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b ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain 
c LASIRE - Laboratory of Advanced Spectroscopy, Interactions, Reactivity and Environment Université Lille, CNRS, UMR 8516, Cité Scientifique, Bâtiment C5, 59000, 
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A B S T R A C T   

The possibility to perform trilinear decompositions of data sets has the clear advantage of providing unique 
solutions. Excitation-emission fluorescence matrices (EEM) are the best known paradigm of chemical measure-
ments providing a trilinear structure associated with the configuration of excitation, emission and sample modes. 
Chemometric tools, such as Parallel Factor Analysis (PARAFAC) and Multivariate Curve Resolution-Alternating 
Least Squares (MCR-ALS) with trilinear constraint, assist in solving the mixture analysis problem by exploiting 
the trilinear behavior of the EEM measurements. However, the spectroscopic nature of EEM measurements makes 
that no emission signal can be recorded below the current excitation wavelength, generating a strong and sys-
tematic pattern of outlier (zero observations) in EEM data that challenges the classical analysis by MCR-ALS or 
PARAFAC. Several approaches have been proposed to deal with this problem, such as the identification of 
outlying values below the excitation wavelength and, thus, the use of data imputation in PARAFAC, but they 
show severe limitations when systematic outlying data patterns occur. In this paper, we propose a new imple-
mentation of the trilinear constraint in MCR-ALS algorithm to cope with EEM measurements where a strongly 
patterned of outlying data is present. This approach preserves the trilinear property and does not require any 
data imputation step to replace the outlying observations. Its performance is tested on simulated data, controlled 
pharmaceutical mixtures and hyperspectral images of a plant tissue (HSI). It should be noted that the approach 
proposed is applicable to EEM data, where a systematic pattern of outlying observations exist, but can be 
generalized to the treatment of any trilinear data set with a strong pattern of missing values.   

1. Introduction 

Excitation-emission fluorescence (EEM) spectroscopy allows char-
acterizing and quantifying fluorophores taking advantage of differences 
in their excitation and emission profiles [1–4]. EEM spectroscopy pro-
vides a full 2D excitation emission matrix or landscape per sample. 
When EEM from different samples are organized in a single 3D structure, 
the three dimensions refer to the sample direction (s), excitation direc-
tion (ex) and emission direction (em), forming a data cube of size s×
ex× em. In the microscopy field, excitation-emission hyperspectral im-
aging (EEM-HSI) associates an excitation-emission fluorescence mea-
surement with every pixel and provides 4D images, where two 

dimensions x- and y- are the pixel coordinates, and the remaining ones 
correspond to the 2D EEM landscapes, forming a hypercube of size x ×

y × ex × em [5,6]. 
In absence of Rayleigh and Raman scatter and for emission ranges 

higher than the excitation ranges used in the measurement, EEM mea-
surements follow naturally a trilinear model, i.e., every component 
coming from a set of EEM matrices (i.e. a set of samples) can be 
expressed as a combination of three different profiles: a concentration 
profile, which describes the relative abundance of a fluorophore in the 
different samples, and the associated excitation and emission spectra. 
When a set of samples is analyzed, a concentration profile describes the 
relative abundance of a fluorophore in the different samples. When EEM 
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fluorescence images are studied, the values in a concentration profile 
refer to abundance of a fluorophore in every pixel. In this context, 
concentration profiles are refolded to recover the 2D structure of the 
original image and display distribution maps (Fig. 1). 

Characterizing samples or image fluorophores from raw EEM mea-
surements needs suitable chemometric methods that take advantage of 
the underlying trilinear model of the method. In this scenario, PARAFAC 
[7,8] and Multivariate Curve Resolution-Alternating Least Squares 
(MCR-ALS) [9,10] become an excellent alley to deal with the mixture 
analysis problem. Whereas PARAFAC naturally provides trilinear data 
decomposition as shown in Fig. 1, the underlying MCR-ALS model is 
bilinear. However, trilinearity can also be applied in the MCR-ALS 
framework as a constraint [11–13]. Thus, different works have re-
ported on the flexibility to impose the trilinear condition per component 
or per block in a multiset configuration [5,11,14], offering very versatile 
scenarios of hybrid bilinear/trilinear models. Hence, MCR-ALS becomes 
a very good and flexible chemometric tool adapted to the characteristics 
of the EEM measurement, where the applied trilinear constraint relies on 
the fact that the fluorescence emission shape of the components remains 
constant across all the excitation wavelengths [5,12,15]. At this point, it 
is important to remind that all trilinear decomposition methods provide 
unique solutions in absence of degeneracies in all modes of the tensor 
analyzed [16]. This property is an excellent asset when compared with 
methodologies relying on bilinear decompositions, such as MCR-ALS 
when the trilinear constraint is not imposed [8,11,13,16]. 

However, some limitations can be observed in all trilinear decom-
position algorithms when dealing with missing data. In this sense, 
fluorescence measurements have the particularity that no emission 
signal is produced at wavelengths shorter than the excitation wave-
length used. This fact may cause a systematic pattern of zero observa-
tions in EEM measurements, linked to the natural fluorescence 
phenomenon, as can be seen in Fig. 2. In this scenario, an option is 
selecting a rectangular region of interest (ROI) in the EEM landscape to 
avoid the regions with absent data. However, data selection may discard 
relevant information for the characterization of some sample com-
pounds, as shown in Fig. 2, where there is no possible rectangular ROI 
including information of all sample compounds simultaneously. Another 
alternative is replacing the outlying observations using data imputation 
methods, which is the same treatment given to data sets with missing 
values. During the analysis, the EEM outlying observations (or missing 
values in a wider context) are replaced by predictions coming from the 
model itself to avoid algorithm incompatibilities. However, it is difficult 
to perform a reliable data imputation when the outlying (or missing) 
values show a strongly patterned structure, such as the one in Fig. 2 
[17]. 

The classical trilinear decomposition methods, Incomplete Data 
PARAFAC (INDAFAC) or PARAFAC-ALS are well suited to handle 
missing values when their spatial distribution is random, but not for 

systematic patterns of missing values, such as the one in Fig. 2. In 
contrast, MCR-ALS can analyze a complete multiset, obtained by 
unfolding adequately the data in Fig. 2. However, since the current 
implementation of the trilinearity constraint in MCR-ALS is not prepared 
to handle missing values, only a bilinear decomposition would be 
possible. 

In this work, we propose a new implementation of the trilinear 
constraint in MCR-ALS capable to deal with the presence of systematic- 
patterned missing values. Our approach can be optionally applied to 
individual components and does not require any data imputation step. 
To proof the potential of this new approach, the new constraint has been 
tested in simulated data, in EEM from controlled pharmaceutical sam-
ples and in EEM-HSI from cross-sections of rice roots as examples. It is 
worth noting that the outlying systematic pattern of EEM fluorescence 
data will be handled in the same way as a systematic pattern of missing 
values would be. Hence, on the theoretical description of the proposed 
approach, the expression missing values will be used because the 
approach proposed can be applicable to both scenarios. 

2. Data sets 

This section includes simulated and real examples of EEM mea-
surements. The simulations have been performed mimicking the maps 
and spectral fingerprints of an EEM-HSI of vegetal tissue and introducing 
variations related to different noise level and noise structures and 
structures and to diverse spectral overlap conditions. Examples of real 
EEM-HSIs and EEM measurements of solution samples of pharmaceu-
tical mixtures are studied. 

2.1. Excitation-emission hyperspectral images of plant tissue 

2.1.1. Simulated excitation-emission hyperspectral image 
The simulated data set is an EEM-hyperspectral image where the 

shape of the distribution maps is taken from the analysis of a similar real 
EEM leaf sample image done by the authors on a rice leaf sample [5]. 
The maps show a considerable overlap among components. In total, the 
EEM-HSI simulated sample surface has a size of 119 × 119 pixels. The 
simulated range is from 200 nm to 500 nm with a step size of 6 nm for 
the excitation wavelengths (51 channels) and from 270 nm to 570 nm 
with a step size of 6 nm for the emission wavelengths (51 channels), 
giving a hypercube sized 119× 119× 51× 51. The distribution maps and 
the different fluorescence excitation and emission fluorescence spectra 
used for the simulation are shown in Fig. S1 (Supporting Information). 
Once the image has been obtained, different levels of white or Poisson 
noise representing 16 and the 30% approximately of the total signal 

Fig. 1. Underlying model of EEM fluorescence measurements. In a trilinear 
model, each component has a pure concentration profile (C), a pure excitation 
spectrum (K) and a pure emission spectrum (S). 

Fig. 2. Possible scenario in a mixture of three components (A, B, C). It can be 
observed that there is no rectangular ROI that includes the signal from the 
three components. 
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were added, mimicking the usual noise level found in these measure-
ments in normal or harsh conditions, respectively. For more detail in the 
generation of the simulated data, see the Supporting Information. 

2.1.2. Excitation-emission hyperspectral image of plant tissue 
Rice plants were grown as in Ref. [5]. After harvest, small pieces of 

plant roots were collected and embedded in agarose (5% w/w). 50 μm 
thickness microsections were prepared and put on a 1 mm-thickness 
CaF2 slide with a drop of Phosphate-buffered saline solution, covered 
with a 0.5 mm-thickness CaF2 coverslip and sealed with nail polish, to 
avoid water evaporation during the experiment. 

EEM-HSIs were acquired by a confocal microscope (Leica TCS SP8 
STED 3X, Leica Microsystems, Mannheim, Germany) with an HC PL APO 
CS2 10 × /0.40 DRY objective. Several excitation wavelengths were 
selected: 405, 470, 520 and 570 nm. For the 405 nm laser beam, a power 
approximately of the 70% (89 μW at the sample plane) was used. For the 
470, 520 and 570 nm excitations, a supercontinuum white light laser 
(WLL) with a power approximately of 70% (146 μW at the sample 
planned) was used. 

The emission range for each excitation was 435–663 nm, 495–663 
nm, 543–663 nm and 591–663 nm, respectively. The fluorescence 
spectra were collected using a hybrid photodetector (HYD SMD) with 12 
nm sampling interval and a bandwidth of 12 nm. This provides a 4D 
hyperspectral image with x and y as the spatial directions, and λexc and 
λem as the spectral dimensions. Spectra were collected by point mapping 
with dwell times of 32 μs in all excitation wavelengths, except for 405 
nm, where 15 μs were used. Each of the three images acquired has 1024 
× 512 pixels, a pixel size of 450 × 450 nm2 and a field of view of 460 ×
230 μm2. 

2.2. Excitation-emission matrices of pharmaceutical mixtures 

Nine mixtures of ibuprofen (IP) and acetylsalicylic acid (ASA) (a.r., 
Sigma Aldrich) were prepared in an ammonia-ammonium chloride 
buffer solution (pH 10) and measured by an AB2 Aminco-Bowman 
spectrofluorometer. A common fluorescence linear range was found 
for the two compounds from 0.25 to 5.00 mg/L (R2 = 0.998). Excitation 
and emission slits were set to 5 and 10 nm respectively and the voltage of 
the photomultiplier was set to 560 V. A Hellma quartz cell (4 × 10 mm 
optical pathlength, and 400 μL volume) was used. The excitation range 
was 200–500 nm and the emission range was 200–600 nm. Table 1 
shows the concentrations of the pharmaceutical compounds in each 
mixture. The dataset formed by the pharmaceutical mixtures was a data 
cube formed by 9 samples, 61 excitation channels and 42 emission 
channels, sized 9 × 61× 42. 

3. Data analysis 

3.1. Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) 

MCR-ALS is an algorithm meant to solve the mixture analysis prob-
lem via a bilinear decomposition, which has been applied successfully in 
many different fields [9,10]. For spectroscopic data, the bilinear model 
can be expressed by (Eq. (1)) 

D=CST + E Eq. 1  

where D is the matrix containing all spectra and C and ST are matrices of 

concentration profiles and spectral signatures of the sample constitu-
ents, respectively. E is the matrix of the residual variation unexplained 
by the MCR model. MCR-ALS is an algorithm that optimizes matrices C 
and ST by an alternating least squares iterative procedure under con-
straints. The end of the optimization procedure is defined by the 
convergence criterium, often expressed as a threshold based on the 
relative difference of the lack of fit (LOF) during consecutive iterations. 
The parameters used to estimate the quality of the MCR model fit are the 
LOF and the explained variance, as expressed in Eq. (2) and Eq. (3). 
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Where di,j is the ijth element of D and ei,j is the residual associated with 
the reproduction of di,j by the MCR model. 

During the iterative process, several constraints can be applied to C 
and ST according to the natural behavior of the profiles or responding to 
mathematical conditions. Constraints can be applied optionally per 
mode (C or ST), per block in a multiset arrangement and per profile 
(component) within C or ST. A group of dedicated constraints for mul-
tiset data are the model constraints, which incorporate multi-way 
models, such as multilinear or factor interaction models, in the MCR- 
ALS decomposition [12,18]. A detailed explanation on the current 
implementation of trilinearity and the new proposal for strongly 
patterned missing data sets can be found in the next subsections. 

3.2. The trilinearity constraint in MCR-ALS. Implementation for complete 
data sets and for data sets with strongly patterned missing values 

The first step for the implementation of trilinearity in MCR-ALS is 
transforming the original data cube into a multiset configuration. In 
complete EEM measurements, where for each excitation wavelength the 
emission spectrum has the same wavelength range, the tensor D can be 
unfolded as a data matrix by transforming two dimensions in a single 
extended one (Fig. 3A). Thus, every row of the multiset contains a 
vectorized 2D EEM landscape, where the emission spectra of the 
different excitation wavelengths are concatenated. 

In this case, the trilinear model can be implemented as a constraint 
during the iterations. As shown in previous work [12], in every iteration, 
each row profile in ST, related to a specific component, is folded into the 
excitation-emission matrix Sfi, where i refers to the component (Fig. 3B). 
This new EEM matrix Sfi is decomposed by singular value decomposition 
(SVD) and it is reconstructed using the first SVD-component. This gives a 
new matrix Ŝfi where all the emission profiles have the same shape and 
only differ in scale, depending on the excitation wavelength they are 
associated with. The new matrix Ŝfi is unfolded again and is used to 
replace the row profile related to component i in ST. It is important to 
note that the Sfi matrix needs that every emission spectrum has the same 
emission range and Raman or Rayleigh scattering must be either 
removed or corrected to keep the trilinear behavior in the data. As 
mentioned before, the per component implementation of the trilinear 

Table 1 
Pharmaceutical mixtures.   

Mixture 

Pharmaceutical compound 1 2 3 4 5 6 7 8 9 
IP (mg/L) 0.25 1.00 0.25 2.50 0.25 1.00 1.50 1.50 1.50 
ASA (mg/L) 1.50 0.50 1.00 0.25 2.50 2.50 0.5 0.25 1.50 

All data sets used are available on request. 
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constraint allows obtaining full trilinear models (when all components 
are constrained) or hybrid bilinear/trilinear models when only some of 
them obey this model condition. 

The excitation spectrum is recovered using the area of the pure 
fluorescence emission for each excitation wavelength (Fig. 3A). Note 
that for each component, every emission spectrum has the same shape. 
This gives us a trilinear model, where for each component there is a 
concentration, an excitation and an emission profile. 

3.2.1. Trilinearity constraint for data with strongly patterned missing values 
in Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) 

When using EEM measurements with overlapping excitation and 
emission wavelength ranges, a strongly patterned missing data set, as 
shown in Fig. 2, is obtained. However, transforming this cube into a 
multiset configuration can be done as in Fig. 3A. The main difference in 
this case is that the length of the emission spectra concatenated per 
every pixel changes depending on the related excitation wavelength 
(Fig. 4A). The multiset D obtained does not contain missing data and 
could be easily analyzed using a bilinear model decomposition. How-
ever, the uniqueness in solutions provided by the trilinear constraint 
would be lost. In the classical application of the trilinear constraint 
shown in Fig. 3B, the matrix Sfi must be complete and cannot have 
missing values. In EEM measurements where the excitation and the 
emission range overlap, every emission spectrum has a different length 
and this prevents applying the trilinear constraint, as shown in Fig. 4A, 
because Sfi would be a ragged matrix. 

To solve the problem described in the previous section, the following 
procedure is proposed (Fig. 4B). In each iteration, after the ST matrix is 
calculated, each profile of ST is folded as a ragged matrix, filling the 
empty spaces with NaN and refolding the data as in the original struc-
ture. The idea is applying the trilinear constraint to a suitable number of 
complete Sfi submatrices until all elements in the original ST matrix are 
used. As a result, the trilinear profiles are reconstructed sequentially 

without any imputation step. In the example of Fig. 4B, the criterion 
chosen was selecting the rectangular submatrices according to the 
number of rows covered in decreasing order. Thus, the green submatrix 
is the first detected and is decomposed by SVD and reconstructed using 
the first component. The corresponding values of Sfi are replaced by the 
reconstructed submatrix (green colour in Fig. 4B). Then, the second 
submatrix, in purple, is detected and the same decomposition is applied, 
replacing only the values in the Sfi matrix that were not modelled by the 
previous submatrix analysis. This is repeated sequentially with all 
possible additional submatrices until all the area of Sfi considered for 
trilinearity is covered (Ŝfi). The matrix Ŝfi is then vectorized by 
concatenating the emission spectra at the different excitation wave-
lengths to replace the ith suitable profile of the ST matrix. There are 
several ways to sort the submatrices used to describe Ŝfi. Each corre-
spond to different criteria (bigger area, bigger number of row or columns 
…). The criterium to sort the submatrices in an optimal way will be 
discussed later. 

3.2.1.1. Optimal submatrix selection. When running the MCR-ALS algo-
rithm, only under non-negativity, every spectral profile in ST is likely to 
contain slightly mixed contributions. In this scenario, the trilinearity 
constraint should aim first at removing this initial mixed profile nature 
and afterwards to provide a common emission shape associated with all 
excitation wavelengths. Hence, the selection of the submatrices Sfi on 
which to apply sequentially trilinearity will consider this double goal in 
two steps. 

Step 1 (removal of signal mixing in Sfi) 

An automated algorithm was designed to detect all possible rectan-
gular submatrices in the ragged matrix Sfi. These submatrices are af-
terwards sorted in decreasing order according to their mixture level 

Fig. 3. A) Structure of a three-way complete EEM data set. The cube D is unfolded by concatenating emission spectra at different excitations in matrix D. D is 
decomposed into the product of matrix C, related to the concentration profiles, and ST, related to the spectral signatures. B) Classical application of the trilinearity 
constraint per component during MCR-ALS iteration. The spectral profile ST of one component i is folded as an EEM matrix (Sfi) and decomposed by SVD. Then, it is 
reconstructed by the first component of the SVD analysis (Ŝfi) and the suitable values of ST are replaced. 

A. Gómez-Sánchez et al.                                                                                                                                                                                                                       



Chemometrics and Intelligent Laboratory Systems 231 (2022) 104692

5

(ML), estimated as the trace of the submatrix Σ̃, defined as the diagonal 
matrix containing the eigenvalues Σ divided by Σ11 and with N as the 
number of components (Eq. (4)). 

ML=
trace(Σ̃)

N
Eq. 4 

ML can move from 1/N for a perfect rank one matrix (i.e. in a 
noiseless case, when only a pure component exists) to one, when the 
variance is evenly spread in all calculated components. The closer ML is 
to 1, the higher the mixture level in the analyzed submatrix. 

SVD is applied first to the most mixed submatrix of Sfi, framed in 
green color. The reconstructed submatrix only using the first component 
helps to remove the non-common signal features that could come from 
residual contributions of other compounds. The procedure continues 
gradually, every time taking the most mixed remaining submatrix 
(following the purple and yellow sequence in Fig. 5), doing the SVD 
analysis and incorporating only the reconstructed part of the submatrix 
absent in previous steps, until the full area of the Sfi ragged matrix has 
been covered. This algorithm is fast and automatic since it does not 
require to set any parameter. 

Step 2 (ensuring trilinear profiles) 

The first step described above helps to ‘clean’ the original mixed 
contributions in Sfi; however, the emission profiles associated with every 
excitation step may be slightly different because the reconstructed 
values in each emission channel may come from different submatrix 
reconstructions. To obtain perfect trilinear profiles, a second step of 
sequential application of trilinearity is done taking now submatrices 
sorted as in Fig. 4B. 

It is important to note that the procedure presented in section 3.2.1 is 
useful to apply the trilinearity constraint to ragged matrices with any 
kind of pattern of missing values without any step of value imputation. 
As all other constraints in MCR-ALS, this constraint can be applied to all 
or to specific components of the data set. The current implementation 
proposed does not show limitations neither in terms of number of 
components of the system nor in profile overlap. However, it needs to be 
noted that the step of computation of the submatrices covering the EEM 
landscape increases in computation time when the landscapes treated 
have a high number of excitation and emission channels. In any case, 
though, even with hundreds of channels in each direction, a desktop 
computer would be sufficient to perform this task. In this situation, a 
previous binning in the spectral direction can alleviate problems of 
computation time. 

Fig. 4. A) Structure of a three-way EEM cube with systematic missing value pattern. The cube D is unfolded by concatenating different excitations in the matrix D. B) 
Trilinearity constraint for irregular EEM measurements. The spectral profile ST of the ith component is folded as an EEM ragged matrix (Sfi). In this example, the 
algorithm sorts in decreasing order the rectangular submatrices according to the maximum number of rows included until the full Sfi matrix is covered. Sequentially, 
the submatrices are submitted to SVD and the first component is used for reconstruction (Ŝfi) and replacement of the suitable elements in the matrix Sfi. Any new 
submatrix analysis only replaces values that were not modified by previous submatrix analyses. Finally, when all the ragged Sfi matrix has been covered by the 
different submatrix analyses, the matrix Ŝfi is vectorized by concatenating the excitation dimension to replace the ith profile of the ST matrix. 
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3.3. Software 

The PARAFAC method was used as implemented in the N-way 
Toolbox for MATLAB. Version 3.31 [19]. MCR-ALS was applied using 
in-house coded routines that incorporated the new trilinearity 
implementation. 

4. Results and discussion 

4.1. EEM HSI data sets. Simulated and real images 

In both simulated and real image data sets, non-informative back-
ground pixels were removed to reduce the data set size. In the real EEM- 
HSIs, images were spatially binned using a 3 × 3 factor to increase the 
signal-to-noise ratio and the emission channels 585–597 nm were 
removed due to the presence of an instrumental artefact. 

The potential of the methodology presented was first tested on the 
simulated 4D images. The simulated data were analyzed in three 
different ways: using MCR-ALS applying a bilinear model, using MCR- 
ALS with the adapted trilinearity constraint for strongly patterned 
missing data and using a PARAFAC-ALS model. To analyze the simulated 
dataset by MCR-ALS, the 4D image was unfolded according to Fig. 4A. 
During the iterative optimization, non-negativity constraint was applied 
to both modes. In all MCR-ALS analyses, initial spectral estimates were 
obtained by a SIMPLISMA-based algorithm [20]. For the application of 
the PARAFAC-ALS model, only the pixel spatial dimensions were 

unfolded, as shown in Fig. 1B. The PARAFAC-ALS algorithm was applied 
using SVD as the method to provide the initial estimates. Non-negativity 
was applied in the three modes. The imputation proposed by the algo-
rithm (based on an expectation-maximization approach) was used to 
estimate missing data [17]. In all PARAFAC-ALS and MCR-ALS models, 
the maximum number of iterations was set to 5000 and the convergence 
criterion based on differences in error among consecutive iterations was 
10− 6%. Results are summarized in Table 2. 

A first observation is that all bilinear and trilinear models for this 
data set provided a very similar lack of fit for all cases, which is in good 
agreement with the amount of noise added in the simulation. This means 
that the noise is well separated from the signal and no local minima are 
reached in any of the analyses presented. Actually, when trilinearity is 
an appropriate constraint, it is not expected a strong variation in the 
variance explained between bilinear and trilinear models [13,21]. 

The assessment of the quality of the models was also checked by 
observing the correlation coefficients between the concentration profiles 
and pure EEM landscapes recovered by the applied algorithm and the 
corresponding true solutions, for the different models. It should be noted 
that for the comparison of EEM landscapes, only non-imputed values of 
PARAFAC-ALS model were considered. Fig. 6 displays the excitation and 
emission profiles recovered by the models tested (black lines) overlaid 
with the profiles used for simulation (red dotted lines). All excitation 
and emission profiles obtained by MCR-ALS without trilinearity were 
plotted. The excitation and emission profiles for MCR-ALS analysis with 
trilinearity were extracted plotting the longest spectrum associated with 

Fig. 5. Application of trilinearity constraint on irregular EEM measurements. The spectral profile ST of the ith component is folded as an EEM ragged matrix (Sfi). In 
this example it is possible to see a minor signal contribution from another component in this pure profile. The algorithm sorts in decreasing order the rectangular 
submatrices according to the mixture degree ML. Sequentially, the submatrices are submitted to SVD and the first component is used for reconstruction (Ŝfi) and 
replacement of the suitable elements in the matrix Sfi. Any new submatrix analysis only replaces values that were not modified by previous submatrix analyses. 
Finally, when all the ragged Sfi matrix has been covered by the different submatrix analyses, the matrix Ŝfi is vectorized by concatenating the excitation dimension to 
replace the ith profile of the ST matrix and the algorithm continues to step 2. 
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emission and excitation wavelengths from the resolved EEM landscape, 
respectively. Only the results associated with system 5, the worst case in 
terms of noise level and profiles overlap, are shown for illustration 
purposes. As can be seen, the recovered profiles by the bilinear MCR-ALS 
model and the PARAFAC-ALS model are not satisfactory, especially for 
component 3. 

The variability in the emission and excitation profiles recovered by 
the bilinear MCR-ALS model with only non-negativity constraints can be 
explained by the strong profile overlap existing among components and 
the associated rotational ambiguity (see Supporting material for systems 
1 and 5). Instead, the cause of the poor recovery of some profiles by 
PARAFAC-ALS is due to the data imputation required when trilinearity 
is imposed, more prone to fail when a systematic pattern of missing 
values is present [10]. In contrast to the two approaches mentioned, 
MCR-ALS with the modified trilinear constraint retrieves very accurately 
the true profiles. The improvement in the solutions is due to both the 
trilinear property, which suppresses the rotational ambiguity [11–13, 
21,22], and to the fact that no data imputation is required. As a conse-
quence, the strong pattern of missing data does not affect the quality of 
the final results. These results confirm that, even if a very huge number 
of patterned missing values is present, the true solutions can be correctly 
reached with the presented novel approach. 

In the following real example of EEM-HSI image, described in section 
2.1, only MCR-ALS will be used either using a bilinear model or the 
modified implementation of the trilinear constraint. In this case, the 
benefit of the trilinear constraint is obtaining more accurate results and, 
hence, improving the interpretability of the components obtained. 

The real data set consists of three hyperspectral EEM images from 
rice root cross sections. Fig. 7 shows the global intensity map (the total 
fluorescence counts in each pixel) of one of the samples and its global 
intensity EEM (the total fluorescence counts in each spectral channel). 

Each 4D image was unfolded following Fig. 4A scheme. The blocks of 
pixel spectra of every image were put one on top of each other to form a 
multiset. As a result, after MCR analysis, the matrix C provides con-
centration profiles for every component in the different samples, which 
can be refolded into distribution maps. The matrix ST contains their 
related stretched emission spectra, which can be refolded into the pure 
2D EEM landscapes (see scheme of the multiset configuration in the 
support information). The multiset described was analyzed by MCR-ALS 
using only non-negativity constraints and a bilinear model and by MCR- 
ALS using non-negativity and the modified trilinear constraint. In all 
analyses initial spectral estimates were obtained by SIMPLISMA 

algorithm and the maximum number of iterations was 500 (a conver-
gence criterion was 10− 8%). Four different components were detected. 
Fig. 8 shows the pure excitation-emission matrices of the root com-
pounds and the distribution maps for one of the three root samples found 
by MCR-ALS using a bilinear and a trilinear model. The complete MCR- 
ALS results of the multiset analysis are shown in the Supporting 
Information. 

The explained variance of the bilinear and the trilinear model were 
99.0% and 98.9%, respectively, confirming that the trilinear model is 
suitable to analyze this kind of data. 

When comparing the results obtained by both approaches, compo-
nents 1 and 3 are well resolved in both models since no differences are 
present in the pure EEM landscapes and maps. However, components 2 
and 4 show clear changes in the emission spectra shapes associated with 
the different excitation wavelengths when bilinear models are used, a 
clear sign that rotational ambiguity is affecting the results. This ambi-
guity is known to affect not only the EEM landscapes but also the 
structure of the distribution maps. Therefore, interpretation of the bio-
logical information extracted will be performed from the results shown 
in Fig. 8B. 

The components recovered by the trilinear model have a clear bio-
logical meaning. The first component is strongly related to the root 
cortex and the stele. The emission maximum can be observed at 
441–453 nm and the excitation providing the highest signal is 405 nm. 
Based on the location and spectral characteristics of this component, it 
can be assigned to a type of non-specific lignin or phenolic compounds, 
normally observed in all the vegetal tissue [23]. The third component is 
related to the sclerenchyma layer of the epidermis and the inner part of 
the stele. The emission maximum is at 489–501 nm and the maximum 
excitation is at 405 nm. This component could be strongly related with 
lignin since both root zones are highly lignified cells and the emission 
maximum matches with the maximum reported in literature [24]. To the 
knowledge of the authors, the second and fourth components have never 
been reported based on autofluorescence measurements, probably due 
to the difficulty to extract a clear signal from the raw EEM measurement. 
Fig. 8B shows that the second component is closely related to the inner 
cortical and sclerenchyma layer of the root exodermis. The emission 
maximum is found at 573–585 nm and the maximum excitation signal is 
observed at 570 nm. To the best of our knowledge, identification of the 
inner cortex was only reported once, by inmunoprofiling [25]. Likewise, 
the fourth component could be related to the Casparian strip, and the 
sclerenchyma layer of the epidermis and it is also present in the phloem. 

Table 2 
Lack of fit (LOF) and correlation coefficients among recovered solutions and true solutions for the different data sets and models tested.  

System Profile 
overlap 

Noise (%) 
(structure) 

Component MCR-ALS (bilinear model) MCR-ALS (trilinearity for missing 
data) 

PARAFAC-ALS 

C 
profile(+) 

S 
profile(+) 

LOF 
(%) 

C profile 
(+) 

S 
profile(+) 

LOF 
(%) 

C 
profile(*) 

S 
profile(*) 

LOF(*) 

(%) 

1 Low 16.1 (White) 1 0.99 1.00 16.1 1.00 1.00 16.1 1.00 1.00 16.1 
2 1.00 0.99 1.00 1.00 1.00 1.00 
3 0.99 1.00 1.00 1.00 1.00 1.00 

2 High 16.5 (White) 1 0.97 0.99 16.5 0.99 1.00 16.5 0.89 0.25 16.5 
2 1.00 0.99 1.00 1.00 0.99 0.99 
3 0.96 0.82 0.98 0.99 0.96 0.67 

3 Low 31.0 (White) 1 1.00 1.00 31.0 1.00 1.00 31.0 1.00 1.00 31.0 
2 0.99 0.99 1.00 1.00 1.00 1.00 
3 1.00 1.00 1.00 1.00 1.00 1.00 

4 High 31.8 (White) 1 0.93 0.71 31.8 0.98 1.00 31.8 0.87 − 0.07 31.8 
2 0.98 0.95 0.99 0.99 0.95 0.96 
3 0.90 0.21 0.95 0.98 0.96 0.81 

5 High 28.5 
(Poisson) 

1 0.96 0.90 28.4 0.98 1.00 28.5 0.89 0.45 28.5 
2 0.99 0.97 0.98 1.00 0.95 − 0.30 
3 0.93 0.74 0.96 0.99 0.64 0.36  

* Missing values in PARAFAC-ALS are estimated using the imputation of the algorithm. The imputed values are not considered neither for the calculation of the 
correlation coefficients in the pure EEM landscape nor in the lack of fit. 

+ Correlation coefficients between recovered profile by MCR-ALS and simulated profiles. 

A. Gómez-Sánchez et al.                                                                                                                                                                                                                       



Chemometrics and Intelligent Laboratory Systems 231 (2022) 104692

8

Fig. 6. Results of the analysis for system 5. A) True distribution 
maps. B) Distribution maps (first row), excitation (second row) 
and emission profiles (third row) for each excitation provided by 
MCR-ALS without applying trilinearity constraint. The excitation 
profiles were extracted following the scheme of Fig. 3A. C) Dis-
tribution maps (first row), excitation (second row) and emission 
profile (third row) solutions provided by MCR-ALS applying tri-
linearity constraint. D) Distribution maps (first row), excitation 
(second row) and emission profile (third row) solutions provided 
by PARAFAC-ALS. Black lines are solutions provided by the 
respective models. Red dotted lines are the true solutions. (For 
interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.)   
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The maximum emission can be observed at 537–549 nm and the highest 
excitation signal is at 470 nm. The location of this component is related 
to the presence of the Casparian strip and matches well with the results 
reported in literature [26]. 

4.2. Real pharmaceutical mixtures 

The new implementation of trilinearity was tested to analyze 
controlled mixtures of ibuprofen and acetylsalicylic acid in harsh con-
ditions for the MCR-ALS algorithm. In this case, the signal contributions 
of the two compounds have more than one order of magnitude of dif-
ference between them and no pure sample is present in the dataset. 
Several mixtures were prepared using IP and ASA as described in Section 
2.1. 

As a previous step to the analysis, a ROI was selected from the 2D 
EEM landscape of each sample so that the useful fluorescence signal of 
the two compounds was included and the zones with Rayleigh and 
Raman scattering were discarded, as it can be seen in Fig. 9A. It is 
important to note that the ROI selected does not have a rectangular 
shape and that this does not preclude the application of the trilinearity 
constraint, as described in section 3.2.1. The dataset is formed by 
equally shaped ROIs from nine mixture samples, covering 30 excitations 
and 33 emission channels. Pure EEM of ibuprofen and acetylsalicylic 
acid are shown in Fig. 9B. 

The dataset was analyzed by MCR-ALS using a bilinear model and 
non-negativity constraint and with non-negativity and the modified 

Fig. 7. Global intensity map (left) and global intensity EEM (right) of the 
hyperspectral image. Scale units refer to fluorescence counts. 

Fig. 8. A) Predicted concentration maps (of sample 1) and pure EEM profiles found by MCR-ALS without trilinearity constraint. B) Predicted concentration maps (of 
sample 1) and pure EEM profiles found by MCR-ALS with trilinearity constraint. Scales in distribution maps and pure 2D EEM landscapes are concentrations and 
fluorescence intensities in arbitrary units. 
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trilinearity constraint. Initial estimates and the convergence criterion 
were set as in previous examples. 

Table 3 shows the lack of fit of the different models tested and the 
correlation coefficients between the recovered concentration profiles 
and pure EEM landscapes obtained with the models and the true profiles. 
As in previous examples, the lack of fit is similar between the bilinear 
and the trilinear model. 

Fig. 10 shows the pure 2D EEM landscapes and the comparison be-
tween true and recovered concentration profiles for the two compounds 
of the samples. If only non-negativity constraint and a bilinear model is 
applied, the pure EEM recovered for IP is not correct and the effect of 
ambiguity is also perceived in the concentration profiles of the two 
compounds. Indeed, Fig. 10A shows that high contributions of ASA are 
present in the pure spectral landscape of IP, seen also in the low corre-
lation coefficient, equal to 0.2, between the true solution and the MCR- 
ALS profiles for this component. Although the correlation coefficients 

for the concentration profiles of IP and ASA are 0.99 and 1.00, respec-
tively, a certain bias between the real and the recovered concentrations 
can also be seen. Instead, the use of the MCR-ALS method with the 
adapted trilinear constraint provides excellent solutions for the con-
centration profiles and pure fluorescence EEM landscapes (see Fig. 10B), 
due to the uniqueness associated with this kind of data decomposition. 

5. Conclusions 

The new implementation of the trilinear constraint in MCR-ALS for 
EEM data sets with strongly patterned outyling data surmounts the 
limitations linked to data imputation when natural trilinear decompo-
sition methods are applied, and the ones related to the rotational am-
biguity associated with the multiset analysis carried out on the unfolded 
three-way data cube, when a classical MCR-ALS bilinear model is 
applied. 

The trilinear profiles obtained with this method are issued from SVD 
analyses performed in a sequential way on complete submatrices issued 
from the ragged 2D matrix that contains the emission profiles forced to 
show the same shape. This sequential approach allows obtaining 
trilinear profiles without requiring any data imputation step that are 
subsequently submitted to the MCR-ALS optimization. In this manner, 
the ambiguity associated with MCR bilinear decompositions is also 
suppressed. An additional advantage of the implementation of this 
constraint is that it is not restricted to the triangular pattern related to 
the nature of EEM measurements data, but to any other kind of sys-
tematic pattern of missing values that may be encountered in the initial 
ragged matrix to be constrained. 

The value of this constraint implementation has been validated on 

Fig. 9. A) ROI selected from a mixture of IP and ASA, discarding the Raman and Rayleigh dispersion. B) Pure excitation-emission matrices of IP and ASA at the same 
concentration (5 mg/L) (note the high difference in the fluorescence signal magnitude). 

Table 3 
Correlation coefficients between MCR-ALS profiles and true profiles for the 
different models tested.  

Model Component Concentration 
profile 

Pure 
landscape 
profile 

Lack of 
fit (%) 

MCR-ALS without 
trilinearity 
constraint 

ASA 1.00 1.00 0.69 
IP 0.99 0.20 

MCR-ALS with 
trilinearity 
constraint for 
incomplete data 

IP 1.00 1.00 0.73 
ASA 1.00 0.98  
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simulated data sets and has been also applied to real EEM data sets with 
different systematic patterns of outlying values. Although EEM data are 
a natural context of application of this implementation of the trilinear 
constraint, it could also be applied onto any other kind of trilinear data 
set with a systematic pattern of missing data. 
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