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Transformers in Depression Detection from Semi-Structured Psychological
Interviews

by Iker HONORATO LÓPEZ

The expansive adoption of Transformer models across the Machine Learning land-
scape is undeniable, and health is not an exception. This study undertakes a rigorous
exploration of the efficacy of these novel architectures in discerning depression in-
dicators from semi-structured psychological interviews. A key focus of this study
is the extrapolation of the pre-training knowledge inherent in these models, and the
comparison with traditional state-of-the-art Machine Learning models. In doing so,
the thesis proposes a comprehensive framework designed to facilitate objective com-
parison. The study extends its inquiry into the differential performance of text and
speech modalities, in isolation and combination, within the context of depression
detection. Moreover, this research delves into the importance of topical relevance
in the detection process, culminating in an evaluative discussion of crucial themes
integral to accurate depression detection. Ultimately, this thesis contributes to the
deepening understanding of the complex interplay between Transformer models,
modality use, and topic importance in the realm of depression detection.
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Chapter 1

Introduction

1.1 Motivation

Major Depressive Disorder (MDD) is a leading cause of disability and a common
worldwide mental health issue with high socioeconomic impact and the principal
cause leading to suicide. According to World Health Organization (WHO) in 2017
an estimate of more than 300 million people worldwide suffered from depression,
which is roughly 4.4 percent of the global population (WHO, 2017). Some of its
symptoms might include (American Psychiatric Association, 2013):

1. Markedly diminished interest or pleasure in all, or almost all, activities most
of the day, nearly every day.

2. Significant weight loss when not dieting or weight gain, or decrease or increase
in appetite nearly every day.

3. A slowing down of thought and a reduction of physical movement (observable
by others, not merely subjective feelings of restlessness or being slowed down).

4. Feelings of worthlessness or excessive or inappropriate guilt nearly every day.

5. Diminished ability to think or concentrate, or indecisiveness, nearly every day.

6. Recurrent thoughts of death, recurrent suicidal ideation without a specific plan,
or a suicide attempt or a specific plan for committing suicide.

Early diagnosis is important in the management of any patient. However, a large
number of individuals with Major Depressive Disorder – nearly one in four – re-
main undetected, with less than half receiving appropriate treatment (Epstein et al.,
2010). This gap in healthcare delivery may be attributed, in part, due to the lack of
screening power in the field.

Among the prevailing methodologies employed to evaluate the severity of depres-
sion, the Patient Health Questionnaire (PHQ-8) is frequently utilized (Kroenke et al.,
2009). From it we can extract the following intervals depending on the score on the
test:

• 0-4, no significant depressive symptoms

• 5-9, presents mild depressive symptoms

• 10-14, moderate depressive symptoms, and the threshold for MDD

• 15-19, moderately severe symptomatology

• 20-24, severe symptoms
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Moreover, the intention behind its questions is transparent, as illustrated in Figure
1.1. Nevertheless, it is crucial to recognize that patients’ responses might be skewed
due to an inclination to conform to societal stereotypes linked with depression (Fal-
icov, 2003).

FIGURE 1.1: PHQ-8 questionnaire

However, it is also commonly known that psychologists are able to perceive depres-
sion traits based on open conversation with the patients (Lord, 1921), which is the
reason why a semi-structured clinical interview where the physician determines the
symptoms of a patient remains the principal diagnose methodology (Levis et al.,
2018), since this modality is less susceptible to the previously mentioned social bias.
Additionally, there is evidence that spontaneous language is an important factor
when it comes to MDD early diagnosis, on an analysis in the effect on some speech
features, it can be found that there are distinctive traits between read speech and
impromptu conversation (Alghowinem et al., 2013), making the latter more capa-
ble.

Nonetheless this process presents clear limitations, primary due to the fact that the
diagnosis largely depends on the physician’s skills and the patient’s willingness to
cooperate (Epstein et al., 2010). Moreover, as the process is influenced by these hu-
man factors, it can be time-consuming and subjective in nature, and, as a result, the
diagnostic efficacy and applicability in the wider population might not be as optimal
as it is needed.

For this reason, several studies have been conducted to try to make the process rapid
and efficient, by introducing virtual agents (DeVault et al., 2014, Gratch et al., 2014a)
to perform the clinical interviews and serve as tools to analyze the verbal and non-
verbal behaviours, which can serve as extra data to help physicians with their deci-
sions (Gratch et al., 2013).
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Moreover, one of the most promising fields of study is vocal biomarkers (Cohen,
Kim, and Najolia, 2013), which is considered a unique health signal containing cog-
nitive, neurological and physiological information. In fact, voice is a data quarry,
from where acoustic, phonetic and prosodic information can be extracted, and not
only it encodes this information, but also sociodemographic pieces, such as sex, age
or emotional state (Hebbar, Somandepalli, and Narayanan, 2018, Reynolds et al.,
2003). This has given an opening to Machine Learning (ML) to form part of the new
methodologies to explore the early diagnose of depression.

1.2 Indicators

Research on spontaneous speech has been ongoing for an extended period of time,
as an example (Darby, Simmons, and Berger, 1984) conducted a study on 13 hospi-
talized subjects aged between 27 to 67 years, who had been diagnosed with bipolar
disorder or unipolar disorder. They discovered that the speech characteristics of de-
pression typically included reduced stress, monopitch, and monoloudness. While
reduced stress was evident in all cases, monopitch and monoloudness were con-
sistently found together. It is also stated that, at that moment, there was a lack of
information to make such an assumption. Nonetheless, latter studies (Moore II et
al., 2008) confirm the hypothesis and also add that depressives have a slower rate
of speech and relatively monotone delivery when compared with normal speaking
patterns.

Moreover, various indicators can be found inside the lexicon, for instance, pauses,
dubitation and constant distraction, related to mind wandering (MW) (Chaieb, Hoppe,
and Fell, 2022) seem to increase in depressive patients, nonetheless, there is still lit-
tle information on this topic. However, there are other signs that have been more
thoroughly studied, for instance, that the insistent use of first person singular pro-
nouns is an strong indicator of depression (Brown and Weintraub, 1984 and Ed-
wards and Holtzman, 2017), or that people that present MDD symptoms tend to use
more emotion related adjectives, with a tendency towards negative connotations
(Alghowinem et al., 2013). These indicators served as basis for the development of
several computerized text analysis methods such as the Linguistic Inquiry and Word
Count (LIWC) (Pennebaker, Francis, and Booth, 1999), from which we can extract a
total of 93 lexicon-based features, which can be classified as follows:

• Standard Linguistic Dimensions: This includes purely information on tense
and type of verbes, pronouns prepositions or even negations.

• Psychological processes: A classification on different words, which can be
stratified, for instance in social, affective or cognitive among others

• Personal concerns: Trying to classify words inside various axis of a person’s
life, some examples are, work, home, along with money and others

Depression, as a mood disorder induces changes in response to emotional stimuli,
so it is essential to examine if there is relationship emotion and depression speech
(Reed, Sayette, and Cohn, 2007), and some studies have indeed proven the bene-
fits of including emotion assessment in audio-based automatic depression diagnosis
systems (Stasak et al., 2016). Normally, all literature found when it comes to text, or
sentiment features, comes from social-media depression analysis.
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Moreover, not only there are clues on the diagnosis in the way a person expresses,
but also on variations in the frequency of the voice (Ozdas et al., 2000 and Trevino,
Quatieri, and Malyska, 2011). Table 1.1 illustrates some the most common features
that can be obtained from voice, extracted from openSMILE (Eyben et al., 2013), an
open-source library for multimedia feature extraction.

Nevertheless, due to the nature of acoustic features, they tend to encode sociodemo-
graphic information as explained previously. That is why there are studies (Wang et
al., 2019), which aim to examine whether vocal abnormalities in people with depres-
sion only exist in special situations. This study compared the vocal differences be-
tween healthy people and patients with unipolar depression in 12 speech scenarios.
The study controlled for irrelevant demographic variables and found three acoustic
features (loudness, MFCC5, and MFCC7) that were consistently dissimilar between
people with and without depression, which could indicate that these acoustic fea-
tures may be potential indicators for identifying depression via voice analysis.

Still, it is important to remark the gender-bias in these, for example, at (Alghowinem
et al., 2012), they perform an study where the participants perform the PHQ-8 test
and respond to a "good news" and "bad news" question, in order to encode sentiment
inside the experiment. Results show, that with purely acoustic features, it seems
easier to recognise depression from females.



1.3. State of the art 5

Feature Description

Waveform The form of the wave caused by speech.

Loudness
Energy or intensity of a sound, it is related
to the physical quantity of sound pressure
level (SPL) which is measured in decibels(dB)

MEL filters

Derived from the Mel frequency filter bank
applied to an audio signal. The Mel scale
is a perceptual frequency scale that approximates
the non-linear relationship between frequency
and pitch perception in human hearing.
(Gowdy and Tufekci, 2000)

Cepstral

The result of taking the inverse Fourier
transform of the power spectrum of a signal.
One of the most common is MEL-frequency
cepstral coefficients (MFCCs), which are
commonly used in speech recognition and
speaker identification tasks.

Pitch

Pitch refers to the perceived fundamental
frequency of the speaker’s voice, it is
measured in Hertz (Hz), and reflects the
rate of vocal fold vibration.
(Shrivastav, Eddins, and Anand, 2012)

Voice Quality

Jitter or shimmer are acoustic characteristics
of voice signals, and they are caused by irregular
vocal fold vibration. They are perceived as roughness,
breathiness, or hoarseness in a speaker’s voice.
(Reynolds et al., 2003)

TABLE 1.1: Most common speech features

1.3 State of the art

When it comes to automatic depression assessment, various approaches have been
proposed and studies can be grouped based on the type of features and tools em-
ployed for the prediction. For instance, some studies rely solely on lexicon features
and employ convolutional neural networks (CNNs) to detect signs of depression
in social media posts (Trotzek, Koitka, and Friedrich, 2020). On the other hand,
certain studies utilize transcriptions of medical interviews to extract inherent in-
formation (Mallol-Ragolta et al., 2019), who use Global Vectors (GloVe) to extract
low-level word representations. They compare hierarchical local-global attention
networks and hierarchical contextual attention networks, achieving an Unweighted
Average Recall (UAR) of 0.60. UAR is an evaluation metric used for imbalanced
datasets, calculated as the sum of class-wise accuracy (recall) divided by the num-
ber of classes.

Other projects (Sardari et al., 2022) introduce an end-to-end depression detection
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model that utilizes a CNN Auto-encoder for automatic feature extraction from raw
audio signals of clinical interviews. They report a 0.70 F-score without explicitly
using audio features, however they use a data augmentation technique in which
they use a sliding window to divide the audios of the dataset, then they perform an
undersample on the negative class. This strategy gets close to previous approaches,
(Ma et al., 2016), which propose a deep model combining CNN and LSTM for a more
comprehensive audio representation, yielding only a 0.72 average F-measure. Ad-
ditionally, other works employ an MFCC-based Recurrent Neural Network (RNN)
to detect and evaluate depression severity levels (Rejaibi et al., 2022). By leveraging
simple MFCC features and performing random oversampling on the positive class,
the process is efficient and achieves a promising accuracy of 0.76, however the F1-
score for depressive participants is 0.46. Still, acoustic features remain a promising
field for further exploration in depression assessment.

Moreover, some of the most interesting result come when combining both modali-
ties. For instance there is proposals (Hanai, Ghassemi, and Glass, 2018) of a model
composed of two branches of bi-LSTMs, one for audio and the other for text, with
their outputs merged into a final feedforward network. The branches were con-
structed with different topologies, optimized according to the characteristics and
information content of each modality. This model achieved a 0.77 F1 score on vali-
dation, surpassing previous studies reviewed, which could be due to the fact that bi-
LSTM can encode temporal information. Moreover, according to the authors, there is
a possibility that temporal and discriminative information related to the speech pat-
terns of individuals with depression is present in speech, and extends over a longer
time frame than the syntactic and semantic information that can be extracted from
textual data. This finding opens up a new avenue of research in which the relation-
ship between the textual and corresponding audio segments can be explored to gain
a better understanding of depression assessment using multimodal data.

Expanding on the research mentioned earlier, studies propose a novel methodol-
ogy for incorporating Transformers (Vaswani et al., 2017) into depression assessment
models (Toto, Tlachac, and Rundensteiner, 2021). In their model, they utilize BERT-
embeddings and Audio-Embeddings, along with bi-LSTMs for each modality, and
fuse the outputs using attention before feeding the output to a dense layer. This
approach aims to leverage the strengths of both modalities while, due to the nature
of LSTMs, mantain temporal order. However, this approach is susceptible to mem-
ory loss, which could affect model performance. To address this issue, they utilize a
type of attention that helps the model maintain information while preserving strong
relationships between audio and text features. Moreover, they divide the dataset in
10 topic based datasets, depending on the question that is being asked to the partic-
ipant. The proposed model achieved an average F1-Score of 0.72 and a maximum of
0.92 on one of the datasets, showcasing the potential of integrating Transformers in
multimodal models for automatic depression assessment. Nonetheless, for each of
the thematic datasets, they trained 10 models with different initializations, and they
chose to report the score of the top 3 scoring on the test set, making the results hard
to validate.

Moreover, an other approach is a novel multi-modal topic-attentive model, (Guo et
al., 2022) that also employs Transformers in the branches for each data type, using a
more advanced version of BERT, RoBERTa, and an improved version of audio em-
bedding, Wav2Vec 2.0. Rather than directly concatenating the embeddings, they use
a fusion-module that performs several actions, including topic-attentive attention
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from the text data. This attention mechanism helps weighting the importance of spe-
cific questions in depression assessment, which enhances the model’s performance.
After the embeddings are fused, they are fed into a fully connected layer. This ap-
proach achieves a 0.64 F1 score, which are not superior results compared to other bi-
LSTM approaches, however it does evaluate unimodal and multimodal approaches,
stating that the latter is more capable and follows classic train/validation/test eval-
uation.

Overall, these findings highlight the importance of leveraging deep learning tech-
niques, such as Transformers and attention mechanisms, to incorporate both text and
audio information in depression assessment models, and the importance of time-
based approaches.

1.4 Scope

The current literature lacks a uniform method for reporting results in this field, so
our study suggests a structured approach for exploring different methodologies for
depression analysis. This approach includes machine learning (ML) models and
traditional feature extraction techniques, based on what we have found in litera-
ture, which will act as a reference point and benchmark for further experiments in
our project. Additionally, we will focus on transformer models, using pre-trained
architectures to try to extract meaningful information from our data. We will then
evaluate if this data holds important information for our problem and see if this new
approach surpasses classic ML models.

To compare models accurately, we will adopt a standardized evaluation method
based on hyperparameter tuning using a validation set, with the final evaluation
done on a test set. All decisions, including model choices, will be based on results
from the validation set to prevent data leakage into our final results.

Moreover, a crucial aspect of this research entails identifying the effective topics and
questions for detecting depression. To achieve this we will divide our data in topic
datasets, similar to what is done in AudiBERT, and then a comparative assessment
will be conducted between audio and text techniques. We will introduce RoBERTa
and Wav2Vec2 models, which will play integral roles in this examination, as we will
analyize each domain separately.

Weighing up above all, the last step on this study will consist in the development of a
multimodal model that combines both audio and text modalities. By leveraging the
unique strengths of audio-based analysis using models such as Wav2Vec2 and text-
based generalization using models such as RoBERTa, we aim to enhance the overall
accuracy and comprehensiveness of the detection approach as well as analyze if this
strategy yields better result than singular modalities.

All code produced by this study can be consulted in the Github Repository of the
thesis.

1.5 Document structure

This research work is organized into four key sections. In Chapter 1, we have pro-
vided a comprehensive introduction to the problem under investigation, defining its
scope and significance in the current research landscape.

https://github.com/IkerHonorato/Transformers-in-Depression-Detection-from-Semi-Structured-Psychological-Interviews
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In Chapter 2, we delve into the methodology that forms the backbone of our study.
This includes a detailed discussion of the technologies employed in our experiments,
as well as a thorough description of the dataset used. We explain our data prepro-
cessing techniques, justifying the choices made and their relevance to our research
goals.

Moving on to Chapter 3, we discuss our experimental setup in detail. This section
contains a comprehensive account of each experiment conducted, the results gar-
nered, and a thoughtful discussion of these outcomes. This chapter aims to provide
a clear understanding of our findings and their implications in the broader context
of the problem studied.

Finally, in Chapter 4, we synthesize the research journey into major conclusions
drawn from our findings. We provide thoughtful insights into the implications of
our results and their potential applications in future research. This chapter also out-
lines future directions, highlighting the next steps we intend to take based on the
current study’s outcomes.
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Chapter 2

Methodology

2.1 Technology

The field of natural language processing (NLP) has seen significant advancements
in recent years with the development of word embeddings and transformer models.
These techniques have revolutionized the way we process and understand human
language, and have been widely adopted for various applications such as language
translation, text classification, and text generation.

In addition to NLP, there has been a growing interest in audio processing, where
similar techniques can be applied to represent and process audio signals. These tech-
niques have been used for various applications such as speech recognition, speaker
identification, and emotion recognition.

In the chapter, we will present the necessary explanations on the architectures that
we will use for our experiment, aiming to provide an overview of the methodology
behind the proposed models.

2.1.1 Word embeddings

Word embeddings (WE) are numerical representations of words that have been widely
used in NLP applications. They are designed to capture the meaning and context
of words in a high-dimensional space and have gained significant attention in re-
cent years due to their ability to capture the semantic and syntactic properties of
words.

There are two main techniques used for training word embeddings: count-based
methods and predictive methods. Count-based methods analyze the co-occurrence
patterns of words in a large corpus of text and use matrix factorization techniques to
extract a low-dimensional representation of the words. On the other hand, predic-
tive methods use neural network architectures to predict the context of a given word
based on its surrounding words, such as Word2Vec (Mikolov et al., 2013)

One of the most common WE is GloVe (Pennington, Socher, and Manning, 2014)
which is based on the idea of representing words as vectors that capture the relation-
ships between words using co-occurence patterns of a corpus, taking the best of the
previously explained methodologies. The model can be described as a log-bilinear
model that incorporates a weighted least-squares objective. The fundamental con-
cept driving the model is that the ratios of the probabilities of words co-occurring
with each other have the potential to encode some type of meaning, creating this
way the WE, Figure 2.1.



10 Chapter 2. Methodology

FIGURE 2.1: GloVe embeddings visualization

2.1.2 Transformers

As it has been seen in the previous chapter, recent advances in the field of auto-
matic depression assessment come from the use of complex deep learning models
such as Recurrent neural networks (RNN) and Transformers (Vaswani et al., 2017).
However, the latter has been widely adopted in different fields such as NLP or CV
due to its unique feature of self-attention. Unlike RNNs, this type of attention allows
Transformers to process all input at once, by weighing each input of the sequence ac-
cording to its importance, allowing this architecture (Figure 2.2), to overcome classic
problems of RNNs such as GPU parallelization or memory loss.

As it can be seen in Figure 2.2 , in a transformer architecture, the input sequence is
first converted into a sequence of tokens using an embedding layer. However, as the
model takes the whole data sequence as input, the sense of order is lost. This is why
Transformers add a positional encoding vector to each of the tokens resulting from
the first embedding layer (Figure 2.3), this positional embedding is calculated using
sin or cos functions:

PE(pos,2i) = sin(pos/100002i/dmodel )

PE(pos,2i+1) = cos(pos/100002i/dmodel )

where pos is the position and i is the dimension. With this each of the dimensions
of the positional encoding corresponds to a sinusoid, and by controlling the wave-
lengths of the function, it is possible to encode dimensionality according to the ne-
cessity.

These are then passed to the encoder component of the transformer, which generates
a new vector per token with the same shape as the input sequence. The multihead
attention mechanism in the transformer allows the model to attend to different parts
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FIGURE 2.2: Transformer Architecture

FIGURE 2.3: Positional encoding

of the input sequence, enabling it to capture long-range dependencies and context.
This attention mechanism can be leveraged to 4 steps:

1. Linear Projections: Each input vector is transformed into three different vec-
tors: a query vector (Q), a key vector (K), and a value vector (V). These trans-
formations are done using separate learned linear projections for each atten-
tion head. Formally, for each input vector xi, we create query, key, and value
vectors by multiplying with learned weight matrices WQ, WK, and WV respec-
tively. This is done for each attention head h.

Qh
i = xiW

Q
h
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Kh
i = xiWK

h

Vh
i = xiWV

h

2. Scaled Dot-Product Attention: For each attention head, the attention scores
are computed by taking the dot product of the query vector with the key vec-
tor of every other word, followed by a scaling operation (division by the square
root of the dimension of the key vectors), and then applying a softmax func-
tion. This results in a probability distribution that signifies the importance of
each data point in the sequence with respect to the current one.

Attention(Q, K, V) = softmax(
QKT
√

dk
)V

3. Compute Output: The attention scores are then used to weight the value vec-
tors. The weighted sum of the value vectors forms the output of the attention
head.

Hh = Attention(Qh, Kh, Vh)

4. Concatenation: The outputs of all attention heads are concatenated and lin-
early transformed to result in the final output vectors.

MultiHead(Q, K, V) = [H1, . . . , HH ]WO

Where WO is a learned weight matrix that transforms the concatenated vector
back to the original embedding dimension and mixes the information from the
different attention heads.

Moreover the implementation in a Transformer might add residual connections be-
tween steps of the multihead attention polishing the process even more. After this,
by adding and normalizing the result of this layer, the model enriches the original
token representation. Each token is then refined and passed through a feed forward
network, which will capture higher-level features of the input sequence, which after
another normalization step will return the final new token representation.

The decoder component of the transformer takes the encoder’s output to generate
the overall output of the model. However, as the output sequence of a transformer
is created token by token, hence only the tokens up to that point are available, the
first part of this block, uses a different attention. On the next step, there is another
attention mechanism that uses the learned encoder embedding to evaluate which to-
kens of the input are more relevant to the current output token, generating a vector.
These vectors are then fed to a feed-forward layer followed by linear transformation
and softmax functions to convert the decoder output to predicted next-token prob-
abilities. The decoder output will serve as input of the next decoder until a "end of
the sentence", [END] token is found, marking the end of the process.
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2.1.3 BERT

Transformers give an opening to complex and context based embeddings, which
results in a new WE strategy: transformer based embeddings. One of the most
common is BERT (Bidirectional Encoder Representations from Transformers) (De-
vlin et al., 2019), and it is considered on of the state-of-the-art language model for
NLP.

BERT is a stack of pre-trained Transformer encoders, as language knowledge is in-
cluded in this layer, this model does not need a decoder stack. By adding dense
layers on top of BERT it is possible to fine-tune the architecture to perform different
classification tasks taking advantage of its previously learned language understand-
ing, this process is commonly known as transfer learning.

Moreover, BERT uses an special type of embedding layer, this makes the model ro-
bust to different input structures, such as long texts with multiple sentences. This
layer is conformed of 3 types of embeddings (Figure 2.4);

• Token Embeddings: The first one, is the common WE, used in NLP and the
Transformer original architecture, in this case, BERT uses WordPiece embed-
dings (Wu et al., 2016), which are a type of subword embeddings that break
words into smaller subword units called "pieces". The most frequent pairs of
character sequences are iteratively merged to create a vocabulary of subword
units. Words are then split into sequences of these subword units, which are
mapped to their corresponding WordPiece embeddings. They can handle out-
of-vocabulary words better than whole-word embeddings and capture more
fine-grained information about the language.

• Segment Embeddings: BERT marks the beggining of the input sequence, with
a [CLS] token along with the end of each of the sentences with a [SEP] token.
Then, each of the input tokens are categorized according to its sentence using
this embeddings.

• Positional Encoding: They follow the same functionality as in the classic Trans-
former structure.

FIGURE 2.4: BERT embedding layer

During the pre-training phase, BERT is trained on a large corpus of text using two
objectives:
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• Masked Language Modeling (MLM), which randomly masks some of the to-
kens in the input sequence and trains the model to predict the original token
based on the context of the other tokens. This is what gives the Bidirectional
name to BERT, as it takes into account previous and future context to make this
prediction

• Next Sentence Prediction (NSP), which trains the model to predict whether
two input sequences are contiguous or not.

As said before, BERT consists on a stack of encoder layers, as seen in Figure 2.5, the
output of each one is passed to the next encoder layer as input, and the process is
repeated for a fixed number of layers (12 or 24). The final output of the top layer
of the stack is used as a representation of the input sequence, and is the resulting
BERT-WE.

The use of multiple layers allows this architecture to capture increasingly complex
patterns in the input sequence as it processes it. The lower layers of the stack capture
local patterns in the input sequence, while the higher layers capture more global
patterns that depend on interactions between different parts of the sequence.

FIGURE 2.5: BERT architecture

2.1.4 RoBERTa

RoBERTa (Robustly Optimizer BERT pretraining Approach) is a language model that
seeks to optimize BERT’s architecture even further (Liu et al., 2019).

The authors found that BERT was significantly undertrained and could benefit from
longer training times with larger batch sizes. They also discovered that the next
sentence prediction (NSP) objective, which was originally thought to help the model
understand the relationship between sentences, did not contribute significantly to
the model’s performance.

RoBERTa uses dynamic masking rather than static masking. In BERT, the mask-
ing pattern is determined before training and remains the same throughout, but in
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RoBERTa, the masking pattern changes for each epoch, which means the model sees
different masked versions of the same sentence, leading to better performance while
sharing the same architecture.

2.1.5 Wav2Vec 2.0

So far the focus has been on text models and word embeddings. However, these
models and training processes can be extrapolated to other grounds. In this case,
we focus on how to process speech, in terms of audio, in order to get an embedding
from it.

Wav2Vec 2.0, or Wav2Vec2 (Baevski et al., 2020), is an automatic speech recogni-
tion system (ASR) that is trained on large amounts of unlabelled audio data to learn
speech representations which are possible to fine-tune it to perform other classi-
fication tasks. Contrary to its predecessor, Wav2Vec, this new architecture uses a
transformer encoder in its core. The idea behind the architecture is similar to BERT,
however, due to the nature of audio data it is necessary to make complex transfor-
mations to the input.

In order to do so, Wav2Vec introduces a preprocessing layer, the Feature encoder,
which consists on a CNN layer, called a temporal convolution, followed by layer
normalization and a GELU activation function, which can be thought as a smoothed
ReLu. The idea behind this is to segment the audio in a vector of dimension Z, where
each Zt represents a 20ms segment so that the raw audio can be fed into the encoder
as a vector.

The output of the feature encoder layer is then fed to the Context network, which is
in essence, a transformer encoder layer stack, which depending on the model size,
can contain blocks of 12 or 24 layers. However, it introduces a subtle change due
to audio having different time-structures than text. The positional encoding is sub-
stituted by grouped convolutions, which help to learn time relations between sub-
groups of Zt segments and they receive the name of relative positional embeddings.
Once the input has been processed by the stack of layers, it returns a context vector
C.

Moreover not only Z is fed to the context network, but also in parallel to the Quan-
tization layer. Quantization refers to the process of discretizing values from a con-
tinuous space into a finite set of values in a discrete space, and it will help with the
model pretraining. Consider a latent speech representation vector, denoted as Zt,
which captures information about two phonemes. Since the number of phonemes
in any given language is limited and the number of possible pairs of phonemes is
also finite, it is possible to represent them accurately using the same latent speech
representation. Moreover, these pairs are finite in number, allowing us to construct
a codebook that contains all possible pairs of phonemes. Consequently, the task
of quantization boils down to selecting the appropriate code word from this code-
book, however the number of distinct sounds in a language can be vast. To facilitate
training and practical usage, the authors of Wav2Vec2 devised G codebooks, each
comprising V code words. The process of generating a quantized representation in-
volves selecting the best word from each codebook and concatenating these chosen
vectors. Subsequently, a linear transformation is applied to the concatenated vectors
to obtain the final quantized representation.
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In order to choose the best codeword from every codebook, the architecture uses
Gumbel softmax:

pg,v =
exp(lg,v + nv)/τ

∑V
k=1 exp(lg,k + nk)/τ

where Zt is mapped like l ∈ RGxV . Then, n = −log(−log(u)) and u are uniform
samples from U. and finally τ is a nonegative temperature. Gumbel softmax in-
troduces two variations compared to a normal softmax: randomization and tem-
perature. The inclusion of randomization ensures that the model selects different
codewords, preventing it from relying solely on a subset of codebooks. This is par-
ticularly important during the initial stages of training. By gradually decreasing the
temperature parameter over time, the model can regulate the level of randomization
and its impact on the output.

Once the pre-training process is complete, the model begins making predictions.
This pre-training strategy follows a similar approach to BERT. Initially, a portion of
the latent speech representation, denoted as Z, is masked before being input to the
transformer layer. However, in the quantization module, Z remains unchanged. The
model is then tasked with solving a contrasting objective. It must identify the correct
quantized latent speech representation for a masked time step, selecting it from a set
of distractors that are uniformly sampled from other masked time steps within the
same utterance. To assess the similarity between the context representations and the
quantized latent speech representations, cosine similarity is employed, computed as
sim(a, b) = aTb

|a||b| . The model is designed to encourage high similarity with the true
positive representation and penalize similarity to the distractors, promoting accurate
and discriminative representations. This results in the latent representation of the
audio data. A representation of the Wav2vec2 architecture can be seen at Figure 2.6,
were each of the explained steps are depicted.

FIGURE 2.6: Wav2Vec2 architecture
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2.1.6 Pretrained Architectures

Transfer learning has emerged as a powerful technique in machine learning, facil-
itating the utilization of pretrained transformers for a wide range of classification
tasks, which have shown promise in leveraging their prelearned representations of
text and audio.

The transfer learning process begins with the initial pretraining of transformer mod-
els on extensive datasets. This phase allows the models to acquire a profound under-
standing of the underlying structure and semantic relationships in the data. BERT,
for instance, undergoes pretraining on text extracted from wikipedia as well as the
book corpus (Zhu et al., 2015), while Wav2Vec2 is pretrained on LibriSpeech a corpus
of approximately 1000 hours of 16kHz read English speech. As a result, these mod-
els capture general language and audio processing knowledge that could be useful
for our problem.

Moreover, these pretrained transformer models can be further refined through fine-
tuning on task-specific datasets. Fine-tuning involves updating the parameters of
the pretrained models using labeled data specific to the target task, in our case
depression detection. Instead of training the models from scratch, they retain the
learned representations acquired during pretraining. This enables efficient learning
on the specific task while mitigating the need for substantial amounts of labeled
data. However, if the data is too scarce, it is possible to just freeze the transformer
and add dense layers on top of it, which will be trained to use the domain knowledge
of the transformer in their classification task.

The application of transfer learning with pretrained transformers could offer sev-
eral advantages in the context of depression detection. Firstly, the pretrained mod-
els have already assimilated a comprehensive understanding of language or audio
processing, which is useful for discerning signs of depression from textual or au-
dio data. Leveraging these pretrained representations could allow the models to
effectively capture the subtle semantic nuances and emotional cues associated with
depression.

2.2 Data Description

The selected dataset for this study is the DAIC-WOZ (Gratch et al., 2014b), which
is a component of the broader Distress Analysis Interview Corpus. This corpus en-
compasses a collection of clinical interviews specifically designed to aid in the di-
agnosis of various psychological distress conditions, including anxiety, depression,
and post-traumatic stress disorder. Within this corpus, the DAIC-WOZ segment fo-
cuses on the Wizard-of-Oz interviews, where participants engage with an animated
virtual interviewer named Ellie which is controlled by a human interviewer located
in a separate room.

The DAIC-WOZ dataset comprises a total of 189 clinical interviews. Each interview
is associated with gender information and PHQ-8 scores, which are computed from
the answers of the questionnaire, which as explained before, are ranged between
0 and 3. The total score obtained from these eight questions represents the PHQ-8
score, with a higher of 10 score being catalogued as depression.

The duration of the clinical interviews within the DAIC-WOZ dataset ranges from
7 to 33 minutes and is recorded in a sample rate of 16KHz. The specific set of core
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FIGURE 2.7: Distributions of Gender in the PHQ scale and its inter-
vention time

questions and follow-up questions asked during each interview may vary, as does
the question format across different participants. Moreover, each of the interviews
is transcribed, marking the interventions of Ellie and the patient as well as interven-
tions timestamps time. Figure 2.7 depicts the distributions segmented by gender
and intervention duration, presenting a pattern of longer intervention times coin-
ciding with higher PHQ-Scores. Despite this trend, it’s crucial to highlight the pres-
ence of a significant imbalance in the dataset with regards to the PHQ Score, the
dataset contains a larger proportion of healthy individuals compared to those iden-
tified as depressive. Additionally, while there exists this imbalance in the context
of mental health conditions, the dataset maintains a balance concerning the gender
variable

To better analyze the dataset and emphasize topics crucial in diagnosing depression,
we’ve broken down the data into specific themes. These themes originate from main
questions and evolve with follow-up inquiries. To pinpoint these themes, we used a
semi-supervised approach to examine every participant’s transcriptions.

When looking for topics, we can spot certain patterns in Ellie’s interventions that
indicate a question is being asked. It’s important to know that the original transcrip-
tions don’t use question marks, making the task of finding questions more challeng-
ing. So, we searched for question words like "who", "when", and "why", sentences
that start with verbs like "Have you" or "Do you" and phrases like "tell me about".
This search led us to about 110 distinct questions asked by Ellie. Still, there are in-
stances where the question isn’t positioned at the beginning of Ellie’s intervention.
Despite this, after a meticulous review of the list of questions and a thorough com-
parison with those found in the existing literature, it appears that all questions have
had successfully identified.

The following phase of preprocessing consisted on filtering for unique questions, as
for each topic, there could be two or three variants to introduce it. To accomplish this,
we utilized a WE, known as the Universal Sentence Encoder (USE) (Cer et al., 2018),
developed by Google. It has demonstrated considerable efficacy when comparing
vectors of sentences with analogous meanings. We computed the embedding vectors
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FIGURE 2.8: Correlation map between 25 first questions. Only shows
correlation when higher than 0.25.

for all identified questions, and to locate similar questions, we employed the cosine
similarity among the embeddings of all of them.

Subsequently, we identified the questions with more than 0.8 similarity to consol-
idate and group them under a single question, a correlation matrix for the first 25
questions is provided in Figure 2.8. This made the question dataset diminish to 85
questions. Nonetheless, USE proved to be sensible to highly similar structures, with
minor changes, so a further manual review of the questions was necessary.

Once the preprocessing stage was completed, we quantified the instances of all the
questions in each of the dataset’s interventions. We then selected those questions
that were represented in more than 100 samples and that seemed to be relevant ac-
cording to literature. This process yielded a list of 13 questions, as depicted in Ta-
ble 2.1. The table also demonstrates that the proportion of subjects diagnosed with
depression remains consistent at around 30%. Furthermore, the table displays the
average word count an intervention duration for each question. Notably, the first
question, "How are you doing today," yields the shortest responses, as the partici-
pants generally respond with brief affirmatives like "good" or "fine".

Following the preprocessing steps, as transcriptions are manual, they include mark-
ers for sounds such as "laughs", "sniff" or "sigh". However, these markers were
enclosed within "<>" which were subsequently filtered out so that the text mod-
els could process them correctly. After this cleaning process, we compiled all the
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id Question Sample Depressed Mean words Mean time

1 how are you doing today 184 29.9% 6.5 2.7s
2 when was the last time you argued with someone and what was it about 182 30.2% 91.2 39.9s
3 how are you at controlling your temper 176 30.7% 36.8 13.9s
4 what are you most proud of in your life 171 30.4% 56.9 27.2s
5 how easy is it for you to get a good night’s sleep 172 29.1% 55.7 21.6s
6 have you been diagnosed with depression 167 25.1% 40.4 19.6s
7 have you ever been diagnosed with p_t_s_d 165 28.5% 15.0 7.4s
8 what did you study at school 162 31.5% 57.8 28.5s
9 how would your best friend describe you 163 28.2% 46.8 24.3s
10 how have you been feeling lately 160 30.6% 58.6 25.8s
11 what is your dream job 156 28.8% 58.1 27.8s
12 tell me about the last time you felt really happy 179 30.2% 62.6 29.8s
13 what would you say are some of your best qualities 101 39.6% 53.2 27.9s

TABLE 2.1: Question selection.

Question Answer PHQ-8 result

mm okay’ Depressed
how are you doing today

huh overwhelmed. i have a funeral to attend tomorrow
i found out from my doctor i got some health issues.

it is hard. honey i am just putting one foot in front of the other and just trying to get it done.
like i said i’m overwhelmed but i can’t stop doing what i need to do

Healthy

mm my girlfriend and insignificant Depressed
when was the last time you argued

with someone and what was it about
oh god when was the last time i really had a argument

i don’t know it’s been awhile
um argument it’s been a long time that i can’t even remember

Healthy

sigh ooh that’s a good question it’s been awhile
i’d say year and a half maybe. hmm well there’s been a lot going on in my life you know

i just lost my parent my dad my last parent just a lot of stuff going on so i’ll leave it at that
Depressed

tell me about the last time
you felt really happy

oh god well there’s this guy at church and i really like him
and he likes me and he throws kisses at me so

Healthy

like i said my kids i’m very proud of ’em Depressed
what are you most proud of in your life

oh my accomplishments acc my accomplishments um
overcoming ’em one by one setting a goal and reaching ’em"

Healthy

TABLE 2.2: Example answers for depressed and healthy participants

text provided by the participants in response to the specific question, excluding El-
lie’s interventions, some of these answers can be seen in Table 2.2, and will serve as
input to models.

The finalized dataset incorporated the start and end timestamps of each question
posed during the intervention. These timestamps served as indicators delineating
the specific segments of audio data pertinent to each question that served as the data
input for the audio models. For the audio modality, no additional preprocessing was
deemed necessary, thereby preserving the integrity of the original audio data.
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Chapter 3

Experiments and results

3.1 Metrics

This section will treat the development of experiments that have been performed
on the dataset. There will be 3 sets of experiments, related with the modalities of
the data an considering both the benchmark and the transformer models. At the
end of each modality section we will discuss the according results measured in the
following metrics:

• F1-Score: The F1-score is computed as the harmonic mean of precision (P) and
recall (R), given by the formula:

F1 = 2 × P × R
P + R

The F1-score considers the trade-off between correctly identifying positive in-
stances and minimizing false positives

• ROC-AUC Score: The ROC-AUC (Receiver Operating Characteristic - Area
Under the Curve) score represents the area under the receiver operating char-
acteristic curve, which measures the model’s ability to distinguish between
positive and negative samples.

• Recall: Recall, also known as true positive rate or sensitivity, is calculated as
the proportion of actual positive samples that are correctly classified by the
model, using the formula:

Recall =
True Positives

True Positives + False Negatives

3.2 Text models

3.2.1 ML models

Literature commonly uses the LIWC library to perform word-class analysis, how-
ever the dictionary of words is not open-source. For this, we employed the open-
source Python library Empath to perform a similar linguistic exploration of the tran-
scriptions. Using Empath (Fast, Chen, and Bernstein, 2016), we computed groups
of words within the transcriptions, as exemplified in Figure 3.1, and in fact we can
appreciate some differences between groups, starting with the most common word
group, which is positive emotion in healthy subjects and negative in depressed ones.
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Additionally, following the literature, we calculated several other features, such as
the number of utterances, frequency of first-person pronouns, occurrences of first
and past tense verbs, and count of adjectives. This process generated a dataset with
199 variables.

FIGURE 3.1: Top 15 Word groups for depressed and healthy subjects

To further process the data, we employed a pipeline in scikit-learn (Pedregosa et
al., 2011) which involved a StandardScaler to normalize the features, followed by
Principal Component Analysis (PCA) to retain 90% of the variance in the data of
each of the questions

Subsequently, we performed training using three state-of-the-art machine learning
models: Support Vector Machine (SVM), Random Forest (RF), and logistic regression
(LR). To ensure robust evaluation, we employed a 3-fold grid search cross-validation
strategy. Each question-dataset was divided into training and testing sets, with a
test set size of 15%. We balanced the distribution of the PHQ-8 label, gender, and
intervention length (measured by the number of words) in both the training and
testing sets. In order to address class imbalance, we applied random oversampling
to the positive class, as recommended in the literature.

3.2.2 Text Transformers

Our research utilized the HuggingFace (Wolf et al., 2020) library to access pre-trained
Transformer models. For the study we have considered both BERT and RoBERTa for
our experiments.

We used ’roberta-base’, a RoBERTa version with 12 transformer encoder layers in the
Transformer architecture, the large version has 24. Additionally, we used ’RobertaForSe-
quenceClassification’, an expanded version of the base model, stacked with two ad-
ditional layers on top of the output embeddings, designed for classification tasks.
Given our dataset’s relatively small size, we opted to freeze the RoBERTa architec-
ture, allowing only the final dense layers to adjust their parameters. This version of
RoBERTa operates using the first token of the sequence, equivalent to BERT’s [CLS]
token, which encapsulates sufficient information for the classification task and yields
a 768-dimensional embedding. Then the first layer makes a transformation from 768
to 256 and then the model outputs the prediction.

We upheld balance in our dataset by accounting for variables like the PHQ8 label,
gender, and word count. We allocated 15% of the dataset for testing, and from the
remaining 85%, we reserved another 15% for validation. Similar to our machine



3.2. Text models 23

learning strategy, we applied oversampling to the training set to ensure balance for
the positive class.

To minimize the influence of randomness on our results, we trained three models,
each initialized with different weights, on the same dataset. This strategy enabled
us to report the mean score for each question across the models, providing a more
robust indicator of model performance. It is important to note, however, that we did
not execute cross-validation in this study due to hardware constraints.

Text model underwent training using a learning rate of 2e-3 and a batch size of 64 for
a maximum of 50 epochs. We employed the Adam optimizer with weight decay, set-
ting ϵ at 1x10−8 to improve the numerical stability of the optimization process.

To mitigate the risk of overfitting, we implemented an early stopping mechanism,
monitoring validation loss with a patience threshold of five iterations. Upon de-
tecting an increase in validation loss, the mechanism activates a patience counter.
Concurrently, the training process also monitors the validation F1 score, ensuring
the best performing model, in terms of F1 score, is retained at all times. This strat-
egy allows for the optimal model to be retrieved upon the conclusion of the training
process.

RoBERTa’s output embeddings, which we mapped to two dimensions using a PCA
with two components, are shown in Figure 3.2. Notably, there is no clear embedding
from which we could anticipate highly accurate results and it is plausible that our
models will primarily learn to minimize errors. For example, question 7 appears
seemingly random, there is no cluster of data that can differentiate between classes,
which is expected given the question is "What did you study at school". Conversely,
question 5, "Have you ever been diagnosed with depression", suggests that a high
recall score may be attainable, as positive classes are grouped at the right, albeit with
potentially lower specificity due to the distribution of data points.

FIGURE 3.2: Roberta Embeddings
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3.2.3 Results

Validation Test

Question Model Recall AUC F1 Recall AUC F1

1. How are you doing today Classic ML 0.65 0.61 0.48 0.63 0.55 0.41
BERT 0.76 0.72 0.61 0.75 0.78 0.58
RoBERTa 0.70 0.76 0.62 0.75 0.78 0.52

2. When was the last time you argued with someone. Classic ML 0.21 0.51 0.26 0.25 0.48 0.25
BERT 1.00 0.47 0.48 0.16 0.58 0.16
RoBERTa 0.70 0.41 0.53 0.41 0.58 0.40

3. How are you at controlling your temper Classic ML 0.82 0.67 0.56 0.56 0.58 0.48
BERT 0.92 0.47 0.45 0.63 0.55 0.44
RoBERTa 1.00 0.53 0.46 0.14 0.59 0.18

4. What are you most proud of in your life Classic ML 0.56 0.61 0.50 0.75 0.68 0.54
BERT 0.44 0.54 0.55 0.58 0.66 0.51
RoBERTa 0.85 0.73 0.48 0.38 0.53 0.34

5. How easy is it for you to get a good night’s sleep Classic ML 0.56 0.66 0.49 0.86 0.76 0.60
BERT 0.74 0.68 0.60 0.81 0.717 0.64
RoBERTa 0.68 0.73 0.57 0.81 0.68 0.60

6. Have you been diagnosed with depression Classic ML 0.25 0.48 0.32 0.33 0.64 0.44
BERT 0.62 0.76 0.59 0.83 0.77 0.65
RoBERTa 0.75 0.67 0.61 0.66 0.77 0.54

7. Have you ever been diagnosed with PTSD Classic ML 0.22 0.57 0.32 0.29 0.61 0.40
BERT 1.0 0.59 0.48 0.28 0.45 0.33
RoBERTa 1.0 0.57 0.48 0.19 0.58 0.24

8. What did you study at school Classic ML 0.70 0.57 0.50 0.75 0.56 0.46
BERT 0.82 0.70 0.55 0.70 0.54 0.49
RoBERTa 0.81 0..60 0.52 0.54 0.63 0.47

9. How would your best friend describe you Classic ML 0.61 0.59 0.48 0.43 0.58 0.40
BERT 0.87 0.42 0.43 0.23 0.37 0.21
RoBERTa 0.95 0.49 0.46 0.33 0.54 0.37

10. How have you been feeling lately Classic ML 0.45 0.53 0.38 0.57 0.53 0.40
BERT 0.79 0.70 0.56 0.68 0.69 0.54
RoBERTa 0.70 0.82 0.69 0.33 0.55 0.28

11. What is your dream job Classic ML 1.00 0.46 0.44 1.00 0.50 0.45
BERT 1.00 0.54 0.49 0.29 0.52 0.18
RoBERTa 0.91 0.56 0.50 0.29 0.58 0.7

12. Tell me about the last time you felt really happy Classic ML 0.67 0.39 0.31 1.00 0.50 0.44
BERT 0.90 0.58 0.5 0.25 0.49 0.22
RoBERTa 0.83 0.76 0.66 0.50 0.67 0.49

13. What would you say are some of your best qualities Classic ML 0.30 0.42 0.31 0.16 0.45 0.20
BERT 0.75 0.64 0.68 0.22 0.64 0.18
RoBERTa 1.00 0.52 0.62 0.28 0.57 0.20

TABLE 3.1: Results for Text models in validation and test sets

Table 3.1 outlines the results for both our machine learning benchmark models and
the Transformer models, BERT and RoBERTa. Contrary to initial expectations, Trans-
former models do not consistently outperform their traditional ML counterparts.
There are numerous possible explanations for this unexpected phenomenon.

One key consideration is the size of the training datasets. Traditional ML models are
known to yield better results when trained on smaller datasets compared to complex
models, potentially explaining their superior performance in our case. Furthermore,
the limited size of our datasets restricts our ability to fine-tune the Transformer mod-
els effectively.

If the original dataset distribution used for training the Transformer model varies
significantly from our DAIC-WOZ dataset, the model may not generalize well to
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our specific task, this discrepancy in data distribution could be a contributing factor
to the underperformance of the Transformer models. Moreover, this theory is further
supported by the embeddings distribution that was mentioned in previous RoBERTa
section.

Nonetheless, the visualization does suggest certain anticipated behaviors. For in-
stance, Question 4, "how easy is it for you to get a good night’s sleep," presents a
test F1 score of 0.64 as per BERT’s evaluation. Similarly, Question 5, "Have you ever
been diagnosed with depression" procures relatively robust test results, with a 0.65
F1 score and a 0.77 AUC score according to BERT. However this last question will
undoubtedly yield results, given the direct correlation between the question and the
label to predict.

Furthermore, we notice that traditional ML models generally display higher resis-
tance to overfitting compared to Transformers, which could be attributed to their
respective training strategies. Traditional ML models employ grid-search cross-
validation, ensuring that the datapoints in each fold differ and thereby allowing
for variations in distributions. Transformers, however, train consistently with the
same data distributions. Consequently, if the validation data happens to be "eas-
ier" to classify than the test data, the Transformer models are likely to struggle in
accurately classifying the data.

3.3 Speech models

3.3.1 ML models

For processing speech variables, we used Librosa (McFee et al., 2015), an open-
source Python library renowned for broad options on speech recognition functions.
Utilizing this tool, we computed 40 Mel-Frequency Cepstral Coefficients (MFCCs),
Root Mean Square (RMS) energy—an approximation of loudness—and pitch. This
computation produced a total of 50 variables, which were subsequently incorpo-
rated into another Scikit-learn pipeline, primarily comprised of a StandardScaler for
feature normalization.

Given that the dimensionality was not overwhelmingly high in the context of these
speech variables, we did not utilize PCA for this phase. We replicated the same
cross-validation strategy, model selection, train/test split proportions, and oversam-
pling techniques as we employed for the text models.

3.3.2 Wav2Vec2

For the implementation of Wav2Vec2, we once again relied on the HuggingFace li-
brary. However, despite Wav2Vec2 offering a sequence classification model akin to
RoBERTa, we opted for the Wav2vec2Model class, which solely returns the embed-
ding matrix. This decision was primarily motivated by the high dimensionality of
both the model and the audio features.

The average duration of the audio for each intervention is approximately 25 sec-
onds. Consequently, when calculating the features, we account for the number of
seconds multiplied by the sampling rate—16 kHz in the case of the DAIC-WOZ
dataset. This process, in essence, means that our model is processing vectors of
roughly 16000*25 in length. This significantly increases the computational load and
memory usage.
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To mitigate this issue, we adopted a strategy where the maximum length for each
question audio intervention was based on the median length of its population, avoid-
ing this way outliers. Moreover, in case a question is long in its nature, we capped
the interventions at 25 seconds. Then, to optimize the training phase, we precom-
puted these embeddings and stored them, this way, when necessary they could be
loaded from storage. This two-step process, comprising of the precomputation of
the embeddings followed by the training of the dense layers responsible for classi-
fication, helped streamline the computational workload and effectively manage the
memory resources.

The architecture adopted for Wav2Vec2 mirrors that used for RoBERTa, with one key
distinction— we averaged the embedding vector along the time axis. The resulting
data was subsequently fed into a linear layer, which transformed the 768-dimension
Wav2Vec2 output embedding into a 256-dimension vector. This vector was then
directed towards the prediction stage.

For the optimization process, we again utilized AdamW, retaining the same epsilon
value as employed in the text transformer models. The learning rate was set at 10−3,
and we used a batch size of 32.

The EarlyStopping strategy previously described was also implemented here to mon-
itor the validation loss and F1 score, and prevent overfitting. Similarly, the training
process followed the structure established during the text transformer phase.

FIGURE 3.3: Wav2Vec2 Embeddings

In this particular scenario, we dismissed the use of ’wav2vec2-base’, due to its un-
derperformance. Instead, we pivoted towards a model trained specifically for an
emotion recognition task, anticipating that it could yield superior results given the
nature of our study.
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The embeddings derived from our emotion-focused model are depicted in Figure
3.3. These visualizations display distinct differences when compared with the em-
beddings from the RoBERTa model. A noticeable feature is that the positive and
negative classes do not appear to diverge clearly; rather, they tend to cluster within
the same space.

This phenomenon could potentially stem from the same underlying issue we ob-
served with text data. Given the complexity of audio signals, a larger dataset might
be necessary to effectively train the model and obtain appropriate embeddings. Based
on these visualizations and our preliminary analysis, we anticipate that the results
from this model may not meet our initial expectations.

3.3.3 Results

Validation Test

Question Model Recall AUC F1 Recall AUC F1

1. How are you doing today Classic ML 0.53 0.57 0.45 0.63 0.60 0.45
Wav2Vec2 0.73 0.73 0.65 0.17 0.55 0.22

2. When was the last time you argued with someone. Classic ML 0.45 0.53 0.39 0.75 0.60 0.48
Wav2Vec2 0.80 0.43 0.45 0.41 0.56 0.40

3. How are you at controlling your temper Classic ML 0.47 0.53 0.40 0.66 0.67 0.57
Wav2Vec2 0.70 0.60 0.46 0.33 0.40 0.29

4. What are you most proud of in your life Classic ML 0.45 0.53 0.46 0.50 0.60 0.44
Wav2Vec2 0.77 0.64 0.51 0.25 0.49 0.23

5. How easy is it for you to get a good night’s sleep Classic ML 0.59 0.62 0.48 0.71 0.67 0.50
Wav2Vec2 0.70 0.51 0.46 0.19 0.71 0.23

6. Have you been diagnosed with depression Classic ML 0.66 0.62 0.45 0.66 0.76 0.55
Wav2Vec2 0.71 0.34 0.37 0.44 0.60 0.42

7. Have you ever been diagnosed with PTSD Classic ML 0.60 0.62 0.38 0.42 0.53 0.35
Wav2Vec2 0.68 0.63 0.55 0.76 0.78 0.57

8. What did you study at school Classic ML 0.41 0.49 0.38 0.50 0.62 0.47
Wav2Vec2 0.68 0.31 0.36 0.46 0.46 0.31

9. How would your best friend describe you Classic ML 0.41 0.55 0.36 0.43 0.58 0.40
Wav2Vec2 0.68 0.56 0.45 0.47 0.40 0.30

10. How have you been feeling lately Classic ML 0.54 0.60 0.44 0.71 0.69 0.55
Wav2Vec2 0.68 0.57 0.50 0.29 0.58 0.33

11. What is your dream job Classic ML 1.00 0.47 0.44 1.00 0.50 0.45
Wav2Vec2 0.91 0.45 0.47 0.29 0.38 0.29

12. Tell me about the last time you felt really happy Classic ML 0.38 0.44 0.32 0.63 0.66 0.52
Wav2Vec2 0.93 0.46 0.49 0.0 0.32 0.00

13. What would you say are some of your best qualities Classic ML 0.59 0.57 0.52 0.33 0.48 0.33
Wav2Vec2 0.75 0.296 0.50 0.29 0.42 0.28

TABLE 3.2: Results for speech models in validation and test sets

Indeed, the results obtained from this model, as seen Table 3.2 confirm our antici-
pations—it significantly underperformed on the data. Surprisingly, the traditional
ML models, despite being less explored in our study, demonstrated more promising
results than the transformer model.

Literature frequently cites fine-tuning as a crucial step for improving performance
with Wav2Vec2 models. Given this, it is plausible that our Wav2Vec2 model could
benefit from a fine-tuning process, as the dataset it is pretrained is not conversational
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as ours. However, we must highlight that the volume of data available is not suffi-
cient for training a single modality effectively, and, in order to do so, we would lose
the topic datasets, which ultimately could affect negatively as some questions and
answers are noise that prevents the model from accurate predictions.

The nature of our dataset and the problem at hand makes it challenging to apply
oversampling to generate synthetic samples without creating false expectations for
the model, and, in fact, we hypothesize that the observed overfitting in the valida-
tion dataset could be attributed to random oversampling. The model might be pri-
oritizing the classification of positive samples, thereby leading to an influx of false
positives. This inference is supported by the low F1 scores in validation, compared
to the recall scores, indicating a probable decrease in precision. As embeddings be-
have randomly, the model is just choosing between one class or another and not
learning in most cases.

3.4 Multimodal models

3.4.1 Attention Model

For our multimodal model, we harvested the embeddings from both RoBERTa and
Wav2Vec2 models to investigate whether the combination of both could enhance the
former’s performance. As singular performance was poor, we decided to implement
a multihead attention mechanism with four heads for each data modality, following
the extraction of the initial RoBERTa token and time-axis averaging of Wav2Vec2.
We then conducted an element-wise multiplication with the original embedding to
emphasize the significant features of each modality.

FIGURE 3.4: Multimodal Embeddings



3.4. Multimodal models 29

Afterwards, akin to the transformer model’s process, we employed an add-and-
normalize operation on the data. The normalized data was then funneled into a pro-
jection layer, transforming the multimodal 768-dimensional embedding into a 256-
dimensional representation, in line with the dimensions produced by the Wav2Vec2
and RoBERTa models. To mitigate overfitting, a dropout layer was inserted follow-
ing the add-and-normalize stage along as the same Early Stopping strategy as in the
other methodologies.

This multimodal model was trained using a learning rate of 10−4, a batch size of 64,
and the same AdamW optimizer as utilized in previous models. Similar strategies
were adopted for balancing the training, validation, and test distributions, as well
as for the overall training process.

In Figure 3.4, we visualize the model’s embeddings after the add-and-normalize op-
eration. The data distribution remains complex, though we discern instances where
the positive class demonstrates a higher degree of clustering, notably in questions 4,
5, 9, and 11. Thus, we anticipate some predictive power from these models. How-
ever, akin to the challenges encountered with RoBERTa, if the test set incorporates
examples that deviate significantly from the general cluster, the model might strug-
gle to generate accurate predictions.

3.4.2 Results

The multimodal results are shown in Table 3.3. This approach exhibits superior pre-
dictive capabilities on the validation dataset, with improved F1 scores in 8 out of 13
questions compared to the standalone transformer models. This indicates that the
new embeddings produced by combining two modalities can more effectively dis-
tinguish between classes than the individual Wav2Vec2 and RoBERTa models. How-
ever, it is possible that Wav2Vec2 introduces more distractors than beneficial data,
so a decline in F1 scores from training to testing can be observed. This is equally
attributable to both the challenges posed by the transformers and the increased dif-
ficulty of the test set. Indeed, the maintenance or even improvement of AUC scores
in the multimodal model, compared to the standalone models, indicates a balanced
performance in classifying each class. The AUC is a performance metric for binary
classification problems and it represents the model’s ability to correctly classify pos-
itive and negative examples at varying thresholds. A higher AUC suggests that the
model has a good measure of separability, and is capable of distinguishing between
the classes effectively. So, despite some shortcomings in F1 scores, the model’s ro-
bust AUC scores provide assurance of its overall predictive accuracy.

Interestingly, it seems that the multimodal approach has particularly boosted the
performance on certain questions. For instance, significant improvements were ob-
served in responses to the questions "What would you say are some of your best
qualities?" and "How have you been feeling lately?" Furthermore, "How are you do-
ing today?" achieved the highest F1 score amongst all questions, despite being the
one that typically receives the shortest responses. This highlights the potential of
multimodal models in interpreting even succinct responses more effectively.
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Validation Test

Question Model Recall AUC F1 Recall AUC F1

1. How are you doing today Wav2vec2 0.73 0.73 0.65 0.17 0.55 0.22
RoBERTa 0.76 0.72 0.61 0.75 0.78 0.58
Multimodal 0.79 0.75 0.61 0.64 0.77 0.65

2. When was the last time you argued with someone. Wav2Vec2 0.80 0.43 0.45 0.41 0.56 0.40
RoBERTa 1.00 0.47 0.48 0.16 0.58 0.16
Multimodal 0.75 0.39 0.43 0.47 0.49 0.35

3. How are you at controlling your temper Wav2Vec2 0.70 0.60 0.46 0.33 0.40 0.29
RoBERTa 0.92 0.47 0.45 0.63 0.55 0.44
Multimodal 0.63 0.64 0.60 0.31 0.42 0.29

4. What are you most proud of in your life Wav2Vec2 0.77 0.64 0.51 0.25 0.49 0.23
RoBERTa 0.44 0.54 0.55 0.58 0.66 0.51
Multimodal 0.83 0.63 0.60 0.49 0.51 0.36

5. How easy is it for you to get a good night’s sleep Wav2Vec2 0.70 0.51 0.46 0.19 0.71 0.23
RoBERTa 0.74 0.68 0.60 0.81 0.72 0.64
Multimodal 1.00 0.93 0.84 0.61 0.82 0.56

6. Have you been diagnosed with depression Wav2Vec2 0.71 0.34 0.37 0.44 0.60 0.42
RoBERTa 0.62 0.76 0.59 0.83 0.77 0.65
Multimodal 0.79 0.76 0.62 0.64 0.63 0.49

7. Have you ever been diagnosed with PTSD Wav2Vec2 0.68 0.63 0.55 0.76 0.78 0.57
RoBERTa 1.0 0.59 0.48 0.28 0.45 0.33
Multimodal 0.48 0.61 0.38 0.50 0.59 0.39

8. What did you study at school Wav2Vec2 0.68 0.31 0.36 0.46 0.46 0.31
RoBERTa 0.82 0.70 0.55 0.70 0.54 0.49
Multimodal 0.46 0.63 0.46 0.44 0.53 0.39

9. How would your best friend describe you Wav2Vec2 0.68 0.56 0.45 0.47 0.40 0.30
RoBERTa 0.87 0.42 0.43 0.23 0.37 0.21
Multimodal 0.76 0.68 0.59 0.39 0.52 0.34

10. How have you been feeling lately Wav2Vec2 0.68 0.57 0.50 0.29 0.58 0.33
RoBERTa 0.79 0.70 0.56 0.68 0.69 0.54
Multimodal 0.71 0.84 0.83 0.83 0.75 0.56

11. What is your dream job Wav2Vec2 0.91 0.45 0.47 0.29 0.38 0.29
RoBERTa 1.00 0.54 0.49 0.29 0.52 0.18
Multimodal 0.71 0.46 0.52 0.24 0.52 0.27

12. Tell me about the last time you felt really happy Wav2Vec2 0.93 0.46 0.49 0.0 0.32 0.00
BERT 0.90 0.58 0.5 0.25 0.49 0.22
Multimodal 0.67 0.69 0.59 0.33 0.50 0.32

13. What would you say are some of your best qualities Wav2Vec2 0.75 0.30 0.50 0.29 0.42 0.28
RoBERTa 0.75 0.64 0.68 0.22 0.64 0.18
Multimodal 0.72 0.65 0.61 0.52 0.75 0.58

TABLE 3.3: Results for multimodal model in validation and test sets

3.5 Multimodal for other classification tasks

3.5.1 Mild Depression inclusion

Upon thorough examination of the results obtained from various Transformer mod-
els, it becomes evident that the Multimodal model exhibits more robust performance
on the validation set. As mentioned earlier, all consequential decisions will be based
on the performance in this particular set. Therefore, we were impelled to explore
different configurations of the PHQ label. The DAIC-WOZ dataset offers the partic-
ipants’ scoring data from the PHQ8 questionnaire, where a score equal to or greater
than 10 serves as the cut-off for identifying depression.

However, it is essential to consider that according to the PHQ authors, scores rang-
ing from 5 to 10 could suggest the presence of mild depression. In light of this, we
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opted to plot the RoBERTa embeddings - which have shown more promise than their
Wav2Vec2 counterparts - to analyze the distribution of varying degrees of depression
severity. The results are illustrated in Figure 3.5.

FIGURE 3.5: RoBERTa Severity Embeddings

FIGURE 3.6: Multimodal embeddings including mild depression
cases

In the depicted figure, the labels signify the severity of depression, where 0 indicates
a healthy individual, 1 indicates mild depression, and the remaining signify vary-
ing levels of severity, the darker the more severe. The visual representation suggests
similar clustering between the mild and severe groups. This observation implies that
the points of confusion in the original binary classification might originate from par-
ticipants experiencing mild depression. Consequently, we were motivated to train
a multimodal model with the capacity to not only detect severe depression but to
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Validation Test

Question Recall AUC F1 Recall AUC F1

1. How are you doing today 0.82 0.68 0.76 0.73 0.78 0.74

2. When was the last time you argued with someone. 0.98 0.57 0.76 0.70 0.43 0.57

3. How are you at controlling your temper 0.81 0.72 0.72 0.61 0.60 0.61

4. What are you most proud of in your life 0.89 0.76 0.80 0.75 0.63 0.67

5. How easy is it for you to get a good night’s sleep 0.71 0.75 0.75 0.70 0.77 0.71

6. Have you been diagnosed with depression 0.72 0.70 0.72 0.62 0.61 0.65

7. Have you ever been diagnosed with PTSD 1.00 0.50 0.69 0.78 0.52 0.68

8. What did you study at school 0.92 0.59 0.71 0.50 0.49 0.52

9. How would your best friend describe you 0.56 0.33 0.48 0.47 0.56 0.53

10. How have you been feeling lately 0.88 0.79 0.82 0.71 0.76 0.74

11. What is your dream job 0.77 0.46 0.61 0.68 0.74 0.67

12. Tell me about the last time you felt really happy 0.84 0.70 0.77 0.73 0.67 0.68

13. What would you say are some of your best qualities 1.00 0.53 0.81 0.96 0.65 0.79

TABLE 3.4: Results for Multimodal model including mild depression

incorporate detection of mild cases as well. In this pursuit, we merely adjusted the
batch size, reducing it to 32.

Altering the labels in this manner also effectively eliminated the issue of imbal-
ance, resulting in a more equitably distributed sets. In Figure 3.6, we display the
trained embeddings derived from the attention mechanism. The depiction illus-
trates a marked enhancement compared to the severe multimodal model. In ques-
tions that are inherently discriminative in severe cases, we can observe significant
improvements. For instance, question 10 exhibits a clear clustering on the right for
class 1, thus showing the progress made by this adjustment, we can expect then,
improved results.

3.5.2 Results

The outcomes indeed corroborate our hypothesis, showcasing noticeable enhance-
ments when compared to models solely detecting severe depression, as evident in
Table 3.4. This suggests that mild depression is more akin to severe depression than
it is to non-depressed individuals. Consequently, we infer that the true challenge lies
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in assessing depression severity rather than simply identifying its presence. Further-
more, our experiment indicates that certain questions may be more sensitive to vari-
ations in severity than to the existence of depression itself. For instance, question
13 yielded the highest F1 scores in this model, yet its importance was diminished
when only severe depression was considered. Conversely, question 1 maintained
its relevance across models, underscoring its utility in assessing this mental health
condition.

It is reasonable to surmise that these results could be further improved with an
increase in data volume and fine-tuning of the models, as previously suggested.
Furthermore, as the proportion of depressed subjects increased, it appears that for
certain questions where the model lacked sufficient predictive power (for example,
question 8), the model defaulted to classifying all responses as 1. This trend is sub-
stantiated when comparing recall rates between validation and test sets.
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Chapter 4

Conclusions and future work

4.1 Conclusions

Our exploration into the application of Transformer models, classic machine learn-
ing methods, and multimodal approaches for depression classification in the DAIC-
WOZ dataset provided meaningful insights.

First, the usage of pre-trained Transformer models, particularly RoBERTa and BERT,
did not necessarily yield superior results compared to traditional ML models. This
may have been due to the disparity between the original training data for these
Transformer models and the DAIC-WOZ dataset. The lower performance of Trans-
formers could also be linked to the constraints imposed by our dataset size, which
limited the extent of fine-tuning we could perform on these models.

The visualizations of RoBERTa, and more importantly, Wav2Vec2 embeddings pointed
to a potential lack of differentiation between positive and negative classes in the
data representation. This suggested that even though Transformers could extract
high-level features from the data, these features might not always be discriminative
enough for specific tasks.

Our classic ML models demonstrated robustness against overfitting and presented
competitive performance, despite their simplicity compared to Transformers, and
it remarks the idea that it is not always necessary to use overly complex models.
It’s important to highlight the role of grid-search cross-validation here, which likely
contributed to this robustness by ensuring the models were evaluated on diverse
data distributions, avoiding the case of hard test samples.

The application of Wav2Vec2 to speech data didn’t yield expected results. While we
utilized a model trained for emotion recognition, hoping it would better handle our
dataset, the results remained subpar. This underperformance could have been due
to the complexity of audio data and the limitations posed by our data size.

Our multimodal approach attempted to blend text and audio data to improve re-
sults. While the combined model offered improved validation scores, the improve-
ment did not consistently translate to the test set. However, promisingly, this ap-
proach maintained or even improved AUC scores, indicating a balanced classifica-
tion of each class.

Taken together, our findings suggest that while Transformer models hold promise
for depression analysis tasks, the specific characteristics of the dataset and task at
hand greatly impact their performance. Classic machine learning models should not
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be discounted, as they can provide competitive results and demonstrate robustness
in diverse settings.

Furthermore, our results underscore the potential and challenges of multimodal
learning. The combination of different modalities can indeed boost model perfor-
mance, as evidenced by certain questions that showed improved F1 scores. How-
ever, ensuring this improvement is generalized across diverse test instances remains
a challenge.

Additionally, we have determined that the primary challenge of this study lies in
assessing the severity of depression. By considering depression as a broad category,
we were able to achieve improved results when considering both severe and mild
cases. This suggests a potential to reframe this issue as a multilabel problem, which
could offer a more nuanced understanding of the distinct degrees of depression. In-
terestingly, our research has also suggested that RoBERTA demonstrated sensitivity
towards the different severity levels, as evidenced by the variation in the default
embeddings corresponding to the diverse depression degrees.

Additionally, we could take into consideration different topics that demonstrate
higher sensibility for detecting depression from spontaneous speech, which are im-
portant assets to take into consideration. It is also important to mention that question
4, about sleeping habits, is present also on the PHQ8 test, which might be the reason
for its acceptable results.

Besides this, we can also say that we have found similar results as in topic-based
state-of-the-art depression detection, though exact comparison is hard due to the
variability of result reporting. However, we were able to asses differences and simi-
larities between classic ML models and Transformers by setting similar training and
evaluation frameworks.

4.2 Future work

This is study will continue its course at AcceXible, which is the company that has
given support to this project. In this matter, we will continue investigating on multi-
ple study pathways and how to improve these results. These are some of the possible
ways of improving the current methodology:

• Fine-tune text and audio models. We are using only 13 questions out of all the
dataset. The discarded questions could be used to fine tune the transformer
models in order to better fit the data coming from DAIC-WOZ dataset. This
could even expand more in the case of audio, due to the fact that each audio
could be broken into several pieces using a sliding window, similar to what it
is done in Sardari et al., 2022.

• Consider multiclass classification. The problem itself might be too complex in
nature, but taking into account the different severity degrees presented in the
PHQ8 paper we might be able to break down the problem into several labels
and evaluate the differences between them.

• Explore classic feature extraction. If transformers do not result in acceptable
performances, the natural step would be to explore in depth ML models. We
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used basic computations as benchmarks, but it is possible that with more so-
phisticated methodologies we could improve the results. Moreover, it is possi-
ble that taking in consideration the mild severity of the participant, the results
on ML models might improve even more.

• Further data cleansing. It is possible that some questions are not perfectly
collected, as we have used a semi-supervised strategy to retrieve them. It could
be interesting to, now that we have labeled a big enough group of questions,
train a basic model that learns to recognise them in order to further curate the
data that is fed into the models.

• Explore LSTMs The scope of this project did not take into consideration LSTMs,
however, given the nature of our data, it could be of interest to take into ac-
count this family of models. We are working with short sequences, so memory
loss would not suppose a problem and moreover, they are not as dependant
on data quantity as Transformers.

• Explore other Transformer architectures Here we used the state of the art on
audio and text to perform our analysis. However, there are novel architectures
such as Whisper, (Radford et al., 2022), which might yield more promising
features.

• Explainabilty. Probably the most important topic to take into consideration
considering we are treating with health data science. It is compulsory to know
and understand the behaviour of the transformer models, as with general-
ization, comprensibility is also lost. It could start by checking which tokens
RoBERTa is taking more in consideration, or what piece of each audio is the
most important for Wav2Vec2. The first step towards this goal could be an
analysis on how gender, the only sociodemographic variable DAIC-WOZ pro-
vides, affects our classification.

In conclusion, each potential direction for future research is driven by a common
goal: enhancing the accuracy of depression detection models. There is considerable
potential for further investigation in fine-tuning models, exploring different fea-
ture extraction methods, and experimenting with other Transformer architectures,
amongst others.
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Appendix A

Training and validation loss
graphics

A.1 RoBERTa
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FIGURE A.1: RoBERTa loss
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A.2 Wav2vec2
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FIGURE A.2: Wav2Vec2 loss
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A.3 Multimodal
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FIGURE A.3: Multimodal loss
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A.4 Mild Multimodal
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FIGURE A.4: Mild Multimodal loss
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