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by Junjie JI

The human brain, with its intricate network of neurons and complex dynamics,
presents a fascinating subject of study. In the present work we aim to investigate
how humans integrate perceptual evidence in time to make decisions. To accom-
plish this, we conducted electroencephalogram procedures on 26 participants at the
Mundet Campus of the Universitat de Barcelona in 2022. The data collection pro-
cess included rigorous preprocessing steps to ensure data quality, followed by data
segmentation and dataset creation for subsequent analyses. From this data, we will
employ time series analyses and machine learning models to gain deeper insights
into the neural processes associated with the integration of perceptual evidence and
decision-making.
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Chapter 1

Introduction

Cognitive neuroscience is a field of study that gained a lot of attention in recent
years with the application of machine learning (ML) and artificial intelligence (AI).
Brain structure and neural activity is informative about multiple cognitive phenom-
ena such as planned action movements, decision-making or even clinical diagnosis.
This progress in our understanding of brain functioning is largely supported by the
increasing development of new and more sophistical neuroimaging techniques like
functional magnetic resonance (fMRI) which uses a magnetic field and computer-
generated radio waves to create detailed images of the organs and tissues in the body
with a fairly precise spatial resolution, and electroencephalography (EEG), magne-
toencephalography (MEG) that registers scalp level changes in voltage induced by
neural processing, and allow researchers to monitor and visualize brain activity with
exceptional temporal resolution.

The continuous improvement of these technologies has allowed us to generate
highly complex and multivariate datasets and using and developing new machine
learning algorithms is becoming pressing in order to use all that information to in-
crease our knowledge about brain functioning but also to develop new methods that
can facilitate the life of many.

There are multiple examples of the practical application of machine learning al-
gorithms in clinical research. For instance, it has been demonstrated that it is pos-
sible to use EEG activity in combination with machine learning techniques to diag-
nose depression and to identify mental states retrieved from EEG signal (Ksibi et al.,
2023). Another similar example is the usage of EEG data for the purpose of classi-
fying and gaining insights into Attention-Deficit/Hyperactivity Disorder (ADHD)
(Martínez González et al., 2022).

The near future is full of machine learning and neuroimaging integration that
aims to change our way to interact with the world. For example, Neuralink is a
visionary venture that aims to seamlessly merge the power of artificial intelligence
with our biological capabilities, opening up a world of unprecedented possibilities
(Musk, 2019). With Neuralink, individuals could overcome physical limitations and
regain lost sensory functions through advanced neuroprosthetics. Furthermore, this
technology could pave the way for enhanced cognitive abilities, restoring perceptual
losses, allowing for faster learning, improved memory retention, and even height-
ened creativity.

In this project we sought to extract information of healthy human observers in
a perceptual decision making task. Perceptual decision making is the process by
which sensory information is used to guide behavior toward the external world.
One of the humans remarkable cognitive skills is the ability to make complex and
informed decisions. Nevertheless, the complexity of this cognitive process is still a
subject of research (Gazzaniga, 2022), as it depends on multiple factors, for instance,
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we need to consider both the information we need to assess and the prior knowl-
edge we possess related to that information. We aimed to explore the rapid neural
dynamics involved in perceptual decision-making and how they are influenced by
prior perceptual experiences

To investigate these aspects, we decided to use electroencephalography, a tech-
nique that allows us to sample changes in activity voltage near the brain at high tem-
poral resolutions (exceeding 500Hz). As previously mentioned, electroencephalog-
raphy refers to the measurements of electrical activity recorded from the scalp using
a set of electrodes strategically placed at specific locations. This non-invasive tech-
nique allows researchers to capture and analyze the electrical signals generated by
the collective activity of billions of synchronized neurons in the brain. Although
EEG has very limited spatial resolution, it allows to measure neural activity from
cortical regions with high temporal resolution.

Recall that all the coding that has been done throughout the thesis is written in
Python and available on Github.

https://github.com/unthrived/master-thesis
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Chapter 2

Experiment

2.1 Objectives

The main goal for this thesis is to understand how humans integrate perceptual evi-
dence in time to make decisions. Specifically, we want to investigate the neural basis
of the perceptual decision making process by applying different multivariate ap-
proaches on multielectrode in order to extract information. Human decision-making
is influenced by a series of past experiences, choices, and their associated outcomes.
This cognitive process involves integrating information from previous encounters
with similar situations to inform and guide future decision-making. (Salinas and
Izquierdo, 2019, St. John-Saaltink et al., 2015, Talluri, Braun, and Donner, 2021 and
Urai et al., 2019)

But most of the research in this respect has been generated behaviorally (St. John-
Saaltink et al., 2015, Talluri, Braun, and Donner, 2021 and Urai et al., 2019). So in this
study we sought to characterize the neural changes from a neuroimaging approach.
To do that, we will take advantage of different machine learning algorithms that will
allow us to extract information from the stimuli encoded in neural activity patterns,
the internal decision of the observer and their manual response.

In addition, we will explore how neural representations of these different pro-
cesses change as a function of participants’ previous choices.

2.2 Participants

26 healthy humans participated in the experiment. Participants were informed about
the possible risks and inconveniences associated with EEG prior to the beginning of
the experiment, and received 15 euros after the experiment completion. The experi-
ment was approved by the bio-ethical committee of the University of Barcelona.

2.3 Experimental Design

In this experiment participants were exposed to a fast sequence of 6 oriented grat-
ings (Figure 2.1 A). Each grating was presented during 250ms and the orientation
sequences were sampled from a lookup table in which sequences were sorted by
their average mean. Participants were instructed to estimate the mean orientation of
the sequence and categorize it as closer to the diagonal or the cardinal axis using the
mouse.

The same sequence was presented three times in each trial and participants had
to respond after each sequence presentation (Figure 2.1 C). The total duration of the
experiment was around 1 hour and 30 minutes (including the time dedicated to the
electrodes placement, around 30 minutes)



4 Chapter 2. Experiment

FIGURE 2.1: A) In each sequence presentation, 6 gratings were pre-
sented in rapid succession. B) Participants had to categorize the mean
of the orientation sequence as closer to the cardinal or diagonal axis.
This manipulation orthogonalizes the stimulus orientation and the
decision variable (i.e. perfectly opposed orientations corresponded
to the same decision. For instance 0 and 90 degrees are physically dif-
ferent but both are cardinal) See orientation to decision variable map-
ping at right inset (extracted from Wyart, Nobre, and Summerfield,
2012). C) In each trial, participants were presented with 3 repetitions

of the same stimuli sequence.

Following each sequence, participants were required to move the mouse to indi-
cate their response regarding the sequence’s cardinality or diagonality. This answer
was constrained by the fact that at every trial the diagonal and cardinal buttons were
randomly positioned introducing a variable element that affected the decision mak-
ing process, in order to recude the impact of motor responses bias (e. g. a tendency
to respond left) in the final performance.

After their choice, they had to rate their confidence in their decision using a slid-
ing triangle over a response bar. Only at the end of the three presentations partici-
pants received feedback about their performance.
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Chapter 3

The Data

Our data consists of the recordings in EEG experiments retrieved from the 26 partici-
pants. The experiments were conducted at the Mundet Campus from the University
of Barcelona in the summer of 2022.

During the experiment, the participants wore a 32 active electrodes actiCAP from
BrainVision (BrainVision, 2022). The electrodes were placed according to the 10-20
system (Oostenveld and Praamstra, 2001) as shown in Figure 3.1A. More informa-
tion regarding these electrodes’ names and their respective code labels can be found
at A. The scalp’s electric activity is amplified using an amplifier also from BrainVi-
sion and recorded at 500hz on an additional supporting computer (Figure 3.1B). An
example of these EEG recordings can be found in Figure 3.1C, which shows raw data
before the preprocessing.

3.1 Preprocessing

The electrodes registered subtle voltage fluctuations at scalp-level resulting from
synchronized postsynaptic spiking neural activity. The EEG recorded signal is cor-
rupted by external (not-neural) electrical activity perturbations like 50 hz line noise,
electrical muscle activity and eye-blinks. The data set was preprocessed applying a
broadband frequency filter with a range from 0.2 Hz to 30 Hz. This temporal filter re-
moved slow wave components associated with signal-drift (e.g. sweating) and high
frequency modulations related to muscle activity (e.g. neck and jaw tension or head
movements). A 50Hz notch-filter was applied to remove line-noise activity. More-
over, we used an Independent Component Analysis (ICA) on the whole data set,
proven effective in the literature (Bhimraj and Haddad, 2017, Sun, Liu, and Beadle,
2005). By visually inspecting the topological and temporal distribution of the dif-
ferent ICA components, we detected those associated with eye-blinks and rhythmic
heartbeat, and we regressed them out from the data set.

Subsequent experiments revealed notable discrepancies in the neural activity of
the eye channel, specifically the 25th electrode, when compared to the other elec-
trodes. The eye channel exhibited substantially higher signal output. Hence we con-
sidered it an outlier and proceeded with the removal. Finally, we used the triggers
sent from the experimental computer in order to identify the onset of those temporal
data segments that were associated with the processing of the stimuli.

Finally, throughout the entire work, a frequency re-sampling was done to all the
data, from initial 500Hz to 50Hz in order to reduce the duration of the experiments.
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FIGURE 3.1: A) Electrodes topographic distribution. We used a 32
electrodes setup (only the electrodes labeled in green in the example
layout). B) Scalp electric activity is amplified using a Brainvision am-
plifier and recorded at 500hz on an additional supporting computer.
C) Example of the EEG recordings visualization during the testing

session.

3.2 Data Segmentation and Data Set Creation

We created a data set in which EEG activity was epoch-ed 1 taking the onset of each
sequence presentation (-0.5 to 5 s relative to the onset of the sequence) in order to
understand how Event-Related Potential (ERP)2 activity unfolded during the whole
trial (Figure 3.2A and Figure 3.2B). The data from our EEG recordings was saved
in FieldTrip FIF formats for its ease of use and compatibility with the MNE library
(Oostenveld et al., 2011, Gramfort et al., 2013).

For study-specific purposes, a smaller data set was created by separating the 6
oriented gratings of each sequence. We will refer to this smaller data set as Stim data
set and the original data set as Main data set.

Moreover, for both data sets, we also have their corresponding Metadata data set.
This data set consists of the variables used to conduct each trial, such as, participant
ID (known as subj), degree of the orientations given to the participant, decision of
the previous trial, confidence level of their decision, etc. More information about the
Metadata data set can be found at B.

The Main data set results in a 4-dimensional array, composed by 26 participants,
31 electrode channels, around 250 trials and 2875 time points (288 time points when
down-sampled).

1EEG epoch data refers to a segmented or divided portion of continuous EEG recordings, which are
used in the analysis of brain activity.

2Event-Related Potentials are electrical patterns or brain responses that are measured from the scalp
of a person in response to a specific sensory, cognitive, or motor event or stimulus
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FIGURE 3.2: A) Trial epochs: Mean ERP activity over time and across
trials for each electrode and its topographic distribution (different
color for each electrode). B) Mean ERP activity at the Oz (occipito-
central) electrode for each presentation. C) Stimuli epochs: Same as
in B but ERP activity evoked by each individual stimulus in the se-

quence.
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Chapter 4

Data Analysis and Methods

In perceptual decision making we can differentiate three different processing stages.
The first one is the transduction and encoding of the physical signal into neural
activity in early sensory areas (e.g. visual cortex). A second phase in which the sen-
sory encoded information is mapped and integrated into a latent decision variable
that will be finally transformed in a motor response. In this experiment participants
should encode different orientations (0 to 180o) and map them onto two categories
(cardinal or diagonal) and finally select a response option (left or right).

Using different machine learning algorithms we evaluated whether we can pre-
dict information in each one of the phases based on neural activity patterns and
whether the decoded information is affected by the previous choices of the partici-
pants.

4.1 Orientation Decoding

Recent studies in humans have been able to measure orientation selectivity in the
primary visual cortex using non-invasive neuroimaging methods like fMRI (Kami-
tani and Tong, 2005) and EEG (Garcia, Srinivasan, and Serences, 2013).

In our experiment, participants were exposed to a fast sequence of 6 oriented
gratings. In our first analysis we will decode the orientation of each of the sequence
samples using a forward encoding model.

A forward encoding model is a type of computational model that breaks down
complex stimuli into distinct sensory features. In our case, we capitalize on the ori-
entation tuning of visual cortex neurons in order to filter each stimulus through dif-
ferent orientation channels. An orientation channel is a mathematical function that
transforms each stimulus orientation function in the hypothetical response profile of
the orientation tuned neurons in the visual cortex.

Let X be a vector of size N, where N is the number of trials that contains the
orientations data, let Y be a matrix of size F × N, where F is the number of features,
that contains the EEG data, let b be the vector of coefficients and ϵ the noise variable.
(Essentially X is given by the orientation column in the Metadata data set and Y is
given by the Stim or Main data set)

Mathematically, the linear equation is

Y = XT β + ϵ

and its known that the optimal β coefficients for the least squares approach is,

β = (XTX)−1XTY
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estimating the noise covariance letting the columns of ϵ be the variables,

S = Cov[ϵij]

finally our weights are given by,
w = βS

In practice we add a regularization parameter to the noise covariance and also a
demean parameter when needed. Also by inverting the weights we can recover the
orientations from predicted activity patterns.

These models are extensively utilized in neuroscience (Garcia, Srinivasan, and
Serences, 2013, Kay et al., 2008) to gain insights into how the brain processes sensory
information. Furthermore, such models can help identify relevant features and chan-
nels that play key roles in shaping neural responses, providing valuable insights into
the complex interplay between sensory stimuli and neural activity.

Regarding the analyses, we initiated the process by discretizing the orientation
values into distinct bins, effectively creating 8 channels. This categorization mapped
values in the range of 0 to 180 degrees into their respective channel representation,
this is shown at Figure 4.1A. Subsequently, we extracted the stimulus features from
the epoch data, enabling us to obtain theoretical channel responses based on the
orientation presented. In the following step, for each time point of the data, we exe-
cuted a cross-validation procedure, where each fold of the data set served as a train-
ing set for a forward encoding model. We store the weights of the decoded infor-
mation as the values of the orientation channels, showcased at Figure 4.1B. Finally,
the study computed the mean values of the orientation channels and corresponding
channel responses across all participants. These mean values were then utilized to
create visual representations alongside their respective confidence intervals, aiding
in the interpretation and analysis of the results.

Additionally, in order to assess how current decisions change as a function of
previous decisions, the exact same procedure was taken but grouping trials by their
corresponding number of repetition, resulting in three data sets based on the first,
second and third presentations (P1, P2 and P3 respectively) experiment group that
the participants took. More insights regarding the results and following procedures
will be explained later in the results section for this particular study.

Lastly, to see if the participants were biased to the decisions that they took on
the previous trial, we also conducted the study by splitting the data set based on
whether the decisions that the participants took on their previous trial was cardinal
or orthogonal.

Essentially, we performed three studies. The first one regarding orientation de-
coding, the second one regarding the repetition within the trial and the final one
regarding the decision taken on the previous trial.

Our approach to this model uses the Matlab toolbox by Pim Mostert, found here
Dr. Pérez-Bellido did a Python adaptation of this code.

More insights regarding the results and following procedures will be explained
later in Chapter 5 for these studies.

4.2 Decision and Response Decoding

In this section we will explore different techniques in order to decode the decision
and response variables from our multivariate EEG data. The decision variable corre-
sponds to a binary variable in which participants gradually integrate information to

https://github.com/unthrived/master-thesis/blob/main/decoding_toolbox_py/Helper_funcs/DecToolbox.py
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FIGURE 4.1: A) Sorted values of the design matrix that contains the
hypothetical channel responses given a presented orientation. Stim-
uli orientations for each trial have been discretized in 8 bins along
the y axis. Orientation channels responses for each stimuli are rep-
resented along the y axis. The response strength is depicted by the
color scale. B) The weights of the Forward Encoding Model at every

time point and orientation for one subject.
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decide whether they will respond cardinal or diagonal. The response value instead,
indicates whether participants will move the mouse to the left or to the right of the
monitor to make the final choice.

4.2.1 Vector Autoregression

The Vector Autoregression (VAR) model is an extension of the univariate autoregres-
sive model that allows for the simultaneous analysis of multiple time series vari-
ables. By incorporating the inter-dependencies among the variables, the VAR model
captures the dynamic relationships and feedback mechanisms between them.

The general formula for the VAR of order p is

yt = c + A1yt−1 + A2yt−2 + · · ·+ Apyt−p + et

where yt−i indicates that variable’s value i time periods earlier and are called the
"ith lag" of yt, c is a vector of constants serving as the intercept, Ai is a time-invariant
and et is a vector of error terms. These models have been use on the literature to
handle EEG data (Herrera et al., 1997).

For our model, we tried different values for p, but the best performing value was
p = 2. This selection was taken based on the Akaike Information Criterion (AIC)
and Bayesian Information Criterion (BIC), both parameters were found the lowest
when using p = 2. After fitting the model, we extracted the parameters and trained
multiple machine learning classifiers on these parameters and the target decision
and response values. However the results were essentially a random choice for all
the classifiers. To address these limitations, consideration should be given to more
other methods, such as machine learning or deep learning techniques.

4.2.2 Machine Learning Approaches

Given that the problem is a classification task, we seek to build a machine learning
model with the EEG data to handle the binary values of the decision and response
variables. These techniques are increasingly being applied to EEG data for pattern
analysis, group membership classification, and brain-computer interface purposes
(Saeidi et al., 2021).

Support Vector Machines

Support Vector Machine (SVM) is a machine learning algorithm used for classifica-
tion and regression tasks. SVM works by finding a hyperplane that best separates
different classes in the feature space while maximizing the margin (distance) be-
tween the nearest data points of each class, called support vectors. This hyperplane
aims to achieve the highest generalization by effectively classifying new, unseen
data. SVM can handle linear and non-linear separation by using kernel functions
to transform data into a higher-dimensional space where linear separation is possi-
ble.

Random Forest

Random Forest is an ensemble learning algorithm that is often used classification
tasks. It works by constructing multiple decision trees at training time and com-
bining their outputs to make a final prediction. Each decision tree is trained on a
different subset of the training data and uses a random subset of the features to split
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the data at each node. The final prediction is made by aggregating the predictions of
all the decision trees by taking the majority vote.

4.2.3 Time Point Classification

The last experiment involved training Random Forest and SVM classifiers separately
at each time point using the data channels as features instead. The objective was
to target the decision and response values, and the same approach was applied to
both variables. For both classifiers, standard hyper-parameters were used due to
time constraints, and the fact that we used the same classifier several times. For
each time point, an 80-20 split was used for training and testing, with the accuracy
being recorded. Subsequently, the mean accuracy for all participants was calculated
along with their respective confidence intervals, providing a measure of the model’s
overall performance.

To gain insights into the classifier’s performance under random conditions, we
conducted an additional set of experiments. In these randomized trials, we per-
formed the same procedure of training and testing, but with the labels shuffled 10
times. This allowed us to establish a baseline to compare the real model performance
against random chance. By comparing the classifier’s accuracy to this shuffled label
baseline, we might be able to determine whether the model’s performance was sta-
tistically significant and not simply a result of random guessing.

4.2.4 Long Short-Term Memory Networks

Long Short-Term Memory (LSTM) networks have gained significant attention and
demonstrated remarkable efficacy in analyzing and predicting time series data. Their
ability to capture long-term dependencies, effectively model complex temporal pat-
terns, and account for variable time lags make them a powerful tool in time series
analysis. For instance, there is an implementation of an LSTM network for time
series forecasting in the work by (Elsworth and Güttel, 2020) provide an implemen-
tation of an LSTM network for time series forecasting. In this work, they explicitly
highlight the challenge that ’Machine learning methods trained on raw numerical
time series data exhibit fundamental limitations such as a high sensitivity to hyper-
parameters and even to the initialization of random weights.’ This underscores the
importance of carefully considering the model’s architecture and parameters when
working with time series data.

We implemented a simple LSTM network that on the first layer had the input
shape matching the dimensions of the data set. Added a regularization layer and
another LSTM layer and finally sigmoid activation function in order to handle the
classification task. A schema of the network is shown in C. Notice that the conducted
experiments encompassed two distinct data preprocessing approaches: one incor-
porating Principal Component Analysis (PCA) and the other omitting PCA prior to
fitting the LSTM network.

The presented network, while powerful, lacks explainability due to its deep
learning nature. However, the primary objective of this study was to assess the per-
formance and capabilities of a more sophisticated deep learning approach in mod-
eling the EEG data and decoding the human decision or response values that we
failed to decode previously. By employing this advanced modeling technique, the
research aimed to ascertain whether the complex neural patterns captured by the
deep learning model could effectively predict and elucidate human decision-making
or response processes based on EEG data.
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4.3 Implementation

Details of most of the methods described in this section can be found in GitHub on
the methods.py file.1 The file contains functions for reading EEG signals that were
previously saved in FIF formats. Distinct reading functions are used in this con-
text since the two data sets are slightly different. These divergences significantly
contribute to the ease and effectiveness of data categorization for both number of
repetition or decision taken on previous trial. The file also contains functions for the
entire pipeline of the methods described in this Chapter, that varied depending on
the experiment and multiple other variables such as frequency down sampling (for
time efficiency), number of participants, class balance on classifiers, using either the
Main data set or Stim data set, etcetera. However, the methods that are not found in
this file are done within their corresponding Python Notebook files alongside their
analyses and results.

1The code repository is accessible at: https://github.com/unthrived/master-thesis/blob/
main/toolbox/methods.py.

https://github.com/unthrived/master-thesis/blob/main/toolbox/methods.py
https://github.com/unthrived/master-thesis/blob/main/toolbox/methods.py
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Chapter 5

Results

To enhance clarity and facilitate a better understanding of the data patterns, a smooth-
ing or filtering procedure was applied to the visualizations when required, allowing
for more coherent and interpretable representations. This smoothing or filtering step
was solely utilized for visualization purposes and did not impact the underlying
statistical analyses or interpretations of the findings. Additionally, it is important to
recall that a frequency down-sampling was conducted in order to reduce the dura-
tion of the experiments. Consequently, the results may not be as qualitatively robust
as they could be.

5.1 Behavioral Results

We calculated the proportion of correct decisions in each presentation. As expected,
participants’ performance improved with more repetitions of the sequence (Figure
5.1A). To describe how participants’ responses changed as a function of the informa-
tion in each trial, we plotted the proportion of diagonal responses against the mean
decision variable information in each trial (negative values represent cardinal trials,
and positive values represent diagonal trials). The participants’ performance is well
described by a logistic regression curve (Figure 5.1B). Consistent with the results
in Figure 5.1A, the slope of the logistic regression is steeper with more repetitions,
demonstrating that participants weigh the stimuli DV information more in the P3
compared to the P1 sequence. Additionally, we observed that participants showed
a bias to report diagonal orientations more often than cardinal orientations (logistic
curves are displaced slightly to the left from the middle point), despite the probabil-
ity of both categories being the same in the experiment. This might be explained by
an implicit bias to judge every stimulus that is not perfectly vertical or horizontal as
diagonal.

Finally, in Figure 5.1C, we explored whether participants’ responses were biased
towards or away from previous choices. To test this possibility, we divided the trials
into two distributions: one with trials in which participants had responded cardinal
in the previous presentation (in green) and one including trials in which participants
responded diagonally in the previous presentation (in purple). Our results revealed
that when participants had responded cardinal in the previous trial, their responses
in the current trial were biased towards the cardinal choice, and when participants
had responded diagonally, their responses were biased towards the diagonal. This
pattern appeared only after the first presentation and is reflected by a shift in the
logistic regression curves.

In summary, our behavioral results demonstrate that participants take advantage
of the repeated information to improve their performance in a perceptual decision-
making task, but this improvement might be limited by an implicit bias to repeat
previous choices.
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FIGURE 5.1: A) Group average proportion of correct responses as a
function of the repetition number. Points represent individual scores.
B) Proportion of diagonal responses as a function of what is the mean
DV in each trial for each repetition. Thick and thin lines represent
group average and individual logistic regression fits to the empirical
data respectively. C) Proportion of diagonal responses as a function
of the mean DV for trials in which participants responded cardinal or
diagonal in the immediate previous trial. Same labeling convention

as in B.

5.2 ERP Activity

Recall from Figure 3.2C and Figure 3.2C the ERP activity diminishes after each pre-
sented orientation. This complements the behavioural results discussed earlier.

In the next analyses, we will apply different machine learning approaches to
the neural data collected during the task to understand how stimuli information
encoded in neural patterns changes at different processing stages in each trial.

5.3 Orientation Decoding Results

As stated on Chapter 3, aside from the Main data set processed from the EEG signals,
we also have the Stim data set, to focus on individual orientations. Here we will
work mainly on this Stim data set since we are targeting sensory level decoding.

5.3.1 Stimuli Data Set

Firstly, we applied the forward encoding model to the Stim dataset, and studied the
decoding results from the orientation stimuli. In this study, we present the model’s
outcomes when applied to the Stim dataset around the time range of 100 ms. This is
shown in (Figure 5.2A) were we see the correlation between the orientation channels
and the decoded orientations. Essentially the peaks of every orientation channel
match accordingly to their decoded orientation. This is to assess that the forward
encoding model is working correctly and for later studies, centering of these curves
and adding the confidence intervals will be done in order to provide better insights
of the results.

As mentioned before and on section 4.1 Figure 5.2B showcases the forward en-
coding model applied at every point of the data set using a cross validation pro-
cedure for all EEG channels and all participants. As seen in the figure, stimuli on
this data set start appearing from time 100ms on wards and we can observe that the
stimuli have a higher intensity at the beginning and at the very end of the trial. The
former high intensity might indicate that the stimuli had more impact on the partic-
ipants due to previous trials and the later high intensity might indicate the stimuli is
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FIGURE 5.2:
A) Sample result of the forward encoding model applied for only one
participant at time 100 ms. B) Results from the forward encoding
model applied at the entire stim dataset, for all the participants and
at every time point. The same curves from A) have been centered for
visualization purposes and straight horizontal lines lines indicate the
cuts that will be showcased on C. C) Transversal cuts from B for illus-
tration of intensity values and shape of the centered stimuli curves.

presented in form of decision or response. These stimuli can be seen at Figure 5.2C
that showcases the transversal cuts of Figure 5.2B where the same lines correspond
to each other, essentially featuring the channel response at 0 - 20 ms, 100 - 120 ms
and 240 - 260 ms, alongside the confidence interval. From Figure 5.2C we can assess
the fact that the stimuli is indeed higher around 0 - 20 ms and 240 - 260 ms. At the
same figure its also shown how these curves have been centered, showcasing the
sinusoidal lines where the stimuli is higher.

As mentioned on the chapter 4, another study was performed on whether the
changes to the orientation responses from the EEG signals were related to the pre-
vious decisions. For this study, we applied the same procedure once again, but this
time, we used three different models, one for every presentation of the trial. Then
we subtracted the first presentation from the second and last, resulting in Figure 5.3.
However no visible correlation can be seen.

Finally, the last analysis consisted on whether the orientation responses from the
EEG data were related to the decision taken on the previous trial. In this study, we
also wanted to see if this decision taken on the previous trial had an effect on their
orientation stimuli. This time the data set was split into two, constrained by whether
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FIGURE 5.3:
Comparison between presentations. A) Difference between the re-
sults of the forward encoding model applied on presentation 2 and
presentation 1. B) Difference between the results of the forward en-

coding model applied on presentation 3 and presentation 1.

the previous decision was cardinal or diagonal.
After applying the forward encoding model, we shifted the orientations again,

moving the cardinal orientations to the left and diagonal orientations to the right in
order to see if the participants were biased to the previous decision. Essentially we
want to obtain a shifted transversal cut (Figure 5.2) that is similar to the following
graph (case when the previous decision taken was cardinal),

Results of this procedure is portrayed in Figure 5.4. Here we observe on Figure
5.4B, that the stimuli on cardinal orientations are stronger than the diagonal orien-
tations whenever the participants chose cardinal on the previous trial. However on
Figure 5.4C, the same thing doesn’t happen when the previous choice was diagonal.
Nevertheless, from the former finding, it might be enough to be able to assess our
hypothesis, that the participants (up to some degree) were biased in their selection.
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FIGURE 5.4:
Comparison between previous decisions. A) Results of the forward
encoding model on the entire data set. B) Results of the forward en-
coding model applied on the data set where the previous decision
was cardinal. C) Results of the forward encoding model applied on

the data set where the previous decision was diagonal.
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FIGURE 5.5:
Results of the forward encoding model applied to the main data set.

5.3.2 Main Data Set

Same exact procedure was done on the main data set, as seen in Figure 5.5, where we
applied the forward encoding model procedure for each of the orientations. We can
observe that channel responses become noticeable starting at approximately the 1-
second mark and conclude around the 3-second mark. No additional analyses were
done following this approach. However these results will be quite interesting for the
next section.

5.4 Decision and Response Decoding Results

In this section we will only show the results from the time point classification. More
in-depth details of the trivial results from the other methods were treated (although
not extensively) on the corresponding notebooks in GitHub.

From the time point-wise classification method, we obtain Figures 5.6 and 5.7,
targeting response values and decision values respectively. As stated previously in
Chapter 4, we approached the classification problem with SVM and Random Forest
Ensembles.

5.4.1 Decision Classification

The results for the decision variable are shown in Figure 5.6. For both the classifiers,
no substantial information could be found, since the results from the model trained
on the correct labels are within the bounds of the confidence intervals of the model
trained on shuffled labels.
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FIGURE 5.6:
Left, time point wise accuracy using Random Forest. Right, time

point wise accuracy using SVM, targeting decision value.

5.4.2 Response Classification

However for the response variable, we observe that the results from the model
trained on correct labels between the 3-second and 5-second time interval are higher
than than the chance level results from the model trained on shuffled labels. (Figure
5.6).

An important insight of this result is the fact that on Figure 5.5, where we applied
a forward encoding model on the Main data set, we can see that the orientation
stimuli is present until the 3-second mark, whereas in the time point classification
method, on Figure 5.6, the accuracy on the response values start to appear around
3.5s, slightly after the orientation stimuli ends. This indicates that the same EEG
signals indeed contain insights for handling both experiments.
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FIGURE 5.7:
Left, time point wise accuracy using Random Forest. Right, time

point wise accuracy using SVM, targeting response value.
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Future Work

Due to the large, complex nature of the data, this work was limited by both experi-
mental time and physical hardware constraints. Even though a down-sampling from
500Hz to 50Hz was implemented, some experiments in the previous section would
often take 3 hours per experiment and they were mostly run on a Intel-Core i5-13500
CPU. Therefore, the main concern throughout the work was time and memory con-
strains. For this matter, specialized software, such as the MNE library, is certainly
better for the analyses. However, the MNE library provides very dedicated and spe-
cific Machine Learning algorithms that might not align with our objectives. There-
fore, something related to an adaptation of the MNE code might be the solution for
this concern.

Regarding the forward encoding model from Section 4.1, a lot of hyper-parameter
searching has been done although not documented since the results are not quanti-
tative. Following work from this section might be to perform a temporal general-
ization, i.e. testing the performance of the trained model on data points or time
steps that were not part of the training set but are from the same temporal domain.
This helps assess whether a model has learned to generalize its predictions or clas-
sifications to unseen time points or sequences. Some work regarding the forward
encoding model applied to the Main data set was done in 5.3.2 with meaningful re-
sults, however as stated, the work was discontinued. Perhaps the entire procedure
that was done for the Stim data set could have been also done for the Main data set
to see how the model performed on the data that contained the entire trial.

In the LSTM network, depending on how we structured the data for tensor con-
version we would often run into Kernel crashing problems 1, therefore more ap-
proaches regarding this method would be batch training data or different data struc-
turing. Moreover, a different LSTM network with other layers and hyper-parameters
might have given the desired results. Also, the implementation of other Recurrent
Neural Networks might also be helpful.

About the time point classification, since we could extract relevant information
using the Main data set (recall the results on Figure 5.5 and Figure 5.6 from the pre-
vious chapter), future work regarding this procedure might also consist of a better
hyper-parameter searching or implementation of other classifier, like XGBoost or
CatBoost (however, this approach would exponentially increase the time computa-
tion), although quantitative results might not be needed for relevancy, since we only
aim to decode any information regarding decision and response within the EEG
data. Another approach, given the findings on the time point classification exper-
iment, would be to perform something similar to a sliding window. Although we
implemented a simple version of it (we did not manage to classify above chance
level), a more extensive approach could be done.

1The error was always memory problems, even though for the LSTM network we used a NVIDIA
RTX4070ti GPU, with CUDA and a Linux setup.



24 Chapter 6. Future Work

Finally, for each study, a statistical test might have been necessary to assess the
statistical significance of the study’s results. Nevertheless, the current results can be
evaluated as evidence of information decoding beyond chance by comparing them
to surrogate data and assessing their conformity with expected results.
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Chapter 7

Conclusions

In this project studied the concept of perceptual decision making in humans. Our be-
havioral results showed that participants’ performance improved with the number
of repetitions, demonstrating that human observers integrate information over time.
In addition, we observed that participants were biased to repeat previous choices.
Next, we looked at neural activity in order to explore how the number of repetitions
and previous choice affected the representation of decision information. Using a
forward encoding model, we successfully decoded stimuli orientations within each
sequence.

Importantly, we found that although neural responses decreased with repetition
(Figure 3.2), the information that could be decoded remained constant across re-
peated presentations. However, partial results from the previous decision variable
was present on the neural data.

Finally, the later experiment from the decision and response decoding section,
shows us that there is indeed information in neural activity regarding the response
of the participants but we were not able to decode the decision variable with the
current methods.

Overall, the uncertainty of the exact pipeline for a given study and the fact that
data sets we encountered in this study proved to be considerably more complex and
distinct from the conventional two-dimensional data sets we encountered during
our academic journey, highlight indeed the intricate nature of the human brain.
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Appendix A

Electrodes

The following table contains the corresponding labels of the electrodes that we used
throughout the experiments.

Electrode Number Electrode Label
1 Fp1
2 F3
3 F7
4 FT9
5 FC5
6 FC1
7 C3
8 T7
9 LM
10 CP5
11 CP1
12 Pz
13 P3
14 P7
15 O1
16 Oz
17 O2
18 P4
19 P8
20 RM
21 CP6
22 CP2
23 Cz
24 C4
25 T8
26 Eye
27 FC6
28 FC2
29 F4
30 F8
31 Fp2
32 Fz

TABLE A.1: List of electrodes’ labels
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Appendix B

Metadata columns

Columns of the Metadata data set corresponding to the neural data of the Main data
set.

index
subj
nblock
ntrial
nrep
trial_type
cond-1
cond
rDV
DV
resp
deci-2
deci-1
deci
corr-1
r_map
correct
confi
RT
d1
conf_lvl
correct-1
d2
d3
d4
d5
d6
o1
o2
o3
o4
o5
o6
confi-1
conf_lvl-1

TABLE B.1: Metadata columns
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Appendix C

LSTM network

Layers of the LSTM network used in 4.2.4.

Input
(Shape: numC, numT)

LSTM
(128 units)

Dropout
(0.2)

LSTM
(64 units)

Dense
(1 unit, sigmoid)

FIGURE C.1: LSTM-based Sequential Model
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