a histogram representing the distri-

bution of all the von Neumann entropies associated to

all these partitions. There are several remarkable prop-

erties in this plot that happen to be relatively robust

across all the other isotopic chains. The equipartition

histogram is asymmetric, akin to a skewed normal dis-

tribution, with a sharp decay past the maximum. We

show the bin corresponding to Spn in a different colour

(blue), to highlight the fact that this is the lowest of all

possible equipartition entropies in both nuclei.

We also emphasize the partition ofm < 0 andm > 0

orbitals, using a red histogram bar in the two panels of

Fig. 6. For 8Be, as discussed in Sec. 3.2, the maximum

possible entropy is S ≈ 3.9. The von Neumann entropy

for the opposite m partition falls, for the two isotopes,

in the bar at the very right of the histogram. This in-

Fig. 6 Distribution of von Neumann entanglement entropies
for all possible equipartitions of 8Be (top) and 10Be (bottom)
in the p shell. The separated single-count blue bars in each
panel correspond to proton-neutron partitions. In both his-
tograms, the opposite m partition falls within the red (darker)
bars.

dicates that the opposite m partition presents almost

maximal entanglement.

Finally, we find a significant isotopic dependence

on the von Neumann entropy distribution of equipar-

titions. We find a general shift when going from 8Be

(top panel) to 10Be (bottom panel). We note that this

difference is unique to equipartition entanglement. It

is not, for instance, observed in the mutual informa-

tion plots of Fig. 3, where Sij is larger for 10Be than

for 8Be. In fact, if we compute the average values of

Sij , with i ̸= j, we obtain ⟨S⟩ij = 0.029 for 8Be and

⟨S⟩ij = 0.043 for 10Be. These are in contrast to the

mean entropies obtained from the average of the data

in Fig. 3. These are reported in column 4 of Table 2. We

indeed find that the average entropy decreases from a

value of S = 3.84 in 8Be to S = 3.04 in 10Be. We

conclude that a nucleus can have more entanglement

localized in specific orbitals than another one, and yet

have an overall smaller multi-orbital entanglement.

Figure 7 shows the corresponding equipartition en-

tropy distributions for the oxygen isotopic chain, from
18O to 26O. In this case the valence spaces consist of

only neutron orbitals, so there is no proton-neutron par-

tition. There is a total of 1
2

(
12
6

)
= 462 available equipar-

titions. The oxygen entropy distributions present more

structure than those of beryllium. For 18O (top panel),

the distribution has some gaps, and the largest entropy

bin is also the most populated. 20O has the largest

equipartition entanglement, as measured by the mean

value reported it Table 2. It also has the broadest dis-

tribution, as quantified by means of the standard devia-

tion, shown in column 5 of Table 2. The largest standard
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Fig. 7 Same as in Fig. 6, for 18−26O.

deviation across the oxygen isotopic chain is indeed the

one associated with 20O.

As the neutron number increases past 20O, the dis-

tribution changes in shape and structure. The mean

entropy decreases for 22O and is at its lowest in 24O.

This is consistent with the top panels of Fig. 5, and

expected from the 0d5/2 and 1s1/2 subshell closures.

Moreover, the distributions for these isotopes have a

significantly lower standard deviation. Beyond the sub-

shell closure, 26O shows a broader distribution, with

a two-peak structure and an overall larger mean. In

oxygen, the particular equipartitions corresponding to

m < 0 and m > 0 orbitals show, again, an almost max-

imal von Neumann entropy. This can be clearly identi-

fied in the plots, where the red bars tend to appear at

the right of the histograms.

To study whether the proton-neutron partition pro-

vides the lowest entanglement among all equipartitions

in the sd shell, we show in Fig. 8 the von Neumann

entropy distributions for 20−28Ne. Neon isotopes have

a total of 24 orbitals, resulting in a total of 1
2

(
24
12

)
=

1.4 · 106 equipartitions. We take a random sample of

1% of all these equipartitions to generate the results

in the figure. As in Fig. 6, the proton-neutron entropy,

marked in blue, appears well separated from the rest

of the distribution in all neon isotopes. This highlights

again the uniqueness of this partition.

Fig. 8 Same as in Fig. 6, for 20−28Ne. Here 1% samples of
all equipartitions have been calculated.

The overall shape of the distribution for neon iso-

topes is more reminiscent of a Gaussian, although with

a sharp cutoff at high entropies. The mean and the

standard deviation of the distribution increases when

going from 20Ne to 22Ne, just as it did with the oxygen

isotopes (see Table 2). Beyond this point, the mean of
the distribution steadily decreases with neutron num-

ber, even past the 0d5/2 subshell closure. In fact, the

distributions for 20Ne (top panel) and 28Ne (bottom

panel) barely overlap.

In each of these isotopes, the equipartition between

opposite m orbitals belongs to a histogram (marked in

red) that falls roughly at the peak of the distribution

and closely follows the corresponding means. This is in

stark contrast to the entropy of this very same partition

for beryllium and oxygen, where the same equipartition

sat close to or at the bin with highest entropy.

For brevity purposes, we do not report on the dis-

tributions of calcium isotopes. These follow a similar

shape than those of oxygen isotopes. They also present

gaps in the spectrum, and a shift in their mean entropy

in correspondence with the bottom panels of Fig. 5. In

this case, the maximum mean entropy peaks at 44Ca,

with S = 2.87. This isotope also presents the broadest

distribution, with σs = 0.47. On the ohter hand, 48Ca
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has the lowest mean entropy and standard deviation,

with S = 0.91 and σs = 0.06.

Let us finally discuss the overall behaviour of the

means and standard deviations of these von Neum-

man entropy distributions. These are presented in the

fourth and fifth columns of Table 2, including also val-

ues for the calcium isotopic chain. These statistical met-

rics provide a quantitative measure of non-local entan-

glement for each nucleus. In general, we find that these

numbers correlate with the results we discuss in pre-

vious subsections, and with general nuclear structure

wisdom. Beryllium isotopes, in the p shell, show a de-

crease of von Neumann mean entropy and standard de-

viation with neutron excess. For semimagic oxygen and

calcium, with closed-shell protons, the mean von Neu-

mann equipartition entropy is largest in mid-subshell

isotopes like 20O and 44Ca. As the neutron number in-

creases past this point, the von Neumann entropy de-

creases as it reaches the corresponding subshell closure

isotopes, 22O, 24O and 48Ca, being minimum in the last

two nuclei. This is not only true for the central values,

but also for the standard deviations, which peak around

the midshell maximum and are the smallest in the cor-

responding subshell closures. These subshell structures

are more difficult to ascertain in the neon isotopic chain.

This is naively expected from a nuclear structure point

of view, since correlations smear the corresponding neu-

tron and proton single-particle structures.

5 Conclusions

In this work, we analyze entanglement features in the

nuclear shell model, with focus on Be, O, Ne and Ca

isotopes. We use different metrics to quantify the im-

portance of entanglement, including single-orbital en-

tropies, orbital-orbital mutual information, and the von

Neumann entropies between two equipartitions of the

valence space. In all cases, we find that the entangle-

ment properties are sensitive to the nuclear structure

and depend, in some cases strongly, on the (valence)

neutron and proton numbers. Nonetheless, different en-

tanglement metrics reflect different correlation features

within the system.

Single-orbital entanglement depends strongly on the

energy, angular momentum, and isospin of the corre-

sponding orbitals. It is mainly a reflection of the evo-

lution of the single-particle occupation numbers, which

is relatively well understood based on nuclear structure

insights.

Orbitals with either very small or very large occu-

pation numbers, however, can only have a limited con-

tribution to many-orbital entanglement, as computed

with the mutual information or equipartition entropies.

This is consistent with the discussion in section 3.2 on

how the allowed many-body states limit the construc-

tion of states following Eq. 11. In general, we find that

mutual information gives a good overall picture of the

entanglement structure. Mutual information displays

two key explicit features across the p, sd and pf shells.

First, there is an extremely low proton-neutron entan-

glement, compared to like-particle entanglement. Sec-

ond, the proton-proton and neutron-neutron pairs with

the largest mutual information are those with the same

single-particle energy, but opposite third-component of

the total angular momentum, m.

These two features are not unique to the mutual in-

formation metric, but turn out to be relatively generic.

We see these reflected, for instance, in the distribution

of von Neumann entropies corresponding to all the pos-

sible equipartitions in the system. In all cases studied so

far, we find that the proton-neutron partition presents

the lowest entanglement. Moreover, we find that, for all

available measures, the proton-neutron entanglement

decreases with neutron excess. This indicates that, in

order to simulate separately two halves of the valence

space, the optimal choice is to split this space in terms

of the isospin projection, tz. This is in agreement with

and extends previous findings [15]. Opposite m parti-

tions, in contrast, are close to the maximum allowed

entropies. For most of the isotopes studied here, we find

that the opposite m partition is more than 50% of the

maximum bound imposed by the dimension of the Fock

space.

These results showcase future possible avenues of

work. First, on the nuclear structure side, these very

same techniques could be employed for odd nuclei, whose

nuclear structure is not so much driven by nuclear pair-

ing compared to even-even systems. It would also be

interesting to analyze the nuclear structure of the same

nuclei studied in this work within the no-core shell

model, and within shell-model calculations based on ab-

initio effective Hamiltonians. It would be particularly

interesting to see if, and how, entanglement measures

can identify the apperance of a core and a valence space.

In addition, a comparison to the findings of the present

work would illuminate the structure of the additional

nuclear correlations captured by ab-initio frameworks.

Second, on the entanglement quantification front,

one may use other entanglement measures, like n−tangles,

to give a further insight into the topic. This is particu-

larly relevant in relation to multipartite entanglement

in fermionic systems [36].

Finally, it would be interesting to exploit our find-

ings in practical circuit simulations, a task we aim to

undertake in the near future. In particular, we plan to

exploit low entanglement partitions to build indepen-
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dent quantum circuits that allow for accurate, yet less

resource-intensive, results. Such concrete circuit pro-

posals may also lead to new performance comparisons

between different fermionic encodings, as some parti-

tions may only be unambiguously possible in specific

encodings. More interestingly, they may pave the way

for more efficient circuit designs to study atomic nuclei

across the nuclear chart with quantum simulations.
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