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Abstract
The ABC Consortium has been generating nucleic-acids MD trajectories for more than 20 years. This brief comment high-
lights the importance of this data for the field, which triggered a number of critical studies, including force-field param-
eterization and development of new coarse-grained and mesoscopic models. With the world entering into a new data-driven 
era led by artificial intelligence, where data is becoming more essential than ever, the ABC initiative is leading the way for 
nucleic acid flexibility.

Comment

Theoretical approaches to science aim to reduce the impact 
of serendipity on the advance of our knowledge. However, 
serendipity often guides the evolution of theoretical sci-
ences. The Ascona B-DNA Consortium (ABC) is an excel-
lent example of how new and unpredicted research objec-
tives emerge when looking for very specific information. 
Thus, the first ABC round aimed to study the tetramer-
dependent properties of B-DNA (Beveridge et al. 2004; 
Dixit et al. 2005), but unexpectedly the project helped to 
improve force-fields (FF; (Pérez et al. 2007)). The second 
round (Pasi et al. 2014) helped to describe bimodality in 
certain steps, but also resulted in the development of last-
generation FFs (Ivani et al. 2016; Zgarbová et al. 2015). The 
third round aimed to reproduce DNA polymorphism (Dans 
et al. 2019), but as a side product, the analysis of data led to 
the description of the kinetics of DNA transitions and the 
development of a myriad of coarse-grained and mesoscopic 
models (Walther et al. 2020; López-Güell et al. 2023), which 
made it possible to move to the chromatin scale (Buitrago 
et al. 2021). We cannot predict what the impact of the ongo-
ing HexABC project will be beyond characterizing the prop-
erties of the 2080 unique hexamers of DNA. The only clear 

statement that we can make is that stored ABC data will be 
crucial for it.

Theoretical science is moving from an algorithm-based 
to a data-driven paradigm. Artificial intelligence methods 
are anxiously waiting for high-quality data to derive predic-
tive models (Barissi et al. 2022). In this new scenario, we 
should be careful in reporting MD data with FAIR (findable, 
accessible, interoperable, and reusable) standards, provid-
ing provenance of the trajectories obtained using commu-
nity-accepted simulation standards and stored after passing 
severe quality controls (Hospital et al. 2020). We should 
be prepared to solve computational challenges beyond mere 
CPU usage and closer to those faced by data-intensive sci-
ences. ABC is pioneering the field: the HexABC consortium 
has generated 380 validated trajectories covering the 2080 
unique DNA hexamers obtained using community-accepted 
standards. Performing such simulations has been a major 
effort for the 13 groups involved, but the greatest challenge 
has been to move around 200 TB of data from production 
sites to the datacenters in Utah and Barcelona, checking the 
integrity of the trajectories and detecting potential artefacts 
in the simulations that require human inspection. Analyz-
ing 500,000 files (200 TB) and storing all the information 
in a NoSQL database with remote programmatic access 
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represent an effort comparable to that of obtaining the tra-
jectories. However, the final result: a validated database of 
B-DNA simulations will represent the best legacy of the 
ABC consortium (Fig. 1).
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