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Universality of quantum liquids and droplets in one dimension
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We consider interacting one-dimensional bosons in the universal low-energy regime. The interactions consist
of a combination of attractive and repulsive parts that can stabilize quantum gases, droplets, and liquids.
In particular, we study the role of effective three-body repulsion, in systems with weak attractive pairwise
interactions. Its low-energy description is often argued to be equivalent to a model including only two-body
interactions with nonzero range. Here, we show that, at zero temperature, the equations of state in both theories
agree quantitatively at low densities for overall repulsion, in the gas phase. However, this agreement is absent
in the attractive regime, where universality only occurs in the long-distance properties of quantum droplets. We
develop analytical tools to investigate the properties of the theory and obtain astounding agreement with exact
numerical calculations using the density-matrix renormalization group.
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Introduction. Recent advances in the preparation, manip-
ulation, and observation of ultracold atomic droplets and
liquids [1–6] have sparked renewed interest in the physics
of these systems [7–19]. This is more so due to their low
densities and temperatures, allowing universal low-energy de-
scriptions that are independent of the short-distance details
of the relevant interactions [20]. The possibility to effectively
confine these systems to one spatial dimension [21,22], where
interaction effects are enhanced [23], makes ultracold atoms
a promising platform to realize highly controllable strongly
interacting droplets and liquids. With traditional quantum
liquids such as 4He, interatomic potentials that reproduce
essentially all of their experimentally measurable properties
are known accurately [24]. In deep contrast, the underlying
interactions in ultracold atomic systems are highly dependent
on the particular atomic species and applied external fields,
such as those involved in magnetic Feshbach resonances [25]
and transversal confinement [26]. Hence it is impractical, if
not impossible, to attempt as accurate a description as in 4He
for each realization of an ultracold atomic liquid. Therefore,
a universal low-energy description of these systems, within
the effective field theory (EFT) paradigm [27,28], is highly
desirable.

Three-body interactions are always present in a many-atom
system and can be genuine or emergent from the off-shell
structure of the two-body interactions [28–30]. In general,
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these are a combination of genuine and emergent. For re-
pulsive one-dimensional systems, two-body effective range
(on-shell) effects are typically negligible for low densities
[31]. However, the effects of a nonzero physical range (off
shell) are important for three-body processes, especially for
large scattering lengths [29,30], which can be rigorously mod-
eled by simple three-body forces. This can also be explained
qualitatively using field redefinitions [28] that trade off-shell
low-energy interactions in favor of simpler, on-shell three-
particle forces. Since, in this case, the low-energy two- and
three-body amplitudes are essentially identical, the S-matrix
formulation of statistical mechanics [32] implies thermody-
namic equivalence in the gas phase. At zero temperature this
is the case for overall repulsive interactions. For attraction,
where liquids may be formed, the results of Ref. [32] do not
apply and, as we shall see, there is no such equivalence.

In this Letter, we investigate one-dimensional quantum
gases, liquids, and droplets at zero temperature that are de-
scribed by two types of low-energy theories. One includes a
zero-range two-body interaction as well as an effective range.
The other one features zero-range two- and three-body inter-
actions. We demonstrate that there is no equivalence between
the two theories in their liquid and droplet phases. This fact
is proven by studying universal long-distance asymptotics in
both models. We also develop highly nonperturbative, an-
alytical approximations whose predictions are in excellent
agreement with exact calculations using the density-matrix
renormalization group (DMRG).

Low-energy theories. We start by considering two low-
energy theories describing one-dimensional many-body sys-
tems of bosons in free space at zero temperature. Their
respective Hamiltonians are Ĥ3B

c and ĤNL
c . Defining the non-

interacting Hamiltonian Ĥ0 = (−h̄2/2m)
∫

dx φ̂†∂2
x φ̂, with φ̂

(φ̂†) the bosonic annihilation (creation) field operator, these
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are given by

Ĥ3B
c = Ĥ0 +

∫
dx

[g0

2!
φ̂†(x)2φ̂(x)2 + g3

3!
φ̂†(x)3φ̂(x)3

]
, (1)

ĤNL
c = Ĥ0 +

∫
dx

[
g′

0

2!
φ̂†(x)2φ̂(x)2 − g2ρ̂(x)∂2

x ρ̂(x)

]
. (2)

Above, ρ̂(x) = φ̂†(x)φ̂(x) is the density operator. The cou-
pling constants of the zero-range two-body interaction are
chosen to be different in the two theories (g0 �= g′

0). This
freedom will allow us to ensure that the on-shell amplitudes in
the two-body sector coincide, to a very good approximation,
in both theories.

The three-body theory, Eq. (1), upon renormalization, re-
quires the introduction of a three-body momentum scale Q∗
[29], beyond which the three-body theory breaks down. For
repulsive three-body interactions there are unphysical bound
states [29,33,34] for any particle number N > 2. This prevents
the physical ground state from being explored using ground
state methods. Below, we solve this issue by discretizing the
problem on a lattice near, but not in the continuum limit.

A direct discretization of the low-energy theories (1) and
(2) results in the following generalized Bose-Hubbard Hamil-
tonians:

Ĥ3B
c = − J

∑
j

(b̂†
j+1b̂ j + H.c.) + U2

2

∑
j

n̂ j (n̂ j − 1)

+ W

6

∑
j

n̂ j (n̂ j − 1)(n̂ j − 2) + 2J
∑

j

n̂ j, (3)

ĤNL
c = − J

∑
j

(b̂†
j+1b̂ j + H.c.) + U

2

∑
j

n̂ j (n̂ j − 1)

+ V
∑

j

n̂ j n̂ j+1 + 2J
∑

j

n̂ j . (4)

Above, J = h̄2/(2md2) is the hopping strength, with d the
lattice spacing; U2 = g0/d and U = g′

0/d + 2g2/d3 are the
on-site two-body interaction strengths. W (>0) is a three-body
coupling constant to be determined and V = −g2/d3 sets the
off-shell part of the two-body interaction in the discretized
model. b j (b†

j) annihilates (creates) a boson at site j (∈ Z),

and n̂ j = b̂†
j b̂ j is the local number operator.

The discretized low-energy theories (3) and (4) allow us to
numerically obtain the ground state of the respective Hamil-
tonians by performing DMRG simulations. To match the
low-energy N-body amplitudes of both theories we consider
the finite-size ground state energy of their respective Hamil-
tonians. We adjust the parameters (U2,W ) and (U,V ) to find
the best match between the corresponding energies of both
theories for 2 � N � 6 (see [35]), a well-established method
in lattice and finite-size simulations [29,36].

Universality of quantum gases. We begin by demonstrating
that the discretized low-energy theories (3) and (4) reproduce
continuum physics and showing that universality is present
in the gas phase. To do the latter, we numerically study the
ground state quantum gas with pure three-body interactions,
i.e., U2 = 0 (scattering length a → ∞) and W > 0. For this
special case we can establish a direct connection between
the three-body lattice coupling constant W and the contin-

FIG. 1. Zero-temperature equation of state for Hamiltonian (3)
with U2 = 0 and W/J = 1.1 (filled blue dots) and Hamiltonian (4)
at its two-body resonance (open black squares) with (U/J,V/J ) =
(16, −8/5). Weak-coupling EOS [35], at scale μ = exp(γ )Q2

∗/
√

8ρ,
corresponding to Pastukhov’s scale [37] (green dashed line), and at
the renormalization scale μ = 188.464/ρd2 (red solid line).

uum three-body momentum scale Q∗ [29] by solving the
three-body problem with U2 = 0 at vanishing total quasi-
momentum. Matching the continuum and lattice amplitudes
at low energies, we obtain W/J = (β + ln |Q∗d|/2

√
3)−1,

where β = −0.1956 . . . is a numerical constant of no physical
relevance, i.e., it is regularization dependent. Therefore, the
discretized version of the three-body low-energy theory can
be used to simulate a continuum repulsive three-body force—
thereby avoiding unphysical bound states—at low densities
with a finite lattice spacing, provided that W/J > 0, i.e., for
|Q∗d| > exp(2

√
3|β|) ≈ 8.4. These values correspond to the

weak to moderate coupling regime for the three-body interac-
tion [29,30,33,34,37–48].

For the other discretized low-energy theory, with Hamil-
tonian (4), imposing a two-body resonance (a → ∞) implies
a relation between U and V given by U/J = −4(V/J )/(2 +
V/J ) [16,49]. To show the low-density equivalence of these
two quantum gases we obtain the equation of state (EOS) for
both theories using DMRG under the set of conditions just
mentioned. In Fig. 1, we clearly observe that for low densities
the two theories give the same EOS showing the universality
of the quantum gas. This result was expected since for repul-
sive gases it is known that two models will have identical
thermodynamic properties if their (N-body) S matrices are
identical [32]. This is the case at low densities where N-body
scattering processes with N > 3 are suppressed. Thus fixing
the two- and three-body low-energy amplitudes yields similar
EOS for the two models studied.

Furthermore, to test the ability of the discretized low-
energy theories to recover the continuum ones we compare
our DMRG results with the weak-coupling expansion of
the EOS of Hamiltonian (1) with g0 = 0, due to Pastukhov
[35,37]. The renormalization scale μ = μ(ρ) = ξ/ρ, with ξ

being a numerical constant, in the dimensionless coupling
constant g(μ) [35,37] has the same ambiguity of choice, in
perturbation theory, as that in the 2D Bose gas [50,51]. To
obtain predictive power, we match (i.e., renormalize) Pas-
tukhov’s weak-coupling EOS [35] at only one value of the
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FIG. 2. Exact zero-temperature equation of state for Hamiltonian
(3) with U2/J = −0.33 and W/J = 1.39 (blue dots), and for Hamil-
tonian (4) with U/J = 10 and V/J = −8/5 (open black squares).
Improved mean-field approximation, Eq. (7) (solid black line) with
ρeqd = 0.576, mgeq

3 /h̄2 = 0.9899, and λ = 0.2645 (see text).

density ρ with the EOS at that density obtained with DMRG.
The results are shown in Fig. 1, where astounding agreement
is observed over all ranges of density.

Universality of quantum liquids. We now turn our attention
to the ground state liquid phase of the low-energy theories.
First, we compare their respective EOS for a particular set of
values of the interaction strengths that ensure that the binding
energies for all N of both theories are matched within 2% (see
[35]). The results are shown in Fig. 2. We observe that the
equilibrium energy is very similar for both theories but the
equilibrium densities are in clear disagreement, making the
two EOS very different. Therefore, we can claim that the equi-
librium density of quantum liquids is a highly nonuniversal
property and, therefore, so is the EOS.

The nonuniversality of the equilibrium density can be
traced back to the different normalization coefficients present
in the respective many-body wave functions in vacuum, as
we show in the following. For an attractive system, which
features N-body bound states for all N , it is possible to fix the
locations of the poles of the S matrix (bound state energies)
rather accurately in both models, but not the residues at the
poles without further parametrization. These are related to
the so-called asymptotic normalization coefficient (ANC) γN

for a bound state [52–54]. For two particles in one dimen-
sion, defining the normalized relative bound state ψ2(x), γ2 is

defined as |γ2| = limx12→∞[|ψ2(x12)| exp(
√

mE (B)
2 /h̄2|x12|)],

where E (B)
2 (>0) is the binding energy. For large and pos-

itive (attractive) scattering length a in comparison with the
effective range re (a/|re| 
 1), the two-body binding ener-
gies obtained with and without including the effective range
agree well with each other. The ANCs are also in rather good
agreement. For example, for the two models considered here,
we have |γ NL

2 /γ 3B
2 |2 ≈ 1 + {1 − 1/[1 + U/(4J )]2}|U2|/(4J ),

where γ NL
2 and γ 3B

2 are, respectively, the two-body ANC of
Hamiltonians (4) and (3) with identical scattering lengths. For
the case studied in Fig. 2, we have |γ NL

2 /γ 3B
2 |2 ≈ 1.07, which

shows a small yet non-negligible deviation from unity.
For large particle numbers, we can show that the ratios

|γ NL
N /γ 3B

N | become exponential in N . The density profile

ρN (x) can be obtained by computing the density with respect
to a fixed center-of-mass coordinate X (set to zero for sim-
plicity) as in Ref. [55] (see also [56]). Using the universal
asymptotics for bound state wave functions in one dimension
[54], we obtain [35] for N bosons, as |x| → ∞,

ρN (x) → π

2
|γN |2AN−1

N

N − 1
e− N

N−1 2κ1,N |x|. (5)

Above, γN is the ANC in the N ↔ (N − 1) + 1 breakup
channel, h̄2κ2

1,N/2m = |EN − EN−1|(N − 1)/N represents the
binding energy with respect to the ground state with one parti-
cle less, and AN is a model independent normalization factor.
Using Eq. (5) for the two models considered here, we obtain,
as |x| → ∞, ρNL

N (x)/ρ3B
N (x) → |γ NL

N /γ 3B
N |2. This relation has

important consequences. We assume that the asymptotic nor-
malization coefficients for the two models are different for
all N , since they already are for two particles. If an N-body
bound state is a quantum droplet, then most of the particle
content lies within the bulk of the droplet, with a density we
may consider constant. The radius R of the droplet is then
R ≈ N/2ρN (0). One may approximate the exponential tails
for large N as ρN (x) ∼ ρN (0) exp(−2κ1,N |x − R|) as |x| →
∞, obtaining

∣∣∣∣γ
NL
N

γ 3B
N

∣∣∣∣
2

∼ ρNL
N (0)

ρ3B
N (0)

exp

[
κ1,N N

(
1

ρNL
N (0)

− 1

ρ3B
N (0)

)]
. (6)

The above relation indicates that we require algebraically
small [O(N−1/2−|ε|)] differences between the ANCs in order
to achieve algebraically [O(N−1−|δ|)] small differences in the
equilibrium densities of quantum droplets and liquids, and
vice versa. A finite difference in the large-N densities of the
two models immediately implies an exponential disagreement
between the ANCs and therefore the residues at the poles of
the S matrix. Equation (6) shows our claim that, in order for
two different models of a quantum liquid to share thermo-
dynamical properties, not only the bound state energies but
also the residues at these energies must be matched and that
the matching must have algebraic precision. To gain some
analytical insight into the EOS of the system with two- and
three-body interactions, we present an improved version of the
mean-field theory (IMF), by allowing the three-body coupling
constant g3 to depend logarithmically on the density g3(ρ) =
geq

3 /[λ ln |ρ/ρeq| + 1], so that it can account for the anomaly
nonperturbatively. The value geq

3 is given by the coupling con-
stant at equilibrium and is fixed by eeq. λ is a dimensionless
parameter that is fixed by the equilibrium density ρeq, given
eeq. To lowest order, integrating the chemical potential gives
for the energy per particle eIMF in this approximation

eIMF(ρ) ≈ 1
2 g0ρ + 1

6 g3(ρ)ρ2. (7)

Given the freedom of scale in logarithmic running of the
coupling constant, the above approximation is sufficient. This
IMF theory is able to recover the EOS of the three-body
interacting system for all densities; see Fig. 2. Finally, we
demonstrate the inequivalence between the EOS of the low-
energy theories at any value of the coupling strengths. In Fig. 3
we present the ratio of the equilibrium energy and equilibrium
density for different values of the coupling constants. We
observe that this ratio does not coincide in both theories at any
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FIG. 3. Ratio e0/g0ρeq calculated numerically for Hamiltonian
(3) as function of two-body interaction strength (blue dots). The
three-body interaction strengths for points labeled with U2/J =
−0.195, −0.329, −0.499, −0.604, and −0.725 are given by W/J =
1.28, 1.4, 1.48625, 1.506, and 1.508, respectively. Open black
squares correspond to the same ratio but for Hamiltonian (4), with
V/J = −8/5. From left to right, U/J = 12, 10, 8, 7, and 6. Dashed
line (2/9 = 0.222 . . .) is the prediction from Eq. (8) and dotted line
(1/4) is the standard mean field prediction; see text.

value of the couplings. In fact, the three-body theory (3) shows
an approximately constant ratio while the theory with nonzero
range (4) shows a nearly linear relation. The constant rela-
tion for the three-body theory can be explained qualitatively
by performing a mean-field approximation of theory (1). By
computing the chemical potential μ = g0ρ + g3ρ

2/2 we ob-
tain eeq/|g0|ρeq = 1/4; see Fig. 3. To improve the mean-field
prediction we perform a two-body decoupling approximation.
This consists of decomposing the three-body interaction into a
set of two-body interactions dependent on the ground state of
the system [35]. Once we reduce the three-body interaction
to a state-dependent two-body one, we solve the problem
self-consistently employing the exact solution of the attractive
Lieb-Liniger model [57] due to MacGuire [58]. This proce-
dure leads to the equilibrium relation

eeq = 2
9 g0ρeq. (8)

Our theory, although approximate, is highly nonperturbative.
It predicts a strongly constrained, linear relation between the
equilibrium energy per particle and density for fixed two-body
interaction strength g0 < 0. In Fig. 3 we show that the DMRG
results of the discrete three-body model (3) are in excellent
agreement with our prediction given by Eq. (8).

Universality of quantum droplets. The disagreement in the
EOS between the two models has important consequences for
the density profiles of the respective quantum droplets. Even
though both models exhibit the same equilibrium energy, their
equilibrium densities, and thus the droplet saturation densi-
ties, are different. This implies that droplets in the two models
with equal particle number have different sizes, see Fig. 4,
which is a direct consequence of the ANCs γN , Eq. (6). On
the other hand, the decay of the density far away from the
center of the droplet has to be identical in both models if the

FIG. 4. Main panel: density profiles with N = 50 particles for
Hamiltonian (3) with U2/J = −0.33 and W/J = 1.39 (open squares)
and Hamiltonian (4) with U/J = 10 and V/J = −1.6 (stars). Inset
panel: density tails, rescaled by their respective saturation densities.
Dashed line indicates the analytical result Eq. (5).

equilibrium energy is the same, as predicted by Eq. (5). In the
inset panel of Fig. 4 we show that both droplets exhibit the
same exponential density decay far away from the respective
centers. Moreover, the decay is dictated by Eq. (5) which
shows that it is directly related to the chemical potential at
equilibrium for large number of particles. Therefore, the tails
of quantum droplets are universal for different models with
identical binding energies (in free space), as opposed to the
saturation density.

Conclusions. We have investigated one-dimensional quan-
tum liquids at zero temperature and droplets using universal
low-energy theories. We have shown that, while in the repul-
sive case different models with (almost) identical two- and
three-body scattering amplitudes have identical low-density
equations of state, small deviations in densities in the few-
particle sector grow exponentially in the many-body limit for
droplets and liquids. This implies the lack of equivalence of
the zero-temperature equations of state. We have developed
theoretical techniques that yield quantitatively accurate pre-
dictions in all density regimes, when compared to exact results
obtained with DMRG.
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J. Boronat, Ultradilute quantum liquid drops, Phys. Rev. B 97,
140502(R) (2018).
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