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Abstract
Facultat de Matemàtiques i Informàtica

MSc Fundamental Principles of Data Science

Towards Fair Machine learning in Healthcare:
Ensuring Non-Discrimination for Disease Prediction

by Claudia Herron Mulet

Over the past few years, there has been a rise in the utilization of information and
communication technologies (ICTs) and electronic health records (EHRs) within the
healthcare system. This increase has led to a substantial gathering of medical data,
opening up promising prospects for personalized medicine. Notably, one promis-
ing application is the creation of disease risk assessment tools, designed to precisely
estimate an individual’s predisposition to developing certain illnessess. These in-
novative tools empower healthcare professionals to conduct more targeted trials,
closely monitor high-risk subjects, and implement timely interventions. However,
as these systems start to be tested in real world scenarios, recent studies reveal that
they might worsen off the situation of historically underprivileged groups in our so-
ciety. These discriminatory biases might be caused by many reasons: unequal access
to healthcare, false beliefs about biological differences, non-diverse datasets, ma-
chine learning (ML) models optimizing for the majority and disregarding underrep-
resented communities, etc. As a result, it becomes crucial to design and implement
metrics and techniques to quantify and mitigate discriminatory biases.

In this work, we propose a comprehensive methodology that encompasses data
wrangling, model evaluation, and the monitoring of both model performance and
potential disparities. Building upon existing research on fairness in machine learn-
ing, we aim to adapt the fairness framework specifically for disease prediction, con-
sidering that some of the protected features also contribute to increased disease
risk. Furthermore, we apply both in-processing and post-processing mitigation tech-
niques to a classifier trained on a large-scale dataset. By experimenting with two
diseases of increasing prevalence, Primary Hypertension and Parkinson’s Disease,
we seek to assess the effectiveness of these techniques in reducing discriminatory
biases and ensuring equitable outcomes.
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Chapter 1

Introduction

With the advent of Big Data and digital health, there has been considerable enthusi-
asm surrounding the potential opportunities that emerging technologies can bring
to the future of healthcare. By leveraging advanced algorithms and vast amounts
of data, it becomes possible to build systems that can provide valuable insights into
early detection, prognosis, and personalized treatment of multiple diseases [1], [2].
Such predictive models offer healthcare professionals the opportunity to identify
individuals at high risk of developing certain conditions, enabling proactive inter-
ventions and preventive measures.

However, as these technologies have been refined and tested, concerns have
emerged regarding their ethical, societal, and legal implications. An instance that
garnered significant media attention was a study published in Science [3], which re-
vealed that a widely utilized risk assessment algorithm for patient referral in the US
exhibited discriminatory behavior against Black patients. The authors estimated that
addressing this disparity could increase the percentage of Black patients receiving
additional assistance from 17.7% to 46.5%. As a result, in recent years, researchers,
organizations, and influential figures have emphasized the necessity of developing
unbiased and fair Artificial Intelligence (AI) algorithms that transcend biases related
to sex, age, ethnicity, and other population groups.

As a testament to this effort, the European Commission established a High-Level
Expert Group in 2019 to formulate ethical guidelines for trustworthy AI [4]. These
guidelines outline seven essential principles, including diversity, non-discrimination,
and fairness, that all AI systems must adhere to in order to be deemed trustworthy.
In this line, extensive research has been carried out in the field of machine learning to
develop statistical metrics and methods for discrimination detection and mitigation
[5] [6]. Still, there are multiple challenges for their general adoption. For example,
there is lack of an universal definition of fairness, as different applications and sce-
narios might require different fairness constraints. Moreover, in some cases, when
efforts are made to reduce bias and ensure fairness, it may introduce some inaccu-
racies in the predictions or decisions, which can lower the overall accuracy of the
model [7].

In this study, we aim to critically review and enhance existing approaches for
evaluating fairness and mitigating bias by implementing them in the context of dis-
ease prediction using machine learning models. Our objective is to develop a system
that exhibits fairness, transparency, and explainability, with the potential for appli-
cation across various diseases. In particular, we carry out experiments for Primary
Hypertension (PH) and Parkinson’s disease (PD), two conditions that show increas-
ing trends in the last years ([8], [9]).
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1.1 Objectives

The objectives of this master’s thesis are focused on addressing several key tasks
related to disease prediction. Firstly, we aim to implement machine learning mod-
els that can effectively solve the disease prediction task, achieving performance that
improves the current state-of-the-art approaches for various diseases. We aim to de-
velop a reusable library that tackles the different stages of the data science pipeline
and that can set the basis for experimentation on multiple diseases. By developing
these models, we aim to contribute to the advancement of disease prediction tech-
niques.

In addition to developing accurate prediction models, we also seek to address
the issue of discriminatory bias in the input data and the resulting prediction out-
comes. Given that the medical domain often involves sensitive attributes that may
also act as risk factors for disease development, it is crucial to assess and quantify
the level of bias present. To achieve this, we will implement a variety of criteria and
metrics specifically tailored to the medical context. These tools will enable us to ef-
fectively evaluate the presence and extent of unwanted biases in both the data used
for training the models and the prediction results they produce.

If discriminatory biases are identified during the evaluation process, our next
objective is to mitigate these biases using appropriate strategies. We will explore dif-
ferent bias mitigation techniques that aim to reduce disparities both during model
training (known as in-processing techniques) and after the model has been trained
(known as post-processing techniques). By applying these strategies, we aim to im-
prove the fairness and equity of the disease prediction models, ensuring that they
do not perpetuate or amplify existing biases.

In summary, this master’s thesis aims to implement advanced machine learn-
ing models for disease prediction, develop metrics to evaluate unwanted bias in the
medical domain, and apply bias mitigation techniques to enhance fairness and eq-
uity in the prediction process. By addressing these objectives, we aim to contribute
to the improvement of disease prediction methods and promote equitable healthcare
practices.

1.2 Report Structure

The document is organized into several chapters, each addressing different aspects
described as follows.

The Background chapter serves as an introduction, providing an overview of
metrics and mitigation techniques employed to achieve fairness in machine learning.
It also delves into prior works on machine learning for disease risk prediction, with
a specific focus on Parkinson’s disease and Primary Hypertension. Furthermore, it
summarizes previous studies conducted in the field of fair disease prediction, estab-
lishing the foundation for the subsequent chapters.

In the Methodology section, we present our proposed stages for achieving fair
disease prediction. This section outlines the step-by-step process required to ensure
fairness in disease prediction models. We provide detailed explanations of the mod-
els, methods, and techniques selected for this specific use case. Additionally, we
describe the data used in our research, highlighting its characteristics and relevance
to the study.
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Moving on to the Results section, we provide a comprehensive analysis of the
outcomes obtained at each stage described in the Methodology section. Specifi-
cally, we present detailed results for two specific diseases: Primary Hypertension
and Parkinson’s disease. By analyzing the results, we aim to assess the effectiveness
and fairness of our proposed approach in predicting these diseases.

Finally, in the last chapter, we summarize the achieved objectives of our research.
We provide a concise overview of the key findings, highlighting the main contri-
butions. Additionally, we outline potential future directions for further research,
identifying areas of improvement and expansion in order to advance the field and
continue promoting fairness and equity in disease prediction models.
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Chapter 2

Background

What is a fairness? According to the Collins dictionary, fairness is the quality of being
reasonable, right, and just. Numerous authors have addressed these ethical concepts
in the last centuries, from Plato and Aristotle to Philippa Foot, going through Kant
and John Rawls. Fairness definitions often incorporate the notion of equality, such as
"equality of treatment" (where goods are distributed evenly irrespective of individ-
ual differences) or "equality of opportunity" (where goods are distributed to ensure
everyone has the same chances). However, various authors present diverse criteria
for defining fairness. Consequently, this concept proves to be intricate, as it encom-
passes multiple interpretations not only from a philosophical standpoint but also
from legal and technical perspectives.

In recent years, machine learning has emerged as a powerful tool for analyzing
complex data sets and making predictions across various domains. In the field of
healthcare, machine learning algorithms have shown immense potential for disease
risk prediction, offering new avenues for early detection, intervention, and person-
alized treatment [2], [10]. However, as these algorithms become increasingly in-
tegrated into clinical practice, concerns related to fairness, and non-discrimination
have come to the forefront [3][11].

In this chapter, we first present the main definitions and techniques in the field
of fair ML. Then, we review the state of the art for disease prediction, focusing on
two specific diseases: Primary Hypertension and Parkinson’s disease. Finally, we
include a summary of prior works in the area of fair disease prediction.

2.1 Fairness in machine learning

In the field of Data Science, bias refers to the systematic error or deviation of a
model’s predictions from the true or expected values. Fairness in machine learn-
ing is a newly emerged discipline that explores methods to prevent biases in data
and models from treating individuals unfairly based on sensitive characteristics [6].
These sensitive characteristics are commonly referred as protected attributes or so-
cially salient characteristics, and they describe groups of people that systematically
experience social disadvantages (unprivilege). Common examples of protected at-
tributes are sex, gender, sexual orientation, ethnicity, country of origin, age, disabil-
ity and many more. In some countries, it is explicitly unlawful to discriminate based
on these characteristics.

Unfair biases might appear because of many reasons: biased device measure-
ments, historical human-biased decisions encoded in the data sets, missing data that
do not represent the target population, minimization of objective functions that leave
out minorities, etc [12]. For this reason, it becomes crucial to incorporate bias evalu-
ation methodologies in the different steps of the machine learning pipeline.
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There are two main frameworks for tackling unfair bias in machine learning: sta-
tistical and causal methodologies [6]. Statistical methodologies focus on identifying
and measuring bias within the data and model outputs. They typically involve an-
alyzing the distribution of data and the predictions made by the model to detect
any disparities across different demographic groups. Statistical methods often in-
clude fairness metrics, such as Disparate Impact or Equalized Odds, to quantify and
assess the degree of bias present [6].

On the other hand, causal methodologies aim to understand the underlying
causal relationships that contribute to bias in machine learning systems. They go
beyond statistical associations and seek to identify the direct causes of bias. Causal
methodologies involve techniques such as causal inference and counterfactual anal-
ysis to explore how changes in input variables affect the outcome and uncover po-
tential sources of bias. By understanding the causal mechanisms, these methods
enable interventions to mitigate bias directly at its root causes [6].

Both statistical and causal methodologies have their strengths and limitations. In
this project, we focus on the statistical framework as there are more available tools
and resources from which to start. There are several python libraries, such as IBM’s
AIF360 [13] or Microsoft’s Fairlearn [14], with fairness evaluation metrics and bias
mitigation techniques that can be included into the disease prediction pipeline. In
the following subsections, we will describe these metrics and mitigation techniques.

2.1.1 Fairness metrics

Fairness metrics are statistical criteria that measure the presence or lack of discrim-
ination. These criteria are written as a function of random variables such as the
protected attribute(s), the target variable in the classification task, the classifier score
or the classifier label. Different metrics enclose different definitions of what is con-
sidered fair, and in some occasions, these criteria cannot hold simultaneously [5].

Usually, fairness metrics are divided into three big groups:

• Independence: we say that a classifier satisfies independence when the ran-
dom variables representing the protected attribute, A, and the classifier score,
S, are marginally independent. The core idea behind independence fairness is
that the decision or outcome should be independent of the sensitive attribute.
In other words, knowing someone’s sensitive attribute should not provide any
additional information about the decision or outcome beyond what is already
known about them through non-sensitive attributes. If Ŷ is the random vari-
able for the classifier labelling and A has domain a1, a2, independence implies:

P(Ŷ|A = a1) = P(Ŷ|A = a2)

• Separation: for separation to hold, the random variables for the score, S, and
the protected attribute, A, must be conditionally independent given the true
label Y. It aims to address situations where there are significant imbalances or
disparities in outcomes between different groups based on sensitive attributes.
In the binary classification scenario, separation implies equal true and false
positive rates:

P(Ŷ = 1|Y = 1, A = a1) = P(Ŷ = 1|Y = 1, A = a2)

P(Ŷ = 1|Y = 0, A = a1) = P(Ŷ = 1|Y = 0, A = a2)

https://fairlearn.org
https://aif360.mybluemix.net
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• Sufficiency: sufficiency is satisfied when the true label Y is conditionally inde-
pendent to the protected attribute, A, provided the score S. In practice, suffi-
ciency enforces parity in positive/negative predictive values. Mathematically,

P(Y = 1|S = s, A = a1) = P(Y = 1|S = s, A = a2)

Sufficiency is closely related to the concept of calibration. We say that a model
is calibrated when we can interpret scores as probabilities that match true data
distributions. It can be shown that a classifier that satisfies calibration for all
protected groups then it is sufficient [5].

These criteria are often measured by taking the difference or the ration of the proba-
bilities for each groups, and a certain threshold is set to identify a system as unfair.
In this project, we explicitly use the following metrics:

• Disparate Impact Ratio (DIR): a metric related to the measure of indepen-
dence. Mathematically:

DIR =
P(Ŷ|A = a1)

P(Ŷ|A = a2)

• Average Odds Error (AOE): related to the measure of separation.

AOD =
|FPRA=a1 − FPRA=a2 |+ |TPRA=a1 − TPRA=a2 |

2

• Equal Opportunity Difference (EOD): a relaxation of the separation criteria
that only asks for equality of true positive rates (equal recalls for groups):

EOD = TPRA=a1 − TPRA=a2

• False Positive Rate Difference (FPRD): also a relaxation of the separation cri-
teria.

FPRD = FPRA=a1 − FPRA=a2

An interpretation of these metrics, and a justification for their selection is presented
in Chapter 3.

2.1.2 Discrimination mitigation

Once the fairness evaluation is performed and significant biases are identified, the
question arises as to whether it is possible to mitigate these biases without compro-
mising performance. Various approaches have been proposed and explored, aiming
to address the issue of bias and ensure fair and equitable outcomes for all individuals
involved.

One such approach, known as fairness through unawareness, suggests that ig-
noring sensitive attributes or withholding certain information during the decision-
making process can lead to fairer outcomes. Fairness through unawareness is an
intuitive concept, rooted in the belief that if an algorithm does not have access to sen-
sitive attributes, it will be less likely to discriminate based on those attributes. This
approach, in theory, seems promising, as it appears to promote fairness by treating
all individuals as equals, regardless of their personal characteristics. However, this
method is unable to address the root causes of discrimination and biases present in
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the underlying data used to train AI systems. Even without explicit access to sen-
sitive attributes, AI models can still indirectly learn and infer such attributes from
other correlated features present in the data. Consequently, discrimination can per-
sist and even worsen despite attempts to ignore or hide sensitive attributes during
the decision-making process [5].

Therefore, to achieve meaningful discrimination mitigation, it is crucial to em-
ploy more sophisticated methods that go beyond fairness through unawareness.
Mitigation strategies are often categorized into three big groups depending on what
moment of the machine learning pipeline are applied.

Pre-processing techniques modify the training data before fitting machine learn-
ing models. The idea in this case is to remove prior disparities encoded in the data.
For example, one strategy consists of creating synthetic data or oversampling mi-
nority groups when real data is not available [15]. Another strategy that aims to re-
duce disparate impact is known as Feature modification [16]. This method applies
transformation techniques to modify sensitive attributes. The goal is to preserve the
information encoded in these features while making them less discriminate. Other
methods impose demographic parity with re-weighting techniques [17] or by learn-
ing fair representations of data [18].

In-processing techniques are discrimination mitigation methods that directly
modify the learning algorithms themselves to promote fairness and mitigate bias
during the training process. Some methods add a regularization term to the objec-
tive function that enforces fairness constraints [19]. The reductions approach [20],
decomposes fair classification as a sequence of cost-sensitive classification problems,
subject to fairness constraints. This methodology captures two techniques: Expo-
nentiated Gradient and Grid Search Reduction. Exponentiated Gradient Reduction
uses iterative updates based on gradients to find the best parameters, while Grid
Search Reduction performs an exhaustive search over a grid of hyperparameters to
find the optimal configuration. Finally, another technique worth mentioning is Ad-
versarial Debiasing [21], that adopts the adversarial framework for training. The
weights of the debiasing network are adjusted to minimize its ability to predict the
sensitive features accurately, while the classifier model is trained to maximize its
accuracy. This adversarial optimization process seeks to create a balance between
accurate prediction and reducing the influence of sensitive features.

Ultimately, post-processing methods adjust the model output to satisfy fairness
criteria. One of the advantages of these techniques is that they can be applied to
black-box models as neither the training data or the model specifications are needed.
The simplest post-processing method consists of assigning different classification
thresholds based on protected attributes in order to achieve parity in acceptance
rates [5]. This is the intuitive idea behind the Equalized Odds classifier [22], a
method that solves a linear program to equalize false and true positive rates. An-
other method is the Rejection Option Classifier, that favours the underprivileged
group in the neighborhood of the decision threshold, where the uncertainty is high
[23].

2.2 Machine learning for disease risk prediction

Machine learning for disease risk prediction involves the application of machine
learning algorithms to assess an individual’s likelihood of developing a particular
disease. As opposed to the task of diagnosis, in disease prediction, the input data
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comes from healthy individuals. The goal is to estimate the probabilities of develop-
ing target diseases in the future.

There are common challenges in the field of ML disease prediction. One of these
potential issues is data imbalance. Most of disease data sets exhibit class imbal-
ance, where the number of instances belonging to different classes (e.g., healthy vs.
diseased) is highly unequal. This imbalance can have repercussions on the model’s
performance, as the minority class receives insufficient attention during the training
process.

Another challenge in disease prediction is ML generalization [24]. Machine
learning models need to generalize well to unseen data to be useful in real-world
clinical settings. However, healthcare data sets often have specific characteristics
and may not fully represent the diversity of patients and healthcare systems. Mod-
els developed on one population or data set may not perform as well on different
populations or in different healthcare settings, leading to challenges in achieving
broad generalizability.

Finally, another requirement in ML for disease prediction is explainability [25].
Developing explainable machine learning models is critical in the medical domain
to build trust and understand the factors influencing predictions. Many advanced
machine learning algorithms, such as deep neural networks, are considered black
boxes, making it difficult to interpret their decision-making process. Balancing the
need for accurate predictions with the requirement for explainability is an ongoing
challenge.

Up to our knowledge, there are no multidisciplinary works that tackle poten-
tially any disease in the same methodology. This is probably because for developing
these models, it is often required a high understanding and domain expertise of
the disease being studied. Some works tackle sets of diseases, such as cardiovas-
cular diseases, CVDs, [2][26], but most of the works focus on a single one. In the
following subsections, we go through the prior works on Parkinson and Primary
Hypertension ML prediction, two diseases that we will experiment with.

2.2.1 Parkinson’s disease

Parkinson’s disease (PD) is a neurodegenerative disorder that affects over 10 million
people in the world [27]. Characterized by the loss of dopamine-producing cells
in the brain, PD leads to a wide range of motor and non-motor symptoms, signifi-
cantly impacting the quality of life for individuals diagnosed with the condition and
their caretakers. Nowadays there is no cure for this disease, but there exist treat-
ments to mitigate the effect of the symptoms. As the incidence of Parkinson’s rises
significantly with age, and people are living longer in high-income countries, the
prevalence of Parkinson’s is set to rise dramatically in the future.

Parkinson’s disease is typically diagnosed after the onset of symptoms. For this
reason, developing risk models is highly important to enable early-detection leading
to access to clinical trials and personalized medication. However, this is a challeng-
ing task because Parkinson’s disease can appear because a combination of complex
causes, from genetic predisposition to exposure to environmental factors, such as
pesticides [28]. As a result, it is an active area of research in medicine.

Most of the works from the ML community on Parkinson tackle the diagnosis
case, where the individual is subject to having the disease in the moment of eval-
uation. Moreover, the majority of studies use speech data and voice recordings,
while in this project we have we have readily available variables regarding the ex-
posome. The exposome encompasses all the exposures an individual experiences
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throughout their lifetime and can be divided into external and internal factors. The
external exposome includes various elements such as lifestyle, mental health, so-
ciodemographic factors, early-life influences, environmental aspects, and physical
measurements [29]. On the other hand, the internal exposome is associated with ge-
netics and blood biochemistry [30]. Other works use MRI data for the diagnosis task
[31]. Furthermore, the development of non-ML risk scores is also in a very initial
state in comparison to other diseases such as CVDs [32]. For this reason, Parkinson
prediction using ML represents a very promising research opportunity.

One of the first risk scoring system for Parkinson was developed by Alastair J.
Noyce et al. [33]. They build a risk score (PREDICT-PD) based on information col-
lected by surveying healthy individuals (age, gender, smoking status, coffee intake,
PD family history, etc). To calculate the risk, they first compute the age-related risk
as described in [34], and they increase/decrease the final output by multiplying the
added risk for each of the other variables, as reported in prior studies. Then, they
compare the PREDICT-PD scores in the studied data set to other medical risk scores,
that measure variables known to be predictors for PD: the University of Pennsyl-
vania Smell Identification Test (UPSIT) score, a smell identification test; REM Sleep
Behavior Disorder Screening Questionnaire (RBDSQ); and the BRAIN test, bradyki-
nesia akinesia incoordination test, for measuring keyboard tapping speed. They
showed through statistical analysis that individuals with higher PREDICT-PD scores
had worse results in these medical tests. However, they do not provide performance
results as the ground truth (PD development) was yet to be observed.

In 2020, Jacobs et al. [35] continue with this line of work and build polygenic risk
scores, a type of risk estimation method based on genetic information, with logistic
regression models, for predicting PD. They also evaluate the original PREDICT-PD
algorithm with UK Biobank data set, reporting an Area Under the Receiver Operat-
ing Characteristic curve (AUC-ROC) of 0.76. Although they present a methodology
where they study gene-environment interactions, their proposed method does not
significantly improve prior-work performances.

As we can see, the literature for developing ML risk scores is scarce and it mostly
targets the diagnosis task, for a heterogeneity of data types.

2.2.2 Primary Hypertension

Hypertension is a chronic medical condition characterized by elevated blood pres-
sure levels persistently exceeding the normal range. It is estimated that over 1.3
billion people have this disease, and in fact, it is one of the major causes of pre-
mature death [36](according to the WHO). Hypertension is diagnosed if, when it is
measured on two different days, the systolic blood pressure readings on both days
is ≥ 140 mmHg and/or the diastolic blood pressure readings on both days is ≥ 90
mmHg[36]. Primary Hypertension, in particular, refers to high blood pressure that
develops gradually over time without any identifiable cause or underlying medical
condition. It is often influenced by a combination of genetic, lifestyle, and environ-
mental factors.

Silva et al. [37] present a review of the prior works on Hypertension predic-
tion. The authors report AUC-ROCs between 0.766 and 1, although some of the
included works have been criticized for potential data leakage. The best performing
algorithms are XGBoost (XGB), Random Forest (RF) and Support Vector Machines
(SVMs). In this study, there is a variety of data sets with different sizes and imbal-
ance ratios.
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Liu Yu et al. [38] perform a study to use nutritional ingredients intake as predic-
tors for Hypertension. They report an AUC-ROC of 0.904 with the XGBoost model
evaluated on the China Health and Nutrition Survey data set, consisting of 28 fea-
tures, including age, gender and dietary information. These results are computed in
a balanced scenario, where there is an equal proportion of healthy and hypertensive
subjects. Renuka Patnaik et al. [39] combine systolic blood pressure measurements
from past 10 years together with medical known risk factors to train a Support Vector
Machine. They achieve an AUC-ROC of 0.9. Again, the data set used for evaluation
is balanced.

Other works take into account the natural class imbalance and develop ML mod-
els with a slightly lower performance. For example, AlKaabi et al. [40] compare
logistic regression, random forest and decision trees on Qatar Biobank data set, that
presents a 15% of positive instances. Their models used a total of eleven variables,
consisting of seven non-clinical and non-invasive factors (age, sex, education, em-
ployment, tobacco use, physical activity, and adequate consumption of fruits and
vegetables), and four easily obtainable clinical variables (maternal history of Hyper-
tension, history of diabetes, history of cholesterol, and abdominal obesity). The best
performing model was Random Forest with an AUC-ROC of 0.87. However, the au-
thors acknowledge that this study is limited due to the small data set size (over 1000
subjects) that is not representative enough of the Qatar population and the inherent
selection bias induced by the volunteer selection of study subjects.

To sum up, there are prior works in the area of Hypertension prediction with ML
that experiment with a variety of data sets and models. There is a lot of heterogene-
ity in the data set sizes and imbalance ratios, as well as the nature and number of
features taken into account. We did not find prior works that evaluate the prediction
task on the UK Biobank data set, but other works with similar features achieve high
performance.

2.3 Fair disease prediction

Historically, medical research has often focused primarily on male subjects, leading
to a lack of understanding about how certain diseases, symptoms, and treatments
manifest in women. This gender bias in research can result in delayed diagnoses,
misdiagnoses, and inappropriate treatments for women [41]. We see similar conse-
quences for historically oppressed groups, such as black people [42]. As white cis-
gender males were seen as the default, unprivileged groups were underrepresented
in the data sets and biases in disease risk scoring systems where not quantifiable.
Fortunately, in the last years, there has been a rising concern on developing fair ma-
chine learning models and some works evaluate and mitigate the biases found in
their models.

On the one hand, some prior works focus on adapting the fairness framework to
the healthcare use case. Jinying Xu et al. [43] analyze what biases can appear in the
medical context, define fairness metrics and mitigation strategies in terms of patient
outcome. The work by Obermeyer et al. [3] reveals that an algorithm deployed to
manage medical resources based on health risk was biased favoring white patients.
This model was in reality predicting healthcare costs, and due to unequal access to
care between blacks and whites, black patients where considered less sick than their
actual state.
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One the other hand, other more practical works focus on evaluating and mit-
igating discriminatory biases. For instance Pfohl et al. [11] revealed that proce-
dures penalizing differences between prediction distributions across groups led to
a degradation of performance metrics within groups. Additionally, the impact on
fairness measures varied across experimental conditions. The study suggests that
researchers developing predictive models for clinical use should go beyond algorith-
mic fairness and critically engage with the broader sociotechnical context of machine
learning in healthcare.

Camacho et al. [44] compare different machine learning models for schizophre-
nia spectrum disorders prediction, evaluating both regular performance metrics such
as AUC-ROC or F1 and fairness metrics such as Statistical Parity Difference or Dis-
parate Impact. They achieve a fair XGBoost classifier with an AUC-ROC of 0.82.
Ngoc Dang et al. [45] evaluate and mitigate found biases in depression predictions.
Authors from the same group present a prediction model for CVDs and diabetes
type 2 where they explicitly evaluate fairness metrics on the model outputs [46].

The field of fairness in healthcare research presents an exciting research opportu-
nity, emphasizing the necessity of incorporating evaluation and mitigation strategies
into all risk prediction models as a default practice. As evident from the ongoing
studies, it is crucial to seize this opportunity and integrate these findings into our
existing frameworks.
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Chapter 3

Methodology

In this chapter, we dig into the methodology we followed to ensure non-discrimination
for disease prediction. By considering fairness evaluation during the different stages
of the classical data science pipeline, we aim to produce fair machine learning mod-
els that are robust, interpretable and transparent.

3.1 Overview: fair disease prediction pipeline

In this section, we present an overview of the proposed fair disease prediction pipeline
while in the following sections, we provide details on each of the steps that compose
the pipeline itself. Figure 3.1 presents the proposed pipeline for disease risk predic-
tion while ensuring fairness.

The process starts in the data collection phase, followed by a data wrangling
step, where we extract and combine data from multiple files. Once that we obtain a
feature matrix and a target label, we perform a data bias evaluation to both report
possible model limitations due to data quality and to prevent the training procedure
if we identify discrimination. After selecting the best model through grid search and
cross validation, we perform model evaluation in terms of performance, fairness and
explainability. If the performance is not good enough, we may improve the model
selection phase. If the model does not satisfy a set of fairness criteria, we apply post-
processing bias mitigation strategies. Again, we evaluate these fairness criteria, and
we might consider training the model with bias mitigation in-processing techniques.
Once that we achieve a model that satisfies all our evaluation constraints, we can
proceed with the deployment of this model.

3.2 Data

In this section we dive into the details of the data used in this project. We go from
the data description, to the technical issues regarding the data wrangling and we
explain our proposed method to evaluate fairness in the input data, prior to the
development of any machine learning model.

3.2.1 UKBiobank

UK Biobank is a large-scale biomedical research database. It is one of the most sig-
nificant health research initiatives worldwide and aims to improve the prevention,
diagnosis, and treatment of various diseases.

The UK Biobank project started in 2006 and involves the collection and analysis
of extensive health-related data from around 500,000 volunteers, aged between 40
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FIGURE 3.1: Fair disease prediction pipeline

and 69 years, from across the United Kingdom. Participants have undergone a com-
prehensive assessment that includes providing biological samples (such as blood,
urine, and saliva) and completing detailed questionnaires about their lifestyle, med-
ical history, and behaviors.

The primary goal of UK Biobank is to facilitate scientific research by providing
an extensive resource for studying the complex interplay between genetics, environ-
ment, and lifestyle factors in the development of diseases. The project focuses on
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a broad spectrum of diseases, including cancer, cardiovascular disorders, neurode-
generative conditions, mental health issues, and many others. The data collected by
UK Biobank are made available to approved researchers globally, enabling them to
investigate a wide range of health-related questions. However, this data set is not
open to the general public due to data privacy concerns. For more information, visit
the official web page [47].

This data set is specially well-suited for studying disease risk as it allows to fol-
low up the evolution of participants through time. UK Biobank has the potential
to contribute significantly to medical research, improve disease prevention strate-
gies, and lead to the development of more effective treatments. However, it is worth
mentioning some of the limitations of this data set. First of all, the participants in the
UK Biobank study are aged between 40 and 69 years. This narrow age range may
limit the generalizability of findings, particularly for diseases or conditions that pri-
marily affect other age groups, such as pediatric diseases or age-related conditions.
Secondly, there is a self-section bias as individuals who volunteer to participate in
research studies like UK Biobank may differ from the general population in terms
of their health status, lifestyle, and socioeconomic factors. Moreover, there is a lack
of ethnic diversity, as we will see later on. The UK Biobank cohort consists mainly
of individuals of European descent. While UK Biobank covers a broad range of
diseases and health-related factors, some specific diseases or conditions may have
limited information available.

3.2.2 Data wrangling

The UK Biobank is a complex and large scale database. For the purpose of this
project, I was granted access to a total of 326 csv files containing tabular medical
information from the application 65769. In order to be able to analyze this data and
build a machine learning system, we needed to rearrange it. We can divide the data
wrangling process into two big steps: creating the feature data set and creating the
target disease label.

Creating the feature data set
A data-field in the UK Biobank repository serves as the basic unit of data and rep-
resents the outcome of a single question, measurement, or result. Each data-field is
stored in a tabular file, where each row represents a patient and multiple columns
represent multiple measurements in different moments of time, or assessment vis-
its. Not all fields have the same number of columns. In this project, we have consid-
ered the data measurements collected during the first visit to the assessment center,
where the participant completed personal questionnaires and provided biological
samples.

Each data-field is encoded by a unique identifier, and each measurement follows
specific data coding. In order to keep track of the variable names, as well as the
possible categories for each variable and other relevant information, it was crucial
to build together with the feature data set, a metadata data set where we could store
relevant information for the data processing. In order to do so, we retrieved meta-
data from two sources: a public showcase data dictionary available in UK Biobank
web page, and a scrapper specially built to retrieve relevant information from the
searching UK Biobank engine ([48]). Finally, we also manually annotated the cate-
gory of each of the fields, resulting in a total of 19 categories (for example, Physical
activity, Diet summary, Physical measure summary), following the guidelines for data
categorization.
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This metadata was also used to transform categories encoded with numbers into
their original string label. Also, we performed a basic data cleaning for removing
columns and rows with more than a 90% of missing values. So, in the end we were
able to assemble a data set with information for 477182 patients distributed into 156
features. We include a brief description of these features, together with its data type
and medical category in the Appendix A.

Creating the target label
In order to create the target vector indicating the future presence of the disease, we
first gather all the ICD10 codes per patient. ICD-10 (International Classification of
Diseases, 10th Revision) is a system of medical coding that is used to classify and
code diagnoses, symptoms, and procedures in healthcare [49]. It is a standardized
system developed by the World Health Organization (WHO) and is widely used in-
ternationally for statistical and billing purposes. Once we have all the disease codes
per patient, we select the patients with a positive diagnosis for the studied disease
and we filter out all patients that have been diagnosed prior to the first assessment
visit. We do this in order to ensure that we are tackling the disease prediction task
rather than the diagnosis task, as the feature data set is a picture of the patient infor-
mation during the first assessment visit. In the end, we end up with a boolean vector
indicating for each patient if they have developed the target disease in the future.

3.2.3 Protected Attributes

The first step in performing any fairness analysis is identifying the protected at-
tributes and the unprivileged groups that are potentially subject to discrimination.
In Table 3.1 we summarize the features identified as protected and the respective
privileged groups. Most of these attributes coincide with the ones recognized by
Great Britain’s Equality and Human Rights Commision (EHRC) [50]. Townsend
deprivation index is not a personal characteristic, but a measure of material depri-
vation within a population. Socioeconomic status is not legally considered as a pro-
tected characteristic but we will take it into account in this study because it is the
cause of social inequalities. In the same manner, we will report the biases associated
with Obesity.

Regarding the feature sex, it might sometimes refer to biological sex and some-
times to gender identity. According to the UK Biobank description, this feature is
defined as: Sex of participant. Acquired from central registry at recruitment, but in some
cases updated by the participant. Hence this field may contain a mixture of the sex the NHS
had recorded for the participant and self-reported sex. Also, in relationship to the vari-
able race, we have considered the three UK Biobank features that might encode it,
according EHRC [50].

Finally, socioeconomic status, age and obesity are encoded in the form of contin-
uous variables. As a result, in order to categorize a participant into the privileged
or unprivileged group, it becomes necessary to set a threshold to divide the popu-
lation in two. According to Joseph Rowntree Foundation1, 20% of UK population is
at poverty risk. For this reason, we chose the top 20% of the Townsend Deprivation
indexes as an indicator of low socioeconomic status. For the age variable, we con-
sider privileged those individuals less than 65 years old. This threshold is the mean
retirement age in the UK, and it has been shown that elderly people might be subject
to ageism [51]. Obesity is defined by the body mass index (BMI), which is calculated

1https://www.jrf.org.uk/data/overall-uk-poverty-rates

https://www.jrf.org.uk/data/overall-uk-poverty-rates
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Protected
Attribute

Feature name Field ID Privileged Unprivileged

Sex or
Gender Identity

Sex 31 Male Female

Race Ethnic background 21000
White (British, Irish,
Any other white
background)

Non-White
Mixed (White and Caribbean,
Black African, Asian,
Any other mixed
background)
Asian or Asian British (Indian,
Pakistani, Bangladeshi,
Any other Asian background)
Black or Black British
(Caribbean, African,
Any other Black background)
Chinese
Other ethnic group
Do not know
Prefer not to answer

Race Skin Color 1717
Very fair, fair,
light olive

Dark olive, Brown, Black,
Do not know,
Prefer not to answer

Race Country of birth 1647
England, Wales,
Scotland, Northern Ireland,
Republic of Ireland

Elsewhere, Do not know,
Prefer not to answer

Socioec.
status

Townsend deprivation,
index at recruitment

189 Below percentile 80% Above percentile 80%

Age Year of birth 34
Younger than
65 years old

Older than 65 years old

Obesity BMI 21001 BMI over 30 BMI under 30

TABLE 3.1: Protected attributes and privileged groups

using one’s weight (in kilograms) by the square of one’s height (in meters). Accord-
ing to the BMI classification, a BMI equal to or greater than 25 is overweight, and a
value equal to or greater than 30 is obese. For this reason, we have considered the
last threshold to differentiate the unprivileged group.

3.3 Data Bias Evaluation Protocol

Following the guidelines proposed by d’Alessandro et al. [52], we decide to imple-
ment discrimination aware unit tests. The idea is to evaluate and document a series
of metrics related to the protected attributes, and impose fairness criteria, before
training any machine learning model. In this project, we aim to adapt this general
fairness framework to the specific use case of disease prediction, and as we will see,
this will influence the metrics chosen.

The two discrimination tests that we suggest are the following:

1. Measure the Disparate Impact Ratio (DIR) between privileged and unprivi-
leged groups, and check that it is in the neighborhood of the theoretical DIR
for the specific disease. In medical context, it can be the case that privileged



20 Chapter 3. Methodology

and non-privileged groups have different disease incidence rates based on bi-
ological or socioeconomic reasons. For example, the risk of developing Parkin-
son’s disease (PD) is twice as high in men compared to women. As a result, we
expect that the DIR is in the neighborhood of 0.5.

2. Calculate the support for each level of every protected attribute, in order to
identify which protected groups are more prone to statistical estimation errors.
The support represents the proportion within the overall population and aids
in understanding the potential vulnerability of specific protected groups to
such errors. For example, it might be the case that there are no positive samples
for a minority unprivileged group. This represents a risk, as the model might
not be able to make predictions for this specific group and more importantly,
we will not be able to evaluate it. In order to pass the test, we can impose a
minimum number of samples per group.

If any of these criteria is not met, we can decide whether to proceed with the ML
pipeline applying mitigation strategies or stop the process until more data is gath-
ered.

The last step in the protocol is to note any features that display a moderate to
strong correlation with the protected attribute. As we saw, fairness through un-
awareness is not enough. It can be the case that other highly correlated features
with the protected attributes (or combinations of them) become proxies. As a result,
it becomes crucial to keep track of these features when analyzing the model.

The result of the data bias evaluation protocol is generated automatically so that
the user can decide what steps to take before implementing any pre-processing or
machine learning model.

3.4 Model selection

In this project, we refer to model as a combination of pre-processing steps and a ma-
chine learning model. This is not the typical definition, as traditionally data is first
cleaned, scaled and transformed and later, the best machine learning model is cho-
sen. However, this approach is introducing extra assumptions by generating an in-
termediate data representation. Moreover, for some models different pre-processing
steps might be better than others. By introducing the pre-processing inside a sklearn
pipeline, we can cross-validate pre-processing parameters such as for example the
data imputation strategy or the data scaling method.

Regarding the pre-processing step, we designed two pipelines depending on
whether the machine learning model applied was tree-based or not:

• Tree-based models: we encode string categories with integers, and unseen cat-
egories in testing times are encoded as missing values. Categorical missing
values are replaced with the most frequent category and numerical missing
values with the mean.

• Non tree-based models: instead of numerically mapping categories with inte-
gers, we perform one hot encoding producing as many new features as many
categories minus one, per categorical column. With one-hot encoding, the
expanded feature space can exacerbate the curse of dimensionality. High-
dimensional spaces require more data to effectively cover the feature space,
making it harder for tree models to find meaningful patterns and relationships.
That is why we do not apply this transformation for tree models. Apart from
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the data imputation strategies, we also perform data min-max scaling. Deci-
sion tree-based models, such as random forests or gradient boosting machines,
are invariant to monotonic transformations of the features and do not neces-
sarily require scaling. However, for most other non tree-based models, scaling
the data is beneficial for better model performance and stability.

Regarding the machine learning model, the system is ready to accept any classifier
that implements the standard sklearn fit-predict interface.

Finally, we encapsulate the pre-processor and ML model together in a pipeline
that is the input for a grid search with 5 fold cross validation strategy. For each
model, we store the one that achieves higher f1 score. The results of the grid search,
together with a detailed report on performance evaluation metrics is documented
automatically. Also, the top-10 most important features are listed in the model selec-
tion report.

3.5 Model evaluation

We refer to model evaluation to the process of both measuring the prediction power
of the model and the algorithmic bias that might produce. In this section, we sum-
marize the metrics used for predictive performance and bias evaluation.

3.5.1 Performance analysis

In order to evaluate the classifier, we measure traditional performance metrics such
as the AUC-ROC and metrics derived from the confusion matrix, such as precision,
recall and F1-score. In prior works [37], the usual reported metric is the AUC-ROC,
but we realized that models with high AUC-ROC were achieving close to zero pre-
cision. In imbalanced scenarios where the majority class heavily outweighs the mi-
nority class, the classifier may achieve a high AUC-ROC by simply predicting the
majority class correctly. However, the F1 score takes into account both precision
and recall, providing a balanced evaluation that considers the performance on both
positive and negative instances. For this reason, we decided to use F1 score both to
select the best hyperparameters through cross-validation and to select the probabil-
ity threshold for declaring a sample as positive.

Moreover, we decided to evaluate the performance in terms of the imbalanced
specific metrics such as the balanced accuracy (BA) and Matthews correlation co-
efficient (MCC) [53] [54].

Balanced accuracy is a metric that takes into account the imbalanced nature of
the data set by calculating the average of the class-wise accuracies. It is defined as
the average of the sensitivity (true positive rate) for each class. The Matthews Corre-
lation Coefficient (MCC) takes into account true positives, true negatives, false posi-
tives, and false negatives and produces a value between -1 and 1, where 1 represents
a perfect prediction, 0 indicates a random prediction, and -1 represents a completely
inverse prediction.

3.5.2 Model Fairness analysis

In order to evaluate the classifier in terms of fairness, we must decide which sta-
tistical criteria we want to focus on, as different metrics encode different fairness
definitions that might be incompatible. In the task of risk assessment, we propose
defining fairness as equal performance in terms of true and false positive rates. In
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the disease prediction application, different population might experiment different
incident rates because of biological or socioeconomic reasons. As a result, in this
context we are not so interested in achieving independence. For fairness evaluation,
we decide to focus on separation metrics, which cannot be achieved simultaneously
with independence, and in some specific scenarios with sufficiency. The concept
of separation draws attention to a crucial question: Who bears the consequences of
misclassification? The violation of separation underscores the reality that distinct
groups face disparate costs resulting from misclassification. Concern arises when
higher error rates align with historically marginalized and disadvantaged groups,
exacerbating the additional harm inflicted upon them. In particular, we evaluate the
model in terms of:

• Equal Opportunity Difference (EOD). Our goal is to achieve close to zero, or
at least positive EOD to ensure True Positive Rate (TPR) parity.

• False Positive Rate Difference (FPRD). Our goal is to achieve close to zero, or
at least negative FPRD to ensure False Positive Rate (FPR) parity.

• Average Odds Error (AOE). This metric gives an average TPR and FPR dispar-
ity, in absolute value. We target close to 0 values.

These metrics are determined by the chosen threshold. For this reason, we inspect
the desegregated ROC curve per group, in order to check if there is any intersection
between the curves for privileged and unprivileged groups that would automati-
cally ensure separation. Moreover, we compute the disparate impact per group in
order to compare that the model is producing predictions at the same rate as ob-
served in training data.

3.5.3 Model Explainability

Finally, the last step of the evaluation consists of inspecting the explainability of
the machine learning (ML) disease prediction model. Explainability plays a crucial
role in healthcare applications as it enhances the trust and acceptance of the model
by clinicians and patients alike. By understanding the underlying factors and fea-
tures that contribute to a particular prediction, clinicians can gain valuable insights
into the decision-making process of the model, aiding in their clinical judgment and
treatment planning. Furthermore, explainability allows patients to comprehend the
reasoning behind the predictions, enabling them to make informed decisions about
their health and potential interventions. Therefore, in this evaluation step, we aim
to assess the explainability of the ML disease prediction model and its impact on the
overall usefulness and acceptance of the system.

In particular, we rank the feature importance and we analyze the categories that
the features belong to (primary demographics, test results, etc). Moreover, we use
a state-of-the art explainability method, the SHapley Additive exPlanations (SHAP)
method [55].

3.6 Bias mitigation

If the bias evaluation phase determines that there are significant biases, the first step
would be to apply post-processing techniques and re-evaluate the model. These
techniques are the less computationally expensive, as they only require access to
model prediction or scores. In large scale data sets, we want to avoid retraining the
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model from scratch, however, if post-processing techniques do not achieve good per-
formance or do not mitigate biases, then we consider retraining the model including
in-processing mitigation methods.

3.6.1 Post-processing techniques

For the purposes of this work, we explored the available post-processing techniques
from the AIF360 sklearn interface. In particular, we experimented with Rejection
Option classifier and Calibrated Equalized Odds classifier. The first technique re-
quires defining a decision threshold and a margin, in order to define the neighbor-
hood where uncertain samples will favor the unprivileged group. These parameters
can be previously determined (for example we can use the threshold that maximizes
F1 score) or they can be selected following a cross-validation strategy to select the
model with better fairness metrics.

Moreover, we developed a post-processing strategy inspired by the work of Solon
Barocas et a. [5], where we use group-specific thresholds to achieve a target accep-
tance rate. To do so, given a target average FPR rate, the algorithm computes the FPR
rates for a grid of thresholds per group and applies for each group the threshold that
achieves the input FPR. This algorithm could be extended to achieve parity in other
metrics, such as TPR parity (Equal Opportunity). We will refer to this method as
Separation Classifier.

3.6.2 In-processing techniques

In the same manner, the choice of in-processing techniques was conditioned on the
available implementations of AIF360 interface. In particular, there are two imple-
mentations of the Reductions Approach: Exponentiated gradient reduction and Grid
Search reduction [20]. These methods allow to include fairness constraints during
training in order to reduce biases. In particular, we are interested in including sepa-
ration constraints, such as FPR and TPR parity, as explained previously. One advan-
tage of these methods is that they allow considering multiple protected attributes
simultaneously, as opposed to the tested post-processing techniques. The main dis-
advantage is the computational cost that add. We need to retrain from scratch our
models, now taking into account constraints in the minimization problem.

If these techniques are not enough in order to achieve fairness, or they produce
a considerable performance drop, we might consider the viability of deploying such
models.
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Chapter 4

Results

After defining the methodology to ensure fair disease prediction, we validate it by
considering two specific diseases: Primary Hypertension and Parkinson’s Disease.

4.1 Primary Hypertension (PH)

As highlighted in the Background section, Primary Hypertension has a significant
global impact, affecting a large population of individuals worldwide. After perform-
ing data wrangling, we discover that it is between the top-10 more popular diseases
in UKBiobank. Specifically, we consider a sample of 440K subjects from which 70K
will suffer from this disease. This represents a 15% of positively labeled samples.
In order to train and evaluate the disease prediction model, we split the data into
three sets:

• Training data set: it represents 75% of the initial data set (330561 subjects). It
is used for grid search hyper parameter selection with 5-fold cross validation
and for fitting the final best model.

• Validation data set: one third of the remaining 25% of data (36729 subjects). It
is used for selecting the best model among the candidates and for selecting the
best decision threshold.

• Testing data set: the remaining data (73459 subjects). We use it for evaluating
the final performance of the model.

All three data sets where splitted using stratified sampling, a common approach
when dealing with imbalanced data sets that ensures that the distribution of the
target variable or class labels remains representative in the sampled data.

4.1.1 Data Bias Evaluation Protocol

Before training any model, we inspect the input data and we run discrimination
aware unit tests. First, we measure the disparate impact ratio per group to compare
it to the expected group prevalence. Figure 4.1 shows this metric1. We see that
unprivileged groups for age and BMI have higher incidence, a fact that is coherent
with expert knowledge as these characteristics are considered as risk factors by the
National Health Service (NHS) [56]. Also, we see that men have higher base rates
than women and people with low socioeconomic status have a higher prevalence,
as expected [57]. Regarding race, we see a slightly higher incidence in unprivileged

1Colors used in the plots of this work have been selected to accommodate individuals with color-
blindness, aiming to enhance accessibility and ensure a meaningful visual representation for all read-
ers.
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groups, which could be explained by the presence of people with black African or
black Caribbean ascendance, who are at a higher hypertension risk [56], but a more
disagregated study would need to be conducted in order to inspect the effect of other
ethnicities. As a summary, we can say that the training data is broadly coherent with
medical domain expertise.

FIGURE 4.1: Disparate Impact Ratio in input data

Then, we inspect the support for each protected group and report the percent-
age of subjects that will develop the disease. In table 4.1, we learn that all protected
groups except for females, are minorities, and hence they are more prone to statisti-
cal estimation errors. Furthermore, we observe that only 1% of the training samples
belong to unprivileged subjects w.r.t. ethnic background that will develop hyperten-
sion. Up to this point, we should decide if this highly imbalanced data set regard-
ing socially salient properties is good enough to proceed with the training or if we
should stop the process and gather more data. As the second option is not possible
in the scenario of this project, we will proceed with the training and bias evaluation
for research purposes.

Field Name Support (%)
Sex 44.98%
Ethnic background 94.46%
Skin color 93.26%
Country of birth 92.04%
TDI2at recruitment 79.88%
Year of birth 90.63%
BMI 77.40%

(A) Percentage of privileged class per pro-
tected attribute

Privileged? Future PH? Support (%)
No No 4.56%
No Yes 0.98%
Yes No 79.76%
Yes Yes 14.70%

(B) Percentage of total population w.r.t disease
distribution by ethnic background

TABLE 4.1: Support for each level of protected attributes

2Townsend Deprivation Index
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Finally, we report the top-10 most correlated features to the protected ones. For
example, we see in figure 4.2 that body measurements are highly correlated to Sex,
as expected. As a result, we should take into consideration these features as poten-
tial proxies for Sex. The rest of the plots for the remaining protected features are
included in the the Appendix A.

FIGURE 4.2: Highly correlated features to sex

4.1.2 Machine learning model selection

Table 4.2 presents the performance evaluation results for various ML models. Ran-
dom Forest, SVM, and XGB have been recognized in previous works as state-of-the-
art models for different data sets. Logistic Regression is a straightforward yet influ-
ential model extensively utilized in the medical field. It is noteworthy that all models
generally exhibit comparable results. However, the CatBoost classifier stands out as
the top-performing model, surpassing the others in all metrics, making it the pre-
ferred choice.

Model AUC-ROC F1 BA MCC
Logistic Regression 0.859247 0.549077 0.758484 0.457635
Random Forest 0.851529 0.541325 0.754548 0.448032
SVM 0.8595 0.5509 0.7661 0.4605
XGB 0.839086 0.536963 0.742932 0.443135
CatBoost 0.863682 0.556138 0.766806 0.466701

TABLE 4.2: Primary Hypertension model performance metrics on
UKBiobank validation set (15% of positive samples)

4.1.3 Performance evaluation

Now, we evaluate the best classifier more thoroughly on the test data. Figure 4.3
presents a summary of the main evaluation metrics. Subfigures 4.3a and 4.3c depict
the ROC curve and the PR curve, respectively. Their behaviour is far from random
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guessing so we conclude that the classifier is indeed learning from data. Subfigure
4.3b presents different metrics as a function of the decision threshold. Also, we have
marked the final selected threshold. We see that this threshold generalizes well for
unseen test data as we also obtain the best F1 and MC possible. However, this max-
imum is not achieved for balanced accuracy, where lower thresholds would result
in a higher metric. Finally, subfigure 4.3d shows the probability distributions for
the two classes. We see that although the negative class is more concentrated to-
wards close to zero probabilities, there are also negative samples all along the x-axis.
Moreover, the positive class distributed quite uniformly along different probability
regions. As a result, the two classes are not separable and the classification task is
therefore limited.

(A) Figure 1 (B) Figure 2

(C) Figure 3 (D) Figure 4

FIGURE 4.3: Catboost classifier performance evaluation for Primary
Hypertension prediction

Finally, in figure 4.4 we include the confusion matrix for the best classifier. We see
that although the majority of the negative and positive samples are well classified,
there are a significant number of test errors. In this particular case, with a precision
of 48% and a recall of 67%, it indicates that the model can correctly identify a signif-
icant portion of the positive instances (recall), but it also generates a relatively high
number of false positives (low precision). The specificity of 86% suggests that the
model performs well in identifying negative instances.

It is important to note that the decision threshold for these results was chosen to
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maximize the F1 score, which balances precision and recall equally. Therefore, de-
pending on the specific disease and with the advise of domain experts, adjustments
to the decision threshold might be necessary to optimize the model’s performance
for the desired outcome.

FIGURE 4.4: Confusion matrix for Catboost model for Primary Hy-
pertension prediction

4.1.4 Model Fairness Evaluation

Figure 4.5 summarizes the mentioned model fairness metrics. First of all, we mea-
sure the disparate impact by groups in order to check that the predicted incidence
rates (Subfigure 4.5a) are similar to those found in the data bias evaluation proto-
col (Figure 4.1). Effectively, we again see that both elderly people and people with
obesity are the ones at a higher risk of developing PH according to Catboost, with
respect to the privileged groups. Similar conclusions can be drawn for the rest of
protected features.

Moving on to the rest of the metrics, that are related to the measure of separation,
Subfigure 4.5b shows the Average Odds Error (AOE) per protected attribute in the
test set. We see that those features that presented higher DIR are also the ones that
achieve higher disparities in terms of FPR and TPR. These are BMI, Year of birth
and Sex. However, notice that the maximum AOE is around 0.16. A value of zero
indicates equality of odds and a value of one indicates maximum inequality of odds.
For this reason, discrimination biases found in this model are rather small.

To gain insight on the nature of these disparities, we plot the FPR difference
(Subfigure 4.5c) and the Equal Odds Difference or TPR difference (Subfigure 4.5d).
We observe slight bias in terms of FPR difference for +65 individuals, and people
with obesity, as a positive value indicates disadvantage for the privileged group.
Also, we see slight bias in terms of Equal Opportunity Difference, where negative
values indicate disadvantage for females.
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(A) Disparate Impact Ratio (B) Average Odds Error

(C) False Postive Rate Difference (D) Equal Opportunity Difference

FIGURE 4.5: Model fairness evaluation metrics in test predictions

As separation fairness metrics are completely influenced by the decision thresh-
old selected, we might wonder if it is possible to choose a threshold that instead of
maximizing F1 performance, we would reach parity in terms of AOE. In order to do
so, we inspect the disagregated ROC curves for the top-3 features with higher dis-
parities (Figure 4.6). If we were able to find a point where both curves intersected,
then, we would be able to select a threshold that achieves equal TPR and FPR per-
formance for protected groups. However, as we see in this figure, neither of the
ROC curves for privileged and unprivileged groups cross, so we will not be able to
achieve complete separation without applying more sophisticated techniques. Later
in this work, we apply bias mitigation methods with the objective of reducing dis-
parities for BMI, Year of birth and Sex.
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FIGURE 4.6: Disagregated ROC curves in terms of Sex, Year of birth
and BMI for test data

4.1.5 Explainability

In this section, we provide an overview of the explainability techniques employed to
interpret the results of disease prediction models. First of all, we analyze the feature
importance provided by the Catboost model. Features with high importance scores
indicate that they strongly influence the predictions made by the model. In Table 4.3
we present as summary of the Top-10 more important features in the best trained
model. Moreover, we include the medical category to which these features belong
to.

The first important result that we see is that diastolic and systolic blood pressure
are between the most important features. These are automated readings taken to the
subjects during the first assessment visit. High systolic or diastolic blood pressures
can be very informative regarding the future development of the Primary Hyper-
tension but at the same time, they are not sufficient for diagnosing it. Recall that
according to the WHO, for the diagnosis of PH, repeated measurements in different
days are required. This is because temporary high blood pressures can be caused by
many reasons such as anxiety, stress, pregnancy or other non-chronic conditions. For
this reason, we include these variables in the training set. In a similar fashion, the
top most important variable is taken into consideration. This feature is self reported
by the patient, and it is multicategorical. It can take values such as angina, stroke and
high blood pressure. We do not have enough information with this data in order to
assess if patients have been misdiagnosed with or without Primary Hypertension,
or if these measurements correspond to other causes for high blood pressure. In the
discussion section, we develop further this idea.

Moreover, we see other important results such as having Year of birth in the third
place. This is coherent with the fact that age is considered a medical risk factor.
Other important variables are highly correlated to protected features such as Waist
circumference to BMI, and obesity is another risk factor for PH. Finally, it is interesting
to comment that the top 10 most important features belong to a heterogeneous group
of medical categories, making this disease being predicted by taking into account
information from different data gathering procedures.

We can go deeper into the model explainability by computing the SHAP values
for the test set (Figure 4.7). Beeswarm plots show in the x-axis the SHAP value.
Higher values indicate a higher contribution to the model output. The color of the
plot measures the original feature value. We also see that dots pile up to show den-
sity. In this way, we are able to observe that effectively high diastolic and systolic
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Top-k Feature Medical Category
1 Vascular/heart problems diagnosed by doctor Self-reported medical conditions
2 Systolic blood pressure, automated reading Physical measure summary
3 Year of birth Primary demographics
4 Number of treatments/medications taken Self-reported medical conditions
5 Home area population density - urban or rural Geographical and location
6 Waist circumference Physical measure summary
7 Diastolic blood pressure, automated reading Physical measure summary
8 Cystatin C Biochemistry and Haematology
9 Biobank assessment centre Primary demographics

10 Overall health rating Self-reported medical conditions

TABLE 4.3: Feature importance of Catboost model

blood pressures increase the SHAP values. Similarly, taking many medications or
having high Cystatin C values will increase the probability of developing future PH.

FIGURE 4.7: Beeswarm SHAP plot for test set

4.1.6 Bias mitigation results

As explained in Chapter 3, we first apply post-processing techniques as they are the
less computationally costly. In Table 4.4 we include a summary of the main perfor-
mance metrics, as well as average odd errors for the selected features, and particu-
larly the metrics that we target to improve. This is, for Sex, we aim to reduce Equal
Opportunity differences, and for BMI and Age FPR differences. We experimented
with several techniques: our implementation of Separation Postprocessor for FPR
difference parity both for age and BMI; AIF360 sklearn interface for Rejection Op-
tion Classifier using our previously selected F1-optimized threshold; AIF360 sklearn
interface for Rejection Option Classifier with cross validation for threshold selection
based on balanced accuracy and fairness metrics; and, AIF360 sklearn interface for
Calibrated Equalized Odds postprocessor.

In terms of performance, we observe that our CatBoost baseline is better than the
other methods, except for balanced accuracy, where Rejection Option Classifier with
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threshold selection for Sex Equal Opportunity and balanced accuracy maximisation
achieves better results. In terms of fairness metrics, the method that more effectively
reduces Equal Opportunity differences for Sex is surprisingly CalibratedEqualize-
dOdds adjusted for Year of birth. However, this method has a great performance
trade-off, as F1, balanced accuracy and MCC are close to the metrics a random clas-
sifier would achieve. The rest of the postprocessing methods that improve Equal Op-
portunity in terms of Sex, experience the same limitations. It is worth highlighting
the case of RejectOptionClassifier F1-threshold for Sex, as we see that this method
is achieving the highest EOD and it is causing a disproportionate mitigation, where
we go from a -0.05 to a 0.19 EOD. This is a common pattern for all variants of the
Rejection Option Classifier, as this method is increasing the positive rate prediction
for unprivileged groups. Regarding, FPR difference we see that Separation post-
processor successfully reduces disparities both for BMI and Age, while maintaining
acceptable performance and reducing Average Odds Error. As a result, we claim
that this method is the most effective for postprocessing bias mitigation in this ap-
plication.

In addition to the aforementioned limitations, it is important to note that as of
the current date, the AIF360 sklearn interface does not support bias postprocessing
techniques that address multiple protected attributes simultaneously. Consequently,
we are only able to address one feature at a time and rely on the hope that fairness
metrics improve for the remaining attributes. We strongly believe that adopting a
more intersectional approach would promote fairness on a broader scale.

In contrast, in-processing methods offer the advantage of mitigating bias across
multiple protected levels. In Table 4.5, we present the results obtained from a sam-
ple of 30,000 patients. These methods rely on a base estimator, and we chose Logistic
Regression as our base model due to its simplicity while achieving comparable re-
sults to Catboost. These decisions were primarily driven by limited computational
resources. As part of our future work, we plan to conduct more extensive experi-
ments to further explore these techniques. Upon reviewing the results, we observed
similar limitations to those found in post-processing techniques. Although fairness
improvements were achieved, they came at a significant performance cost, render-
ing the model ineffective.



Name F1 BA MCC AOE Sex AOE BMI AOE Age EOD Sex FPRD BMI FPRD Age
Catboost Baseline 0.556 0.767 0.467 0.058 0.168 0.146 -0.051 0.175 0.171
Separation Postprocessor BMI 0.545 0.757 0.452 0.061 0.063 0.174 -0.057 0.0 0.201
Separation Postprocessor Year of Birth 0.547 0.759 0.455 0.06 0.172 0.056 -0.053 0.179 -0.001
RejectOptionClassifier F1-threshold BMI 0.537 0.747 0.443 0.054 0.358 0.138 -0.054 0.333 0.148
RejectOptionClassifier F1-threshold Year of birth 0.541 0.738 0.449 0.049 0.149 0.362 -0.054 0.136 0.371
RejectOptionClassifier F1-threshold Sex 0.543 0.759 0.45 0.125 0.165 0.162 0.19 0.182 0.2
RejectOptionClassifier EO Sex 0.516 0.782 0.434 0.056 0.187 0.204 0.077 0.257 0.302
RejectOptionClassifier AO Year of birth 0.068 0.517 0.146 0.004 0.02 0.092 -0.008 0.004 0.022
RejectOptionClassifier AO BMI 0.083 0.52 0.154 0.004 0.064 0.038 -0.007 0.013 0.013
CalibratedEqualizedOdds BMI 0.269 0.576 0.266 0.016 0.294 0.038 -0.02 0.107 0.027
CalibratedEqualizedOdds Year of birth 0.171 0.544 0.212 0.002 0.009 0.346 -0.001 0.009 0.133
CalibratedEqualizedOdds Sex 0.349 0.608 0.323 0.167 0.093 0.106 -0.285 0.053 0.061

TABLE 4.4: Primary Hypertension model performance metrics on validation set after bias mitigation with postprocessing techniques

Name F1 BA MCC AOE Sex AOE BMI AOE Age EOD Sex FPRD BMI FPRD Age
LogisticRegression Baseline 0.518 0.75 0.42 0.073 0.21 0.179 -0.075 0.219 0.226
ExponentiatedGradientReduction FPR Parity 0.179 0.54 0.128 0.004 0.006 0.01 0.008 0.001 0.005
ExponentiatedGradientReduction TPR Parity 0.24 0.56 0.159 0.006 0.027 0.021 0.005 0.034 0.025
GridSearchReduction TPR Parity 0.218 0.524 0.042 0.502 0.26 0.028 -0.509 -0.218 0.044
GridSearchReduction FPR Parity 0.17 0.451 -0.074 0.634 0.308 0.033 0.586 -0.345 0.003

TABLE 4.5: Primary Hypertension model performance metrics on validation set after bias mitigation with in-processing techniques
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4.1.7 Discussion

In this section, we will discuss and summarize the results of our study, examining
their implications in the context of our research objectives. First of all, we have an-
alyzed the results for the Data Bias Evaluation Protocol, where we spotted different
Disparate Impact Ratios coherent with previous medical knowledge. Also, we ob-
served low support of most of the protected groups. Precisely, those groups that
experienced higher differences in terms of DIR, people with obesity, older than 65
years old and females, were the ones the ML model predicted with higher Av-
erage Odds Error. Surprisingly, we did not find significant model biases in those
minorities in terms of race and socioeconomic status, having similar performance
for privileged and unprivileged groups.

In terms of model performance, the CatBoost classifier achieves a comparable
AUC-ROC to those reported in previous studies [37]. However, conducting a com-
prehensive comparison becomes challenging due to the lack of evaluations on im-
balanced test sets in most of the referenced works, unlike our study. The exception
is the work by AlKaabi et al. [38]. They reported an AUC-ROC of 0.87 and a F1
of 81.6% using Random Forest in a scenario with a 15% class imbalance using the
Qatar Biobank data set. It is important to note that their work’s primary limitation
is the small sample size of only 1000 individuals, from which the majority belong to
highly educated and affluent population, in contrast to the substantial population
of almost 500,000 subjects in the UK Biobank. However, thanks to this work we ac-
knowledge that it might be possible to improve our model in terms of precision and
recall scores, maybe by using techniques such as feature selection.

During our analysis, we examined model explanations and identified that the
model was utilizing prior indicators of high blood pressure as predictors for the
future development of Primary Hypertension (PH). In this study, we constructed
the target variable based on subjects diagnosed with PH subsequent to the initial
assessment visit. Therefore, we excluded individuals with a positive diagnosis at the
time of data collection, so in principle we discard data leakage. It is important to note
that high blood pressure can have various causes other than Primary Hypertension
and other studies presented in the survey by Silva et al. [37] also include these
readings as predictors.

However, since Primary Hypertension typically lacks symptoms in its early stages,
it is frequently under diagnosed. In fact, the World Health Organization estimates
that less than half of adults with hypertension are aware of their condition and re-
ceiving treatment, thereby increasing the potential consequences of this disease [57].
Consequently, it is possible that some of the training samples included individuals
labeled as normotensive (negative for PH) who are, in reality, unaware that they
have the disease. This hypothesis could explain the relatively high false positive
rate observed in our results. As Primary Hypertension cannot be diagnosed based
on a single blood pressure measurement, and our analysis is based on the data avail-
able during the first assessment visit, we acknowledge the need for future work to
remove individuals from the study who exhibit high blood pressure levels in subse-
quent medical checkups, even if they have not received a formal diagnosis from a
doctor, in order to account for this possible under diagnosis bias.

Finally, we applied bias mitigation techniques to reduce Sex, Age and BMI dis-
parities. However, we encountered challenges with certain in-processing methods
and some post-processing mitigation techniques, such as Calibrated Equalized Odds
or the Rejection Option classifier with threshold optimization. These methods ex-
hibited a significant fairness-accuracy trade off, making the resulting models less
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effective. Interestingly, we observed that the Rejection Option classifier, even with
an F1-optimized threshold, exacerbated biases. This occurred because the method
assigned positive outcomes to the underprivileged class in uncertain probability re-
gions, consequently increasing the false positive rate difference between the groups.
Ultimately, we reached a consensus that the most effective post-processing method
was our own adaptation of the approach proposed by Barocas et al. [5]. This
method involved assigning different thresholds to different groups, achieving both
high performance and effective mitigation of biases for the target protected groups.

4.2 Parkinson’s disease

Moving on to Parkinson’s disease results, we consider a sample of 475K subjects,
where barely 1.5K will develop PD. As we see, this is highly imbalanced data set,
with a proportion of less than 0.5% positively labeled samples. Dealing with such
a highly imbalanced data set poses significant challenges in developing an accurate
predictive model for Parkinson’s disease. Traditional machine learning algorithms
tend to favour the majority class, leading to poor performance in detecting the mi-
nority class.

To overcome this issue, we have applied under and oversampling techniques
as well as specific ensemble models that target this problem. In Table 4.6 we present
the performance results for different models:

• Two traditional ML models (Logistic Regression and Catboost) with balanced
class weights.

• Balanced Random Forest Classifier: an adapted random forest that performs
undersampling during training and uses balanced splitting criteria.

• Catboost classifier with different combinations of resampling techniques: Ran-
dom Under Sampling (RUS), Random Over Sampling (ROS) and Synthetic Mi-
nority Over-sampling Technique for Nominal and Continuous (SMOTENC).

We observe that all of the classifiers achieve State-of-the-Art AUC-ROC, and sig-
nificantly high balanced accuracy (BA), taking into account the high class imbal-
ance. However, these models achieve close to zero F1 and MCC scores. For PD, we
have decided to optimize balanced accuracy in decision threshold selection as F1
improvement was limited.

Model AUC-ROC F1 BA MCC
Logistic Regression 0.8114 0.0160 0.7422 0.0587
CatBoost 0.8157 0.0367 0.6190 0.0644
Balanced Random Forest Classifier 0.8149 0.0199 0.7432 0.0660
Catboost + RUS 0.8155 0.0132 0.7376 0.0532
Catboost + RUS + ROS 0.8175 0.0171 0.7456 0.0613
Catboost + RUS + SMOTENC 0.8217 0.0189 0.7462 0.0646

TABLE 4.6: Parkinson’s Disease model performance metrics on UK-
Biobank validation set (<1% of positive samples)

To gain insights into the causes of this low performance, we conducted a detailed
analysis of Catboost with Random Under Sampling and SMOTENC. Examining the
confusion matrix presented in Figure 4.8, we can easily identify the issue: the classi-
fier is overpredicting positive PD cases, resulting in a 1% precision and a significant
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drop in the F1 score. Moreover, we see that we are achieving a recall of 62% and a
specificity of 78%.

In Subfigure 4.9c, we illustrate the Precision-Recall curve, which clearly demon-
strates that, at best, we can anticipate a precision of only 7%, at the expense of other
metrics like recall. Furthermore, Subfigure 4.9b reveals that optimizing the thresh-
old selection based on the F1 score yields marginal improvements compared to the
considerable gains achieved in terms of balanced accuracy.

FIGURE 4.8: Confusion matrix for Catboost+RUS+SMOTENC model
for Parkinson’s Disease prediction

In summary, although precision may not be the primary metric of concern in the
disease prediction application, the current results are considerably low. Therefore,
we have not yet assessed the fairness of the predictions as future initial focus is on
improving performance.
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(A) Figure 1 (B) Figure 2

(C) Figure 3 (D) Figure 4

FIGURE 4.9: Catboost+RUS+SMOTENC classifier performance eval-
uation for Parkinson’s Disease prediction
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Conclusion

This master thesis has explored the crucial topic of ensuring non-discrimination in
disease prediction through the lens of fair machine learning. This research con-
tributes to the ongoing efforts aimed at creating a more equitable healthcare system.

Throughout this study, we have recognized the inherent biases present in a
large-scale data set such as UK Biobank, and we have analyzed the challenges in
the disease prediction task. We have proposed a complete ML Pipeline that goes
from data wrangling to model deployment, taking into account fairness considera-
tions in different stages by design. We have adapted prior statistical frameworks on
fairness evaluation and mitigation for this particular application, acknowledging
the biological and social impact of protected features (sex, age, BMI, socioeconomic
status and race) in the future development of diseases.

Although the methodology and technical implementation could be applied to
potentially any disease in UKBiobank, our focus has been on two specific diseases:
Primary Hypertension and Parkinson’s Disease. For Primary Hypertension, we
have successfully constructed a prediction system that demonstrates performance
comparable to the state-of-the-art. Throughout the evaluation process, we have
assessed model explanations and fairness metrics, allowing us to mitigate dispari-
ties for specific targeted groups. However, when it comes to Parkinson’s Disease,
we faced challenges in achieving acceptable performance. This difficulty may be
attributed to the high data imbalance, with less than 1% of positive instances, or
potentially due to the lack of pertinent information within the input features. It is
worth noting that Parkinson’s Disease is a complex disorder, and there remain nu-
merous uncertainties in medical research concerning its underlying causes.

5.1 Future Work

Although our study has provided valuable insights into the challenges and opportu-
nities associated with the disease prediction task, there are several avenues for future
work that can expand upon our findings and address the limitations encountered.

In relation to the fairness framework, our future research aims to delve deeper
into addressing multiple protected attributes simultaneously, recognizing that mit-
igating disparities for one group may inadvertently perpetuate biases for others.
One avenue we intend to explore is the expansion of our implementation of the
Separation Postprocessor, with a particular focus on identifying optimal thresholds
for combinations of protected attributes. Additionally, we are keen on investigat-
ing the adaptability of the existing postprocessing techniques offered by AIF360 to
address this particular issue. Also, we would like to expand the bias mitigation
with in-processing techniques to a larger sample with more complex ML models.
By doing so, we hope to assess whether we can mitigate the observed trade-off be-
tween fairness and accuracy, seeking a balance that optimizes both aspects. Lastly,
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we are eager to extend our research to incorporate causal fairness frameworks. By
integrating causal fairness considerations into the medical domain, we aim to gain
insights into the ability of such frameworks to adapt and provide fairness evalu-
ations and interventions that account for the intricacies of causal relationships in
disease development.

Regarding the disease prediction results in terms of performance, we target to
improve model predictions by several means. First of all, we are aware of the high
data imbalance and we would like to further investigate this issue by testing more
combinations of under and over samplers for different target imbalance ratios. Sec-
ondly, we would like to evaluate the performance of different models that consider
less input features. Currently, we experimented with all 156 variables in the training
data but we suspect that many of these variables are adding noise and complexity to
the model. We would like to apply feature selection or dimensionality reduction
techniques to compare them with our actual model.
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Appendix A

Appendix

The code used in this project is available in GitHub

Field Name Data Type Medical category
F102 Pulse rate, automated reading Integer Physical measure summary
F1050 Time spend outdoors in summer Integer, hours/day Lifestyle
F1060 Time spent outdoors in winter Integer, hours/day Lifestyle
F1110 Length of mobile phone use Categorical (single) Lifestyle
F1160 Sleep duration Integer, hours/day Sleep
F1190 Nap during day Categorical (single) Sleep
F120 Birth weight known Categorical single Early life
F1200 Sleeplessness / insomnia Categorical (single) Sleep
F1220 Daytime dozing / sleeping Categorical (single) Sleep
F1239 Current tobacco smoking Categorical single Smoking
F1249 Past tobacco smoking Categorical (single) Smoking
F1279 Exposure to tobacco smoke outside home Integer, hours/week Smoking
F1289 Cooked vegetable intake Integer, tablespoons/day Diet summary
F1299 Salad / raw vegetable intake Integer, tablespoons/day Diet summary
F1309 Fresh fruit intake Integer, pieces/day Diet summary
F1329 Oily fish intake Categorical (single) Diet summary
F1339 Non-oily fish intake Categorical (single) Diet summary
F1349 Processed meat intake Categorical (single) Diet summary
F1359 Poultry intake Categorical (single) Diet summary
F1369 Beef intake Categorical (single) Diet summary
F137 Number of treatments/medications taken Integer Self-reported medical conditions
F1379 Lamb/mutton intake Categorical (single) Diet summary
F1389 Pork intake Categorical (single) Diet summary
F1408 Cheese intake Categorical (single) Diet summary
F1418 Milk type used Categorical (single) Diet summary
F1428 Spread type Categorical (single) Diet summary
F1438 Bread intake Integer Diet summary
F1448 Bread type Categorical (single) Diet summary
F1458 Cereal intake Integer, bowls/week Diet summary
F1478 Salt added to food Categorical (single) Diet summary
F1488 Tea intake Integer, cups/day Diet summary
F1498 Coffee intake Integer, cups/day Diet summary
F1528 Water intake Integer, glasses/day Diet summary
F1538 Major dietary changes in the last 5 years Categorical single Diet summary
F1548 Variation in diet Categorical single Diet summary
F1558 Alcohol intake frequency. Categorical (single) Alcohol
F1628 Alcohol intake versus 10 years previously Categorical (single) Alcohol
F1647 Country of birth (UK/elsewhere) Categorical single Early life
F1677 Breastfed as a baby Categorical single Early life
F1687 Comparative body size at age 10 Categorical (single) Early life
F1697 Comparative height size at age 10 Categorical (single) Early life
F1707 Handedness (chirality/laterality) Categorical single Early life
F1717 Skin colour Categorical (single) Lifestyle
F1727 Ease of skin tanning Categorical single Lifestyle
F1737 Childhood sunburn occasions Integer, times Lifestyle
F1747 Hair colour (natural, before greying) Categorical (single) Lifestyle
F1757 Facial ageing Categorical single Lifestyle
F1767 Adopted as a child Categorical single Early life
F1777 Part of a multiple birth Categorical (single) Early life
F1787 Maternal smoking around birth Categorical (single) Early life
F189 Townsend deprivation index at recruitment Continuous Baseline characteristics
F20023 Mean time to correctly identify matches Integer Cognitive function
F20116 Smoking status Categorical single Smoking

https://github.com/claudia-hm/spurlock
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F20117 Alcohol drinker status Categorical single Alcohol
F20118 Home area population density - urban or rural Categorical single Geographical and location
F20160 Ever smoked Categorical single Smoking
F2040 Risk taking Categorical single Mental health
F2050 Frequency of depressed mood in last 2 weeks Categorical (single) Mental health
F2060 Frequency of unenthusiasm / disinterest in las... Categorical (single) Mental health
F2070 Frequency of tenseness / restlessness in last ... Categorical (single) Mental health
F2080 Frequency of tiredness / lethargy in last 2 weeks Categorical (single) Mental health
F2090 Seen doctor (GP) for nerves, anxiety, tension ... Categorical (single) Mental health
F2100 Seen a psychiatrist for nerves, anxiety, tensi... Categorical (single) Mental health
F21000 Ethnic background Categorical single Primary demographics
F21001 Body mass index (BMI) Continuous Physical measure summary
F21002 Weight Continuous Physical measure summary
F2178 Overall health rating Categorical single Self-reported medical conditions
F2188 Long-standing illness, disability or infirmity Categorical (single) Self-reported medical conditions
F2227 Other eye problems Categorical single Self-reported medical conditions
F2237 Plays computer games Categorical single Lifestyle
F2247 Hearing difficulty/problems Categorical single Self-reported medical conditions
F2267 Use of sun/uv protection Categorical (single) Lifestyle
F2296 Falls in the last year Categorical single Self-reported medical conditions
F23099 Body fat percentage Continuous Physical measure summary
F23100 Whole body fat mass Continuous Physical measure summary
F23101 Whole body fat-free mass Continuous Physical measure summary
F23102 Whole body water mass Continuous Physical measure summary
F23105 Basal metabolic rate Continuous Physical measure summary
F23106 Impedance of whole body Continuous Physical measure summary
F23107 Impedance of leg (right) Continuous Physical measure summary
F23108 Impedance of leg (left) Continuous Physical measure summary
F23109 Impedance of arm (right) Continuous Physical measure summary
F23110 Impedance of arm (left) Continuous Physical measure summary
F23111 Leg fat percentage (right) Continuous Physical measure summary
F23112 Leg fat mass (right) Continuous Physical measure summary
F23113 Leg fat-free mass (right) Continuous Physical measure summary
F23115 Leg fat percentage (left) Continuous Physical measure summary
F23116 Leg fat mass (left) Continuous Physical measure summary
F23117 Leg fat-free mass (left) Continuous Physical measure summary
F23119 Arm fat percentage (right) Continuous Physical measure summary
F23120 Arm fat mass (right) Continuous Physical measure summary
F23121 Arm fat-free mass (right) Continuous Physical measure summary
F23123 Arm fat percentage (left) Continuous Physical measure summary
F23124 Arm fat mass (left) Continuous Physical measure summary
F23125 Arm fat-free mass (left) Continuous Physical measure summary
F23127 Trunk fat percentage Continuous Physical measure summary
F23128 Trunk fat mass Continuous Physical measure summary
F23129 Trunk fat-free mass Continuous Physical measure summary
F2316 Wheeze or whistling in the chest in last year Categorical single Self-reported medical conditions
F2335 Chest pain or discomfort Categorical single Self-reported medical conditions
F24009 Traffic intensity on the nearest road Integer Geographical measures
F24014 Close to major road Categorical single Geographical and location
F24020 Average daytime sound level of noise pollution Continuous Geographical measures
F24021 Average evening sound level of noise pollution Continuous Geographical measures
F24022 Average night-time sound level of noise pollution Continuous Geographical measures
F24023 Average 16-hour sound level of noise pollution Continuous Residential noise pollution
F24024 Average 24-hour sound level of noise pollution Continuous Residential noise pollution
F2443 Diabetes diagnosed by doctor Categorical (single) Self-reported medical conditions
F2453 Cancer diagnosed by doctor Categorical (single) Self-reported medical conditions
F2473 Other serious medical condition/disability dia... Categorical (single) Self-reported medical conditions
F2492 Taking other prescription medications Categorical single Self-reported medical conditions
F30000 White blood cell (leukocyte) count Continuous, 10^9 cells/Litre Biochemistry and Haematology
F30020 Haemoglobin concentration Continuous, grams/decilitre Biochemistry and Haematology
F30080 Platelet count Continuous, 10^9 cells/Litre Biochemistry and Haematology
F30140 Neutrophill count Continuous, 10^9 cells/Litre Biochemistry and Haematology
F30150 Eosinophill count Continuous, 10^9 cells/Litre Biochemistry and Haematology
F30610 Alkaline phosphatase Continuous Biochemistry and Haematology
F30620 Alanine aminotransferase Continuous Biochemistry and Haematology
F3064 Peak expiratory flow (PEF) Integer Physical measure summary
F30640 Apolipoprotein B Continuous Biochemistry and Haematology
F30650 Aspartate aminotransferase Continuous Biochemistry and Haematology
F30670 Urea Continuous Biochemistry and Haematology
F30690 Cholesterol Continuous Biochemistry and Haematology
F30700 Creatinine Continuous Biochemistry and Haematology
F30710 C-reactive protein Continuous Biochemistry and Haematology
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F30720 Cystatin C Continuous Biochemistry and Haematology
F30730 Gamma glutamyltransferase Continuous Biochemistry and Haematology
F30750 Glycated haemoglobin (HbA1c) Continuous Biochemistry and Haematology
F30770 IGF-1 Continuous Biochemistry and Haematology
F30780 LDL direct Continuous Biochemistry and Haematology
F30870 Triglycerides Continuous Biochemistry and Haematology
F30880 Urate Continuous Biochemistry and Haematology
F31 Sex Categorical single Primary demographics
F34 Year of birth Integer Primary demographics
F4079 Diastolic blood pressure, automated reading Integer Physical measure summary
F4080 Systolic blood pressure, automated reading Integer Physical measure summary
F46 Hand grip strength (left) Integer Physical measure summary
F47 Hand grip strength (right) Integer Physical measure summary
F48 Waist circumference Continuous Physical measure summary
F49 Hip circumference Continuous Physical measure summary
F50 Standing height Continuous Physical measure summary
F54 UK Biobank assessment centre Categorical single Primary demographics
F6138 Qualifications Categorical (multiple) Education and employment
F6142 Current employment status Categorical (multiple) Education and employment
F6144 Never eat eggs, dairy, wheat, sugar Categorical (multiple) Diet summary
F6145 Illness, injury, bereavement, stress in last 2... Categorical (multiple) Mental health
F6150 Vascular/heart problems diagnosed by doctor Categorical (multiple) Self-reported medical conditions
F6152 Blood clot, DVT, bronchitis, emphysema, asthma... Categorical (multiple) Self-reported medical conditions
F6155 Vitamin and mineral supplements Categorical (multiple) Self-reported medical conditions
F6164 Types of physical activity in last 4 weeks Categorical (multiple) Physical activity
F6179 Mineral and other dietary supplements Categorical (multiple) Self-reported medical conditions
F864 Number of days/week walked 10+ minutes Integer, days/week Physical activity
F874 Duration of walks Integer, minutes/day Physical activity
F884 Number of days/week of moderate physical activ... Integer, days/week Physical activity
F904 Number of days/week of vigorous physical activ... Integer, days/week Physical activity
F924 Usual walking pace Categorical (single) Physical activity

TABLE A.1: Training features

FIGURE A.1: Highly correlated features to BMI
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FIGURE A.2: Highly correlated features to Year of birth

FIGURE A.3: Highly correlated features to Townsend deprivation in-
dex
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FIGURE A.4: Highly correlated features to Country of birth

FIGURE A.5: Highly correlated features to Skin color



46 Appendix A. Appendix

FIGURE A.6: Highly correlated features to Ethnic background
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