
UNIVERSITAT DE BARCELONA

FUNDAMENTAL PRINCIPLES OF DATA SCIENCE MASTER’S
THESIS

Machine Translation evaluation metrics
benchmarking: From traditional MT to

LLMs

Author:
Álvaro López

Supervisor:
Prof. Jordi Vitrià

A thesis submitted in partial fulfillment of the requirements
for the degree of MSc in Fundamental Principles of Data Science

in the

Facultat de Matemàtiques i Informàtica

June 30, 2023

http://www.ub.edu
https://github.com/AlvLC/Machine-Translation-evaluation-metrics-benchmarking
https://algorismes.github.io/
http://mat.ub.edu




iii

UNIVERSITAT DE BARCELONA

Abstract
Facultat de Matemàtiques i Informàtica

MSc
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LLMs

by Álvaro López

This thesis endeavors to cast a spotlight on the evolution and applicability of ma-
chine translation (MT) evaluation metrics and models, mainly contrasting statisti-
cal methods against the more contemporary neural-based ones, where we also give
special attention to the exciting modern Large Language Models (LLMs). MT, a sig-
nificant area in Natural Language Processing (NLP), has seen a vast metamorphosis
over the years, bringing into focus the critical need for thorough exploration of these
evolving systems.

Our research is anchored on the Digital Corpus of the European Parliament
(DCEP), a complex and multilingual corpus that makes it an ideal testbed to bench-
mark MT models given its comprehensive and diversified linguistic data. Through
the use of this extensive corpus, we aim to present a comprehensive benchmarking
of various selected MT models, encapsulating not just their evolution but also their
performance dynamics across different tasks and contexts.

A vital facet of our study includes evaluating the relevance and reliability of var-
ious MT metrics, such as the old BLEU, METEOR, CHRF, along with newer neural-
based metrics which promise to capture semantics more effectively. We aim to un-
cover the inherent strengths and limitations of these metrics, consequently guiding
the choice of appropriate metrics for specific MT contexts for future practitioners
and researchers.

In this holistic examination, we will also propose to analyze the interplay be-
tween model selection, evaluation metric, and translation quality. This thesis will
provide a novel lens to understand the idiosyncrasies of various popular MT mod-
els and evaluation metrics, ultimately contributing to more effective and nuanced
applications of MT.

In sum, this exploration promises to furnish a new perspective on MT evaluation,
honing our understanding of both the models’ and metrics’ evolutionary paths, and
providing insights into their contextual performance on the DCEP corpus, creating
a benchmark that can serve the broader MT community. The insights derived aim to
significantly contribute to the latter.

The reader can find all the code, used for the text pre/postprocessing and eval-
uation of the models and metrics at play along with other intermediate matters,
published publicly in our GitHub repository.

HTTP://WWW.UB.EDU
http://mat.ub.edu
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Chapter 1

Evolution and state of the art

1.1 Machine translation models

Machine translation (MT) has seen tremendous evolution since its inception. From
rule-based systems to modern neural approaches, the journey of machine translation
is a testament to the advances in AI and computational linguistics.

1.1.1 Traditional Machine Translation

The initial models for machine translation were rule-based systems, also known as
Rule-Based Machine Translation (RBMT). This approach began in the 1950s and
extended until the 1980s. It relied heavily on the linguist to define grammar and
vocabulary rules for the source and target languages. The system would then use
these rules to translate from one language to another.

There were two main types of RBMT:

• Direct Translation: This was the simplest form, mainly used for closely related
languages. It would translate word-by-word, often leading to inaccurate and
unnatural translations due to differences in syntax and grammar.

• Transfer-based Translation: This method was more sophisticated, involving a
three-step process of analyzing the source language, transferring the meaning,
and then generating the target language. It required an extensive knowledge
base and rules for each language pair, making it resource-intensive and limited
to specific language pairs.

Rule-Based Machine Translation (RBMT) systems, the first generation of MT
systems, were heavily dependent on linguistic rules and dictionaries. While
there are numerous contributions to this field, one can refer to a paper like
“The first public demonstration of machine translation: the Georgetown-IBM
system, 7th January 1954”(Hutchins, 2004) for historical perspective. This pa-
per highlights one of the earliest endeavors in machine translation which was,
indeed, largely rule-based.

1.1.2 Statistical Machine Translation (SMT)

From the late 1980s onwards, a new approach known as Statistical Machine Trans-
lation (SMT) started gaining attention. SMT used statistical models to generate
translations, based on the analysis of bilingual text corpora and thanks to the ad-
vent of more computational power. Unlike RBMT, SMT did not need predefined
grammatical rules and could learn them from the data.

Models such as Bilingual Dictionary Induction (BLI) were some of the most
simple methods that are described as SMT. In this case, you’re statistically inferring
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the alignment between words in two languages based on the proximity of their em-
beddings in the vector space (you can model the transformation from one language
vector embedding space to the other as a linear map and then perform a KNN or
approximated KNN). Obviously, this neglects any kind of context.

The most popular SMT approach was Phrase-Based Machine Translation (PBMT),
introduced in the paper “Statistical Phrase-Based Translation.”(Koehn, Och, and
Marcu, 2003). Instead of translating word-by-word, PBMT would translate whole
phrases, which could be more than one word. This made translations more context-
aware and natural-sounding.

However, SMT had its shortcomings, including difficulty dealing with long sen-
tences due to its inability to retain long-term dependencies and its limited capacity
to handle the nuances of natural language.

1.1.3 Neural Machine Translation (NMT)

Around the mid-2010s, the emergence of Deep Learning (DL) brought about a new
booming era for many branches of Data Science and AI. To name a few: The in-
vention of the dropout mechanism as a way to combat overfitting (Srivastava et al.,
2014), the creation of the ADAM stochastic optimization algorithm (Kingma and Ba,
2014), the birth and success of (Deep) Reinforcement Learning (Mnih et al., 2013) and
GANs (Goodfellow et al., 2014), as well as the advancement of Image Classification
with the Deep CNNs (Krizhevsky, Sutskever, and Hinton, 2012).

Of course, the DL revolution led to a new era in machine translation: Neural
Machine Translation (NMT). NMT models use neural networks to predict the like-
lihood of a sequence of words, typically modeling entire sentences in a single inte-
grated model. They are capable of learning complex patterns and capturing long-
distance dependencies in the text.

• Recurrent Neural Network (RNN)-based NMT: The initial NMT models were
based on recurrent neural networks, specifically the Long Short-Term Mem-
ory (LSTM) architecture. LSTM helped mitigate the vanishing gradient prob-
lem of traditional RNNs, allowing the model to learn longer sequences and
dependencies.

The Sequence-to-Sequence (Seq2Seq) model (Sutskever, Vinyals, and Le, 2014)
was a popular application of RNNs in NMT, where one RNN (encoder) would
encode the source sentence into a context vector, and another RNN (decoder)
would decode that vector into the target sentence.

The addition of an attention mechanism improved this approach by allowing
the model to focus on different parts of the input sequence when generating
each word in the output sequence, greatly improving the quality of transla-
tions.

• Transformer-based NMT: Transformers, introduced in the paper “Attention Is
All You Need”(Vaswani et al., 2017), marked a significantly huge advance in
NMT. They replaced recurrence with self-attention and positionally-encoded
inputs, allowing parallelization and capturing dependencies irrespective of
their distance in the sentence. In other words, they leverage self-attention
mechanisms and avoid recurrence entirely, leading to significantly improved
efficiency. This architecture is the basis of most state-of-the-art MT systems to-
day and we will explain it in with more detail in the next chapter along with
the specific models we will use.
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Large language models (LLMs), mostly based on the Transformer architec-
ture, have shown remarkable performance across a range of tasks, including
translation. Pretraining a language model on a large corpus of text and then
fine-tuning it on a specific task (including machine translation) has shown im-
pressive results. This has led to some "early" successful examples such as:

– BERT (Bidirectional Encoder Representations from Transformers): BERT
(Devlin et al., 2019) marked a shift in NLP by using bidirectional trans-
formers and a masked language model training objective. It learns to
predict words in a sentence given the context from both sides.

– GPT (Generative Pretrained Transformer) models: OpenAI’s GPT “Im-
proving language understanding by generative pre-training”(Radford et
al., 2018) and its follow-up paper on GPT-2 “Language models are un-
supervised multitask learners”(Radford et al., 2019) outline the develop-
ment and capabilities of the GPT models. These models are trained to
predict the next word in a sentence, allowing them to generate remark-
ably human-like text. Unlike Bert, GPT is a left-to-right model (generates
text from left to right, one token at a time). That is, a sequential model that
processes the input text in a left-to-right fashion, predicting the next to-
ken based on the preceding context and it is primarily used for generation
tasks.

– T5 (Text-to-Text Transfer Transformer): The T5 model (Raffel et al., 2019),
developed by Google, reframes all NLP tasks as a text generation prob-
lem and has been shown to perform well on a variety of tasks, including
translation. The T5 architecture is also based on the Transformer model,
specifically the "encoder-decoder" structure which is commonly used in
many NLP tasks. However, unlike traditional usage, T5 uses the encoder-
decoder structure even for tasks that are typically solved with an encoder
or decoder alone (which is the case for the other LLMs mentioned).

1.1.4 State of the art

SOTA models/techniques

The current state-of-the-art in machine translation includes advanced transformer
models and various techniques that enhance their capabilities. These include:

• Multilingual NMT: These models can handle multiple languages, often in a
many-to-many fashion. They have been shown to improve translation qual-
ity, particularly for low-resource languages, by learning to share information
between different languages. Facebook AI introduced the "M2M-100 model"
(Fan et al., 2020), which can directly translate between 100 languages without
using English as a pivot.

• Zero-shot Translation: This refers to translating between language pairs that
the model has never seen during training. This is often achieved with multi-
lingual models, and although it’s not perfect, the results are surprisingly good
and getting better.

• Fine-tuning: Techniques like transfer learning and fine-tuning are commonly
used to adapt pre-trained models to specific translation tasks, often improv-
ing performance substantially. They are significant aspects of Large Language
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Models (LLMs) like OpenAI’s GPT-3. These models are first pre-trained on a
large corpus of text data and then fine-tuned for a specific task such as transla-
tion. The paper “Language Models are Few-Shot Learners”(Brown et al., 2020)
provides insights into the capabilities of GPT-3 and how it can be used for
various NLP tasks, including translation, with minimal task-specific training
data.

• Domain-specific Models: For certain professional fields like law, medicine,
or engineering, domain-specific models are trained on specialized datasets to
handle the complex jargon and structures used in these areas.

• Quality Estimation: An emerging area of research involves predicting the
quality of machine translations automatically. This can help users understand
the reliability of a translated text and has various applications.

Private Industry Models

Even though ChatGPT (one of the models we will use for the berchmarking), the
successor of InstructGPT (Ouyang et al., 2022), can still be pretty competitive with
commercial translation products on high-resource European languages such as Ger-
man/English, it still falls behind on low-resource or distant languages (Liu et al.,
2023; Hendy et al., 2023). Its zero-shot translation capabilities are still impressive,
nonetheless. Other GPT-3.5 series perform similarly but at least are publicly avail-
able for fine-tuning under payment, unlike ChatGPT/gpt3.5-turbo (its engine).

Here, see “Findings of the WMT 2022 Shared Task on Translation Suggestion”(Yang
et al., 2022), we encounter a huge paywall in the development of state-of-the-art
NMT models due to the scale of the latter and the comercial interests at play: The
Google translator, DeepL translator, Microsoft translator (Azure cognitive transla-
tor), Tencent translator...

For example, in this last paper of the World Machine Translation (WMT) 2022
event on the second edition of the shared task on chat translation: "The joint sub-
mission of Beijing Jiaotong University and WeChat achieved state of the art on the
specific test set with an ensemble of deep Transformer models with 20 layers of
encoder and 10 layers of decoder. Their models are firstly trained on the training
corpora provided by the general track of WMT 2022. They are then fine-tuned on
the training data of the chat translation track of WMT 2020 with several strategies
to incorporate the potential context including the multi-encoder framework, speaker
tag, and prompt-based fine-tuning (otherwise known as prompt engineering, useful
for few-shot learning, where the model is provided with a few example inputs and
outputs during inference to help it understand the task. By designing the prompts
used in these examples carefully, we can often significantly improve performance).
Regarding the size of their models, the authors report numbers that vary from 6.075
Billion to 6.881 Billion parameters."

The open-source and/or public versus private war in the LLM (and by extension,
the NMT) world is being waged right now and no one is sure but there are two clear
facts to consider:

1. Industry races ahead of academia, precisely since the DL boom. Thus, research
tends to become private at least in the short-term (see Figure 1.1: "Until 2014,
most significant machine learning models were released by academia. Since
then, industry has taken over. In 2022, there were 32 significant industry-
produced machine learning models compared to just three produced by academia.
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Building state-of-the-art AI systems increasingly requires large amounts of
data, computer power, and money—resources that industry actors inherently
possess in greater amounts compared to nonprofits and academia.").

2. LLMs are getting bigger and more expensive and this is a huge threshold for
many research teams without the appropiate resources (see Figure 1.2: "GPT-
2, released in 2019, considered by many to be the first large language model,
had 1.5 billion parameters and cost an estimated $50,000 USD to train. PaLM,
one of the flagship large language models launched in 2022, had 540 billion
parameters and cost an estimated $8 million USD—PaLM was around 360
times larger than GPT-2 and cost 160 times more. It’s not just PaLM: Across
the board, large language and multimodal models are becoming larger and
pricier.").

FIGURE 1.1: Extracted from AI Index Report, Chapter 1: Research and
Development.

FIGURE 1.2: Extracted from AI Index Report, Chapter 1: Research and
Development.

1.2 Machine translation evaluation metrics

The evolution of machine translation (MT) evaluation metrics follows the evolution
of MT systems themselves, transitioning from simple statistical models to complex
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neural models. The major goal has always been to correlate as much as possible with
human judgment.

1.2.1 Automatic Metrics development

If we go back in time, an assessment using automated metrics offers several huge
advantages over human-conducted evaluations, namely speed, reproducibility, and
cost-effectiveness. This is particularly relevant when evaluating machine translation
systems. For human evaluations, the ideal scenario would involve proficient transla-
tors, but sourcing such experts for many language pairs poses significant challenges
due to their scarcity.

The requirement for large-scale and rapid manual evaluations, essential for as-
sessing new systems in the rapidly evolving field of machine translation, often proves
impractical. Consequently, automatic evaluation methods have gained prominence
as a highly active and productive research area for over two decades.

Although BLEU (Papineni et al., 2002) remains the most widely used evaluation
metric, numerous superior alternatives have emerged, rendering BLEU somewhat
antiquated. Since 2010, researchers have proposed more than 100 automatic metrics
aimed at enhancing machine translation evaluation.

I will present the most popular metrics that serve as viable alternatives or com-
plementary measures to BLEU and are SOTA. I will however, reserve the in-depth
explanation for some of them as I will be providing it in the next chapter since we
will use them in our work.

These metrics are categorized as either traditional or neural, each offering dis-
tinct advantages.

The majority of automatic metrics used for evaluating machine translation typi-
cally require the following:

• The translation hypothesis generated by the machine translation system for
evaluation.

• At least one reference translation produced by humans.

• Occasionally (mostly for some neural SOTA metrics as we will see), the source
text translated by the machine translation system.

Both the translation hypothesis and the reference translation are translations of
the same source text.

The objective of an automatic metric is to provide a score that represents the prox-
imity between the translation hypothesis and the reference translation. A smaller
distance indicates that the system’s translation is closer to human quality.

Typically, the absolute score returned by a metric alone lacks interpretability. It
is primarily utilized for ranking machine translation systems, where a better score
denotes a superior system.

In the paper “Scientific Credibility of Machine Translation Research: A Meta-
Evaluation of 769 Papers”(Marie, Fujita, and Rubino, 2021) (Marie et al., 2021), it
was observed that "nearly 99% of research papers on machine translation rely on
the automatic metric BLEU to evaluate translation quality and rank systems (see
Figure 1.3). However, over the past 12 years, more than 100 alternative metrics have
been proposed." It’s worth noting that this analysis focused only on research papers
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FIGURE 1.3: "Percentage of papers using each evaluation metric per
year. Metrics displayed are used in more than five papers." Extracted

from (Marie, Fujita, and Rubino, 2021).

FIGURE 1.4: "Percentage of papers copying scores from previous
work (Copied scores), using SacreBLEU (SacreBLEU), and copying
scores without using SacreBLEU (“Copied w/o SacreBLEU”)" Ex-

tracted from (Marie, Fujita, and Rubino, 2021).

published from 2010 by the ACL, suggesting that even more metrics may exist for
evaluating machine translation.

Many of those aforementioned metrics have demonstrated superior performance
compared to BLEU, but they have not been widely utilized. In fact, only two of these
metrics (RIBES and chrF) have been employed in more than two research publica-
tions, out of the 700+ publications analyzed. Despite the availability of newer met-
rics, the most frequently used metrics since 2010 are those proposed prior to 2010,
namely BLEU, TER, and METEOR.

Moreover, as pointed out by Figure , "An MT paper may compare the automatic
metric scores of proposed MT systems with the scores reported in previous work.
This practice has the advantage to save the time and cost of reproducing competing
methods . . . Copying scores (mostly BLEU) from previous work was rarely done
before 2015 but in 2019 and 2020 nearly 40% of the papers reported on comparisons
with scores from other papers. While many papers copied and compared metric
scores across papers, it is often unclear whether they are actually comparable."

Anyways, most of the metrics created after 2016 are neural metrics that rely on
neural networks and the most recent ones even rely on the very popular pre-trained
LLMs. In contrast, traditional metrics published earlier can be more simple and
cheaper to run. They remain extremely popular for various reasons, and this popu-
larity doesn’t seem to decline, at least in the research domain.

Let’s now present some of those metrics. Those being the most popular, original
and showing of their correlation with human evaluation (don’t forget that we are
reserving the detailed explanations for some of them in the next chapter).
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1.2.2 Traditional metrics

Traditional metrics for evaluating machine translation are designed to measure the
similarity between two strings based solely on the characters they comprise. These
strings are typically the translation hypothesis and the reference translation. It is
worth noting that traditional metrics do not take advantage of the source text that
was translated by the system.

One widely used traditional metric, WER (Word Error Rate), served as the pre-
cursor to BLEU, which eventually gained prominence in the early 2000s. WER is
the minimum number of operations needed to transform a system output into a ref-
erence. PER (Position-independent word Error Rate) is a variant of WER which
disregards word order. However, both WER and PER are not very suitable for MT
evaluation because of their insensitivity to minor changes that can significantly alter
translation quality.

However, traditional metrics do have some advantages:

• Low computational cost: Traditional metrics leverage efficient string-matching
algorithms operating at the character and/or token levels. While certain met-
rics may require token shifting, which can be more computationally intensive,
their calculations are easily parallelizable and do not necessitate GPU usage.

• Explainable: Computing scores for traditional metrics is generally straightfor-
ward, even for small segments, facilitating analysis. However, it is important
to note that "explainable" does not equate to "interpretable." While we can pre-
cisely explain how a metric score is derived, the score alone usually does not
provide meaningful insights into the translation quality.

• Language independent: With a few exceptions, most traditional metric algo-
rithms can be applied regardless of the language being translated.

While the disadvantages are clear:

• Poor correlation with human judgments: The primary drawback of tradi-
tional metrics lies in their limited ability to align with human evaluations. To
obtain the most accurate assessment of translation quality, traditional metrics
should not be solely relied upon.

• Require specific preprocessing: Except for the chrF metric, all the traditional
metrics discussed will necessitate tokenized evaluated segments and their cor-
responding reference translations. The tokenization process is not integrated
into the metric itself and must be performed separately using external tools.
Consequently, the obtained scores are dependent on a particular tokenization,
which may not be reproducible.

Evolution and examples

1. BLEU (Bilingual Evaluation Understudy): This is the most popular metric.
It is used by almost 99% of machine translation research publications. In-
troduced in “BLEU: a Method for Automatic Evaluation of Machine Trans-
lation”(Papineni et al., 2002), it was a major advancement in MT evaluation.
BLEU compares n-grams of the machine-generated text (translation hypothe-
sis) to that of a human-generated reference text and returns a score between 0
and 1. We won’t analyze it any further for now.



1.2. Machine translation evaluation metrics 9

2. NIST: The NIST metric is an extension of BLEU, developed around 2002. It
uses a similar n-gram precision method but introduces a few improvements. It
gives more weight to less frequent n-grams and includes a brevity penalty like
BLEU but calculates it differently. NIST is more computationally intensive but
sometimes preferred due to its more nuanced approach.

3. METEOR: METEOR, proposed in “METEOR: An automatic metric for MT
evaluation with high levels of correlation with human judgments”(Lavie and
Agarwal, 2007), extends upon BLEU and NIST. It introduces recall into the
equation and includes various levels of linguistic analysis (stemming, syn-
onymy, and paraphrasing). METEOR shows a stronger correlation with hu-
man judgment but is more computationally intensive.

4. RIBES (Rank-based Intuitive Bilingual Evaluation Score): It was introduced
in “Automatic Evaluation of Translation Quality for Distant Language Pairs”(Isozaki
et al., 2010) and it was designed for language pairs with different sentence
structures, penalizing incorrect word order.

5. TER (Translation Edit Rate): Introduced in the paper “A study of translation
edit rate with targeted human annotation”(Snover et al., 2006). It measures the
effort required for human translators to post-edit machine translations. TERp
incorporates a paraphrase database, and HTER compares machine transla-
tions to their post-edited versions by humans.

6. CharacTER: It is a character-level variant of TER (Wang et al., 2016), normal-
izing the edit distance by the length of the translation hypothesis. It shows
high correlation with human evaluation but is less commonly used as we can
expect.

7. chrF(++): “chrF: character n-gram F-score for automatic MT evaluation”(Popovic,
2015) is the second most popular metric for machine translation evaluation and
has been shown to better correlate with human judgment than BLEU. chrF is
tokenization independent and relies solely on characters, while chrF++ takes
word order into account but is tokenization dependent (see next Chapter).

1.2.3 Neural metrics

Neural metrics differ significantly from traditional metrics as they employ neural
networks to estimate translation quality scores. The first neural metric, ReVal (Gupta,
Orasan, and Genabith, 2015), was introduced in 2015, and since then, new neural
metrics have emerged regularly for machine translation evaluation. However, de-
spite their superiority, neural metrics have not gained widespread popularity, with
traditional metrics remaining dominant in the research community (although this is
starting to change this last year, we must say).

Their advantages:

• Better correlation with human evaluation: Neural metrics are considered state-
of-the-art in assessing machine translation quality, exhibiting strong alignment
with human judgments.

• No preprocessing is required: Recent neural metrics, like COMET (Rei et al.,
2020) and BLEURT (Sellam, Das, and Parikh, 2020), handle preprocessing inter-
nally, eliminating the need for additional tokenization or other preprocessing
steps.
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• Better recall: Neural metrics leverage embeddings to reward translations that
closely match the reference, even if not exact. This flexibility allows for recog-
nition of semantically similar translations, unlike traditional metrics that rely
on exact matches.

• Trainable: Most neural metrics can be fine-tuned with specific training data,
enhancing their ability to correlate with human judgments when tailored to a
particular use case.

Their disadvantages:

• High computational cost: Neural metrics, while not necessarily requiring a
GPU, exhibit significantly slower computation times compared to traditional
metrics. Metrics relying on large language models may also demand substan-
tial memory. Additionally, statistical significance testing becomes computa-
tionally expensive.

• Unexplainable (interpretability): The complex nature of neural models, with
millions or billions of parameters, makes it challenging to understand the rea-
sons behind specific metric scores. Efforts to improve the explainability of neu-
ral models are actively pursued in research.

• Difficult to maintain: Older implementations of neural metrics may become
incompatible due to changes in nVidia CUDA or frameworks like (py)Torch
and TensorFlow. It raises concerns about the long-term viability and sustain-
ability of neural metrics.

• Lack of reproducibility: Neural metrics typically involve numerous hyper-
parameters, often underspecified in scientific publications. Consequently, re-
producing specific scores for a given dataset becomes challenging, hindering
reproducibility efforts.

Overall, while neural metrics offer advantages in correlation with human eval-
uation and require minimal preprocessing, their drawbacks include high computa-
tional costs, limited explainability, maintenance challenges, and issues with repro-
ducibility. However, their superiority is unmatched and, as we will discuss later,
that’s why the landscape is starting to change in this sense.

Evolution and examples

1. REVAL (Recurrent Embeddings for Validation): Introduced in “ReVal: A
Simple and Effective Machine Translation Evaluation Metric Based on Recur-
rent Neural Networks”(Gupta, Orasan, and Genabith, 2015), it is the first neu-
ral metric proposed to evaluate machine translation quality. It leveraged Re-
current Neural Networks (RNNs), LTSM to be specific, to encode source and
target sentences into vector representations, considering the sequence of words
rather than just n-grams. The encoded vectors were then compared to give a
measure of the translation quality. This marked a major shift in MT evalua-
tion by using neural networks to capture deeper linguistic features. It is now
outperformed by more recent metrics.

2. YiSi: Proposed by (Lo, 2019), YiSi-1 is a semantic MT evaluation metric that
uses Word2Vec embeddings to compute cosine similarity between source and
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reference sentences. Unlike ReVal, YiSi-1 uses a universal multilingual seman-
tic space, which means that it is not restricted to specific language pairs. It also
introduces a novel alignment approach, which is more reliable in assessing
semantic similarity.

3. BERTScore: Introduced by (Zhang et al., 2019), BERTScore leverages the power
of BERT, a transformer-based contextual embedding model. It computes
token-level F1-scores using BERT embeddings, capturing the context of words
in sentences and providing more nuanced scoring. BERTScore has been shown
to correlate well with human judgment across different tasks and datasets.

4. BLEURT (BLEU plus a Usable Readability metric Tuned): Proposed by Google
Research in “BLEURT: Learning Robust Metrics for Text Generation”(Sellam,
Das, and Parikh, 2020), BLEURT uses BERT embeddings to learn a metric
based on human judgments of translation quality. The model is trained to
predict human ratings on a large dataset of sentence pairs, leading to a metric
that is highly correlated with human judgment.

5. PRISM (Predictive Ratings and Informed Metric of Semantics): Introduced
by Facebook AI in “PRISM: Concept-preserving Summarization of Top-K So-
cial Image Search Results”(Seah, S Bhowmick, and Sun, 2015), it highlights
the similarity between machine translation and paraphrasing evaluation tasks.
The authors argue that the only difference lies in the source language. Prism is
trained on a large multilingual parallel dataset using a neural machine trans-
lation framework.

During inference, Prism serves as a zero-shot paraphraser to score the similar-
ity between a source text (translation hypothesis) and a target text (reference
translation) in the same language. Notably, Prism does not require human
evaluation training data or paraphrasing training data, making it advanta-
geous in terms of simplicity and training convenience. The metric’s effective-
ness appears promising, surpassing many other metrics, including BLEURT.

6. COMET (Crosslingual Optimized Metric for Evaluation of Translation): Pro-
posed by Unbabel in “COMET: A Neural Framework for MT Evaluation”(Rei
et al., 2020), COMET (Rei et al., 2020) presents a supervised approach to ma-
chine translation evaluation, utilizing a large language model (XLM-RoBERTa)
but noting that other models like BERT could also be employed. Unlike many
other metrics, COMET leverages the source sentence, fine-tuning the lan-
guage model on a triplet of data comprising the translated source sentence,
translation hypothesis, and reference translation (see Figure ??))

The metric is trained using human ratings, similar to those used by BLEURT.
Notably, COMET offers a simpler training process compared to BLEURT, as it
does not require the generation and scoring of synthetic data.

COMET has been shown to correlate well with human evaluations and to cap-
ture semantic meaning, making it a promising tool for MT evaluation (we will
be using its newest version COMET-22 in our evaluations).
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FIGURE 1.5: "Estimator model architecture. The source, hypothesis
and reference are independently encoded using a pretrained cross-
lingual encoder. The resulting word embeddings are then passed
through a pooling layer to create a sentence embedding for each
segment. Finally, the resulting sentence embeddings are combined
and concatenated into one single vector that is passed to a feed-
forward regressor. The entire model is trained by minimizing the

Mean Squared Error (MSE)." Extracted from (Rei et al., 2020).

1.2.4 State of the art

Machine translation evaluation is a very active research area. Neural metrics are get-
ting better and more efficient every yearas we’ve seen in combination of transformer-
based powerful models. Yet, traditional metrics such as BLEU remain the favorites
of machine translation practitioners, mainly by habits.

The title of this WMT says it all: “Results of WMT22 Metrics Shared Task: Stop
Using BLEU - Neural Metrics Are Better and More Robust”(Freitag et al., 2022). It
published a ranking of evaluation metrics according to their correlation with human
evaluation that we can see in Figure 1.6.

COMET and BLEURT rank at the top while BLEU appears at the bottom and
others like METRICX XXL seem to be poorly documented. We will be explaining
and using COMET-22 as well as other SOTA metrics we’ve introduced in this long
evolution and SOTA overview of both the models and metrics.

In Chapter 2, we will review the theoretical foundations for some of the concepts
that have already come up, before we proceed with the set-up of our benchmarking.
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FIGURE 1.6: "Official ranking of all primary submissions of the
WMT22 Metric Task. The final score is the weighted average ranking
over 201 different scenarios. Metrics with * are reference-free met-

rics." Extracted from (Freitag et al., 2022).
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Chapter 2

Theoretical foundations of our
models and metrics

2.1 Attention is all you need

2.1.1 History and Origin

The Transformer model was first introduced in the paper “Attention Is All You
Need”(Vaswani et al., 2017), published at the Neural Information Processing Sys-
tems (NIPS) conference. The authors belonged to the Google Brain team. As we
have already been able to seen, the model revolutionized the field of natural lan-
guage processing (NLP) by introducing the idea that attention mechanisms could
entirely replace recurrent networks for sequence modeling tasks.

2.1.2 Concept and Architecture

The main innovation in the Transformer model is the attention mechanism, which
has primarily two types: self-attention (also known as intra-attention) and multi-
head attention.

Self-attention allows the model to focus on different words in the input sequence
when generating each word in the output sequence, giving it the ability to gener-
ate more contextually relevant translations. The model assigns more attention (i.e.,
weight) to the more important words and less to the less important ones.

Multi-head attention allows the model to focus on information from different
positions at the same time, enabling it to capture various aspects of the sentence’s
structure, like syntax and semantics, at multiple levels of abstraction.

The Transformer model consists of an encoder and a decoder, both of which are
composed of multiple identical layers. Each layer has two sub-layers in the encoder
and three sub-layers in the decoder.

Here is a simplified diagrammatic representation (see Figure 2.1):

• Encoder:

– Multi-head self-attention mechanism

– Position-wise fully connected feed-forward network

• Decoder:

– Multi-head self-attention mechanism

– Multi-head attention over the output of the encoder stack

– Position-wise fully connected feed-forward network
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FIGURE 2.1: The transformer architecture. Extracted from Deep Dive
into DL.

Before the sequences are fed into the encoder and decoder, they pass through an
initial embedding layer. This layer transforms the discrete tokens into continuous
embeddings, allowing the model to learn a more expressive representation of the
inputs.

Both the encoder and decoder are supplemented with position-wise feed-forward
networks and residual connections, followed by layer normalization. The feed-
forward network consists of two linear transformations with a ReLU activation in
between, while the residual connections help in avoiding the vanishing gradient
problem.

2.1.3 The layers inside the Transformer

While we won’t enter into a complete mathematical description or don’t even have
the need to in order to understand the key concepts behind Transformers, here are
some further details:

1. Input Embedding: The input tokens are transformed into vectors through
learned embeddings. The vectors are then scaled by a factor of

√
dmodel , where

dmodel is the dimension of the model. A positional encoding is added to these
embeddings to retain the order of the words in the sequence.

2. Scaled Dot-Product Attention: The attention score between a query and a key
is computed as their dot product, scaled by

√
dk, where dk is the dimension of
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the key. This score determines how much focus to place on different parts of
the input sequence.

3. Multi-Head Attention: This concept allows the model to jointly attend to in-
formation at different positions from different representational spaces. This
is done by performing the scaled dot-product attention in parallel (h times,
where h is the number of heads), each with different learned linear transfor-
mations of the original queries, keys, and values.

This way, the attention function can be described as:

Attention(Q, K, V) = so f tmax(QKT/
√

dk))V

where Q is the matrix of queries, K is the matrix of keys, V is the matrix of val-
ues, and ’T’ denotes transpose. The softmax function ensures that the weights
sum to 1, and the

√
dk in the denominator is a scaling factor that leads to more

stable gradients.

In practice, the model uses multiple attention heads. As we just commented,
for each of these heads, the queries, keys, and values are independently lin-
early projected h times with learned parameters. This multi-head attention is
what allows the model to focus on different types of information.

4. Feed-Forward Networks: Each position in the encoder and decoder’s input
and output is transformed using a separate feed-forward network.

5. Output Linear layer and Softmax: The decoder output is projected to the out-
put vocabulary’s dimension using a linear layer and softmax function to pro-
duce a probability distribution over the output vocabulary.

2.2 Selected Models

Now that we know how Transformers work, we will learn about the types of models
we will be using later and their peculiarities.

2.2.1 T5

T5, which stands for "Text-to-Text Transfer Transformer," is a model introduced by
Google Research in a paper titled Exploring the Limits of Transfer Learning with a Uni-
fied Text-to-Text Transformer(Raffel et al., 2019).

The authors proposed to treat every NLP task as a "text-to-text" problem, and
demonstrated that a unified approach can be used across different tasks with com-
petitive performance. This means that tasks like translation, summarization, and
question answering are all approached in a similar way: the model is provided with
text as input and generates text as output.

Here’s a more detailed look at the architecture and the specific components of
the T5:

1. Model Architecture:

The underlying architecture of T5 is similar to the original Transformer model
we have just reviewed with a slight change: it employs a denoising autoen-
coder structure. The input sequence is corrupted by replacing some tokens
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FIGURE 2.2: "The pretraining, fine-tuning, and evaluating steps" Ex-
tracted from Collin Raffel video.

(15% of the input tokens) with a mask token, and the model then learns to
recover the original, uncorrupted text.

The architecture includes an encoder and a decoder, each consisting of a stack
of identical layers. Each layer in the encoder has two sub-layers: a multi-head
self-attention mechanism, and a position-wise fully connected feed-forward
network. The decoder also has two sub-layers like the encoder, plus an addi-
tional third sub-layer which performs multi-head attention over the output of
the encoder stack.

2. Task-Specific Prefixes:

T5 uses a unique approach to handle different tasks. It introduces task-specific
prefixes to the input sequences to guide the model’s prediction. For example,
if we are doing translation from English to French, the input might start with
the text "translate English to French:" followed by the sentence to be translated.
Similarly, for summarization, it could be "summarize:" followed by the text to
be summarized.

3. Training Objective:

The T5 model is trained with a Causal Language Modeling (CLM) objective,
meaning it is trained to predict the next token in a sequence given the previ-
ous tokens. This objective encourages the model to learn contextual represen-
tations of the input tokens. It uses teacher forcing during training, i.e., it uses
the true previous tokens in the output sequence as input to the decoder, rather
than the tokens it predicted.

4. Preprocessing and Tokenization:

T5 uses SentencePiece tokenization, which is a type of subword tokenization
method. SentencePiece is a language-independent, data-driven tokenization
method that enables the model to handle multiple languages.

5. Variants:

T5 comes in different sizes, just like BERT and GPT-2. The "base" version has
220 million parameters, while the largest, T5-11B, has 11 billion parameters.
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In conclusion, T5 represents a significant shift in the way NLP tasks are ap-
proached. By treating all tasks as a "text-to-text" problem, T5 simplifies the process
of applying transformers to a wide variety of tasks. However, this also means that
T5 might need to be fine-tuned more often than task-specific models, which could
have implications for training time and computational resources.

In our case, we will be using FLAN-T5 (base) as the first model in our bench-
marking. It was released in “Scaling Instruction-Finetuned Language Models”(Chung
et al., 2022) and it is an enhanced version of T5 that has been finetuned in a mixture
of tasks such as MT and achieves incredible benchmarks without additional compli-
cations.

2.2.2 The GPT models

GPT-1

OpenAI introduced the first version of the GPT model (GPT-1) in the paper “Im-
proving language understanding by generative pre-training”(Radford et al., 2018),
designed to improve upon the fine-tuning approach for transfer learning.

GPT-1 utilizes a transformer model, but unlike the original transformer that uses
both an encoder and a decoder, GPT-1 only uses the transformer’s decoder mech-
anism. The architecture (see Figure 2.3) has 12 self-attention layers (transformer
blocks), each with 12 attention heads. The dimension of the input embeddings and
the number of hidden units in the model are both 768.

The model is trained to predict the next token in a sequence, a task called lan-
guage modeling. However, GPT-1 uses a version of language modeling called "causal
language modeling" or "autoregressive language modeling" that we have already
seen and where it’s trained to predict the next token given the preceding ones, learn-
ing an approximation of the probability distribution of a word given its prior context.

The training process involved two steps: unsupervised pre-training and super-
vised fine-tuning. During pre-training, GPT-1 learned to predict the next word in
a sentence, allowing it to understand the syntax, context, and semantics of lan-
guage. In the fine-tuning step, GPT-1 was further trained on task-specific datasets
(BooksCorpus, containing about 7,000 unpublished books) to adapt it to various
NLP tasks such as text classification, text generation, translation, and more.

FIGURE 2.3: Extracted from Radford et al. (2018).
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GPT-2

In the paper “Language models are unsupervised multitask learners”(Radford et al.,
2019), OpenAI introduced GPT-2, a significant upgrade from GPT-1.

GPT-2 increased the model’s size to 1.5 billion parameters and was trained on
a larger and more diverse dataset, the WebText, which is a subset of the internet.
With more layers (48 transformer blocks) and parameters, GPT-2 exhibited improved
performance in various NLP tasks.

Importantly, OpenAI also showed that GPT-2 could perform several tasks with-
out task-specific training data, relying solely on the prompts given at inference time.
This zero-shot learning capability was a significant leap in NLP.

However, due to concerns about potential misuse, OpenAI initially refrained
from releasing the full GPT-2 model, marking a critical moment in AI research and
its intersection with ethics and society.

GPT-3

GPT-3 was introduced in the paper “Language Models are Few-Shot Learners”(Brown
et al., 2020). This version dramatically scaled up the model size to 175 billion param-
eters, making it one of the largest language models at the time.

GPT-3 demonstrated that scaling up language models improves their perfor-
mance across a wide range of tasks and languages. More interestingly, GPT-3 ex-
hibited the ability to perform tasks in a few-shot learning setup, where the model
can generalize from a handful of examples to perform a task.

The increased size and improved performance allowed GPT-3 to generate im-
pressively coherent and contextually relevant passages of text, understand the sen-
timent of a text, answer questions, and even translate languages with remarkable
accuracy.

The transition from GPT-1 to GPT-3 showcases the principle of scaling in AI:
bigger models, trained on larger datasets, tend to perform better. However, the tran-
sition also highlights the increasing ethical, societal, and technical challenges posed
by such large language models.

GPT-3.5 series

GPT-3.5 is based on GPT-3 but works within specific policies of human values and
only 1.3 billion parameters fewer than the previous version by 100X. sometimes
called InstructGPT that trained on the same datasets of GPT-3 but with additional
fine tuning process that adds a concept called ‘reinforcement learning with human
feedback’ or RLHF to the GPT-3 model.

Models referred to as "GPT 3.5" are a series of models that were trained on a
blend of text and code from before Q4 2021. The highly famous ChatGPT dialogue
model is supported by IntructGPT and has very interesting use cases. In Chapter 1,
we already saw its incredibles zero-shot capabilities in translation. That’s why we
will use this LLM later in our work.

2.2.3 Selected metrics

Finally, we are going to review some aspects of the metrics that we will actually
choose for our benchmarking and that we already saw (or mentioned in the last
case) in the last Chapter (1).
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BLEU

It works by comparing a candidate translation to one or multiple reference transla-
tions. The BLEU score is then computed based on the precision of n-grams (contigu-
ous sequences of n words) present in the candidate translation that also appear in
the reference translation(s). The precision is calculated for different values of n (typ-
ically up to 4), and a geometric mean is taken of these precision scores to compute
the final BLEU score.

Additionally, BLEU includes a brevity penalty. If the candidate translation is
shorter than the reference(s), the score gets penalized. This penalty ensures that the
translation doesn’t achieve a high score by simply leaving out content.

Overall, we know how popular and simple it is. It is reproducible and correlates
with human evaluation but it has a complete lack of semantic understanding and is
too sensitive to exact word matches. Moreover, let’s remember that although BLEU
correlates reasonably with human evaluation at the corpus level, its performance at
the sentence level is much worse.

METEOR

Unlike BLEU which relies solely on precision, METEOR considers both precision
and recall, using a harmonic mean to combine them. This makes it a more balanced
metric that takes into account both under-translation and over-translation.

METEOR also includes several additional features to deal with the limitations
of BLEU. For instance, it uses WordNet to identify synonyms and considers them
as matches. It also uses stemming to handle different forms of the same word, and
includes a module to recognize paraphrases. Additionally, METEOR takes word
order into account.

METEOR tends to perform better than BLEU at sentence level although it’s more
complex.

chrF(++)

The chrF metric calculates the n-gram F-score at the character level, rather than the
word level, which makes it sensitive to morphological differences, such as inflec-
tions. This is particularly useful in languages with rich morphology. Additionally,
it penalizes over- and under-predictions, leading to a more balanced evaluation. By
working at the character level, chrF can better handle differences in morphology that
word-level metrics might overlook. It is also tokenization-independent.

Similar to BLEU, chrF doesn’t consider semantics or context (although we just
mentioned in Chapter 1 that it is the second most popular traditional metric for
good reasons). That is why we will include the following transformer-based metrics
too (we already discussed their advantage, so we will just briefly explain how they
function)

BERTScore

BERTScore leverages the pre-trained contextual embeddings from BERT (Bidirec-
tional Encoder Representations from Transformers) and correlates them to human
judgment on the system level. It computes the cosine similarity between BERT
embeddings of the candidate and reference sentences, which allows it to capture
meaning beyond simple n-gram overlap.



22 Chapter 2. Theoretical foundations of our models and metrics

BLEURT

BLEURT is an evaluation metric that is designed to leverage pre-training, fine-tuning,
and transfer learning.

To compute BLEURT scores, first, a base model is pre-trained on a large corpus
of text. This pre-training step allows the model to learn a general understanding
of language, including grammar, syntax, and semantics. This pre-trained model is
similar to the Transformer models used in BERT, GPT-2, etc., but with a smaller size
to reduce computational complexity.

The pre-trained model is then fine-tuned on a specific task, which is to predict
human judgments on translation quality. For this, Google researchers created a new
dataset consisting of millions of sentence-level translation quality scores. These
scores were collected from human raters judging translations produced by various
systems. The model learns to predict these human quality scores, and this learned
model becomes the BLEURT scoring system.

In operation, given a candidate translation and a reference, BLEURT tokenizes
the texts, computes a series of features such as the number of matching n-grams
between the candidate and reference, then feeds these features, along with the tok-
enized texts, to the fine-tuned model, which outputs the final BLEURT score.

COMET(-22)

COMET, developed by Unbabel AI, also leverages transformer-based architectures
to model the quality of translations. It is trained in three stages to provide a well-
rounded evaluation of translations.

• Pre-training: Just like BLEURT, the base model in COMET is pre-trained on a
large-scale multilingual corpus, to learn general language representations.

• Ranking Fine-tuning: The model is then fine-tuned on a translation ranking
task. Given a source sentence and several candidate translations, the model
learns to rank the translations in the order of quality. This helps the model
understand what a ’good’ translation looks like in comparison to ’bad’ ones.

• Quality Estimation Fine-tuning: The final step is to fine-tune the model on
a quality estimation task. For this, the model is trained to predict sentence-
level and word-level quality scores collected from human evaluations. This
helps the model estimate how ’good’ a translation is in absolute terms, not just
relative to other translations.

However, we will be using SOTA COMET-22 (Rei et al., 2022), presented by joint
contribution of Unbabel and IST to the WMT 2022 Metrics Shared Task. Their pri-
mary submission – dubbed COMET-22 – is an ensemble between a COMET estima-
tor model trained with Direct Assessments and a newly proposed multitask model
trained to predict sentence-level scores along with OK/BAD word-level tags de-
rived from Multidimensional Quality Metrics error annotations. These models are
ensembled together using a hyper-parameter search that weights different features
extracted from both evaluation models and combines them into a single score.
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Chapter 3

Methodology and goals

3.1 The DCEP Corpus

Before we talk about the motivation for the models involved in the benchmarking
or evaluation process and the metrics used, we need to talk about our corpus: The
Digital Corpus of the European Parliament (DCEP).

The Digital Corpus of the European Parliament (DCEP) is a multilingual dataset
comprising all the documents and proceedings of the European Parliament, which
are translated into 23 official languages of the European Union.

• Content and Structure:

The corpus includes diverse types of documents, including agendas, written
questions, resolutions, and verbatim reports of debates, among others. It’s
important to note that these texts are not only parallel in the sense that they
are translations of the same content, but they are also aligned at the document
level, meaning that the same sentence in different languages corresponds to
the same sentence in the original language.

• Applications:

DCEP is often used in machine translation, particularly in training and eval-
uating Statistical Machine Translation (SMT) and Neural Machine Translation
(NMT) systems. The large size and multilingual nature of the dataset make it
an excellent resource for these purposes.

• Advantages and Disadvantages for Machine Translation Benchmarking:

Size and Diversity: The DCEP is one of the largest multilingual corpora avail-
able, making it ideal for training robust translation models.

Quality of Translations: The translations in the DCEP are conducted by pro-
fessional human translators, ensuring high quality.

Domain Specificity: The DCEP is specific to the legislative and political do-
main. Therefore, models trained exclusively on this dataset might not general-
ize well to texts from other domains.

Formality and Style: The language used in parliamentary documents tends to
be formal and may not represent the variability of language use in less formal
contexts. This could limit the ability of models trained on this data to handle
more informal or colloquial language.

Although these two last facts will not affect our trained models, the style will
play a role in the evaluation of said models.
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The huge size of the dataset and since the preprocessing step was outdated, led
us to choose a reduced version of a German-English dataset which was numerically
filtered in order to do sentence-level translations (see the GitHub repository for a more
thorough analysis).

3.2 Models and metrics selected

We will work with ChatGPT using its recently public API (with the gpt-3.5-turbo
engine) and this way we leverage the fact that the translations are at sentence-level
and that German is a high resource language so the capabilities of few-shot learning
that we mentioned in Chapter 1, present in papers “Summary of ChatGPT/GPT-4
Research and Perspective Towards the Future of Large Language Models”(Liu et al.,
2023) and “How Good Are GPT Models at Machine Translation? A Comprehensive
Evaluation”(Hendy et al., 2023)], are tested in this exciting research/comercial use
case in the politics/law domain.

At the same time and since we can’t fine-tune ChatGPT. we will benchmark
FLAN-T5 (base) on the same corpus since it is one of the few open-source language
models that has been finetuned in tasks such as translation and also presents huge
performances and interesting use cases.

Finally we will use Microsoft’s Azure Cognitive Services Translator, which serves
as the other NMT model and is expected to perform the best due to its commercial
position. Of course, we know it has to be neural-based but we can’t really say which
specific structure is behind the model.

For the traditional metrics, we will use BLEU, METEOR and chrF(++) since they
are the most popular and interesting. For the transformer-based ones, we will use
BERTScore and BLEURT first and COMET-22 which we saw is considered sota (Fre-
itag et al., 2022). That way, we have a balanced set of metrics for the discussion
afterwards.
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Chapter 4

Results and discussion

4.1 Results

FIGURE 4.1: Evaluation results for the DCEP DE-EN Corpus

We can see the results of our benchmarking task above in Figure 4.1. The chrF
and chrF++ metrics are normalized by 100 and BLEURT goes from −∞ to +∞ so
even its results are good except for FLAN-T5 (which aren’t that far from the other
two models despite the distance in the graphic).

4.1.1 Discussion

Analyzing the results of our machine translation model and metrics comparison, a
few compelling observations and hypotheses can be made:

The text and domain chosen for this general (not fine-tuned on this domain)
sentence-level translations, makes it difficult to get high scores across the board for
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all metrics. However, Azure C.S. translator achieves that for even BLEU, which is
something that we already were expecting.

ChatGPT is second and FLAN-T5 is left in the last position across all metrics.
This shows how good ChatGPT is for a conversational-tuned LLM due to its sheer
size and few-shot capabilities (see Chapter 2) we saw in other papers and use cases.

It is very clear that the only idea we can infer from the difference in scores be-
tween different metrics is that neural-based metrics give all 3 models the highest
scores by far, which means a solid performance and the fact that they are funda-
mentally robust despite struggling with concrete translations.

Given that, it is clear how BLEU, a precision-based metric that relies heavily on
exact n-gram matches, scores the lowest and may struggle to accurately evaluate the
quality of translations in texts full of dates and uncommon succession of symbols
(that shouldn’t be preprocessed for the task at hand, translation) which is really bad
when tokenizing in order to calculate BLEU score. Maybe a decisive point is that
the translations aren’t at the document level and BLEU is not fond of sentence-level
translations so this adds up to a really bad result.

In general, traditional metrics do not consider semantic similarity, which might
lead to a lower score even when a translation maintains the meaning of the original
text and that is proved here.

It’s worth noting that the type of text being translated—political/legal text—could
be impacting the results. Such texts typically contain formal, domain-specific lan-
guage and may have complex sentence structures. It not only clearly impacted the
metrics but also the models and specially FLAN-T5 since sometimes it bugged re-
peating the same words in outputs when the sentence in question was hard.

In conclusion, the choice of evaluation metric is critical and should be dependent
on the specifics of the text being translated and the aspects of translation quality that
are most important for your use case. While traditional metrics like BLEU are widely
used, they may not always be the most appropriate choice, particularly for complex,
domain-specific texts. Neural-based metrics that consider semantic similarity, such
as BERTScore and COMET-22 (SOTA), could provide a more accurate evaluation in
such cases. Apart from that, the outcome of our models was really predictable and
yet ChatGPT was able to surprise us once again.
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Chapter 5

Conclusions

5.1 Conclusions

The analysis undertaken in this study provides several compelling insights into the
evaluation of machine translation models. As the results demonstrate, the Azure
C.S. translator stands out as the leading performer across all metrics, which under-
lines the power of commercial models in the context of machine translation (AI
Index Report, Chapter 1: Research and Development n.d.). Additionally, the excellent
performance of ChatGPT, despite being a conversational-tuned LLM, testifies to the
capabilities of large language models and their few-shot learning abilities as well as
scalability potential.

The disparity observed across the scores of different metrics signals a clear dom-
inance of neural-based metrics, which tend to provide higher scores compared to
traditional metrics. This could be attributable to their focus on semantic similarity, a
feature that seems particularly valuable for the complex, domain-specific texts used
in this study and that seems hardly achievable for statistical MT metrics. It’s thanks
to great research and commercial interest that these huge transformer-based models
are being made (Freitag et al., 2022).

The choice of text and domain, specifically political/legal texts, has evidently in-
fluenced the results, underscoring the importance of considering domain specificity
and fine-tuning when evaluating machine translation models. In this context, tra-
ditional metrics like BLEU may struggle due to their focus on precision and exact
n-gram matches, which does not fully cater to the complexity and semantic nuances
of such texts.

In general, the conclusions found by our modest but huge results are really self-
explainatory and served to confirm these last ideas, which is a success in our opin-
ion.

Based on our findings, future researchers should be mindful of the type of texts
they are working with and the particular characteristics of these texts. They should
also be aware of the limitations of traditional metrics when dealing with complex,
domain-specific texts and consider using neural-based metrics, which better account
for semantic similarity.

Further work could also explore ways to enhance traditional metrics or develop
new ones that offer a balanced assessment of both semantic similarity and exact
matches. However, this might not be the case when these SOTA quality-assessment
metrics are being produced. Future researchers should probably include both but
they will have to decide.

Finally, given the dominance of commercial models like Azure C.S. translator,
more research is needed to explore whether similar results could be asured in very
different domains. Future studies could also investigate strategies for improving the
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performance of open-source models to match, or even surpass, their commercial
counterparts with the appropiate strategies and quality assessments.
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