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a b s t r a c t

We study the interaction, in general curved spacetime, between a spinor and a scalar field describing
dark energy; the so-called DEν model in curved space. The dominant term is the dimension 5 operator,
which results in different energy shifts for the neutrino states: an Aharonov–Bohm-like effect. We
study the phenomenology of this term and make observational predictions to detect dark energy
interactions in the laboratory due to its effect on neutrino oscillation experiments, which opens up the
possibility of designing underground experiments to detect dark energy. This dimension 5 operator
beyond the Standard Model interaction is less suppressed than the widely discussed dimension 6
operator, which corresponds to mass varying neutrinos; the dimension 5 operator does not suffer
from gravitational instabilities.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The physical nature of the current phase of cosmic accelera-
ion [1,2], associated to an entity called Dark Energy (DE), remains
major mystery. This is despite the fact that it has been observa-
ionally studied intensively and confirmed via very different cos-
ological observables, most notably, the cosmic microwave back-
round (CMB) [3,4], supernovae [1,2], baryon acoustic oscillations
BAO) [5], large scale structure [6], cosmic chronometers [7–9]
nd weak lensing [10].
On the observational front, it is becoming clear that the ef-

ective equation of state of DE is compatible with a cosmological
onstant at the % level, i.e. w = −1 where p = wρ [3], with p
nd ρ being the pressure and energy density, respectively, of DE.
iven how strongly the observations suggest that DE is a cosmo-
ogical constant, it is interesting to explore possible alternatives,
iven the large difference between the value of the energy density
f a cosmological constant (which is ∼ (meV)4) and the vac-
um expectation value M4

p , where Mp is the Planck mass (see
.g. Ref. [11,12]). Further, but not exclusive to the cosmological
onstant, there is the coincidence problem (see e.g., Ref. [13,14]),
.e., the fact that the redshift of equality between CDM and Λ is
close to us in time.

In order to overcome all these problems, several alternatives
have been proposed. One of the first ideas was that of a dynamic
DE [15,16], which involves a minimally coupled dynamical scalar
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field (quintessence). The latter models have quickly gained pop-
ularity, as they alleviate the cosmological coincidence problem.
Further extensions of quintessence models include the addition
of a coupling with other sectors of the Universe, the so-called
interacting quintessence. Most interacting models couple DE to
the other ‘‘dark’’ component of the universe, Dark Matter (DM)
(see for instance Refs. [17–20]). However, a coupling of the scalar
field to DM in general induces effects akin to modifications of
gravity beyond the simple description offered by General Relativ-
ity (GR). These modifications are being increasingly constrained
by observations [21–35].

This shortcoming is avoided in a recently proposed alterna-
tive [36], where a generic scalar field is ‘‘frozen’’ in place by
coupling with neutrinos (or any other particle, although neu-
trinos have several advantages; for one, we know they exist),
and can thus act as DE. A coupling between neutrinos and the
scalar field responsible for DE is motivated by the similarity in
scale between neutrino rest-mass and the energy scale of dark
energy (∼ meV). Another advantage of neutrinos is that they
become non-relativistic at relatively recent redshifts (z ∼ 10)
thus providing a possible alleviation of the ‘‘why now?’’ problem.

The main aim of this paper is to develop the formalism in
curved space, using semi-classical effective field theory, for the
lowest order interaction between spinor and scalar fields in order
to constrain the possible interactions that could lead to momen-
tum (and energy) transfer as in the phenomenological model of
Ref. [36]. In order to do, so we explore all possible terms of
interaction permitted by the symmetries in the standard model
of particle physics (SM) to a scalar field. In this respect our
model is very minimal as it only requires the current standard
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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odel, which we know exists, and one extra scalar field, the
nly postulated ingredient in this model. Our derivation is totally
eneral and can be applied to any scenario in which a spinor and
scalar field interact in curved spacetime.
The structure of this paper is as follows: in Section 2 we

erive, within the effective field theory framework, equations of
otion due to a general type of interaction between a spinor
nd a scalar field that leads to momentum, and energy, transfer.
e explore the dynamics (using a semi-classical approach) and
henomenology (the effect on neutrino oscillations) of the 5th
imension operator in Section 3. We summarize our results in
ection 4. In an appendix, we solve the equations of motion of
imension operators 6 and 8 as to fully complete our analysis.
nits in which 8πG = c = 1, and a metric signature (− + ++)

will be used.

2. General framework

In this section, we present the general framework used to
study the interaction of a spinor field (particularly neutrino) and
a scalar field in curved background. This will be applicable to any
type of interaction between the two fields. In later sections we
specify the type of interactions and study their consequences (see
Ref. [37] for details on Spinors in curved spacetime).

What distinguishes neutrinos from other fields in curved
spacetime, is the fact that the general linear group GL(4), which
is that of general coordinate transformations, does not have
a spinorial representation. This inhibits the generalization of
equations of motion in the standard way (substituting partial
derivatives with covariant ones, and the flat metric with that of
curved background), and requires the use of tetrads, as we will
see shortly.

The most general action for a real classical scalar field ϕ and
a spinor field ψ , with its hermitian conjugate ψ†, interacting in a
curved spacetime with a metric gµν takes the form:

S = Sgravity + Sscalar + Sspinor + Sinteraction (1)

where Sgravity is the gravitational action, Sscalar is that of the scalar
field, Sspinor is the one of spinor fields and Sinteraction is for the
interaction term. Note that both fields are coupled minimally
to gravity, as a first step in studying the dynamics in curved
spacetime. More explicitly, this action takes the form:

S =

∫
d4x

√
−g

[
1
2
R −

1
2
DµϕDµϕ − V (ϕ)

+ ih̄
(
ψ̄γ µDµψ − Dµψ̄γ µψ

)
− 2mψ̄ψ + λΘ

] (2)

where g is the determinant of gµν , R = gµνRµν is the Ricci scalar,
the trace of the Ricci tensor Rµν and h̄ is the reduced Planck
constant. Moreover, Dµ is the spacetime covariant derivative that
takes into account the spin of the field. For instance, Dµ reduces
to a partial derivative ∂µ when applied to a scalar field, or to the
usual covariant derivative of GR, ∇µ, when applied to a vector
or tensor fields. The explicit form of the covariant derivative
for a spinor field in curved spacetime will be introduced later.
Furthermore, V (ϕ) is the potential for the scalar field and ψ̄ =

ψ†γ 0, with γ 0 being one of the Dirac gamma matrices γ µ. Finally,
m is the mass of the spinor field, λ is the coupling constant
between the scalar and the spinor, as described by the interaction
term Θ(ψ, ϕ, Xψ , Xϕ), with Xµϕ

(
Xµψ

)
= ∇

µϕ
(
Dµψ

)
.

The equation of motion for the spinor field is obtained by
varying (1) with respect to the spinor field:

1
√

−g
δS
δψ̄

= 0 ⇒ ih̄γ µDµψ − mψ = −
λ

2

(
∂Θ

∂ψ̄
− Dµ ∂Θ

∂Xµ
ψ̄

)

(3)

2

which will be our main focus in this work. The variation of the
action with respect to ψ will give the complex conjugate of (3).
or completeness, we state the equation of motion for the scalar
ield:

ϕ −
∂V
∂ϕ

= −λ

(
∂Θ

∂ϕ
− ∇

µ ∂Θ

∂Xµϕ

)
. (4)

where □ = gµν∇µ∇ν .

3. Dimension 5 operator: Linear derivative coupling

In effective field theory, the lowest order interaction term
beyond the SM interactions, between spinor and scalar fields
which is allowed by the SM and GR symmetries, is1:

Θ = Jµ∇µϕ (5)

where Jµ = ψ̄γ µψ . The Dirac equation in curved spacetime (3)
is:(
ih̄γ µDµ − m

)
ψ = −

λ

2
γ µψ∇µϕ. (6)

If we focus on regions much smaller than the curvature scale, we
can use the WKB approximation to study the dynamics of spinors
in a gravitational field [38] (see Appendix A for a brief discussion
on the WKB approximation). The strategy would be to expand the
field in powers of h̄, and then study the dynamics at each power.
In this case, the spinor field can be written as2:

ψ(x) = eiS(x)/h̄
∞∑
n=0

(−ih̄)nψn(x) (7)

where the ψns are also spinors. Plugging this in (6), keeping terms
up to first order, we get:[

−
(
γ µ∂µS + m

)
+
λ

2
γ µ∂µϕ

]
ψ0

+ ih̄
[(
γ µ∂µS + m −

λ

2
γ µ∂µϕ

)
ψ1 + γ µDµψ0

]
= 0.

(8)

3.1. Solution at 0th order in WKB expansion

From (8), we can read off the 0th order equation to be:(
γ µ∂µS + m

)
ψ0 =

λ

2
γ µ∂µϕψ0. (9)

A non-trivial solution for this algebraic set of equations exists if

det
[
γ µ∂µ

(
S −

λ

2
ϕ

)
+ m

]
= 0

⇒ ∂µ

(
S −

λ

2
ϕ

)
∂µ

(
S −

λ

2
ϕ

)
= −m2,

(10)

hich is the Hamilton–Jacobi equation for a spinless relativistic
article. Therefore, its canonical 4-momentum and 4-velocities
re defined as:

α
= ∂α

(
S −

λ

2
ϕ

)
; uα =

pα

m
(11)

iving the usual normalizations:
αpα = −m2

; uαuα = −1. (12)

otice that if we calculate the vorticity ωαβ =
1
2

(
∇αuβ − ∇βuα

)
by direct substitution of (11) we find that it is 0. Hence, at 0th

1 Note that this interaction does not produce any gravitational instabilities,
s already shown in Ref. [36]
2 Note that here the phase S(x) is slowly varying compared to ψn . Therefore

there is no need to apply a WKB expansion on the phase.



A.R. Khalifeh and R. Jimenez Physics of the Dark Universe 31 (2021) 100777

o
0
e

u

w

o
f

g

w
g

i
b
c

L

T

π

a

T
t
a
W
i
d
e
g
f

w

w

i

w
t
i
b
c
f[

a
f
f

M

i
s
t

w

A

w

rder, the spinor field is equivalent to an irrotational fluid of spin
particles. This means that these particles follow the geodesic
quation without alteration:

α
∇αuβ = 0 ⇒

dpα

dτ
+

1
m
Γ α
βγ p

βpγ = 0 (13)

here τ is the proper time of the particle. This result is consistent
with the findings of Ref. [36], and it will be at every order in h̄, as
ne can check by simply noticing that the equation of the scalar
ield does not change. Indeed the latter is:

µν
∇µ∇νϕ −

∂V
∂ϕ

= −λ

(
∂Θ

∂ϕ
− ∇

µ ∂Θ

∂Xµϕ

)
= −λDµJµ = 0 (14)

here the last equality follows from (6) and its complex conju-
ate.
Although this type of interactions does not affect the dynam-

cs, it still causes a shift in the energy of the neutrinos, as has
een claimed previously in Ref. [36]. To see this quantitatively,
onsider the Lagrangian density for neutrinos:

ν = ih̄
(
ψ̄γ µDµψ − Dµψ̄γ µψ

)
− 2mψ̄ψ + λψ̄γ µψ∂µϕ. (15)

he conjugate momentum of the field would be:

ν = πψ + πψ̄ =
δLν
δDtψ

+
δLν
δDt ψ̄

(16)

nd therefore the Hamiltonian density would be:

H = πψDtψ + πψ̄Dt ψ̄ − L

= ih̄
(
ψ̄γ⃗ .D⃗ψ − D⃗ψ̄.γ⃗ ψ

)
+ 2mψ̄ψ − λψ̄γ µψ∂µϕ.

(17)

he last term is an additional contribution to the neutrino energy
hat comes from this interaction. If we consider a homogeneous
nd isotropic scalar field, i.e ϕ = ϕ(t), then at 0th order in
KB expansion, this term would be of the form n̄ν ϕ̇, where n̄ν

s the average number density of the neutrino particles, and a
ot denotes derivative with respect to cosmic time. More inter-
stingly, if the neutrino fluid is moving with a bulk velocity in a
ravitational potential well, the additional term would take the
orm λn̄ν

(
ϕ̇ + v⃗.∇⃗ϕ

)
, where v⃗ is the bulk velocity. Of course

this effect will be at perturbation level if we are considering a
homogeneous and isotropic scalar field.

Let us see now in more detail the effect of this shift in energy
on neutrino oscillations, and constrain the coupling λ to get an
observable effect.

3.2. Phenomenology of 5th dim operator: Effect on neutrino oscilla-
tions

When studying neutrino oscillations, it is customary to write
the neutrino state in terms of mass eigenstates and spacetime
coordinates, as done for instance in Refs. [39,40]. However, since
we are considering curved spacetime, it would be better to write
things in a covariant way [41]:

|Ψα(λ)⟩ =

∑
j

Uαje
i
∫ λ
λ0

P⃗ .q⃗dλ′

|νj⟩ (18)

here |Ψα⟩ is the neutrino state that was initially in a flavor α
and λ is the affine parameter that characterizes the neutrino’s
world-line, with λ0 its value today. Moreover, Uαj is the con-
version matrix between flavor and mass eigenstates, P⃗ is the
4-momentum operator (generating spacetime translations) of the
mass eigenstates |νj⟩ and q⃗ = dx⃗/dλ is a null vector tangent
to the neutrino’s world-line x⃗(λ) =

[
t(λ), x(λ), y(λ), z(λ)

]
. If

we concentrate on transitions between electron neutrinos, ν ,
e
3

and muon neutrinos, νµ, we can define a vector of transition
amplitudes:

χ (λ) =

[
⟨νe|Ψ (λ)⟩
⟨νµ|Ψ (λ)⟩

]
(19)

hich satisfies the differential equation:
dχ
dλ

= P⃗ .q⃗ χ, (20)

ith the solution given in (18). Our goal is therefore to calculate
he quantity P⃗ .q⃗ for neutrinos traveling in curved spacetime and
nteracting with the scalar field ϕ, with an interaction given
y (5). To this end, let us rewrite the Dirac equation (6) for a
olumn vector of neutrino flavors ψf (we consider two neutrino
lavors for simplicity):

ih̄
(
γ µDµ −

i
h̄
AϕµPL

)
− Mf

]
ψf = 0 (21)

where

Aϕµ = −
1
2
∂µϕ

(
λe 0
0 λµ

)
(22)

nd we are considering different coupling constants for the two
lavors νe and νµ. Moreover, Mf is the vacuum mass matrix in
lavor space, given by:

2
f = U

(
m2

1 0
0 m2

2

)
U† (23)

where

U =

(
cos θ sin θ

− sin θ cos θ

)
(24)

is the mixing matrix, with mixing angle θ , that transforms from
one basis to another, and m1 and m2 are eigenvalues for mass
eigenstates. Finally, PL =

1
2 (1 − γ 5) is the left-handed projection

operator. From now on we will focus on left-handed neutrinos
only, and therefore drop this factor. Furthermore, the explicit
form of the covariant derivative is [42]

γ µDµ = γ aeµa
(
∂µ + Γµ

)
(25)

where γ a are the Dirac matrices in local inertial coordinates, eµa
are tetrad (or vierbein) fields that connect general coordinates to
local ones, and

Γµ =
1
8

[
γ b, γ c]eνb∇µecν (26)

s the spin connection that describes the effect of gravity on the
pin of the particle, with

[
γ a, γ b

]
being the commutator of the

wo matrices γ a and γ b. We adopt the convention that Latin
indices correspond to local inertial coordinates, while Greek ones
correspond to general coordinates. From here, it can be shown
that

γ aeµa Γµ =
i
h̄
γ aeµa AGµ (27)

here
µ

G =
1
4
√

−geµa ϵ
abcd(∂σ ebν − ∂νebσ )eνc e

σ
d (28)

ith ϵabcd being the Levi-Civita symbol in four dimensions. Hence,
the Dirac equation will take the form:[
ih̄γ µ

(
∂µ −

i
h̄
Aµ

)
− Mf

]
ψf = 0 (29)

with Aµ = AµG + Aµϕ . For this equation to have a non-trivial
solution, the mass-shell relation must be satisfied, i.e:(
Pµ + Aµ

)(
P + A

)
= M2. (30)
µ µ f
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(

e already know what q⃗ is and that it satisfies the geodesic
equation. Since we want to find P⃗ .q⃗, we can construct P⃗ as done
n [41]: First, take neutrinos to be energy eigenstates, that is
0

= q0. Second, assume P⃗ and q⃗ to be parallel (we do not
eally need the perpendicular component, since we are taking
nner product of the two vectors in the end), which means we
an write P i

= qi(1 − ϵ). Finally, for relativistic neutrinos, ϵ ≪ 1,
nd therefore (30) gives:

⃗.q⃗ = −ϵ
(
g0iq0qi + gijqiqj

)
=

1
2
M2

f − qµAµ. (31)

e can now write (18) as

Ψα(λ)⟩ =

∑
j

UαjeiΩ |νj⟩ (32)

here

=

∫ λ

λ0

(
1
2
M2

f − qµAµ

)
dλ′. (33)

or a flat FRW universe:

s2 = −dt2 + a2δijdxidxj. (34)

convenient choice for the tetrad fields is:
µ
a = diag

[
1, a−1, a−1, a−1] (35)

rom which one can show, after some algebra, that AµG=0. Physi-
ally, this can be seen as a consequence of having a homogeneous
nd isotropic spacetime, and therefore there would be no alter-
tion in the spin direction. Furthermore, using (34), one can show
hat if neutrinos are traveling along null trajectories, which is
onvenient when studying oscillations, then the affine parameter
s related to cosmic time by:

t = Edλ (36)

here E = q0 is the neutrino energy. From here, we can
write (20) as

i
dχ
dt

= −
1
2E

(
M2

f + Vϕ

)
χ (37)

here

ϕ = −2qµAϕµ = Eϕ̇
(
λe 0
0 λµ

)
(38)

nd we have take into account that, at the background level,
= ϕ(t). On the other hand, when written explicitly from (23),

2
f =

(
m2

1 +∆ sin2 θ 1
2∆ sin 2θ

1
2∆ sin 2θ m2

1 +∆ cos2 2θ

)
=

(
m2

1 +
1
2
∆

)
I +

1
2
∆

(
− cos 2θ sin 2θ
sin 2θ cos 2θ

)
(39)

where ∆ = m2
2 − m2

1 and I is the identity matrix. The term
proportional to the identity matrix in the above will be a common
phase factor for both transition amplitudes, hence we can ignore
it for oscillation purposes. Moreover, if we want to measure this
effect on Earth, we can consider distances small enough for us
to safely assume a Minkowsky spacetime, in which case we can
write dt ≈ dx. In addition, to detect the effect of this interaction
on neutrino oscillations, we look at the difference in frequency Ω
between the presence of this interaction and its absence:

∆Ω = Ω −ΩNoInt =
1
2E

∫ x

x0
Vϕdx′ (40)

here ΩNoInt is the frequency without interactions and x0 is the
osition of Earth. So, for a specific flavor i,

Ωi =
λi

∫ x

Eϕ̇ dx′. (41)

2E x0

m

4

Let us assume, for order of magnitude estimate purposes, that E
nd ϕ̇ are roughly constants. Therefore

i ∼
∆Ωi

ϕ̇∆x
(42)

here ∆x is the distance traveled by the neutrino between its
nteraction and detection points. This will give us the order of
agnitude of the interaction parameter depending on the na-

ure of the scalar field under consideration. For instance, if ϕ
s supposed to describe DE, then its energy scale is O(meV),
hence ϕ̇ ∼ 10−8eV2. If the distance traveled is of the size
of our galaxy (around 50kpc), to get a difference in frequency
O(π ), then λi ∼ 10−9GeV−1. On the other hand, if the scalar
ield is the Higgs, which means its energy scale is O(100GeV),
hen ϕ̇ ∼ 1020eV2, and so λi ∼ 10−37GeV−1. It is more likely
therefore that this interaction to be relevant for DE rather than
the Higgs. In other words, the DE cannot be the Higgs field in
this model, but we need to postulate an extra scalar field. We will
discuss elsewhere signatures of this models in specific neutrino
oscillation experiments like IceCube. Here we only note that the
effect is in principle measurable.

In the above discussion, we have not seen a direct effect on
the equations of motion due to the curved gravitational field. This
will be apparent at 1st order in the WKB expansion.

3.3. Solution at 1st order in WKB expansion

From (8), we can read off the 1st order equation of motion to
be(
γ µ∂µ

(
S −

λ

2
ϕ

)
+ m

)
ψ1 = −γ µDµψ0. (43)

ince this is a non-homogeneous linear algebraic equation, the
olutions of the homogeneous equation for a Hermitian system,
hich is ψ0, should be orthogonal to the inhomogeneity, i.e.3

¯ 0γ
µDµψ0 = 0, (44)

n order to insure non-trivial solutions at 1st order. This relation
an be used to show that

αDαψ0 = −
θ

2
ψ0 (45)

here θ = Dαuα , which is equivalent to saying that ψ0 fol-
ows a sourced geodesic in curved spacetime. Moreover, for later
onvenience, define a spinor ξ0 such that

0 = f (x)ξ0, (46)

here f (x) is a function of the coordinates. Therefore, the above
relation translates into:

uα∂α f = −
θ

2
f ; uαDαξ0 = 0. (47)

As we will see shortly, these relations are useful when calculating
the deviation from the 0th order geodesic motion due to curva-
ture of spacetime. To this end, let us start by noticing that the
Dirac current, Jµ = ψ̄γ µψ can be decomposed into convection
and magnetization currents4:

Jµ = Jµc + JµM (48)

where

Jµc = −
h̄

2mi

[(
D̃µψ̄

)
ψ − ψ̄D̃µψ

]
; JµM =

h̄
2m

D̃ν
(
ψ̄σµνψ

)
(49)

3 This equation can be proved directly from the complex conjugate of (9) and
43).
4 This relation can be derived by starting from the definition of the
agnetization current and using the Dirac equation.
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re the convective and magnetization currents, respectively, with
˜ν = Dν − i λ2 ∂νϕ and σµν =

i
2 [γ

µ, γ ν]. Using the WKB
xpansions (7) and (46), we get the convection current to be, to
st order in h̄:

µ
c = f 2

[
uµ −

h̄
2mi

(
D̃µξ̄0ξ0 − ξ̄0D̃µξ0

)]
+ O(h̄2). (50)

Moreover, the convection current describes the probability flow
of a particle moving with a velocity vµ, i.e it is proportional to
the latter, which is

vµ = uµ −
h̄

2mi

(
D̃µξ̄0ξ0 − ξ̄0D̃µξ0

)
. (51)

herefore the deviation from geodesic motion at order h̄ is

uµ =
h̄

2mi

(
D̃µξ̄0ξ0 − ξ̄0D̃µξ0

)
=

h̄
2mi

(
Dµξ̄0ξ0 − ξ̄0Dµξ0

)
(52)

here the last equality shows that the linear derivative coupling
as no effect on the dynamics, as expected. Note that this de-
iation from geodesic motion can be interpreted in terms of an
dditional force due to the spin-curvature coupling, which can be
ritten as

µ
= m

Dvµ

Dτ
= mvνDνvµ =

h̄
4
gµνuαRναγ δ ξ̄0σ γ δξ0 (53)

here Rναγ δ is the Riemann curvature tensor (see [42] for details
bout the derivation). What this means is that there will be a
orce due to the interaction of the spinor neutrino field with
ravity, at order h̄. This force will result in a change of the
eutrino momentum that appears in Section 3.2, and therefore
ill affect the resulting neutrino oscillations. Furthermore, this
dditional force will change the scaling of the momentum with
he scale factor. However, observationally, it would be difficult to
etect such a change with current technologies due to the fact
hat this extra term is O(h̄) smaller than the other terms in the
eodesic equation. We will leave the details of this result for fu-
ure work. Note also that this force will not alter the dynamics of
he scalar field for two reasons: first, this force exists irrespective
f whether there is an interaction between the spinor and the
calar fields (as we have shown above), and second, as the scalar
ield is a classical field, such an effect would not alter its motion.

This concludes the results for the linear derivative coupling
etween the neutrino spinor and a scalar field. As we can see,
his type of interaction affects the energy density of the spinor
ield, but does not alter the dynamics. The latter change due to
he spin-curvature coupling at order h̄.

4. Discussion and summary

We have studied the interactions between spinor and scalar
fields in curved spacetime, respecting all symmetries allowed by
the SM of particle physics. We have studied the most dominant
interaction beyond the SM ones in a semi-classical manner, using
the WKB approximation. This term is the 5th dimension interac-
tion which causes a shift in the energy of neutrinos. This shift
is similar to the Aharonov–Bohm effect, as the one described
qualitatively in section 5 of the DEν model [36], and therefore
e were able to confirm this quantitatively. We have studied
he phenomenology of this effect on neutrinos oscillations and
rovided a test for underground laboratories to detect this inter-
ction. This could open the possibility of detecting dark energy in
he laboratory.
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Appendix A. WKB approximation

The Wentzel, Kramers, Brillouin (WKB) approximation is a
method for obtaining a global approximation to the solution of a
linear differential equation whose highest derivative is multiplied
by a small parameter [43]. In Quantum Mechanics, it is usually
used to solve for the wave function of the Schrödinger equation
in regions where the wavelength is much smaller than the typical
distance over which the potential energy varies [44]. This is the
key requirement for the applicability of the WKB approximation,
which allows one then to assume a solution ψ(x) of the form

ψ(x) = eif (x)/h̄ (A.1)

where f (x) is a complex function. By expanding f (x) in powers
of h̄, plugging in the Schrödinger equation, and solving at each
level in powers of h̄, one can then get an approximate solution
to the problem considered(see, for instance, problem 8.2 in [45].
The 0th order solution will give the classical solution to the
Hamilton–Jacobi equation, which shows why the WKB method is
a semi-classical approximation. For the situation discussed in our
paper, the same concept applies, where we focus on regions such
that the wavelength is much smaller than the typical distance
over which the curvature varies (in the case of an FLRW universe,
we would be interested in cases where k ≫ H , with k being
the wavenumber). As a generalization of (A.1), one can use the
solution presented earlier in this work, Eq. (7), as has been done
in [46–49].

Appendix B. 6th dimension operator: Non-linear coupling

In these two appendices we give some details on the sub-
dominant interaction terms to the 5th-dimension one. The pur-
pose is to provide details for other sub-dominant physical effects
that can occur at different epochs.

Consider the case where the coupling is

Θ = ih̄ψ̄γ µDµψϕ2. (B.1)

Inserting this in (3), we get(
ih̄/D − m

)
ψ =

ih̄λ
2
/Dψϕ2 (B.2)

where /D = γ µDµ, a notation that applies to any slashed 4-vector.
Note that this coupling will be an order of magnitude weaker than
the dimension 5 for the same coupling constant, and so its effect
on neutrino oscillations would be suppressed. Applying the WKB
approximation (7) to this equation gives, up to order h̄:[(

1 −
λϕ2

2

)
/∂S + m

]
ψ0

− ih̄
{[(

1 −
λϕ2

2

)
/∂S + m

]
ψ1 +

(
1 −

λ

2
ϕ2

)
/Dψ0

}
= 0

(B.3)

rom which we can start our analysis at each order in h̄.

.1. Solution at order h̄0

We can read off the equation of motion at this order from (B.3)
o be(

1 −
λϕ2 )

/∂S + m
]
ψ0 = 0. (B.4)
2
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he evolution equation of the 4-momentum along the world line
ould be

dpα

dτ
+

1
m
Γ α
βγ p

βpγ = −
λϕ

m
(
1 −

λϕ2

2

)(
m2Xαϕ + pαpβXβϕ

)
. (B.5)

Out of curiosity, if we multiply (B.5) by m and define m2
eff =

2m2 ln
(
1 − λϕ2/2

)
, (B.5) becomes

m
dpα

dτ
+ Γ α

βγ p
βpγ = meff

dmeff

dϕ
∂̃αϕ (B.6)

here ∂̃α = ∂α + uαuβ∂β , which can be interpreted as resulting
from a boost in spacetime. This result is very similar to the one
coming from mass varying neutrinos [50,51], thus we will not
delve much into it in detail. Before going to the order h̄ solution,
let us study the consequences of this interaction in a flat FRW
universe.

B.1.1. Solution at order h̄0 in a flat FRW universe
Consider the metric of spacetime (34). The 0th component

of (B.5) gives

1
p
dp
dt

+
1
a
da
dt

= −
1

1 −
λϕ2

2

d
dt

(
1 −

λϕ2

2

)
, (B.7)

here we have used the fact that p0 = E =

√
p2 + m2 and

herefore dp0/dτ = (p/m)dp/dt . Note again, due to homogeneity
nd isotropy, at the background level, ϕ = ϕ(t). The solution
or (B.7) is simply

=
p0
ã

; ã = a
(
1 −

λϕ2

2

)
. (B.8)

here p0 is a positive integration constant. This result shows a
hift in the momentum of the neutrino when approximated as a
lassical particle with spin 0. This shift involves a ϕ2 term, which
s similar to a mass term for the scalar field. Moreover, since p
s a non-negative quantity, this means that λϕ2 < 2 in our units.
his also avoids a divergence in the amplitude of the momentum.
We can use this result to see the effect this interaction has on

eutrino decoupling and Matter–radiation equality redshift. If we
ssume that our effective field theory approach can be extended
o energies O (1 MeV), then, since at those energies neutrinos are
till relativistic, and that for a relativistic particle p ∝ T , where T
s the temperature, then:

Tν
Tγ

=

(
8
11

)1/3(
1 −

λϕ2

2

)−1

, (B.9)

ith Tν and Tγ are the temperatures of neutrinos and photons,
espectively. Note that the factor (8/11)1/3 appears instead of the
sual (4/11)1/3 is because, at this level in our WKB expansion,
eutrinos are approximated as spin 0 particles, therefore Bosons.
his result will then change the radiation content today, to be:

r0 = Ωγ 0

(
1 + Nν

(
8
11

)1/3(
1 −

λϕ2

2

)−1)
, (B.10)

where Ωr0 and Ωγ 0 are the radiation and photon density param-
eters today, respectively, which are explicitly defined as Ωi =

8πGρi/3H2
0 for a specie i with energy density ρi. Matter–radiation

equality occurs when
Ωr0

a4eq
=
Ωm0

a3eq
, (B.11)

ith Ωm0 being the density parameter of matter today, and
is the scale factor at equilibrium. This gives the redshift at
eq

6

atter–radiation equality to be:

+ zeq =
Ωm0

Ωγ 0

[
1 + Nν

(
8
11

)1/3(
1 −

λϕ2

2

)−1]−1

. (B.12)

If we use the latest Planck results [3] for the density parameters,
zeq and Nν , we find λϕ2/2 ∼ O(1).

B.2. Solution at order h̄1

At this order, from (B.3), the equation of motion is:[(
1 −

λϕ2

2

)
/∂S + m

]
ψ1 = −

(
1 −

λϕ2

2

)
/Dψ0 (B.13)

which can be used along with the complex conjugate of (B.4)
to find that, also with this type of coupling, ψ0 satisfies (44).
However, when written as in (46), the equation that f (x) satisfies
is slightly altered:

uα∂α f = −
1
2

(
1 −

λϕ2

2

)
θ̃ f ; θ̃ = ∇α

[(
1 −

λϕ2

2

)−1

uα
]

(B.14)

while the one for ξ0(x) is still the same.
As has been done for the case of the 5th dimensional operator,

we divide the Dirac current into convection and magnetization
ones, and find the former to be in this case:

Jµ = f 2
[
uµ +

h̄
2mi

(
ξ̄0D̃µξ0 − D̃µξ̄0ξ0

)]
+ O(h̄2) (B.15)

but now D̃µ
=

(
1−

λϕ2

2

)
Dµ. From here, the velocity would be:

µ
= uµ +

h̄
2mi

(
ξ̄0D̃µξ0 − D̃µξ̄0ξ0

)
(B.16)

and therefore the force that will alter the motion of the h̄0 order
would be:
f µ

m
=

h̄
4m

uνgµα
(
1 −

λϕ2

2

)
Rανγ δ ξ̄0σ γ δξ0

+
uνgµα(
1 −

λϕ2

2

)λϕ(
∂αϕδuν − ∂νϕδuα

)

+
δuβgµα

2
(
1 −

λϕ2

2

)λϕ(
uα∂βϕ − ∂αϕuβ

)
(B.17)

here

uµ =
h̄

2mi

(
ξ̄0D̃µξ0 − D̃µξ̄0ξ0

)
. (B.18)

We can see the difference between this interaction and that
of the 5th dimension operator. Because the former does alter the
dynamics of the species involved, this alteration is manifested as
well at first order in WKB, albeit in a slightly complicated way.
Note also that there will be no divergence in this force, as we can
see from the definition of D̃µ.

We will now consider the last possible operator beyond the
SM. We will focus only on the order h̄0 solution and its implica-
tions on the dynamics.

Appendix C. 8 dimensional operator: Non-linear derivative
coupling

Consider the case where

Θ = ihψ̄ /Dψ∂ ϕ∂µϕ (C.1)
¯ µ
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T
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R

hich gives the equation of motion:

ih̄/D − m
)
ψ =

ih̄λ
2
ψ∂µϕ∂

µϕ. (C.2)

One can see that the result is very similar to the one in the pre-
vious section, under the substitution of ϕ2 with ∂µϕ∂µϕ. There-
fore we will avoid repeating the procedure explained above, and
restrict to listing the final relevant results.

At h̄0 order, the spinor follows:[(
1 − λ/2∂µϕ∂µϕ

)
/∂S + m

]
ψ0 = 0 (C.3)

and therefore the resulting 4-momentum will take the form:

pα =
(
1 − λ/2∂µϕ∂µϕ

)
∂αS. (C.4)

Again, with this type of interactions, the vorticity would be non-
zero:

ωαβ =
λXγϕ

2m
(
1 − λ/2(Xϕ)δX δϕ

) [
∇βXγϕ pα − ∇αXγϕ pβ

]
. (C.5)

This results in the following evolution equation for the
4-momentum:

dpα

dτ
+

1
m
Γ α
βγ p

βpγ = −
λ(Xϕ)γ

m
(
1 − λ/2(Xϕ)δX δϕ

) (
m2gαβ+pαpβ

)
∇βXγϕ .

(C.6)

As we did for the 6th dimension operator, we can multiply the
above by m and define an m2

eff = 2m2 ln
[
1− λXγϕ (Xϕ)γ /2

]
to get

m
dpα

dτ
+ Γ α

βγ p
βpγ = meff

dmeff

dXγϕ
∇̃
αXγϕ (C.7)

where ∇̃
α

= ∇
α
+uαuβ∇β (boost like operator). This again can be

interpreted in terms of mass varying neutrinos, however this time
the variation is coming from a kinetic term, i.e thermal motion,
while in the 6th dimension case it was due to a potential term
of the scalar field. If we now study the dynamics in a flat FRW
universe (34), we find the evolution equation for the amplitude
of the momentum in cosmic time to be
1
p
dp
dt

+
1
a
da
dt

= −
1

1 +
λϕ̇2

2

d
dt

(
1 +

λϕ̇2

2

)
, (C.8)

nd the solution

=
p0
ã

; ã = a
(
1 + λϕ̇2/2

)
. (C.9)

he same shift in the evolution of the momentum is happening
ere as in the 6 dimensional operator, but now the shift is due to
kinetic-like term. The existence of this kinetic term allows us to
nterpret this redshift in the momentum of the neutrino as being
ue to the thermal motion of the scalar ‘‘particles’’.

eferences

[1] A.G. Riess, et al., Observational evidence from supernovae for an accelerat-
ing universe and a cosmological constant, Astron. J. 116 (1998) 1009–1038,
http://dx.doi.org/10.1086/300499, arXiv:astro-ph/9805201.

[2] S. Perlmutter, et al., Measurements of Omega and Lambda from 42 high
redshift supernovae, Astrophys. J. 517 (1999) 565–586, http://dx.doi.org/
10.1086/307221, arXiv:astro-ph/9812133.

[3] N. Aghanim, et al., Planck 2018 results. VI. Cosmological parameters, arXiv:
1807.06209.

[4] D.N. Spergel, et al., Wilkinson Microwave anisotropy probe (WMAP) three
year results: Implications for cosmology, Astrophys. J. Suppl. 170 (2007)
377, http://dx.doi.org/10.1086/513700, arXiv:astro-ph/0603449.

[5] D.J. Eisenstein, et al., Detection of the Baryon acoustic peak in the
large-scale correlation function of SDSS luminous red galaxies, Astrophys.
J. 633 (2005) 560–574, http://dx.doi.org/10.1086/466512, arXiv:astro-ph/
0501171.
7

[6] M. Colless, et al., The 2dF galaxy redshift survey: Spectra and redshifts,
Mon. Not. R. Astron. Soc. 328 (2001) 1039, http://dx.doi.org/10.1046/j.
1365-8711.2001.04902.x, arXiv:astro-ph/0106498.

[7] J. Simon, L. Verde, R. Jimenez, Constraints on the redshift dependence
of the dark energy potential, Phys. Rev. D 71 (2005) 123001, http://dx.
doi.org/10.1103/PhysRevD.71.123001, URL https://link.aps.org/doi/10.1103/
PhysRevD.71.123001.

[8] M. Moresco, A. Cimatti, R. Jimenez, L. Pozzetti, G. Zamorani, M. Bolzonella,
J. Dunlop, F. Lamareille, M. Mignoli, H. Pearce, Improved constraints on
the expansion rate of the Universe up to z ∼1.1 from the spectroscopic
evolution of cosmic chronometers, J. Cosmol. Astropart. Phys. 2012 (8)
(2012) 006, http://dx.doi.org/10.1088/1475-7516/2012/08/006, arXiv:1201.
3609.

[9] M. Moresco, L. Pozzetti, A. Cimatti, R. Jimenez, C. Maraston, L. Verde,
D. Thomas, A. Citro, R. Tojeiro, D. Wilkinson, A 6% measurement of the
Hubble parameter at z ∼ 0.45: Direct evidence of the epoch of cosmic
re-acceleration, J. Cosmol. Astropart. Phys. 1605 (05) (2016) 014, http:
//dx.doi.org/10.1088/1475-7516/2016/05/014, arXiv:1601.01701.

[10] C.R. Contaldi, H. Hoekstra, A. Lewis, Joint cosmic microwave background
and weak lensing analysis: Constraints on cosmological parameters, Phys.
Rev. Lett. 90 (2003) 221303, http://dx.doi.org/10.1103/PhysRevLett.90.
221303, arXiv:astro-ph/0302435.

[11] S. Weinberg, The cosmological constant problem, Rev. Modern Phys. 61
(1989) 1–23, http://dx.doi.org/10.1103/RevModPhys.61.1.

[12] S. Weinberg, Theories of the cosmological constant, in: Critical Dialogues
in Cosmology, 1996, pp. 195–203, arXiv:astro-ph/9610044.

[13] I. Zlatev, L. Wang, P.J. Steinhardt, Quintessence, cosmic coincidence and
the cosmological constant, Phys. Rev. Lett. 82 (1999) 896–899, http://dx.
doi.org/10.1103/PhysRevLett.82.896, arXiv:astro-ph/9807002.

[14] H.E.S. Velten, R.F. vom Marttens, W. Zimdahl, Aspects of the cosmological
?coincidence problem? Eur. Phys. J. C 74 (11) (2014) 3160, http://dx.doi.
org/10.1140/epjc/s10052-014-3160-4, arXiv:1410.2509.

[15] B. Ratra, P.J.E. Peebles, Cosmological consequences of a rolling homoge-
neous scalar field, Phys. Rev. D 37 (1988) 3406–3427, http://dx.doi.org/10.
1103/PhysRevD.37.3406, URL https://link.aps.org/doi/10.1103/PhysRevD.37.
3406.

[16] R.R. Caldwell, R. Dave, P.J. Steinhardt, Cosmological imprint of an energy
component with general equation of state, Phys. Rev. Lett. 80 (1998)
1582–1585, http://dx.doi.org/10.1103/PhysRevLett.80.1582, arXiv:astro-ph/
9708069.

[17] S. Micheletti, E. Abdalla, B. Wang, A field theory model for dark matter
and dark energy in interaction, Phys. Rev. D 79 (2009) 123506, http:
//dx.doi.org/10.1103/PhysRevD.79.123506, arXiv:0902.0318.

[18] B. Wang, E. Abdalla, F. Atrio-Barandela, D. Pavon, Dark matter and dark
energy interactions: Theoretical challenges, cosmological implications and
observational signatures, Rep. Progr. Phys. 79 (9) (2016) 096901, http:
//dx.doi.org/10.1088/0034-4885/79/9/096901, arXiv:1603.08299.

[19] C.G. Böhmer, G. Caldera-Cabral, R. Lazkoz, R. Maartens, Dynamics of dark
energy with a coupling to dark matter, Phys. Rev. D 78 (2008) 023505,
http://dx.doi.org/10.1103/PhysRevD.78.023505, arXiv:0801.1565.

[20] L. Lopez Honorez, B.A. Reid, O. Mena, L. Verde, R. Jimenez, Coupled dark
matter-dark energy in light of near universe observations, J. Cosmol.
Astropart. Phys. 2010 (9) (2010) 029, http://dx.doi.org/10.1088/1475-7516/
2010/09/029, arXiv:1006.0877.

[21] C. Wetterich, An asymptotically vanishing time-dependent cosmological
constant, Astron. Astrophys. 301 (1995) 321, arXiv:hep-th/9408025.

[22] J. Väliviita, E. Majerotto, R. Maartens, Large-scale instability in interacting
dark energy and dark matter fluids, J. Cosmol. Astropart. Phys. 2008
(7) (2008) 020, http://dx.doi.org/10.1088/1475-7516/2008/07/020, arXiv:
0804.0232.

[23] E. Majerotto, J. Väliviita, R. Maartens, Instability in interacting dark energy
and dark matter fluids, Nucl. Phys. B 194 (2009) 260–265, http://dx.doi.
org/10.1016/j.nuclphysbps.2009.07.089.

[24] E. Majerotto, J. Väliviita, R. Maartens, Adiabatic initial conditions for per-
turbations in interacting dark energy models, Mon. Not. R. Astron. Soc. 402
(4) (2010) 2344–2354, http://dx.doi.org/10.1111/j.1365-2966.2009.16140.x,
arXiv:0907.4981.

[25] J. Väliviita, R. Maartens, E. Majerotto, Observational constraints on
an interacting dark energy model, Mon. Not. R. Astron. Soc. 402
(4) (2010) 2355–2368, http://dx.doi.org/10.1111/j.1365-2966.2009.16115.x,
arXiv:0907.4987.

[26] L. Amendola, Perturbations in a coupled scalar field cosmology, Mon. Not.
R. Astron. Soc. 312 (3) (2000) 521–530, http://dx.doi.org/10.1046/j.1365-
8711.2000.03165.x, arXiv:astro-ph/9906073.

[27] L. Amendola, Coupled quintessence, Phys. Rev. D 62 (4) (2000) 043511,
http://dx.doi.org/10.1103/PhysRevD.62.043511, arXiv:astro-ph/9908023.

[28] A.V. Macciò, C. Quercellini, R. Mainini, L. Amendola, S.A. Bonometto,
Coupled dark energy: Parameter constraints from N-body simulations,
Phys. Rev. D 69 (12) (2004) 123516, http://dx.doi.org/10.1103/PhysRevD.
69.123516, arXiv:astro-ph/0309671.

http://dx.doi.org/10.1086/300499
http://arxiv.org/abs/astro-ph/9805201
http://dx.doi.org/10.1086/307221
http://dx.doi.org/10.1086/307221
http://dx.doi.org/10.1086/307221
http://arxiv.org/abs/astro-ph/9812133
http://arxiv.org/abs/1807.06209
http://arxiv.org/abs/1807.06209
http://arxiv.org/abs/1807.06209
http://dx.doi.org/10.1086/513700
http://arxiv.org/abs/astro-ph/0603449
http://dx.doi.org/10.1086/466512
http://arxiv.org/abs/astro-ph/0501171
http://arxiv.org/abs/astro-ph/0501171
http://arxiv.org/abs/astro-ph/0501171
http://dx.doi.org/10.1046/j.1365-8711.2001.04902.x
http://dx.doi.org/10.1046/j.1365-8711.2001.04902.x
http://dx.doi.org/10.1046/j.1365-8711.2001.04902.x
http://arxiv.org/abs/astro-ph/0106498
http://dx.doi.org/10.1103/PhysRevD.71.123001
http://dx.doi.org/10.1103/PhysRevD.71.123001
http://dx.doi.org/10.1103/PhysRevD.71.123001
https://link.aps.org/doi/10.1103/PhysRevD.71.123001
https://link.aps.org/doi/10.1103/PhysRevD.71.123001
https://link.aps.org/doi/10.1103/PhysRevD.71.123001
http://dx.doi.org/10.1088/1475-7516/2012/08/006
http://arxiv.org/abs/1201.3609
http://arxiv.org/abs/1201.3609
http://arxiv.org/abs/1201.3609
http://dx.doi.org/10.1088/1475-7516/2016/05/014
http://dx.doi.org/10.1088/1475-7516/2016/05/014
http://dx.doi.org/10.1088/1475-7516/2016/05/014
http://arxiv.org/abs/1601.01701
http://dx.doi.org/10.1103/PhysRevLett.90.221303
http://dx.doi.org/10.1103/PhysRevLett.90.221303
http://dx.doi.org/10.1103/PhysRevLett.90.221303
http://arxiv.org/abs/astro-ph/0302435
http://dx.doi.org/10.1103/RevModPhys.61.1
http://arxiv.org/abs/astro-ph/9610044
http://dx.doi.org/10.1103/PhysRevLett.82.896
http://dx.doi.org/10.1103/PhysRevLett.82.896
http://dx.doi.org/10.1103/PhysRevLett.82.896
http://arxiv.org/abs/astro-ph/9807002
http://dx.doi.org/10.1140/epjc/s10052-014-3160-4
http://dx.doi.org/10.1140/epjc/s10052-014-3160-4
http://dx.doi.org/10.1140/epjc/s10052-014-3160-4
http://arxiv.org/abs/1410.2509
http://dx.doi.org/10.1103/PhysRevD.37.3406
http://dx.doi.org/10.1103/PhysRevD.37.3406
http://dx.doi.org/10.1103/PhysRevD.37.3406
https://link.aps.org/doi/10.1103/PhysRevD.37.3406
https://link.aps.org/doi/10.1103/PhysRevD.37.3406
https://link.aps.org/doi/10.1103/PhysRevD.37.3406
http://dx.doi.org/10.1103/PhysRevLett.80.1582
http://arxiv.org/abs/astro-ph/9708069
http://arxiv.org/abs/astro-ph/9708069
http://arxiv.org/abs/astro-ph/9708069
http://dx.doi.org/10.1103/PhysRevD.79.123506
http://dx.doi.org/10.1103/PhysRevD.79.123506
http://dx.doi.org/10.1103/PhysRevD.79.123506
http://arxiv.org/abs/0902.0318
http://dx.doi.org/10.1088/0034-4885/79/9/096901
http://dx.doi.org/10.1088/0034-4885/79/9/096901
http://dx.doi.org/10.1088/0034-4885/79/9/096901
http://arxiv.org/abs/1603.08299
http://dx.doi.org/10.1103/PhysRevD.78.023505
http://arxiv.org/abs/0801.1565
http://dx.doi.org/10.1088/1475-7516/2010/09/029
http://dx.doi.org/10.1088/1475-7516/2010/09/029
http://dx.doi.org/10.1088/1475-7516/2010/09/029
http://arxiv.org/abs/1006.0877
http://arxiv.org/abs/hep-th/9408025
http://dx.doi.org/10.1088/1475-7516/2008/07/020
http://arxiv.org/abs/0804.0232
http://arxiv.org/abs/0804.0232
http://arxiv.org/abs/0804.0232
http://dx.doi.org/10.1016/j.nuclphysbps.2009.07.089
http://dx.doi.org/10.1016/j.nuclphysbps.2009.07.089
http://dx.doi.org/10.1016/j.nuclphysbps.2009.07.089
http://dx.doi.org/10.1111/j.1365-2966.2009.16140.x
http://arxiv.org/abs/0907.4981
http://dx.doi.org/10.1111/j.1365-2966.2009.16115.x
http://arxiv.org/abs/0907.4987
http://dx.doi.org/10.1046/j.1365-8711.2000.03165.x
http://dx.doi.org/10.1046/j.1365-8711.2000.03165.x
http://dx.doi.org/10.1046/j.1365-8711.2000.03165.x
http://arxiv.org/abs/astro-ph/9906073
http://dx.doi.org/10.1103/PhysRevD.62.043511
http://arxiv.org/abs/astro-ph/9908023
http://dx.doi.org/10.1103/PhysRevD.69.123516
http://dx.doi.org/10.1103/PhysRevD.69.123516
http://dx.doi.org/10.1103/PhysRevD.69.123516
http://arxiv.org/abs/astro-ph/0309671


A.R. Khalifeh and R. Jimenez Physics of the Dark Universe 31 (2021) 100777
[29] L. Amendola, M. Baldi, C. Wetterich, Quintessence cosmologies with a
growing matter component, Phys. Rev. D 78 (2) (2008) 023015, http:
//dx.doi.org/10.1103/PhysRevD.78.023015, arXiv:0706.3064.

[30] V. Pettorino, L. Amendola, C. Baccigalupi, C. Quercellini, Constraints on
coupled dark energy using cmb data from WMAP and South pole telescope,
Phys. Rev. D 86 (10) (2012) 103507, http://dx.doi.org/10.1103/PhysRevD.
86.103507, arXiv:1207.3293.

[31] L. Lopez Honorez, O. Mena, Instabilities in dark coupled models and
constraints from cosmological data, in: J.-M. Alimi, A. Fuözfa (Eds.), in:
American Institute of Physics Conference Series, vol. 1241, 2010, pp.
1016–1024, http://dx.doi.org/10.1063/1.3462595, arXiv:0911.3269.

[32] L. Lopez Honorez, B.A. Reid, O. Mena, L. Verde, R. Jimenez, Coupled dark
matter-dark energy in light of near universe observations, J. Cosmol.
Astropart. Phys. 2010 (9) (2010) 029, http://dx.doi.org/10.1088/1475-7516/
2010/09/029, arXiv:1006.0877.

[33] V. Salvatelli, A. Marchini, L. Lopez-Honorez, O. Mena, New constraints
on coupled dark energy from the Planck satellite experiment, Phys. Rev.
D 88 (2) (2013) 023531, http://dx.doi.org/10.1103/PhysRevD.88.023531,
arXiv:1304.7119.

[34] M. Escudero, L. Lopez-Honorez, O. Mena, S. Palomares-Ruiz, P. Villanueva-
Domingo, A fresh look into the interacting dark matter scenario, J. Cosmol.
Astropart. Phys. 2018 (6) (2018) 007, http://dx.doi.org/10.1088/1475-7516/
2018/06/007, arXiv:1803.08427.

[35] M.B. Gavela, D. Hernández, L. Lopez Honorez, O. Mena, S. Rigolin, Dark
coupling, J. Cosmol. Astropart. Phys. 2009 (7) (2009) 034, http://dx.doi.
org/10.1088/1475-7516/2009/07/034, arXiv:0901.1611.

[36] F. Simpson, R. Jimenez, C. Pena-Garay, L. Verde, Dark energy from the
motions of neutrinos, Phys. Dark Universe 20 (2018) 72, http://dx.doi.org/
10.1016/j.dark.2018.04.002, arXiv:1607.02515.

[37] N. Birrell, P. Davies, Quantum Fields in Curved Space, in: Cambridge
Monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge,
UK, 1984, http://dx.doi.org/10.1017/CBO9780511622632, chapter 3.8.

[38] V. Mukhanov, S. Winitzki, Introduction to Quantum Effects in Gravity,
Cambridge University Press, 2007.

[39] B. Kayser, On the quantum mechanics of neutrino oscillation, Phys. Rev. D
24 (1981) 110–116, http://dx.doi.org/10.1103/PhysRevD.24.110, URL https:
//link.aps.org/doi/10.1103/PhysRevD.24.110.
8

[40] C. Giunti, C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics,
2007.

[41] C.Y. Cardall, G.M. Fuller, Neutrino oscillations in curved spacetime: A
heuristic treatment, Phys. Rev. D 55 (1997) 7960–7966, http://dx.doi.org/
10.1103/PhysRevD.55.7960, URL https://link.aps.org/doi/10.1103/PhysRevD.
55.7960.

[42] M. Lanzagorta, Quantum Information in Gravitational Fields, Morgan &
Claypool Publishers, 2014, pp. 2053–2571, http://dx.doi.org/10.1088/978-
1-627-05330-3, chapter 5.

[43] Carl M. Bender, Steven A. Orszag, Advanced Mathematical Methods for
Scientists and Engineers, Springer NY, New York, 1999, chapter 10.

[44] Jun John Sakurai, Jim Napolitano, Modern Quantum Mechanics, in: Quan-
tum Physics, Quantum Information and Quantum Computation, Cambridge
University Press, chapter 2.5.

[45] David J. Griffiths, Introduction to Quantum Mechanics, Pearson Prentice
Hall, Upper Saddle River, NJ, 2005, Print.

[46] O.K. Reity, V.Y. Lazur, WKB method for the dirac equation with the central-
symmetrical potential and its application to the theory of two dimensional
supercritical atoms, in: eConf C0107094, 2001, pp. 676–682.

[47] O.K. Reity, V.V. Rubish, S.I. Myhalyna, The WKB method for the Dirac
equation with vector-scalar potentials in 2+1 and 3+1 dimensions, in:
eConf C0306234, 2003, pp. 1429–1434.

[48] J.W. Van Orden, S. Jeschonnek, J. Tjon, Scaling of Dirac fermions and the
WKB approximation, Phys. Rev. D 72 (2005) 054020, http://dx.doi.org/10.
1103/PhysRevD.72.054020.

[49] J. Bolte, S. Keppeler, Ann. Physics 274 (125) (1999) http://dx.doi.org/10.
1006/aphy.1999.5912.

[50] R. Fardon, A.E. Nelson, N. Weiner, Dark energy from mass varying neutri-
nos, J. Cosmol. Astropart. Phys. 2004 (10) (2004) 005, http://dx.doi.org/10.
1088/1475-7516/2004/10/005.

[51] A.W. Brookfield, C. van de Bruck, D.F. Mota, D. Tocchini-Valentini,
Cosmology of mass-varying neutrinos driven by quintessence: Theory
and observations, Phys. Rev. D 73 (2006) 083515, http://dx.doi.org/10.
1103/PhysRevD.73.083515, URL https://link.aps.org/doi/10.1103/PhysRevD.
73.083515.

http://dx.doi.org/10.1103/PhysRevD.78.023015
http://dx.doi.org/10.1103/PhysRevD.78.023015
http://dx.doi.org/10.1103/PhysRevD.78.023015
http://arxiv.org/abs/0706.3064
http://dx.doi.org/10.1103/PhysRevD.86.103507
http://dx.doi.org/10.1103/PhysRevD.86.103507
http://dx.doi.org/10.1103/PhysRevD.86.103507
http://arxiv.org/abs/1207.3293
http://dx.doi.org/10.1063/1.3462595
http://arxiv.org/abs/0911.3269
http://dx.doi.org/10.1088/1475-7516/2010/09/029
http://dx.doi.org/10.1088/1475-7516/2010/09/029
http://dx.doi.org/10.1088/1475-7516/2010/09/029
http://arxiv.org/abs/1006.0877
http://dx.doi.org/10.1103/PhysRevD.88.023531
http://arxiv.org/abs/1304.7119
http://dx.doi.org/10.1088/1475-7516/2018/06/007
http://dx.doi.org/10.1088/1475-7516/2018/06/007
http://dx.doi.org/10.1088/1475-7516/2018/06/007
http://arxiv.org/abs/1803.08427
http://dx.doi.org/10.1088/1475-7516/2009/07/034
http://dx.doi.org/10.1088/1475-7516/2009/07/034
http://dx.doi.org/10.1088/1475-7516/2009/07/034
http://arxiv.org/abs/0901.1611
http://dx.doi.org/10.1016/j.dark.2018.04.002
http://dx.doi.org/10.1016/j.dark.2018.04.002
http://dx.doi.org/10.1016/j.dark.2018.04.002
http://arxiv.org/abs/1607.02515
http://dx.doi.org/10.1017/CBO9780511622632
http://refhub.elsevier.com/S2212-6864(21)00007-8/sb38
http://refhub.elsevier.com/S2212-6864(21)00007-8/sb38
http://refhub.elsevier.com/S2212-6864(21)00007-8/sb38
http://dx.doi.org/10.1103/PhysRevD.24.110
https://link.aps.org/doi/10.1103/PhysRevD.24.110
https://link.aps.org/doi/10.1103/PhysRevD.24.110
https://link.aps.org/doi/10.1103/PhysRevD.24.110
http://refhub.elsevier.com/S2212-6864(21)00007-8/sb40
http://refhub.elsevier.com/S2212-6864(21)00007-8/sb40
http://refhub.elsevier.com/S2212-6864(21)00007-8/sb40
http://dx.doi.org/10.1103/PhysRevD.55.7960
http://dx.doi.org/10.1103/PhysRevD.55.7960
http://dx.doi.org/10.1103/PhysRevD.55.7960
https://link.aps.org/doi/10.1103/PhysRevD.55.7960
https://link.aps.org/doi/10.1103/PhysRevD.55.7960
https://link.aps.org/doi/10.1103/PhysRevD.55.7960
http://dx.doi.org/10.1088/978-1-627-05330-3
http://dx.doi.org/10.1088/978-1-627-05330-3
http://dx.doi.org/10.1088/978-1-627-05330-3
http://refhub.elsevier.com/S2212-6864(21)00007-8/sb43
http://refhub.elsevier.com/S2212-6864(21)00007-8/sb43
http://refhub.elsevier.com/S2212-6864(21)00007-8/sb43
http://refhub.elsevier.com/S2212-6864(21)00007-8/sb45
http://refhub.elsevier.com/S2212-6864(21)00007-8/sb45
http://refhub.elsevier.com/S2212-6864(21)00007-8/sb45
http://dx.doi.org/10.1103/PhysRevD.72.054020
http://dx.doi.org/10.1103/PhysRevD.72.054020
http://dx.doi.org/10.1103/PhysRevD.72.054020
http://dx.doi.org/10.1006/aphy.1999.5912
http://dx.doi.org/10.1006/aphy.1999.5912
http://dx.doi.org/10.1006/aphy.1999.5912
http://dx.doi.org/10.1088/1475-7516/2004/10/005
http://dx.doi.org/10.1088/1475-7516/2004/10/005
http://dx.doi.org/10.1088/1475-7516/2004/10/005
http://dx.doi.org/10.1103/PhysRevD.73.083515
http://dx.doi.org/10.1103/PhysRevD.73.083515
http://dx.doi.org/10.1103/PhysRevD.73.083515
https://link.aps.org/doi/10.1103/PhysRevD.73.083515
https://link.aps.org/doi/10.1103/PhysRevD.73.083515
https://link.aps.org/doi/10.1103/PhysRevD.73.083515

	Spinors and Scalars in curved spacetime: Neutrino dark energy (DEν)
	Introduction
	General framework
	Dimension 5 operator: Linear derivative coupling
	Solution at 0th order in WKB expansion
	Phenomenology of 5th dim operator: Effect on neutrino oscillations
	Solution at 1st order in WKB expansion

	Discussion and summary
	Declaration of competing interest
	Acknowledgments
	Appendix A. WKB approximation
	Appendix B. 6th dimension operator: Non-Linear Coupling
	Solution at order 0
	Solution at order 0 in a flat FRW universe

	Solution at order 1

	Appendix C. 8 dimensional operator: Non-Linear derivative coupling
	References


