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Strand-resolved mutagenicity of DNA 
damage and repair

Craig J. Anderson1, Lana Talmane1, Juliet Luft1, John Connelly1,2,3,4, Michael D. Nicholson5, 
Jan C. Verburg1, Oriol Pich6, Susan Campbell1, Marco Giaisi7, Pei-Chi Wei7, Vasavi Sundaram8, 
Frances Connor9, Paul A. Ginno10, Takayo Sasaki11, David M. Gilbert11, Liver Cancer Evolution 
Consortium*, Núria López-Bigas6,12,13,14, Colin A. Semple1, Duncan T. Odom9,10 ✉, 
Sarah J. Aitken2,9,15,16 ✉ & Martin S. Taylor1 ✉

DNA base damage is a major source of oncogenic mutations1. Such damage can 
produce strand-phased mutation patterns and multiallelic variation through the 
process of lesion segregation2. Here we exploited these properties to reveal how strand- 
asymmetric processes, such as replication and transcription, shape DNA damage  
and repair. Despite distinct mechanisms of leading and lagging strand replication3,4, 
we observe identical fidelity and damage tolerance for both strands. For small 
alkylation adducts of DNA, our results support a model in which the same translesion 
polymerase is recruited on-the-fly to both replication strands, starkly contrasting the 
strand asymmetric tolerance of bulky UV-induced adducts5. The accumulation of 
multiple distinct mutations at the site of persistent lesions provides the means to 
quantify the relative efficiency of repair processes genome wide and at single-base 
resolution. At multiple scales, we show DNA damage-induced mutations are largely 
shaped by the influence of DNA accessibility on repair efficiency, rather than gradients 
of DNA damage. Finally, we reveal specific genomic conditions that can actively  
drive oncogenic mutagenesis by corrupting the fidelity of nucleotide excision repair. 
These results provide insight into how strand-asymmetric mechanisms underlie the 
formation, tolerance and repair of DNA damage, thereby shaping cancer genome 
evolution.

There is an elegant symmetry to the structure and replication of DNA, in 
which the two strands separate and each acts as a template for the syn-
thesis of new daughter strands. Despite this holistic symmetry, many 
activities of DNA are strand asymmetric: (1) during replication, different 
enzymes mainly synthesize the leading and lagging strands3,4,6,7, (2) 
RNA transcription uses only one strand of the DNA as a template8, (3) 
one side of the DNA double helix is more associated with transcription 
factors9, and (4) alternating strands of DNA face towards or away from 
the nucleosome core10,11. These processes can each impart strand asym-
metric mutational patterns that reflect the cumulative DNA transac-
tions of the cells in which the mutations accrued1,9,10,12,13.

Cancer genomes are the result of diverse mutational processes1,14, 
often accumulated over decades, making it challenging to identify 
and subsequently interpret their relative roles in generating spatial 
and temporal mutational asymmetries. The relative contribution of 
DNA damage, surveillance and repair processes to observed patterns 

of mutational asymmetry remains poorly understood, although map-
ping of DNA damage15–18 and repair intermediates19,20 have provided 
key insights.

To understand the mechanistic asymmetries of DNA damage and 
repair on a genome-wide basis, we have exploited an established mouse 
model of liver carcinogenesis21,22, in which mutations are induced 
through a single DNA-damaging exposure to diethylnitrosamine (DEN; 
an alkylating agent that is bioactivated by the hepatocyte-expressed 
enzyme Cyp2e1). The exposure results in mutagenic DNA base damage, 
referred to as DNA lesions, that are inherited and resolved as mutations 
in subsequent cell cycles2. This phenomenon of lesion segregation, 
in which damaged lesion-containing strands segregate into separate 
daughter cells, results in pronounced, chromosome-scale mutational 
asymmetry. In a clonally expanded cell population, such as a tumour, 
this asymmetry can identify which damaged DNA strand was inherited 
by the ancestor of each tumour (Fig. 1a). Using this approach, we can 
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determine the lesion-containing strand for approximately 50% of the 
autosomal genome and the entire X chromosome for each tumour2 
(Extended Data Fig. 1). We analysed data from 237 clonally distinct 
tumours from 98 mice and could resolve the lesion strand for over 7 
million base substitution mutations (Fig. 1b). Most (more than 75%) 
of the mutations are from T nucleotides on the lesion strand (Fig. 1c), 
consistent with previous analyses of DEN-induced tumours2,22, and 
biochemical evidence of frequent mutagenic alkylation adducts on 
thymine23.

The range of mutagenic alkylation adducts generated by activated 
DEN overlaps those from tobacco smoke exposure, unavoidable 
endogenous mutagens and alkylating chemotherapeutics such as 
temozolomide23–25. More generally, the mechanism of lesion segrega-
tion, which the strand-resolved analysis relies on, appears to be a ubiq-
uitous property of base-damaging mutagens2. Here we newly exploit 
these strand-resolved lesions as a powerful tool to quantify how mitotic 
replication, transcription and DNA–protein binding mechanistically 
shape DNA damage, genome repair and mutagenesis.

The mutational symmetry of replication
These well-powered and experimentally controlled in vivo data provide 
a unique opportunity to evaluate whether DNA damage on the template 
for leading strand replication results in the same rate and spectrum of 
mutations as on the lagging strand template. There are several reasons 
why they might differ. First, leading and lagging strand replication 
use distinct replicative enzymes3,4,6,7, which may differ in how they 
handle unrepaired damage on the DNA template strand. Second, it is 
unknown whether the leading and lagging strand polymerases recruit 
different translesion polymerases, which could generate distinct error 
profiles. Third, substantially longer replication gaps are expected on 
the leading strand, if there is polymerase stalling26. Consequently, 
leading and lagging strands are thought to differ in their lesion bypass5 
and post-replicative gap filling27,28.

On the basis of hepatocyte-derived measures of replication fork 
directionality (using Repli-seq and OK-seq, see Methods; Extended 
Data Fig. 2) and patterns of mutation asymmetry, we inferred whether 
the lesion-containing strand preferentially templated the leading or 
lagging replication strand (Fig. 1d). This was separately resolved for 
each genomic locus on a per tumour basis. Our initial analysis demon-
strated a significantly higher mutation rate for lagging strand synthesis 
over a lesion-containing template (Pearson’s correlation coefficient 
cor = −0.86, P = 3.2 × 10−9; Fig. 1e). However, gene orientation — and 
thus the directionality of transcription — also correlates with replica-
tion direction29,30 and DEN lesions are subject to transcription-coupled 
repair (TCR)2. We therefore measured transcriptome-wide gene expres-
sion in the mouse liver on postnatal day 15 (P15), corresponding to 
the timing of DEN mutagenesis. This confirmed that the direction of 
transcription is strongly biased to match replication fork movement, 
and the effect is disproportionally evident in regions of extreme rep-
lication bias (Fig. 1e).

To disentangle the effects of transcription from replication, we 
measured mutation rates, jointly stratifying the genome by tran-
scription state, replication strand bias, replication timing and genic 
annotation (Fig. 1f and Extended Data Fig. 3). Although transcribed 
regions exhibit a strong correlation of mutation rate with replication 
strand bias (Pearson’s cor = −0.86, P = 3.1 × 10−7), genome-wide multi-
variate regression shows that the strongest independent effect on the 
DEN-induced mutation rate is transcription over the lesion-containing 
strand (P < 1 × 10−300), followed by replication time (P = 6 × 10−162). As 
mismatch repair is biased towards earlier replicating genomic regions31, 
it may be partially responsible for correcting some mismatch–lesion  
heteroduplexes. We considered genic and non-genic regions of the 
genome across 21 quantiles of replication timing and found that, 
although there is a correlation between mutation rate and replica-
tion time supportive of mismatch repair, its role is minor relative to 
TCR (Extended Data Fig. 4). Replication strand bias has the smallest 
effect on mutation rate of tested measures (Extended Data Fig. 3j). 
Outside of genic regions, the correlation of replication strand bias 
with mutation rate is negligible (Fig. 1f and Extended Data Fig. 3j). This 
unexpected consistency in the rate of mutations generated by replica-
tion over alkyl lesions points to a shared mechanism of lesion bypass 
for the leading and lagging strands, possibly involving recruitment  
of the same translesion polymerases.
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Fig. 1 | Apparent replication-associated mutational asymmetry can be 
explained by transcription coupled repair. a, Schematic of DNA lesion 
segregation2. Mutagen exposure induces lesions (red triangles) on both DNA 
strands (forward in blue; reverse in gold). Lesions that persist until replication 
serve as a reduced fidelity template. The two sister chromatids segregate into 
distinct daughter cells, so new mutations are not shared between daughter 
cells of the first division. Lesions that persist for multiple cell generations  
can generate multiallelic variation through repeated replication over the  
lesion (in italic). b, Summary of tumour generation and mutations called  
from whole-genome sequencing (WGS; Methods). c, Lesion strand resolved 
mutation spectra of all tumours (n = 237), representing the relative frequency 
of strand-specific single-base substitutions and their sequence context (192 
categories). d, During the first DNA replication after DNA damage, template 
lesions (red triangles) are encountered by both the extending leading and the 
lagging strands. e, The relative enrichment (RE) of liver-expressed genes in the 
plus versus minus orientation (RE = (plus − minus)/(plus + minus)) across 21 
quantile bins of replication fork directionality (RFD) bias (x axis). f, Mutation 
rates ( y axis) for the whole genome (gold) stratified into 21 quantile bins of 
replication strand bias (RSB; x axis) show a higher mutation rate for the lagging 
strand than the leading strand replication on a lesion-containing template. This 
effect is enhanced in expressed genes (tan) and negligible in non-genic regions 
(orange). Whiskers show 95% bootstrap confidence intervals.
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Strand-resolved collateral mutagenesis
It has been proposed that when translesion polymerases replicate 
across damaged bases, they can generate proximal tracts of low-fidelity 
synthesis32–34. In bacteria and yeast, this mechanism produces clusters 
of mutations35,36 and such collateral mutagenesis has recently been 
reported in vertebrates37. Consistent with these models, we found 
that mutations within 10 nt of each other are significantly elevated 
over permuted expectation (two-sided Fisher’s test, odds ratio 11.9, 
P < 2.2 × 10−16). This enrichment is most pronounced at 1–2 nt spac-
ing, decreases after one DNA helical turn (approximately 10 nt) and 
decays to background within 20 nt (Fig. 2a and Extended Data Fig. 5). 
These short clusters are overwhelmingly isolated pairs of mutations 
(98% pairs, 2% trios) phased on the same chromosome (Extended Data 
Fig. 5e).

We oriented the clusters by their lesion-containing strand, and 
designated the first mutation site to be replicated over on the 
lesion-containing template as the upstream (5′) mutation and subse-
quent mutations were designated downstream (3′). Upstream muta-
tions showed a mutation spectrum closely resembling the tumours 

as a whole (Fig. 2b and Extended Data Fig. 5a,b,i), indicating that it 
represents a typical lesion-templated substitution.

By contrast, downstream mutations have distinct mutation spectra 
(Extended Data Fig. 5c). Those located more than two nucleotides 
downstream show a strong preference for G→T substitutions (Fig. 2c 
and Extended Data Fig. 5h,l–n). As mutations are called relative to the 
lesion-containing template strand, this indicates the preferential mis-
incorporation of A nucleotides opposite a template G nucleotide, thus 
newly revealing the intrinsic error profile of an extending translesion 
polymerase. Mutation pairs with closer spacing (2 nt or fewer) exhibit 
somewhat divergent mutation signatures (Extended Data Fig. 5h,j,k), 
probably reflecting both sequence-composition constraints and pro-
cesses such as the transition between alternate translesion polymerases 
(Fig. 2d).

Extending these observations of collateral translesion mutagenesis, 
we found significant clustering of insertion and deletion mutations 
with base substitutions (insertion/deletion mutation within 100 bp 
of a substitution, two-sided Fisher’s test odds ratio 103, P < 2.2 × 10−16 
compared with permuted expectation; Fig. 2e,f and Extended Data 
Fig. 6a–i). Single-base deletions preferentially remove T nucleotides 
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Fig. 2 | Translesion synthesis drives collateral mutagenesis on both the 
leading and the lagging strands. a, Closely spaced mutations (brown) occur 
more frequently than expected based on permutation of mutations between 
tumours (pink; bootstrap 95% CI is shaded, too small to visualize). b, Residual 
mutation signature (after subtracting expected mutations) for cluster 
upstream mutations. Cluster orientation by the lesion-containing strand (red 
dashed line; Methods). c, Residual signature of downstream cluster mutations, 
plotted as per b. d, Schematic illustrating mutagenic translesion synthesis 
(TLS) (yellow circle) and collateral mutagenesis (brown circle). e, Substitutions 
are highly clustered downstream of 1 bp deletions. The inset shows the density 
plot for 10,000 random permutations of lesion strand assignment (grey) 
compared with the observed level of upstream/downstream bias. Only clusters 
where the substitution could be definitively assigned to an upstream or 
downstream location were considered. Two-sided P values were empirically 
derived from the permutations. nt, nucleotide. f, Single-base insertions are 

also clustered with substitutions, but biased to upstream of the insertion; 
plotted as per e. g, One-base pair deletions with a downstream substitution 
within 10 bp (left panel) show significant bias towards deletion of T (rather  
than A) from the lesion-containing strand compared with the rate genome  
wide (centre panel, two-sided Fisher’s exact test odds = 16.5, P = 1.04 × 10−16). 
Downstream substitutions are also highly distorted from the genome-wide 
profile (two-sided Chi-squared test P = 8.5 × 10−46). By contrast, insertion 
mutations and their proximal substitutions resemble the genome-wide 
profiles, with the notable additional contribution from the G→T substitutions 
(*) that also associate with both substitution and 1 bp deletion clusters. h, The 
rate of mutation clusters is not correlated with replication strand bias; 
consistently, approximately 0.8% of substitution mutations are found in 
clusters spanning 10 nt or fewer, indicating a similar rate of TLS for both the 
leading and the lagging strands.
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from the lesion strand both genome wide and in mutation clusters 
(Fig. 2g; two-sided Fisher’s test odds ratio 16.5, P = 1.04 × 10−16), which 
indicates a base-skipping mode of lesion bypass. These single-base 
deletions are associated with downstream substitutions within 10 nt 
that include the G→T substitutions already identified as a signature of 
collateral translesion mutagenesis, but more prominently a distinct 
substitution signature of A→C on the lesion strand (Fig. 2g). In contrast 
to deletions, nucleotide insertions are clustered downstream of typical 
DEN adduct-induced base substitutions, pointing to collateral inser-
tion mutagenesis by translesion polymerases (Fig. 2g and Extended 
Data Fig. 6h,i).

Three lines of evidence support a model in which the same transle-
sion polymerases are recruited with equal efficiency and processiv-
ity to both the leading and the lagging strands. First, the leading and 
lagging strands have essentially identical relative rates of mutation 
clusters (Fig. 2h). Second, the mutation spectra of the downstream 
mutations are the same (Extended Data Fig. 5o). Third, the length distri-
bution of clusters matches between leading strand-biased and lagging 

strand-biased regions (no significant difference in size distribution, 
Kolmogorov–Smirnov test (P = 0.15) despite more than 98% power to 
detect a difference in the distribution of cluster lengths of 4% or more; 
Extended Data Fig. 5p,q).

Having established the replicative symmetry of damage-induced 
mutagenesis and determined the relative contributions of replica-
tion and transcription on mutation rate, we next looked in detail at 
the pronounced strand-specific effects of transcription on DNA repair 
and mutagenesis.

Multiallelism reveals repair kinetics
Using liver RNA sequencing data (P15 mice), we found that nascent 
transcription estimates provide a better correlation with mutation 
rate than steady-state transcript levels (Extended Data Fig. 7a–d), as 
expected8. Increased transcription decreases the mutation rate for 
template strand lesions up to an expression level of ten nascent tran-
scripts per million (Fig. 3a,b). Beyond this, the mutation rate plateaus 
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and is not further reduced by additional transcription, suggesting that 
the remaining mutagenic lesions are largely invisible to TCR (Extended 
Data Fig. 7c,d).

Unexpectedly, the non-template strands of genic regions also showed 
a modest reduction in mutation rate with increased transcription 
(Fig. 3c), but the resulting mutation signature differs from that on 
the template strand. This discordance suggests that cryptic antisense 
transcription is not responsible (Fig. 3d,e and Extended Data Fig. 7e–j) 
and that there is either (1) enhanced (non-TCR) surveillance of lesions 
on the non-template strand or (2) generally reduced alkylation damage 
to transcriptionally active regions.

We used another insight from lesion segregation to disentangle pat-
terns of differential damage from differential repair. As DNA lesions 
from DEN treatment, as with all other tested mutagens2, can persist for 
multiple cell cycles, each round of replication could incorporate a dif-
ferent incorrectly paired nucleotide opposite a persistent lesion. This 
results in multiallelic variation: multiple alleles at the same genomic 
position within a tumour2 (Figs. 1a and 3f). Lesions in efficiently repaired 
regions will persist for fewer generations and therefore have fewer 
opportunities to generate multiallelic variation, so are expected to 
exhibit lower multiallelic rate (the fraction of mutations with multi-
allelic variation) than less efficiently repaired regions (Fig. 3g). By 
contrast, differential rates of damage, although influencing overall 
mutation rate, do not systematically distort the persistence of an 
individual lesion, so would have no influence on rates of multiallelic 
variation.

Whether mutation suppression on the non-template strand is caused 
by enhanced repair or reduced damage can now be established through 
the comparison of multiallelic variation rates. For lesions on the tem-
plate strand, multiallelic rate decreases with increased transcription 
(Fig. 3h), reflecting the progressive removal of lesions across multiple 
cell cycles by TCR, as expected. The multiallelic rate for non-template 
strand lesions is also reduced with greater transcription (Fig. 3h), 
revealing enhanced repair rather than decreased damage. Combined 
with the distinct repair signature of the two strands (Fig. 3d,e and 
Extended Data Fig. 7j), this demonstrates that in expressed genes, there 
is transcription-associated repair activity of the non-template strand, 
in addition to the template strand-specific TCR. We speculate that this 
may reflect enhanced global nucleotide excision repair (NER) surveil-
lance in the more open chromatin of transcriptionally active genes.

Steric influences on damage and repair
Transcription-associated repair of non-template lesions (Fig. 3h) high-
lights the importance of DNA accessibility for repair of DNA damage. 
Although it is well established that mutation rate is correlated with 
nucleosome positioning and transcription factor binding7,9–11,38, our 
lesion strand resolved measures of mutation and multiallelic rate pro-
vide an opportunity to deconvolve the contributions of differential 
damage from repair in these genomic contexts.

We quantified the DNA accessibility landscape of the genome using 
ATAC-seq (in the P15 mouse liver; Methods), and annotated it using 
experimentally defined transcription factor binding (including chro-
matin immunoprecipitation followed by sequencing (ChIP–seq) map-
ping of CTCF binding in the P15 mouse liver; Methods) and pre-existing 
maps of nucleosome positioning39. In all contexts, we found that greater 
DNA accessibility corresponds to both reduced mutation rate and 
reduced rate of multiallelic variation, implicating the efficient repair 
of accessible DNA as a major determinant of damage-induced muta-
tion rate (Fig. 4a,b). Indeed, the 10 bp periodicity of mutations in 
nucleosome-wrapped DNA, as previously seen for other mutagens11,40, 
is recapitulated by the multiallelic rate variation that we identified 
(Extended Data Fig. 8a–c).

Sequence-specific binding proteins, such as transcription factors and 
CTCF, interact with DNA more transiently than nucleosomes41. We found 

reduced mutation rates and multiallelic variation adjacent to and across 
their binding sites compared with genome-wide averages (Extended 
Data Fig. 8h–j), suggesting that transient binding is not a strong impedi-
ment to repair processes. High information content nucleotides in 
sequence-specific binding motifs show exceptionally reduced mutation 
rates that are not accompanied by corresponding decreases in multial-
lelic variation (Extended Data Fig. 8i,j). This discordance is consistent 
with reduced damage (rather than enhanced repair) in these sites. Given 
the close contacts made between the bases and proteins in these motifs, 
it raises the possibility that binding proteins offer some protection 
from lesion formation. Uniquely, the CTCF-binding footprint contains 
specific sites that exhibit pronounced, lesion strand-specific elevations 
of mutation rate that are not accompanied by increased multiallelic 
variation (Fig. 4d,e and Extended Data Fig. 8e–g). This suggests that in 
this case, the elevated mutation is due to elevated DNA damage, rather 
than primarily a consequence of suppressed repair.
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Fig. 4 | Rapid repair of accessible DNA shapes the mutational landscape, 
but CTCF binding causes extreme local distortions. a, Nucleosome 
occupancy shapes the mutational landscape56,57, with higher mutation rates 
(21 bp sliding window) over the nucleosomes (for example, x = 0), and lower 
rates in more-accessible linker regions (accessibility measured by ATAC-seq 
from P15 mouse liver, in purple with scale on the right axis and larger values 
corresponding to greater accessibility). Mutation and multiallelic rates are 
shown with shaded 95% bootstrap confidence intervals (also in subsequent 
panels). b, High rates of multiallelic variation are found at sites of low 
accessibility and high mutation rate, indicating that high rates of mutation 
represent slow repair. c, The rate of A→N mutations is the inverse of the overall 
mutation profile, with high rates of A→N corresponding to accessible regions 
and rapid repair. d, Mutation rates are dramatically elevated at CTCF-binding 
sites (21 bp sliding window, in black; single-base resolution, in red). e, High 
accessibility at CTCF sites again corresponds to low multiallelic variation and 
low mutation rates (d), with the exception of the mutation hotspot (red arrow), 
which does not show a corresponding increase in multiallelism, indicating that 
higher rates of damage cause these hotspots. f, Mutations of A→N closely track 
DNA accessibility.
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We identified an anomalous enrichment of apparent A→N mutations 
in genomic loci that showed highly efficient repair for other nucleo-
tides (Fig. 4c,f). These accessible loci include those adjacent to CTCF 
and transcription factor-binding sites and linker DNA between nucle-
osomes (Fig. 4 and Extended Data Figs. 8d and 9). This enrichment of 
A→N mutations extends into sequence-specific binding sites (Extended 
Data Figs. 8c and 9e,f). A possible explanation for the enrichment of 
A→N mutations is that, in some circumstances, the activity of NER is 
itself mutagenic.

Nucleotide excision repair is mutagenic
We propose a mechanistic model for mutagenic NER, arising when two 
lesions occur in close proximity, but on opposite strands of the DNA 
duplex. Repair of one lesion, which entails excision of an approximately 
26 nt single-stranded segment containing the lesion42,43, would leave 
a single-stranded gap containing the second lesion on the opposite 
strand; resynthesis using this as a template would necessitate replica-
tion over that remaining lesion (Fig. 5a). As a result, nucleotide misin-
corporation opposite a T lesion in the single-stranded gap would be 
erroneously interpreted as a mutation from an A lesion (Fig. 5a) when 
phasing lesion segregation. We subsequently refer to this mechanism 
as translesion resynthesis-induced mutagenesis (TRIM), or NER-TRIM 
specifically in the context of NER.

As NER-TRIM requires lesions on both DNA strands, mutagenic NER 
can only occur when both lesion-containing strands are duplexed, 
for example, in the first cell generation following DEN mutagen-
esis; NER-TRIM would not occur in daughter cells with only one 
lesion-containing strand per duplex. It follows that regions with the 
highest — and thus fastest — repair rates are most likely to experience 
NER-TRIM. This prediction is consistent with our observation of local 
enrichment of apparent A-lesion mutations in accessible regions 
with otherwise low rates of mutations and low multiallelic variation 
(Fig. 4c,f).

Local gradients in repair efficiency are also expected to lead to 
enrichment of NER-TRIM. The most efficient repair that we observed 
is transcription-coupled NER, in which there is a steep gradient of repair 
efficiency between the template and non-template strands. There is 
a pronounced increase in the rate of apparent A→N mutations on the 
template strand of expressed genes, whose sigmoidal profile closely 
mirrors the decrease in T→N mutations on the same strand (Fig. 5b). 
The saturation of repair at higher expression levels is reflected in a 
corresponding saturation of NER-TRIM, demonstrating that the rate 
of template strand A→N mutations is not simply dependent on tran-
scription, but on TCR.

Similar local gradients of repair can also explain the elevated rate 
of A→N mutations in CTCF and transcription factor-binding sites 
(Extended Data Fig. 9e,f), where nucleotides adjacent to the binding site 
are more accessible than those within the binding site. High-efficiency 
repair of the accessible DNA would result in an excision gap that extends 
into the binding site, where a more protected lesion then serves as a 
template for repair resynthesis.

The TRIM origin of twin sister tumours
A subset of tumours in our dataset provided an opportunity to directly 
test further predictions of this NER-TRIM model and demonstrated 
a remarkable propensity for NER-TRIM mutagenesis to drive onco-
genic transformation. Of the complete set of DEN-induced tumours2, 
2% (8 of 371) exhibited the same mutation spectra as other tumours 
but completely lacked the mutational asymmetry of lesion segrega-
tion (Extended Data Fig. 10a). This pattern is expected to result from 
the persistence of mutations derived from lesions on both strands 
(Fig. 5c and Extended Data Fig. 10b). On the basis of extensive genomic 
and histological evidence (Extended Data Fig. 10c–h), we conclude 

that these eight mutationally symmetrical tumours are each made 
up of two diploid sister clones derived from both daughters of a  
mutagenized cell.

Lesion segregation predicts that mutations will be independent and 
not shared between sister clones (Fig. 1a). However, mutations aris-
ing from NER-TRIM are expected to be shared between sister clones 
(Fig. 5a). The variant allele frequency (VAF) of a somatic mutation is 
proportional to the fraction of cells in the tumour that contain the 
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Fig. 5 | Nucleotide excision repair is mutagenic when lesions on opposing 
strands are in close proximity. a, Mechanism of NER translesion resynthesis- 
induced mutagenesis (NER-TRIM). Lesion-containing single-stranded DNA is 
excised and consequently a residual lesion in close proximity on the opposite 
strand would be used as a low-fidelity template for repair synthesis. This 
creates isolated mutations with opposite strand asymmetry to the genomic 
locality (for example, A→N within a T→N segment). Most lesion-induced 
mutations are not shared between daughter lineages, whereas those from 
NER-TRIM can be shared (black arrow). b, The rate of A→N mutations on the 
genic template strand increases with gene expression, mirroring the decrease 
in mutations from other bases due to TCR. The relative difference ( y axis) in 
mutation rate for each nucleotide is (obs − exp)/(obs + exp); exp is the mutation 
rate for that nucleotide in non-expressed genes, and obs is the rate observed  
in the body of genes with the indicated expression level (x axis). Rates shown 
for lesions on the transcription template strand, with 95% confidence interval 
(shaded areas) from 100 bootstrap samples of genes. c, Schematic illustrating 
the generation of a mutationally symmetric tumour through the survival of 
both post-mutagenesis daughter genomes. NER-TRIM mutations in symmetric 
tumours will be characterized by abnormally high VAF as they will be shared  
by both contributing genomes (Extended Data Fig. 10b). d, Contingency table 
illustrating the enrichment of mutations with high VAF (0.995–1.0 quantile) in 
highly expressed genes of mutationally symmetric tumours (n = 8) compared 
with asymmetric tumours (n = 237). Statistical significance by two-tailed Fisher’s 
exact test. e, Symmetric tumours are highly enriched for high VAF mutations in 
highly expressed genes. Odds ratios ( y axis) are as in d, for VAF quantile bins of 
0.005 (x axis). The black arrow shows the odds ratio calculated in d.
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mutation. Consequently, we expect the VAF of shared mutations 
derived from NER-TRIM to be approximately twice that of mutations 
found in only one of the two daughter cell lineages. Owing to the 
absence of mutational asymmetry in these eight tumours, it is not 
possible to define which individual mutations arose from NER-TRIM. 
However, as we have shown that NER-TRIM is enriched in highly 
expressed genes, we tested whether high VAF mutations were biased 
to those regions in the symmetrical tumours (n = 8) compared with 
the asymmetric tumours (n = 237). Our results demonstrated a pro-
nounced and significant enrichment, as we predicted, both in aggre-
gate (odds ratio 2.84, two-tailed Fisher’s test P = 8.7 × 10−113; Fig. 5d) 
and individually for each tumour (Fig. 5e), confirming expectations 
of the NER-TRIM model.

Finally, we note that in the symmetrical sister-clone tumours, the 
oncogenic driver mutations in the MAPK pathway that typify these 
DEN-induced tumours2,22 are all significantly biased to the highest 
VAF mutations, in contrast to the driver mutations in the asymmetric 
tumours (P = 3.61 × 10−5 two-tailed Wilcoxon rank-sum test, Bonfer-
roni corrected; Extended Data Fig. 10i–y). This suggests that driver 
mutations in the symmetrical tumours arose through NER-TRIM 
and may explain the co-evolution of both sister clones in a single  
tumour.

Discussion
In damaged DNA, most mutations arise from replication bypass of 
unrepaired lesions, which can result in chromosome-scale mutational 
asymmetry2. We leveraged this discovery to explore the mechanisms 
of mutagenesis and repair in vivo at high resolution, with single-base, 
single-strand specificity. The persistence of DNA lesions for multiple 
cell generations leads to the generation of multiallelic variation, its 
quantification providing insight into repair kinetics that allowed us 
to discriminate the relative contributions of initial damage from sub-
sequent repair in shaping mutation rate patterns.

It has long been expected that the asymmetry of leading and lagging 
strand replication would lead to asymmetric replication fidelity on 
damaged DNA27,28,44,45, and analysis of UV-induced mutation patterns 
supports that expectation5,12. However, our system, with over 7.2 × 106 
lesion strand-resolved mutations and cell-type-matched measures 
of replication strand bias, means we are uniquely powered to ques-
tion the generality of this model. Contrary to expectation, we found a 
remarkable symmetry of mutation rate for leading and lagging strand 
replication. Matched patterns of collateral mutagenesis — proximal 
downstream mutations thought to arise from continued synthesis by 
translesion (TLS) polymerases37 — point to the recruitment of identical 
TLS polymerases for the bypass of small alkylation adducts on both 
replication strands.

Our deeper exploration of mutation clusters demonstrates spatial 
shifts in mutation signature 3 bp downstream of nucleotides mis-
incorporated opposite damaged bases, supporting a model for the 
hand-off between TLS polymerases46,47. We also provide evidence of 
competition between TLS polymerases. Single-base deletions, such 
as base substitutions, are strongly strand asymmetric. This implicates 
the skipping of damaged template bases (−1 frameshifting), which 
in vitro studies show is common for some of the TLS polymerases 
such as polymerase-κ48. These skipping versus low-fidelity incorpo-
ration mechanisms of lesion bypass are associated with highly dis-
tinct signatures of downstream collateral mutations, arguing that 
the alternate outcomes reflect the recruitment of distinct combina-
tions of TLS polymerases. The contrast in mutation asymmetry that 
we found between replication over UV and DEN damage suggests at 
least two available strategies of mutagenic translesion bypass in mam-
malian cells. For example, re-priming followed by gap-filling49, lead-
ing to replication strand asymmetric mutagenesis, versus on-the-fly 
bypass28, which results in replication strand symmetric mutagenesis. 

The balance between these probably vary between different types  
of damage.

Although we found that replication strand biases do not influence 
the rate of mutations from alkylation damage, both transcription and 
DNA accessibility have large effects. To better understand how these 
other features of the genome influence mutation rates, we analysed 
multiallelic variation as a powerful means to infer the relative kinet-
ics of repair, and disentangle differential damage from differential 
repair across the genome. This reveals the transcription-associated 
repair of genic non-template strands, in addition to the well-established 
TCR of the template strand8. Beyond the effects of transcription, 
the mutational landscape of damaged genomes closely tracks DNA 
accessibility. This pattern is mirrored by the rate of multiallelic vari-
ation, thus providing in vivo evidence that more efficient repair of 
accessible DNA, rather than differential DNA damage, is primar-
ily responsible for shaping the distribution of damage-induced  
mutations.

There are, however, some exceptions to the dominance of repair. 
We found that within transcription factor-binding sites, close 
contact between high-information-binding site nucleotides and 
sequence-specific binding proteins shows evidence of providing 
protection from base damage. By contrast, a subset of nucleotides 
specifically within CTCF-binding sites exhibit dramatically elevated 
mutation rates, and lesion strand phasing confirmed that it was damage 
induced. The identity of these sites with elevated mutation can only 
partially be reconciled with the structure of the CTCF–DNA interface. 
We speculate that this structure may be modified, for example, by 
interacting with cohesin, leading to bending50,51 and partial melting of 
the DNA duplex, resulting in greater exposure of the nucleotide bases 
to chemical attack.

Finally, we found that genomic regions that are most efficiently 
repaired are also, counterintuitively, specifically prone to repair-induced 
mutagenesis. Building on evidence that transcription-coupled NER can 
be mutagenic in bacteria52 and quiescent yeast53, we present multiple 
orthogonal analyses supporting the conclusion that TRIM occurs in vivo 
in mammals, although confirming the involvement of NER requires 
further experimental validation. We also showed that NER-TRIM is 
not purely dependent on transcription, but more generally results 
from the repair of lesions in close proximity, on opposite strands. It 
is therefore expected to occur when damage loads are high or closely 
spaced, for example, UV damage in promoters and ETS factor-binding 
sites54,55. Although NER-TRIM mutations represent only a small fraction 
of damage-induced mutations, they are specifically biased to function-
ally important sites: they are responsible for most driver mutations 
seen in symmetric tumours and, perhaps most importantly, NER-TRIM 
preferentially results in the misincorporation of a normal DNA base on 
the template strand of highly expressed genes. That incorrect normal 
base is not a substrate for subsequent NER and could therefore lead to 
efficient miscoding of a protein before genome replication, and in the 
case of an oncogenic mutation, potentially driving otherwise quiescent 
cells towards oncogenic transformation.

Our ability to resolve both mutation rate and multiallelism at 
single-strand, single-base resolution allows us to infer lesion longev-
ity and thus disentangle differential DNA damage from differential 
repair. This powerful approach provides in vivo insights into how 
strand-asymmetric mechanisms underlie the formation, tolerance 
and repair of DNA damage, thereby shaping cancer genome evolution.
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Methods

Genomic annotation
The C3H/HeJ mouse strain reference genome assembly C3H_HeJ_v1  
(ref. 58) was used for read mapping, annotation and analysis. WGS 
regions with abnormal read coverage (ARC regions; 12.7% of the 
genome) were masked from analysis, as previously described2. Gene 
annotation was obtained from Ensembl v.91 (ref. 59).

Mutation asymmetry
Mutation calling and quality filtering were performed using WGS of 371 
DEN-induced liver tumours from n = 104 male C3H mice (Supplemen-
tary Table 1), as previously reported2. All mutation data were derived 
from sequence data in the European Nucleotide Archive (ENA) under 
accession PRJEB37808, and processed files directly used as input for 
this work are publicly available2.

Genomic segmentation on mutational asymmetry was performed as 
previously reported2. Mutational strand asymmetry was scored for each 
genomic segment using the relative difference metric S = (F − R)/(F + R) 
where F is the rate of mutations from T on the forward (plus) strand of 
the reference genome and R is the rate of mutations from T on the minus 
strand (mutations from A on the plus strand). A mutational asymmetry 
score of S > 0.33 was used to identify the inheritance of forward strand 
lesions and S < −0.33 as the inheritance of reverse strand lesions. A rare 
subset of tumours (2.7%) exhibited uniform mutational symmetry 
(more than 99% of autosomal mutations in genomic segments with 
abs(S) < 0.2; these were labelled ‘symmetric’ tumours.

Except where otherwise stated (within the final results section), anal-
yses were confined to n = 237, clonally distinct DEN-induced tumours 
that met the combined criteria of: (1) not labelled as symmetric,  
(2) tumour cellularity of more than 50%, and (3) more than 80% of sub-
stitution mutations attributed to the DEN1 signature2 by sigFit (v.2.0)60.

Relative to the reference genome sequence, a plus (P) strand gene 
was transcribed using the reverse (R) strand as a template. So, a  
P strand gene in a genomic segment with R strand lesions (denoted RP 
orientation) is expected to be subject to TCR. A minus (M) strand gene 
with forward (F) strand lesions (FM orientation) is also expected to be 
subject to TCR, as the retained lesions are again on the transcription 
template strand. Conversely, FP and RM orientation combinations will 
have lesions on the non-template strand for transcription. For DNA 
replication, we similarly refer to whether the preferential template for 
the leading strand contains the retained lesions or whether the pref-
erential template for the lagging strand contains the retained lesions.

Mutation rates and spectra
Mutation rates were calculated as 192 category vectors representing 
every possible single-nucleotide substitution conditioned on the iden-
tity of both the upstream and the downstream nucleotides. Each rate 
being the observed count of a mutation category divided by the count 
of the trinucleotide context in the analysed sequence. To report a single 
aggregate mutation rate, the three rates for each trinucleotide context 
were summed to give a 64 category vector and the weighted mean of 
that vector reported as the mutation rate. The vector of weights being 
the fraction of each trinucleotide in a reference sequence, for example, 
the composition of the whole genome. Strand-specific mutation rates 
were calculated with respect to the lesion-containing strand, with both 
mutation calls and sequence composition reverse complemented for 
reverse strand lesions. Autosomal chromosomes were considered 
diploid and the X chromosome haploid (male mice) for the purposes of 
calculating mutation rates and sequence composition. For the count-
ing of strand-specific mutations, a threshold VAF > 10% was applied to 
remove mutation calls from contaminating non-clonal cells.

Subtracted spectra plots (Fig. 2c,d) were calculated by subtracting 
the counts of simulated tumour datasets from those of observed data-
sets and then scaling as for mutation spectra, so that the absolute area of 

the histogram summed to 100. Percent repair efficiency (Extended Data 
Fig. 7j) was calculated as (observed/expected) × 100, where expected 
was the corresponding mutation rate for non-expressed genes (stratum 
1, see below) averaged between the template and non-template strand. 
Cosine similarity was used as a relative measure of mutation signature 
similarity. Mutation signature deconvolution was performed using 
sigFit (v.2.0), with two component signatures (K = 2) chosen based on 
heuristic goodness-of-fit for integer values of K from 2 to 8, with 2,000 
iterations each. Final K = 2 deconvolution used 40,000 iterations.

The expected number of mutations at each position of the ana-
lysed transcription factor-binding site (Supplementary Table 2) and 
nucleosome regions was calculated as a sum of genome-wide rates 
(mutations per base pair) for that particular trinucleotide context 
from each tumour that had this region classified as either forward or 
reverse segment. The genome-wide rate for each tumour was calcu-
lated by dividing the number of mutations in a particular trinucleotide 
context (that fall within genomic space phased to have inherited either 
a forward or a reverse lesion-containing strand) by the total count of 
that trinucleotide in that genomic space; this was done separately for 
forward and reverse segments.

Excess mutations per Mb were calculated as (observedi,n − expectedi,n)  
× 106/(counti), where i is the relative position within the region, counti 
represents a total number of regions with non-‘N’ nucleotide at position 
i, and n is the specific mutation context (for example, mutation from A).  
Mutation enrichment was calculated as (observedi,n − expectedi,n)/ 
(observedi,n + expectedi,n). Rolling mean values were plotted using 
windows of 51 bp and 21 bp for nucleosome-centred and CTCF-centred 
plots, respectively. On the basis of bootstrap sampling of the analysed 
regions, 95% confidence intervals were calculated.

Multiallelic mutation rates
Aligned reads spanning genomic positions of somatic mutations were 
re-genotyped using SAMtools mpileup (v1.9)61. Genotypes supported 
by 2 or more reads with a nucleotide quality score of 20 or more were 
reported, considering sites with two alleles as biallelic, those with three 
or four alleles as multiallelic. For a defined set of mutations, the back-
ground composition is the count of mutations in each of the 64 possible 
trinucleotide contexts. The count of multiallelic mutations in each of 
those 64 categories was divided by the corresponding background 
mutation count and the weighted average of those ratios are reported 
as the multiallelic rate. As for mutation rates, the vector of weights 
being the fraction of each trinucleotide in a reference sequence, for 
example, the composition of the whole genome.

Replication time
We generated early–late Repli-seq as previously described62 for two 
mouse hepatocellular carcinoma-derived cell lines (Hep−74.3a and 
Hepa1-6, obtained from biohippo and the American Type Culture Col-
lection, respectively, and tested for mycoplasma at source), match-
ing for the study cell type63. Furthermore, the tumour from which the 
Hep-74.3a cell line was derived was induced by a single intraperitoneal 
injection of DEN at P15 into a C3H/He mouse64, thus closely matching the 
DEN-induced tumours in our study. For each cell line, two ENCODE-style 
biological replicates were generated with individual BrdU labelling 
and fluorescence-activated cell sorting (FACS) into early and late 
S-phase fractions for Repli-seq Illumina sequencing library prepara-
tion62. Sequencing was performed on Illumina NextSeq550 using a 
Mid-Output v2.5 kit generating 75 bp paired-end reads, producing a 
total of 1.2 × 108 read pairs (Hep-74.3a), and Illumina NovaSeq with an 
S1 flowcell generating 50 bp paired-end reads, producing a total of 
3.9 ×1 07 read pairs (Hepa1-6). Sequencing reads were mapped using 
Bowtie2 (v2.4.5) to the C3H_HeJ_v1 reference genome. SAMtools (v1.15.1) 
was used for alignment quality filtering (-bSq 20), matepair annotation 
(fixmate -m) and deduplication (markdup -r -s). After confirming con-
cordance, replicates were aggregated and read coverage was calculated 

https://www.ebi.ac.uk/ena/browser/view/PRJEB37808


for 10  kb consecutive windows with local smoothing: 50 kb windows 
with a step-length of 10 kb using the central 10 kb window coordinates 
using bedtools (v2.30.0) multicov. Windowed read counts were normal-
ized to aggregate library size (tags per million, separately for early (E) 
and late (L)) and replication time was taken as the relative enrichment 
(E − L)/(E + L). For replication time analysis, genomic regions were cat-
egorized into 21 quantile bins of replication time relative enrichment, 
and the median value for each bin used in quantile-based visualization 
and regression analysis. As the Hep-74.3a cell line is better matched for 
both strain and treatment, these Repli-seq data were used throughout 
the paper. The results were replicated with matched analyses of the 
Hepa1-6 Repli-seq data (Extended Data Figs. 2a and 3h–j).

Repli-seq data are available at the ENA at EMBL-EBI under accessions 
PRJEB72349 (Hep-74.3a) and PRJEB67994 (Hepa1-6).

Replication strand bias
Replication fork directionality (RFD) is a relative difference metric 
that scales from 1 to −1. RFD values > 0 indicate a consensus rightward 
progressing replication fork, whereas RFD < 0 indicates a consensus 
leftward progressing fork. RFD can be directly measured at 1 kb resolu-
tion from Okazaki fragment sequencing (OK-seq)65, but such data have 
only been obtained from cultured cells that can be prepared in large 
quantities with a high fraction in S phase. Alternatively, RFD has been 
inferred from Repli-seq data, where RFD is calculated as the derivative 
of the change in replication time along the genome12,66, but has lower 
spatial resolution and is dependent on ad hoc filtering. Here we inter-
sected cell-type-matched Repli-seq RFD with higher resolution OK-seq 
to ensure high-resolution tissue-matched RFD, and removing the need 
for ad hoc filtering. Replication time was converted to Repli-seq RFD by 
taking the average of the difference in replication time of the adjacent 
upstream and downstream windows.

OK-seq data from mouse activated primary splenic B cells65 were 
aligned to the C3H_HeJ_v1 reference genome using Bowtie2 (v2.4.5)67, 
quantified using bedtools multicov and RFD calculated as the rela-
tive enrichment of reverse (R) versus forward (F) read coverage 
(RFD = (R − F)/(R + F))68. This OK-seq RFD (OK-RFD) metric was calcu-
lated for 10 kb consecutive windows to match Repli-seq RFD analysis. 
Both OK-RFD and Repli-seq RFD measures were categorized into 21 
quantile bins. Subsequent mutation rate analysis used OK-RFD quantile 
classification but was restricted to those that differed from the corre-
sponding Repli-seq RFD by less than 19% of the category range (four 
bins). Other OK-seq and Repli-seq datasets (Supplementary Table 3) 
were processed as outlined above, aligning to the GRCh37 reference 
genome in the case of human-derived sequences. For comparisons 
between Repli-seq RFD and high-resolution OK-RFD (Extended Data 
Fig. 2), OK-RFD was calculated as above but in 1 kb consecutive win-
dows and smoothed (R loess function), with the span parameter set 
to encompass 25 windows.

For each DEN-induced tumour, we identified all RFD segments that 
were completely contained within lesion segregation mutational asym-
metry segments (as defined above) with |S| > 0.33. For these segments, 
we resolved the lesion-containing strand to the template of either the 
leading or lagging replication strand. A forward strand mutation asym-
metry (lesions on the forward strand, S > 0.33) and rightward progress-
ing replication fork (RFD > 0) was consensus lagging strand replication 
over the lesions (Fig. 1e). Similarly S < −0.33 and RFD < 0 was also lagging 
strand replication over lesions. Consensus leading strand replication 
over lesions is indicated by S > 0.33, RFD < 0; or S < −0.33, RFD > 0. 
For the purposes of visualization and the aggregation of equivalent 
data for increased statistical power, a single replication strand bias 
(RSB) metric was defined by consistently orienting the strandedness 
of analyses such that the lesion-containing strand is the reverse strand 
(compare Extended Data Fig. 3d and 3f). Consequently, new replication 
and transcription will proceed left to right as the forward strand over 
a damaged template strand in all RSB figures.

Gene expression
Paired-end, stranded total RNA-seq from unexposed P15 C3H male 
mouse livers (n = 4, matching the developmental time of mutagenesis) 
were aligned, annotated and quantified previously2. All transcriptome 
data used were derived from sequence data in Array Express under 
accession E-MTAB-8518 and are publicly available2.

The transcription strand of RNA-seq reads was resolved using 
read-end and mapping orientation using SAMtools (v.1.7.0) and read 
pairs exclusively mapping within annotated exons were identified using 
bedtools intersect (v2.29.2)69. Intronic read pairs were defined as those 
mapping within a genic span, derived from a sense strand transcript 
and not in the exonic set.

For genes with multiple annotated transcript isoforms, the sum of 
transcripts per million (TPM) over the isoforms was taken as the expres-
sion measure (mature transcript, steady state), although similar results 
— with the same conclusions — were obtained if the maximum for any 
one isoform was used. Nascent transcription was quantified by counting 
read pairs with a mapping quality of more than 10 overlapping intronic 
regions (defined as intronic in all annotated transcript isoforms of the 
gene) using bedtools multicov (v2.29.2). The read count was normalized 
to reads per kilobase of analysed intron for each gene in each sequence 
library, and then normalized to TPM for each library. The final nascent 
transcript expression estimate per gene was taken as the mean of nas-
cent TPM over replicate libraries. Nascent transcription estimates could 
be generated for 85% (n = 17,304) of protein-coding genes.

Gene-based analyses of mutation rates used the genomic extent 
of the most highly expressed transcript isoform (the primary tran-
script) based on P15 C3H mouse liver gene expression. Overlapping 
genes, defined by primary transcript coordinates, were hierarchically 
excluded from analysis. Starting with the most expressed gene, any 
overlapping less-expressed genes were excluded. For the plotting 
of per-gene, per-strand mutation rates (Fig. 3b and Extended Data 
Fig. 7b–d), only genes spanning more than 2 million nucleotides of 
strand-resolved tumour genome in aggregate were shown (n = 3,392 
genes) to minimize stochastic noise from genes with little power indi-
vidually to accurately estimate mutation rates. Analyses of aggregating 
rates by expression bin included all genes within the bin.

Genes with similar estimates of nascent expression were aggregated 
for analysis of TCR. The sigmoidal distribution relating nascent tran-
scription rate to mutation rate (Fig. 3b) was segmented using linear 
regression models in the R package Segmented (v1.3-3)70. This defined 
n = 4,649 genes with zero or low-detected nascent expression (less 
than 0.287 TPM) in which reduced mutation rates associated with 
TCR are essentially undetectable; subsequently, stratum 1 genes (light 
blue in plots). Genes expressed at a greater rate than segmentation 
threshold (more than 3.73 TPM) do not show a further decrease in muta-
tion rate with increased expression; these n = 7,176 highly expressed 
genes were defined as stratum 6 (bright red in plots). The n = 4,005 
genes with intermediate expression (0.287–3.73 TPM) exhibited a 
log-linear relationship between expression and mutation rate. These 
were quantile split into strata 2–5, containing approximately 1,000 
genes in each strata.

Genomic intersection and bootstrapping
The intersection and subsetting of genomic intervals were performed 
using bedtools intersect (v2.30.0). For the removal of genic subre-
gions, overlapping genes were merged (bedtools merge), the regions 
extended 5 kb upstream and downstream (bedtools slop) and removed 
from pre-defined intervals using bedtools subtract. Genomic window 
coordinates were defined using bedtools makewindows. Bootstrap 
analysis, for example, in mutation rate calculations, resampled genomic 
intervals that met the selection criteria (for example, RFD category 1, 
non-genic, minus strand lesions) with replacement to the same total 
count, within the same tumour.

https://www.ebi.ac.uk/ena/data/view/PRJEB72349
https://www.ebi.ac.uk/ena/data/view/PRJEB67994
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-8518/
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Multivariate regression analysis was performed using the lm func-

tion of R. The reference genome was partitioned into consecutive 
10 kb windows, and composition-corrected mutation rates were cal-
culated for each window in aggregate across tumours, separately for 
forward- strand and reverse strand lesions. Windows in a tumour with 
an unresolved lesion strand or containing lesion strand transitions 
were excluded. The fraction of nucleotides within a window overlap-
ping genomic extents expressed at more than 1 TPM were separately 
calculated for template and non-template strand lesions. Replication 
time and RSB were both annotated for 10 kb windows by overlap with 
larger-scale replication time and RSB measures described above, taking 
the consensus measure (most nucleotide span) for the 10 kb window as 
the value for regression analysis. The fraction of window nucleotides 
annotated as genic but excluding regions identified as expressed genes 
was also included as a predictor variable (residual genic). The relative 
enrichment measures RSB and replication time were bounded (−1,1), 
whereas other parameters were fractions bounded (0,1). To ensure 
equal scaling for regression analysis, RSB and replication time were 
rescaled to the (0,1) range as f = 1 − (1 − r)/2, where r is the relative enrich-
ment metric and f is the rescaled fractional range. Regression models 
were constructed with mutation rate as the outcome variable and other 
variables as independent predictor variables.

Substitution mutation clusters
For each nucleotide substitution mutation, the closest adjacent muta-
tion was found. Null expectations of mutation spacing were gener-
ated by sampling mutation positions from other tumours without 
replacement, to generate an identical number of proxy mutations for 
each tumour. Initial analysis of mutation spacing indicated strong 
enrichment of mutations spaced less than 11 nt apart and evidence of 
enrichment to 100 nt spacing. Mutation clusters were defined as chains 
of mutations within the same tumour spaced less than X nucleotides 
from adjacent mutations, with X = 11, X = 101 or X = 201 depending on 
analysis as indicated. Over 97% of X = 101 mutation clusters (29,307 of 
30,028) contained only two mutations, 721 clusters contained three 
mutations and no larger clusters were identified. Of X = 101 clusters 
from proxy-tumour mutations, 100% contained only two mutations.

For each mutation cluster, if it was located within a lesion segrega-
tion mutation asymmetry segment, we annotated the mutations within 
the cluster with respect to the inferred lesion-containing strand. For 
a genomic segment containing reverse strand lesions, the leftmost 
mutation site would be the first used as a template for an extending 
DNA polymerase (as DNA synthesis extends 5′→3′), and the rightmost 
mutation site replicated over subsequently. These orientations are 
reversed for a genomic segment containing forward strand lesions. 
The first replicated-over mutation site for each cluster was annotated 
distinctly from subsequent sites in the cluster.

Pairs of mutations were phased to the same chromosome by 
co-occurrence in the same sequencing read. Sequencing reads were 
extracted from genomic alignments using SAMtools mpileup (v1.7) 
where they overlapped both genomic positions of a pair of mutations 
called from the same tumour and separated by 75 nt or fewer. Any 
sequencing read supporting the called mutant allele with a phred-scaled 
quality score ≥ 20 at both mutation positions was taken as support for 
those mutations occurring on the same chromosome.

Mutation clusters were resolved to preferential leading or lagging 
strand replication-based RSB measures as defined above. Only the more 
extreme RSB windows (quantiles 1, 2, 20 and 21; |RSB| > 0.51) were con-
sidered for comparisons of leading versus lagging strand asymmetry, 
so that any strand differences were not swamped by regions with low 
levels of replicative asymmetry. Clusters were defined with X = 101 as 
above, resulting in n = 2,791 leading strand and n = 3,289 lagging strand 
clusters, the difference in count attributable to TCR correlating with 
leading strand replication (Fig. 1f). Cluster length distributions were 
compared using a two-sample, two-sided Kolmogorov–Smirnov test 

(ks.test function in R). To estimate statistical power for detecting differ-
ences in cluster size distribution between leading and lagging strands, 
we simulated distorted length distributions. The lagging strand length 
distribution vector was partitioned into clusters of length of 10 or less 
(short) or more than 10 (long) and randomly sampled with replace-
ment to produce a vector of length matching the leading strand vector. 
Bias sampling between the short and long cluster bins was controlled 
by parameter d. An undistorted sample of the original distribution 
would be d = 0; whereas 10% of short clusters sampled from the long 
bin instead of the short bin would be d = 0.1. Two-sample, two-sided 
Kolmogorov–Smirnov tests comparing the original to the distorted 
sample distribution were applied to 100 bootstraps for each tested 
value of d (0–0.1 in increments of 0.0005), recording nominal sig-
nificant difference at P < 0.05. The percent of bootstraps supporting 
nominal significance is the power to detect significance at the tested 
value of d.

Indel–substitution mutation clusters
Insertion and deletion (indel) mutations were filtered as previously 
described for base substitutions2. For clustering analysis, we only con-
sidered indel mutations in lesion strand-resolved autosomal regions 
where at least three reads support precisely the called mutation. We 
identified the closest upstream or downstream substitution to each 
insertion or deletion, called within the same tumour. Null expectation 
datasets were generated by sampling substitution mutations between 
tumours as described for substitution mutation clustering above; 100 
of these permuted datasets were generated for each tumour. Enrich-
ment of clustering was evaluated by two-sided Fisher’s exact test (fisher.
test function in R) considering the observed count of indels with a 
substitution within 100 bp versus the count of indels without a sub-
stitution within 100 bp, as compared with the same values estimated 
from the average of permuted datasets.

For a pair of sequences that differ by a single substitution and a single 
indel, there can be multiple equally optimal alignments. We identi-
fied all cases where there was a substitution mutation within 100 nt 
of the indel. For each of these, the ancestral and derived sequences 
were constructed by editing the mutations into the reference genome 
sequence, and they were oriented to represent the forward strand 
being newly synthesized over a lesion-containing template (that is, 
reverse complemented if the reference genome forward strand was 
the lesion-containing strand). We considered all possible gap place-
ments within those more than 200 bp (2 × 100 flanks + indel length) 
alignments between ancestral and derived sequence. All alignments 
that had a single indel-length gap and one substitution were kept, but 
multiple solutions fractionally weighted, for example, four equally 
scoring alignment solutions would each be scored 1/4 = 0.25, whereas 
an alignment with just one solution would score 1/1 = 1. For the distance 
between indel and substitution, and the identity of the substituted, 
inserted or deleted bases were recorded for each weighted solution. 
Observed indel–substitution clusters were further filtered to ensure 
at least two sequence reads supported the existence of both the indel 
and the substitution in the same read (SAMtools v1.7.0 mpileup), 
confirming that the mutations occur on the same copy of the same 
chromosome. This filtering was not possible for the permuted data 
and thus makes our estimate of mutation clustering in the observed 
data conservative.

To consider whether substitutions were preferentially located 
upstream or downstream of the indel with respect to synthesis over 
the lesion strand, we considered both the full set of indel–substitution 
mutation clusters and additionally the subset where all equally scor-
ing alignments placed the substitution on a single side of the indel. To 
generate a null expectation, for each of these datasets, the annotation 
of the lesion strand was randomly permuted, the distribution of biases 
from 10,000 permuted datasets were used to derive an empirical P value 
for each considered set of indel–substitution clusters.



Transcription-coupled repair
Annotated genes (Ensembl v91) were partitioned into six expression 
strata based on P15 liver RNA-seq (see above). For each tumour, genes 
were identified that were wholly contained within a mutation asym-
metry segment. Using the annotated transcriptional orientation of the 
gene and mutational asymmetry of the tumour, each of these genes was 
categorized as either template strand lesion or non-template strand 
lesion.

Mouse colony management
Animal experimentation was carried out in accordance with the Animals 
(Scientific Procedures) Act 1986 (UK) and with the approval of the Can-
cer Research UK Cambridge Institute Animal Welfare and Ethical Review 
Body (AWERB). Animals were maintained using standard husbandry: 
mice were group housed in Tecniplast GM500 IVC cages with a 12–12-h 
light–dark cycle and ad libitum access to water, food (LabDiet 5058) 
and environmental enrichments. Ethical approval, tumour size limits, 
sample size choice, randomization and blinding for the tumour samples 
have been previously reported2. At least three biological replicates were 
included for ATAC-seq and ChIP–seq experiments.

ATAC-seq
Liver samples from P15 mice (matching the developmental time of 
mutagenesis) were isolated and flash frozen. ATAC-seq was performed 
as previously described71, with minor modifications to the nuclear iso-
lation steps (in step 1, 1 ml of 1× homogenizer buffer was used instead of 
2 ml; in step 4, douncing was performed with 30 strokes instead of 20).  
Pooled libraries were sequenced on a NovaSeq6000 (Illumina) to  
produce paired-end 50 bp reads, according to the manufacturer’s 
instructions. Experiments were performed with three biological  
replicates.

ATAC-seq data processing and analysis
ATAC-seq data processing was performed using a Snakemake pipeline 
(v6.1.1)72. Adaptor sequences were removed using cutadapt (v2.6)73. 
Reads were aligned to the reference genome (Ensembl v91: C3H_HeJ_v1 
(ref. 59)) using BWA (v0.7.17)74. Data from multiple lanes were merged 
before deduplication; duplicates were marked using Picard (v2.23.8)75. 
Reads overlapping ARC regions were removed using SAMtools (v1.9). 
Reads aligning to mitochondrial DNA were excluded from further 
analysis. Read positions aligning to forward and reverse strands were 
offset by +5 bp and −4 bp, respectively, to represent the middle of 
the transposition event, as previously described76. ATAC-seq peaks 
were called using MACS2 (v2.1.2)77 on pooled data containing all rep-
licates. Single-nucleotide-resolution chromatin accessibility was 
measured and plotted as coverage of ATAC-seq ‘tags’ (Tn5 insertion 
sites, adjusted to represent the middle of the transposition event, as 
described above).

ATAC-seq data are available from Array Express at EMBL-EBI under 
accession E-MTAB-11780.

Nucleosome positioning analysis
We used nucleosome positions determined through chemical profiling 
of mouse embryonic stem cells39 using a nucleosome centre positioning 
score to signify the prevalence of nucleosome dyads for a given genomic 
position. We transferred genome coordinates from mm9 to mm10 using 
UCSC liftover78, before using halLiftover (v2.1) to derive expanded 
C3H-specific coordinates, considering only unique non-overlapping 
and syntenic positions. The top 4 million dyad positions were selected 
based on the nucleosome centre positioning score.

The positions and span of the major groove (either facing out or into 
the histones relative to the dyad) were calculated with the centre of the 
major groove facing inwards, repeating every ±10.3 bp away from the 
dyad position and spanning 5.15 bp (ref. 10).

CTCF ChIP–seq
Livers from P15 mice (matching the developmental time of mutagen-
esis) were perfused in situ with PBS and then dissected, minced, 
cross-linked using 1% formaldehyde solution for 20 min, quenched 
for 10 min with 250 mM glycine, washed twice with ice-cold PBS and 
then stored as tissue pellets at –80 °C. Tissues were homogenized using 
a dounce tissue grinder, washed twice with PBS and lysed according to 
published protocols79. Chromatin was sonicated to an average fragment 
length of 300 bp using a Misonix tip sonicator 3000. To negate batch 
effects and allow multiple ChIP experiments to be performed using the 
same tissue, we pooled ten livers for each experiment; 0.5 g of washed 
homogenized tissue was used for each ChIP, using 20 μg CTCF anti-
body (rabbit polyclonal; 07-729, lot 2517762, Merck Millipore). Library 
preparation was performed using immunoprecipitated DNA or input 
DNA (maximum 50 ng) as previously described80 with the ThruPLEX 
DNA-Seq library preparation protocol (Rubicon Genomics). Libraries 
were quantified by qPCR (Kapa Biosystems), and fragment size was 
determined using a 2100 Bioanalyzer (Agilent). Pooled libraries were 
initially sequenced on a MiSeq (Illumina) to ensure balanced pooling, 
followed by deeper sequencing on a HiSeq4000 (Illumina) to produce 
paired-end 150 bp reads, according to the manufacturer’s instructions; 
only HiSeq libraries were used for downstream analyses. Experiments 
were performed with five biological replicates.

To identify ChIP–seq-positive regions, we trimmed the HiSeq 
sequencing reads to 50 bp and then aligned them using BWA (v0.7.17) 
using default parameters. Uniquely mapping reads were selected for 
further analysis. Peaks were identified for each ChIP library and input 
control using MACS2 (v2.1.2) callpeak with default parameters, and 
all peaks with a q > 0.05 were included in downstream analyses. Input 
libraries were used to filter spurious peaks associated with a high-input 
signal using the GreyListChIP R package81. Biologically reproducible 
peaks were identified by merging ChIP–seq peaks defined as above 
from individual replicates and selecting those that overlapped with 
two or more individual replicate peaks.

ChIP–seq data are available from Array Express at EMBL-EBI under 
accession E-MTAB-11959.

Transcription factor binding site identification and analysis
ChIP–seq data for transcription factors, apart from CTCF (see above), 
were obtained from Life Science Database Archive (https://dbarchive.
biosciencedbc.jp/datameta-list-e.html) with genomic coordinates 
for the mm9 reference assembly. Liver-specific ChIP–seq was used 
whenever possible, otherwise files marked with ‘All cell types’ were used 
instead (Supplementary Table 2). Genomic coordinates were lifted to 
mm10 using liftOver, and then lifted to the C3H genome assembly using 
halLiftover (as above). Overlapping ChIP–seq regions were merged, 
using the outermost coordinates as the new start/end of regions. 
FASTA sequences of the regions were extracted using bedtools getfasta 
(v2.27.1) and used together with non-redundant vertebrate position 
weight matrices from JASPAR82 to run FIMO (MEME suite)83 with default 
parameters to detect motifs within ChIP–seq peaks. Those motifs were 
then filtered based on an overlap with ATAC-seq peaks (defined above) 
to ensure that the analysed set was within open chromatin regions of 
P15 C3H mouse livers. For CTCF-binding site analysis, in-house gener-
ated ChIP–seq data (described above) was used. For wider flank (1 kb) 
analysis, all motifs ( JASPAR matrix profile MA0139.1) within the peaks 
were retained regardless of ATAC-seq intersection, allowing multiple 
motifs per ChIP–seq peak.

For high-resolution CTCF and transcription factor-binding site analy-
sis (Extended Data Fig. 8), only one highest-scoring motif per ChIP–seq 
peak was retained. Similarly, for aggregate transcription factor analy-
sis, only one highest-scoring motif per ChIP–seq peak was retained 
if it overlapped with an ATAC-seq peak. A total of 129 transcription 
factors were analysed based on ChIP–seq and position weight matrix 

http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-11780/
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availability, RNA-seq support for transcription factor expression (1 TPM 
or more) in the P15 mouse liver2. In all the analyses, ‘bit score’ refers 
to the information content of the whole position. Within the motif, 
only mutations with the reference nucleotide matching the consensus 
nucleotide from position weight matrix were retained. In the flanks, 
mutations from all reference nucleotides were used.

CTCF structural analysis
High-resolution crystal structures for CTCF zinc fingers complexed 
with binding site DNA were obtained from the Protein Data Bank (PDB; 
5YEL, 5T0U and 5UND)84,85. As no single structure contains all 11 CTCF 
zinc fingers, a composite structure was compiled through alignment 
using PyMOL (v2.5.2)86 align function. The PDB 5UND A chain 406–556 
was aligned to the PDB 5T0U A chain (root mean square deviation of 
1.06 Å); then the PDB 5YEL A chain was aligned to the PDB 5UND chain A 
(root mean square deviation of 1.3 Å). The composite image (Extended 
Data Fig. 8d) then shows the PDB 5T0U A chain 289–405, PDB 5UND A 
chain 406–488 and PDB 5YEL A chain 489–556, which collectively spans 
CTCF zinc fingers 2–11 inclusive. The bound DNA strands comprise the 
PDB 5YEL F chain 1–24, PDB 5T0U C chain 7–23, PDB 5T0U B chain 1–18 
and PDB 5YEL E chain 5–26.

Protein–DNA contact distance measurements were performed using 
the Protein Contacts Atlas87. Non-covalent interatomic contacts of 3 Å 
or less between CTCF protein and DNA were considered close contacts. 
Close contacts of atoms within phosphate groups or deoxyribose were 
considered backbone, and other DNA contacts were annotated as base 
contacts. Close base contacts involving atoms expected to acquire 
DEN-induced mutagenic adducts23 or structurally equivalent positions 
in other bases (purines: N6 and O6; pyrimidines: O4, N4 and O2) were 
annotated as lesion site contacts. Distance measurements were taken 
separately for each structure (rather than from the composite) and 
excluded PDB 5T0U nucleotide contacts upstream of binding motif 
position +1 where this structure substantially deviates from PDB 5YEL. 
PDB 5T0U is truncated at zinc finger 7, whereas PDB 5YEL extends to zinc 
finger 11 and makes additional base-specific contacts absent from PDB 
5T0U. Close backbone, base and lesion site contacts were reported if 
the distance threshold criteria were met in any of the three considered 
structures, although concordance was high in the overlapping regions.

Histology and image analysis
Digitized histology images of DEN-induced tumours2 were obtained 
from Biostudies (accession S-BSST383).

Whole-slide images of tumours that met inclusion criteria (cellularity 
of more than 50% and DEN1 signature of more than 80%) were annotated 
in QuPath (v0.2.2)88 using the polygon tool to include neoplastic tissue 
and excluded adjacent parenchyma, cyst cavities, processing artefacts 
and white space. For tumours with multiple transections, only a single 
whole-slide image was used. Annotations were reviewed for quality by 
a histopathologist (S.J.A.). Using Groovy in QuPath, annotated regions 
were tessellated into fixed size, non-overlapping 256 × 256 μm tiles. 
For segmentation of epithelioid nuclei, a pre-trained StarDist89 model 
(he_heavy_augment.zip) was downloaded from https://github.com/
stardist/stardist-imagej/tree/master/src/main/resources/models/2D, 
and an inference instance was deployed using Groovy across the tiles in 
QuPath, built from source with Tensorflow90, with a minimum detection 
threshold of 0.5. Python (v3.9.7) was used for downstream analyses. 
Data were filtered to exclude extreme outliers: tiles with 43 nuclei per 
tile or fewer; nuclei with an area of 227.18386 μm or more, circularity of 
0.4841 or less, or non-computable circularity were excluded. From the 
245 whole-slide images (n = 237 mutationally asymmetric tumours and 
n = 8 symmetric tumours), 70,414 tiles were generated, and 9,999,783 
nuclei were segmented (post-filtering). To compute inter-nuclear dis-
tance, for each nucleus in a tile represented by its x–y centroid coor-
dinates, nearest neighbours were identified using the k-dimensional 
tree function from the spatial module of SciPy (v1.7.1)91. The Euclidean 

distance for each nearest neighbour pair was computed using the 
paired distances function from the metrics module of SciKit-Learn 
(v1.0.2)92. The median nuclear area, median nuclei per tile and median 
inter-nuclear distances were compared between asymmetric and sym-
metric tumours using a two-tailed Wilcoxon rank-sum test.

Symmetric versus asymmetric tumour comparison
Mutationally symmetric tumours (defined above; more than 99% of 
autosomal mutations in genomic segments with abs(S) < 0.2) were 
filtered to the subset that met the same inclusion criteria as the other 
n = 237 tumours analysed in this study (more than 50% cellularity (after 
adjusting for the presence of two genomes) and more than 80% sub-
stitution mutations attributed to the DEN1 signature). Eight tumours 
met this criteria. We subsequently show that these tumours are not 
whole-genome duplicated, but that they contain both daughter line-
ages of an originally mutagenized cell (Extended Data Fig. 10b). For each 
autosomal variant in a tumour, we calculated its VAF quantile position 
among point mutations in that tumour, using the R ecdf function93. The 
quantile positions (range 0–1) were grouped into consecutive bins of 
0.005 unit span, that is, the 0.995–1.0 was the rightmost bin represent-
ing the top 0.5% of VAF values for mutations in a tumour. The mutations 
within a VAF quantile bin were classified as either overlapping or not 
overlapping with the genomic span of the most highly expressed genes 
(stratum 6) using the R data.table foverlaps function94. The counts of 
overlapping and non-overlapping mutations from the focal tumour 
were compared as a two-tailed Fisher’s exact test to the equivalent 
counts aggregated from all asymmetric tumours (excluding the focal 
tumour in the case of asymmetric focal tumours for the calculation of 
background expectation). The same analysis was performed in aggre-
gate for all symmetric tumours (n = 8) compared with all asymmetric 
tumours (n = 237). The calculations were repeated for each of the 200 
consecutive bins to demonstrate the VAF range over which high VAF 
mutations are preferentially enriched in highly expressed genes specifi-
cally in symmetric tumours, as predicted under NER-TRIM.

Computational analysis environment
Except where otherwise noted, analysis was performed in Conda envi-
ronments and choreographed with Snakemake72 running in an LSF 965 
or Univa Grid Engine batch control system (Supplementary Table 3). 
Statistical tests were performed in R (v4.0.5) using fisher.test, ks.test, 
cor.test and wilcox.test functions for Fisher’s exact, Kolmogorov–
Smirnov, Pearson’s and Spearman’s correlation and Wilcoxon tests, 
respectively. Graphics were generated using R.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw data files for all new datasets are available from Array Express and 
the ENA at the EMBL-EBI. Early–late Repli-seq accession numbers from 
the ENA: PRJEB72349 and PRJEB67994. ATAC-seq accession number 
from Array Express: E-MTAB-11780. ChIP–seq accession number from 
Array Express: E-MTAB-11959.

Code availability
The analysis pipeline including Conda and Snakemake configuration 
files can be obtained without restriction from the repository https://
git.ecdf.ed.ac.uk/taylor-lab/lceStrandInteractions.
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Extended Data Fig. 1 | Exemplar tumour genome demonstrating mutation 
asymmetry from lesion segregation. a, Mutational summary of one DEN 
induced tumour; the tumour genome represented by the shared x-axis and 
chromosome boundaries marked with dashed vertical lines. Mutations are 
called relative to the forward strand of the reference genome and shown as 
coloured points stratified type (C → N, T → N, A → N, G → N). Y-axis positions 
show the genomic distance to the next mutation of the same type and plotted 
on a log10 scale. Mutations of type T → N and A → N are complements of each 
other and plotted on opposite sides of the asymmetry segmentation track with 
inverted y-axis orientations (y-axis arrows). The same for C → N versus G → N 
mutations. Genomic segmentation by T → N/A → N mutation asymmetry is 
plotted showing genomic segments where mutations have arisen from forward 
strand lesions (blue), reverse strand lesions (gold), or where one chromosome 

has forward and the other reverse strand lesions meaning that they cancel each 
other out (grey). Hemizygous X chromosomes are always mutationally 
asymmetric. The asymmetry score is calculated as S = (forward-reverse)/
(forward+reverse) where forward and reverse are the sequence composition 
adjusted rates of T → N and A → N mutations. Both average total mutation rate 
and read coverage are typically uniform across the autosomal portion of the 
tumour genomes. b, The mutational asymmetry calculated from T → N/A → N 
mutations (x-axis) and C → N/G → N mutations (y-axis) in 5 Mb windows over the 
genome is closely correlated, consistent with the interpretation that most 
mutagenic adducts in these tumours are on T and C nucleotides2 and supported 
by reduced mutation rates when T and C are on the transcriptional template 
strand (Extended Data Fig. 7).



Extended Data Fig. 2 | Quantifying replication fork directionality.  
a, Replication time profile of an example 15 Mb of C3H genome chromosome 8 
(x-axis, shared with panel c). Curves show early/late (EL) replication relative 
enrichment (E and L read counts normalised to their respective library read 
depth, then relative enrichment, RE = (E − L)/(E + L)) where more positive values 
indicate earlier replication and more negative values indicate later replication. 
Replication profiles shown for a mouse embryonic stem cell line (E14TG2a, tan) 
and mouse hepatocyte derived cell lines (Hep-74.3a, red; Hepa1-6, brown). Blue 
dash line indicates the centre of a strong replication origin region (schematic) 
and is projected into panel c for comparison. b, Schematic illustrating two 
alternate strategies to generate replication fork directionality measures (RFD). 
Left side, E/L-Repli-seq (top) can be used to derive Repli-seq based replication 
fork RFD (repli-RFD; bottom). On the right side, Okazaki fragment sequencing 
based RFD (OK-RFD). c, Smoothed derivatives of Hep-74.3a E/L-Repli-seq data 
(red, panel a) provides an RFD estimate. Comparison to OK-seq data from 

another differentiated cell type (pink, activated B-cells) shows overall good 
concordance but captures some replication profile differences between  
cells (grey triangle). d, Kernel density plot summarising the genome-wide 
correlation of B-cell derived OK-RFD (x-axis) and Hep-74.3a derived repli-RFD 
(y-axis), both at 10 kb resolution. Only high-concordance genomic intervals 
between blue stepped lines (21 quantile boundaries) were used for RFD based 
measures of liver tumour mutation rate. e, Validation of the E/L-Repli-seq to 
RFD measure in human RPE-1 cells where both OK-seq (grey) and E/L-Repli-seq 
(black) has been generated and used to calculate RFD. The curves are shown 
over a 15 Mb interval of human chromosome 8 and illustrate a high concordance 
of RFD profile. Although both traces are plotted at 10 kb resolution, the 
smoothing and processing required to calculate RFD from E/L-Repli-seq 
averages out some of the fine grained structure evident in the OK-seq derived 
profile. f, Kernel density plot summarising the OK-seq (x-axis) and E/L-Repli-seq 
(y-axis) RFD estimates for RPE-1 cells, as for panel d.
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Extended Data Fig. 3 | Transcription and replication time influence DNA 
damage induced mutation rate but replication strand bias has negligible 
impact. a, Relative enrichment (RE) of early versus late replication time for 21 
quantile bins of replication fork direction bias (RFD, x-axis shared with  
b-d). Relative enrichment calculated as RE = (early−late)/(early+late) using  
the number of nucleotides annotated as early or late replicating in each of the 
RFD bins. b, Percent of genic nucleotides in each quantile bin, stratified as 
transcribed (red, >1 transcript per million (TPM) in P15 mouse liver) or 
non-transcribed (grey). c, Relative enrichment of strand-biassed transcription 
across RFD bins (RE = (forward-reverse)/(forward+reverse)) calculated using 
the number of nucleotides contained within the transcription strand resolved 
genomic span of expressed genes (panel b). d, Mutation rate (nucleotide 
composition normalised) for RFD bins calculated separately for forward strand 
and reverse strand lesions, 95% C.I. (whiskers) from bootstrap sampling. e, 
Percentage of nucleotides that are transcribed (>1 TPM, P15 mouse liver) in 
each of the 21 quantile bins of replication strand bias (RSB, x-axis shared with f). 
RSB is the RFD metric but all data oriented so that lesions would be on the 
reverse strand. f, Mutation rates for the 21 RSB bins. g, Mutation rates (y-axis) 
points and RSB bins identical to panel f, but x-axis shows the percent of 
nucleotides with transcription over a lesion strand template, illustrating that 
transcription using a lesion containing strand is the main determinant of 
mutation rate. Linear modelling (shaded area 95% C.I.) and extrapolation of this 
correlation accurately predicts the observed mutation rate in non-genic 

regions (orange point). h, Mutation rates (y-axis) for the whole genome (gold) 
stratified into 21 quantile bins of RSB (x-axis). Equivalent analysis is shown for 
fractions of the genome contained within expressed genes (tan) and non-genic 
regions (orange). This is a repeat of the analysis shown in Fig. 1f confirming the 
results using Repli-seq data from a second independent hepatocyte cell line 
(Hepa1-6 (h), rather than Hep-74.3a (Fig. 1f) that is used except where otherwise 
stated). i, Multivariate regression modelling based on 10 kb consecutive 
genomic windows finds all five tested parameters make nominally significant 
(right of the dashed line), independent contributions to variation in mutation 
rate (calculated separately for forward strand and reverse strand lesions, blue 
and gold, respectively). The predominant contributions are transcription over 
a lesion containing template strand and to a lesser extent replication time. 
Residual genomic annotation (annotated genes not meeting the >1 TPM 
threshold for expression) is notably significant, indicating sub-threshold 
expression contributes to reducing the mutation rate. The results are highly 
reproducible, independently using either Hep-74.3a and Hepa1-6 Repli-seq 
measures (circles and crosses, respectively). j, Multi-regression analysis 
considering only 10 kb segments that are >5 kb from annotated genes, 
demonstrates significant replication time influences on mutation rate but that 
replication strand bias does not significantly influence the mutation rate. 
Forward strand lesions (blue) and reverse strand lesions (gold) calculated 
separately.



Extended Data Fig. 4 | Replication time correlates with mutation rate 
partly independent of transcription. a-c, The genome was partitioned  
into 21 quantile bins of replication time, relative enrichment (shared x-axis, 
RE = (early−late)/(early+late)) a, Percent of genic nucleotides in each quantile 
bin, stratified as transcribed (red, >1 transcript per million (TPM) in P15 mouse 
liver) or non-transcribed (grey). b, Relative enrichment of strand-biassed 
transcription across replication time bins (RE = (forward−reverse)/

(forward+reverse)) calculated using the number of nucleotides contained 
within the transcription strand resolved genomic span of expressed genes 
(panel a). c, Mutation rates (y-axis) for the whole genome (black, 95% C.I. 
whiskers). A linear regression 95% C.I. shown as a corresponding shaded area. 
Equivalent analysis is also shown, restricted to only expressed genes (mid-grey) 
and non-genic regions (light-grey).
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Tracts of low-fidelity replication downstream of 
lesion induced mutations. a, Genome-wide mutation signature of DEN 
induced tumours. b, Signature of mutation cluster upstream (5′) position 
mutations, oriented so the lesion containing strand is the replication template. 
c, Signature of downstream mutations in the cluster (2.2% of clusters have two 
downstream mutations). d, Frequency distribution of the spacing between 
adjacent observed (dark-red) and simulated (pink) mutations for all tumours 
(n = 237). The simulated data were generated by sampling mutations across all 
other tumours to create proxy tumour datasets with identical mutation counts 
(see Methods). Main histogram shows only closest spaced mutations, inset 
graph shows full distribution of both observed and simulated, blue arrow 
indicates x-axis area expanded in main histogram. Excess clustering of 
observed mutations (blue arrow) accounts for only 0.8% of the total mutation 
burden. e, Clustered mutation pairs co-occur in the same sequencing read, 
confirming they are on the same DNA duplex. Expected (pink) is analogous to 
two heads or two tails from consecutive flips of a fair coin. f, Multiallelism is a 
hallmark of lesion templated mutations2. The multiallelic rate (y-axis, fraction 
of mutation sites with multiallelic variation) for simulated data (pink spots). 
Curve shows best-fit spline (25 degrees of freedom) for the downstream 

mutations. g, As for (f) but showing observed data (red), demonstrating a 
pronounced and specific depletion of multiallelic variation immediately 
downstream of the cluster 5′ mutation (yellow circle and arrow). h, Heatmap 
summarising cosine similarity between mutation clusters with different inter-
mutation spacing (schematic in lower panel). Upstream (5′) cluster mutations 
closely match the genome wide mutation spectrum. Mutations 3 to 10 nt 
downstream of the 5′ mutation share a common signature. i-n, Mutation 
signature profiles for clustered mutations; distance from the upstream 
mutation (number in brown circle) relate to schematic in h. Mutation counts in 
each category indicated below the plot. o, The mutation spectrum of 
downstream mutations closely matches between leading and lagging strand 
replication (strongly RSB regions, absolute RSB > 0.2). The observed cosine 
similarity between mutation spectra is robustly within the range expected by 
random permutation of mutations between leading and lagging strands 
(n = 105 permutations, two tailed empirical p = 0.18). p, The distribution of 
mutation cluster length also matches between leading (black) and lagging 
(red) strands (no significant difference; two sided Kolmogorov-Smirnov test 
p = 0.15). q, Simulations show >98% power to detect a ≥ 4% difference in the 
distribution of cluster lengths for strongly RSB regions of the genome.
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Extended Data Fig. 6 | DNA damage induces deletion mutations at damaged 
bases and collateral insertion mutagenesis. a, A deletion or insertion 
mutation with a proximal substitution can often be explained by multiple 
equally scoring alignments. Two example sequences can be aligned with a 
single gap (dash) and substitution (blue line), in this case with two possible 
solutions. To avoid systematic biases in gap placement by alignment and 
mutation calling software, all equally optimal alignments are calculated, the 
distance between gap and substitution measured for each and count value 
distributed equally between possible solutions (weight). b, As (a) but gap and 
substitution position are not immediately adjacent. c, As (a) but demonstrating 
an example with seven equally scoring solutions where the substitution could 
be assigned to either upstream or downstream of the insertion/deletion.  
d, Frequency distribution of the distance between insertion or deletion (indel) 
mutations and their closest proximal substitution mutation (black curve), 
demonstrating a high degree of spatial clustering within 10 bp. The permuted 
expectation (pink) was calculated by measuring the distance to the nearest 
substitution in a permuted set of substitutions sampled from other tumours 
(Methods). Confidence intervals (95%, light pink) on the permuted set were 
calculated from 100 permuted sets of substitutions. Inset graph shows the 

same data plotted with the y-axis on a log10 scale. Counts for both observed and 
permuted are the sums of the weighted counts for each distance as illustrated 
in (a-c). e, Schematic to show how indel and substitution mutation clusters are 
oriented by the lesion containing strand in subsequent plots, and that the 
position of the insertion or deletion is set as x = 0. The subsequent plots  
(f-i) also show cases where all optimal alignments agree on the upstream/
downstream placement of the substitution relative to the indel (dark blue,  
e.g. panel b) as distinct from where that assignment is ambiguous (light blue, 
e.g. panel c). f, Substitutions are strongly clustered around 1 bp deletions  
and biassed towards a downstream location. Inset shows the density plot for 
10,000 permutations of the observed data where the assignment of the lesion 
strand was randomly permuted (grey) compared with the observed level of 
upstream/downstream bias (calculated as bias = (down−up)/(down+up)). 
Two-sided p-values were empirically derived from the permutations. g, Deletions 
>1 bp are rarely clustered with substitutions and do not show a significant 
upstream/downstream bias. h, Single base insertions are clustered with 
substitutions and are significantly biassed to upstream of the insertion. i, Longer 
insertions show similar clustering trends to 1 bp insertions but do not reach 
statistical significance.



Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Transcription and lesion repair have strand-specific, 
expression-dependent mutation signatures. a, Mature transcript expression 
and nascent transcription (intron mapping RNA-seq reads) are highly correlated; 
one point per gene. b, As for panel a but restricted to the genes spanning in 
aggregate across tumours >2 million nucleotides of strand resolved tumour 
genome (n = 3,392). c, Mature transcript gene expression (x-axis) negatively 
correlates with composition normalised mutation rate (y-axis) where lesions 
are on the transcription template strand (one red point per gene). Red curve 
shows the best-fit spline (8 degrees of freedom) through the red points. Black 
points show gene expression measures for centile bins of gene expression.  
d, As for c, but x-axis shows nascent RNA estimates of transcription. P-values 
for panels a-d are too small to precisely calculate (p < 2.2 × 10−16). e, Nucleotide 
order used for 192 category mutation spectra in panels f-i. Expanded segment 
shows the flanking nucleotide context for C → A mutations; the same ordering 
of flanking nucleotides is used for all mutation types. f-i, Mutation rate spectra 

for non-expressed (stratum 1) genes are closely matched for template (f) and 
non-template (g) lesion strands. For highly expressed genes (stratum 6), the 
mutation rate is reduced for both strands and the spectrum differs between 
template strand (h) and non-template strand (i) lesions. j, The profile of lesion 
repair efficiency differs between template strand lesions and non-template 
strand lesions of expressed genes. Repair efficiency is calculated as the percent 
change in mutation rate for a trinucleotide sequence context (n = 64 categories) 
relative to the average for both strands in non-expressed genes (stratum 1). The 
y-axis is inverted to indicate reduction in mutation rate from increased repair. 
Transcription coupled repair shows similar efficiency for C and T lesions on the 
template strand. Transcription associated repair on the non-template strand 
shows preferential repair of C lesions compared to T lesions. Mutations from 
apparent A lesions (and to a lesser extent G lesions) are rare and, as shown in 
subsequent sections, should not be evaluated as lesions on the indicated 
nucleotide, but are included here for completeness (y-axis values < -10 truncated).



Extended Data Fig. 8 | Mutation enrichment and depletion at transcription 
factor binding sites (TFBS). a, The compositionally corrected mutation rate 
shows helical (10 bp) periodicity over nucleosomes. Separating the mutation 
rates by the lesion containing strand (blue, forward; gold, reverse) reveals two 
partially offset periodic profiles (top panel). Orientating both strands 5′ → 3′ 
demonstrates that the profiles are mirror images (bottom panel). Mutation 
rate peaks (black) correspond to regions where the DNA major groove faces 
into the histones, and valleys (red) where the major groove faces outward. 
Mutation enrichment is shown with shaded 95% bootstrap confidence intervals 
(blue, gold). b, For the lesion containing strand, mutation rates are significantly 
higher for the peaks on the 3′ side of the nucleosome dyad than on the 5′ side 
(significant p-values shown, two tailed Wilcoxon tests). c, Comparing the 
compositionally corrected multiallelic rates shows significantly increased 
multiallelic variation for the 3′ peaks (significant p-values shown, two tailed 
Wilcoxon test), indicating the increased mutation rate results from slower 
repair on the 3′ side of the dyad. d, The molecular structure of the CTCF:DNA 
interface (top) reflects the strand specific mutation profiles of CTCF binding 
sites (histograms, composition corrected). A composite crystal structure of 
CTCF zinc fingers 2-11 (grey surface) is shown binding DNA (blue & gold strands) 
and close protein:DNA contacts (≤3 Å) illustrated below the structure. At 
nucleotide positions with close contact between CTCF and atoms thought to 
acquire mutagenic lesions (red circles), the corresponding strand specific 

mutation rates are generally lower than genome-wide expectation (y ≤ 0; 
excepting apparent A → N mutations considered later). Mutation rates are  
high (y > 0) for nucleotide positions with backbone-only contacts or no  
close contacts but still occluded by CTCF. CTCF motif position 6 exhibits an 
exceptionally high T → N mutation rate that cannot be readily reconciled with 
the structure, but the strand specificity demonstrates it is a consequence of 
DEN exposure. e, The profile of DNA accessibility around CTCF binding sites, 
defines categories of sequence (shaded areas) considered subsequently.  
f, Mutation rates are higher than genome-wide expectation (y = 0) for CTCF 
binding motif nucleotides and their close flanks. g, This is not reflected in 
increased rates of multiallelic variation. CTCF occluded positions (positions -5 
to 3 of the CTCF motif) show the greatest elevation of mutation rate but 
evidence of decreased multiallelic variation. Both high information content 
(motif-high, bit score>0.2) and low information content (motif-low, bit-score 
≤0.2) motif positions have high mutation rates. h, DNA accessibility around 
non-CTCF transcription factor binding sites (TFBS) as in e. i,j, In contrast to  
the situation for CTCF, all TFBS categories of sites have suppressed mutation 
rate compared to genome-wide expectation, y = 0 (i), and suppression of 
multiallelic variation ( j) indicates enhanced repair. However, high information 
content motif sites (motif-high) have exceptionally reduced mutation rate not 
similarly reflected by multiallelic variation, suggesting there may be reduced 
damage in addition to efficient repair at these sites.
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Extended Data Fig. 9 | Lesion induced mutation patterns at DNA:protein 
interaction sites. a, Excess mutations resulting from A lesions in accessible 
DNA (relative to the genome-wide trinucleotide mutation rate) centred on the 
nucleosome dyad. DNA accessibility as measured by ATAC-seq (purple; higher 
values mean more accessible chromatin). Excess mutations are shown with 
shaded 95% bootstrap confidence intervals. b-d, Relative mutation rates as  
a, for apparent T lesions (b), C lesions (c), and G lesions (d); in each case, except 
A → N mutations, the mutation rate is lower in accessible DNA and higher in 
less-accessible DNA. e, Mutation rates and multiallelic rates for sequence 
categories (Methods) within, and adjacent to, CTCF binding sites, stratified by 

the identity of the inferred lesion containing nucleotide. Point estimate 
(circles) and bootstrap 95% confidence intervals (whiskers) are shown for the 
rate difference relative to genome-wide expectation (y = 0, mutations Mb−1  
for mutation rates, relative difference metric for multiallelic variation). All 
rates are adjusted for trinucleotide composition. Instances where the motif_lo 
category has too few observed or expected mutations to calculate estimates 
(x-axis label grey) have no data point. Where the observed level of multiallelic 
variation is zero (asterisk) bootstrap confidence intervals cannot be calculated. 
f, Mutation rates and multiallelic variation for P15 liver expressed transcription 
factors; plots as in (e).



Extended Data Fig. 10 | Mutagenic nucleotide excision repair. a, Most DEN 
induced tumours show pronounced mutation asymmetry across approximately 
50% of their genome. Asymmetric tumours meeting inclusion criteria (mutation 
signature and cellularity thresholds; black) are included in the preceding 
analyses of this study. In addition, here we include a subset of tumours that 
were excluded due to the absence of mutation asymmetry (n = 8, blue). b, The 
mutational symmetry of these tumours could be explained if both daughters  
of the originally mutagenised cell persist (schematic). Mutagenic NER in the 
first generation of the mutagenised cell could produce mutations at the same 
base pair in both daughter lineages; such mutations would have approximately 
double the variant allele frequency (VAF) of mutations confined to one 
daughter lineage. Whole genome duplication in the first generation of the 
mutagenised cell could also produce symmetric tumours. c, Tumours with 
symmetric mutation patterns have a significantly higher mutation load  
than those with asymmetric mutations, consistent with mutations from  
both mutagenised strands contributing to the tumour. Statistical analysis 
(p = 1.1 × 10−4) by two tailed Wilcoxon rank sum test. In panels c,d,f,g,h points 
are individual tumours, bar is median, statistical tests are based on n = 8 
symmetric and n = 237 asymmetric tumours, all reported p-values are Bonferroni 
corrected (n = 5 tests). d, The median VAF for mutations in symmetric tumours 
is approximately half that of asymmetric tumours. Statistical analysis  
(p = 7.67 × 10−6) by two tailed Wilcoxon rank sum test. e, Automated nuclear 
detection (red circles) and quantification in an exemplar hematoxylin and 
eosin stained tumour section (93131_N2). Original digitised magnification 
x200; scale bar indicated. f, Nuclear area is not significantly different between 

symmetric and asymmetric tumours (p = 0.215, two tailed Wilcoxon rank  
sum test), indicating similar DNA content and arguing against mononuclear 
whole-genome duplication. g, The density of nuclei is not significantly different 
between symmetric and asymmetric tumours (p = 1, two tailed Wilcoxon rank 
sum test), arguing against both mononuclear and possibly multi-nuclear whole 
genome duplication. h, Internuclear distance is not significantly different 
between symmetric and asymmetric tumours (p = 1, two tailed Wilcoxon rank 
sum test), arguing against multi-nuclear whole genome duplication. i-p, VAF 
frequency distributions for symmetric tumours, indicating the VAF of MAPK 
pathway driver mutations (red points, also in q-x). For symmetric tumours,  
the driver VAFs are strongly right-biassed (i.e. high VAF). This is consistent  
with mutagenic NER copying the same driver mutation site into both daughter 
genomes of the mutagenised cell, and in turn both daughter lineages (containing 
either the same driver mutation, or multiallelic driver mutations at the same site) 
contributing to the resultant tumour. q-x, VAF frequency distributions for 
example asymmetric tumours. y, MAPK pathway driver mutations are biassed 
to the highest VAF values in symmetric tumours but not in asymmetric tumours 
(p = 3.61 × 10−5 two tailed Wilcoxon rank sum test, Bonferroni corrected). VAF 
quantile position (y-axis) indicates the fraction of mutations in a tumour that 
have lower VAF than the driver mutation (quantile of 1.0 indicates all other 
mutations in that tumour have a lower VAF). Horizontal bars indicate median 
VAF quantile position of the focal driver mutations. As a null expectation for 
comparison, one mutation was randomly selected from each of the asymmetric 
tumours (grey points).
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