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Graphical Abstract

∙ Repurposing identified Food and Drug Administration-approved drug-
biomarker combinations with high sensitivity and specificity.

∙ In a real-world dataset, repurposing identified novel drug-biomarker combi-
nations in patients who were ineligible for standard therapies or biomarker-
matched trials.

∙ Preliminary functional validation was demonstrated for two drug-biomarker
combinations.

∙ Using The Cancer Genome Atlas data, the potential scope of repurposing was
identified.
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Abstract
Purpose: Systematic repurposing of approved medicines for another indication
may accelerate drug development in oncology. We present a strategy combining
biomarker testing with drug repurposing to identify new treatments for patients
with advanced cancer.
Methods: Tumours were sequenced with the Illumina TruSight Oncology 500
(TSO-500) platform or the FoundationOne CDx panel. Mutations were screened
by twomedical oncologists and pathogenicmutations were categorised referenc-
ing literature. Variants of unknown significance were classified as potentially
pathogenic using plausible mechanisms and computational prediction of
pathogenicity. Gain of function (GOF) mutations were evaluated through repur-
posing databases Probe Miner (PM), Broad Institute Drug Repurposing Hub
(Broad Institute DRH) and TOPOGRAPH. GOF mutations were repurposing
events if identified in PM, not indexed in TOPOGRAPH and excluding muta-
tions with a known Food and Drug Administration (FDA)-approved biomarker.
The computational repurposing approach was validated by evaluating its ability
to identify FDA-approved biomarkers. The total repurposable genome was
identified by evaluating all possible gene-FDA drug-approved combinations in
the PM dataset.
Results: The computational repurposing approach was accurate at identifying
FDA therapieswith known biomarkers (94%). Using next-generation sequencing
molecular reports (n= 94), a meaningful percentage of patients (14%) could have
an off-label therapeutic identified. The frequency of theoretical drug repurposing
events in The Cancer Genome Atlas pan-cancer dataset was 73% of the samples
in the cohort.
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Conclusion: A computational drug repurposing approach may assist in iden-
tifying novel repurposing events in cancer patients with no access to standard
therapies. Further validation is needed to confirm a precision oncology approach
using drug repurposing.

KEYWORDS
drug repurposing, precision oncology, sequencing

1 INTRODUCTION

Improving access to novel therapeutics for patients with
advanced and poor prognosis cancer is challenged by
logistical and efficacy impediments. Traditionally, these
patients enrolled in phase I clinical trials after exhaust-
ing standard therapies. Logistically, this pathway is limited
by: the application of strict inclusion criteria excluding up
to two-thirds of real-world patients1 and unavailable local
options in up to 77% of patients.2 This is compounded by
limited efficacy, with aggregate response rates of 12% in
early-phase trials.3
To overcome efficacy limitations, biomarker enrich-

ment leads to consistently higher response rates than
agnostic approaches,4 consistent with the objective of
precision oncology—to identify targetable molecular aber-
rations unique to specific patients.5 Biomarker enriched
studies are increasingly used, with ‘umbrella’ (single con-
dition, multiple sub-studies for differentmolecular aberra-
tions) and ‘basket’ (multiple conditions, single targetable
molecular aberrations) approaches gaining prominence to
improvematching patients to clinical trials.6 Nevertheless,
these approaches are still often inapplicable to real-world
patients, for example, the National Cancer Institute –
Molecular Analysis for Therapy Choice (NCI-MATCH)
umbrella study, identified ‘actionable’ alterations in 38% of
patients screened, but only assigned 18% of patients to a
study drug following the application of exclusion criteria.7
Therefore, although biomarker enrichment increases the
likelihood of response to targeted therapy, the current
clinical trial architecture is not permissive for access to
targeted therapies in most patients.
Drug repurposing, defined as identifying new cancer

indications for existing approved drugs, is an attractive
alternative. Three broad types of drug repurposing have
been described: off-label use for the same molecular
aberration in a different indication (such as the repur-
posing of trastuzumab from human epidermal growth
factor receptor 2 (HER2) amplified breast cancer to HER2
amplified gastric cancer); off-target activity (such as the
use of imatinib to target KITmutations in gastrointestinal
stromal tumours); and combination approaches based on
in vitro assays.8

Repurposing, if successful, has financial and logistical
advantages compared to traditional drug development.9
Repurposing has been successful for non-cancer indi-
cations, such as sildenafil, which was developed for
angina and has been licensed for the treatment of erec-
tile dysfunction.10 Few licensed repurposed therapies for
oncology indications exist, with thalidomide in myeloma
being the best-described example.9
Most repurposing efforts have emerged from promising

preclinical studies or by serendipity.9,11 To our knowledge,
systematic approaches to drug repurposing have been lim-
ited to pre-clinical settings, such as in vitro systematic drug
repurposing screens for target identification.11,12
To our knowledge, a systematic evaluation of off-

target activity of FDA-approved drugs to target molecular
variants without approved therapies has not been under-
taken. We hypothesise that systematically evaluating off-
target drug repurposing activity is feasible and potentially
expands therapeutic options available to patients.

2 METHODS

A graphical abstract of the methods is shown in Figure 1.
FDA-approved oncology drugs were curated from
the Table of Pharmacogenomic Biomarkers in Drug
Labelling.13 This table was manually curated (Farzana Y.
Zaman and Malaka Ameratunga) to ensure the accuracy
of drug-target combinations. For example, FDA labels
relating to a tumour type (such as oestrogen receptor,
ESR1, in breast cancer) were amended to the molecular
target (such as CDK4 inhibitors). The curated table is
shown in Table S1 (molecular targets labelled “Target”).
This table was filtered for small molecule inhibitors
(n = 67, Table S2).

2.1 Platform validation

Public databases were used to develop a systematic off-
target repurposing approach. Of note, these databases
have not previously been applied to systematically eval-
uate off-target repurposing in a clinical setting. We have
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WALPOLE et al. 3 of 14

F IGURE 1 Graphical abstract of methods. (A) The accuracy of Probe Miner (PM) for identifying the Food and Drug Administration
(FDA)-approved drugs was performed by cross-referencing a curated drug-target combination from the FDA table of pharmacogenomic
biomarkers in drug labelling and the PM database. The sensitivity, specificity and precision of PM were determined using the FDA table as the
gold-standard. (B) Real-world patients’ next-generation sequencing (NGS) reports were curated for gain-of-function mutations, with no
standard therapies, and repurposing platforms were applied to identify repurposing events. Functional validation of repurposing events was
performed with publicly accessible datasets. (C) The theoretical druggable kinome was determined by applying the repurposing platform to
all genes for which biomarker-selected therapies are not currently available. The frequency of aberrations in these genes in the Cancer
Genome Atlas Program (TCGA) dataset was determined to calculate a theoretical repurposing rate.

previously developed a computational, objective, quan-
titative assessment of small molecules for their use to
selectively study specific proteins (chemical probes): Probe
Miner (PM).14 PM is accessible from the Institute of
Cancer Research and indexes > 1.8 million compounds
against 2220 human targets.14 PM is based on six different
quantitative scores, weighted to potency and selectivity.
PM uses publicly available pharmacological data from
several resources integrated into the knowledgebase
canSAR, which also integrates its own curated pharma-
cological data from selected publications.15 Accordingly,
PM can identify the most potent and selective compound
to study a specific protein (as denoted by the quantita-
tive score 0–1). This process was undertaken to ensure that
PM (via quantitative score) could correctly identify known
gene-targetable drugs (i.e. those with FDA approval).
A PM quantitative score of 0.25 for compound inclusion

was used as it was slightly greater than the lower bound of

the range of global scores of FDA-approved therapies with
known biomarkers. For the gold standard, curated FDA-
approved drug-biomarker combinations were considered
true positives and all non-FDA-approved drug-biomarker
combinations were considered true negatives to allow cal-
culation of sensitivity and specificity. Only compounds
indexed in both the Drugs@FDA database and PM were
considered in this analysis as PM may not contain all the
latest FDA-approved drugs (may take months to appear in
public pharmacological databases). Only biomarkers with
more than one approved therapy were considered to have
sufficient data to inform the analysis.

2.2 Real-world repurposing

Patients with metastatic or advanced solid organ malig-
nancies were referred from participating partner hospitals

 20011326, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ctm

2.1657 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [17/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 of 14 WALPOLE et al.

via the Monash Partners Comprehensive Cancer Con-
sortium. Sequencing using next-generation sequencing
(NGS) through the Molecular Screening and Therapeutics
(MoST) clinical trial platform study during patient care
was accessed, which typically recruited patients with less
common tumours. Ethics approval for the current study
was granted through the Alfred Hospital Human Research
Ethics Committee (HREC) (419/21).
The MoST trial NGS panel utilises either the TruSight

Oncology 500 (TSO-500) panel or the FoundationOne
CDx panel. The TSO-500 analyses 523 genes for single
nucleotide variations (SNVs) and insertion/deletions (5%
variant allele frequency cut-off). It also analyses 55 genes
for fusion transcripts and splice variants and can call
amplifications at a limit of detection of 2.2x fold change.
Alternatively, the FoundationOne CDx panel analyses 324
genes for substitutions and insertion/deletions (5% vari-
ant allele frequency cut-off). For the FoundationOne CDx
panel, amplifications are called at segmentswith≥ 6 copies
(or≥ 7 for triploid/≥ 8 for tetraploid tumours) andhomozy-
gous deletions at 0 copies, in samples with tumour purity
≥ 20%. Amplifications in ERBB2 are called positive at
segments with ≥ 5 copies for diploid tumours. Microsatel-
lite instability (MSI) status was classified as high and
low as per the manufacturer’s specification of the respec-
tive panel. Tumour mutational burden (TMB), defined as
a number of non-synonymous mutations per megabase,
was dichotomised at the threshold of 10mut/mb consis-
tent with the KEYNOTE-158 study that formed the basis
of pembrolizumab approval.16

2.3 Classification of variants

NGS reports were reviewed by two oncologists (Imogen
R. Walpole, Farzana Y. Zaman and Malaka Ameratunga)
to classify and curate genomic variants of significance.
Only activating (GOF) mutations were considered for
the application of repurposing. Variants were classified
as potential GOF or loss of function (LOF) mutations
based on literature review and annotated as pathogenic,
likely pathogenic, or likely benign. A literature review
facilitated by the Catalogue of Somatic Mutations in
Cancer database was first performed.17 The pathogenicity
score of variants using the Functional Analysis Through
Hidden Markov Models (FATHMM) was recorded.18
Pathogenic mutations with previous orthogonal func-
tional validation were annotated as GOF or LOF based
on the literature. For variants of uncertain significance
(VUS), mutations were annotated as possibly pathogenic if
they demonstrated a plausible mechanism with reference
to the literature, pathogenic FATHMM score, and review
by an oncologist (Malaka Ameratunga) and medicinal

chemist (Albert A. Antolin). Generally, truncating muta-
tions were classified as LOF and amplifications were
classified as GOF. Non-synonymous single nucleotide
(nsSNV) variants were classified case-by-case, with ref-
erence to the literature. Kinase and hotspot mutations
in known oncogenes were classified as potential GOF
mutations.

2.4 Identification of drug targets

GOF mutations were assessed for possible mutation-
targeting compounds using– PM,14 the Broad Institute
DRH12 and TOPOGRAPH19 for repurposing events. The
PM was used as the primary repurposing database. The
Broad Institute DRH is an annotated repurposing library
combining publicly available clinical-drug structures
of > 4500 compounds from regulatory data and public
databases with extensive manual curation, which has
been used for in vitro screens and is available from the
Broad Institute.12 The Broad Institute DRH was utilised to
assess the degree of overlap in repurposing opportunities
identified by PM and this database. TOPOGRAPH is a
compendium of approved and experimental therapies
assembled from regulatory data, public databases and
literature review used to meet the clinical need for tiered
assessment for actionability and linking biomarkers to
clinical trials.19 It catalogues 2810 biomarker-disease-
therapy triplets and is available from the Garvan
Institute.19 Variants identified in PM and in TOPOGRAPH
were assumed to have preclinical/clinical rationale as
the TOPOGRAPH resource is designed for clinical trial
allocation.

2.5 Categorisation of drug repurposing
events

A repurposing event was classified as any gene aberra-
tion with a drug repurposing opportunity identified on
one of the databases. GOF mutations in genes with well-
recognised, investigated and approved targeted therapies
(Tier I mutations) were removed after review by two
oncologists (Imogen R. Walpole and Malaka Ameratunga)
and cross-referencing with the Table of Pharmacogenomic
Biomarkers in Drug Labelling published by the FDA.13
These included KRAS, ERBB2, EGFR, BRAF, KIT, CDK4,
CDK6 and PIK3CA. Mutations of potential clinical sig-
nificance (aligning with Tier II20 mutations), for which
an active ongoing clinical research program was inves-
tigating trial therapies with a strong preclinical/clinical
rationale, were removed using TOPOGRAPH19 and anno-
tated as repurposing events with trial-level evidence. The
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TABLE 1 ProbeMiner identifies Food and Drug Administration (FDA)-approved drug-biomarker combinations.

Gene True positive False positive True negative False-negative Sensitivity Specificity Precision
CYP19A1 3 5 741 0 1 0.99 0.38
BCR 5 11 733 0 1 0.99 0.31
ALK 3 11 734 1 0.75 0.99 0.21
EGFR 5 9 735 0 1 0.99 0.36
BRAF 3 3 743 0 1 1.00 0.5
ROS1 3 8 738 0 1 0.99 0.27
ESR1 3 9 737 1 0.75 0.99 0.25
KIT 2 13 734 0 1 0.98 0.13
FGFR2 2 11 736 0 1 0.99 0.15
ERBB2 2 10 736 1 0.67 0.99 0.17
NTRK1 2 5 742 0 1 0.99 0.29
NTRK2 1 9 738 1 0.5 0.99 0.1
NTRK3 1 10 737 1 0.5 0.99 0.09
FLT3 2 14 733 0 1 0.98 0.13
PARP1 4 0 745 0 1 1 1
RET 1 17 731 0 1 0.98 0.06
MET 2 5 742 0 1 0.99 0.29
RARA 1 5 743 0 1 0.99 0.17

remaining mutations were classified as repurposing events
without trial-level evidence. Manual curation of remaining
mutations was performed by an oncologist (Malaka Amer-
atunga) and amedicinal chemist (Albert A. Antolin).Well-
known off-label drug-target interactions that are likely to
be recognisable by experts (based on literature review and
expert opinion) were annotated as off-label repurposing
events (Malaka Ameratunga and Albert A. Antolin) and
drug-target interactions which were not well-known were
annotated as novel repurposing events.

2.6 Exploratory functional analysis of
drug-target interactions

Although PM is designed to evaluate drug-target bind-
ing, it is not designed to predict the functional conse-
quences of this interaction. To evaluate whether prospec-
tive repurposing events are potentially functionally con-
sequential, public datasets downloaded from the Cancer
Dependency Map Project were explored.21–28 The Can-
cer Dependency Map Project builds upon the original
Cancer Cell Line Encyclopedia,29 which involved the
systematic molecular profiling of 1000 cell lines and
performed large-scale functional genomics profiling via
RNA-interference and CRISPR screens to identify genetic
functional dependencies. These cell lines had systematic
drug sensitivity profiling performed, via the PRISM repur-

posing project and/or the Genomics of Drug Sensitivity
Screens.11,21,22
Drug sensitivity data from the PRISM repurposing

project11 and genomics of drug sensitivity screen21,22
were cross-referenced against gene expression data23 and
CRISPR-gene dependency data.24 Drug-target combina-
tions identified by PM, for which a possible relationship
could be observed, were annotated. To evaluate the func-
tional consequences of potential repurposing events, target
gene expression23 and CRISPR dependency24 from the
Cancer Dependency Map Project were plotted against
drug sensitivity (log-fold change in cell viability or area
under the curve of a dose-response curve), from either
the Genomics of Drug Sensitivity Screens30 or the Broad
PRISM project11 for repurposing events identified by the
PM without trial level evidence.
To evaluate the validity of the above process for func-

tional drug-target interaction exploration for identified
novel repurposing events, the method was tested using
the FDA-approved drug-target database. The target gene
expression23 and CRISPR dependency24 from the Can-
cer Dependency Map Project were plotted against drug
sensitivity (log-fold change in cell viability), from either
the Genomics of Drug Sensitivity Screens30 or the Broad
PRISM project11 for all known FDA-approved drug-target
combinations (Table S1). An ANOVA was performed com-
paring the drug sensitivitywith gene expression orCRISPR
dependency data analysed by quartiles.
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TABLE 2 Demographics of patient cohort.

Age
Median age (range)—years 63 (29–86)
≥ 65 years—no. (%) 34 (36.2)
Tumour stream—no. (%) Total (n = 94)
Upper gastrointestinal 7 (7.4)
Hepatobiliary/Pancreas 22 (23.4)
Lower gastrointestinal 12 (12.8)
Breast 3 (3.2)
Genitourinary 6 (6.4)
Lung 5 (5.3)
Gynaecological 20 (21.3)
Brain 1 (1.1)
Melanoma/Skin 1 (1.1)
Head and neck 2 (2.1)
Sarcoma 0 (0.0)
Other 15 (16.0)
Tumour histology—no. (%)
Adenocarcinoma 61 (64.9)
Squamous cell carcinoma 4 (4.3)
Invasive ductal carcinoma 1 (1.1)
Sarcoma 1 (1.1)
Melanoma 1 (1.1)
Mesothelioma 1 (1.1)
Carcinoma 13 (13.8)
Carcinoid 2 (2.1)
Transitional cell carcinoma 1 (1.1)
Other 9 (9.6)
Biomarker Analysis—no. (%)
TMB-H 6 (6.4%)
MSI-H 0 (0%)

Abbreviations: MSI-H, microsatellite instability high; TMB-H, tumour muta-
tional burden high.

2.7 Evaluation of repurposable genome

The repurposable genome was defined as genes for which
a drug repurposing event could be identified by PM (i.e.
the genes with related data available in PM). This was
assessed in an automated approach without manual cura-
tion, to illustrate the potential of the repurposing approach.
First, the Uniprot accession indexed in PM was con-
verted to a corresponding Entrez ID and gene name. All
compounds indexed in PM per gene, with a PM global
score > 0.25, were cross-referenced against FDA-approved
therapeutics from the Drugs@FDA database (downloaded
on 6 May 2022), to only include FDA-approved drugs.
The top-ranked unique compounds (i.e. excluding com-
pounds with known gene targets in the FDA database)
were then collated with corresponding genes, to create the

total repurposable genome. The genes included in the total
repurposable genome were then evaluated for gene muta-
tions in The Cancer Genome Atlas (TCGA) pan-cancer
analysis of whole genomes dataset31 from Cbioportal.32,33
The TCGAdataset incorporates whole genome sequencing
data, as opposed to a targeted panel, thereby identifying
repurposing events at a greater frequency than the pri-
mary analysis. Due to the nature of the dataset, manual
curation for pathogenic GOF mutations and removal of
variants indexed in TOPOGRAPH were not performed.
All analysis was performed in R version 4.2.2. Drug-gene
combinations with a PM global score > 0.7 were further
analysed for potential functional drug-target interactions
using the above method.

3 RESULTS

3.1 Validation of probe miner accuracy
for FDA-approved medications

Of 67 drug-target combinations (small molecule
inhibitors) identified in the FDA Table of Pharma-
cogenomic Biomarkers in Drug Labelling, (Table S2), PM
identified 94% as targets, with a quantitative score ranging
from 0.19 (ivosidenib for IDH1) to 0.80 (ponatinib for
ABL1) (Table S2). Thirty drug-target combinations were
ranked in the top ten chemical probes by quantitative score
(45%), highlighting the performance of PM. PM includes
many chemical probes that are not licensed drugs as its
primary use is in chemical biology, so the performance for
this alternative use is significant. Highly selective small
molecule inhibitors consistently ranked higher than less
selective inhibitors (e.g. osimertinib ranked higher than
erlotinib for EGFR). Of the four drug-target combinations
missed by PM, one drug is rarely used (toremifene for
ESR1).
Quantification of the performance of PM for detecting

true drug-target interactions was performed. PM iden-
tified FDA-approved biomarker-drug combinations with
moderate-to-high sensitivity (range 0.5–1) and high speci-
ficity (range 0.99–1.00) (Table 1). The precision of PM was
demonstrably lower, possibly relating to the high threshold
used for true positives (i.e. if a drug-target interaction iden-
tified by PM is clinically efficacious but not FDA-listed, it
would be a false positive).

3.2 Patient demographics

Ninety-four patients’ NGS reports (September 2019 to May
2021) were reviewed. The median age of patients undergo-
ing NGS was 63 years (Table 2). Hepatobiliary/pancreatic
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WALPOLE et al. 7 of 14

F IGURE 2 Histogram of gain of function mutations (n = 180). Gain of function mutations included amplifications (blue),
non-synonymous single-nucleotide variants (green), fusions (orange) and other mutations (grey). Asterisk indicates mutations for which a
repurposing event was identified on Probeminer (n = 32).

cancers were most common (23.4%), followed by gynae-
cological (21.3%), lower gastrointestinal (12.8%) and upper
gastrointestinal cancers (7.4%) (Table 2). Other tumours
included carcinoma of unknown primary, anal, peri-
toneal and thyroid cancers. Histology was most commonly
adenocarcinoma (64.9%) followed by carcinoma (13.8%),
squamous cell carcinoma (4.3%) and carcinoid (2.1%)
(Table 2). Other histologies included papillary cancer,
small cell carcinoma, serous and mucinous cystadenocar-
cinoma and glioblastoma. No patients were microsatellite
instability-high (Table 2). A high tumour mutational bur-
den was found in 6.4% of patients (Table 2).

3.3 Mutations

Note that, 396 mutations were described from the 94
NGS reports, with 180 (45.4%) GOF mutations. The most
common type of GOF alteration was amplification (58.3%),
with genes most frequently affected including CCND1,
FGF3, FGF19, FGF4, MYC, ERBB2 and EGFR (Figure 1).
nsSNVs represented 35.6% of GOF mutations (Figure 1).
Genes most frequently altered were KRAS, TP53, BRAF,
PIK3CA and NRAS. The frequency of fusions was 3.3%
including TMPRSS2-ERG, HNRNPH1-ETV4, ESR1-

PLEKHG1 and TPM3-ROS1. Other alterations accounted
for 2.7%.

3.4 Drug repurposing

75 repurposing events were identified by PM, 80 by TOPO-
GRAPH and 50 by the Broad Institute DRH, which were
reduced to 32, 29 and 26, respectively, after removing
duplicates (Figure 2). Within PM, there were 21 repurpos-
ing events with trial-level evidence, 11 repurposing events
without trial-level evidence and four novel drug repurpos-
ing events (Figure 2). At a patient level, repurposing was
applied to mutations for which no FDA-approved ther-
apy or recruiting clinical trial was available (III). Thirteen
unique patients had an off-label gene event (i.e. the repur-
posing approach identified a gene target for which there
was no available clinical trial nationally).
Themost common types ofmutationswith probes found

in PM were nsSNV (46.7%) and amplifications (46.7%)
(Table 3, Figure 1). The most common gene involved in
nsSNV mutations was KRAS (25.3%), with KRAS G12D
being themost frequent. This was followed by BRAF (5.3%)
and PIK3CA (5.3%) mutations. In terms of amplifications
CCND1 (10.7%),CCNE1 (5.3%) andERBB2 (5.3%)weremost

 20011326, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ctm

2.1657 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [17/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 of 14 WALPOLE et al.

TABLE 3 Mutations with drug probes found in Probeminer.

Type of
mutation Mutated gene

Mutations
(N)

Mutations
(%)

NSSNV Total 35 46.7
AR 1
BRAF 4 5.3
EED 1
EPHA7 1
FLT4* 1
KIT 1
KRAS 19 25.3
MAP2K1 (MEK1) 1
PIK3C2G* 1
PIK3CA 4 5.3
RAF1 1

Amplification Total 35 46.7
AURKA* 1
CCND1 8 10.7
CCND3 1
CCNE1 4 5.3
CDK12 1
CDK4 2
CDK6 1
CDK8* 1
DNMT1 1
EGFR 5
ERBB2 4 5.3
ERBB3 1
FGFR3 1
FLT3 1
MDM2* 1
MPL 1
RARA 1

Other Total 1 1.3
MET 1

Fusion Total 4 5.3
TMPRSS2-ERG 3
TPM3-ROS1 1
Overall total 75

involved. A full list of mutations identified is included in
Table S3.

3.5 Novel drug repurposing events

Within the PM drug events, four novel repurposing
gene targets were found (Figures 3 and 4), with mul-
tiple candidate drugs, of which the top two candi-

F IGURE 3 Repurposing events. Unique repurposing events
identified via the three databases were evaluated for overlap as
indicated in the Venn diagram (top). The breakdown of these
repurposing events by trial-level evidence and degree of novelty
(bottom).

date repurposing events were evaluated. The aberrations
and the suggested drugs included: PIK3C2G R1034H
(midostaurin and lapatinib) and FLT4 V763M (axitinib
and tivozanib) mutations, AURKA amplification (axitinib)
and CDK8 amplification (sorafenib) (Table S3). To demon-
strate the validity of the drug-repurposing events identi-
fied by PM, a comprehensive literature search was per-
formed for the drug-target interactions considered novel.
Strong biochemical data supported drug-target interac-
tions in each case. For PIK3C2G-midostaurin, PIK3C2G-
lapatinib, FLT4-axitinib, FLT4-tivozanib, AURKA-axitinib
and CDK8-sorafenib experimental data demonstrating tar-
get selectivity was found.34–36 The potency was highest for
FLT4-tivozanib (0.2 nM) and lowest for PIK3C2G-lapatinib
(7500 nM). Overall, literature supporting each drug-target
interaction was demonstrated, with robust biochemical
data observable for all novel repurposing events.
Of the FDA-approved drug-target combinations, 55

had available drug sensitivity data, of which 23 (42%)
had a statistically significant relationship between gene
expression (n = 12) or gene dependency (n = 19) and drug
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WALPOLE et al. 9 of 14

F IGURE 4 CONSORT diagram of selection of novel drug repurposing events, patient level. 180 gain of function mutations were
identified across the cohort of patients, which represented 78 unique genes across 68 patients. Fourteen of these genes had the Food and Drug
Administration (FDA)-approved therapies available and a further 17 had active, locally available clinical trials evaluating this biomarker. Of
the 47 remaining mutations, 11 mutations (13 patients) had a repurposable drug identified by Probeminer or which four were considered novel.

sensitivity and 34 did not. Table 4 lists the FDA drug-target
combinations with statistically significant relationships
between expression or CRISPR gene-dependency data and
drug sensitivity and Figure 5A (top panels) demonstrates
violin plots of the drug sensitivity data for osimertinib.
Only eight drug-target combinations demonstrated a
statistically significant relationship between both gene
expression and CRISPR gene-dependency and drug sensi-
tivity, all of which were drugs targeting EGFR or ERBB2,
two of the best-characterised oncogenes. Table 4 lists all
FDA-approved drug-target combinations for which no

statistically significant relationship was found between
gene-expression/CRISPR gene-dependency data and drug
sensitivity.
The 11 repurposing events identified by PM (Figure 4)

without trial-level evidence underwent functional inter-
rogation by plotting target gene expression23 and CRISPR
dependency24 from the Cancer Dependency Map Project
against drug sensitivity (log-fold change in cell viability or
area under the curve of a dose-response curve), from either
the Genomics of Drug Sensitivity Screens30 or the Broad
PRISM project.11 A statistically significant increased drug
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TABLE 4 Food and Drug Administration (FDA)-approved
drug-target combinations with supportive functional data from the
Cancer Dependency Map Project.

*Genes with novel
drug repurposing
probes found

Target/Drug
combination

Gene
expression
and drug
sensitivity
p-value

CRISPR-
dependency
and drug
sensitivity
p-value

EGFR_afatinib .0025 .0000
EGFR_osimertinib .0250 .0000
ERBB2_neratinib .0000 .0000
ERBB2_tucatinib .0000 .0000
EGFR_dacomitinib .0000 .0000
EGFR_gefitinib .0004 .0000
ERBB2_lapatinib .0126 .0000
EGFR_erlotinib .0000 .0000
MAP2K1_cobimetinib .2454 .0073
BRAF_dabrafenib .8397 .0000
BCR_nilotinib .6058 .0127
PARP1_talazoparib .0000 .0914
BCR_dasatinib .9402 .0329
FGFR2_erdafitinib .3544 0.0138
MAP2K1_trametinib .7233 0.0117
PIK3CA_alpelisib .0747 .0000
RARA_tretinoin .0310 .5605
RET_cabozantinib .5788 .0461
ESR1_fulvestrant .7958 .0015
PARP1_niraparib .0000 .2605
CDK4_ribociclib .6047 .0248
PARP1_rucaparib .0359 .8725
BRAF_vemurafenib .3716 .0000
Total 12 19

Bold indicates target/drug combinations with both supporting gene expres-
sion and CRISPR-gene dependency data.

sensitivity was demonstrated with increased PIK3C2G
expression and lapatinib (p < .001), with ERBB3 expres-
sion (p < .0001) and ERBB3 gene-dependency (p < .0001)
with multiple drugs including dacomitinib. Violin plots
of the gene expression and gene dependency data for
dacomitinib-ERBB3 are shown in Figure 5B (bottom
panels).

3.6 Theoretical drug repurposing events

The total repurposable genomewas evaluated by analysing
all gene targets with a PM global score > 0.25 (from the
PM dataset) that were indexed as an approved therapeutic
in the Drugs@FDA database. All drug-gene combinations
found in this analysis are listed in Table S4. A total of

1968 theoretical repurposing events were identified. These
genes were evaluated for frequency of mutations in the
TCGA pan-cancer cohort31 to assess the frequency of
patients having possible mutations. 2142 out of 2922 (73%)
samples had a mutation in a gene that was categorised
as a theoretical repurposing event. Drug-gene combina-
tions with a PM global score > 0.7 were further analysed
to identify potentially functionally consequential repur-
posing events. Six repurposing events with supportive
functional data were found (Table 5 and Figure S1).

4 DISCUSSION

A biomarker-driven precision oncology approach is used
to enrich patient selection for clinical trials, however, trial
access issues limit the utility of this approach for real-world
patients. A drug repurposing approach, using established
drugs with known safety profiles, potentially mitigates
the limitations of the current paradigm. Traditional drug
repurposing relies upon serendipity andmore recently, sys-
tematic drug repurposing screens for drug identification.11
Combining genomic biomarker testing with an in sil-
ico approach utilising pre-screened gene-drug interaction
databases could enrich the identification of drugs for
repurposing to be formally tested in clinical trials. To
our knowledge, systematic repurposing based on off-target
interactions has not been applied in a clinical trial setting.
In this study, using a real-world dataset of NGS molecu-

lar reports, after demonstrating platform validation against
a gold standard of FDA-approved drugs with biomarker
indications, we showed that a meaningful (14%) per-
centage of patients would have an additional off-label
therapeutic identified by using computational drug repur-
posing. This compares favourably with the results of the
NCI-MATCH clinical trial, which found an actionable
alteration rate of 38%.37 As our computational drug repur-
posing excludes mutations that would confer eligibility
for local clinical trials (which is the more traditional
approach), this additional off-label therapeutic access is
particularly meaningful. Only 17% of patients with action-
ablemutations identified on the NCI-MATCH clinical trial
enrolled on a subsequent trial.7 Computational drug repur-
posing may substantially expand the number of patients
treatable with a biomarker-enriched approach including
those who are typically trial ineligible. Overall, a repur-
posing rate of 14% was consistent with our hypothesis
that computational drug repurposing may identify novel
therapeutic options for patients with no further access to
standard therapies.
Several exploratory analyses were conducted which

raised interesting findings that require further elucida-
tion. Firstly, several drug-target interactions that have been
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WALPOLE et al. 11 of 14

F IGURE 5 Gene expression and drug sensitivity. (A) Drug sensitivity for osimertinib (area under the curve of a dose-response curve)
according to EGFR expression (left) and EGFR gene dependency (right). (B) Drug sensitivity for dacomitinib (area under the curve of a
dose-response curve) according to ERBB3 expression (left) and ERBB3 gene-dependency (right). Asterisks indicate the results of t-tests
comparing the relevant quartile with the first quartile of gene expression/gene dependency: * p < .05, **p < .01, ***p < .001, ****p < .0001.

TABLE 5 Probe Miner identified (global score > 0.7)
repurposing drug-target combinations with supportive functional
data from the Cancer Dependency Map Project.

Target/
Drug combination

Gene
expression
and drug
sensitivity
p-value

CRISPR-
dependency
and drug
sensitivity
p-value

EPHB2_dasatinib .0079 .1454
FRK_dasatinib .0006 .9778
FKBP1A_sirolimus .0295 .0133
STK24_neratinib .0014 .1545
DDR2_nilotinib .5003 .0010
GSK3A_abemaciclib .0766 .0392

previously elucidated in the medicinal chemistry litera-
ture, but are not well known, were identified. Preliminary
exploratory functional analysis using publicly available
datasets suggested that further validation of these targets
may be warranted. Preclinical target validation is notori-
ously complex38 and whilst these results are interesting,
robust additional orthogonal validation is necessary to
make further conclusions on the functional consequences
of drug therapy.
As licensed therapies increase continually and only

11% of the kinome is currently characterised,14 success-
ful validations of this approach could potentially meet a
large unmet disease burden in oncology patients as the
genome is further characterised and extensive sequencing
is increasingly performed. To explore the theoretical drug
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repurposing genome, all genesmapped to compoundswith
a PM global score > 0.25 with a corresponding FDA-
approved therapeutic were evaluated for their frequency
on the TCGA pan-cancer dataset. Seventy-three per cent
of samples in this cohort would have a theoretical drug
repurposing event. This compares favourably with the
actionable alteration rate of 38% in the NCI-Match clin-
ical trial. Therefore, the application of a computational
repurposing approach based upon systematic off-target
interactions has the potential to drastically increase the
actionability of somaticmolecular alterations identified on
sequencing reports.
There are several limitations to this study. In the main

analysis, the curation of VUS is fraught with difficulty.
Extensive manual curation with a robust framework was
performed tominimise the risk ofmischaracterisingmuta-
tions. Additionally, as PM is predominantly based on
medicinal chemistry datasets that specifically assess drug-
target binding, the assumption that drug-target binding
results in meaningful anti-tumour activity is a large leap.
Mitigating this, we evaluated PM’s ability to identify
approved FDA therapies linked to a biomarker, demon-
strating high sensitivity (0.67–1.00) and specificity (0.99–
1.00). These results supported the validity of PM.Neverthe-
less, although strong inferences can be made about drug-
target binding from this dataset, any conclusions regarding
anti-tumour efficacy cannot be made. Moreover, these
drug-target interactionsmay not be tumor-agnostic and/or
valid for multi-drug-resistant cancers with efflux pumps.
Additionally, the drug repurposing carries inherent risks
including adverse events and risk of drug interactions and
does not offer a solution to the development of resistance
to existing therapies. Nevertheless, in silico functional pre-
dictions of the utility of known therapies offer a novel
strategy for rationally screening drug candidates to further
examine in confirmatory phase 2 clinical trials.
In the exploratory analysis, robust mechanistic explo-

ration of drug-target interactions was not performed. To
make conclusions regarding possible anti-tumour activity,
ideally in vitro cell viability assays with subsequent in
vivo validation would be performed. For the analysis
of the theoretically repurposable drug, the cut-off PM
global score of 0.25 was chosen as this was slightly greater
than the lower bound of the range of global scores of
FDA-approved therapies with known biomarkers. The
PM global score is a relative score per gene target and
using an absolute score of 0.25 as a cut-off is arbitrary.
Additionally, many mutations annotated in the TCGA
pan-cancer dataset are passenger alterations and do
not contribute to oncogenesis; the inclusion of such
genomics findings could explain the higher-than-expected
theoretical drug repurposing rate. Nevertheless, as the

genome is further characterised and new therapies are
approved these numbers will only increase and a large
baseline rate of theoretical drug repurposing events is
fundamentally supportive of further research in this
area.

5 CONCLUSION

We provide initial data demonstrating that in a real-world
cohort of patients sequenced with a targeted NGS panel,
14% of patients would have a possible, non-obvious drug
repurposing candidate identified using a computational
drug repurposing approach. With further study, this may
be able to translate to the use of already approved thera-
peutics off-label for these patients without the constraints
of clinical trials.
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