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THESIS SUMMARY 

 

Predictive Modelling for Personalised Multimorbidity Management 

Multimorbidity affects equally individuals and healthcare systems. Multimorbidity is 

associated with poor prognosis, functional impairment, and reduced quality of life, 

leading to increased healthcare resource utilisation and costs. Considering the rising 

incidence of multimorbidity, the long-term viability of health institutions is under 

threat. Research on disease mechanisms and health data analytics agree that, beyond 

the primary diagnostic, the overall disease burden is an important determinant of 

health outcomes, suggesting that a disease-centred approach is not optimal for 

management of patients with multiple chronic conditions. This resulted in the 

development of tools to measure multimorbidity, such as the Adjusted Morbidity 

Groups (AMG) or the Queralt indices. These tools have fostered Health Risk 

Assessment (HRA) strategies when aligned with integrated care programs. HRA 

adjusted to multimorbidity represents a fundamental cornerstone for comprehending 

the impacts of the phenomenon, allowing it to inform health policies and better 

allocate healthcare resources. As well as HRA enables the implementation of 

personalised healthcare strategies through patient stratification, facilitating the 

identification of at-risk individuals and advising the development of targeted 

interventions to optimise health outcomes. Nevertheless, despite the promising 

prospects offered by HRA, a noticeable disparity persists between its potential and its 

current implementation, particularly within the clinical domain. 

To this end, the thesis investigated three major HRA challenges through specific use 

cases.  

The first use case (Articles 1-3) was centred on creating clinical predictive modelling, 

using machine learning tools, to refine service selection upon patients’ hospital 

admission and to enhance transitional care after discharge. Key findings highlighted 

multimorbidity’s role as a major risk for adverse health events. The use case addressed 

technical challenges in modelling, such as feature selection, data accessibility, model 
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design, evaluation, and explainability. However, areas like application in real world 

settings remained out of the scope of the studies. 

The second use case (Article 4) involved transferring the AMG tool to Marche region 

(IT) and Viljandi Hospital (EE). Both enablers and barriers for transference and 

adoption of such tool, in clinical and public health contexts, were assessed employing 

robust methodological approaches grounded in established implementation 

frameworks. The dual perspectives offered by Marche and Viljandi, this is, a regional 

healthcare organisation and a county hospital, respectively, facilitated tailored AMG 

adoption guidelines and generalisable recommendations for addressing data 

requirements, GDPR nuances, and data exploitation through dashboards and KPIs. 

Additional research is proposed within this thesis to grasp each EU member state’s 

context seeking to create a harmonised HRA strategy for the future, avoiding 

inefficiencies and potential pitfalls. 

The last piece of the research (Article 5) investigated new strategies to incorporate 

disease trajectory insights, and enhanced analysis of disease clustering, into morbidity 

groupers. This integration aimed to improve the ability to adjust the morbidity burden 

assessment to an index disease and its comorbid conditions while enhancing the 

prediction of the progression of multimorbidity. The study utilised depression as a use 

case to create a new morbidity grouper, the so-called MADS – Multimorbidity Adjusted 

Disability Score. In the analysis of the MADS distribution, a connection was observed 

between its risk levels and adverse health events; in this regard, the associations were 

stronger in outcomes related to mental health. After validation with patients’ cohorts 

in Catalonia, the UK, and Finland, the approach hinted at a deeper integration between 

psychiatric and somatic medicine, aiming to better address depression-linked 

multimorbidity. While the results were promising, discussions continue on refining the 

method and its potential to improve the efficiency of existing tools, like the AMG 

algorithm. 

The research for this thesis was conducted within the framework of two European 

projects from 2020 to 2023: 

1. The Joint Action on implementation of digitally enabled integrated person-centred 

care (JADECARE) project. 



7 
 

2. Temporal disease map-based stratification of depression-related multimorbidities: 

towards quantitative investigations of patient trajectories and predictions of multi-

target drug candidates (TRAJECTOME). 

  



8 
 

RESUM EN CATALÀ 

 

Modelatge Predictiu per la Gestió Personalitzada de la Multimorbiditat 

La multimorbiditat suposa una càrrega tant per la població com pels sistemes de salut. 

La concurrència de múltiples condicions cròniques està associada amb un pronòstic 

desfavorable, a un deteriorament funcional i una disminució de la qualitat de vida, 

aquest fet està estretament lligat a un augment de l'ús de recursos i costos sanitaris. 

Considerant l'augment de la incidència de la multimorbiditat, la viabilitat a llarg termini 

dels sistemes de salut està en risc. La investigació sobre els mecanismes de la malaltia i 

l’anàlisi de bases de dades administratives de l’àmbit de la salut concorden que, més 

enllà del diagnòstic primari, la càrrega de comorbiditats és determinant en els resultats 

de salut, suggerint que un enfocament centrat en la malaltia no és òptim per a la 

gestió de pacients amb múltiples condicions cròniques. El reconeixement de la 

importància de la multimorbiditat ha resultat en el desenvolupament d'eines per 

mesurar-la, com els Grups de Morbiditat Ajustats (GMA) o els sistema de Queralt. 

Alineades amb programes de atenció integrada aquestes eines han impulsat 

estratègies d'Avaluació del Risc en la Salut (ARS). L’ARS ajustada per càrrega de 

morbiditat representa una pedra angular fonamental per comprendre l’impacte de la 

multimorbiditat, informar les polítiques de salut i millorar la distribució dels recursos 

sanitaris. En entorns d’atenció sanitària, l’ARS permet la implementació d'estratègies 

de salut personalitzades a través de l'estratificació del pacient, facilitant la identificació 

d'individus en risc i assessorant el desenvolupament d'intervencions dirigides per 

optimitzar els resultats de salut. No obstant això, malgrat les perspectives 

prometedores ofertes per l’ARS, persisteix una disparitat notable entre el seu potencial 

i la seva implementació, particularment dins del domini clínic. 

Aquesta tesi doctoral investiga tres grans reptes de la HRA a través de casos d'ús 

específics. 

 El primer cas d’us (Articles 1-3) es va centrar en la creació de modelatge predictiu en 

l’entorn clínic, utilitzant eines d'aprenentatge automàtic, per millorar la selecció de 

serveis a l'ingrés hospitalari i per millorar l’atenció transicional després de l'alta. Les 
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principals troballes van destacar el paper de la multimorbiditat com al principal 

determinant de risc principal per a esdeveniments de salut adversos. El cas d'ús va 

abordar reptes tècnics en modelatge, com la selecció de variables predictores, 

l'accessibilitat de dades, el disseny i l'avaluació del model i l'explicabilitat de les 

prediccions. No obstant això, àrees com l'aplicació en el món real i el manteniment 

continu del model van quedar fora de l'àmbit dels estudis.  

El segon cas d'ús (Article 4) va implicar la transferència del GMA a la regió de Marche 

(IT) i a l'Hospital de Viljandi (EE). Tant els facilitadors com les barreres per a la 

transferència i adopció d'aquesta eina, en contextos clínics i de salut pública, van ser 

avaluats utilitzant enfocaments metodològics robustos basats en marcs 

d'implementació establerts. Les perspectives duals ofertes per Marche i Viljandi, des 

d'una organització sanitària regional fins a un hospital provincial, van facilitar pautes 

d'adopció d'GMA a mida i recomanacions generalitzables per abordar l'accés al conjunt 

mínim a dades, les interpretacions de la legislació vigent en ètica de l’investigació i 

protecció de dades, i l'explotació dels resultats a través de quadres de comandament i 

indicadors clau de rendiment. L’estudi delimita una recerca addicional per comprendre 

el context de cada estat membre de la UE, buscant crear una estratègia d'HRA 

harmonitzada per al futur, evitant ineficiències i possibles esculls. 

L’últim cas d’us (Article 5) es va enfocar a la recerca de noves estratègies per 

incorporar competències derivades de l’anàlisi de les trajectòries de malaltia i l’anàlisi 

millorada de l'agrupació de malalties, als agrupadors de morbiditat. Aquesta integració 

tenia com a objectiu millorar la capacitat d'ajustar l'avaluació de la càrrega de 

morbiditat a una malaltia índex i les seves condicions comòrbides, alhora que millorava 

la predicció de la progressió de la multimorbiditat. L'estudi va utilitzar la depressió com 

a malaltia objectiu per crear un nou grup de morbiditat, el denominat MADS. En 

l’anàlisi de la distribució del MADS es va observar una connexió entre els seus nivells 

de risc i esdeveniments adversos de salut, al respecte, les associacions eren més fortes 

en resultats relacionats amb la salut mental. Després de la validació a Catalunya, el 

Regne Unit i Finlàndia, els resultats van suggerir una integració més profunda entre la 

medicina psiquiàtrica i somàtica, amb l'objectiu de tractar millor la multimorbiditat 

lligada a la depressió. Encara que els resultats van ser prometedors, el debat sobre la 
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refinació del mètode i el seu potencial per potenciar l'eficiència d'eines existents, com 

l'algoritme AMG segueix vigent.  

Els estudis que integren aquesta tesi es van realitzar dins el marc de dos projectes 

europeus contemporanis, en el període comprès entre 2020 i 2023: 

1. The Joint Action on implementation of digitally enabled integrated person-centred 

care (JADECARE) project. 

2. Temporal disease map-based stratification of depression-related multimorbidities: 

towards quantitative investigations of patient trajectories and predictions of multi-

target drug candidates (TRAJECTOME). 
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INTRODUCTION 

 

1. THE PROBLEM OF MULTIMORBIDITY 

In modern ageing societies, one of the pressing healthcare challenges to address is the 

co-occurrence of multiple chronic diseases, also known as multimorbidity(1–3). 

Multimorbidity significantly strains individuals and healthcare systems due to its 

association with poor prognosis, functional impairment, and reduced quality of 

life(4,5).  This is particularly relevant in multimorbid patients afflicted by depression or 

other mental disorders who may face extra challenges in maintaining their overall 

health, impeding their capacity for disease self-management, reducing adherence to 

treatment plans, and elevating the probability of adopting unhealthy behaviours (6,7). 

In addition, the complex clinical situations arising from multimorbidity can lead to 

increased healthcare resource utilization, including encounters with healthcare 

professionals, hospitalizations, and pharmacological prescriptions, resulting in a 

substantial rise in healthcare costs(8,9). Multimorbidity incurs significant global costs 

contingent on disease combinations, country, and care expenses, and these costs are 

projected to escalate rapidly due to population ageing and the increasing prevalence 

of chronic diseases. This trend makes multimorbidity the primary catalyst for 

healthcare cost escalation, posing a substantial threat to the sustainability of 

healthcare systems(10). 

The emergence of multimorbidity is not arbitrary and frequently aligns with shared risk 

factors and/or underlying pathophysiological mechanisms(11–13). Multimorbidity has 

a complex biological basis that results from intricate interactions between genetic and 

environmental factors throughout the lifespan(14). Common biological mechanisms, 

including chronic inflammation, oxidative stress, and cellular ageing, seem to underpin 

the development of multimorbidity(15–17). Furthermore, these mechanisms are 

influenced and modulated by exposure to various environmental stressors, such as 

physical inactivity, inadequate nutrition, and psychological stress(18). 
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This vision has significantly transformed the perception of diseases and their 

interactions, involving a paradigm shift towards network medicine(19,20). Network 

medicine offers a comprehensive view of health and disease, by focusing on the 

interactions between biological systems at the molecular, cellular, organismal, and 

environmental levels, in contrast to the traditional reductionist view of medicine, 

which focuses on the analysis of individual components of biological systems, such as 

genes, proteins, or pathways. It is widely acknowledged that clinical phenotypes rarely 

stem from a single gene anomaly but rather arise from the interplay of multiple 

molecular processes(19,20). Therefore, the key focus of network medicine is to 

identify the fundamental molecular elements and processes underlying disease. This 

change from clinical phenotypes to endotypes, offers the potential for a more nuanced 

disease classification and a novel perspective on the relationship between comorbid 

conditions. 

Far away from laboratory settings and through the analysis of large clinical datasets, 

the practical implementation of the concept, that multiple diseases share common 

genetic, environmental, and molecular mechanisms, has propelled the exploration of 

the diseasome(21,22). The diseasome is a network-medicine approach (Figure 1) 

rooted in co-occurrence patterns among diseases, focusing on modelling and 

dissecting the intricate interconnectedness among diseases to uncover biomarkers, 

therapeutic targets, and potential interventions(21,22). Conversely, the 

conceptualization of the diseasome has given rise to a profusion of studies that delve 

into the temporal patterns of disease coexistence, often termed disease 

trajectories(23–25). These endeavours yield a more profound comprehension of the 

time-dependent associations between diseases, thereby establishing a promising 

foundation for identifying causal relationships among diseases(23–25). 
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Figure 1: Network representation of the human diseasome. Two disease nodes (represented 
as circles) are linked if they have overlapping genetic components based on disease-gene 
associations. The node size reflects the count of related disorders, while the colour 
differentiates disorders based on the affected organic system. Figure taken from (21).  

 

In light of this, it is well-acknowledged that a disease-centred approach might lead to 

suboptimal treatment of patients with multiple, related and disabling chronic 

conditions, triggering the need to implement new practices to enhance the 

effectiveness of the health services(26). This understanding has prompted a re-

evaluation of healthcare delivery, leading to the emergence of two interrelated and 

complementary avenues.  

Firstly, there is a concurrent embrace of the principles of network medicine, coupled 

with a drive to comprehend the intricate interplays between diseases. This should be 

accompanied by developing personalised treatment strategies tailored for patients 

with multiple disease conditions(27–29). An essential aspect of this approach involves 

modifying treatment plans, with a keen focus on early detection and management of 

underlying risk factors aimed at averting the onset or progression of morbidity.  

Secondly, the mainstream adoption of integrated care models and approaches that 

prioritise care coordination at distinct levels, such as primary care, specialised care, 
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and social care, to provide comprehensive and continuous care to patients with 

multimorbidity. This approach endeavours to enhance patient outcomes and diminish 

healthcare expenditures by mitigating the fragmentation of care and elevating care 

coordination. 

The confluence of these dual dimensions is anticipated to pave the way for adopting a 

truly predictive, preventive, personalised, and participatory form of medicine referred 

to as P4 medicine(30), underpinned by a Systems Medicine approach(31). Systems 

medicine builds upon systems biology principles, using an interdisciplinary approach to 

integrate and analyse biological data across multiple scales to understand complex 

disease mechanisms and enhance personalized medical care (Figure 2). 

 

 

 

Figure 2:  Systems medicine framework. This representation elucidates the profound interplay 
of biological mechanisms at organic, cellular, molecular, and genetic levels, underlying health 
and disease states. By integrating molecular measurement techniques and a systems biology 
approach, systems medicine proposes a new medical paradigm geared towards individualized 
therapeutic interventions. Figure adapted from (175). 
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1.1. Quantifying the Morbidity Burden: the need to risk-adjust for multimorbidity 

The first attempts to assess the impact of multimorbidity started hand in hand with the 

digital transformation of the healthcare systems and creation of large administrative 

health databases, providing extensive population-based samples free from selection 

biases and facilitating long-term patient follow-up within real-life settings. The analysis 

of such databases revealed that the cumulative burden of the concurrent or pre-

existing comorbidities, apart from the primary diagnosis, often influence clinical 

outcomes and raised the importance to adequately adjust for comorbidities(32).  

This discovery led to the creation of the first standardized and objective comorbidity 

measures, or morbidity groupers, such as the Charlson Comorbidity Index (CCI)(33) and 

Elixhauser Index (EI)(34).  Specifically, the CCI assigns weights to 19 selected medical 

conditions to predict 10-year mortality, while the EI considers 30 comorbidities to 

assess in-hospital mortality and length of stay; both are widely used in clinical settings 

to inform care decisions and predict patient outcomes. However, due to the limited 

exhaustiveness of their approach, more sophisticated tools have replaced them in daily 

clinical practice. In this matter, the Adjusted Clinical Groups (ACG)(35) developed by 

the Johns Hopkins University and its principal commercial competitor, the Clinical Risk 

Groups (CRG)(36) created by 3M™, are the most used methods to capture a patient’s 

morbidity related health risks and stratify patients based on their health care 

requirements. Both systems are instrumental in promoting efficient and equitable 

healthcare resource distribution and envisioning patient health outcomes. Similarly, 

other solutions have been developed targeting specific populations such the All Patient 

Refined-Diagnosis Related Groups (APR-DRG)(37) system, that was conceived by 3M™ 

to assess hospital inpatients according to their reason for admission, severity of illness 

and risk of mortality. All these indicators have proven to be a dependable predictor of 

healthcare utilization and costs.  

However, the alluded commercial tools, such as ACG, CRG and APR-DRG, have been 

found to be very costly and often difficult to adapt to different patient populations 

requiring expert knowledge, which opened the door to the provision of disruptive 

data-driven, more interpretable, and affordable alternatives that can outperform this 

dominant health risk assessment (HRA) solutions(38). A good example of such an 
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alternative open-source solutions are the Adjusted Morbidity Groups (AMG)(39,40) 

and the Queralt indices(41,42). 

 

The Adjusted Morbidity Groups and the Queralt Indices 

The AMG scoring was developed and implemented by the Spanish Health Ministry and 

the Catalan public health commissioner (CatSalut)(43). AMG is a morbidity grouper 

that reflects patients’ disease burden in terms of the number and complexity of 

concomitant disorders. This is determined through a disease-specific weighting 

deduced from statistical analysis based on mortality and the utilisation of healthcare 

resources (Figure 3). Since its inception, the AMG has been instrumental in guiding 

health policy decision-making, benchmarking, and adjusting governance strategies. On 

the clinical arena, the AMG scoring of patients is displayed in primary care physicians’ 

workstations and the shared clinical history(44) of Catalonia as a clinical decision 

support tool.  

 

 

Figure 3: Panel A – AMG input: Required input variables; Panel B – AMG output: Output 
variables. *Binary markers (presence/absence) of 15 chronic conditions (from left to right): 
diabetes mellitus, heart failure, chronic obstructive pulmonary disease, high blood pressure, 
depression, HIV/AIDS, chronic ischemic heart disease, stroke, chronic kidney disease, cirrhosis, 
osteoporosis, arthrosis, arthritis, dementia, chronic pain; Panel C– Health Risk Assessment 
based on AMG: The AMG scoring allows for three key actions: Classification: The population is 
categorised into specific groups based on their morbidity statuses, such as healthy, pregnancy 
and labour, acute disease, chronic disease in 1-4 systems, or active neoplasia, which are also 
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divided into five degrees of severity. Stratification: Individuals can be assigned a complexity 
score that reflects the care needs that people may have based on their health problems. 
Identification: Individuals with specific major chronic health problems can be identified, which 
helps track people with more complex care needs 

 

Novel research employing the AMG in several contexts has revealed promising 

prospects in identifying risk factors during the SARS-CoV-2 pandemic(45,46) and 

refining resource allocation tools(8,47,48). Also, an AMG-based analysis has shed light 

on the impact of multimorbidity burden in patients with specific chronic diseases, such 

Chronic Obstructive Pulmonary Disease (COPD)(49).  

In pursuit of similar objectives, the Catalan Health system has recently spearheaded 

the development and internal validation of the Queralt indices to characterize the 

complexity of hospitalization episodes. These indices amalgamate information on pre-

existing disease conditions before hospitalization, the severity of the primary cause of 

hospitalization, inpatient complications, and the complexity of care interventions 

(Figure 4). 

The Queralt indices have demonstrated their reliability as a prognostic tool for 

prolonged hospital stays, intensive care requirements, and intrahospital mortality, the 

three primary clinical endpoints for which the tool has been primarily 

benchmarked(42). By utilizing Queralt indices, hospitals, healthcare professionals, 

payers, and regulators may acquire a more comprehensive understanding of the 

patients being treated, the associated costs, and, to a reasonable extent, the expected 

services and outcomes.  
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Figure 4: Diagram of the individual Queralt indices for disease diagnoses and clinical 
procedures. The Queralt system summarise all the case-mix variables into a different numerical 
index, encompassing data on the main diagnosis for hospitalization and its comorbid 
conditions, as well as the complications during the stay. Conversely the Queralt system also 
considers the main and the secondary clinical procedures. The Queralt indices can aggregated 
in two domains: disease diagnoses (blue) and clinical procedures (orange). Figure designed by 
David Monterde (Catalan Health Institute – DS3). 

 

Overall, the morbidity groupers may help in identifying patients with multimorbidity 

and enhance the management of their care, but their utilization should not be 

undertaken in isolation. To be effective, morbidity groupers should form part of a 

broader health risk management strategy, either at population level or patient 

oriented, or combined. 

 

2. HEALTH RISK ASSESSMENT FOR PATIENT-CENTRED CARE 

HRA is any procedure devoted to characterizing, anticipating and mitigating morbidity-

associated health risks and vulnerabilities for individuals and populations, and appears 

to be a crucial strategy to generate health value and achieve cost-containment.  HRA is 

a valuable approach extensively applied in hospital settings, primary care, occupational 

health domains, and within health policymaking. HRA entails the identification of 

prospective health hazards and susceptibilities for both individuals and communities, 
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serving as a foundational basis for the formulation of targeted preventive and 

interventional strategies. The core objective of these strategies is to alleviate the 

burden imposed by disease. Illustrative instances of HRA utilization encompass 

identifying patients with an escalated risk of complications within hospital 

environments, pinpointing individuals and populations susceptible to developing 

chronic diseases in primary and community care and providing valuable insights to 

policymakers in crafting effective health programs and population-level initiatives. 

At present, HRA is a crucial process in informing population health policy decisions, 

enhancing resource allocation, benchmarking and preventive strategy implementation 

(49–51). Whereas, within the clinical domain, HRA is focused on the construction 

computational predictive models to support clinical decision-making in a new medical 

paradigm(49–51). Integrating population-based and clinically oriented HRA approaches 

is vital, as they complement each other and play pivotal roles in adopting patient-

centred care strategies.  

 

2.1. Population-based HRA 

Population HRA entails adopting a holistic modelling strategy encompassing the entire 

population of a particular region, which results in the creation of stratification maps 

depicting the distribution of risk strata across the population, conforming a risk 

pyramid (Figure 5). This approach facilitates the identification of subsets of citizens 

with similar healthcare needs, allowing for effective case finding and screening(52).  

Case finding focuses on the most vulnerable patients at the risk pyramid's apex, who 

are more likely to face significant disease decompensations leading to unexpected 

hospital admissions, functional deterioration, or death. This procedure is particularly 

useful in primary and specialized healthcare settings to identify and incorporate these 

individuals into regional programs designed for complex or advanced chronic patients. 

In contrast, patient screening seeks to identify individuals in the mid to lower sections 

of the risk pyramid who might have latent or non-apparent illnesses. The aim is to 

facilitate early diagnosis and foster the application of cost-effective preventive 
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interventions to anticipate and modulate disease progression and prevent patients 

from escalating towards the tip of the pyramid. 

 

 

Figure 5: Example of the Catalan risk pyramid stratified using the AMG in 2014. The table's 
third and fourth columns shows mortality rates and hospital admission rates (cases per 100 
inhabitants). The fifth column presents the average annual cost per individual in €, while the 
final column displays the proportion of total healthcare spending by risk levels. Significantly, 
towards the tip of the risk pyramid (in red), there is an increase in mortality, likelihood of 
hospital admission, and healthcare costs, whereas the base of the pyramid (in green) indicates 
a healthy status. Figure adapted from (50) supplementary material. 

 

Health policies, benchmarking, resource allocation and multimorbidity adjusted 

reimbursement strategies 

At organizational level, health risk stratification enables and informs the development 

of risk-adjusted health policies. Healthcare requirements are not uniformly spread 

across populations. In European countries, the top 5% of the population in terms of 

clinical complexity account for 50% of the total healthcare costs. To ensure the 

provision of top-tier healthcare, resource allocation should prioritize the population's 

needs rather than mere demand. In this context, risk-adjusted resource planning 
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policies based on the risk levels of specific populations lead to better financial 

management, enhanced preventive care implementation, and improved patient 

outcomes(53). Adopting this approach will lead to enhanced care quality and 

decreased expenses over time(54). 

When oriented towards a population perspective, HRA tools and other registry 

covariates are instrumental in modelling health resource utilisation, aiming to optimise 

resource allocation in conjunction. As exemplified in Figure 6, when combined with 

sociodemographic attributes and historical data on patient interactions with the 

healthcare system, the AMG boosted the modelling of hospitalisation ratios for 

patients with COPD in Catalonia (ES) by utilising Generalized Linear Models. Notably, 

the analysis stressed that the risk strata drafted by the AMG emerged as the central 

predictive variable, outperforming factors such as age or visits within the emergency 

department. 

Furthermore, HRA should facilitate benchmarking processes and assist healthcare 

providers and policymakers in evaluating the effectiveness of various interventions and 

comparing outcomes among diverse patient groups(55). This opens the door to value-

based reimbursement strategies in healthcare that differ from traditional payment 

models as they prioritize the quality of care over the volume of services 

rendered(56,57). These models reward healthcare providers based on measurable 

outcomes, such as patient health improvements and cost reductions. Notable 

examples of value-based reimbursement strategies include accountable care 

organizations, bundled payments, and pay-for-performance models. These strategies 

incentivise healthcare providers to deliver high-quality care, leading to improved 

patient health, reduced healthcare expenses, and heightened patient satisfaction. 
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Figure 6: Predictive Model for All-Cause Hospitalization. The visual display delineates the 
magnitude of the odds ratio for each model covariate, represented by yellow dots, 
accompanied by the respective 95% confidence intervals, depicted with blue rectangles. Figure 
taken from (49) supplementary material. 

 

Nevertheless, the efficacy of population based HRA interventions in efficiently 

managing overall population demand relies on identifying individuals most susceptible 

to adverse events and pinpointing those who are both at high risk and likely to respond 

positively to a specific intervention, essentially, those who can be impactable(58,59). 

Impactability modelling(60) is a novel technique used in population health 

management to identify patients who are not only at risk of developing certain health 

conditions but also likely to benefit from certain interventions. It further sorts the sub-

groups of at-risk patients, based on their probability of benefiting from various 

interventions or treatment plans. It is essential to recognise that while certain 

impactability modelling approaches can help diminish inequalities, others might 

exacerbate them. Therefore, conducting an equality impact assessment is crucial. 
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2.2. Clinically oriented HRA 

 

In the clinical arena, HRA plays a significant role in informing and aiding clinical 

decision-making processes. Clinical decisions typically draw upon the health 

professional's knowledge, past experiences, and intuition. Rule-based decision-making 

grounded in solid medical evidence, often derived from randomized controlled trials 

(RCTs), plays a crucial role in enhancing the efficiency of the decision-making 

process(61). More recently, significant shifts in clinical research and practice have been 

catalysed by integrating systems biology methodologies and using information and 

communication technologies(30,62,63). These changes can potentially enhance clinical 

decision-making by incorporating holistic approaches, computational modelling, and 

predictive tools into clinical medicine(64,65).  

These trends are prominently steering large-scale clinical applications toward the 

mainstream embrace of Clinical Decision Support Systems (CDSS) (Figure 7). CDSS, as 

defined, are computational models designed to aid directly in clinical decision making, 

in which characteristics of individual patients are used to generate patient-specific 

assessments or recommendations that are then presented to clinicians to support 

clinical decision making(66). It is important to note that this modelling approach must 

complement, rather than replace, clinical judgment, providing additional insights and 

guidance to healthcare professionals. 

Integrating IT components into clinical decision-making began with translating expert 

knowledge—sourced either from hands-on clinical practice or medical literature—into 

rule-based 'if-then' formats (Figure 7). Over time, as the volume and complexity of 

patient-related data from diverse healthcare domains surged, a shift towards data-

driven analysis methods arose. These methods promise to augment the capabilities of 

healthcare professionals, especially when it comes to making patient-centric decisions 

derived from the analysis of large databases. Within this framework, clinical decision-

making encounters substantial challenges from integrating rapid progressions of 

computational sciences in digital medicine and artificial intelligence (AI) (Figure 7).  
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Figure 7: Diagram of key interactions in expert systems and data driven CDSS. Three key 
elements are identified: 1) The model includes predefined rules for knowledge-based systems, 
decision-modelling algorithms for non-knowledge-based systems, and accessible data. 2) The 
inference engine processes either the programmed rules or those determined by AI, and 
combined with structured data, it analyses the patient’s clinical information to produce an 
actionable result. 3) The user interface where the result is then displayed to the end-user, such 
as a physician, through a communication platform, which could be a website, application, or 
the frontend of an Electronic Health Record (EHR) system. The end-user interacts and engages 
with the system’s recommendations in this interface. Figure taken from (67). 

 

During the last decades CDSS have exhibited a profound maturation in specific 

contexts, extending their capabilities across a myriad of actionable clinical areas. One 

of the most solid advancements of CDSS is observed in terms of informing diagnostic 

procedures, concretely augmenting the extraction, visualization, and interpretation of 

medical images (e.g. tumour detection(68) or diabetic retinopathy diagnosis(69)) and 

analysis of laboratory test results (e.g. tumour grading(70) or automating blood cell 

counting(71)). Beyond their diagnostic prowess, CDSS have also demonstrated 

remarkable efficacy in automatizing administrative tasks, such as providing support for 
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clinical and diagnostic coding(72), ordering procedures and tests(73), sending 

immunization reminders(74), discharge planning (75) and patient triage(76). Through 

the automation of various processes, they facilitate a reduction in human-induced 

errors and enhance the overall efficiency of clinical operations. Such systematic 

automations further play a pivotal role in informed resource allocation and cost 

optimization(77). 

However, CDSS respond to specific clinical queries, mainly designed for targeted 

populations. Moreover, their utilization in comprehensive clinical interventions is still 

limited. The statement is particularly true for managing complex chronic patients 

afflicted by a substantial multimorbidity burden. As described above, multimorbidity is 

a complex condition shaped by an intricate interplay of multiple health determinants, 

including medical history, nutrition, lifestyle behaviours, environmental exposures, 

genetic predispositions, employment, and other socio-economic risk factors(78). 

 In this context, implementing comprehensive methodologies for subject-specific risk 

prediction and stratification, encompassing a wide array of influencing covariates 

derived from multiple sources on patients' health and well-being, can heighten 

predictive precision and facilitate clinical decision-making grounded in robust 

estimations of individual prognosis.  

The prospect of integrating these health determinants into holistic predictive models 

presents an exciting opportunity for CDSS(79–81), especially in the context of machine 

learning and predictive modelling. While traditional rule-based systems may face 

challenges assimilating these extensive datasets, AI-driven systems demonstrate a 

comparative advantage. However, this shift to complex models poses challenges. Key 

challenges include integrating data from diverse sources while safeguarding patient 

confidentiality, addressing inherent biases in AI models, and validating the precision of 

system recommendations. Additionally, the opacity of AI-driven decision-making 

processes, often termed “black boxes” adds complexity, that is, computational 

methods where the internal mechanisms and decision-making processes are not easily 

explainable(82). Despite these challenges, the potential benefits of a more integrated 

and multisource CDSS are pushing the evolution in this direction. 
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3. TOWARDS LEARNING HEALTHCARE SYSTEMS 

Contemporary medical science is characterized by a dynamic flux of knowledge, with 

novel findings, methodologies, and new therapeutic opportunities emerging at an 

unprecedented pace. Therefore, continuously updating CDSS is essential to align with 

emergent medical data, knowledge, and practices. In this continuous adaptation 

process, two pivotal components have been identified to guarantee that practitioners 

consistently operate at the apex of evidence-based medical practice. Firstly, there is an 

imperative for the prompt validation and incorporation of research advancements into 

clinical practice in real work scenarios. Secondly, it is crucial to establish a feedback 

mechanism, enabling clinical learnings to reciprocally inform and refine research lines. 

Addressing the abovementioned challenges inevitably narrows the gap between 

academia and clinical practice, opening a range of possibilities for cross-fertilization in 

both fields. This convergence triggers a virtuous cycle that ensures that clinical 

procedures are rooted in empirical evidence but also allows the nuances of practical 

patient care to inform and refine ongoing research. This ideal iterative model of 

knowledge exchange and application is known as the Learning Healthcare System 

(LHS)(83). While the concept is still nascent, projections suggest that this emerging 

paradigm will significantly influence health systems, steering the advanced stages of 

the shift towards a fully digital medical landscape. The benefits of the synergistic 

convergence between clinical practice and biomedical research inherent in the 

adoption of the LHS are elaborated comprehensively in Appendix (Personalized 

Medicine meets Artificial Intelligence; Chapter 10: “Multilevel Modelling with AI: The 

Synergy-COPD Endeavour”). 
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Figure 8: The iterative cycle of the learning health system with 3 information flows and 8 
steps. Figure taken from (84). 

 

The LHS, as depicted in Figure 8, serves as an illustrative example for a project aiming 

at learning how to enhance transitional care. The cycle begins with the collection of 

patients data (step 1), followed by its assembling (step 2) and subsequent analysis 

(step 3). From this analysis emerges a predictive model capable of estimating the risk 

of 30-day hospital readmission (step 4). This actionable model can be converted into a 

CDSS (step 5). Subsequently, this model can be operationalized to strengthen a 

predictive calculation service via its integration within an EHR or another health IT 

infrastructure (step 6). Now, it functions as applied knowledge (step 7). This 

integration facilitates the amalgamation of new information through the predictive 

model with individual-specific data, thus yielding the clinical problem under a new 

paradigm and offering potential clinical utility (step 8)." 
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A core element to support the above LHS strategy is the adoption of a Digital Health 

Framework (DHF)(85) at healthcare system level. The DHF includes elements such as 

data infrastructure, governance, stakeholder engagement, analytic capabilities, and a 

culture of continuous improvement. DHF shall ultimately contribute to enhance in-

silico scientific analysis towards dynamic health risk assessment and patient 

stratification by means of holistic strategies for subject-specific predictive 

modelling(85,86). By leveraging DHF, LHS can efficiently capture and utilise health data 

to foster continuous learning, facilitate research, enable real-time monitoring, support 

personalised medicine, and drive evidence-based decision-making. The combination of 

LHS principles and a proper DHF infrastructure creates a synergistic approach to 

advancing healthcare quality, patient outcomes, and population health management.  

 

3.1. Multisource Clinical Predictive Modelling  

Adopting the LHS approach supported by a mature DHF would make it possible to face 

one of the great remaining challenges for the CDSS: integrating data from multiple 

determinants of health. This integration would enable the implementation of 

comprehensive methodologies for morbidity-adjusted subject-specific risk prediction 

and stratification and identify potential intervention targets to implement 

personalised, cost-efficient, patient-centred care plans. This approach know as 

Multisource Clinical Predictive Modelling (MCPM) (Figure 9), facilitates the integration 

of i) healthcare data form EHR, and health determinants from other domains including: 

ii) Population health registry data; iii) Informal care data including patients’ self-

tracking data, lifestyles, environmental, behavioural aspects, and sensors; and iv) 

Biomedical research omics data.  
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Figure 9: Dynamic enhancement of multisource clinical predictive modelling feeding clinical 
decision support systems (CDSS). Development of enhanced clinical predictive modelling 
requires consideration, and eventual integration, of computational modelling of four different 
dimensions: (i) Underlying biological mechanisms (biomedical research); (ii) Current evidence-
based clinical knowledge (healthcare); (iii) Patients’ self-tracked data, including sensors, 
behavioural, environmental, and social information (informal care); and (iv) Population-based 
health risk assessment data (population health). Figure adapted  from (87). Additional 
information can be found in Annex 1 (Personalized Medicine meets Artificial Intelligence; 
Chapter 10: “Multilevel Modelling with AI: The Synergy-COPD Endeavour”) 

 

Clinical information - Clinical data forms the foundational information about a 

patient's health and medical history, encompassing their diagnoses, treatment 

histories, immunization records, functional tests, and lab results. Currently, this data is 

systematically organized and stored within an EHR, which offers healthcare 

professionals a digital, comprehensive view of a patient's medical interactions and 

treatments. However, this information is not only restricted to health professionals. 

The personal health folders empower patients by allowing them to manage and 

compile their own health data fostering a proactive approach and enhancing patient 

involvement in their healthcare decision-making. 

Population health - Increasing evidence indicates that the population-health risk 

predictive tools could enrich the spectrum of covariates considered in the patient-

based HRA computational models(50). This approach fosters the integration of 

population-level risk assessment strategies and individual-level risk assessment geared 

towards supporting clinical decision-making. Recent research indicates that 
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incorporating population-based morbidity groupers, such ACG, CRG or AMG, in 

computational models, jointly with sociodemographic information, might aid in 

identifying early signs of unplanned hospital admissions, paving the way for programs 

aiming at preventing hospitalizations(88) and promote the application of cost-effective 

preventive interventions to anticipate and modulate disease progression. 

Informal care - It's worth noting that incorporating informal health data into HRA not 

only introduces the potential for integrating health determinants outside the clinical 

scope but also facilitates enhanced patient monitoring beyond the confines of the 

healthcare facility. At this point, Patient-Reported Outcome Measures (PROMs) and 

Patient-Reported Experience Measures (PREMs) assume significance, as they provide 

important feedback on a patient's health status and their experience of care(89,90). 

The ongoing debate surrounding the most appropriate methods for capturing these 

measures includes exploring standardized health questionnaires as well as emerging 

telemedicine and remote patient monitoring techniques(91,92), which often consider 

information collected from a wide spectrum of medical devices, ranging from wearable 

health trackers, such as heart rate monitors and step counters, to advanced diagnostic 

equipment, enabling accurate monitoring of vital signs, detecting abnormalities, and 

self-management of chronic conditions(91,92). 

Biomedical research - Following a systems medicine approach, it is imperative to 

integrate omics-derived insights with clinical applications to augment our 

comprehension of disease mechanisms, prognostications, diagnostics, and therapeutic 

interventions. This necessitates a cyclical and bidirectional exchange between clinical 

explorations and the employment of computational, statistical, and multiscale 

mathematical analyses to delineate pathogenic mechanisms, disease trajectory, and 

therapeutic responses at a population and individual patient scale. Such models are 

instrumental in decoding complex biological data, elucidating the interrelations within 

a biological system that culminate in health or disease states, and thereby emerging as 

potent predictive tools for individualized health and disease trajectories(93,94).  

Nonetheless, the integration of data encompassing the four domains mentioned above 

introduces a range of unresolved challenges. Avoiding for a moment the debate on the 

technological and architectural prerequisites imperative for integrating the alluded 
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data sources, the strategic implementation of the multisource approach confronts 

inherent constraints that hinder the realization of its full potential. These limitations 

arise due to the developmental immaturity inherent in specific domains of knowledge.  

One of the main challenges is the collection of patients' PROMS and PREMS data in 

real-world settings, which remains unresolved. This limits the ability to gather 

comprehensive data on patient outcomes and experiences. Moreover, the lack of 

evidence-based protocols and integration into clinical workflows poses a challenge for 

the adoption of some approaches, resulting in diminished performance and efficacy 

gaps when are applied in real world settings(95,96). However, obstacles to implement 

PROM/PREM were apparently uniform across various patient groups and care 

environments. This indicates that strategies aimed at addressing contextual elements 

could significantly enhance the effectiveness of implementation(95).  

Another distinctive challenge is the incorporation of omics data in MCPM targeting 

interventions in all-type multimorbid patients since most of the genetic biomarkers are 

narrowly related to specific groups of diseases or targeting precise metabolic 

pathways. Multimorbidity involves the interaction of several diseases and their 

underlying molecular mechanisms. Understanding the intricate interplay between 

various omics data points and their collective impact on health outcomes proposes a 

substantial biological challenge(97,98). In addition, developing comprehensive models 

that accurately capture the complex interactions between various omics layers and 

disease states requires the utilization of high-dimensional datasets. The analysis of 

such databases, can make traditional statistical methods less effective and require 

enormous computational resources to handle a large amount of information and 

provide complex results that are challenging to interpret and translate into actionable 

insights for clinicians and researchers(99). 
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4. FROM RESEARCH TO CLINICAL PRACTICE: PERSPECTIVES AND CHALLENGES 

The cumulative evidence presented in the previous sections underlines the potential 

synergy between a systems medicine approach, integrated care, and computational 

medicine to enhance the management of multimorbid patients. However, despite 

strong evidence and worldwide efforts to promote the integrative confluence of these 

domains, still exists a substantial disparity between the growing proliferation of 

computational modelling studies in the academia and their adoption into clinical 

routines. Notable data evidence this gap; for instance, numerous CDSS have resulted in 

limited adoption or adverse effects on outcomes(100,101). Research indicates that as 

many as 95% of CDSS are dismissed(102). This is an alarming rate of non-adoption, 

suggesting that these tools' technical and academic aspects are robust but there are 

issues related to their practical application, user experience, or integration into clinical 

settings. Nevertheless, the landscape is not entirely pessimistic, approximately 52% to 

66% of these tools contribute to enhancing process outcomes like appropriate drug 

selection, medical imaging interpretation or laboratory test analysis, whereas a 21% to 

43% bring about improvements in clinical outcomes(102). This evidence highlights the 

potential efficacy of these systems, suggesting that, when appropriately employed, 

they can substantially refine clinical procedures, and thereby boosting patient care. 

The factors contributing to the unsuccessful transition of the comprehensive MCPM 

approach from research environments to fully operational CDSS are multifaceted. 

These include suboptimal quality of clinical data, models with inadequate 

generalization or customization capabilities, challenges in integration with pre-existing 

systems and usability difficulties stemming from unintuitive interfaces for clinical 

practitioners(103,104). Moreover, additional barriers are present in the form of 

mistrust and cultural resistance within the clinical community, regulatory and legal 

issues, and financial constraints linked to the substantial costs associated with 

implementation(103,104).  

These limitations highlight the need for targeted efforts to address knowledge gaps, 

secure adequate resources, develop effective deployment strategies, foster a culture 

of innovation and openness to change, and establish robust data privacy and security 

measures. By addressing these challenges, the implementation gap between 
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biomedical research and clinical practice should be minimised and the potential impact 

of CDSS will lead to improved healthcare decision-making and better patient 

outcomes. 

All the determinants of non-adoption listed above are shown sequentially in the 

phases of model development and implementation depicted below (Figure 10). 

 

 

Figure 10: Diagram depicting the different phases of the development and implementation 
of a CDSS. Creating a model commences with a clinical inquiry, succeeded by data collection. 
This data can be obtained through either a knowledge-driven method or a data-driven 
approach. To begin building the model, it is necessary to use consistent integration methods for 
the data being employed. Adhering to FAIR data principles and GDPR is essential for the 
model's development. Typically, the initial model undergoes multiple rounds of refinement and 
improvement to enhance its predictive capabilities. Accurate measurements and validation 
procedures are pivotal and should be transparent. Furthermore, ideally, the model's output and 
function should be interpretable and explainable. Figure taken from (105). 

 

During this process, four well-defined bottlenecks have been identified:  

1. Model Development: It is imperative to secure access to data from multiple 

sources, that is not only accurate but also allows interoperability. This 

multisource data aggregation is essential for constructing robust and 

comprehensive models. Even when data is accessible, its quality, diversity, and 

relevance can be a concern. Incomplete, outdated, or unrepresentative data 

can lead to models that are not robust or generalizable. Bias in the data, either 
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due to underrepresentation or skewed sampling, can propagate into the 

models, leading to unfair or inaccurate predictions. 

2. Model Validation: Ensuring models' efficacy requires rigorous validation within 

real clinical environments. Such an evaluation aims to ascertain the models' 

applicability and effectiveness in clinical scenarios beyond controlled or 

simulated settings. 

3. Model Regulation: In the contemporary data-driven era, it is crucial to ensure 

that these models adhere to established regulations such as the General Data 

Protection Regulation (GDPR) and other prevailing European legislative 

frameworks, such as the Medical Device Regulation (MDR). This ensures both 

ethical handlings of data and instils confidence in the potential users regarding 

the model's compliance with legal mandates. 

4. Model Adoption: Eventual deployment and utilization in routine clinical 

practice requires overcoming inherent institutional and individual resistances 

to change. Additionally, barriers related to the acceptability and usability of 

new technological systems must be addressed to ensure smooth integration 

into existing workflows. 

 

4.1. Model Development:  Challenges and opportunities in data integration 

Integrating data into CDSS presents an initial challenge, accessing and harmonising 

data from diverse sources. This crucial phase relies heavily on ensuring data is 

compliant with FAIR principles – ensuring it is findable, accessible, interoperable, and 

reusable. This is particularly important in multicentric data integration, wherein the 

information is often fragmented in different silos. This diversity of input data 

originating from different sources significantly impedes subsequent analyses and 

comparability of the results. Addressing this challenge necessitates two fundamental 

shifts at the organisational level. Starting with ensuring data interoperability, followed 

by equipping the system with the requisite architecture to facilitate collaborative 

workflows across distinct organisations. 
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Standardising health data: the rise, relevance, and role of healthcare data standards. 

Achieving this data harmonization requires the utilization of suitable data standards. 

Data standards encompass specifications and directives that delineate a universal 

vocabulary and framework for capturing, storing, and exchanging healthcare-related 

information. Through this process, the standards play a pivotal role in ensuring data 

and metadata interoperability, elevating data quality, and serving as fundamental 

catalysts for result reproducibility(106). Several advancements in this area have led to 

the emergence of various health data standards, encompassing both commercial and 

community-driven efforts. These standards have been introduced to promote 

interoperability across diverse environments, fostering efficient exchange of electronic 

health information and enabling systematic analysis. Noteworthy examples include 

Health Level Seven International (HL7)(107), a set of standards for exchanging 

electronic health information between different systems and organizations, among 

them is highly relevant the HL7 Fast Healthcare Interoperability Resources (FHIR)(108), 

the latest standard from the HL7 organization, aiming to simplify the integration and 

exchange of health information. The Clinical Data Interchange Standards Consortium 

(CDISC)(109), that develops global standards for clinical research data and metadata. 

The Observational Medical Outcomes Partnership (OMOP) Common Data Model 

(CDM)(110), a standard for transforming data contained in observational databases 

into a common format, allowing for systematic analysis. And the OpenEHR(111), an 

open standard specification for semantic interoperability of health information 

systems, that describes the management and storage, retrieval, and exchange of 

health data in EHRs focused on enhancing data persistence. Also, ISO-13606(112) 

establishes a framework for EHR interoperability. 

 

European initiatives for primary and secondary uses of health data: The European 

Health Data Space and EU-STANDS4PM 

Currently, this concern is tackled by two pivotal projects at European level, following 

parallel and complementary approaches. On the one hand, the European Health Data 

Space (EHDS)(113) addresses the utilisation of health data for primary and secondary 

purposes, encompassing routinely collected healthcare data. The EHDS initiative aims 
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to establish a shared data environment for health-related information across Europe. 

The primary mission of EHDS centres on addressing specific challenges related to 

accessing and sharing electronic health data, striving to create a unified realm where 

individuals have control over their health data while enabling trusted and secure use 

by researchers, innovators, and policymakers, all while safeguarding privacy. Built on 

robust foundations of data privacy, interoperability, and security, including 

cybersecurity measures, EHDS is pivotal for citizen trust and project resilience and 

facilitating cooperation and information exchange among Member States. 

Conversely, the effective repurposing of health data for computational modelling 

under personalized medicine research umbrella, is addressed by the EU-

STANDS4PM(114) consortium, which has been working diligently to establish formal 

standards for precision medicine, and emit specific requirements and 

recommendations for the design, development and establishment of computational 

models for research purposes. EU-STANDS4PM is a Coordinating and Support Action 

funded under the European Commission’s Horizon2020 framework program, carries a 

core objective of creating a pan-European expert platform. This platform seeks to 

evaluate existing standards and devise novel ones for data integration and sharing in 

the domain of computational modelling for personalised medicine. The project’s scope 

encompasses evaluating national strategies for interoperable health data integration 

and creating a European framework for big data in personalised medicine. A recent 

outcome of this endeavour is the ISO/TS 9491-1:2023 "Biotechnology — 

Recommendations and requirements for predictive computational models in 

personalized medicine research — Part 1: Guidelines for constructing, verifying and 

validating models"(115). This framework will underpin the development of fresh in 

silico models with applications spanning drug discovery, clinical trial design, and other 

aspects of personalised medicine support. 

 

Transitioning from Centralized to Decentralized Data Models 

Additionally, incorporating multisource health data in a CDSS is inherent in the 

evolution from centralized to decentralized data models. In the former, data resides in 

a singular location and is accessed via a single interface. Conversely, the shift to a 
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decentralized model involves data being dispersed across various locations and 

accessed through a distributed system. A notable illustration is the federated data 

model, a technology that virtually amalgamates data from diverse sources, rendering it 

accessible within a standardized data framework. In federated data models, underlying 

data repositories continue to function autonomously, while data consumers can 

execute federated queries as if the data were consolidated. This holds particular 

appeal for organizations housing disparate database types, eliminating the need for 

users to be proficient in each database’s query language. Another instance is the peer-

to-peer data model, wherein data resides across multiple nodes within a network, 

allowing users direct access to the data from these nodes. 

Moreover, as both clinical and biomedical datasets continue to grow in both quantity 

and size, an increasing number of participants in clinical studies are required to discern 

meaningful signals, potentially confounded by an array of biological, experimental, and 

environmental factors. Similarly, the computational demands necessary for the 

processing and analysis of these burgeoning data volumes, which are expanding on a 

daily basis, surpass the computational capabilities of research institutions. However, 

the biomedical research landscape and healthcare services, in a broader sense, have 

not yet fully embraced Big Data and cloud computing. Consequently, the task of 

generating new datasets by amalgamating clinical information and scientific 

knowledge remains a formidable challenge.  

 

European Health Research and Innovation Cloud: paving the way for a cloud-based 

European healthcare infrastructure 

In response to this challenge, the EU Digital Transformation of Healthcare Initiative 

(DIGICARE) aims to establish the essential groundwork for constructing a secure, 

adaptable, and decentralized digital healthcare infrastructure through the 

development of the "European Health Research and Innovation Cloud" (HRIC)(116). 

This initiative aspires to streamline data exchange and analysis for healthcare research 

across the EU while adhering to data protection regulations. HRIC will be constructed 

upon existing data infrastructures, integrating clinical best practices, and concentrating 
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on the specific community needs concerning technology, governance, management, 

regulation, and ethical prerequisites. 

Cloud technologies allow data access and processing, provided that the cloud servers 

are situated within European territory, comprehensive data protection and security 

measures are in place, and a valid data processing agreement is established. 

Leveraging decentralized data within the cloud facilitates real-time algorithm 

execution, facilitating both data utilization and shared processing without generating 

localized data copies, thus offering significant advantages in data protection 

regulation. Furthermore, the cloud enables high-performance computational analyses, 

a feature posing management complexities for institutions constrained by limited 

computational resources. 

 

4.2. Model Validation: from model development to clinical application and 

continuous validation 

Another well-identified bottleneck that hinders the implementation of CDSS in clinical 

practice is the rigorous evaluation and validation of machine learning models before 

their practical implementation in clinical settings, ensuring that models exhibit 

accuracy, reliability, and generalizability across varying patient populations and diverse 

contexts.  

 

Figure 11: Diagram of the steps for the adoption of multisource clinical predictive models 
(MCPM), including elaboration, training, evaluation and feeding clinical decision support 
systems (CDSS) to be applied in a real-world healthcare setting. Figure taken from (Annex 1 -  
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(Personalized Medicine meets Artificial Intelligence; Chapter 10: “Multilevel Modelling with AI: 
The Synergy-COPD Endeavour”). 

 

Figure 11 illustrates the steps from model elaboration, model training, evaluation and 

feeding CDSS to be applied in a real-world healthcare setting. The personalized 

medicine approach to enhancing patient health typically begins by identifying the 

specific health aspect to be targeted and modelled, such as disease diagnosis, severity 

prognosis, or treatment response. Subsequently, the following step usually involves 

pinpointing pertinent data sources, encompassing various types and originating from 

clinical practice and research environments. Once this preliminary data preparation is 

accomplished, modelling is executed to foresee the clinically significant state. For 

effective clinical decision support, the resulting models must be integrated into 

workflows within the clinical setting. In general, models should undergo validation in 

an independent context beyond the engineering environment. Algorithms must 

demonstrate efficacy on new, previously unseen data from the same domain. Upon 

completion, these models can be applied in clinical settings to enhance patient health. 

However, it's imperative to ensure their sustained performance. CDSS might become 

outdated or less effective for certain patient groups, and their accuracy could diminish 

over time. Retraining CDSS may involve updating algorithms or data sources and 

adjusting decision-making rules. This proactive measure guarantees the continued 

precision and relevance of CDSS for the patient populations it serves. 

Across this process, the context-specific nature of computational models is a recurring 

hurdle in both their development and validation. This means that the applicability of 

these models is limited to specific scenarios due to their restricted extrapolation 

capabilities. Furthermore, this contextual specificity makes it difficult to standardize, 

reuse, and report the results of these models. While there is consensus on the 

importance of validation and assessment, there are divergent opinions regarding the 

optimal validation methods. Some propose RCTs as the gold standard for validation, 

while others argue that local, autonomous validation studies may be more feasible and 

essential, particularly for algorithms with indirect patient care impacts(103). In light of 

this, it is important for researchers and practitioners to carefully consider the 

validation methods that are most appropriate for their specific context and goals. This 
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may involve a combination of approaches, including RCTs, simulation studies, and local 

validation studies. 

It is also worth to mention that many software tools still lack provisions for open-

access rights, sustained maintenance, version control, and standard software 

qualification. Paradoxically, despite their availability and endorsement by multiple 

tools, best practices are often not consistently applied(103).  

 

4.3. Model Regulation: from data protection and ethics to AI regulations 

The third challenge presents itself in two dimensions: first, it addresses the distribution 

and secondary utilization of health data among different organizations while ensuring 

full compliance with existing ethical legislation; second, it focuses on being compliant 

with prevailing regulations governing AI in healthcare. 

The GDPR is a cornerstone in the regulatory landscape governing data privacy and 

protection. GDPR is especially relevant during the initial phases of model development 

due to its impact on data collection, usage, and overall project planning This regulatory 

frame establishes different directrices to be followed when delving into computational 

modelling, especially when using data-driven strategies. 

Among these directrices is the principle of data minimization, especially pronounced 

within data-driven models where the relevance of the covariates may be ambiguous. 

This principle underscores the importance of ensuring organizations retain only the 

minimum necessary personal data. This measure mitigates risks associated with 

potential data breaches and upholds individuals' rights and privacy.  

Moreover, the significance of data inclusivity cannot be understated, which entails 

capturing and reflecting a broad spectrum of demographic attributes, including diverse 

genders and ethnic backgrounds. Nevertheless, a nuanced ethical challenge arises 

when generating profound patient insights that transcend their immediate clinical 

needs, especially given the inherent moral principle of the "right not to know."  It is 

also imperative to maintain a commitment to transparency by communicating the 

efficacy of these computational models when integrated into clinical practice, thereby 

equipping patients with a comprehensive understanding of the potential outcomes 
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and implications. Automated decision-making processes often exclude pivotal human 

intervention, posing concerns about preserving transparency rights. Apprehensions 

surrounding the interpretability and transparency of machine learning models pose 

considerable challenges, especially within healthcare settings where decisions wield 

substantial implications for patient well-being and safety.  

In essence, computational models must undergo rigorous peer review and validation 

processes. To gain clinician adoption, they necessitate evaluation through research 

procedures such as RCTs and compliance with MDR, to bring CDSS to the Healthcare 

market as medical devices able to claim impact on healthcare outcomes. The European 

Commission is in the process of introducing a regulatory framework for AI, 

encompassing dedicated regulations for AI-powered medical devices. Supplementary 

guidelines(117) are accessible from both the European Commission and the Medical 

Device Coordination Group (MDCG), offering comprehensive insights into the 

classification and categorization of AI-incorporating medical devices. These documents 

outline the criteria for determining the risk level of a medical device and provide 

guidance on the conformity assessment procedures that must be followed. 

 

4.4. Model Adoption: leveraging implementation science frameworks 

The last hurdle to overcome is the resistance to change at the organizational and user 

level. In this regard, the lack of awareness or understanding of the benefits of CDSS 

and its potential impact on healthcare decision-making among healthcare providers, 

patients, and policymakers is hindering its widespread adoption and utilization(118). 

The healthcare industry, like any other sector, may face resistance to change or a 

reluctance to adopt new technologies or practices. Some healthcare providers, 

patients, and policymakers may be hesitant to embrace CDSS due to concerns about its 

integration into existing workflows, potential disruptions, or perceived complexities 

associated with adopting new technological solutions(119). 

The exposed lack of explainability can make it difficult for clinicians to place their trust 

in and effectively employ these models in practical situations. It is well acknowledged 

that the opacity of black box algorithms may be more important for healthcare 
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professionals than simply knowing the accuracy of the predictions and can lead to poor 

acceptance of the solution. This nuance is especially pertinent in healthcare, where 

adopting AI-driven tools aims to augment clinical decisions and enhance patient care 

outcomes. Thus, the emphasis on explainable artificial intelligence (XAI) is gaining 

momentum within healthcare contexts, as it offers a lens into the AI decision-making 

process, ensuring that such decisions are transparent, accountable and 

trustworthy(119). 

 

Figure 12: Predictive model for hospital readmissions embedded in an explainable Artificial 
Intelligence (XAI) interface. The diagram illustrates a predictive model designed to anticipate 
hospital readmissions seamlessly incorporated within a XAI interface. The model's predictions 
are based on a holistic analysis of electronic health records (EHRs) and other relevant 
healthcare data. The AI interface offers transparency by elucidating the underlying factors 
contributing to the model's predictions. This facilitates a comprehensible and actionable 
understanding of the prediction process, ensuring its practical application within healthcare 
contexts. Figure taken from (120). 

 

Also, implementing and maintaining HRA programs can require significant resources, 

including financial investments, infrastructure development, and staff training. Limited 

resources or funding can pose challenges in establishing effective HRA programs, and 

the lack of well-designed deployment strategies can further impede its successful 

implementation(103).  

Implementing CDSS in real-world clinical workflows requires a comprehensive, 

evidence-based framework to guide the process. While implementation science (IS) 

frameworks exist specifically for health information technologies, current literature 

does not offer exhaustive guidelines covering all aspects of CDSS implementation. 
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There is a clear need for a robust IS framework that considers the unique challenges 

and contextual intricacies pivotal to the successful deployment of CDSS tools. 

In light of this, the pragmatic application of IS frameworks, such as CFIR(121) or 

PRISM(122), can assist in several ways. Foremost among these is the provision of 

essential support structures necessary for the effective deployment of interventions, 

coupled with mechanisms to address and rectify unforeseen challenges swiftly. As part 

of this process, strategies must be developed to facilitate the smooth incorporation of 

the CDSS into routine clinical operations and effectively communicate these changes to 

end users. It's also imperative to reconvene with clinical leadership before 

deployment, particularly when the pre-implementation stage has been extensive or in 

scenarios where the health systems are undergoing significant transformations. 

 

5. CHALLENGES ADDRESSED IN THE THESIS: THE THREE USE CASES 

The thesis addressed multifaceted challenges within the HRA domain by employing a 

structured approach. These challenges are articulated and examined across three 

specific use cases. 

Primarily, the PhD thesis investigates the influence of multimorbidity on complex HRA 

predictive models (Use Case 1). This comprehensive research pursues to formulate 

feasible, applicable and pragmatic predictive models that account for multimorbidity 

but also consider other determinants of health. This analysis would enable to 

effectively evaluate the health risks associated with hospitalization cases to improve 

service selection at admission and promote transitional care at discharge. This inquiry 

is grounded in realism, accounting for factors that may influence the adoption, paying 

specific attention to the systematic design and evaluation of models. Ans, aligned with 

Catalonia's digital transformation objectives, this use case is ultimately geared towards 

offering guidance on CDSS adoption strategies. 

Additionally, the thesis also analyses the driving forces within the European healthcare 

landscape to transfer and adopt mature HRA strategies among regions, with particular 

emphasis on the use of morbidity groupers (Use Case 2). This was empirically tested 

under the umbrella of the transference of the AMG algorithm, allowing to evaluate 
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both enablers and barriers employing robust evaluative approaches grounded in well-

established implementation frameworks for the transference and adoption of such 

tools in clinical and public health contexts. Also, this evaluation would allow to 

measure the algorithm's adaptability and effectiveness in different contexts.  

Furthermore, the research delves into innovative strategies sought at integrating 

insights derived from disease trajectory studies into state-of-the-art HRA tools, such as 

the AMG algorithm (Use Case 3). This strategic integration seeks to strengthen the 

algorithm's capacity to predict the progression of multimorbidity and the emergence 

of new comorbid conditions with heightened accuracy. The exploration of these novel 

approaches holds the potential to significantly enhance the predictive capabilities of 

existing HRA methodologies, such as the AMG. 

The work on this thesis has been carried out under the auspices of two concurrent 

European projects during 2020-2023. 

Use Cases 1 and 2: 

• The Joint Action on implementation of digitally enabled integrated person-

centred care (JADECARE)(123), launched to confront the challenges of health 

transformation within the European Union. JADECARE's primary objectives 

encompass enhancing the capacity of health authorities to effectively address 

the multifaceted dimensions of health system transformation, with a particular 

emphasis on the shift towards digitally enabled, integrated, and person-centred 

care. In this context, HRA has been incorporated as a strategic component to 

facilitate the transition from the initial set of four original Good Practices 

(oGPs) to an extended network of twenty-one European regions participating 

as Next Adopters (NAs). Additionally, under the auspices of JADECARE, a 

collaborative endeavour was established with the OECD to undertake an 

evaluation of integrated care services within Catalonia. The focal point of this 

collaboration was the analysis of the heterogeneities and cost efficacy of the 

multiple Hospital at Home (HaH) programs deployed in Catalonia. 

Use Case 3: 
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• The ERAPerMed project “Temporal disease map-based stratification of 

depression-related multimorbidities: towards quantitative investigations of 

patient trajectories and predictions of multi-target drug candidates” 

TRAJECTOME(124). TRAJECTOME sought to employ advanced machine learning 

techniques on publicly available health and biobank datasets to categorize 

depression-related multimorbidity by analysing comprehensive clinical patient 

pathways, medication records, and genome-wide polymorphism data. 

 

5.1. Use Case 1: design, evaluation, and integration of computational predictive 

models for enhanced management of multimorbid patients 

Rationale: Effectively managing complex multimorbid patients presents a substantial 

clinical hurdle, attributed to the well-documented correlation between the quantity 

and complexity of morbid conditions and elevated mortality rates, alongside the 

intensive consumption of healthcare resources(3). In this context, unplanned hospital 

admissions are an avoidable significant contributor to the burden of healthcare 

systems worldwide(2,125). Evidence-based integrated care interventions and 

comprehensive post-hospital discharge programs have demonstrated efficacy in 

mitigating hospitalizations among high-risk individuals(28,29). However, challenges 

such as the disparity between efficacy and real-world effectiveness, deficient patient 

risk stratification, and inadequately prepared healthcare personnel impede optimal 

clinical implementation(126). Thus, leveraging predictive modelling strategies emerges 

as a potentially potent approach for individualized risk assessment, serving as a 

preventive measure against morbidity-related adverse incidents that culminate in 

hospital readmissions. 

Setting: HaH programs offer an ideal operational framework for testing an intervention 

infused with such attributes. In first place, HaH programs are widely accepted 

interventions for the effective management of patients afflicted by multimorbidity, 

particularly older adults with multiple chronic conditions. Secondly, HaH programs are 

declared a pertinent catalyst for fostering vertical integration between hospital care 

and community-based health and social services, enhancing the care continuum in an 

integrated care scenario. Despite the models' origination and validation within the 



46 
 

confines of Hospital Clínic de Barcelona (HCB), this use case explores the feasibility of 

extending the same methodology to the regional level. This involves the formulation of 

a comprehensive study protocol encompassing a database of over 200,000 discharges. 

Expected impact: It is expected that this type of modelling can improve care-flows in 

hospital environments and improve personalized care based on clinical decision 

support in two areas. Firstly, during hospital admission, facilitating the assessment of 

intra-hospital risks and refining service selection. Service selection holds great 

importance in personalization and can potentially enhance health outcomes. 

Furthermore, this process encompasses the identification and mitigation of distinct 

determinants of health, thereby augmenting the effectiveness of interventions and 

minimizing potential risks. Secondly, during the discharge process, enabling the 

identification of potential risks during periods of heightened vulnerability such as the 

transition from hospital to the community. As well as, enabling the characterization of 

the patients’ risk profiles, this approach would ultimately enable the provision of 

personalized care tailored to individual needs. 

 

5.2. Use Case 2: exploring morbidity grouper adoption dynamics at the European 

level 

Rationale: Several determinants impact the successful transference and adoption of 

population-based health risk assessment strategies. These determinants encompass 

accurate deployment planning, collaborative endeavours, and a holistic understanding 

of the unique challenges and requisites of different populations and contextual 

settings. Addressing the existing gap in information on building up an HRA strategy at 

the regional/country level and its potential for transferability and adaptability to other 

sites is still an unmet need. 

Setting: Concretely, the thesis evaluates the transferability of the AMG tool from 

Catalonia (ES) to the regions of Marche (IT) and Viljandi hospital (EE) in the context of 

the project JADECARE. Importantly, it should be acknowledged that both the 

implementation contexts and the underlying applications of the tool in these regions 

diverge, aligning respectively with population health and population medicine 
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paradigms(127).  Particularly, in the Marche region, a population health approach is 

employed to inform health policies, facilitate benchmarking, and support decision-

making processes. Conversely, the endeavours undertaken in Viljandi hospital adhere 

to a population medicine approach. This approach involves the assembly of patient 

registries to screen potential candidates for a clinical program aiming at preventing 

hospitalizations for elderly patients with concomitant chronic conditions.  

Expected impact: This dual approach should facilitate the identification of pivotal 

barriers and enablers for the effective adoption of population-based HRA on a 

European scale. Moreover, it facilitates the formulation of strategic propositions to 

harmonize population-oriented and clinically-driven HRA methodologies. 

 

5.3. Use Case 3: leveraging morbidity metrics and disease trajectories 

Rationale: This study is focused on major depressive disorder (MDD), due to its 

particular significance since it is frequently presented together with other mental 

health conditions, including anxiety disorders, histrionic personality disorder, and 

somatic symptom disorder(120). Furthermore, compelling evidence suggests that 

depression is intricately linked to an escalated risk of developing additional medical 

conditions, such as cardiovascular disease and diabetes(120). Grasping the clinical 

significance of depression and its intricate interplay with other conditions assumes 

paramount importance in ensuring accurate diagnosis, effective treatment, and 

enhanced patient outcomes. Furthermore, the proficient management of depression, 

along with its associated somatic and mental health manifestations, necessitates an 

all-encompassing approach that addresses the disorder's physiological and 

psychological dimensions(6,7). Developing a comprehensive risk score that leverage 

morbidity metrics of MDD and its comorbid conditions and disease network insights 

would contribute to allow identifying patients with different profiles of risk. As well as, 

paving the way to personalized interventions through the estimating the current 

morbidity burden and the risk of morbidity progression.  

Setting: The innovation of the approach proposed is rooted in its utilization of a 

pioneering methodology to address a key constraint within the analysis of the 
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diseasome and disease trajectories. This limitation involves the emergence of spurious 

correlations between diseases due to indirect patterns of concurrence lacking causal 

connections. The number of falsely correlated diseases is susceptible to increase 

exponentially according to the number of diseases explored. To tackle this challenge, 

the project TRAJECTOME proposed the use of Sparse Bayesian Direct Multimorbidity 

Maps (BDMM)(128,129) methodology by effectively filtering out disease-mediated 

indirect relationships. 

The main product of TRAJECTOME was generating a temporal disease map using 

BDMM to identify clusters of disease trajectories. This propitiated the ideal scenario to 

propel ancillary studies to establish the genetic, metabolic, and environmental risk 

profiles associated with these trajectories, accounting for factors such as sex and social 

disparities. As well as to explore innovative ways to assess the disease burden on 

individuals and health systems, considering the information on disease-disease 

concurrence patterns, and thus offering the tools the ability to adjust the impact of 

morbidity by disease clusters and increase its predictive power to anticipate 

multimorbidity's progression. 

Expected impact: Utilizing this methodology offers a holistic and intricate perspective 

on the multifaceted nature of depression-related multimorbidity. It acknowledges that 

individuals with depression frequently encounter a spectrum of coexisting conditions, 

each exhibiting and progressing uniquely. This understanding transcends a bare 

enumeration of individual disorders, presenting a multifaceted evaluation that mirrors 

the patient's health. Such a comprehensive perspective fosters an interdisciplinary 

approach integrating psychiatric and somatic medicine. By initiating collaborative 

prevention strategies across specialties, healthcare practitioners can deliver a more 

integrative and efficacious care regime for patients with intricate health requirements. 

Moreover, effective stratification of depression-related multimorbidity can enhance 

precision medicine, particularly for patients in the early phases of MDD manifestation. 

Incorporating data-driven categorization into clinical routines can streamline patient 

screenings and referrals, making the process both efficient and economically viable. 
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10.1 Multisource Predictive Modelling for Enhanced Clinical 
Risk Assessment 

Physician’s best judgement, combined with rules-based management, are the two 
components of conventional clinical decision-making across all healthcare tiers. 
While health professionals’ judgement relies on knowledge, training, and experi-
ence; rules-based management consists of thresholds of target variables articulating 
evidence-based decision criteria, often emerging from randomized controlled trials 
(RCTs). 

Current clinical practice is facing major challenges due to the enormous evolution 
of computational sciences, as well as quick progress of digital medicine towards 
large-scale clinical application. Computational modelling is already a powerful tool 
extensively used for highly standardized medical procedures, like analysis of imag-
ing techniques. However, it is expected that multilevel predictive modelling will 
offer valuable support to enhance clinical decision-making, complementing but not 
substituting clinical judgement (Rajpurkar et al. 2022). 

The use of dynamic multisource predictive modelling approaches for clinical 
decision support that establishes relationships between multilevel and multiscale sets 
of predictors, targeting specific health outcomes by the use of statistical techniques 
and/or Artificial Intelligence/Machine Learning (AI/ML), is still in its infancy (Doos 
et al. 2016). However, it is a natural step towards customization of care to individual 
patient’s needs. 

Several interconnected factors, such as: current changes in healthcare paradigm, 
well-identified complexities in the healthcare scenario, as well as complexities of 
multilevel data integration and data security and privacy, explain the barriers 
encountered to define, deploy, and adopt operational strategies to facilitate preven-
tive, value-based (Porter 2008) healthcare for acute and chronic patients using 
computational modelling in real-world clinical settings, with a twofold aim: (i) to 
slow-down chronic patients’ progression towards the tip of the population-based risk 
stratification pyramid through cost-effective preventive strategies; and (ii) to 
enhance reliable decision-making. 

It has become widely accepted that health risk assessment for patient stratification 
is a relevant component in the strategies for regional adoption of integrated care 
because of its contribution in the design of healthcare policies and services using a 
population-based approach, as well as for enhanced clinical management for indi-
vidual patients. 

The foundations of health risk assessment proposed in the chapter rely on two 
concepts generated within the Synergy-COPD project (Synergy-COPD Consortium 
2010). Briefly, Cano et al. (2014a) reported on the concept and operational aspects of 
a Digital Health Framework (DHF), defined as the articulation of open and modular 
digital components supporting the interplay among four types of data sources: 
(i) patients’ self-tracking data including lifestyles, environmental, behavioural 
aspects, and sensors; (ii) healthcare data from electronic health records (HER); (iii) 
biomedical research data; and (iv) population-based registry data. The basic idea is 
that an operational DHF could overcome current health-related silos of information,



being the core component of a Learning Healthcare System (LHS). The concept of 
LHS was first formulated in 2012 by the Institute of Medicine as a strategy to 
improve the quality and efficiency of healthcare (Ferguson 2012). Thereafter, the 
American Heart Association (AHA) (Maddox et al. 2017) further developed the 
practicalities of the LHS concept and proposed specific steps to make it operational 
and evaluate its implementation. 
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Fig. 10.1 Dynamic enhancement of multilevel clinical predictive modelling feeding clinical 
decision support systems (CDSS). Development of enhanced clinical predictive modelling requires 
consideration, and eventual integration, of computational modelling of four different dimensions: 
(i) Underlying biological mechanisms (biomedical research); (ii) Current evidence-based clinical 
knowledge (healthcare); ( iii) Patients’ self-tracked data, including sensors, behavioural, environ-
mental, and social information (informal care); and (iv) Population-based health risk assessment 
data (population health). Figure taken from Roca et al. (2020) 

The second major pillar (Dueñas-Espín et al. 2016) refers to the huge potential for 
enhancing clinical risk predictive modelling by incorporating the four categories of 
variables alluded to above as covariates using a multilevel approach, as described in 
Fig. 10.1. 

The analyses of facilitators and barriers expected in the deployment of multilevel 
clinical predictive modelling within a DHF clearly indicate that achievement of 
personalized management of patients into real-world scenarios will be a stepwise, 
medium-term, process requiring proper adoption strategies that must necessarily 
consider the different dimensions described in (Dueñas-Espín et al. 2016).
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10.2 Computational Modelling for Enhanced Understanding 
and Management of COPD and Its Co-morbidities: The 
Synergy-COPD Project 

Chronic Obstructive Pulmonary Disease (COPD) is a disorder that generates a high 
burden on healthcare systems worldwide (Murray and Lopez 2013; Blumenthal et al. 
2016) being the third cause of mortality among chronic conditions, causing 3.23 
million deaths in 2019 (Mathers et al. 2019), with a prevalence of 9–10% in adult 
population. 

COPD generates an increasingly high healthcare impact mostly due to 
hospitalizations, partly avoidable with adequate patient stratification strategies lead-
ing to better selection of integrated care services. Despite highly relevant 
contributions of international recommendations for COPD management, mostly 
pulmonary-oriented, during the last twenty years (Halpin et al. 2021), it is nowadays 
widely accepted that optimal care of patients with COPD requires a systems medi-
cine approach (as proposed in Roca et al. 2020; Roca et al. 2014). This is due to a 
combination of factors, such as important heterogeneities of patients’ phenotypes, 
high rate of co-morbidities, and overlapping of diagnosis with other obstructive 
pulmonary diseases, with under- and overdiagnosis of the disorder (Diab et al. 
2018). 

The EU project Synergy-COPD (Synergy-COPD Consortium 2010), running 
from 2011 to 2014 (FP7-ICT-270086), was a systems research programme on 
multimorbidity taking COPD as a use case. The project focused on non-pulmonary 
phenomena often seen in patients with COPD addressing unknown aspects of 
skeletal muscle dysfunction/wasting (Maltais et al. 2014) and the phenomenon of 
co-morbidity clustering (Barnes 2015). The research was designed as an iterative 
process wherein data from several sources, encompassing animal experimentation 
(Davidsen et al. 2014), human studies (Rodríguez et al. 2011, 2012), epidemiologi-
cal research and registry information (Vela et al. 2018; Gomez-Cabrero et al. 2016), 
were articulated and analysed using different, and in some cases complementary, 
computational modelling techniques. The details of the research design and meth-
odological issues were reported in a dedicated monograph (Gomez-Cabrero et al. 
2014) and the project outcomes addressing three biomedical areas: (i) Skeletal 
muscle dysfunction; (ii) COPD co-morbidities; and (iii) Proposals for enhanced 
transfer of knowledge into clinical practice, have been described in different scien-
tific publications (Marín De Mas et al. 2017; Tényi et al. 2018a, b; Cano et al., 
2014b). 

Briefly, the project findings contributed to better understand the interplay of 
factors modulating non-pulmonary manifestations in patients with COPD. 
Abnormalities in co-regulation of core biological pathways (i.e. bioenergetics, 
inflammation, and tissue remodelling) at systemic level seem to play a central role 
on both skeletal muscle dysfunction and co-morbidity clustering (Fig. 10.2), with 
evidence of the relevant role of oxidative stress as a characteristic mechanism in 
these patients (Barnes 2015).
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Fig. 10.2 Disease effects network modules. Panel (a) depicts the four network modules associated 
to COPD disease effects on skeletal muscle and their composing genes. Genes are coloured 
according to their differential regulation, namely: up regulation—red nodes; and down regulation— 
blue nodes. Significantly, differentially expressed genes are indicated by * (FDR ≤ 0.05). Panel (b) 
shows the significant correlations of independent measurements with any of the network modules’ 
first three principal components. Blue squares depict exercise related independent variables; red 
squares show blood cytokines levels; yellow squares correspond to serum amino acids levels; and 
green squares represents redox biomarkers. It is noted that abnormal skeletal muscle findings, 
associated to poor patients’ prognosis, showed significant correlations with aerobic capacity, but not 
with lung function measurements at rest (Tényi et al. 2018a). Figure taken from Roca et al. (2020) 

Synergy-COPD generated experience on integration of records from approxi-
mately 13 million patients from the Medicare database with disease-gene maps that 
were derived from several resources including a semantic-derived knowledgebase 
(Gomez-Cabrero et al. 2016). The results demonstrated higher prevalence of most of 
the diseases, as comorbid conditions, seen in elderly patients with COPD compared 
with non-COPD subjects, an effect confirmed latter (Tényi et al. 2018b) in a regional 
EU dataset (1.4 million patients). Moreover, the analysis of temporal order of disease 
diagnosis showed that comorbid conditions in elderly patients with COPD tend to 
appear after the diagnosis of the obstructive disease, rather than before it. Overall, 
the results (Vela et al. 2018) demonstrated high impact of COPD co-morbidities on 
health risk stratification with major negative impact on mortality, hospitalizations, 
and use of healthcare resources (Fig. 10.3) and highly encourage developments of 
AI/ML tools using health registries and data from EHR to build robust health risk 
stratification strategies. 

Figure 10.4 displays the distribution of individual costs per year in patients with 
COPD based on their multimorbidity level: from low (left column) to very high risk 
associated to co-morbidities (right column), indicating huge heterogeneities among 
patients’ healthcare expenditure per year, explained by multimorbidity. The analysis 
of distribution of costs clearly indicates the high impact of hospitalizations and



pharmacy on overall costs, as well as the relatively reduced impact of primary care 
on overall patients’ cost. 
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Fig. 10.3 Regional population-based study of patients with COPD. Left panel depicts three 
population-based risk stratification pyramids build using AMG as multimorbidity index: (i) Left, 
the entire regional population (7,7 M); (ii) Centre, citizens above 39 years; and, (iii) Right, display 
the distribution of the 264 k patients with COPD in the region across AMG risk grades: baseline 
(1%), low (15%), moderate (46%), high (29%), and very high risk (9%). Right panel depicts the 
distribution of individual costs per year comparing overall cost for the regional Health System 
expressed as percentages (outer circle) and the relative costs ascribed to patients with COPD (inner 
circle) in the left-hand side figure indicates that Hospitalization costs (€ 2291.8 M, 29%, and € 
356.6 M, 33%, respectively) and, Pharmacy costs (€ 2193.4 M, 27%, and € 325.8 M, 33%) are 
relatively higher in COPD patients than in the overall health system; whereas, Primary Care costs (€ 
1745.0 M, 22%, and € 158.9 M, 15%) are relatively lower in COPD than in the overall health 
system. The item: Others, includes home-based respiratory therapies, dialysis, outpatient rehabili-
tation, and non-urgent healthcare transportation (Vela et al. 2018) 
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Fig. 10.4 Global yearly expenditure, expressed in €, of COPD patients by morbidity scoring at 
regional level (Vela et al. 2018) (264 k patients with COPD) 

All in all, the research strongly pointed out the need for a broader vision in the 
care and management of COPD by adopting a patient-oriented approach that 
addresses much more than just the pulmonary manifestations of the disease. 

One of the major strengths of the Synergy-COPD project was the combination of 
well-defined biomedical goals with parallel technological developments beyond the



state of the art in terms of novel modelling approaches, knowledge generation tools, 
and digital technologies supporting care coordination. 
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10.3 Multilevel Data Integration and Advanced AI/ML: Beyond 
Synergy-COPD 

Beyond the project lifespan, developments on multilevel data integration and 
advanced AI/ML are allowing to further explore factors modulating multimorbidity 
aiming at transferring novel knowledge into the clinical arena. Two specific areas 
raising high expectations are: 

The use of sparse Bayesian Direct Morbidity Maps (BDMM) to improve con-
struction of comorbidity patterns (Marx et al. 2017). The method shows clear 
advantages compared to conventional hypothesis-free exploration of comorbid 
conditions using pairwise methods often leading to confounders due to large number 
of pairwise associations arising indirectly through other comorbidity associations 
(Fig. 10.5). 

Recent studies are benefiting from the experience of using BDMM for the 
analysis of multilevel datasets (Trajectome 2020). Consolidated achievements in 
the analysis of temporal disease map-based stratification of depression-related 
multimorbidity can be transferred to other chronic conditions, such as COPD to 
enhance our understanding of the use case, but also to improve management of 
co-morbidities in general. 

Fig. 10.5 Network representation of disease-disease comorbid relations assessed with pairwise 
χ2 statistical associations (purple) and Bayesian Direct Multimorbidity Maps (BDMM – gold) in the 
UK Biobank dataset (Marx et al. 2017). In red metabolic syndromes, in blue diseases of the nervous 
system, and in green mental and behavioural disorders
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Fig. 10.6 Federated Learning approach for Multilevel data integration and advanced 
AI/ML. Development of enhanced dynamic clinical predictive modelling will require consider-
ation, and eventual integration, of computational modelling of different dimensions, as described in 
Fig. 10.1. The current figure illustrates the steps from model elaboration, model training, evaluation 
and feeding clinical decision support systems (CDSS) to be applied in a real-world healthcare 
setting 

A second area of interest is the use of the Adjusted Morbidity Groups (AMG) 
morbidity index (Monterde et al. 2016, 2018, 2020; Vela et al. 2021) as covariate in 
multilevel computational modelling (Calvo et al. 2020). It is of note that AMG is an 
open, publicly owned algorithm, weighted by the real impact of morbidities in each 
healthcare system. AMG offers clear advantages against all other morbidity indices. 
The algorithm is already extensively used for both policy makers and clinicians. Its 
site transferability has been proven and is currently being successfully tested at EU 
level within the ongoing Joint Action on implementation of digitally enabled 
integrated person-centred care (JADECARE 2020). Moreover, knowledge generated 
from BDMM, and disease trajectories could be used to enrich the current AMG tool 
to improve management of multimorbidity in general, beyond COPD. 

Progress in this field needs to take advantage of Federated Learning 
(FL) (Rajpurkar et al. 2022) to decentralize AI/ML across data controllers to 
collaboratively learn a shared prediction model that ultimately could feed a clinical 
decision support system (CDSS) (Fig. 10.6). To this end, Bayesian multilevel 
systems-based analysis from consolidated methodological developments (Marx 
et al. 2017; Trajectome 2020) can be used to address fusion of heterogeneous 
information sources (registry data, clinical information, genetic information, and 
other biological markers) and outcomes from data owners. 

However, further biomedical research is still needed to identify causal factors of 
co-morbidities clustering in COPD and to gain insight on the heterogeneities seen in 
these patients. Specific examples of target aspects requiring research are: (i) in-born 
genetic susceptibility; (ii) epigenetic changes associated with unhealthy lifestyles; 
and (iii) unknown interactions with gut microbiome, among others. Likewise, 
identification of plasma metabolomics patterns facilitating early identification of



subsets of patients with COPD that are candidates for secondary prevention of 
co-morbidities would also be a major achievement to significantly reduce the burden 
of multimorbidity. 
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With the perspective of some years after completion of the Synergy-COPD 
project, we can conclude that targeting COPD as a use case and adopting a systems 
approach to address the analysis of non-pulmonary phenomena in these patients was 
a right choice because it facilitated to the researchers involved to think “outside of 
the box”. On the other hand, the concurrence of three intertwined phenomena: 
(i) relatively poor knowledge of underlying mechanisms; (ii) marked heterogeneities 
of these patients; and (iii) taxonomy problems (Celli and Augustì 2018) perfectly 
justified the choice for a systems approach. 

Moreover, the analysis of co-morbidities in these patients has provided relevant 
new knowledge on multimorbidity in general, with high positive impact on manage-
ment strategies for chronic patients aiming at effectively reduce the burden of 
non-communicable conditions on health systems. A major lesson learnt was the 
huge potential of multilevel integrative analyses of registry data, biomedical research 
information, EHR and patients’ self-tracking data for enhanced clinical decision 
support, as displayed in Fig. 10.1. It clearly constitutes a high priority to pave the 
way towards enhanced clinical management and personalized medicine for patients 
with chronic disorders (Dueñas-Espín et al. 2016). 

10.4 From Systems Medicine to Integrated Care 

All the above results indicate that convergence between a systems medicine 
approach to chronic disorders and care coordination, integrated care (JADECARE 
2020), may conform an optimal scenario to foster cross-fertilization between bio-
medical research and clinical practice (Ferguson 2012; Maddox et al. 2017). The two 
approaches have several common aspects: (i) holistic and multidisciplinary 
approach; (ii) use of computational modelling; and (iii) digitalization as enabler. It 
is clear, however, that optimal efficiencies can only be obtained by incorporating a 
new healthcare setting represented by LHS, as alluded to above. 

In a LHS, digitalization of healthcare is a fundament pillar to foster quick transfer 
and application of scientific knowledge into the clinical scenario. It simultaneously 
facilitates data collection and gain novel insights from real-world settings towards 
academia promoting both healthcare discovery and scientific innovation. Such that a 
LHS generates a virtuous cycle stimulating value-based healthcare as well as 
scientific excellence in an iterative manner. It is of note that the model, LHS, implies 
strong complementarities, and synergies, between classical study designs to generate 
evidence on efficacy, such as randomized clinical trials, and novel methodological 
approaches targeting generation of evidence in real-life scenarios. The process 
ultimately results in a necessary reduction of the efficacy-effectiveness gap seen in 
clinical interventions, which is often limiting healthcare value generation. 

The LHS relies on the existence of an operational DHF including two main 
components. One of them is accessibility of interoperable health-related data



covering different domains: (i) clinical data across healthcare layers, (ii) population-
health registries; (iii) patient’s self-tracking data encompassing citizens reported 
outcomes and experience of care, sensor monitoring and environmental information; 
and (iv) biological research data relevant for clinical purposes. The second key 
component of the DHF are tools that process data, such as predictive modelling, 
defined care paths and clinical decision support embedded into care paths. Such tools 
should contribute to gain on accessibility, personalization, as well as predictive and 
preventive approach to value-based healthcare. A building blocks strategy for 
implementation and sustainable adoption of such a system is needed to ensure 
interoperability of reliable data, technological maturity, compliance with the regu-
latory frame and a prepared workforce ensuring professionals engagement and active 
participation of citizens. Computed patient risk then can be used to stratify patients to 
intervention groups that help in the optimal service selection for the patient with a 
preventive approach. The real challenge is to define and implement appropriate 
strategies fostering evolution towards the new health scenario. 
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10.5 Deployment and Adoption Strategies 

While the conceptual frame of multilevel clinical predictive modelling, as well as the 
final desirable healthcare scenario, is well-defined; deployment and adoption of the 
novel approach are exceedingly challenging with similar barriers and facilitators 
already mentioned for deployment of LHS. However, there are specific steps for any 
given computational modelling that should be considered for a successful deploy-
ment and adoption of enhanced multilevel clinical risk assessment, as briefly 
described below: 

1. Digitalization and standardization to a common data model. There is a need for 
resolving how enhanced risk prediction can be implemented within country and 
organizational boundaries in a manner that supports federated AI/ML learning 
and that has a standard base, international user-base, and data volume content 
base large enough to warrant investment. A choice is to build on existing 
standards promoted by the European Health Data & Evidence Network 
(EHDEN) for data harmonization to a common data model that can scale. 

2. Data acquisition using federated learning. Healthcare organizations should adopt 
a new framework to facilitate a shift from a “break-fix” to a “predict-prevent” 
model of healthcare to deliver better patient outcomes, while preserving data 
security and privacy to ensure citizen’s trust. It should be achieved providing 
healthcare organizations a decentralized federated learning model, as the under-
lying GDPR-compliant framework for harmonizing existing and newly acquired 
datasets. Such a federated learning model allows the creation of a suite of tools 
and the testing of data AI/ML readiness by supplying existing risk prediction and 
patient stratification algorithms to local teams without exchanging the data itself. 

3. Co-design and development of a collaborative learning framework for 
accelerating the use of multilevel assessment in clinical care. Use of currently
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available tools from the Observational Health Data Sciences and Informatics 
(OHDSI) multi-stakeholder, interdisciplinary and collaborative programme to 
drive implementation of multilevel predictive models. By achieving this specific 
objective, clinicians and medical professionals will be involved throughout an 
AI/ML development process that will conclude with validated tools for health 
risk assessment and patient stratification. 

4. To drive inclusive and equitable utilization of data and risk prediction models. 
The development of Best Practices to act as beacons of excellence internationally 
to ensure risk prediction models can be relied upon for fair outputs that aid 
decision-making and translate to daily life in support of clinical care. To this 
end, it will foster a transparent data and AI/ML eco-system that can be open to 
ethical and technical challenge to build trust and utilization. Health care 
professionals should be able to utilize robust, trustworthy, and privacy-preserving 
computational modelling that provide quantitative indicators valuable to identify 
and prioritize individuals with higher risk. 

5. To perform proof of concept, as well as clinical validation, studies in real-world 
settings. There is a need for organizing evaluation studies in real-world settings to 
in silico assess the technical robustness of the developed AI/ML tools for risk 
assessment. Based on the evaluation studies, specific personalized preventive 
interventions should be piloted to assess healthcare value generation in compari-
son to the standard-of-care. Maturity of AI/ML tools in terms of Technology 
Readiness Level (TRL = 9) and health value generation will ultimately determine 
adoption provided that regulatory acceptability prior to deployment is 
demonstrated. Case-related reimbursement models to incentivize adoption 
could be envisaged. 

10.6 Conclusions 

Current evidence fosters multilevel integrative analyses including registry data, 
biomedical research information, EHR and patients’ self-tracking data to elaborate, 
assess, and deploy predictive modelling, using AI/ML tools, for patients’ stratifica-
tion to properly pave the way towards enhanced clinical management and truly 
predictive, preventive, personalized, and participatory medicine, or “P4 medicine” 
(Auffray et al. 2010). 
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HYPOTHESIS 

 

This PhD thesis postulates that multimorbidity is one of the principal factors driving 

adverse health events, such as emergency room visits, hospitalizations, and mortality.  

The thesis contends that the integration of holistic strategies for subject-specific risk 

prediction and stratification, which account for multimorbidity and consider multiple 

determinants influencing patients' health, can significantly improve predictive accuracy 

and aid clinical decision-making by providing reliable estimates of individual prognosis.  
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OBJECTIVES  

 

Objective 1:  To develop predictive models considering multimorbidity burden and 

other health determinants to facilitate enhanced service selection during hospital 

admission and offer guidance for effective transitional care. i) Develop predictive 

models in a Hospital at Home setting to evaluate the risk of mortality and in-hospital 

readmission, both during the home hospitalization episode and within 30 days after 

discharge (Article 1). ii) Assess the predictive model’s ability to generalize to 

conventional hospitalizations and predict the risk of mortality and readmission within 

90 days after discharge (Article 2). iii) Evaluate the overall readiness of Hospital at 

Home at a population-wide level (Article 3) and establish protocols for the scalation 

and adoption of the predictive models at the regional level. 

Article 1: Mireia Calvo, Rubèn González-Colom, Núria Seijas, Emili Vela, Carme 

Hernández, Guillem Batiste, Felip Miralles, Josep Roca, Isaac Cano, Raimon Jané. 2020. 

Health Outcomes from Home Hospitalization: Multisource Predictive Modelling. Journal 

of Medical Internet Research (JMIR). (Accepted, IF: 7.4, Q1, Health Informatics) 

Article 2: Rubèn González-Colom, Carmen Herranz, Emili Vela, David Monterde, Joan 

Carles Contel, Antoni Sisó-Almirall, Jordi Piera-Jiménez, Josep Roca, Isaac Cano. 2023. 

Prevention of Unplanned Hospital Admissions in Multimorbid Patients Using 

Computational Modelling: Observational Retrospective Cohort Study. Journal of 

Medical Internet Research (JMIR). (Accepted, IF: 7.4, Q1, Health Informatics) 

Article 3: Rubèn González-Colom, Gerard Carot-Sans, Emili Vela, Mireia Espallargues, 

Carme Hernández, Francesc Xavier Jiménez, David Nicolás, Montserrat Suárez, Elvira 

Torné, Eulalia Villegas-Bruguera, Fernando Ozores, Isaac Cano, Jordi Piera-Jiménez, 

Josep Roca. 2023. Five years of Hospital at Home adoption in Catalonia: impact and 

challenges. BMC Health Services Research. (In review, IF: 2.8, Q1, Health policy) 
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Objective 2: To assess the transferability and adoption of the Adjusted Morbidity 

Groups in the European framework and identify key barriers and facilitators its 

effective adoption at national/regional level. i) To assess the transference and 

implementation of the Adjusted Morbidity Groups algorithm in Marche (IT) region and 

Viljandi Hospital (EE), and issue tailored recommendations for the adoption of 

population-based health risk assessment tools facilitating the articulation between 

population-based and clinical-oriented HRA (Article 4). 

Article 4: Rubèn González-Colom, David Monterde, Roberta Papa, Mart Kull, Andres 

Anier, Francesco Balducci, Isaac Cano, Marc Coca, Marco De Marco, Giulia 

Franceschini, Saima Hinno, Marco Pompili, Emili Vela, Jordi Piera-Jiménez, Pol Pérez, 

Josep Roca. 2023. Toward adoption of health risk assessment in population-based and 

clinical scenarios. International Journal of Integrated Care (IJIC). (In review, IF: 2.4, Q2, 

Health policy) 

 

Objective 3: To explore novel morbidity-adjusted risk indicators that integrate 

information derived from disease trajectory studies enhancing their predictive 

capabilities at envisaging disease progression. i) To develop an assess an advanced 

disease stratification methodology using temporal patient profiles, tailored to 

depression and its comorbidities, to evaluate the burden of depression on individuals 

and healthcare systems and anticipate the risk of disease progression (Article 5). 

Article 5: Rubèn González-Colom, Kangkana Mitra, Emili Vela, Andras Gezsi, Teemu 

Paajanen, Zsofia Gal, Gabor Hullam, Hannu Mäkinen, Tamas Nagy, Mikko Kuokkanen, 

Jordi Piera-Jiménez, Josep Roca, Peter Antal, Gabriella Juhasz, Isaac Cano. 2023. 

Multicentric validation of a Multimorbidity Adjusted Disability Score to stratify 

depression-related risks using temporal disease maps. Journal of Medical Internet 

Research (JMIR). (In review, IF: 7.4, Q1, Health Informatics) 
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Abstract

Background: Home hospitalization is widely accepted as a cost-effective alternative to conventional hospitalization for selected
patients. A recent analysis of the home hospitalization and early discharge (HH/ED) program at Hospital Clínic de Barcelona
over a 10-year period demonstrated high levels of acceptance by patients and professionals, as well as health value-based generation
at the provider and health-system levels. However, health risk assessment was identified as an unmet need with the potential to
enhance clinical decision making.

Objective: The objective of this study is to generate and assess predictive models of mortality and in-hospital admission at
entry and at HH/ED discharge.

Methods: Predictive modeling of mortality and in-hospital admission was done in 2 different scenarios: at entry into the HH/ED
program and at discharge, from January 2009 to December 2015. Multisource predictive variables, including standard clinical
data, patients’ functional features, and population health risk assessment, were considered.

Results: We studied 1925 HH/ED patients by applying a random forest classifier, as it showed the best performance. Average
results of the area under the receiver operating characteristic curve (AUROC; sensitivity/specificity) for the prediction of mortality
were 0.88 (0.81/0.76) and 0.89 (0.81/0.81) at entry and at home hospitalization discharge, respectively; the AUROC
(sensitivity/specificity) values for in-hospital admission were 0.71 (0.67/0.64) and 0.70 (0.71/0.61) at entry and at home
hospitalization discharge, respectively.

Conclusions: The results showed potential for feeding clinical decision support systems aimed at supporting health professionals
for inclusion of candidates into the HH/ED program, and have the capacity to guide transitions toward community-based care at
HH discharge.

(J Med Internet Res 2020;22(10):e21367) doi: 10.2196/21367

KEYWORDS

home hospitalization; health risk assessment; predictive modeling; chronic care; integrated care; modeling; hospitalization; health
risk; prediction; mortality; clinical decision support
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Introduction

Home Hospitalization and Early Discharge at the
Hospital Clinic of Barcelona
Home hospitalization (HH)/early discharge (ED) programs [1-6]
show substantial site heterogeneities in terms of service
workflows and organizational aspects. However, overall, they
have demonstrated maturity and health care value generation
[7] such that it is well accepted that HH/ED constitutes an
effective alternative to inpatient care for a select group of
patients requiring hospital admission.

The characteristics of the deployment and adoption of the
HH/ED program at Hospital Clinic of Barcelona (HCB) were
recently described in a report [8]. In this report, HH/ED is
defined as a service providing acute, home-based, short-term,
complex interventions aimed at substituting conventional
hospitalization fully with HH [7,9] or partially with ED [10].
The service at HCB is delivered by trained hospital personnel,
and it is provided for a period of time that is not longer than the
expected length of hospital stay for the patients’ diagnostic
related groups involved [11]. The Hospital retains the entire
clinical, fiscal, and legal responsibilities. Virtual beds are used
to support the required administrative and clinical processes.
The report concluded that HH/ED for acute medical and surgical
patients in a real-world setting was safe, generated healthcare
efficiencies, and was well accepted by 98% of patients and
professionals [8]. Moreover, the study stressed the potential of
HH/ED to strengthen care coordination between highly
specialized hospital-based care and home-based services
involving different levels of complexity [8].

Currently, the HH/ED program at HCB is a mainstream, mature
service that is offered 24 hours a day, 7 days a week, all year
round, with 48 virtual beds available per day. It is the first choice
for eligible patients requiring hospital admission when attended
in the Emergency Department, and it serves the entire Health
district of Barcelona Eixample-Esquerra, which has 540,000
inhabitants.

It is well accepted that the key health outcomes that define the
success of hospitalization at home [8] are mortality and
unplanned emergency room consultations that lead to in-hospital
admissions, either during the home hospitalization episode or
during the 30-day period after discharge. This study relies on
the assumption that multisource predictive modeling facilitating
clinical decision support at 2 key time points—(1) at entry, and
(2) at HH/ED discharge—could be useful to enhance service
outcomes. Risk assessment at entry may contribute to reducing
undesirable events during the episode of HH/ED, whereas the
assessment of unexpected events after discharge will likely
contribute to improving transitional care [12,13] and better
definition of personalized care pathways within a care
continuum scenario [14].

The Use of Multisource Predictive Modeling for
Enhanced Risk Assessment
This study was designed to elaborate and assess the potential
of a machine learning approach to the prediction of mortality
and hospital admission at entry and at discharge from HH/ED.

A key specificity of the study is the use of various data sources
to estimate the 2 outcomes, mortality and hospital re-admission,
as conventional inpatient care. In addition to classical clinical
and biological information obtained from electronic medical
records (EMR), we have also considered the inclusion of Catalan
population–health risk assessment scoring, known as Adjusted
Morbidity Groups (GMA) [15,16], and purposely collected data
on patients’ performance and frailty.

The GMA is an open, publicly owned algorithm that does not
rely on expert-based fixed coefficients. Such characteristics
provide a high degree of flexibility for multisource predictive
modeling and good potential for transferability to other sites,
as demonstrated through its validation and current use in 13 of
the 17 health regions in Spain, encompassing approximately
38,000,000 citizens [15]. It is fully operational since 2015 for
health policy purposes and for clinicians in primary care
workstations, providing yearly updated risk stratification with
a population health orientation. It takes into account
multimorbidity and complexity, that is, impact on health care,
using data across health care tiers stored in the Catalan Health
Surveillance System.

The approach adopted in this study was based on the hypothesis
that the application of holistic strategies for subject-specific
risk prediction and stratification, which consider multisource
covariates influencing patient health, could increase predictive
accuracy and facilitate clinical decision-making based on sound
estimates of individual prognosis [17]. Developed predictive
models were evaluated on a real-world database, which included
all cases admitted to HH/ED at HCB from January 2009 to
December 2015.

Methods

Dataset
Retrospective data from 1936 patients admitted to the HH/ED
program at HCB from January 2009 to December 2015 (Table
1S in Multimedia Appendix 1) were considered in the analyses
carried out to elaborate the predictive modeling of mortality
and hospital re-admission at 2 time points: (1) at entry into
HH/ED, and (2) at discharge from the HH/ED program. HH/ED
at HCB is run as a transversal program, under the responsibility
of the medical and nurse directors of the Hospital, serving the
different clinical specialties. Patients included in the HH/ED
show a broad spectrum of primary diagnoses, as displayed in
Table 1S in Multimedia Appendix 1.

The potential covariates considered for predictive modeling
purposes (Table 2S in Multimedia Appendix 1) encompassed
3 dimensions: (1) standard clinical and biological information
obtained from EMRs; (2) patients’ functional performance and
frailty data, specifically collected to characterize these patients;
and (3) GMA scoring indicating multimorbidity, complexity,
and patients’ allocation into the population–health risk
stratification pyramid.

Ethical Approval
The Ethical Committee for Human Research at HCB approved
the study, and all participants signed an informed consent prior
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to any procedure. The program was registered at
ClinicalTrials.gov: NCT03130283.

Predictive Analytics Workflow
Figure 1 illustrates the global methodology proposed to identify
patients at risk of re-admission or death after HH discharge; the

elaboration of predictive modeling followed 3 successive steps:
(1) feature selection, (2) data preprocessing, and (3)
classification.

Figure 1. Predictive analytics workflow, composed of 3 main steps: (A) feature selection, (B) data preprocessing, and (C) classification.

Feature Selection
Feature selection refers to different processes involving data
cleaning, selection of variables to be considered for predictive
modelling, as well as selection of the final set of patients
included in the analyses.

Data Preprocessing
In order to handle the impact of missing values, a robust method
was designed for mixed-type data imputation. To this end, the
missForest algorithm was applied to the whole dataset [18].
Moreover, we applied a rediscretization of some categorical
variables to avoid under-represented categories.

Classification
Different strategies were considered for the elaboration of
predictive models in this study. Specifically, 3 of them were
explored in detail (Multimedia Appendix 1); that is, logistic
regression and 2 machine learning approaches: a decision tree
and random forest classifiers.

For model training, the dataset was 10-times divided in (1) a
training subset, taking 75% of randomly selected cases, and (2)
a validation subset with the remaining 25% of cases. For each

data partition, the model was trained using 4-fold
cross-validation on the training subset. As successful cases (ie,
survivors not requiring hospital admission) were far superior
in number, the effect of class imbalance was reduced by
applying a random stratified-sampling strategy [19].

Model performance was assessed by computing the area under
the receiver operating characteristic curve (AUROC), sensitivity,
specificity, and score metrics in the validation subset. Score is
a measure of prediction accuracy and is defined as the weighted
harmonic mean of the sensitivity and specificity of the model.
The final performance of the models was assessed as the average
performance of all independent validations.

As indicated above, the methodology was applied to predict 2
types of events: (1) mortality, and (2) in-hospital admission
until 30-days after HH/ED discharge. Risk assessment was
conducted in 2 different scenarios: (1) at entry into the HH/ED
program, and (2) at discharge. Accordingly, the analyses led to
4 different risk models (RM): (1) RM1 accounts for predicting
the need for conventional hospitalization at entry into the
HH/ED program; (2) RM2 predicts mortality during the study
period assessed at entry; (3) RM3 refers to predictive modeling
of conventional hospital admissions assessed at HH/ED
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discharge; and (4) RM4 predicts mortality during the study
period assessed at HH/ED discharge. The risk of mortality and
re-admission during HH at entry was not assessed due to the
scarcity of unsuccessful cases during HH/ED.

Results

Study Population
All 1936 patients admitted to the HH/ED program at HCB
during the study period were included in the research. However,
the analyses conducted in the study were based on 1925 cases;
4 cases were discarded for having unrecoverable wrong data
and 7 for having missing mandatory data. The mean age of the
study group was 70.85 (SD 14.88) years; 1201 (62.4%) were
men and 724 (37.6%) were women. The list of main diagnoses
is depicted in Table 1S in Multimedia Appendix 1. Up to 64
variables, grouped into the 3 categories indicated above, were
considered in the analyses (Table 2S in Multimedia Appendix
1).

To characterize different subpopulations of risk, patients were
classified as undergoing successful and unsuccessful home

hospitalization stays based on their re-admission and mortality
during the study period and 30 days after hospital discharge
(Tables 1-2). Of the 1925 patients admitted to the HH/ED
program, 3 (0.2%) patients died and 96 (5.0%) cases were
eventually readmitted to the hospital due to complications of
heterogeneous origin during HH/ED. Of the remaining 1922
patients, within 30 days after HH/ED discharge, 37 (1.9%)
patients died and 210 (10.9%) cases were identified as falling
into the unsuccessful groups when analyzing re-admission risk.
Tables 1 and 2 summarize the baseline characteristics of both
study groups, according to mortality and re-admission,
respectively.

Mortality was higher in elderly (P<.001) and comorbid patients,
GMA (P=.02), and the Charlson Comorbidity Index (P=.001),
especially in those with cardiovascular (P<.001) and oncologic
disorders (P=.019). Mortality was lower in postoperative
patients (P<.001) and in those with respiratory diseases
(P=.005). Interestingly, in-hospital re-admission was only
slightly associated with higher age (P=.003) and a major
complexity of comorbid conditions, GMA (P<.001), and the
Charlson Comorbidity Index (P<.001), without well-defined
associations with the characteristics of the main diagnosis.

Table 1. Clinical characteristics of successful and unsuccessful home hospitalization (HH) cases (n=1925) based on mortality.

P valueaUnsuccessful cases
30 days after HH
discharge (n=37)

Unsuccessful cases
during HH (n=3)

Successful cases
(n=1885)

Patient characteristics

<.00177.9 (10.6)89.3 (15.1)70.7 (14.9)Age, mean (SD)

Sex, n (%)

.14519 (51.3)1 (33.3)1181 (62.7)Male

.14518 (48.7)2 (66.6)704 (37.3)Female

.02027.0 (14.2)21.4 (3.1)21.3 (13.5)GMA, mean (SD)

.0015.8 (2.7)5.7 (4.9)4.3 (2.8)Charlson Comorbidity Index, mean (SD)

Diagnostic group, n (%)

<.00116 (43.2)1 (33.3)202 (10.7)Cardiology

.0055 (13.6)0 (0.0)583 (30.9)Respiratory

.0198 (21.6)0 (0.0)145 (7.7)Oncology

<.0010 (0.0)0 (0.0)375 (19.9)Surgery

.4408 (21.6)2 (66.7)580 (30.8)Other medical acute conditions

aP values were calculated comparing successful and unsuccessful groups during the full period.
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Table 2. Clinical characteristics of successful and unsuccessful home hospitalization (HH) cases (n=1925) based on re-admission.

P valueaUnsuccessful cases
30 days after HH
discharge (n=210)

Unsuccessful cases
during HH (n=96)

Successful cases
(n=1638)

Patient characteristics

.00373.2 (11.9)72.9 (14.8)70.5 (15.2)Age, mean (SD)

Sex, n (%)

.056142 (67.6)63 (65.6)1007 (61.6)Male

.05668 (32.4)33 (34.4)631 (38.4)Female

<.00128.7 (14.7)26.8 (15.0)20.3 (13.1)GMA, mean (SD)

<.0015.6 (2.6)5.3 (2.6)4.1 (2.8)Charlson Comorbidity Index, mean (SD)

Diagnostic group, n (%)

.06838 (18.1)24 (25.0)162 (9.9)Cardiology

.72262 (29.5)24 (25.0)507 (30.9)Respiratory

.12332 (15.2)8 (8.3)113 (6.9)Oncology

.13623 (11.0)14 (14.6)340 (20.8)Surgery

.45055 (26.2)26 (27.1)516 (31.5)Other medical acute conditions

aP values were calculated comparing successful and unsuccessful groups during the full period.

Predictive Modeling
Different modeling approaches were considered for this purpose,
including logistic regression, decision trees, and random forests.
The averaged AUROC of each modeling approach that was
considered is presented in Table 3.

Among the different modeling strategies developed, random
forest classifier (Figure 2) showed the best performance
averaged over the 4 risk scenarios.

Table 4 summarizes the performance of the 4 predictive models
proposed in the study for in-hospital admission (RM1 and RM3)
and for mortality (RM2 and RM4); Multimedia Appendix 2
depicts the relative weight, expressed as the mean decrease in
accuracy (MDA) [20], of the 10 most relevant variables for each
of the 4 predictive models.

Table 3. Area under the receiver operating characteristic curve (AUROC; sensitivity/specificity) performance of the modeling strategies explored.

RM4 AUROC (sensitiv-
ity/ specificity)

RM3 AUROC (sensitiv-
ity/ specificity)

RM2 AUROC (sensitiv-
ity/ specificity)

RM1 AUROC (sensitiv-
ity/ specificity)

Mean AUROC (sensitiv-
ity/ specificity)

Model

0.54 (0.38/0.58)0.59 (0.61/0.52)0.54 (0.50/0.59)0.65 (0.68/0.58)0.58 (0.54/0.57)Logistic regression

0.64 (0.88/0.52)0.57 (0.64/0.42)0.64 (0.88/0.51)0.62 (0.82/0.43)0.59 (0.81/0.47)Decision tree

0.89 (0.81/0.81)0.70 (0.71/0.61)0.88 (0.81/0.76)0.71 (0.67/0.64)0.80 (0.75/0.71)Random forest
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Figure 2. Overview of the predictive modeling strategy taking, as an example, prediction of re-admission at home hospitalization discharge. Upper-left
table: metrics used for model performance assessment; AUC: area under the receiver operating characteristic curve. Center figure: representation of 1
decision tree using a random subset of features; on the nodes, threshold values for each variable determine the path from the root to the leaves (0.5 for
Boolean variables), moving toward the left when the decision rule is meet; on a random forest model, final predictions are averaged over multiple
decision trees. Upper-right table: 3 categories of data that are included in the models. *GMA category 404; 40: patient with active neoplasms; 4: high
complexity conditions (percentile between 0.85 and 0.95).

Table 4. Average results of the performance of the 4 home-hospitalization/early discharge (HH/ED) predictive risk models (RM).

Score, mean (SD)Specificity, mean (SD)Sensitivity, mean (SD)AUROCa, mean (SD)Model

0.66 (0.03)0.64 (0.05)0.67 (0.06)0.71 (0.03)Readmission risk at HH/ED admission (RM1)

0.66 (0.03)0.61 (0.05)0.71 (0.06)0.70 (0.02)Readmission risk at HH/ED discharge (RM3)

0.78 (0.06)0.76 (0.04)0.81 (0.09)0.88 (0.04)Mortality risk at HH/ED admission (RM2)

0.81 (0.06)0.81 (0.05)0.81 (0.12)0.89 (0.04)Mortality risk at HH/ED discharge (RM4)

aAUROC: area under the receiver operating characteristic curve.

For risk of in-hospital admissions (Multimedia Appendix 2,
panels A and C), multimorbidity (expressed as GMA scoring)
showed the highest predictive impact, followed by red cell
distribution width (RDW). Other top predictors were
polypharmacy, body mass index (BMI), a few biological
variables (blood cells characteristics and glucose), and physical
and mental status.

For risk of mortality (Multimedia Appendix 2, panels B and D),
RDW and physical status at entry (assessed using the SF-36
questionnaire [21]) showed the highest impact in the models.

Notably, enriching the model with information acquired during
HH/ED (Multimedia Appendix 2, panels C and D), several
variables gained importance, such as hospital admissions during
HH/ED, length of current hospitalization period, and nursing
home visits.

Discussion

Principal Findings
The current research has developed and internally validated 4
machine learning algorithms predicting the risk of in-hospital
admission and mortality for patients undergoing home-based
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hospitalization until 30-days after discharge from the service
at HCB, from 2009 to 2015. Predictions of the 2 undesirable
events were performed at 2 specific time points: at entry and at
discharge from home-based hospitalization.

The study design was formulated and adopted under the
hypothesis that robust predictions could be useful for clinical
decision making: (1) to decide patients’ admission into the
HH/ED service (RM1 and RM2); and (2) to personalize care
paths for transitional care, as well as for enhanced vertical
integration between specialized care and community-based
services, both at patients’ discharge from HH.

A unique aspect of this research is that predictors considered
in the analyses encompass 3 different categories of variables
(Table 2S in Multimedia Appendix 1): (1) clinical data and
biological information [22-24] extracted from patients’
electronic medical records; (2) additional variables often not
considered in the clinical records specifically collected in the
research protocol to reflect patients’ functional capacities and
health care resources; and (3) information from GMA, the
population-based, health-risk assessment tool developed and
implemented in Catalonia (ES) [15,16,25].

We understand that the multisource approach adopted in this
research was the most appropriate to elaborate predictive
modeling in a highly heterogeneous group of patients
undergoing HH/ED, in terms of clinical diagnosis and frailty
status [8]. The results depicted in Table 4, in terms of AUROC
and score values, indicate the reasonably good performance of
the predictive models as compared to recent studies on similar
scenarios [26], demonstrating the feasibility of the proposed
approach and leveraging the advantages of applying machine
learning in clinical risk prediction contexts in front of more
traditional approaches based on standard multiple regression
analyses [27]. Moreover, Multimedia Appendix 2 (panels A-D)
shows a high relative contribution of variables usually not
considered to be of clinical standard or relevant biological
information recorded in the EMR. Overall, our results indicate
that our multisource approach significantly contributes to
enhanced health risk assessment with a potentially high impact
on clinical decision support.

Limitations of the Study and Lessons Learned for
Clinical Application
We have not been able to identify literature on predictive
modeling specifically addressing HH/ED. It may partly be due
to the heterogeneity of orientations and characteristics of the
ongoing HH/ED programs among sites. This fact constitutes a
limitation regarding the potential for generalization of the results
of this research to other sites. However, we understand that the
multisource approach undertaken in this study shows enormous
potential for risk assessment regarding mortality and early
re-admissions of hospitalizations in general, and may show high
applicability beyond the field of HH/ED. The predictive
modeling undertaken in the study should be useful for defining
the characteristics of personalized care paths of transitional care
after hospital discharge. As indicated above, the results can have
a high impact on shaping the interactions between specialized
and community-based care in patients with high risk for hospital
re-admissions.

A major general limitation of machine learning approaches such
as the one proposed here is the fact that they can be considered
“black-box” solutions, difficult to interpret by clinicians. Our
work, however, is based on random forest models that provide
interpretable information regarding variable importance
(Multimedia Appendix 2, panels A-D) and even model
visualization, thus facilitating the understanding of their
predictions. We believe that the clinical interpretation of the
predictors may require different approaches; for example,
variables like age and diagnosis should be individually assessed
for clinical judgment, while others, like the different GMA
parametrization (including the Charlson Index), should be
assessed by taking the category as a whole (and likewise,
abnormalities in some blood test variables). On the other hand,
this study indicates that the impact of patients’ functional status
on outcomes is high. However, some of the measurements
included in this category are not scalable in the clinical scenario
(ie, SF36). Therefore, our results clearly indicate that surrogates
with higher applicability [28,29] should likely be considered
for inclusion in real-life clinical settings. This could be achieved
through patients’self-tracking equipment (ie, apps) that provides
information on different dimensions characterizing the
functional performance of the patient, namely physical and
psychological status, wellbeing, activation, etc.

It is acknowledged that the generalization of the use of new
clinical scores generated from predictive modeling needs
external validation on other patient cohorts or in different
timeframes, and even on the development of impact studies in
real-world settings [30]. Apart from being costly, such a
validation process can show limitations partly due to rapidly
evolving clinical environments, as is the case for HH/ED at
HCB, expanded to the entire health district of
Eixample-Esquerra during 2018. The new scenario implies great
changes in the clinical environment, patients’ characteristics,
and data sources prompting the need for designing dynamic
models in the context of learning health systems (LHS) [31,32].
It is of note that within a mature digital health scenario, the
multisource predictive modeling approach could be enriched
with other sources of data, such as patient self-reported data
and data from social care. The lack of digital maturity of the
current ecosystems constitutes a limiting factor for now, but in
the near future, risk assessment tools are expected to improve
in terms of robustness, potential for generalization of the results,
and incorporation of a dynamic predictive approach.

Steps Toward Dynamic Learning Health Systems
There is little doubt about the high potential shown by the digital
transformation of health as part of a large-scale adoption of
integrated care. It is acknowledged, however, that practical
applications of this vision face major limitations when it comes
to accessing and mining health data stored in distributed silos
of information. However, it seems clear that integrating and
analyzing highly complex data would open new avenues for
digital health in the clinical arena.

The integration of biomedical research information systems
with in-place electronic health records in hospitals and in
primary care centers having interoperability with patients’
self-tracking information would enable the development of
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innovative, dynamic predictive modeling approaches, opening
up entirely new and fascinating scenarios for an interplay
between clinical practice and biomedical research [33,34]. We
have identified 4 main interrelated enablers of this scenario
[15,17,35]: (1) cloud-based tools and services allowing secure
analysis of patient-centric distributed and multi-disciplinary
health-related information; (2) systems medicine approaches to
generate clinical predictive modeling to feed clinical decision
support systems and patient decision support systems; (3)
implementation and evaluation strategies for real-world
implementation and assessment of cloud-based services, and
(4) governance, regulatory aspects, and service adoption
throughout the health care systems; these are all key to
harnessing the strengths and opportunities of LHS.

Combined actions involving organizational changes with the
engagement of all stakeholders, selective adoption of novel
biomedical and digital tools, and the achievement of financial
sustainability through enhanced accountability and
entrepreneurial actions should pave the way toward the transition
to LHS.

Conclusions
This study proves the potential of the proposed multisource
machine-learning models for the prediction of risk of
re-admissions and deaths in patients undergoing home-based
hospitalization in a real-world setting. Further steps beyond this
study include the development of dynamic clinical decision
support systems allowing progression towards sustainable
patient-centered health care services.
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Abstract

Background: Enhanced management of multimorbidity constitutes a major clinical challenge. Multimorbidity shows
well-established causal relationships with the high use of health care resources and, specifically, with unplanned hospital admissions.
Enhanced patient stratification is vital for achieving effectiveness through personalized postdischarge service selection.

Objective: The study has a 2-fold aim: (1) generation and assessment of predictive models of mortality and readmission at 90
days after discharge; and (2) characterization of patients’ profiles for personalized service selection purposes.

Methods: Gradient boosting techniques were used to generate predictive models based on multisource data (registries,
clinical/functional and social support) from 761 nonsurgical patients admitted in a tertiary hospital over 12 months (October 2017
to November 2018). K-means clustering was used to characterize patient profiles.

Results: Performance (area under the receiver operating characteristic curve, sensitivity, and specificity) of the predictive models
was 0.82, 0.78, and 0.70 and 0.72, 0.70, and 0.63 for mortality and readmissions, respectively. A total of 4 patients’ profiles were
identified. In brief, the reference patients (cluster 1; 281/761, 36.9%), 53.7% (151/281) men and mean age of 71 (SD 16) years,
showed 3.6% (10/281) mortality and 15.7% (44/281) readmissions at 90 days following discharge. The unhealthy lifestyle habit
profile (cluster 2; 179/761, 23.5%) predominantly comprised males (137/179, 76.5%) with similar age, mean 70 (SD 13) years,
but showed slightly higher mortality (10/179, 5.6%) and markedly higher readmission rate (49/179, 27.4%). Patients in the frailty
profile (cluster 3; 152/761, 19.9%) were older (mean 81 years, SD 13 years) and predominantly female (63/152, 41.4%, males).
They showed medical complexity with a high level of social vulnerability and the highest mortality rate (23/152, 15.1%), but
with a similar hospitalization rate (39/152, 25.7%) compared with cluster 2. Finally, the medical complexity profile (cluster 4;
149/761, 19.6%), mean age 83 (SD 9) years, 55.7% (83/149) males, showed the highest clinical complexity resulting in 12.8%
(19/149) mortality and the highest readmission rate (56/149, 37.6%).
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Conclusions: The results indicated the potential to predict mortality and morbidity-related adverse events leading to unplanned
hospital readmissions. The resulting patient profiles fostered recommendations for personalized service selection with the capacity
for value generation.

(J Med Internet Res 2023;25:e40846) doi: 10.2196/40846

KEYWORDS

health risk assessment; health risk profiles; transitional care; hospital readmissions; mortality

Introduction

Enhanced management of multimorbidity constitutes a major
clinical challenge because the number and complexity of morbid
conditions show well-established causal relationships with
mortality and high use of health care resources [1], with
unplanned hospital admissions being a key determinant of the
multimorbidity-induced high burden on health care systems
worldwide [2,3].

Evidence-based efficacy of integrated care interventions to
prevent hospitalizations in high-risk patients has been
demonstrated [4,5]. Likewise, comprehensive programs to
enhance care during transitions after hospital discharge can
reduce all-cause early hospital readmissions in chronically ill
patients, which is particularly effective in mid/long-term
evaluations [6,7]. However, the scalability and adoption of such
preventive interventions in real-life scenarios are often limited
by an efficacy-effectiveness gap. Poor patient risk stratification
and insufficient workforce preparation for the care continuum
have been identified as critical limiting factors for effective
clinical practice [8].

In this regard, multisource clinical predictive modeling
approaches, considering various determinants of health (eg,
clinical, social, populational, lifestyle), have become an effective
strategy for subject-specific risk assessment to prevent
morbidity-related adverse events leading to hospital
readmissions [9-13].

This research work aimed to enhance chronic patients’
stratification at hospital discharge, characterize patients’ risk
profiles for generating recommendations on postdischarge care
transitions [14,15], and improve personalized preventive care
pathways within a care continuum scenario [16]. To this end,
multiple data sources (ie, primary care, social care,
hospital-based data, and registry information) from distinct

domains (ie, medical complexity, disability scoring, unhealthy
lifestyle factors, and social frailty) have been considered.

Methods

Study Design, Population, Potential Predictors, and
Data Sources
This is an observational retrospective cohort study of patients
discharged from the Hospital Clínic of Barcelona (HCB) from
October 2017 to November 2018. The study population included
nonsurgical patients admitted to the hospital avoidance program
(n=441) and the corresponding controls undergoing conventional
hospitalization (n=441), as reported in detail in Herranz et al
[17].

Key determinants of health from the clinical and social domains
were considered (Table 1): (1) sociodemographic information;
(2) population-based registry indicators on morbidity and
complexity; (3) patients’ functional characteristics; (4) frailty
and social risk indicators; (5) unhealthy lifestyle habits; (6)
utilization of health care resources; (7) clinical and biological
data collected during the acute episode; and (8) immunization
records. It is of note that multimorbidity and complexity were
characterized by the Catalan population–based health risk
assessment scoring, known as Adjusted Morbidity Groups
(AMG) [18-21], an aggregative index that indicates the burden
of an individual’s morbid conditions through a disease-specific
weighting deduced from statistical analysis based on mortality
and the utilization of health services; by contrast, the acute
episode complexity was characterized by the Queralt Indices
[22,23] that combine information on (1) preexisting
comorbidities; (2) in-hospital complications; (3) principal
discharge diagnoses; (4) main procedure; and (5) secondary
procedures performed during hospitalization. For predictive
modeling purposes, the different Queralt Indices have been
aggregated into a single score, referred to as the composite
Queralt Index.
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Table 1. List of variables considered for predictive modeling and clustering analysis.a

DescriptionVariables

Sociodemographic data

Patient’s age (numerical)1: Age (100%)

Patient’s sex (binary, male/female)1: Gender (100%)

Health Basic Area (categorical, 105 levels)1: HBA (100%)

Medical complexity

Adjusted Morbidity Groups score (numerical)3: AMG score [18-21] (100%)

Shared Individual Intervention Plan (binary, yes/no)2: SIIP Plan [24] (90.45%)

Complex chronic patient (binary, yes/no)2: CCP [24] (90.45%)

Advanced chronic patient (binary, yes/no)2: ACP [24] (90.45%)

Patient’s functional capacity

Barthel Index (numerical, 0-100)2: Barthel [25] (90.45%)

Lawton Brody Index (numerical, 0-8)2: Lawton Brody [26] (82.97%)

Pfeiffer Index (numerical, 0-10)2: Pfeiffer [27] (90.58%)

Braden Index (numerical, 0-23)2: Braden [28] (78.71%)

Geriatric syndrome label (binary, yes/no)2: Geriatric syndrome [29] (100%)

Social frailty indicators

Mini Nutritional Assessment Index (numerical, 0-30)2: MNA [30] (71.87%)

Table of Social Risk Indicators (numerical, 0-6)2: TSRI [31] (100%)

Barber Index (numerical, 0-9)2: Barber [32] (81.9%)

Dependence label (binary, yes/no)2: Dependence (100%)

Unhealthy lifestyle habits

BMI (numerical)2: BMI (74.19%)

Patient’s physical activity (categorical, 3 levels)2: Physical activity (75.61%)

Patient’s alcohol intake (categorical, 3 levels)2: Alcohol intake (73.94%)

Patient’s smoking habits (categorical, 3 levels)2: Smoking (73.03%)

Use of health care resources

Number of admissions during the previous 12 months (numerical)3: Hospital admissions (100%)

Number of emergency room visits during the previous 12 months (numerical)3: Emergency room visits (100%)

Number of encounters with primary care professionals during the previous 12 months (numerical)3: Primary care encounters (100%)

Number of specialized care outpatient visits during the previous 12 months (numerical)3: Outpatient visits (100%)

Number of drugs prescribed during the previous 12 months (numerical)3: Medication (100%)

Total health care expenses of the previous 12 months in euros (numerical)3: Health care expenditure (100%)

Acute episode complexity

Composite Queralt Index (numerical)1: Composite Queralt Index [22,23] (100%)

Type of hospitalization (binary, hospital avoidance/usual care)1: Type of hospitalization (100%)

Total hospitalization days (numerical)1: Length of stay (100%)

Number of active diagnoses at admission (numerical)1: Number of active diagnoses (100%)

Leukocyte count (numerical)1: Leukocytea (87.33%)

Percentage of lymphocytes (numerical)1: Lymphocytesa (87.33%)

Hemoglobin concentration (numerical)1: Hemoglobina (87.33%)

Red blood cell distribution width (numerical)1: RDWa (87.33%)
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DescriptionVariables

Glucose concentration (numerical)1: Glucosea (87.33%)

Creatinine concentration (numerical)1: Creatininea (87.33%)

Sodium concentration (numerical)1: Sodiuma (87.33%)

Potassium concentration (numerical)1: Potassiuma (87.33%)

Immunization records

Flu vaccine administration (binary, yes/no)2: Vaccination, flua (100%)

Pneumococcal 13 vaccine administration (binary, yes/no)2: Vaccination, pneumococcal 13a (100%)

Pneumococcal 23 vaccine administration (binary, yes/no)2: Vaccination, pneumococcal 23a (100%)

aVariables used only for predictive modeling purposes. The number before the variable’s name indicates the database from which the information was
retrieved: (1) HCB’s electronic medical records; (2) primary care’s electronic medical records; and (3) the Catalan Health Surveillance System. The
percentages of data availability are displayed after variable’s name.

Potential predictors (Table 1) were retrieved from 3 different
data sources: (1) HCB’s electronic medical records (EMRs);
(2) primary care’s EMR; and (3) the Catalan Health Surveillance
System (CHSS) [33]. The latter contains information on clinical
diagnoses, medication, and resource utilization from the hospital
and primary care. The CHSS is regularly fed from EMR data
of all public health care providers in Catalonia paid by CatSalut,
the single public payer in Catalonia (ES), which uses it for
billing purposes, population-health risk assessment, and
allocation of resources. Databases are linked through a unique
identification number used for public assurance purposes.

Ethical Approval
The study was conducted in compliance with the Declaration
of Helsinki and was approved by the Ethical Committee for
Human Research at the Hospital Clínic of Barcelona
(26/04/2017, 2017-0451 and 2017-0452). All data were handled
according to the General Data Protection Regulation 2016/679
on data protection and privacy for all individuals within the
European Union and the local regulatory framework regarding
data protection. Study investigators only had access to a fully
anonymized database. Data from other health administrative
databases were linked and deidentified by a team not involved
in the study analysis.

Outcomes
The predictive modeling for enhanced patient stratification
assessed 2 primary outcomes occurring up to 90 days after
discharge: mortality and all-cause hospital readmissions. The
clustering analysis allowed the identification and
characterization of patients with different risk profiles for
personalized service selection purposes. Moreover, the 90-day
postdischarge service-utilization trajectories of the identified
patients’ risk profiles were analyzed.

Data Analytics Workflow
From the initial set of 882 patients, 107 were eliminated due to
the absence of unrecoverable indispensable data. An additional
14 patients were rejected for subsequent analyses because they
died during the hospitalization, resulting in a cohort of 761
patients.

It is to be noted that we observed elevated patterns of
missingness in most of the variables recorded in the primary
care databases. This was due, in part, to the fact that a vast
majority of questionnaires used to assess patient functional
characteristics, frailty, and social risks are systematically
administered only in elders or patients with explicit evidence
of vulnerability or functional decline. Therefore, we imputed
baseline levels for Barthel [25], Lawton-Brody [26], Pfeiffer
[27], Braden [28], Mini Nutritional Assessment [30], Table of
Social Risk Indicators [31], Barber [32] questionnaires in all
patients younger than 70 years with no formal diagnosis
involving significant levels of dependence, vulnerability, or
functional decline. Appendix S1 in Multimedia Appendix 1
presents the diagnostic codes considered for imputation in this
initial round (see also [25-32,34]). After that, all variables with
percentages of missingness higher than 30% were excluded
from the study database. The remaining incomplete registers
were imputed using the MissForest [35] algorithm, a robust
method for mixed-type data imputation. Furthermore, the
categorical features used to encode smoking and alcohol abuse
habits were rediscretized to avoid underrepresented categories.

To avoid overfitting, we removed from the study data set all
highly correlated features using a Pearson coefficient of 0.75
as a threshold value. In addition, we applied a low variance
filtering to remove the features with very few unique values.
For this issue, we set the threshold for the ratio between the
frequency of the most common value and the frequency of the
second most common value to 95:5. The final set of predictors
is displayed in Table 1.

According to the results of previous predictive modeling
experiences in similar settings, reported in Calvo et al [11], we
used gradient boosting machines [36] to forecast 2 binary
deleterious events occurring up to 90 days after hospital
discharge: (1) mortality and (2) all-cause hospital readmissions.
We used a grid search to fine-tune the gradient boosting machine
parameters (number of trees=1500, maximum number of nodes
per tree=5, shrinkage=0.01, and minimum number of
observations in terminal nodes=7). The models were trained
and tested using a Monte Carlo cross-validation approach with
10 replicates, using 75% of the data for training and the
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remaining 25% for testing. In addition, every training data
partition was 4-fold cross-validated to determine the training
and validation splits, accounting for 75% and 25% of the training
data partition, respectively. To minimize the effect of class
imbalance on the target outcomes caused by the scarcity of
unsuccessful cases, we used a random stratified sampling
technique [37] to generate the train/test data splits. In addition,
to estimate the relative importance of the variables within the
predictive models, we performed a mean decrease in accuracy
(MDA) analysis. Finally, both predictive models were evaluated,
according to the average results of all the independent
validations, using the following metrics: area under the receiver
operating characteristic curve (AUROC), sensitivity (SE), and
specificity (SP). We also calculated the 95% CI for the AUROC
using 2000 bootstrapped stratified replicates.

For personalized service selection purposes, we used the
K-means clustering algorithm [38,39] to generate groups of
patients with similar clinical and social risk profiles. We used
the average silhouette method [40] to determine the optimal
number of clusters. Finally, the baseline characteristics and
patient service utilization trajectories up to 90 days after hospital
discharge for all risk profiles identified in this process were
assessed.

Categorical variables were summarized as absolute values and
frequencies, whereas continuous variables were represented by
the mean and the SD or the median and interquartile range.
ANOVA, together with post hoc pairwise t test (unpaired,
2-tailed), and Kruskal-Wallis, together with post hoc pairwise
Wilcoxon tests, were used to assess changes in numeric
outcomes, as needed. The Fisher exact test was used to assess
changes in categorical variables. Bonferroni adjustments were
used in multiple pairwise comparisons. The threshold for
statistical significance was set at .05. In addition, to enable
multidimensional data combination and to enhance risk profiles
(ie, clusters) comparison and visualization, all features were
rescaled into a 0-1 range using a minimum-maximum
normalization approach. Afterward, all features were aggregated,
averaged, and displayed in radar plots in 7 categories that mimic
the groups of aforesaid variables, specifically (1) age, (2)
medical complexity, (3) functional capacity, (4) social frailty,
(5) unhealthy lifestyle habits, (6) use of health care resources,
and (7) acute episode complexity.

All the statistical analyses were conducted using R version 4.1.1
[41] (The R Foundation)

Results

Characteristics of the Study Population
The average age of the study population was 75.9 (SD 14.51)
years. Of the 761 patients overall, 434 (57%) were men and the
remaining (n=327, 42.9%) were women. Besides, 63/761 (8.3%)
patients died during the following 90 days after hospital
discharge, 188/761 (24.7%) had to be readmitted within the
study period, and 308/761 (40.5%) had unplanned emergency
room (ER) visits. Table 2 presents selected characteristics of
the study population, as well as pairwise comparisons between
successful and unsuccessful groups: (1) survivors and deceased
patients; and (2) patients not requiring hospital readmission and
readmitted patients.

In brief, mortality and hospital readmission rates were higher
in elders (age: P<.001), in highly comorbid and complex patients
(AMG: P<.001), and in individuals with higher composite
Queralt Index (P<.001) when combining the severity of the
acute episode with the preexisting comorbidity burden. In the
entire study group, 77.4% (589/761) of the patients were
allocated above the P95 of the AMG scoring distribution in
Catalonia, the tip of the population-based risk stratification
pyramid. The survivors presented a similar distribution (533/698,
76.4%, ≥P95), but patients that died after discharge showed a
significantly higher (P<.001) AMG scoring (56/63, 88.9%,
≥P95). Likewise, AMG scoring was markedly lower (P<.001)
in patients not requiring readmissions (424/573, 74.0%, ≥P95)
than in those rehospitalized within the 90-day study period
(165/188, 87.8%, ≥P95). A similar pattern was seen in the
composite Queralt Index, reflecting both patient’s complexity
and severity of the acute episode (P<.001). As expected, total
health expenditure at the health system level during the 12
months before the acute episode was also significantly higher
in the unsuccessful subgroups than in the entire study group or
the successful subsets of patients.

Functional capacity loss (Barthel: P<.001) and social frailty
and dependence (Barber: P<.001; Table S1 in Multimedia
Appendix 1) were also identified as potential risk factors for
both mortality and hospital readmission. A gender bias was
observed in readmitted patients, with men showing a higher
hospitalization rate (P=.02). A detailed description of all
variables included in the analyses is depicted in Table S1 in
Multimedia Appendix 1, wherein characteristics of those patients
requiring unplanned ER visits during the study period are also
displayed.
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Table 2. Selected traits of the study group depending on mortality and all-cause hospital readmissions.

ReadmissionMortalityAll patients
(n=761)

Variables

P valueaUnsuccessful
(n=188)

Successful
(n=573)

P valueaUnsuccessful
(n=63)

Successful
(n=698)

Demographics

.02121 (64.36)313 (54.62)—30 (47.62)404 (57.88)434 (57.03)Male, n (%)

.0267 (35.64)260 (45.38)—33 (52.38)294 (42.12)327 (42.97)Female, n (%)

.00177.77 (13.14)74.18 (14.87)<.00183.87 (10.92)74.27 (14.53)75.06 (14.51)Age, mean (SD)

Medical complexity

<.00132.89 (16.47)24.21 (12.95)<.00134.27 (16.53)25.64 (13.97)26.35 (14.39)AMGb score, mean (SD)

<.001<.001AMG category, n (%)

—0 (0)2 (0.35)—0 (0)2 (0.29)2 (0.26)Very low risk <P50

.0032 (1.06)28 (4.89)—0 (0)30 (4.3)30 (3.94)Low risk [P50-P80)

.00521 (11.17)119 (20.77)—7 (11.11)133 (19.05)140 (18.4)Moderate risk [P80-P95)

—35 (18.62)147 (25.65)—10 (15.87)172 (24.64)182 (23.92)High risk [P95-P99)

<.001130 (69.15)277 (48.34)<.00146 (73.02)361 (51.72)407 (53.48)Very high risk ≥P99

Use of health care resources; 12 months before admission

<.0015495 (3448-
11,235)

3772 (2260-
6343)

<.0015979 (2930-
11,072)

4033 (2418-
6930)

4164 (2466-
7198)

Health care expenditure in eurosc,
median (IQR)

Acute episode complexity

—8.11 (6.16)7.51 (4.84).00610.46 (8.49)7.42 (4.72)7.67 (5.20)Length of stay; mean (SD)

<.00184.33 (29.52)68.92 (29.75)<.00195.31 (25.27)70.69 (30.02)72.73 (30.41)Composite Queralt Index, mean (SD)

aOnly P values ≤.05 have been presented.
bAMG: Adjusted Morbidity Group.
c€1=US $1.08.

Predictive Modeling
Figure 1 depicts the average performance of the predictive
models over the cross-validation process. The mean performance
of the models expressed as AUROC (CI; SE/SP) was 0.82
(0.74-0.90; 0.78/0.70) and 0.72 (0.64-0.80; 0.70/0.63) for
mortality and all-cause hospital readmission risk, respectively.

Table 3 displays the variable importance weights, according to
the MDA analysis, of the 15 most meaningful predictors for
both predictive models developed within this study. It is of note
that the top 5 predictors for mortality, responsible for 49%
accuracy prediction in the MDA analysis, were age (16.7%),
composite Queralt Index (12.3%), length of stay (7.7%),
Pressure Sore Risk assessed by the Braden scale (6.4%), and
heterogeneity of red cell volume/size (6.1%). Overall, variables
expressing (1) aging, (2) severity of the acute episode
(composite Queralt Index, length of stay, and biological blood
markers measured during admission); (3) multimorbidity
(number of prescriptions, AMG score, BMI); and (4) frailty

(Pfeiffer index) were at the top of the list of the most influential
traits modulating mortality after discharge.

Likewise, the top 5 predictors for readmissions during the 90
days after discharge explained 48% accuracy prediction in the
MDA analysis. These were the composite Queralt Index
(14.8%), blood lymphocytes cell count (10.8%), total health
expenditure in the previous year (9.0%), age (8.4%), and AMG
score (5.4%). Again, variables associated with the severity of
the acute episode (composite Queralt index, peripheral blood
biological markers, length of stay), age, multimorbidity (AMG
score, health expenditure before the acute episode, BMI, number
of specialist outpatient visits), and social frailty (Barber Index)
were the main determinants of risk of readmission during the
study period.

It should be noted that the predictive role of each of the
individual components of the Queralt Index were assessed
separately; however, the optimal models’ performance was
achieved using Queralt as a composite index.
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Figure 1. Pooled average receiver operating characteristic curves for both predictive models: risk of mortality is indicated in blue, whereas risk of
hospital readmission is indicated in red. The performance of the models is expressed according to the average area under the receiver operating
characteristic curves (AUROC), sensitivity, and specificity.
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Table 3. The 15 most meaningful predictors for mortality and readmission.

Variable importance, %Variable

Predictors for mortality

16.67Age

12.31Composite Queralt Index

7.68Length of stay

6.43Braden Index

6.08Red cell distribution width

4.13Hemoglobin concentration

3.42Number of prescriptions

3.31Lymphocytes count

3.29Sodium concentration

3.06Adjusted Morbidity Group score

2.97BMI

2.95Potassium concentration

2.75Total health care expenditure

2.40Glucose concentration

2.25Pfeiffer Index

Predictors for readmission

14.77Composite Queralt Index

10.81Lymphocytes count

8.96Total health care expenditure

8.42Age

5.35Adjusted Morbidity Group score

5.33Creatinine concentration

4.30BMI

4.05Number of primary care visits

3.92Hemoglobin concentration

3.50Glucose concentration

3.24Leukocyte count

3.04Number of specialized care visits

2.70Red cell distribution width

2.53Length of stay

2.11Barber Index

Patient’s Clustering and Postdischarge Trajectories
We identified 4 relevant clusters of patients whose hallmark
characteristics are depicted in Figure 2. The information
displayed in the clustering infographics (Figure 2) was
normalized and aggregated into scores of 0 to 1 for each of the
7 main dimensions considered in the clustering analysis. The
figure also displays mortality rates, hospital admissions, and

unplanned ER visits for each cluster during the study period.
Each cluster was named according to the most relevant
characteristic of the subset of patients: cluster 1 (reference),
cluster 2 (unhealthy lifestyle habits), cluster 3 (social frailty),
and cluster 4 (medical complexity). An extensive comparison
among the 4 clinical groups is displayed in Table S2 in
Multimedia Appendix 1.
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Figure 2. Radar plots of the main characteristics of the 4 clusters. All the features are normalized and grouped into 7 categories: (1) age; (2) medical
complexity; (3) functional capacity; (4) social frailty; (5) unhealthy lifestyle habits; (6) use of health care resources; and (7) acute episode complexity.
The mortality rates, hospital admissions, and unplanned emergency room visits are displayed in red. ER: emergency room.

Figure 3 displays the postdischarge trajectories of patients up
to 90 days. Figure 3A depicts rates of patient encounters with
health care professionals in each cluster at different levels,
namely: (1) primary care (physicians/nurses visits, home-based
programs, and social workers visits); (2) intermediate care
centers; and (3) specialized care (outpatient clinics and day
hospitals visits). Figure 3B displays the postdischarge
trajectories for each cluster of patients considering 3 consecutive
phases: (1) the first week after discharge (panel i); (2) the 3
subsequent weeks (panel ii); and (3) the last 2 months of the
study period (panel iii). For each panel, the ordinate (y-axis)
indicates the relative frequencies of each cluster for the variables
shown in the abscissa (x-axis), namely: (1) use of health care
resources (primary care visits, intermediate care admissions,
and specialized care visits), and (2) main outcomes (ER visits,
postdischarge hospitalizations, and mortality). Patients’
characteristics of each cluster and the associated postdischarge
trajectories are briefly described below. A vast assessment of
the health care resources used by the 4 clinical groups up to 90
days after hospital discharge is displayed as follows: (1) rates

of patient encounters with health care professionals by cluster
(Table S3 in Multimedia Appendix 1); and (2) the total number
of contacts with health care professionals by cluster (Table S4
in Multimedia Appendix 1).

The so-called reference patients (cluster 1; 281/761, 36.9%)
showed a mean age of 71.0 (SD 15.6) years, with 151/281
(53.7%) being male. The mean AMG scoring was 19.4 (SD
11.0), which corresponds to an elevated morbidity burden, close
to the P95 of the population-based risk stratification pyramid.
Of these, 63/281 (22.4%) patients were included in home care
programs targeting complex chronic patients. The average health
care expenditure during the previous 12 months of the acute
episode was €5491 (US $5952).

Cluster 1 showed the lowest rates of mortality (10/281, 3.6%),
readmissions (44/281, 15.7%), and ER visits (91/281, 32.4%)
during the 90 days after discharge with no substantial differences
among the 3 periods depicted in Figure 3B: (1) the first week,
(2) the subsequent 3 weeks, and (3) the last 2 months.
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Figure 3. Patients’ trajectories by cluster during the 90-day postdischarge follow-up. (A) Itemized health care contact rates in each cluster. (B) Itemized
relative frequencies of the total health care contacts (white) and health outcomes (red) in each cluster assessed in 3 time intervals: (i) days 1-7; (ii) days
8-30; and (iii) days 31-90. PC: primary care.

Patients with an unhealthy lifestyle habit profile (cluster 2;
179/179, 23.5%) had a similar age to cluster 1, with a mean of
69.9 (SD 13.4) years; interestingly, 137/179 (76.5%) patients
in this cluster were male. The most relevant features in terms
of lifestyle were sedentarism, tobacco smoking, and alcohol
abuse (Table S2 in Multimedia Appendix 1). The mean AMG
scoring was 23.7 (SD 11.7), close to P97 of the risk stratification
pyramid. The number of patients included in home-based care
programs due to complex chronic conditions was 41/179
(22.9%), a figure close to that seen in cluster 1. The average
baseline health care expenditure was €6037 (US $6544).

Patients in cluster 2 patients presented a slightly higher mortality
rate (10/179, 5.6%), but remarkably higher rates of readmissions
(49/179, 27.4%) and ER consultations (80/179, 44.7%) than the
reference subset. It is of note, however, that their age, level of
functional and social frailty, as well as medical complexity did

not show differences with cluster 1. Most importantly, this
subset of patients showed a high rate of early mortality during
the first week (Figure 3B), corresponding to the 4/10 (40%)
deceased patients in this cluster (Table S3 in Multimedia
Appendix 1). In addition, the rate of readmissions during the
follow-up period was slightly higher than that observed in cluster
3 (39/152, 25.7%).

Patients in the social frailty profile (cluster 3; 152/761, 20%)
were older than those in the previous clusters, mean age 81.10
(SD 12.67) years, and only 63/152 (41.4%) were male. Their
mean AMG score was high, 30.0 (SD 12.7), corresponding to
P98. A high percentage of the group (78/152, 51.3%) was
included in home-based care programs, and their average
baseline health care expenditure was €6232 (US $6755). They
presented high levels of medical complexity and functional
frailty, but the most characteristic feature was the presence of
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social frailty. Predominant traits of the group were elderly
females with medical complexity and high social vulnerability.

The social frailty group showed the highest rate of mortality
(23/152, 15.1%), but similar rates of readmissions (39/152,
25.7%) and ER consultations (68/152, 44.7%) than cluster 2.
As displayed in Figure 3B, the mortality rate in the group was
higher during the first month after discharge as compared with
the last 2-month study period.

Finally, the medical complexity profile (cluster 4; 149/761,
19.6%) integrates a higher proportion of elderly patients, mean
age of 82.8 (SD 8.7) years, like in cluster 3, but the patients
were predominantly male, 83/149 (55.7%). Their mean AMG
was higher than that in the other clusters, mean 39.0 (SD 15.6).
This group showed the highest percentage of patients undergoing
home-based care programs, 96/149 (64.4%). These patients
presented marked functional impairment, as well as medical
complexity, with poor outcomes in terms of mortality (19/149,
12.8%), readmissions (56/149, 37.6%), and unplanned ER visits
(87/149, 58.4%). Both mortality and readmission rates increased
after the first week (Figure 3B) and remained constant
throughout the study. The group showed the highest health care
expenditure during the previous year: €8510 (US $9224).

As depicted in Figure 3A, the 4 clusters presented high rates of
primary care visits with minor differences among them. Clusters
3 and 4 clearly showed the highest use of community-based
resources (ie, home-based care programs and visits to social
workers and intermediate care), whereas clusters 1 and 2
presented a higher use of specialized care resources, outpatient
visits, and day hospital visits than the two other clusters.

Discussion

Principal Findings
This study had a 2-fold aim: (1) to assess the risk of mortality
and readmission during 90 days after discharge from a tertiary
hospital, and (2) to characterize patients’ profiles and their
postdischarge trajectories during the study period. The primary
purpose of the research was to enhance transitional care after
discharge, considering both patients’ risk level and the
specificities of their profiles by assessing different dimensions.
A careful analysis discarded any impact on the study results
associated with patients’ entry point, hospital avoidance
program, or conventional hospitalization [17]. Notably, 77.4%
(589/761) of the overall study group fell into the top 5% of the
regional population-based risk stratification pyramid built-up
using the AMG scoring distribution.

Predictive Modeling
According to the state-of-the-art results [9-12], the proposed
machine learning strategy used for computational modeling was
adequate to achieve acceptable performance of the predictive
models assessing mortality and readmission risks during the
study period. The study offers a promising scenario for the
future use of computational modeling to feed clinical decision
support systems. In addition, the results of this research may
guide health professionals in refining personalized transitional
care strategies with an integrated care approach, fostering

vertical integration between specialized and community-based
care, and health and social care.

The results indicate that the most relevant predictors fell into
the following 5 categories: (1) age, (2) severity of the acute
episode, (3) multimorbidity and complexity, (4) functional, and
(5) social frailty. Such a pattern of predictors is fully aligned
with a previous report [11] on the predictive modeling of
patients undergoing the Hospital at Home (HaH) program at
HCB between 2011 and 2015. The statistical analysis in this
study suggested synergies between the complexity of the
baseline patient’s condition (ie, AMG score) and the severity
of the acute episode (ie, composite Queralt Index) leading to
increased risk of postdischarge deleterious events. Accordingly,
the 2 indices, AMG and Queralt Index, should be included as
covariates in the predictions. Moreover, the MDA analysis of
the predictive models indicated that different individual variables
might play a significant predictive role in the modeling despite
having possible weak collinearities.

Cluster Analysis
The purpose of the cluster analysis was to contribute to defining
transitional care pathways fitting the requirements of the
identified subsets of patients. In this regard, it seems reasonable
to assume that cluster 1, the reference profile, includes
candidates for standard patient-centered transitional care.
Moreover, this study allowed identifying 2 different care
scenarios that are described below.

Patients included in cluster 2, unhealthy lifestyle habits, appear
as candidates for preventive strategies that promote healthy
lifestyles, including target-oriented cognitive behavioral
therapies. Such interventions should be initiated or intensified
during the acute episode and continued at the community level
with an appropriate follow-up. It is of note that patients within
this cluster were predominantly men, with no significant
differences in terms of age and medical/social baseline
conditions, or severity of the acute episode, as compared with
the reference profile. The major distinctive traits were actionable
factors, predominantly tobacco smoking and sedentarism but
sometimes also alcohol addiction. It should be highlighted that
these patients show potentially avoidable high mortality rates
during the first week after discharge and potentially avoidable
high rates of ER consultations and readmissions across the entire
study period.

Clusters 3 (social frailty) and 4 (medical complexity) define a
different scenario with common requirements and
cluster-specific needs. The 2 subsets include elderly patients,
on average 11 years older than clusters 1 and 2, with higher
AMG scoring (≥P98). Typical recommendations for these 2
clusters are to focus on care-oriented interventions rather than
cure and optimizing home-based services to prevent unplanned
ER visits and readmissions. To our understanding, clusters 3
and 4 define an ideal scenario for productive interactions among
HaH resources, intermediate care, home-based primary care
programs, and social support resources. While patients in cluster
3 deserve specific actions to solve social requirements,
interventions in cluster 4 should combine addressing complex
medical needs, attention to the social context, and providing
care based on people’s multidimensional needs.
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Strengths and Limitations
This study shows strengths that provide some uniqueness to the
analysis. The articulation of the different data sets described in
the “Methods” section represented a significant logistic effort
to generate multilevel predictive modeling encompassing
different key dimensions that ensured a comprehensive patient
characterization. Moreover, the study design used all patients’
information across the health system during 3 successive
periods, namely, (1) the entire year before the admission; (2)
the acute episode triggering hospitalization; and (3) the 90 days
after discharge, which provided the basis for the 2-step protocol
using robust statistical tools that were used in this study. Overall,
the predictive modeling approach adopted in this study has an
exploratory nature while reinforcing conclusions regarding the
main determinants of patient outcomes after hospitalization
from our prior studies [11].

However, we also acknowledge 2 main study limitations. First,
by design, the research was performed on a relatively narrow
segment of patients close to the tip of the population-based risk
stratification pyramid. Second, the size of the entire study group
and the 4 clusters contained a limited number of patients, which
may weaken some of the conclusions.

While accepting that the research represents a valuable
contribution toward risk stratification of transitional care, we
acknowledge that additional studies will be needed to validate
the predictive modeling in larger independent populations.
Future implementation research should be planned to transform
computational modeling into decision support tools to be
sustainably adopted, and dynamically updated, into clinical
workstations for routine use across health care tiers.

Value-Generating Strategies for the Management of
Multimorbidity

Overview
Despite the aforementioned limitations, our report provides
highly valuable information and messages that support
well-defined strategies leading to enhanced management of
multimorbidity in an integrated care scenario showing a clear
potential for value generation. We have identified, however,
some challenges, at least at 3 different layers.

Enhanced Transitional Care After Hospital Discharge
As mentioned earlier, this study has an exploratory nature. The
results obtained should require further testing and validation
using a large independent study group. Such a study is currently
ongoing using a large data set from Catalonia (ES) that includes
more than 100,000 patients discharged from different providers
following a similar study design. The primary aim of the
initiative [42] is to assess the impact and site transferability of

HaH. Still, it will also allow validation of the lessons learnt in
this study, and it should be the basis for future initiatives that
aim to test the recommendations for the different clusters of
patients identified in this report.

Generating Decision Support Tools for Clinicians
This study aimed to generate decision support tools for clinicians
that foster vertical and horizontal integration with a collaborative
adaptive case management approach [43]. However, the transfer
of the potential of predictive computational modeling
approaches, such as the one reported in this research, into
decision support tools integrated into clinicians’ workstations
constitutes a major challenge involving several levels of
complexity, namely, (1) use of appropriate predictors ensuring
their availability; (2) testing and continuously assessing clinical
decision support systems; and (3) design of user-friendly and
properly profiled user interfaces. However, we note that recent
digitalization initiatives suited for integrated care scenarios [44]
may provide relevant novel contributions to the field.

The Generalization of the Approach to Other Use Cases
The current strategy for enhanced transitional care after
discharge can be reasonably transferred to the prevention of
acute episodes of exacerbation leading to unplanned
hospitalizations in high-risk chronic patients. Previous reports
have shown the efficacy of preventive interventions [45], as
well as proven the need for proper stratification and workforce
preparation to generate effectiveness in real-life settings [8].
Our results clearly cover some of the identified needs. However,
the most promising scenario is the use of multilevel
computational modeling [11,18] for early prediction of target
clusters of comorbid conditions (ie, cardiovascular, chronic
obstructive pulmonary disease, type 2 diabetes) in susceptible
patients. This approach should contribute to the deployment
and sustainable adoption of preventive strategies for the
management of chronic patients aiming at delaying, or even
stopping, their progress toward the tip of the risk stratification
pyramid [46,47].

Conclusions
This study combines multilevel predictive modeling and cluster
analysis in a population of comprehensively characterized
complex chronic patients discharged from a university hospital.
The results indicated the potential to predict mortality and
morbidity-related adverse events leading to unplanned hospital
readmissions. The resulting patient profiles fostered
recommendations for personalized service selection with the
capacity for value generation. The lessons learnt show a
promising scenario for generating clinical decision support tools
for clinicians, enabling value generation within an integrated
care scenario involving vertical and horizontal integration.
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ABSTRACT 

 

Background: Hospital at home (HaH) was increasingly implemented in Catalonia (7.7 M citizens, Spain) 

achieving regional adoption within the 2011-2015 Health Plan. This study aimed to assess population-

wide HaH outcomes over five years (2015-2019) in a consolidated regional program and provide 

context-independent recommendations for continuous quality improvement of the service.  

Methods: A mixed-methods approach was adopted, combining population-based retrospective 

analyses of registry information with qualitative research. HaH (admission avoidance modality) was 

compared with a conventional hospitalization group using propensity score matching techniques. We 

evaluated the 12-month period before the admission, the hospitalization, and use of healthcare 

resources at 30 days after discharge. A panel of experts discussed the results and provided 

recommendations for monitoring HaH services.  

Results: The adoption of HaH steadily increased from 5,185 to 8,086 episodes/year (total episodes 

31,901; mean age 73 (SD 17) years; 79% high-risk patients. Mortality rates were similar between HaH 

and conventional hospitalization within the episode [76 (0.31%) vs. 112 (0.45%)] and at 30-days after 

discharge [973(3.94%) vs. 1112(3.24%)]. Likewise, the rates of hospital re-admissions at 30 days after 

discharge were also similar between groups: 2,00 (8.08%) vs. 1,63 (6.58%)] or ER visits [4,11 (16.62%) 

vs. 3,97 (16.03%). The 27 hospitals assessed showed high variability in patients’ age, multimorbidity, 

severity of episodes, recurrences, and length of stay of HaH episodes. Recommendations aiming at 

enhancing service delivery were produced.  

Conclusions: Besides confirming safety and value generation of HaH for selected patients, we found 

that this service is delivered in a case-mix of different scenarios, encouraging hospital-profiled 

monitoring of the service.  

 

Keywords: Hospital at Home; Implementation Science; Integrated Care; Key Performance Indicators; 

Multimorbidity.  



 

 

BACKGROUND 

Two decades after the first report assessing hospital at home (HaH) services,1 this type of care has 

raised increasing interest as an alternative to inpatient care for selected groups.2–4 HaH, delivered to 

entirely substituting the conventional hospitalization, has been associated with several advantages, 

including patient safety, reduction of nosocomial complications, similar or even better health 

outcomes compared to conventional hospitalization, high satisfaction levels from both patients and 

caregivers, and cost savings. In addition, by releasing physical beds, HaH contributes to building 

capacity for highly specialized care inpatient hospitalization. Moreover, in an integrated care scenario, 

HaH may become a relevant driver of vertical integration between hospital care and community-based 

health and social services by enhancing the care continuum.  

However, heterogeneities of HaH service profiles are acknowledged, explaining poor comparability 

among reported experiences.5 The findings in the literature raise several controversies in different 

areas, comprising the results of HaH in specific patient groups, modalities of HaH (e.g., admission 

avoidance or early supported discharge), the most appropriate implementation strategies for HaH 

services, and the quality-of-care delivery after service adoption.4 These controversies, and subsequent 

lack of consensus preclude standardization and continuous quality improvement (CQI) of the service 

in real-world settings.4 Therefore, understanding the heterogeneities behind the HaH has become 

crucial to define service-specific key performance indicators (KPIs) that can be used to ensure quality 

and sustainability over time and adjust the country-specific regulations of the service. 

In Catalonia, a 7.7 million citizens region in North-East Spain with a single public payer (Catalan Health 

Service),6,7 HaH was successfully deployed during the 2011-2015 regional Health Plan.6,8–10 The HaH 

outcomes from that period were used to establish a specific reimbursement scheme based on all 

patient-refined diagnosis-related groups (APR-DRG)11,12 and aimed at consolidating large-scale 



 

 

adoption of HaH services by hospitals across the region.13 Based on this early experience of HaH 

implementation at the healthcare system level, Catalonia was selected as Best Practices site for the 

service in the “Joint Action on implementation of digitally enabled integrated person-centered care” 

(JADECARE),14 a program conducted by the European Union, in collaboration with the OECD to 

promote the assessment and transferability of innovative services with a care continuum approach.15 

With the aim to provide an accurate perspective of the impact of this service and aid future 

implementers in identifying general, context-independent performance indicators to monitor HaH 

services, we conducted a mixed-methods study that includes a quantitative retrospective assessment 

of HaH patients’ characteristics and outcomes, and a co-creation process with a group of experts in 

HaH. 

 

METHODS 

Overview of study design 

The current study combined quantitative and qualitative research methodologies. The quantitative 

study was a retrospective observational analysis of the characteristics of HaH recipients and health 

results of hospitalizations occurred between January 1, 2015, and December 31, 2019. To select HaH 

episodes in the admission avoidance modality, we selected patients with unplanned hospitalizations 

and less than 24 hours between hospital entry and HaH registration. For the qualitative assessment, 

we conducted focus groups and surveys16 with a panel of experts in HaH to interpret the results of the 

quantitative analysis and generate recommendations for CQI.  

The quantitative study was reported according to the STROBE17 guidelines for observational studies, 

and the qualitative analysis was reported according to the SRQR18 guidelines. 



 

 

 

Population and data sources 

All data used in the quantitative analysis were retrieved from the Catalan Health Surveillance System 

(CHSS).19 Since 2011, the CHSS has collected detailed information on the utilization of healthcare 

resources by the entire population of Catalonia. The CHSS assembles information on the use of 

healthcare resources across healthcare tiers, drugs, and other billable healthcare costs, such as non-

urgent medical transportation, outpatient rehabilitation, respiratory therapies, and dialysis. We 

screened the CHSS for all episodes of HaH reported in Catalonia during the study period.  

The same database was used to create a retrospectively-matched control group of contemporary 

conventional hospitalizations. The control group was created using a 1-to-1 propensity score matching 

(PSM)20,21 and Genetic Matching22 technique based on GENetic Optimization Using Derivatives 

(GENOUD)23 algorithm to check and improve covariate balance iteratively. To ensure the comparability 

of the matched episodes, we screened contemporary admissions within the same hospital with 

identical  Medicare Diagnosis Related Group12 category. In addition, the patient’s baseline 

characteristics were characterized and matched using data on demographics (i.e., age and gender), 

utilization of healthcare resources during the previous year (i.e., hospital admissions, emergency room 

visits, number of pharmacological prescriptions and the total healthcare expenditure), clinical and 

social risk factors (i.e., the morbidity burden, using the Adjusted Morbidity Groups24,25 (AMG) score, 

and the presence of active diagnoses related with health-related social needs26). 

The overall comparability of the matched group was assessed using the Mahalanobis distance,27 and  

Rubin’s B and Rubin’s R metrics. Comparability after PSM was considered acceptable if Rubin’s B was 

less than 0.25 and Rubin’s R was between 0.5 and 2.28  

 



 

 

Variables and Outcomes 

The baseline characteristics of study patients (i.e., before admission) included age, sex, morbidity 

burden measured using the AMG score, hospitalizations, emergency room admissions, and 

expenditure within the past year. Information regarding the HaH episode included the length of stay 

(LoS) and the complexity of hospitalization, measured using two case-mix tools:  the Case Mix Index- 

APR-DRG v35 (CMI),29 broadly used for payment purposes, and the Queralt index,30,31 recently 

developed by the Catalan Institute of Health and showing higher performance for predicting general 

hospitalization endpoints. Readmissions in in-hospital settings and visits to the emergency room 

without the need to discontinue HaH were also considered clinical outcomes of the HaH episode. 

Besides the baseline and episode characteristics, we gathered information regarding healthcare 

expenditure, hospitalizations, and visits to the emergency room within the 30-days after discharge. 

Expenditure information was obtained from reimbursements by the Catalan Health Service,32 since no 

operational costs33,34 were available for the entire study group. HaH delivery is reimbursed as a specific 

healthcare service, with case costs estimated based on the APR-DRG categories of the main diagnostic. 

Other relevant outcomes included mortality, during the hospitalization and 30 days after discharge. 

 

Statistical analysis 

Before the analysis, we removed from the databases all the incomplete records, duplicate entries, and 

outliers with unrepresentative baseline characteristics or anomalous LoS with a Z-value greater than 

|3|. 

Since p-values tend to drop in large population-based samples, yielding significant differences in most 

comparisons,35 we used effect size measures to compare the baseline characteristics of the matched 



 

 

HaH individuals with their respective controls to establish the impact of the intervention. Cohen’s D 

test was used to determine the effect size in numerical variables; the magnitude of the difference was 

assessed according to the following ranges: weak (< 0.20), small (0.2 – 0.5), moderate (0.5 – 0.8), large 

(0.8 -1.3), and very large (>1.3). Cohen’s W test was used for categorical variables, with the following 

ranges used to assess the magnitude of difference: weak (< 0.10), small (0.1 – 0.3), moderate (0.3 – 

0.5), and large (>50). We computed 1,000 bootstrap replicates in both scenarios to generate the 95% 

CI.  

Categorical variables were summarized as absolute values and percentages, whereas continuous 

variables were described by the mean and the standard deviation or the median and the interquartile 

range as appropriate.   

To analyze heterogeneity among hospitals regarding the patient profile, we described the age and the 

morbidity burden (measured using the AMG index) of HaH patients in each center. We also assessed 

the inclusion bias of each center by measuring the difference in mean age and AMG index between 

HaH and conventional hospitalizations admitted for the exact cause within the same hospital. 

Heterogeneity was also assessed regarding the LoS, the complexity of the episode and the repetition 

rate among HaH patients. In addition to the descriptive analysis, we addressed heterogeneity by 

conducting an ancillary cluster analysis using the K-means36 algorithm, incorporating information on 

the category of the hospital based on the number of hospital beds and their role in their corresponding 

health district. The average silhouette37 method was used to determine the optimal number of 

clusters.  

All the data analyses were performed using R,38 version 4.1.1 (R Foundation for Statistical Computing, 

Vienna, Austria).  

 



 

 

Qualitative assessment 

The qualitative study, which followed a grounded theory approach, included two focus group sessions 

with HaH experts. The first session aimed at interpreting the results obtained in the quantitative 

analysis described above, whereas the second session sought to discuss the efficiency and value 

generation of HaH (considering the heterogeneities and challenges of the service) and providing 

recommendations of core KPIs for CQI of HaH delivery after service adoption. The second session was 

preceded by the administration of a questionnaire (Supplementary material S1) for assessing the 

consensus strength. Experts were also provided with the 2020 consensus document aiming at regional 

standardization of HaH.13 

The panel of 7 experts included 1-to-2 representatives of the most relevant organizations in 

implementing or assessing HaH services in Catalonia: two members from the Catalan-Balearic Society 

of Hospital at Home,39 two staff members from the Catalan Health Service,40 one staff member from 

the Health Quality and Assessment Agency of Catalonia (AQuAS),41 and two HaH experts from the local 

JADECARE team. Four out of the seven experts were clinical leaders of different HaH programs. A 

qualitative research and service design specialist was recruited as a facilitator for planning and leading 

the expert panel discussions. An extended description of the methodological details is provided in the 

online Supplementary material S1. 

 

RESULTS  

Adoption and characteristics of hospital at home 

The CHSS registry recorded 31,901 episodes of HaH among the 27 hospitals offering this service to 

their catchment populations (Figure 1). Overall, the activity of HaH steadily increased during the study 



 

 

period from 5,185 to 8,086 episodes per year. Supplemental Material - Table 1S depicts yearly HaH 

activity for each individual hospital.  

 

 

FIGURE 1 – Number of admissions in HaH programs registered in 27 hospitals from Catalonia 

between 2015-2019.  

Table 1 summarizes the main characteristics of the patients included in HaH, distinguishing among 

three relevant timeframes, covering the patient’s baseline characteristics before the admission, the 

hospitalization episode, and the health outcomes assessed at 30-days post-discharge. On average, 

HaH patients were older, with a slightly higher prevalence of women. A substantial proportion of HaH 

episodes corresponded to high-risk patients (i.e., with AMG score above the 95th percentile of the 

AMG distribution for the entire population of Catalonia). The study group showed a substantial 

prevalence of health-related social needs associated with housing and economic conditions. Overall, 

HaH had high use of healthcare resources during the year before the acute episode.  



 

 

The acute episode showed low mortality rates in HaH and moderate levels of complexity, measured 

using the Queralt index and CMI. HaH was interrupted in 1,706 (5.35%) cases, with patients requiring 

re-admission to in-hospital settings. Moreover, 1,339 (4.20%) patients visited the emergency room 

without the need to discontinue the HaH. The ten leading main diagnoses at discharge in HaH are 

depicted in Figure 2.  

 

FIGURE 2 – Top 10 of most prevalent main diagnosis at discharge in patients admitted in HaH. 

 

 

 

 



 

 

TABLE  1 – Patient’s clinical characteristics and outcomes of the intervention of all patients admitted 

in HaH. 

 HaH= 31,901 

DEMOGRAPHICS & MORBIDITY-COMPLEXITY  

*Age, mean (sd) 73.11 (16.73) 

*Gender; n (%)  

Male 15,214 (47.69) 

Female 16,687 (52.31) 

*AMG, mean (sd) 29.51 (16.48) 

AMG category, n (%)  

          Very low risk < P50 266 (0.83) 

          Low risk [P50 - P80) 1,769 (5.55) 

          Moderate risk [P80-P95) 4,723 (14.81) 

          High risk [P95-P99) 5,476 (17.17) 

          Very high risk ≥ P99 19,667 (61.64) 

*Patients with HRSN associated to housing and economic conditions, n (%) 5,063 (15.86) 

*Patients with HRSN associated to family and social environment, n (%) 9,903 (31.03) 

Patients receiving palliative care, n (%) 1,437 (4.5) 

USE OF RESOURCES 12 MONTHS BEFORE ADMISSION 

*Patients requiring hospital admissions, n (%) 15,957 (50.16) 

*Patients requiring emergency room visits, n (%) 25,812 (81.14) 

*Total Expenditure in €, median (P25-P75) 4,153.4 (1,695.8 - 8424.6) 

HOME HOSPITALIZATION EPISODE 

LoS, mean (sd) 8.47 (6.34) 

Patients requiring in-hospital all-cause readmissions, n (%) 1,706 (5.35) 

Patients requiring emergency room visits without in-hospital readmission, n (%) 1,339 (4.20) 

Mortality, n (%) 103 (0.32) 

Queralt Index, mean (sd) 28.34 (16.24) 

Case Mix Index 0.66 

USE OF RESOURCES  30 DAYS AFTER DISCHARGE 

Mortality, n (%) 1,383 (4.35) 

Patients requiring hospital admissions, n (%) 3,327 (10.42) 

Patients requiring emergency room visits, n (%) 6,136 (19.29) 

Total Expenditure in €, median (P25-P75) 279.1 (119.3 - 758.7) 

 

AMG stands for Adjusted Morbidity Groups, HRSN for health-related social needs and LoS for length of 

stay. * Matching variables. 

 

Comparisons between hospital at home and conventional hospitalizations 

Table 2 compares the characteristics of HaH with its matched control group of patients under 

conventional hospitalization. Mortality during the acute episode was low and similar between 



 

 

intervention and controls. The effect size analyses indicated that the severity of the acute episodes, 

measured using the Queralt index and the CMI, was significantly higher in conventional 

hospitalizations than in HaH. Also, the LoS was significantly longer in HaH than in conventional 

hospitalizations. Despite the statistical significance, the differences observed in all endpoints between 

HaH and conventional hospitalization were associated with a small effect size (i.e., the differences 

between groups were 0.2 to 0.5 times the SD). 

During the 30 days after discharge, mortality rates were low, with no differences between the 

intervention and the control group. Likewise, re-admissions, visits to the emergency room, and 

healthcare expenditure were also similar between HaH and controls.  

TABLE 2 – Comparison of patients’ clinical characteristics and the outcomes of the intervention 

between HaH and controls.  

 

 Matched HaH Matched control Effect size 
(CI) n= 24,802 n= 24,802 

DEMOGRAPHICS & MORBIDITY-COMPLEXITY 

Age, mean (sd) 73.15 (16.31) 72.73 (16.29) 
-0.03 [-0.04, 

-0.01] 

Gender; n (%)  

           Male  11,644 (46.95) 11,984 (48.32)  0.01 [0.01, 
0.02]            Female  13,158 (53.05) 12,818 (51.68)  

AMG, mean (sd) 28.36 (15.81) 27.87 (15.82) 
-0.03 [-0.05, 

-0.01]  

Patients with HRSN associated to housing and 
economic conditions, n (%) 

2,986 (12.04) 2,935 (11.83) 
-0.01 [-0.01, 

0.02]  

Patients with HRSN associated to family and social 
environment, n (%) 

7,229 (29.15) 7,072 (28.51) 
-0.01 [-0.01, 

-0.03]  

Patients receiving palliative care, n (%) 937 (3.78) 621 (2.5) 
-0.71 [-0.06, 

-0.09]  

USE OF RESOURCES 12 MONTHS BEFORE ADMISSION 

Patients requiring hospital admissions, n (%) 11,580 (46.83) 11,050 (44.75) 
-0.01 [-0.01, 

0.03]  

Patients requiring emergency room visits, n (%) 19,611 (79.31) 18,427 (74.63) 
-0.02 [-0.04, 

0.00]  

Total Expenditure in €, median (P25-P75) 
3,697.46 (1,522.40 

– 7422.74) 
3,399.38 (1380.34 

– 7163.79) 
-0.01 [-0.01, 

-0.03]  

HOSPITALIZATION EPISODE 



 

 

LoS, mean (sd) 8.46 (6.05) 7.09 (5.83) 
-0.23 [-0.25, 

-0.21]  

Patients requiring in-hospital all-cause re-
admissions, n (%) 

1,204 (4.85) N.A. N.A. 

Patients requiring emergency room visits without 
in-hospital readmission, n (%) 

923 (3.72) N.A. N.A. 

Mortality, n (%) 76 (0.31) 112 (0.45) 
 0.01 [0.01, 

0.02]  

Queralt Index, mean (sd) 28.04 (15.55) 36.69 (21.96) 
0.45 [0.40, 

0.53] 

Case Mix Index 0.65 0.74 
0.32 [0.31, 

0.34] 

USE OF RESOURCES 30 DAYS AFTER DISCHARGE 

Mortality, n (%) 973 (3.94) 1112 (4.5) 
 0.01 [0.01, 

0.02]  

Patients requiring hospital admissions, n (%) 2,003 (8.08) 1,625 (6.58) 
 -0.07 [-0.09, 

-0.06] 

Patients requiring emergency room visits, n (%) 4,109 (16.62) 3,968 (16.07) 
 -0.01 [-0.03, 

0.01]  

Total Expenditure in €, median (P25-P75) 
809.92 (344.65 – 

2,276.98) 
681.11 (285.89 – 

1,786.66) 
 -0.03 [-0.05, 

-0.02]   

Rubin’s B 0.003 

Rubin’s R 1.001 

 

AMG stands for Adjusted Morbidity Groups, HRSN for health-related social needs and LoS for length of 

stay. The comparability of the matched groups is assessed by Rubin’s B and Rubin’s R, considered 

acceptable if Rubin’s B is less than 0.25 and Rubin’s R is between 0.5 and 2. 

 

Heterogeneities among hospitals  

Comparisons among the 27 hospitals showed huge heterogeneities in HaH, in several dimensions, 

including age at admission (hospital mean values ranging from 62.16 to 83.39 years), multimorbidity-

complexity within the 12-month period before admission expressed by AMG scoring (from 19.47 to 

38.79), and severity of the acute episode assessed either using the APR-DRG (from 0.54 to 0.87) or the 

Queralt index (from 13.34 to 42.31). Likewise, similar inter-hospital variability was also observed in all 

other two variables analyzed: LoS (from 4.8 to 14.7 days) and percent of repeaters, indicating patients 

with more than one HaH episode during the study period (from 8.8% to 33.6%).  



 

 

Qualitative assessments and expert recommendations 

The full set of results of the quantitative analyses (Supplemental Material - Figures 1S-8S and Tables 

2S-4S) were presented to the panel of experts for discussion and interpretation. A detailed list of 

highlights from the two qualitative sessions is provided in the Supplementary Material. 

Overall, the experts agreed that HaH is safe and provides value to the healthcare system, with similar 

health outcomes than conventional hospitalization, and positive impacts on patients’ and 

professionals’ experience. HaH may also result in savings associated with fewer personnel and 

structure requirements.4,42  Nevertheless, there was consensus regarding the limitations of case-mix 

tools currently used (e.g., APR-DRG) to fully reflect the care needs (and, therefore, actual costs) of 

HaH patients. The experts agreed that new and more accurate case-mix tools should be developed, 

and studies based on analytical accounting should be conducted to appropriately quantify economic 

impact of HaH. 

The experts agreed that heterogeneity in patient profile and outcomes was expected and identified 

three important sources of this heterogeneity: i) maturity of HaH teams (i.e., mature teams tend to 

admit older and more complex patients), ii) hospital strategies to use HaH in a sub-set of patients with 

specific diagnoses, and iii) local ecosystem (e.g., lack or availability of certain integrated care services 

in the area). 

Considering the exhaustive list of KPIs provided in the local 2020 recommendation document and the 

potential heterogeneities and challenges of this service identified in the current study, the group of 

experts created and selected a set of 16 KPIs that are generalizable to other healthcare system 

environments for continuous monitoring of HaH quality (Figure 3). 



 

 

 

FIGURE 3 – List of proposed KPIs selected from the 2020 document on regional HaH 

standardization13. 

 

DISCUSSION  

The mixed-methods approach adopted in the current research contributed to enriching the 

interpretation, and enhancing the potential for generalization of the results, of the retrospective 

quantitative assessment of consolidated HaH delivery in 27 different hospitals of the same healthcare 

system. The outcomes observed in HaH were aligned with relevant reports1–4,43–47 fully supporting the 

healthcare value generation of HaH, as well as its potential for capacity building of hospital beds and 

contributions to the care continuum. Overall, the study outcomes encourage further expansion of the 

regional adoption of HaH, following the recommendations generated by the group of experts.  

The panel of experts fully agreed with the need for continuous long-term monitoring of CQI after 

successfully adopting the service. In Catalonia, a consensus document for monitoring HaH services 

identified a comprehensive list of resources needed for adequate HaH service delivery and nearly 70 

KPIs suited to the local characteristics and the type of data collected by the information systems of 

the Catalan Health Service.13 In the current work, the experts identified a list of 16 essential KPIs to be 

considered for monitoring HaH services regardless of the characteristics of the healthcare system. 

One of the intriguing features of HaH is the capacity of this service to save costs. Thus, although most 

studies appear to support the idea that HaH saves hospitalization costs, reviews addressing this issue 



 

 

have warned about the low quality and potential biases associated with the assessment of this 

outcome.48,49 The experts participating in qualitative sessions reached two important conclusions in 

this regard. First, this question cannot be fully answered without analytic accounting approaches. 

Owing to the relative lack of maturity and high heterogeneity of HaH services, the reimbursement 

approach to cost assessment does not appropriately reflect the actual resource use. In our 

environment, some hospitals have adopted analytical cost assessments that allow an accurate 

assessment of costs.33,34 However, the cost assessment in most of them had to be approached from a 

reimbursement perspective, limiting the strength of conclusions in this regard. Second, the experts 

agreed that case-mix tools typically used (and generally accepted) for reimbursement purposes (e.g., 

DRG) are relatively well suited to reflect the care needs of individuals admitted to conventional 

hospitalization but fail to do so in HaH. The expert group agreed that the implementation of analytical 

accounting should be extended to all hospitals to build up adequate reimbursement strategies. This 

approach would contribute to enhancing investments in healthcare innovation that, in turn, generate 

efficiencies both at hospital and health system levels. Analytical accounting would also provide a 

rationale for specific reimbursement plans favoring hospital-profiled service delivery. Alternatively, 

more accurate risk stratification models recently developed30 should be explored as tools for a 

complexity-driven approach to reimbursement of HaH services. 

The observed heterogeneities are consistent with disparities found in the literature.2–4 However, the 

assessment of multiple hospitals within the same healthcare system allowed us to investigate these 

differences regardless of the healthcare structure, payment model, cultural constraints and/or type 

of professionals involved that may vary between countries and systems. Aside from the type of 

hospital, the experts identified other sources of heterogeneity that may arise when deploying HaH at 

the healthcare system level. These sources of heterogeneity include strategic decisions at the hospital 



 

 

level (e.g., use HaH to boost a particular type of service without compromising the number of beds) 

or contextual service availability (e.g., use HaH to counteract the lack of intermediated care services 

in a given area). Countries willing to deploy HaH across the healthcare system should be aware of 

these potential heterogeneities when planning assessment and payment models.  

 

Study limitations  

We acknowledge some intrinsic limitations of the current study, mostly related to the use of registry 

data without information on details of both complexities and clinical incidences during HaH episodes. 

Despite the application of an accurate matching strategy between intervention and control groups, 

such as the clinical decision triggering patient admission to HaH instead of conventional 

hospitalization, which was poorly registered in the records. Moreover, the lack of analytical costs was 

also an important constraint assessment of the potential of value generation of HaH, as well as to 

explore the impact of reimbursement policies on hospitals’ heterogeneities. As described above, all 

economic calculations in the current study were based on expenditure data.32 However, we believe 

that the characteristics of the study design and the availability of clinical and analytical data from the 

area33,34 positively influenced the analyses carried out in the current research and facilitated 

recommendations for enhancing the quality of service delivery that can be generalized to other 

integrated care services.   

 

CONCLUSIONS  

The current study confirms safety and value generation of HaH. The service efficiently reduced 

hospital occupation and showed high potential to foster continuity of care, which encourages further 

expansion of the program at regional level.  



 

 

We found that HaH is delivered in a heterogeneous case-mix of healthcare scenarios that may also 

result in heterogeneous outcomes. Therefore, aside from general key performance indicators, 

hospital-profiled indicators should be established to monitor for CQI of the service after adoption.  

Our analysis and highlights of the panel of experts may help policymakers to anticipate features of this 

service in the advent of a system-wide implementation of HaH. Likewise, the recommendations from 

a panel of experts provided in this study can be used as basis for planning HaH monitoring in other 

countries.  

 

LIST OF ABBREVIATIONS 

AMG – Adjusted Morbidity Groups. 

APR -DRG – All-Patient Refined Diagnosis Related Groups. 

CHSS – Catalan Health Surveillance System. 

CMI – Case Mix Index. 

CQI - Continuous Quality Improvement 

LoS – Length of Stay. 

HaH – Hospital at Home. 

KPI – Key Performance Indicator. 

PSM – Propensity Score Matching. 
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ABSTRACT  

Introduction: Health risk assessment (HRA) strategies are cornerstone for health systems transformation 

toward value-based patient-centred care. However, steps for HRA adoption are undefined. This report 

analyses the process of transference of the Adjusted Morbidity Groups (AMG) algorithm from the Catalan 

Good Practice to the Marche region (IT) and to Viljandi Hospital (EE), within the JADECARE initiative (2020-

2023).  

Description: The implementation research approach involved a twelve-month pre-implementation period 

to assess feasibility and define the local action plans, followed by a sixteen-month implementation phase. 

During the two periods, a well-defined combination of experience-based co-design and quality 

improvement methodologies were applied.  

Discussion: The evolution of the Catalan HRA strategy (2010-2023) illustrates its potential for health 

systems transformation, as well as its transferability. The main barriers and facilitators for HRA adoption 

were identified. The report proposes a set of key steps to facilitate site customized deployment of HRA 

contributing to define a roadmap to foster large-scale adoption across Europe. 

Conclusions: Successful adoption of the AMG algorithm was achieved in the two sites confirming 

transferability. Marche identified the key requirements for a population-based HRA strategy, whereas 

Viljandi Hospital proved its potential for clinical use paving the way toward value-based healthcare 

strategies.  

 

Key words: Health Risk Assessment, Adjusted Morbidity Groups, Integrated Care, Predictive modelling.  



BACKGROUND & OBJECTIVES 

Health risk assessment (HRA) is a comprehensive approach that entails identifying, evaluating, and 

prioritising potential health risks and vulnerabilities for individuals and populations and identifying possible 

measures to reduce or mitigate their effects.  

Deploying appropriate HRA strategies is a cornerstone for population risk stratification and constructing 

the corresponding population risk pyramid. It  has become essential for informing health policy decisions, 

allocating resources, benchmarking, implementing preventive strategies and selecting appropriate 

healthcare services(1–3). Likewise, in the clinical arena, HRA is a building block for generating predictive 

models to support clinical decision-making(4,5). Indeed, population-based, and clinically-oriented HRA 

approaches are complementary elements needed to efficiently adopt integrated patient-centred care 

strategies. Deploying and adopting well-planned HRA strategies constitute an obligatory step toward the 

maturity of precision medicine(6). 

Moreover, the momentum propitiated by the continuous progress in digital technologies for data capture 

and management, artificial intelligence and the advances in medical sciences are shaping novel and 

stimulating scenarios for health promotion and care and positioning predictive medicine at the forefront(7–

9). Despite the promising potential of HRA, there is a noticeable gap between its benefits and its current 

application, attributed to several limitations, including the utilisation of suboptimal risk assessment tools, 

the insufficient engagement of health professionals, the application of ineffective or inexistent deployment 

strategies, and unresolved ethical and regulatory issues(10,11).  

The Joint Action on implementation of digitally enabled integrated person-centred care (JADECARE)(12), an 

ongoing initiative launched to face the challenges of the transformation of health in the European Union, 

has included HRA as a strategic block to transfer from four original Good Practices (oGPs) to other twenty-

one European regions participating as Next Adopters (NAs).  

The central aims of JADECARE are to reinforce the capacity of health authorities for successfully addressing 

all the crucial aspects of health system transformation, in particular, the transition to digitally enabled, 

integrated, person-centred care, and to support the best practice transfer from the oGPs to the 

corresponding NAs. The current integrated case reports:   

1) The evolution of the HRA strategy in one of the JADECARE oGPs (i.e., Catalonia, ES) from 2011-2020. 

2) The description of the implementation process followed to transfer a population-based risk assessment 

tool from Catalonia to two NAs: Marche region (IT) and Estonia (EE).  

3) The lessons learnt in the form of recommendations to foster the adoption of enhanced health risk 

assessment across the EU.  



The report aims to identify key barriers and facilitators for effective adoption across Europe of population-

based health risk assessment at the regional/country levels and formulate proposals facilitating the 

articulation between population-based and clinically-oriented HRA.      

 

DESCRIPTION OF THE CARE PRACTICE  

HRA IN CATALONIA: 2011-2020 

The 2011-2015 Catalan Health Plan(13) fostered key achievements in digital health transformation, the 

progressive implementation of person-centred integrated care services and the adoption of an initial 

population-based HRA strategy. This transitory HRA strategy was based on the commercial solution “Clinical 

Risk Groups” (CRG)(14) from vendor 3M™ and oriented toward modelling healthcare costs for resource 

allocation and benchmarking.  

This initial HRA strategy laid the groundwork for a population-based risk stratification program with a case-

finding approach focused on preventing adverse health events, managing high-risk chronic patients, and 

early detecting end-of-life patients(15,16). This HRA approach acknowledged the close relationship 

between frailty and multimorbidity while recognizing their distinct nature as independent risk factors. 

Additionally, it introduced specific scales for the evaluation of each factor individually. The clinical 

complexity level was assigned based on multimorbidity scoring, transitively using CRGs, and the clinical 

judgment of primary care physicians. Complex patients were classified into two groups: complex chronic 

patients (CCP), approximately 4% of the population, and advanced chronic patients (ACP), representing 

approximately 1% of the population with limited life expectancy. Specific community-based management 

plans, aiming at integrating health and social care, were defined for these two categories of patients(15). 

An overall description of the care model for people with frailty and multimorbidity in Catalonia, tested 

during the 2011-2015 Health Plan, has been recently reported in (17).  

The need for refining the assessment of the multimorbidity burden triggered the creation of the Adjusted 

Morbidity Groups (AMG)(18,19), a new morbidity grouper that reflects patients’ disease burden in terms 

of the number and complexity of concomitant disorders through a disease-specific weighting deduced from 

statistical analysis based on mortality and the utilisation of healthcare resources. The AMG tool was jointly 

launched in 2015 by the Spanish Health Ministry and the Catalan public health commissioner (CatSalut). A 

significant achievement was the development of a dashboard to monitor the population's multimorbidity 

burden and the use of healthcare known as Modules for Monitoring Quality Indicators (“Moduls pel 

Seguiment d’Indicadors de Qualitat”, MSIQ)(20), which generates and displays customised key performance 

indicators (KPIs) with aggregated data to inform health policy decisions, benchmarking, and governance. 



On the clinical side, the AMG scoring of the patient is currently displayed in the workstation of the primary 

care physicians and the shared clinical history(21) as a support tool in the clinical setting. 

During the 2016-2020 Catalan Health Plan(22), the utilisation of AMG for HRA purposes was validated in 

different regions of Spain, covering a population of approximately 38 million citizens and showing good 

transferability in all cases(23). This period witnessed three significant advancements in Catalonia's HRA 

strategy: 

1) The execution of several studies testing the contribution of the AMG in different HRA settings, such as 

the identified risk factors during the SARS-CoV-2 pandemic(24,25), the refinement of tools for resources 

allocation(26–29), the analysis of the effect of the multimorbidity burden in patients with chronic 

obstructive pulmonary disease (COPD)(30), and assessing the use of AMG in complex clinical predictive 

models for short-term clinical outcomes predictions after hospital discharge(4,5).  

2) The creation of the Catalan Health Information System Master Plan published in 2019(31) established 

the basis for the transformation to a new digital-health paradigm based on a knowledge-driven platform 

and adopting the Open-EHR standard as a reference.  

3) The development and internal validation of the Queralt indices(32,33)  to characterise the complexity of 

hospitalisation episodes, combining information on the principal discharge diagnosis, pre-existing 

comorbidities, in-hospital complications and all the procedures performed during hospitalisation.  

Figure 1 depicts the information required from NAs to use the AMG, the outputs obtained, and the key uses 

of AMG.  

 



Figure 1- Panel A - AMG input: Required input variables to compute AMG; Panel B – AMG output: Output variables of the AMG 

algorithm. *Binary markers (presence/absence) of 15 chronic conditions (from left to right): diabetes mellitus, heart failure, chronic 

obstructive pulmonary disease, high blood pressure, depression, HIV/AIDS, chronic ischemic heart disease, stroke, chronic kidney 

disease, cirrhosis, osteoporosis, arthrosis, arthritis, dementia, chronic pain; Panel C– Health Risk Assessment based on AMG: The 

AMG scoring allows for three key actions: Classification: The population is categorised into specific groups based on their morbidity 

statuses, such as healthy, pregnancy and labour, acute disease, chronic disease in 1-4 systems, or active neoplasia, which are also 

divided into five degrees of severity. Stratification: Each individual can be assigned a complexity score that reflects the care needs 

that people may have based on their health problems. Identification: Individuals with specific major chronic health problems can 

be identified, which helps track people with more complex care needs.  

 

PRE-IMPLEMENTATION (October 2020 – September 2021) 

Within JADECARE, the AMG was transferred to the Marche region and Estonia. The Marche region has a 

regionally based healthcare system, providing universal coverage to 1,480,839 citizens of which 25.4% are 

65 years and older. Life expectancy is of 81 years for men and 85.2 for women. In comparison, Estonia has 

compulsory solidarity-based health insurance, financed by the health insurance budget through the 

Estonian Health Insurance Fund, covering 1,322,765 citizens, 29.0% aged 65 years and older. Life 

expectancy at birth is 72.8 years for men and 81.4 for women. 

In Estonia, the initial implementation site for the AMG transfer was chosen was Viljandi County with 

approximately 30 general practitioners and one general hospital providing specialist care for around 50,000 

inhabitants. 

Table 1 describes the context and the trigger that motivated the adoption of the AMG in the Marche region 

and Estonia, alongside the local aims of each NA and the main challenges identified by the oGP leaders. 

Specific Local Action Plans were designed to fulfil the needs of each NA, as reported in detail in 

the Supplementary Material. The pre-implementation phase concluded once the implementation 

feasibility study was successful in each site.  



Table 1 - Summary of the pre-implementation process, including the context and trigger, the aims, the 

baseline situation, and the challenges faced in the Marche region and Estonia. 

 Marche region Estonia 

Context 
and trigger 

1) The high burden of non-communicable 
diseases (NCDs) and the need for more efficient 
management of affected patients. 
2) The need for support decision-making in 
healthcare services and policies and analyse the 
utilisation of healthcare resources in alignment 
with national regulations defining population 
stratification as a prerequisite for healthcare 
planning (e.g. National Plan for Chronicity, 2016; 
National Decree on standards and organisation 
of community services, 2022). 

1) Digital infrastructure to support integrated care 
was piloted in Estonia with minimal impact and 
long-term traction, and there was not yet region-
wide coverage. Likewise, social and healthcare 
service coordination is in an early phase. 
2) The different and non-aligned payment 
schemes for hospital and ambulatory care impact 
incentivising the transformation from case-based 
care to a population health-oriented care model 
with social services integration to care.  
3) Risk stratification and case-finding tools were 
needed to facilitate high-risk patient identification 
for regional care-management and service 
integration. 

Aims 1) To test and adopt the AMG population 
stratification algorithm, suitably adapted to the 
regional context and the available health data. 
2) To display a regional dashboard for health 
policy purposes, benchmarking, and decision-
making processes. 

1) To develop an integrated clinical program to 
prevent hospitalisations and target elders with 
concomitant chronic diseases and social health 
determinants. 
2) To adopt the AMG for service selection. 
3) To leverage the acquired expertise and progress 
towards innovative value-based reimbursement 
models, aiming to establish Viljandi Hospital as an 
accountable care organization. 
4) To escalate the adoption of AMG for population 
stratification at country-level.  

Baseline 
situation 

The Regional Healthcare Administrative 
Databases (HADs), used at regional and national 
levels to monitor healthcare system 
expenditures and performance, gather 
information on healthcare services provided to 
citizens (e.g., hospitalisations, emergency-
urgency, homecare, exemption codes, etc.). 
Common standard models and coding systems, 
such as DRGs(34) and ICD-9-CM(35), are used 
across all regions. However, each HAD has its 
unique structure, unit level, content, and rules 
for data input. Data linkage across HADs is 
facilitated using a unique anonymised patient ID 
code.  
 

The Estonian Health Insurance Fund claims 
database was used for model data input. In 
Estonian universal healthcare and single payer 
model this database entails almost all medical 
care claims in the country. The database follows a 
single standard with ICD-10-CM(36) coding, DRGs. 
Data linkage and access was granted though 
ethics committee approval and is not easily 
available as standard. Data was analysed in 
anonymised format using unique patient ID codes.  
All AMG analyses were performed by the regional 
medical authorities under the ethics committee 
approved application with support from the oGP. 

Challenges   1) To fulfil the initial feasibility test.  
2) To overcome potential technical problems in 
dynamically assembling the dataset required to 
feed the AMG algorithm using heterogeneous 
data sources. 
3) The site showed an explicit limitation in the 
use of HRA tools due to the GDPR-related 
legislation at the Italian level regarding the 
secondary use of health data. 

1) To fulfil the feasibility test. 
2) To ensure firm commitments of the Estonian 
government (Ministry of Social Affairs), as well as 
getting traction and commitment by the Estonian 
Health Insurance Fund to the project. 
3) To overcome potential technical problems in 
dynamically assembling the dataset required to 
feed computational modelling for health risk 
stratification.  

 



Results of the feasibility analysis 

To assess the transferability of the AMG tool, independent feasibility tests were conducted in each of the 

adopting regions. To perform the AMG feasibility analysis in the Marche region, fully anonymized 

information on disease diagnostics from 2015 to 2019 was extracted from three independent databases: 

the hospital admissions, the emergency department, and the exemption codes for chronic and rare diseases 

databases. Integrating all the medical information resulted in 5,939,199 diagnostic codes associated with 

1,367,181 citizens. In Estonia, the AMG feasibility study was conducted with 25,930 diagnostic codes related 

to 4,765 citizens treated in Viljandi Hospital in 2018. 

The feasibility analysis evaluated the comprehensiveness of the clinical information accessed and the 

discrimination capacity of the AMG algorithm to identify high-risk individuals allocated in seven morbidity 

groups: healthy, pregnancy, acute disease, 1 or 2-3 or ≥ 4 chronic diseases, and active neoplasia. 

When evaluating the feasibility study, it is imperative to consider the databases' dual approach and 

purpose. The Marche database is a population health database(37), built for informing health policies, 

benchmarking, and supporting decision-making processes. On the other hand, the Viljandi database follows 

a population medicine approach(37), assembling patient registries to screen candidates for a clinical 

program geared towards preventing hospitalisations for elderly patients with concomitant chronic 

conditions. 

The feasibility tests were deemed successful if the following conditions were met: 

1)The algorithm effectively discriminated the patients with different risk profiles within specific age and 

gender groups, especially in older individuals more susceptible to multimorbidity. 

2)The algorithm distinguished between the seven AMG disease groups. It's worth noting that the relative 

frequencies of these groups may differ depending on the database's nature. 

3)The results showed a positive correlation between the clinical complexity of the AMG disease groups and 

the disease burden evaluated using the AMG Morbidity Burden Index. 

The feasibility analysis results are shown in Figure 2. In Panel A, the distribution of the five subgroups of 

complexity is depicted according to age and gender. As expected, the demographic characteristics of the 

population treated in Viljandi utilised in this feasibility study differ from the Viljandi county's population. 

Overall, the AMG algorithm proficiently distinguished patients with varying risk profiles in specific age and 

gender categories. Panel B shows the distribution of the seven AMG morbidity groups’ complexity level, 

represented by the average Morbidity Burden Score. In the Marche region and Estonia, roughly 50% of the 

population suffers at least one chronic disease and 20% developed multimorbidity, while 5% has an active 

neoplasm. Notably, the analysis of the population treated in Viljandi Hospital revealed a higher fraction of 



citizens with acute morbid conditions due to the hospital nature of the database. When comparing the 

relative distribution of AMG disease groups between the adopting regions and Catalonia, notable disparities 

emerge in terms of the prevalence of patients with multimorbidity. These variations can be attributed to 

the availability of primary care registries, which is a condition exclusively fulfilled in the Catalan context. 

This underscores the critical importance of integrating health data from diverse levels. The complexity of 

the disease groups and the AMG Morbidity Burden Score showed a strong positive correlation, being 

slightly higher in the Marche region due to the exhaustivity of the diagnostic records at different healthcare 

levels and the increased length of the study period.  

Based on the assessment made by the oGP specialists and the findings presented, it was determined that 

the databases generated by both adopters, the Marche region and Estonia, were mature and ready to 

expedite the implementation of the AMG. 



 

Figure 2- Results of the feasibility analysis: in Catalonia (1) and the adoption regions, Marche Region (2) and Estonia (3). Panel A - 

AMG risk distribution: itemised by age and gender; Panel B – AMG disease groups: distribution of the seven AMG morbidity groups 

(bars): healthy, pregnancy, acute disease, 1 or 2-3 or≥ 4 chronic diseases, and active neoplasia, and their average Morbidity Burden 

Score (line). 

IMPLEMENTATION (October 2021-January 2023)  

On October 2021, the Local Action Plans (LAPs) in Marche and Estonia were already available, and the 

corresponding NA Working Groups were prepared to undertake two Plan-Do-Study-Act (PDSA) cycles(38). 



The details of the PDSA cycles are reported in the Supplementary Material. A major midterm milestone of 

the implementation phase was the HRA Thematic Workshop, held in Viljandi Hospital on 14-15 June 2022. 

The workshop delimitated the bases for deploying population-based HRA strategies focused on AMG and 

the Queralt indices. A recording of the session can be found in the Supplementary Material. 

Marche  

Implementation achievements - 1) dynamic regional dataset preparation merging information from 

different existing data sources, 2) data cleaning and automatization of the generation of the regional 

dataset, 3) elaboration and analysis of the risk assessment pyramid at regional level demonstrating 

association between GMA scoring and local use of resources, 4) preparation of the logistics for local 

sustainability of the setting; and 5) design of the regional dashboard to facilitate regional health 

governance. The technicalities of the implementation and the assessment of the implementation process 

will be reported in a forthcoming paper. 

Sustainability Action Plan - 1) to complete the integration of the tool into the regional IT infrastructure, 

adding further healthcare databases and defining supportive actions to improve the quality and 

completeness of healthcare data. 2) to implement the dashboard in computational, technical, and graphical 

terms, adding maps aimed to visualize healthcare services adjusted to social-health care planning 

regulations and integrating it in the regional IT infrastructure. 3) to promote the use of the HRA tools by 

regional and clinical managers and share our experience for the discussions on the secondary use of health 

data. 

Estonia  

Implementation achievements – 1) Generating a protocol, already approved by the local Ethics committee 

for a pragmatic randomized control trial (n= 1000), to test effectiveness and value generation of an 

integrated care intervention to prevent hospitalizations targeting community-based patients with high-risk 

of admissions and enhancing transitional care post-discharge to reduce early readmissions (PAIK 2022-

2025). 2) AMG will be used as inclusion criteria and to modulate the characteristics of the intervention and 

the Queralt indices will be employed to characterize hospitalization episodes contributing to personalize 

transitional care after discharge.  

Sustainability Action Plan - 1) to successfully execute the PAIK 2022-2025 project using AMG and Queralt 

indices as risk assessment tools.2) to generate sound proposals for innovative reimbursement modalities.3) 

to achieve country-wide scalability of risk prediction approaches based on AMG and Queralt.4) to initiate a 

debate on the scalability of integrated care services involving innovative reimbursement modalities in 

Estonia.  



PERSPECTIVES BEYOND IMPLEMENTATION   

The section describes the status of the HRA in Catalonia and briefly reports the overarching analysis of the 

process of transference to the two NAs, leading to recommendations for the generalisation of the case 

practice at the European level. 

Evolution of the Catalan oGP during JADECARE   

The 2020 Catalan Health Information System Master Plan has sparked ongoing technological innovations 

that offer significant opportunities in predictive modelling aiming at supporting clinical decision-making for 

healthcare professionals and provide patients with decision support tools to empower self-

management(39–41) . Also, specific initiatives have been launched to enhance transitional care and reduce 

early readmissions after hospital discharge(4,5). Moreover, efforts are devoted to the practicalities of 

adoption of such predictive modelling tools in real-world settings, involving: 1) training and continuous 

evaluation of clinical decision support systems embedded into integrated care services, 2) pragmatic use of 

implementation science tools to foster engagement of health professionals, and 3) ethical and regulatory 

aspects including refinement of the regional PADRIS program(42) for secondary use of health data. 

In Catalonia, research, and innovation in HRA are currently focused on two target areas. Firstly, to address 

unmet needs associated with enhanced predictive modelling considering four potential sources of 

variables: 1) clinical information, 2) registry data with a population health approach, 3) patients’ self-

reported information (PROMs and PREMs) and self-monitoring data, and 4) biomedical research data, as 

defined in (1). A key learning from the different studies done using the AMG algorithm since 2015 is that 

multimorbidity has a central explanatory role in health risk assessment, more than classical variables like 

age, which prompts the inclusion of the AMG scoring as a fix covariate in multisource predictive modelling.  

 A second field of research interest is the potential evolutions of AMG incorporating information on 

patients’ disease trajectories(43,44). Although these novel computational developments are still far from 

being applicable in clinical settings, they present exciting prospects or precision medicine in patients with 

NCDs. 

Overarching analysis  

The case practice identifies the process of transference and adoption of the AMG algorithm and a site-

tailored dashboard using aggregated data as the two key components necessary for establishing 

fundamental HRA functionalities. 

While Marche adopted a population-health approach considering the use of healthcare resources from the 

entire geographical area, Viljandi Hospital in Estonia implemented a more limited regional population-

medicine orientation with a single hospital as a local integrator and lead in a regional health improvement 



initiative. As depicted in Figure 2, the differences in terms of sources and composition of input data had 

significant impacts on the distribution of AMG scoring among Catalonia (Figure 2 - Panel 1, population-

health data from all healthcare tiers), Marche (Figure 2 - Panel 2, population-health data with poor 

representation of primary care) and Viljandi Hospital (Figure 2 - Panel 3, population-medicine approach 

based on hospital information). Accordingly, population-health databases, as those used in Marche region, 

must comprise information on disease diagnostics from all individuals within the region, gathered from 

various tiers of the healthcare system (e.g. primary care, community, hospital, etc.). It is expected to find a 

significant fraction of the healthy population and cases with transitory health problems, both concentrated 

in the youngest fraction of the population. The remaining population is expected to suffer at least chronicity 

and many of them to develop multimorbidity; among them is expected to find a small fraction of complex 

chronic patients. 

On the other hand, if the analysis is conducted following a population medicine approach, as done in 

Viljandi, the sample should be representative of the population treated at the hospital during the period 

assessed, both in terms of demographic parameters and the clinical profiles of the patients. In light of this, 

a highly biased population is expected to be older than the hospital’s catching area average. Also, a 

substantial increase in the frequency of patients experiencing mainly acute and chronic conditions is 

anticipated. 

Consequently, the composition of the input datasets plays a crucial role in modulating both purposes and 

suitability of adopting HRA strategies. In the current case practice, Marche’s approach was adequate to 

cover health policy aspects, resources allocation, benchmarking, and governance at the regional level, even 

though limitations due to GDPR constraints at the Italian level should be acknowledged. In contrast, the 

HRA orientation adopted by Viljandi Hospital was beneficial in the design process of the PAIK2 protocol 

(2023-2025), aiming at generating evidence of the effectiveness of an integrated care intervention to 

prevent hospitalisations in high-risk patients and transitional care. It is of note that the process of 

developing the case practice in the two sites has generated knowledge and skills that will be needed to 

elaborate future site-customised comprehensive HRA strategies, as described in the case of Catalonia.  

In summary, the essential maturity requirements for sustainable HRA strategies are: 1) to achieve solid 

political commitment at the regional/country level fostering necessary interactions, top-down and bottom-

up, among key stakeholders; 2) to have an essential digital maturity at the site level to satisfactorily pass 

the feasibility analysis; 3) to overcome potential limitations due to local application of GDPR; 4) to use highly 

applicable implementation science tools fostering engagement of all stakeholders, health policy managers 

and health professionals, during the process elaboration and deployment of the local HRA strategy; and 5) 

to develop/adopt a regulatory framework for secondary use of health data, needed for business intelligence 



and the elaboration of computational modelling for clinical applications. Table 2 depicts the steps identified 

during the transference process to define a roadmap for adopting site-customised HRA strategies. 

Moreover, using the HRA tools described in the case practice as open-source software and articulating 

public-private collaborations supporting productive interactions and networking among sites are essential 

to speed up transferability and large-scale adoption of HRA strategies at the European level.   



Table 2 – Checklist of key steps for site adoption of Health Risk Assessment (HRA)  

Key steps Description   

1.Scope definition   Identify the purpose, focus/use and ambition of the HRA initiative 

2.Source population Population-health or Population-medicine. For each option, identify 
specificities of the source population 

3.Planned updates    Periodicity of source data update (i.e. yearly basis) 

4.Model (Morbidity grouper) Morbidity grouper selected: AMG, CRG, ACG, others 

5.Input variables (Fig. 1) Minimum variables of the morbidity grouper plus additional variables 
selected for inclusion in the HRA modelling. 

6.Data source(s)  
(data sources and ownership have 
technical/managerial implications) 

1. Input data are extracted from one owned data source  
2. Input data are extracted from different owned data sources  
3. Input data are extracted from one data set source not owned  
4. Input data are extracted from several data sets not owned 

7. Predictive modelling Identify statistical methods, Machine Learning, Deep Learning, etc… 

8. Output variables (Fig 1) Variables generated by the predictive modelling approach 

9. Feasibility assessment Includes characterization of site maturity and preliminary testing of 
the HRA tools to ensure minimum quality before implementation 

10. Technological logistics  The complexity of the digital setting is closely related to the 
characteristics of the data sources and ambition of the HRA strategy. It 
requires assessment of sustainability over time in terms of 
technological and human resources.  

11. Initial assessment of the 
core predictive modelling  

Quality assessment to be carried out immediately after deployment to 
define further steps leading to a sustainable HRA program 

12. Quality assurance program Continuous quality assurance checking of the HRA program after 
sustainable adoption 

13.Dashboard preparation Initial identification of key performance indicators (KPIs) to be 
monitored after adoption, as well as subsequent enrichment of the 
dashboard with novel KPIs as required. 

14. Stakeholders’ engagement Highly applicable implementation research tools in place to foster 
engagement of users. The professional profiles will depend on the 
focus of HRA: policy makers, managers, clinical professionals, etc… 

15. Additional functionalities 
& Roadmap for further 
developments  

Successful HRA adoption leads to initiatives to expand use and 
ambition requiring development of additional functionalities 
(predictive modelling) and definition of a roadmap for further 
developments either in the health policy area, management, clinical 
applications and/or research-innovation.   

  



DISCUSSION  

The current report is filling an existing gap in information on building up an HRA strategy at the 

regional/country level, as described for Catalonia, and its potential for transferability to other sites. 

Moreover, the Marche and Viljandi Hospital process generated a helpful checklist for generalising such 

transference to other sites across Europe.   

The case practice has also recognised the convenience of further collaboration among regions beyond 

JADECARE to keep progressing toward mature HRA strategies contributing to paving the way for precision 

medicine. Moreover, the use of the current and future available algorithms (i.e. AMG, Queralt, etc..), and 

dashboards, as open-source software, as well as the provision of consultancy services supporting future 

next adopters, were identified as core elements to foster the adoption of efficient HRA strategies across 

Europe. To this end, the elaboration of a survey to be administered to all JADECARE’s sites is strongly 

encouraged. The main aim is characterising the status and needs of all NAs regarding HRA. The information 

from the survey gathered before the project end can contribute to refining a large-scale implementation 

protocol to be customised at the site level beyond the project lifetime. 

  

LESSONS LEARNED  

The analysis of the HRA strategies in Catalonia (2010-2023), as well as the process of transference and 

adoption of the AMG in Marche (IT) and Viljandi Hospital (EE) within JADECARE, 2020-2023, generated the 

following key learnings aiming at fostering large-scale adoption of HRA across Europe:  

1. Adopting comprehensive HRA strategies, including multimorbidity weight (AMG scoring) as a central 

component, constitutes a key element fostering health systems transformation toward value-based 

healthcare with a patient-centred approach. 

2. Population-based and clinically-oriented HRA must be considered complementary and highly synergistic. 

However, ethical and regulatory aspects for secondary use of health data must be appropriately assessed 

and locally implemented. 

3. Transferability of AMG across sites with diverse source data models is feasible, provided that the key 

input variables are available, the source population is well-characterized, and adequate data management 

with quality assurance over time is in place. 

4. The current analysis identified the relevant steps to be considered for a generic protocol aiming at the 

implementation of HRA at a regional level.  



5. Short-term elaboration of a map describing both maturity levels and needs for HRA adoption in the 

twenty-one JADECARE sites could provide the necessary information to define a roadmap leading to large-

scale implementation of HRA across Europe.   

CONCLUSIONS 

 

The current study describes the evolution and the potential of the HRA strategy adopted in Catalonia since 

2010. It also illustrates the transferability of the AMG algorithm in two different scenarios. Moreover, the 

case practice identified relevant barriers/facilitators modulating the adoption of HRA at regional level and 

elaborated a set of key steps to be considered for site deployment of HRA. Last, but not least, the report 

proposes initial steps to define a roadmap aiming at fostering large-scale implementation of HRA across 

Europe.  
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ABSTRACT 

 

In the EU project TRAJECTOME, we used a novel methodology to identify temporal disease maps of 

depression and highly prevalent co-occurring disease conditions. This information was combined with 

disability weights established by the Global Burden of Disease Study 2019 to create a depression-related 

health risk assessment tool, the Multimorbidity Adjusted Disability Score (MADS). MADS was used to stratify 

over one million cases from three different cohorts and evaluate the impact on utilisation of healthcare 

resources, mortality, pharmacological burden, healthcare expenditure and multimorbidity progression. 

Results indicate statistically significant associations between MADS and increased mortality rate (P <.001), 

heightened healthcare utilization (i.e. emergency room visits P <.001; hospitalizations P <.001; 

pharmaceutical prescriptions P <.001; total healthcare expenditure P <.001), and a higher risk of disease 

progression and incidence of new depression-related comorbidities. MADS seems to be a promising approach 

to predict depression-related health risk and depression's impact on individuals and healthcare systems, 

which can be tested in other diseases; nevertheless, clinical validation is still necessary. 

 

Keywords:  Health Risk Assessment, Multimorbidity, Disease Trajectories, Major Depressive Disorder.  



INTRODUCTION  

 

The continuously increasing prevalence of multimorbidity is a pressing concern tied to complex clinical situations 

that can markedly impair patients' quality of life and result in escalated healthcare costs1,2. It is widely accepted 

that diseases can frequently co-occur in specific patterns forming clusters. Particularly noteworthy is the cluster of 

Major Depressive Disorder (MDD) [F32 and F33 ICD-10-CM3] and other mental and somatic illnesses. Furthermore, 

it is recognised that individuals afflicted with MDD may encounter additional obstacles in effectively managing their 

overall health4,5, a feature that heightens the possibility that a disease-centred approach might lead to suboptimal 

management of patients with multiple, related and disabling chronic conditions6.  

 

To evaluate patients’ clinical complexity and managing the impact of multimorbidity on individuals and healthcare 

systems7, multimorbidity-adjusted health risk assessment (HRA) tools8–12 have become fundamental instruments. 

Nevertheless, while the current approaches for HRA can certainly capture the burden of disease on individuals, they 

often fall short in envisaging disease progression and anticipating the onset of new comorbid conditions13.  In 

contrast, the conceptualization of the diseasome14 sparked the appearance of a plethora of studies investigating 

the temporal patterns of disease concurrence, or disease trajectories15,16, yielding a better understanding of the 

time-dependent relationships among diseases and establishing a promising landscape to identify disease-disease 

causal relationships. Notably, these relationships are not arbitrary and frequently align with shared risk factors 

and/or underlying pathophysiological mechanisms17–19. Nevertheless, the traditional method of detecting disease 

co-occurrence has been deemed flawed as it may inadvertently generate false correlations between diseases, 

arising indirectly through multiple pairwise comparisons, exponentially increasing as the number of diseases 

examined escalates20. In this regard, sparse Bayesian Direct Multimorbidity Maps (BDMMs)20,21 showed to be a 

promising solution by filtering indirect disease associations.  

 

The current observational retrospective multicentric cohort study employed BDMMs to investigate temporal 

disease maps among MDD and highly prevalent disease conditions22 in the context of the ERAPERMED EU project 

TRAJECTOME23. The study combined the results of the temporal disease maps identified in TRAJECTOME and the 

disability weights (DW)24 documented in the 2019 revision of the Global Burden of Diseases study (GBD), to develop 

and validate a Multimorbidity Adjusted Disability Score (MADS). The DW represents the degree of health loss 

caused by a specific disease. Our objective was twofold: 1) Identifying patients with different profiles of risk and 

assessing the disease burden of MDD and its comorbidities on individuals and health systems; and 2) Estimating the 

risk of morbidity progression and the onset of MDD comorbid conditions.  

 

The development and evaluation of MADS involved the following steps:  



Step 1 - Computing age-dependent disease-disease probabilities of relevance (PR) using the BDMM method in four 

age intervals (0-20, 0-40, 0-60, and 0-70 years). This analysis resulted in an inhomogeneous dynamic Bayesian 

network that determined the PR for MDD against the most prevalent co-occurring diseases in the three European 

cohorts considered in TRAJECTOME, namely: The Catalan Health Surveillance System (CHSS)25, the UK Biobank 

(UKB)26, and The Finnish National Institute for Health and Welfare cohort (THL)27. THL cohort amalgamates 

information from Finrisk28 1992, 1997, 2002, 2007, 2012, Finhealth29 2017 and Health30 2000/2011 studies. 

Step 2 – Combining the PR of every disease condition assessed in the study with their correspondent DW, extracted 

from the GBD 2019 study, we estimated the morbidity burden caused by MDD and its comorbid conditions. MADS 

was computed following a multiplicative combination of PR and DW of all the disease conditions present in an 

individual.  

Step 3 - Using MADS to stratify patients into different risk levels corresponding to different percentiles of the 

population-based risk pyramid of each patient cohort. 

Step 4 - Finally, the correspondence between the MADS risk strata and health outcomes were analysed through a 

cross-sectional analysis of utilisation of healthcare resources, mortality, pharmacological burden, and healthcare 

expenditure, and a longitudinal analysis of disease prevalence and incidence of new disease onsets. The results 

were validated through a multicentric replication of the findings in the three study cohorts, including 1,041,014 

individuals.  

 

RESULTS 

 

Sociodemographic characteristics of the study cohorts 

 

One of the first results is the characterisation of the three study cohorts and compared the sociodemographic 

attributes of their MADS risk groups (Table 1). All the individuals were classified into distinct risk strata based on 

quantiles of MADS distribution within the source population, resulting in the formation of the subsequent risk 

pyramid: Very low risk tier (≤ P50); Low risk tier (P50-P80]; Moderate risk tier (P80-P90]; High risk tier (P90-P95]; Very high 

risk tier (> P99).  

 

To comprehend the inherent sociodemographic disparities across the cohorts under study, it is imperative to 

underscore the fundamental distinctions in their composition. Specifically, the THL and UKB cohorts predominantly 

consist of data derived from biobanks with a specific focus on the middle-aged and elderly population. In contrast, 

the CHSS cohort represents a population-based sample that encompasses all the population spectrum. 

 



It is worth noting that a common pattern is observed among all the cohorts in the age distribution of the citizens 

at-risk. Although MADS is an additive morbidity grouper, it is not monotonically increasing with age. Remarkably, a 

notable proportion of high-risk cases were observed within the age range of 40 to 60 years, when depression 

typically manifests for the first time on average.  

 

A divergence in the sex distribution across the risk strata is observable and especially noticeable in CHSS and UKB 

cohorts where the morbidity burden associated with depression and its related diseases is amplified women 

(P<.001). Likewise, the disability caused by depression and its comorbidities is larger in families with fewer 

economic resources (P<.001). Overall, the prevalence of MDD is greater in UKB than in the other cohorts. However, 

upon analysing the allocation of the population afflicted with depression in the risk pyramid, a total of 22,238 

individuals (57.79% of those diagnosed with MDD) are categorized in the "high" and "very high" risk tiers in the 

CHSS cohort, whereas the number of individuals diagnosed with MDD that are allocated at the tip of the risk 

pyramid is 920 (40.22%) in THL and 23,409 (43.78%) in UKB. 

 

Table 1 – Demographic characteristics of each stratum of the MADS risk pyramid in the three study cohorts: 

CHSS25, UKB26 and THL27. 

Risk Pyramid 

Tiers 
N Age, mean (SD) 

Sex, n (%) 

M = Male 

F = Female 

Household Income, n (%) 

L = Low (< 18k €) 

M = Medium (18-100k €) 

H = High (> 100k €) 

 

Major Depressive 

Disorder  

Prevalence, 

n (%) 

 CHSS THL UKB CHSS THL UKB CHSS THL UKB CHSS THL UKB CHSS THL UKB 

All cases 507,549 30,961 502,504 
45.36 

(23.07) 

64.27 

(14.28) 

61.48 

(9.31) 

M: 

237,598 

(46.81) 

F: 

269,951 

(53.19) 

M:  

14,435 

(46.62) 

F: 

 16,526 

(53.38) 

M: 

229,122 

(45.60) 

F:  

273,382 

(54.40) 

L: 

 262,753 

(51.77) 

M: 

 223,369 

(44.01) 

H:  

21,427 

(4.22) 

L:  

11,489 

(37.11) 

M:  

10,025 

(32.38) 

H: 

 9,447 

(30.51) 

L:  

117,737 

(23.43) 

M:  

 358,492 

(71.34) 

H: 

 26,275 

(5.23) 

38,479 

(7.58) 

2,287 

(7.39) 

53,466 

(10.64) 

P value N.A. N.A. N.A. <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 

Very high 

risk 

> P99 

5,651 310 5,026 
55.74 

(18.83) 

68.83 

(14.86) 

61.7 

(8.75) 

M:  

2,322 

(41.09) 

F: 

 3,329 

(58.91) 

M:  

129 

(41.61) 

F:  

181 

(58.39) 

M:  

2,207 

(43.91) 

F:  

2,819 

(56.09) 

L:  

4,343 

(76.85) 

M:  

1,251 

(22.14) 

H:  

L: 

 191 

(61.61) 

M:  

77  

(24.84) 

H:  

L:  

2,285 

(45.46) 

M:  

2,620 

(52.13) 

H:  

3,870 

(68.48) 

186 

(60.00) 

4,370 

(86.95) 



57 (1.01) 42 (13.55) 121 (2.41) 

High risk 

(P95 – P99] 
22,894 1,238 20,084 

60.08 

(20) 

65.12 

(15.10) 

63.2 

(8.74) 

M: 

7,170 

(31.32) 

F: 

15,724 

(68.68) 

M: 

 559 

(45.15) 

F:  

679 

(54.85) 

M: 

 7,545 

(37.57) 

F:  

12,539 

(62.43) 

L:  

14,568 

(63.63) 

M:  

7,946 

(34.71) 

H: 

 380  

(1.66) 

L: 

 690 

(55.74) 

M:  

327 

(26.42) 

H:  

221 

(17.85) 

L: 

 7,626 

(37.97) 

M:  

12,003 

(59.76) 

H: 

 455  

(2.27) 

18,368 

(80.23) 

734 

(59.29) 

19,039 

(94.8) 

Moderate 

risk 

(P80 – P95] 

84,371 4,644 75,378 
54.56 

(21.87) 

68.86 

(14.77) 

63.6 

(9.02) 

M: 

34,462 

(40.85) 

F: 

49,909 

(59.15) 

M:  

2,201 

(47.41) 

F:  

2,441 

(52.59) 

M:  

34,282 

(45.48) 

F:  

41,096 

(54.52) 

L: 

 49,818 

(59.05) 

M: 

32,822 

(38.9) 

H: 

 1,731 

(2.05) 

L:  

2,285 

(49.22) 

M: 

 1,437 

(30.96) 

H:  

920 

(19.82) 

L: 

 23,208 

(30.79) 

M: 

 49,684 

(65.91) 

H: 

 2,486 

(3.3) 

16,241 

(19.25) 

1,367 

(29.45) 

25,776 

(34.2) 

 

Low risk 

(P50 – P80] 
162,170 9,266 150,759 

47.66 

(24.2) 

66.16 

(14.15) 

62.2 

(9.39) 

M:  

77,082 

(47.53) 

F:  

85,088 

(52.47) 

M: 

 4,132 

(44.58) 

F:  

5,137 

(55.42) 

M: 

 70,550 

(46.80) 

F:  

80,209 

(53.20) 

L: 

 85,936 

(52.99) 

M: 

71,429 

(44.05) 

H: 

4,805 

(2.96) 

L:  

3,623 

(39.09) 

M: 

 3,081 

(33.24) 

H:  

2,565 

(27.67) 

L:  

36,773 

(24.39) 

M: 

 106,441 

(70.6) 

H:  

7,545 (5) 

0 (0) 
0 

(0.00) 

2,002 

(1.33) 

Very low 

risk 

≤ P50 

232,463 15,503 251,257 
38.72 

(20.72) 

61.62 

(13.55) 

60.3 

(9.22) 

M: 

116,562 

(50.14) 

F: 

115,901 

(49.86) 

M: 

 7,414 

(47.83) 

F:  

8,088 

(52.17) 

M:  

114,538 

(45.59) 

F:  

136,719 

(54.41) 

L:  

108,088 

(46.5) 

M: 

109,921 

(47.29) 

H: 

14,454 

(6.22) 

L:  

 4,700 

(30.32) 

M: 

 5,103 

(32.92) 

H:  

5,699 

(36.76) 

L: 

 47,845 

(19.04) 

M:  

187,744 

(74.72) 

H:  

15,668 

(6.24) 

0 (0) 
0 

(0.00) 

2,279 

(0.91) 

 

The prevalence of depression was calculated considering both F32 and F33 ICD-10-CM diagnostic codes. 
Kruskal-Wallis tests were used to assess changes in the target outcomes according to the risk pyramid tiers. 
Abbreviations: CHSS: Catalan Health Surveillance System cohort; THL: The Finnish National Institute for Health 
and Welfare biobank cohort; UKB: UK biobank cohort.  
 



 

 

Assessment of the MADS risk groups 

 

Assessment of the PRs 

 

Analysing the relationship between MDD and the morbidities assessed in the study is essential to interpret 

the MADS risk strata. This analysis revealed various relevant connections between MDD and the diseases 

investigated, encompassing both acute and chronic conditions, with the latter being particularly noteworthy 

due to their non-transient nature. Notably, the cluster of mental and behavioural disorders showed the 

highest average PRs in depression, but relevant associations also emerge among MDD and specific chronic 

somatic diseases affecting multiple organic systems (Figure 1). 

 

 

Figure 1 – Average probabilities of relevance between Major Depressive Disorder and 45 chronic 

conditions utilized to compute MADS.  

 



Utilisation of healthcare resources  

 

The evaluation of the impact of MADS risk groups on healthcare systems was conducted by investigating the 

correlation between the MADS risk categories and the utilization of health resources over the 12-month period 

following the MADS assessment within the CHSS cohort (Table 2). The results illustrate a significant and gradual 

pattern of increased healthcare utilization as individuals progress from lower MADS risk tiers to higher risk tiers, 

reflecting an escalation in healthcare needs and requirements. Overall, patients with higher MADS scores exhibit a 

greater likelihood of experiencing morbidity-related adverse events, which subsequently leads to recurrent 

interactions with healthcare systems across multiple levels. These interactions include higher frequencies of 

primary care visits (P<.001), specialized outpatient visits (P<.001), emergency room visits (P<.001), hospital 

admissions (P<.001) and ambulatory visits in mental health centres (P<.001) as well as an increased pharmacological 

burden (P<.001).  

 

Table 2 –Utilization of healthcare resources over 12 months in each stratum of the MADS risk pyramid for the CHSS 

cohort. 

Risk Pyramid 
Tiers 

Primary 
Care             
visits 

(per person) 

Specialized 
Outpatient 

visits  
(per person) 

Emergency 
Room visits 
(visits/100 

inhabitants) 

Hospital 
admissions 

(admissions/100 
inhabitants) 

Mental 
Health           
visits 

(visits/100 
inhabitants) 

Number of 
prescriptions 
(per person) 

P value <.001 <.001 <.001 <.001 <.001 <.001 

Very high risk 
> P99 

12.50 3.07 135.00 28.50 554.00 8.02 

High risk 
(P95 – P99] 

11.90 2.56 87.20 20.60 136.00 7.48 

Moderate risk 
(P80 – P95] 

9.03 1.82 61.90 14.50 44.20 5.11 

Low risk 
(P50 – P80] 

6.21 1.21 42.40 8.87 15.10 3.20 

Very low risk 
≤ P50 

2.96 0.50 23.40 3.25 5.96 1.07 

Kruskal-Wallis tests were used to assess changes in the target outcomes according to the risk pyramid tiers.  

 

Mortality and healthcare expenditure 

 

Moreover, we performed a cross-sectional analysis investigating mortality rates and the healthcare expenditure 

within the 12 months following the MADS assessment, expressed as the average healthcare expenditure per capita 

and differentiating among pharmaceutical and non-pharmaceutical costs, within the CHSS and THL cohorts (Table 

3). The reported mortality rates (P<.001) were 5 to 20 times higher in the high-risk strata than in low-risk individuals.  



Likewise, the average healthcare expenditure per person, comprising both pharmacological (P<.001) and non-

pharmacological spending (P<.001), was significantly higher for the individuals allocated at the tip of the risk 

pyramid than for those allocated at the bottom of the pyramid. 

 

Table 3: Mortality rates and pharmacological and non-pharmacological healthcare expenditure in €, over 12 

months, in each stratum of the MADS risk pyramid in CHSS25 and THL27. 

Risk Pyramid Tiers 
 

Mortality 
(cases/1k inhabitants) 

Pharmacological 
expenditure in € 

(per person) 

Hospitalization 
expenditure in € 

(per person) 

Total expenditure in € 
(per person) 

CHSS THL CHSS THL CHSS THL CHSS 

P value <.001 <.001 <.001 <.001 <.001 <.001 <.001 

Very high risk 
> P99 

46.2 36.0 1,214 966 539 270 12,517 

High risk 
(P95 – P99] 

41.5 33.7 772 1,131 383 340 8,404 

Moderate risk 
(P80 – P95] 

25.5 32.2 485 1,077 270 254 5,209 

Low risk 
(P50 – P80] 

11.5 14.8 292 810 165 185 3,075 

Very low risk 
≤ P50 

2.57 7.3 99 363 60 123 1,192 

Kruskal-Wallis tests and Fisher exact tests were used to assess changes in the target outcomes according to 

the risk pyramid tiers. Abbreviations: CHSS: Catalan Health Surveillance System cohort; THL: The Finnish 

National Institute for Health and Welfare biobank cohort.  

 

Pharmacological burden 

 

The study also examined the pharmacological burden on individuals after a 12-month period following the MADS 

assessment (Table 4). The findings indicate a significant positive association between the various risk strata and 

heightened pharmaceutical utilization, which is consistently observed across all cohorts. Specifically, individuals 

allocated at the top of the risk pyramid demonstrate significantly higher utilization of antidepressants (P<.001), 

antipsychotics (P<.001), anxiolytics (P<.001), and sedatives (P<.001) compared to those in lower risk categories, 

leading to a surge in the cost of medication. 

 

 

 



Table 4: Prescription of depression related pharmacological treatments over 12 months in each stratum of the MADS 

risk pyramid in CHSS25, UKB26 and THL27.  

Risk Pyramid Tiers 

Antipsychotic 
(N05A) 

(per person) 

Anxiolytic 
(N05B) 

(per person) 

Hypnotics and sedatives 
(N05C) 

(per person) 

Antidepressant 
(N06A) 

(per person) 

CHSS THL UKB CHSS THL UKB CHSS THL UKB CHSS THL UKB 

P value <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 

Very high risk   
> P99 

0.75 0.60 0.33 0.47 0.21 0.27 0.15 0.14 0.24 0.79 0.43 0.80 

High risk   
(P95 – P99] 

0.20 0.27 0.18 0.46 0.19 0.20 0.10 0.12 0.19 0.66 0.41 0.71 

Moderate risk  
(P80 – P95] 

0.07 0.08 0.15 0.28 0.08 0.16 0.05 0.10 0.18 0.27 0.27 0.54 

Low risk  
(P50 – P80] 

0.03 0.03 0.13 0.14 0.04 0.12 0.02 0.07 0.13 0.08 0.11 0.36 

Very low risk   
≤ P50 

0.01 0.01 0.11 0.04 0.02 0.09 0.01 0.04 0.10 0.02 0.06 0.26 

For recurrently dispensed medication only the first prescription was considered in the analysis. Kruskal-Wallis 

tests were used to assess changes in the target outcomes according to the risk pyramid tiers. Abbreviations: 

CHSS: Catalan Health Surveillance System cohort; THL: The Finnish National Institute for Health and Welfare 

biobank cohort; UKB: UK biobank cohort.  

 

To evaluate the influence of age and sex on the outcomes examined in this section, we replicated all the previously 

presented results, categorizing the outcomes by sex and age and reported them in the Supplementary material – 

Appendix 1.  The results suggest that the morbidity burden in individuals might be a primary driver influencing the 

occurrence of adverse health events and the heightened utilization of healthcare resources. 

 

Multimorbidity progression 

 

We performed a longitudinal analysis in the CHSS cohort for investigating the prevalence and incidence of new 

MDD-associated diagnoses and its highly relevant comorbid conditions in 5-year intervals after MADS assessment 

for depression throughout the patients' lifespan (Figure 2), allowing for a comprehensive examination of disease 

patterns over time. Figure 2 only displays a representative selection of the results, the plots for all the disease 

conditions analysed in this study, as well as the results found in THL and UKB cohorts, are reported in the 

Supplementary material – Appendix 2. 

In general, both MDD (Figure 2 – Panel A), and the comorbid conditions investigated in this study exhibit a positive 

correlation between the MADS risk tiers and the current prevalence and incidence of new disease onsets within a 

subsequent 5-year interval. Notably the prevalence of the studied diseases is significantly higher than the 

population average in the high-risk groups. Distinct patterns are discernible for certain disorders. For instance, 



conditions characterized by minimal disability, such as, gastro-oesophageal reflux (Figure 2 – Panel D), insomnia, 

back pain, and overweight, exhibit consistent upward trends, with both incidence and prevalence steadily 

increasing throughout the lifespan. In contrast, more disabling diseases like schizophrenia (Figure 2 – Panel B), 

bipolar disorder, and alcohol abuse (Figure 2 – Panel C), which precipitate rapid health deterioration and reduce 

life expectancy, attain peak prevalence and incidence levels during middle-aged adulthood, followed by a decline 

in later stages of life. These findings suggest a premature mortality among individuals afflicted by such conditions.  

 

It is worth noting that in certain age intervals, the incidence of new MDD-related disease onsets is higher in the 

high-risk group compared to the very high-risk group. This phenomenon is explained due to the method employed 

to calculate the MADS, as the high-risk group primarily comprises individuals with highly disabling diseases (high 

DW) that are closely associated with depression (high PR), such as schizophrenia or bipolar disorder. It is also 

noteworthy that the 5-years incidence of certain disorders is very low. Considering that the high-risk and very high-

risk groups represent only 4% and 1% of the sample size respectively, the effects of the variance are especially 

noticeable, leading to the observable pronounced sawtooth patterns on the chart. 



 

 

Figure 2 - Longitudinal analysis of disease prevalence and incidence of new disease onsets in CHSS cohort in four 
target disease conditions: Panel A) MDD single episode (ICD-10-CM: F32); Panel B) schizophrenia (ICD-10-CM: F20); 
Panel C) mental disorders related to alcohol abuse (ICD-10-CM: F10); Panel D) gastro-oesophageal reflux (ICD-10-
CM: K21).  Disease incidence is assessed in a 5-years interval, plotted in the left y-axis and represented with solid 
lines. Disease prevalence is plotted in the right y-axis and represented with dashed lines. The line colours correspond 
to the MADS risk pyramid tiers: red: very high-risk group; orange: high-risk group; yellow: medium-risk group; light 
green: low-risk group; green: very low-risk group.  



 

DISCUSSION 

Main findings 

 

MADS seems to provide a unique and more comprehensive understanding of the complex nature of depression-

related multimorbidity. This approach recognizes that individuals with depression often experience a range of 

comorbid conditions that may manifest and evolve differently over time. By capturing this dynamic aspect, MADS 

offers a nuanced assessment that goes beyond a mere checklist of discrete disorders. The novelty of the MADS 

approach lies in its capability to serve as the first morbidity grouper that incorporates information pertaining to 

disease trajectories, while improving the filtering of indirect disease associations using BDMMs. 

In the current investigation, we have unearthed robust correlations between the MADS risk strata and the extent 

of deleterious impact caused by MDD and its comorbid conditions. Such associations indicate the presence of 

specific health risks and an escalated utilization of healthcare resources. Furthermore, a positive association has 

emerged between the levels of pharmacological and non-pharmacological healthcare expenditures and the 

different tiers of MADS risk. Also, the analysis has revealed an augmented risk of disease progression within the 

high-risk groups (high and very high-risk), as indicated by a heightened incidence of new-onset depression-related 

illnesses within a 12-month period after MADS assessment. Similarly, mortality rates have exhibited elevated values 

in these high-risk groups. 

The findings presented in this study are underpinned by the complementary studies conducted within the 

TRAJECTOME project22 that have established a better understanding of the complex multimorbidity landscape 

associated with MDD across an individual's lifespan, encompassing both modifiable and genetic risk factors. 

 

Potential impact in personalized medicine 

 

By assessing whether MADS is appropriate for stratification of depression-related multimorbidity, we attempted to 

confirm its potential for contributing to precision medicine of patients with MDD who are in their early stages of 

MDD development31. Despite all advances toward adopting a personalised approach in mental health services, and 

more specifically in the treatment of depressive disorders, several challenges still limit its clinical utility32. The data-

driven categorization of MADS in clinical practice may help facilitate further screenings and referrals of patients in 

a cost-effective manner. 

The results reported in this study not only reaffirm the well-established link between multimorbidity and adverse 

outcomes such as a decline in functional status, compromised quality of life, and increased mortality rates33 but 

also shed light on the significant burden imposed on individuals and healthcare systems. The strain on resource 



allocation and overall healthcare spending is a pressing concern that necessitates effective strategies for addressing 

and managing multimorbidity34. 

In this context, the assessment of individual health risks and patient stratification emerges as crucial approaches 

that enable the implementation of predictive and preventive measures in healthcare. By identifying individuals at 

higher risk and tailoring interventions accordingly, healthcare providers can proactively intervene, potentially 

averting or mitigating the progression of diseases and optimizing patient outcomes. These strategies not only yield 

immediate value in terms of improved patient care but also lay the foundation for the broader adoption of 

integrated care and precision medicine, particularly in the management of chronic conditions35. 

Moreover, the findings of this study highlight the potential of preventive strategies targeted at mental disorders, 

including substance abuse disorders, depressive disorders, and schizophrenia, to reduce the incidence of negative 

clinical outcomes in somatic health conditions. These important implications for clinical practice call for a 

comprehensive and interdisciplinary approach that bridges the gap between psychiatric and somatic medicine. By 

developing cross-specialty preventive strategies, healthcare professionals can provide more holistic and effective 

care for individuals with complex health needs, ensuring that both their mental and physical health are adequately 

addressed4. 

 

Further developments 

 

The methodological approach used to develop MADS has proven to be effective in measuring the impact of an index 

disease and its principal comorbidities both in individuals and healthcare systems.  

 

Furthermore, it is expected that MADS approach might be used in other well-established clusters of non-

communicable diseases. By leveraging this targeted approach, MADS can be adapted to other disease clusters with 

shared characteristics, enabling a more precise assessment of disease burden and comorbidity patterns. Since 

MADS was constructed using only the calculations derived from the BDMM analysis of 86 disease conditions 

previously screened from a large set of disease conditions, MADS focuses only on the health problems directly 

related to the index disease (i.e., MDD) and ignores the surrounding effects of the uncorrelated comorbid 

conditions. 

 

Finally, MADS, or derived scores, can be integrated as part of holistic strategies for subject-specific risk assessment 

that combines information on various patient’s determinants of health, also known as Multisource Clinical 

Predictive Modelling (MCPM). The integration of MADS with other pertinent risk factors and clinical information 

within MCPM approaches offers a comprehensive framework for conducting risk assessments and implementing 

personalized interventions in the clinical arena36,37. This statement was grounded on the hypothesis that the 



implementation of comprehensive strategies for subject-specific risk prediction and stratification, incorporating 

multiple sources of covariates influencing patients' health, could enhance the accuracy of predictions and facilitate 

informed clinical decision-making by providing reliable estimates of individual prognosis38. This strategy is expected 

to support the implementation and long-term use of preventive measures for managing chronic patients, with the 

goal of delaying or preventing their progression to the highest risk level on the stratification pyramid39. 

 

The current study also provided good prospects for utilization of the disease trajectories to enhance the 

performance of existing state-of-the-art morbidity groupers, such as the Adjusted Morbidity Groups (AMG)2,12.  

AMG system is currently used in Catalonia (ES; 7M inhabitants), both for health policy and clinical purposes, and 

promoted for its transferability to other EU regions by the EU joint Action on implementation of digitally enabled 

integrated person-centred care (JADECARE)40. Unlike the current approach based on DW, the AMG score employs 

a disease-specific weighting derived from statistical analysis incorporating mortality and healthcare service 

utilization data. This approach would allow the creation of tools adjustable to the characteristics of each healthcare 

system, adapting to the impact of a particular disease condition into a specific region and improving the 

generalisation capacity of the tool. 

 

Limitations of the current approach 

 

Despite meeting expectations and validating the hypothesis by which the study was conceived, the authors 

acknowledge a series of limitations leading to suboptimal results and limited potential for adaptation and 

generalization that should be undertaken to bring MADS, or an indicator derived from it to real world 

implementation. 

 

In the current research, the use of estimations of mean DW41 to assess the burden of disease conditions has 

achieved desirable results, and is conceptually justified, but undoubtedly exhibits major limitations. In an ideal 

clinical scenario, each disease diagnosis indicated in the patient’s electronic medical record should be accompanied 

by the characterization of three key dimensions: i) severity of the diagnosis, ii) rate of disease progression, and iii) 

impact on disability. However, the degree of maturity for the characterization of the last two dimensions, disease 

progression and disability, is rather poor because of the complexities involved in their assessment. In other words, 

the authors are acknowledging the weakness associated with the current use of DW, but they are stressing the 

importance of incorporating such dimension, directly assessed on individual basis, in future evolutions of MADS.  

 

A noteworthy aspect that should be acknowledged is that factors such as the advancement of diagnostic 

techniques, the digitization of medical records, and the modifications in disease taxonomy and classification over 



time, have contributed to a more exhaustive documentation of the disease states in the most recent health records. 

Consequently, this fact could lead to imprecisions estimating the disease onset ages in the older individuals.  

 

CONCLUSIONS 

 

MADS showed to be a promising approach to estimate multimorbidity-adjusted risk of disease progression and 

measure MDD’s impact on individuals and healthcare systems, which could be tested in other diseases. The novelty 

of the MADS approach lies in its unique capability to incorporate disease trajectories, providing a comprehensive 

understanding of depression-related morbidity burden. In this regard, the BDMM method played a crucial role in 

isolating and identifying true direct disease associations. Nevertheless, clinical validation is imperative before 

considering the widespread adoption of MADS in routine clinical practice. 

 

METHODS 

 

Data sources 

 

The study was conducted utilizing data from three public health cohorts, namely:  

 

1) The Catalan Health Surveillance System (CHSS) - The main cohort used in MADS development was 

extracted from the CHSS. Operated by a single-public payer (CatSalut)42 since 2011, the CHSS gathers 

information across healthcare tiers on the utilization of public healthcare resources, pharmacological 

prescriptions, and patients’ basic demographic data, including registries of 7.5 million citizens from the 

entire region of Catalonia (ES). Nevertheless, for MADS development purposes we considered only registry 

data from the citizens resident in the entire Health District of Barcelona-Esquerra (AISBE) between 1st of 

January of 2011 and 31st of December of 2019 (n=654,913).  To validate the results of MADS, we retrieved 

additional information from CHSS corresponding to the 12 months posterior to MADS assessment, from 1st 

of January of 2020 to 31st of December of 2020. It is to note that, all the deceased patients in addition to 

those who moved their residence outside of AISBE district between 2011 and 2019 were discarded from 

the validation analysis, the remaining subset of patients comprises 508,990 individuals. 

 

2) The United Kingdom Biobank (UKB) – The UKB data considered in this study contained medical and 

phenotypic data from participants aged between 37-93 years. Recruitment was based on NHS patient 

registers and initial assessment visits were carried out between 3rd of March of 2006 and 1st of October of 



2010 (n = 502,504). Analysed data included disease diagnosis and onset time, medication prescriptions, and 

socio-economic descriptors. 

 

3) The Finnish National Institute for Health and Welfare biobank (THL) - THL cohort integrates information 

from Finrisk28 1992, 1997, 2002, 2007, 2012, Finhealth29 2017 and Health30 2000/2011 studies. For the 

consensual clustering 41,092 participants were used from Finnish population surveys. After data cleaning, 

30,961 participants remained from Finnish population surveys. These participants of age 20-100 were 

chosen at random from the Finnish population and represented different parts of Finland.  

 

Ethical approval 

 

As a multicentric study, TRAJECTOME accessed multiple cohorts’ data, all subject to the legal regulations of 

their respective regions of origin and obtained the necessary approvals from the corresponding ethics 

committees.  

 

For CHSS cohort, the Ethical Committee for Human Research at Hospital Clinic de Barcelona approved the 

core study of TRAJECTOME on the 24th of March of 2021 (HCB/2020/1051) and subsequently approved the 

analysis for the generation and validation of MADS on the 25th of July of 2022 (HCB/2022/0720). 

 

UK Biobank received ethical approval from the National Research Ethics Service Committee Northwest–

Haydock (ref. 11/NW/0382).  

 

The THL cohort integrates information from the Finrisk databases: 1997 (Ethical committee of National Public 

Health Institute. Statement 38/96. 30.10.1996), 2002 (Helsinki University Hospital, Ethical committee of 

epidemiology and public health, Statement 87/2001. Reference 558/E3/2001. 19.12.2001), 2007 (Helsinki 

University Hospital, Coordinating ethics committee, Dnro HUS 229/EO/2006, 20.6.2006) and 2012 (Helsinki 

University Hospital, Coordinating ethics committee, Dnro HUS 162/13/03/11, 1.12.2011); the FinHealth 2017 

(Helsinki University Hospital, Coordinating ethics committee, 37/13/03/00/2016 22.3.2016) and the Health 

2000-2011 databases (Ethical committee of National Public Health Institute, 8/99/12. Helsinki University 

Hospital, Ethical committee of epidemiology and public health, 407/E3/2000. 31.05.2000 and 17.06.2011). 

The ethics committees exempted the requirement to obtain informed consent for the analysis, and 

publication of retrospectively acquired and fully anonymized data in the context of this non-interventional 

study. 

 



All the data was handled in compliance with the General Data Protection Regulation 2016/679, which 

safeguards data protection and privacy for all individuals in the European Union. The study was conducted in 

conformity with the Helsinki Declaration (Stronghold Version, Brazil, October 2013) and in accordance with 

the protocol and the relevant legal requirements (Biomedical Research Act 14/2007 of 3 July).  

 

Building the Multimorbidity Adjusted Disability Score 

 

The development of MADS intertwined four development and evaluation steps (Figure 3): Step 1) Computing age-

dependent disease-disease probabilities of relevance; Step 2) Extracting and aggregating the DW; Step 3) 

Generating the MADS risk pyramid; and Step 4). Evaluation of MADS risk strata.  

 

 

Figure 3 - Workflow for building and validation of the MADS. BDMM stands for Bayesian Direct 

Multimorbidity Maps, PR for Probabilities of Relevance, and DW for Disability Weights.  

 

STEP 1- COMPUTING AGE-DEPENDENT PROBABILITIES OF RELEVANCE 

 



BDMMs were used to assess direct and indirect associations between MDD and a set of 86 potential comorbid 

conditions. The set of 86 disease conditions considered in the study had a prevalence greater than 1% in all the 

study cohorts. The list of diseases and their associated ICD-10-CM3 codes are displayed in the Supplementary 

material – Appendix 3.  

 

This step considered information on: 1) Disease diagnosis: Disease conditions were catalogued using the first three 

characters of ICD-10-CM codes; 2) Age at disease onset time: The age at disease onset corresponds to the first 

diagnosis in a lifetime for each ICD-10-CM code; 3) Sex; and, 4) Socio-economic status: annual average total 

household income (before tax with co-payment exemption) as a categorical variable with 3 categories: a) Less than 

18,000; b) 18,000 to 100,000; c) Greater than 100,000. Thresholds are given in EUR. 

 

BDMM analysis resulted in an inhomogeneous dynamic Bayesian network, which was utilised to compute temporal 

PR, ranging from 0 (no association) to 1 (strong association), for MDD in conjunction with sex, socio-economic 

status, and the set of 86 predetermined consensual diseases22. To construct the trajectories, the PR was calculated 

in four different age ranges: 0-20, 0-40, 0-60, and 0-70 years of age. The PR calculated and utilized for MADS 

computation are reported in the Supplementary material – Appendix 4. Further details regarding the core analysis 

conducted in TRAJECTOME can be found in 22. 

 

STEP 2 - EXTRACTION AND AGGREGATION OF DISEASE DISABILITY WEIGHTS (DW) 

 

MADS was developed by weighting the DWs of single diseases according to their estimated PR against MDD. DWs 

indicate the degree of health loss, based on several health outcomes, and are used as indicators of the total of 

disability caused by a certain health condition or disease. Often, the DWs present specific disability scores tailored 

to the severity of the disease. The disease categories, their severity distribution and their associated DWs utilised 

in this study were extracted from the GBD studies of 2019 and reported in the Supplementary material – Appendix 

3.  

 

DWs were extracted and aggregated as follows:  1) We considered only the DW of MDD and the set of 86 disease 

codes; 2) We considered the DW of all the chronic conditions diagnosed in patients’ lifetime, whereas, since the 

disability caused by acute illnesses is transitory, the DWs for the acute diseases diagnosed more than 12 months 

before the MADS assessment were arbitrary set to 0 (no disability); 3) Due to the unavailability of information on 

the severity of diagnoses, we determined the DWs of each disease condition by calculating the weighted mean of 

the DWs associated to the disease severity categories and their prevalence. In instances where the severity 

distribution was not available, we computed the arithmetic mean of the DWs of each severity category; 4) We 



finally weighted the DWs according to the PR of each disease condition with respect to MDD, the PR were adjusted 

according to age of disease onset, discretized in the following intervals 0-20, 20-40, 40-60, >60 years old. 

 

Since the DWs do not account for multimorbidity in their estimates, the utilization of DW independently can cause 

inaccuracies in burden of disease estimations, particularly in ageing populations that include large proportions of 

persons with two or more disabling disease conditions43. Consequently, we combined the DW and the PR for all the 

disease conditions present in one individual following a multiplicative approach (Eq. 1)44, aggregating several DW 

in a single score that accounts for the overall disability caused by numerous concurrent chronic conditions, in which 

every comorbid disease increases the utility loss of a patient, though it is less than the sum of the utility loss of both 

diseases independently.   

 

(Eq. 1) 

MADS =  1 − ∏(1 −  𝑃𝑅𝑖  ∗  𝐷𝑊𝑖)

𝑛

𝑘=𝑖

 

 “DW” stands for Disability Weight, “PR” Probability of Relevance and “n” is the number of diseases present in one individual. 

 

STEP 3 - CONSTRUCTION OF THE MADS RISK PYRAMID 

 

Once calculated, MADS was utilised to stratify patients in different levels of risk according to the quantiles of its 

distribution in the source population, producing the following risk pyramid: 1) Very low risk (≤ P50); 2) Low risk (P50-

P80]; 3) Moderate risk (P80-P90]; 4) High risk (P90-P95]; 5) Very high risk (> P99).  

 

STEP 4 - EVALUATION OF MADS RISK STRATA 

 

The validation of the results encompassed two interconnected analyses: 1) A cross-sectional validation of health 

outcomes; and 2) a longitudinal analysis of disease prevalence and incidence of new onsets. 

 

CROSS-SECTIONAL VALIDATION OF HEALTH OUTCOMES AND USE OF HEALTHCARE RESOURCES 

 

To validate the results of MADS, we conducted a cross-sectional analysis of clinical outcomes within the 12 months 

following the MADS assessment. The burden of MDD and its comorbidities on patients and healthcare providers, 

corresponding to each risk group of the MADS risk pyramid, was assessed using the following features (the 

parameters evaluated in each cohort may vary depending on the availability of the requested information in the 

source databases): 



 

1) Prescriptions of psycholeptic and psychoanaleptic drugs (Information available in all the databases) The 

prescribed medication was catalogued using the first 4 characters from ATC45 codes, resulting in the 

following categories: Antipsychotics (N05A), Anxiolytics (N05B), Hypnotics and sedatives (N05C) and 

Antidepressants (N06A). 

2)  Cost of the pharmacological prescriptions in € (Information available only in CHSS and THL). 

3) Mortality rates (Information available only in CHSS and THL). 

4) Contacts and encounters with healthcare professionals (Information available only in CHSS) 

Encompassing: i) primary care visits; ii) specialised care outpatient visits; iii) ambulatory visits in mental 

health centres; iv) emergency room visits; v) planned and unplanned hospital admissions; and vi) 

admissions in mental health centres.  

5) Total healthcare expenditure (Information available only in CHSS) Including: i) direct healthcare delivery 

costs; ii) pharmacological costs; and iii) other billable healthcare costs, such as non-urgent medical 

transportation, ambulatory rehabilitation, domiciliary oxygen therapy, and dialysis.  

 

We assessed the effect of sex and age replicating the analyses disaggregated by sex and age. The age ranges were 

discretized in the following categories: 0-20, 20-40, 40-60, >60 years. 

 

LONGITUDINAL ANALYSIS OF DISEASE PREVALENCE AND INCIDENCE OF NEW ONSETS 

 

To address the age-dependency of disease onsets we performed a longitudinal analysis of the prevalence of a target 

disease and the incidence of new diagnostics within the 5 years following the MADS assessment.  

We iteratively computed MADS in five-year intervals throughout the patients’ life. Within each interval, the 

population was stratified based on the MADS distribution. Subsequently, within each risk tier, the prevalence of 

the target disease and the incidence of new disease onset over the subsequent five years were calculated. Only 

individuals with complete information for the next interval at each timepoint of the analysis were included. 

In the analysis we considered only the disease conditions with a PR against MDD ≥ 0.80 in at least one of the four 

age intervals assessed, namely: 0-20, 0-40, 0-60 and 0-70. Resulting in the following set of mental diseases: MDD 

(F32-F33), schizophrenia (F20), bipolar disorder (F31), anxiety related disorders (F40-F41), stress related disorders 

(F43), mental disorders related to alcohol abuse (F10), insomnia (G47). And the following somatic diseases: 

dorsalgia (M54), soft tissue disorders not classified elsewhere (M79), irritable bowel syndrome (K58), overweight 

and obesity (E66) and gastro-oesophageal reflux (K21). 

 



Statistical analysis 

 

Mortality rates were summarised as cases per 1,000 inhabitants, whereas numeric health outcomes variables were 

described by the average number of cases per person, per 100 inhabitants or per 1,000 inhabitants according to 

their prevalence. Average healthcare expenditures are reported in € per person. To evaluate changes in the target 

outcomes across the risk pyramid tiers, Kruskal-Wallis tests and Fisher exact tests were employed accordingly. 

Statistical significance was determined by considering a P-value less than .05 in all analyses. 

 

All the data analyses were performed using R46, version 4.1.1 (R Foundation for Statistical Computing, Vienna, 

Austria). The MADS algorithm was fully developed and tested in the CHSS database and transferred to the other 

sites through an R programming executable script. 

 

The study is reported according to the STROBE23 guidelines for observational studies. 
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AMG – Adjusted Morbidity Groups 

BDMM – Bayesian Direct Morbidity Maps 

CHSS – Catalan Health Surveillance System 
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GBD - Global Burden of Disease 
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MCPM – Multisource Clinical Predictive Modelling 

MDD – Major Depressive Disorder 
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THL - Finnish National Institute for Health and Welfare Biobank 
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DISCUSSION  

 

The thesis discussion follows a structured approach, starting with a brief summary of 

the main insights. Then, each use case is discussed in detail, covering its main findings, 

limitations, the remaining challenges to achieve applicability in real-world scenarios, 

and potential future research areas.  

 

6. INSIGHTS FROM THE THREE USE USES  

The first use case addressed the design and implementation of predictive modelling 

that combines multimorbidity indices (e.g., AMG and Queralt) with other health 

determinants for patient risk stratification at hospital entry and at discharge. The 

choice of these time points was deliberate, aligning with the imperative to refine 

service selection upon admission (conventional in-hospital admission vs HaH) and 

enhance transitional care upon discharge, respectively.  

The former is essential in optimizing therapeutic pathways, enhancing care efficacy, 

and ensuring patient safety(130,131). This aspect was rigorously appraised within the 

HaH program at HCB (Article 1), where home-based fatality and intervention failures 

resulting in in-hospital readmission were modelled. 

Conversely, the latter, centred on transitional care, evaluated the mortality risk and 

short-term readmission post-hospitalization, spanning 30 to 90 days. This evaluation 

aimed to strengthen the discharge process safety, customize it to individual patient 

needs, and foster vertical and horizontal integration within the healthcare continuum, 

ensuring that patients are handled over effectively to the next phase of their care 

journey(132,133).  

The assessment of the predictive models for the prevention of readmissions and 

mortality for the improvement of hospital-community transitions has had a central 

role in the thesis, conducted in a tri-phasic evaluation, commencing with a service-

specific model (i.e., HaH) (Article 1), transitioning to a generalizable model suitable for 
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all-type hospitalizations (Article 2), and finalizing in an assessment of the broader 

Catalan healthcare context (Article 3) to extrapolate this approach systemically. 

In all contexts, the predictive ability of the models produced commendable results, 

outperforming other methods documented in existing literature and demonstrating 

genuine potential to provide clinical decision support(134–136). This use case tackled a 

few pressing challenges in the field, addressing issues such as feature selection, data 

accessibility, model design and evaluation, explainability of the predictions, as well as 

challenges associated with model’s generalisation and adaptability across different 

scenarios. However, specific areas remain for exploration and debate. These include 

the steps needed for model’s implementation as CDSS in real-world settings, the 

subsequent clinical validation, and the continuous assessment and maintenance of the 

models. 

The second use case delved into the practicalities of transferring and adopting a 

mature HRA strategy, developed in the Catalan oGP over the last decade, across 

diverse European regions. In this regard, Article 4 examined the determinants behind 

adopting and deploying the AMG, an open-source, population-based, predictive tool. 

The study assessed the guided transference of the AMG to two European regions: 

Marche region (IT) and Viljandi county (EE).  

These two settings, Marche and Viljandi, partially represent the organizational 

diversity of European healthcare services. Furthermore, they convey two different 

approaches: population health and population medicine(127), respectively. This bifocal 

approach has facilitated the generation of tailored recommendations for AMG 

adoption across diverse EU sites, addressing key issues like minimum data set access, 

GDPR interpretation, and data exploitation through dashboards and KPIs. 

Despite the recommendations issued are valid and generalizable, it is acknowledged 

that for drawing a unified set of implementation guidelines that considers the diversity 

of the entire European healthcare landscape, additional research is needed to 

understand the current situation of each member state. Otherwise, adopting HRA 

tools can lead to inefficiencies, wasted resources, and even potential harms. 
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Finally, Article 5 sought to explore the feasibility of incorporating procedures relevant 

to the study of disease trajectories and novel techniques for analysing dependency 

relationships between concomitant diseases to generate the next generation of 

morbidity groupers. This aims to better adjust the estimations of the burden of 

morbidity to clusters of diseases and improve the ability to anticipate the progression 

of multimorbidity.  

The findings, focused on MDD, revealed a link between identified risk tiers and adverse 

health outcomes, including increased healthcare resource use and mortality rates. 

After an initial validation using data from Spain(137), the UK(138), and Finland(139–

141), the method shows potential to enhance the integration of psychiatric and 

somatic medicine, potentially improving the prevention and treatment of depression-

related multimorbidities. 

Despite Article 5 achieved positive results and met the defined objectives, certain 

aspects remain under discussion. Key debate topics include refining the initial 

approach for enhanced scalability and generalizability and further explore whether 

such novel methods to explore the diseasome, as well as the role of disease 

trajectories, can enhance existing open-source tools' efficiency, such as the AMG 

system. 

The three use cases addressed in the thesis, while distinct, form a cohesive, and novel, 

analytical approach to different facets of multimorbidity. Moreover, the research 

outcomes show the high potential of articulating population-based and clinically 

oriented HRA. The following section analyses, for each use case, main findings, study 

limitations, as well as the challenges and opportunities for future work. 

 

7. EVALUATION AND INTEGRATION OF PREDICTIVE MODELLING FOR ENHANCED 

MANAGEMENT OF MULTIMORBID PATIENTS (USE CASE 1) 

Multimorbidity's central influence in risk evaluation – The predictive models reported 

in Articles 1 and 2 stand out for their capacity to describe the logic behind the 

predictions, achieved through the Mean Decrease in Accuracy (MDA) analysis. This was 

an essential element for the assessment of the two predictive modelling 
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examples(142). Not only does this ensure transparency, but it also allows for a 

systematic ranking of variables, highlighting their relative importance within the 

models: (1) service selection at HaH admission; and (2) transitional care after 

discharge. 

In the two scenarios, both aiming at informing service selection or personalisation of 

transitional care, the results indicated that the most relevant analysed predictors 

available at hospital admission fell into the following six categories: (1) age, (2) 

multimorbidity and complexity (e.g. AMG score), (3) functional capacity (e.g. SF36(143) 

survey, Barthel(144) and Braden(145) indices), (4) social frailty (e.g. MNA(146) and 

Barber(147) indices), (5) lab test results  (e.g. complete blood counts), and (6) history 

of utilisation of healthcare resources (e.g. number of medical prescriptions, healthcare 

expenditure of the previous 12 months, number of hospitalisations of the previous 12 

months). Notably, for transitional care modelling, vital information acquired during 

hospitalization, such as (7) the severity of the acute episode and treatment details 

(e.g., Queralt indices), was also integrated. Among them, the clinical complexity 

associated with multimorbidity was identified as the leading risk factor in the 

individual prognosis of adverse health events. 

It is crucial to acknowledge the pivotal role that multimorbidity groupers play in 

capturing the clinical complexity of individuals, especially the baseline burden of 

morbidity (i.e., AMG score) and the severity of the acute episode (i.e., Queralt indices). 

Moreover, the statistical analysis conducted in these studies suggested synergies 

between integrating measures of the complexity of the baseline patient’s condition 

and the severity of the acute episode, leading to an increased risk of post-discharge 

deleterious events. In addition, factors such as biological data or laboratory tests (e.g., 

blood counts), social risk indicators, and functional capacity impairment metrics have 

significantly contributed to enhancing the models’ predictive accuracy. 

Selecting the covariates for each predictive model is essential to ensure the models' 

optimal performance, as well as to enhance their generalization capacity. Additionally, 

feature selection must aim to guarantee compatibility with the system's data 

repositories, further ensuring interoperability. Accordingly, there was a deliberate 

transition from manually gathering data in research contexts to harnessing integrated 



62 
 

data from primary care (i.e., eCAP), electronic hospital records (i.e., SAP), and health 

registries (i.e., Catalan Health Surveillance System(137); CHSS). This strategic shift 

significantly reinforced the model's generalization, as illustrated in the methodological 

progression from Article 1 to Article 2. 

Towards patient-centred transitional care - The clustering analysis performed in 

Article 2 aimed to complement the risk analysis delineating transitional care pathways 

tailored to distinct patient groups, allowing both identifying patients at risk and 

propose personalised post discharge health pathways. Four clusters were identified: 

Cluster 1 represents standard patient-centred transitional care. Patients in cluster 2, 

were primarily men with unhealthy habits like smoking and sedentarism. These 

patients could benefit from preventive strategies and cognitive behavioural therapies 

initiated during acute episodes and extended into community settings. These patients 

exhibited high post-discharge mortality rates and frequent ER visits. Clusters 3 and 4, 

which comprise older patients with high social and medical complexity, respectively, 

have the highest mortality index and rates of visits to emergency rooms and 

hospitalization.  

Patients allocated on clusters 3 and 4 necessitate care-focused interventions and 

optimised home-based services. Collaborative efforts between HaH resources, 

intermediate care, and primary care programs are vital for assisting patients in these 

clusters, with cluster 3 requiring social support and cluster 4 needing attention to 

complex medical and multidimensional needs. In this context, three cardinal 

interventions emerge: (1) therapeutic interventions, (2) supportive care, and (3) end-

of-life measures. Therapeutic interventions, typically executed within specialized 

medical environments, are geared towards the precise diagnosis, treatment, and 

mitigation of pathological conditions. Supportive care facilitates the transition of 

patients from acute medical settings to domiciliary or community-centric care, 

highlighting the significance of patient empowerment, therapeutic adherence, and 

post-discharge surveillance. On the other hand, end-of-life care measures transition 

from aggressive therapeutics to a concentration on palliation, ensuring patient comfort 

and upholding their dignity while concurrently aligning medical undertakings with the 

patient's predetermined preferences. Cumulatively, these interventions offer an 
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intricate blueprint for transitional care, holistically addressing patients' medical and 

comprehensive necessities throughout their healthcare continuum.  

Overall, incorporating complex computational risk models, that consider both risk 

stratification and profiling, into clinical routines can streamline patient screenings and 

referrals, making the process both efficient, economically viable and with high levels of 

acceptance by patients/relatives, as well as by health professionals. Moreover, such 

approach postulates to be one of the principal catalysts to bridge the effectiveness gap 

between RCT's and real-world interventions(148,149), as well as promoting the 

integration of the system(150–152), vertically, between primary and specialized care, 

as well as horizontally, between the clinic and socio-health care. 

 

7.1. Main limitations 

Overall, this research highlights the potential of computational models for service 

improvement. The next steps involve real-world validation and converting these 

models into actionable clinical support tools. While the implementation challenges 

extend beyond the scope of this thesis, two critical hurdles for real-world application 

have been identified: 1) the need for validation and continuous assessment of the 

models in real-world scenarios, and 2) the factors limiting their clinical interpretability, 

usability, and adoption. 

The ongoing evaluation and validation of the integrated clinical decision support 

mechanisms - Continuous evaluation of the models is essential to: 1) Uphold their 

predictive accuracy and reliability; 2) Adapt to evolving diagnostic techniques and 

therapeutic interventions; 3) Respond to shifts in population demographics; and 4) 

Guarantee patient safety. Solutions encompass automated feedback loops for real-

time user insights, regular model calibrations, and external unbiased assessments. 

Incorporating adaptive learning allows for model updates with new data, while 

demographic sensitivity testing maintains accuracy across diverse patient groups. 

Monitoring systems ensure patient safety, and stakeholder feedback, performance 

dashboards, and periodic reviews keep the model’s integrity and efficacy in check. 
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The crafting of intuitive, user-centric interfaces tailored to specific user profiles - In 

this PhD thesis, a central emphasis was on developing AI models with a strong focus on 

explaining the logic of the predictions. This was achieved using algorithms based on 

decision trees and enhanced by additional analytical methods, such as the MDA 

analysis, to boost prediction clarity and transparency. However, some challenges 

remained out of the scope of the thesis such the integration of the models into real 

world healthcare processes. In this regard, some elements to consider are: 1) 

Deploying of integration channels, such as Application Programming Interfaces (APIs) 

or middleware, for effective data communication with existing infrastructure. 2) 

Employing techniques like Local Interpretable Model-agnostic Explanations 

(LIME)(153), Shapley Additive Explanations (SHAP)(154) or Anchor(155) methods to 

enhance understanding and transparency in AI predictions. 3) Integrating with 

advanced Business Intelligence platforms is indispensable for tracking model 

performance and outcomes, enabling clear, real-time visual insights via tailored 

dashboards. 4) Equipping systems with alert functions and continuous feedback loops 

may help to maintain model precision and promptly address any discrepancies or 

changes in prediction trend. 

 

7.2. Challenges and Opportunities 

While our findings elucidate the potential of the computational models to improve 

service selection and personalized transitional care paths after hospitalization aiming 

at providing guided transitions from hospital setting to the community. The immediate 

future pushes deeper into validating the models, especially in larger cohorts and in real 

life-clinical settings. There is an impending necessity to translate the empirical 

strengths of our computational models into tangible clinician tools, bridging the gap 

between advanced analytics and bedside clinical decisions. 

This process inevitably necessitates the evaluation of two facets: (1) Determining if the 

observed results are specific to HCB or if they can be generalisable to other centres. (2) 

Clinically validate the models and establish the basis for integrating the models into 

existing workflows.  
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The outcome of the first assessment should indicate whether the issue can be tackled 

at a territorial level, promoting the implementation of predictive and management 

tools at the Catalan level. This external validation allows exploring whether the 

developed modelling strategy can be applied at the health system level and potentially 

incorporated into Catalonia's new shared clinical history.  

In this regard, the insights generated from the study of almost 100,000 hospitalisation 

episodes (Article 3), both from home and conventional hospitalisation regimes, play a 

crucial role. The regional assessment of HaH in 27 hospitals across Catalonia revealed 

the heterogeneity in the profiles of the treated population. The study observed 

variations that align with existing literature(156–158). The research identified 

differences across multiple parameters, including age upon admission, multimorbidity-

complexity as measured by the AMG score within the 12 months preceding admission, 

and the acuteness of the episode as assessed by both the APR-DRG and Queralt index 

metrics. Analogous discrepancies were evident in other assessed metrics, such as the 

duration of hospital stay. These heterogeneities were influenced by strategic decisions 

at the hospital level, partly conditioned by the hospital's geographical location, its 

territorial role, number of beds, and the facility's specialisation and technological 

advancement. The noticeable heterogeneities observed across the 27 health centres 

challenge the feasibility of the multicentric approach, suggesting potential 

generalisation issues and the importance of tailoring HRA strategies to each healthcare 

provider. To address this specific issue, customisation of the data models due to 

adjustments in the available covariates and in-house specific training of the models is 

highly recommended. 

Moreover, another constraining factor arises in the accessibility of clinical data 

belonging to the healthcare providers and the approach's viability when relying 

exclusively on registry data. This evolution might result in the omission of specific 

hospital data, necessitating a re-evaluation of model performance and the 

identification of alternative indicators for certain variables potentially derived from 

registry data. Nevertheless, accessing hospital data sources is also essential for utilising 

metrics like the Queralt indices and combining this information with the clinical data 
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on the EHR and diagnostic tests. Therefore, parallel actions are recommended in two 

distinct areas: the healthcare system and the clinical level. 

To assess the viability of the approach under consideration, the foundation for a study 

protocol has been proposed (Table 1). The study would involve the reanalysis of over 

200,000 hospital episodes in Catalonia (Article 3), followed by a focused sub-study at 

the HCB. 

The analysis adopts a macro-level perspective. Here, the focus is not merely on 

reanalysis but on a more intricate reengineering of the models stemming from insights 

from the vast dataset of over 200,000 hospital episodes in Catalonia, as described in 

Article 3. The reengineering effort would entail the strategic incorporation of system 

covariates. The fundamental objective behind this is to rigorously test the 

generalizability of the approach across diverse healthcare settings in Catalonia. Given 

the previously recognised disparities and heterogeneities, this modelling seeks to 

ascertain if the approach can be standardised, benefiting a broad spectrum of 

healthcare institutions regardless of their strategic decisions, geographical positioning, 

or technological infrastructure. 

Transitioning from the expansive view of the regional approach, the second analysis 

narrows its scope to the HCB. This focused sub-study on a smaller, more specific subset 

of data seeks to accomplish two critical objectives. First, it aims to validate the 

preliminary findings (Article 2) by testing the models against an independent 

population, ensuring that the insights are not merely coincidental or skewed by the 

earlier dataset. This validation aims to reaffirm the credibility, accuracy, and potential 

applicability of the models. Second, and equally vital, is the objective to chart a 

roadmap for the real-world implementation and testing of the proposed solution. Such 

a strategy must encompass the nuances of integrating the computational models into 

the HCB's existing workflows, laying the foundation for practical applicability, and 

measuring real-time efficacy for the continuous evaluation and retraining of the 

models. 
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Table 1: Overview of the proposed study protocol on predictive modelling for guiding post-
hospital discharge transitions. This table offers a detailed summary of the study aiming to 
predict re-admissions and support post-hospital discharge transitions. 

Prediction of re-admissions and support in post-hospital discharge transitions 

Study cohort 207,152 hospitalization episodes in the region of Catalonia (27 healthcare 
providers), from the 1st of January 2015 to the 31st of December 2019. 
Among them, 175,238 episodes were conventional hospitalizations and the 
remaining 31,914 were HaH discharges. The corresponding numbers for HCB 
were 13,542 divided in 10,740 and 2,802 discharges for conventional and HaH 
hospitalisations, respectively. 

Databases 
1. Registry data extracted entirely from CHSS database.  
2. Clinical data from HCB EHRs.  

Variables  
Reported in Articles 2 and 3 

Predictive modelling generation and assessment of CDSS 

Objectives O1. Elaborate predictive modelling of the risk of mortality and post-discharge 
readmissions, applicable in the clinical scenario, using: i) the entire dataset, ii) 
by healthcare provider, and iii) clusters of providers identified in Article 3. 

O2. Elaborate specific modelling for HCB, enriched with clinical information. 
Retrospective evaluation of the modelling using HCB discharge data from 
2022. 

O3. Design and testing of a CDSS fed by predictive modelling developed with 
HCB data (O2). 

O4. Test the implementation process, with IS tools, in a real world setting at 
HCB. 

O5. Design and testing of a CDSS fed by predictive modelling (O1) for potential 
integration and use in the future Catalan clinical record. 

Expected 

outcomes 

EO1. Generation of predictive modelling for risk assessment of adverse events 
within 30 days of hospital discharge, such as mortality and unplanned hospital 
readmissions; with the aim of optimizing transitional care strategies and the 
prevention of income from the community in high-risk patients. 

EO2. Design and assess the process of implementation, adoption, and 
continuous evaluation of the resulting CDSS at HCB (O2-O4). 

EO3. Define a roadmap for regional implementation and assessment of the 
CDSS generated in O1 and O5.  
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8. EXPLORING MORBIDITY GROUPER ADOPTION DYNAMICS IN EUROPE (USE CASE 2) 

 

Population-health and population-medicine approaches - The second use case 

reviewed the transference and adoption of the AMG algorithm and a customised 

dashboard using aggregated data, a pivotal element for informing and monitoring 

primary HRA interventions. Marche applied a broad population-health perspective, 

utilizing resources across the region, encompassing multi-tiered healthcare system 

data, including hospital data and chronic care registries. In contrast, Viljandi hospital in 

Estonia employed a narrower, regional population-medicine approach focused on data 

representative of hospital-treated individuals, leading to an older and more acute or 

chronically ill patient sample. Data sources and composition differences significantly 

influenced AMG scoring distributions among Catalonia, Marche, and Viljandi. The input 

data type profoundly affected the goals and appropriateness of HRA strategies. While 

Marche's approach suited regional health policy and governance, Viljandi's approach 

informed the PAIK2(159) protocol design addressing prevention of unplanned 

hospitalizations.  

The Marche region's approach effectively achieved the integration of the AMG 

algorithm and a customized dashboard for the regional exploitation of data to inform 

health policy, resource allocation, benchmarking, and governance. In this regard, a 

pivotal achievement was to overcome potential technical problems in dynamically 

assembling the dataset required to feed the AMG algorithm using heterogeneous data 

sources. Moreover, the process of transfer, anticipated future challenges for 

consideration comprise overcoming the constraints in implementation of HRA tools, 

such as the AMG algorithm in clinical settings. This problem stems from the legislative 

nuances of the GDPR within the Italian jurisdiction, explicitly concerning the secondary 

utilization of health data. Nevertheless, this is not a uniqueness of the Italian 

legislation. While the GDPR binds all member states, individual countries frequently 

enact supplementary regulations to address specific concerns. For instance, Germany 

has implemented the BDSG, France operates under the Data Protection Act with CNIL 

oversight, and the Netherlands has adopted the UAVG. These legislations introduce 
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specific distinctions related to health data, often emphasizing the necessity for explicit 

consent and potentially complicating such data's secondary use. 

On the other hand, in the context of the implementation of PAIK2 protocol in Viljandi 

hospital, the AMG algorithm assumed a pivotal role in screening patients for potential 

inclusion in a preventive intervention targeting to reduce unplanned re-hospitalization 

rates among high-risk chronic patients. This initiative is congruent with the local 

findings and assessments delineated in the first use case, targeting to enhance 

transitional care. In addition, the success of PAIK2 may hold key implications for 

healthcare governance and strategy in Estonia. Successful execution and outcome of 

this initiative would contribute to securing robust commitments from the Estonian 

government (i.e. Ministry of Social Affairs) and the Estonian Health Insurance Fund, 

promoting the escalation of this approach nationwide. The accumulated experience 

from Viljandi becomes particularly valuable in this context. With the expertise 

gathered from the Viljandi hospital initiatives, there is a strategic inclination towards 

pioneering value-based reimbursement models. With collaboration from Optimedis, 

this innovation aspires to position Viljandi Hospital at the forefront of healthcare 

transformation by establishing it as an accountable care organization. 

Both operations have fostered the expertise required for future tailored HRA 

strategies. In this regard, the following key elements were identified as major 

requirements: 1) ensure political commitment, 2) have sufficient digital infrastructure, 

to ensure interoperability among needed datasets, as well as appropriate dynamic 

data management 3) overcome potential limitations due to GDPR compliance, 4) use IS 

tools to foster stakeholder engagement, and 5) develop or adopt a regulatory 

framework for secondary health data use. 

 

8.1. Main limitations 

The European healthcare mosaic: Insights from Marche & Viljandi in European 

healthcare - The European healthcare panorama, with its intricate interplay of diverse 

systems, that has adopted models ranging from the Bismarck and Beveridge systems 

to mixed models often seen in transitional countries of Eastern Europe(160,161) often 
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presents challenges that demand innovative and adaptable solutions. Within this 

complex mosaic, the achievements observed in the regions of Marche and Viljandi 

stand as examples to what can be accomplished with the proper combination of 

methodology, technology, and vision.  

Within this diversity, the GDPR stands as a unifying force, setting stringent standards 

for patient data protection. However, it also presents challenges due to varying GDPR 

interpretations. For instance, in Marche, these interpretations restricted the utility of 

the AMG in guiding regional-level HRA using aggregate data, precluding the use of 

personal data, constraining a more granular, patient-level approach and thereby 

impeding the execution of personalised clinical interventions. These variances can 

affect how patient data is collected, processed, and used for HRA, as well as hinder 

cross-border health research.  

Within European healthcare, there is an evident rise of private insurers coexisting with 

public systems, leading to a bifurcated healthcare paradigm, exemplified in Estonia 

(e.g., Viljandi). This dualistic healthcare ecosystem inadvertently leads to system 

fragmentation and generates information silos and conflicts over health data 

ownership. Consequently, this fractured landscape poses considerable challenges to 

the efficient design and deployment of comprehensive HRA interventions, potentially 

undermining optimal patient care outcomes. Underpinning these systems are varied 

reimbursement models. From traditional fee-for-service structures and capitation 

methods to the more contemporary value-based reimbursements and salary-based 

models. In this regard, HRA may lay the groundwork for value-based care by aligning 

reimbursements with patient outcomes, not just services rendered. This would 

incentivise providers to prioritise high-quality, patient-focused care, fostering a more 

sustainable and efficient healthcare system. 

The complexities listed above, illustrated in Article 4 by regions like Marche and 

Viljandi, presented intricate challenges, especially with GDPR interpretations, 

balancing public and private healthcare, and adopting new reimbursement models. 

While the role of HRA and methodologies like AMG is emphasised, these insights are 

preliminary. Further research is essential to validate these observations, considering a 
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variety of morbidity groupers beyond AMG, and to craft tailored strategies for 

adoption and mainstream utilisation in each European region. 

 

8.2. Challenges and Opportunities 

 As discussed in the limitations alluded to above, the European healthcare landscape is 

a complex mixture of diverse systems, traditions, and innovations. This leads to the 

consideration of the immense potential inherent in flexible, adaptable, data-driven, 

and open-source HRA solutions such as the AMGs. Nevertheless, without a 

comprehensive understanding of the current state of each member state, the adoption 

of HRA tools may result in inefficiency, resource wastage, and potential risks.  

In this regard, the JADECARE consortium brought together a diverse group of 

stakeholders from 21 European regions and healthcare organizations. Therefore, the 

project offers a good opportunity to conduct a systematic and comprehensive 

evaluation, of the readiness for mainstream adoption of HRA tools across Europe and 

elucidate challenges to overcome. By harnessing the collective expertise of its 

members, JADECARE is positioned to provide different perspectives, experiences, and 

insights.  

For this purpose, it is highly recommended to devise a survey for all JADECARE 

locations, 4 original Good Practices (oGP) and 21 Next Adopters (NAs). Table 2 offers a 

detailed conceptual framework for this survey, meticulously capturing each healthcare 

system's intricate details and distinct readiness levels. This initiative has been 

presented in the project's final conference (September 2023), and the execution is 

proposed for the following six months. As an integral component of the JADECARE 

framework, the collaboration of the four oGP is essential. The insights from this survey 

will lay the foundation for a unified HRA protocol that acknowledges the diversity of 

the European healthcare landscape, learns from its heterogeneity, and seeks to create 

a harmonised strategy for the future. This study would provide invaluable data for 

current stakeholders and pave the way for future collaborations, innovations, and 

strategies to optimize the implementation of HRA tools across Europe beyond 

JADECARE. 
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In addition to the challenges mentioned above, two critical facets merit attention. 

Primarily, an amplified imperative exists to bridge the interface between clinical and 

research data. Addressing this on an EU-wide scale is crucial for facilitating efficient 

cross-border collaboration. Noteworthy initiatives such as EHDS, ELIXIR, and 

STAND4PM have demonstrated advancements in this domain. Subsequently, the 

systematic integration in health data repositories of patient-centric data, specifically 

PROMs and PREMs, whether derived from biosensors or self-administered 

standardised health questionnaires, emerges as a fundamental requirement. It should 

be noted that while these domains were not the central examination of this thesis, 

their relevance is acknowledged in the concluding passages of the discussion. 

Table 2: Proposed scheme of the survey framework designed to assess JADECARE’s 
healthcare systems' diversity and readiness in HRA tool implementation. It covers topics from 
basic respondent information to intricate details on tool effectiveness, approach strategies, 
system maturity, reimbursement models, and future adoption strategies. A detailed format of 
the survey will be produced upon approval of the concept. 

JADECARE survey protocol: heterogeneities & maturity in HRA tools implementation 

Objective Evaluate the diversity and readiness among JADECARE partners in 
implementing HRA tools. 

Target respondents Members from the 21 NAs and 4 oGPs representing different healthcare 
entities and fulfilling various roles. 

Section 0: General information 

Name and country, entity, department, and respondent’s role  

Section 1: Current HRA tools assessment 

Existing tools List and briefly describe the HRA tools currently in use. 

Effectiveness and 
gaps 

Evaluate the effectiveness of current tools, identifying any gaps or flaws in 
their approach or application. 

Section 2: Approach and strategy 

Source population 
focus 

Determine whether the approach is population-health or population-
medicine and elucidate their specificities. 

Impact of data 
sources 

Describe the composition of input data sources available. 

Purpose & 
suitability 

Detail purposes of the HRA and how the composition of input datasets may 
influence the suitability and objectives of HRA strategies. 
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Section 3: Maturity and implementation 

Political 
commitment 

Describe the level of support and commitment from regional/country 
leadership. 

Digital 
infrastructure 

Assess the current digital maturity at the site and anticipated 
improvements. 

GDPR Constraints Expose the challenges associated with GDPR compliance 

Secondary health 
data utilization 

Describe the present framework, or plans, for using secondary health data, 
especially in business intelligence and computational modelling for clinical 
applications. 

Implementation 
science tools 

Enumerate and discuss the tools or strategies employed to encourage 
stakeholder engagement and streamline HRA adoption. 

Section 4: Insights on reimbursement models 

Current model 
description 

Detail the existing reimbursement model, emphasizing its main 
components and principles 

Impact on HRA Discuss how the current reimbursement model influences HRA strategies, 
practices, and outcomes 

Alignment with 
patient outcomes 

Evaluate if and how the reimbursement model aligns with and incentivizes 
improved patient outcomes. 

Section 5: Strategies for wider adoption 

Open-source 
availability 

Discuss the advantages, challenges, or concerns regarding the use of open-
source software for HRA tools. 

Collaboration 
strategies 

Share experiences or plans on public-private collaborations that promote 
productive interactions and regional networking. 

 

9. LEVERAGING MORBIDITY METRICS AND DISEASE TRAJECTORIES (USE CASE 3) 

Integrating disease trajectories on morbidity groupers for risk stratification: a proof 

of concept - The final manuscript (Article 5) aimed to elucidate a proof of concept for 

formulating a novel morbidity grouper (i.e., the MADS). This new grouper seeks to 

optimize HRA tools in adjusting the assessment of the morbidity burden considering a 

principal disease and a cluster of its direct comorbid conditions throughout a 

sophisticated filtration of spurious disease associations achieved using BDMMs. 

Crucially, MADS offers an enhanced perspective on multimorbidity progression by 
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integrating data derived from temporal disease maps obtained from trajectory 

analyses. In this study, MDD served solely as an illustrative use case. 

The research identified strong correlations between MADS risk levels and the adverse 

effects of MDD and related conditions, indicating higher health risks (higher MADS 

score) was associated with increased healthcare resource use. A statistically significant 

association resulted between MADS risk levels and both pharmacological and non-

pharmacological healthcare expenditures. Also, high-risk groups showed a greater 

likelihood of disease progression and higher mortality rates within a year of MADS 

assessment. These findings reinforce the already described connection between 

multimorbidity (see “Multimorbidity's central influence in risk evaluation”) and 

adverse outcomes such as functional decline, reduced quality of life, and higher 

mortality rates but also underscore the immense burden borne by individuals and the 

healthcare system. 

Furthermore, MADS provided a unique and more comprehensive understanding of the 

complex nature of depression-related multimorbidity. It acknowledged that individuals 

with depression frequently encounter a spectrum of coexisting conditions, each 

exhibiting and progressing uniquely. This understanding transcends a bare 

enumeration of individual disorders, presenting a multifaceted evaluation that mirrors 

the patient’s health. Such a comprehensive perspective fosters an interdisciplinary 

approach integrating psychiatric and somatic medicine. By initiating collaborative 

prevention strategies across specialities, healthcare practitioners can deliver a more 

integrative and efficacious care regime for patients with intricate health requirements. 

 

9.1. Main limitations 

From theory to practice: The challenge of generalizing MADS approach - While 

Article 5 predominantly achieves its objectives and supports its underpinning 

hypothesis, it is essential to recognize a significant limitation in the MADS 

methodology: the utilization of the Global Burden of Disease (GBD) 2019(162) 

Disability Weights (DW)(5,162,163) to approximate disease burden. Though this 
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methodology has provided satisfactory outcomes and maintains a theoretical 

foundation, it is not without its inherent challenges. 

A significant challenge arises in estimating disease severity since this information is not 

present in the accessed health registries. Ideally, each EHR diagnosis should specify the 

severity, progression rate, and resulting disability of the disease. However, precisely 

determining disease progression and disability is complex, primarily due to the 

multifaceted nature of such assessments. Using average values and severity 

distributions can occasionally result in over or underestimating individual morbidity 

burdens. 

Furthermore, even with regular weight updates, employing DW introduces a degree of 

rigidity, reducing adaptability of the solution to specific environments. The morbidity 

burden of diseases on individuals and health systems can differ across regions, 

contingent on the matureness of the local health programs. An automated weight 

adjustment model, grounded in the statistical analysis of regional health data, would 

be advantageous to address to such diverse realities. Such an approach could also 

capture the impacts of less prevalent diseases, which are not considered in the GBD 

studies. 

 

9.2. Challenges and Opportunities  

The successful evaluation of the initial proof of concept with MADS paves the way for 

new avenues of research. Beyond the clinical validation of MADS, which is a mandatory 

next step, there are two pivotal areas to address. First, as mentioned previously, the 

tool's flexibility concerning the weights used to measure morbidity burden is first. 

Second is the deeper exploration of the tool's potential beyond the depression use 

case, escalating the approach to assessing other Non-Communicable Diseases (NCDs), 

broadening its impact, and paving the way for a holistic understanding and enhanced 

management of multimorbidity. 

This consideration naturally highlights potential cross-fertilisation opportunities 

between MADS and AMG. Since the inherent methodology of AMG relies on disease-

specific weights derived from statistical analyses incorporating mortality and 
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healthcare service utilisation data, this would allow MADS to calibrate disease impact 

according to specific health systems and regions. Conversely, MADS could offer AMG 

the capability to tailor its approach to specific disease clusters, enhancing its predictive 

accuracy in forecasting the progression of multimorbidity. 

Currently, the AMG system presents to the practitioners with up to 15 binary 

indicators signifying the current presence or absence of major prevalent chronic health 

problems, namely: diabetes mellitus, heart failure, chronic obstructive pulmonary 

disease, high blood pressure, depression, HIV/AIDS, chronic ischemic heart disease, 

stroke, chronic kidney disease, cirrhosis, osteoporosis, arthrosis, arthritis, dementia, 

chronic pain. In this context, MADS approach could enhance these markers' predictive 

quality, transforming them into specific probabilistic risk indicators correlated with 

NCD disease clusters. This enhancement would strengthen patient risk 

characterization, facilitate early identification of emerging conditions, and promote 

predictive medicine, bridging the gap between specialized and community care. It 

would empower healthcare practitioners to make informed decisions and provide 

personalized interventions and referrals that align with each patient's unique risks and 

needs. This integration can improve the coordination and continuity of care, ensuring 

that patients receive the appropriate support and interventions across different 

healthcare settings. 

In summary, the proposed research aims to develop accessory functions for the AMG 

tool, enhancing its capacity to predict multimorbidity progression while allowing to 

tailor its disease burden analysis to specific NCDs and associated comorbidities. The 

key objectives of this initiative are:  

1. Utilizing the interplay between MADS and AMG to adjust the morbidity burden 

analyses to distinct disease clusters. 

2. Amplifying AMG's predictive prowess for multimorbidity progression through 

integrating age-dependent disease-disease association weights from trajectory 

analyses. 

3. Enhancing flexibility and generalization by replacing the current DW with the 

AMG weighting system. 
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To achieve these aims, the MADS methodology should be integrated into the AMG 

framework, complementing its existing binary indicators for NCDs with more 

sophisticated probabilistic risk measures related to distinct NCD clusters. 

This endeavour is expected to yield a comprehensive understanding of multimorbidity 

dynamics, refined weightings tailored to specific disease clusters, and evolved risk 

indicators that offer granular insights into potential disease pathways associated with 

specific NCD categories. 

Finally, the three distinct use cases converge to form a comprehensive research 

roadmap that aligns with the Catalan HRA strategy, fully described in Article 4, and 

charts a plan for the EU-wide transferability of its mature facets. Collectively, these 

cases do not merely function as isolated analyses but coalesce to stress the thesis as a 

coherent, integrative exploration into advancing HRA methodologies. While the 

studies have illustrated a path forward, they have also sharply identified existing 

limitations, and there is a cognizant understanding of the need to evolve further and 

adapt to achieve the ideal environments for comprehensive HRA application. 

 

10. BRIDGING TODAY AND TOMORROW: PREPARING FOR NEW FRONTIERS. 

In the thesis introduction, the MCPM is portrayed as the ultimate goal for predictive 

modelling strategies. The essence of this approach has been distilled in the models 

developed in this thesis, emphasising the integration of various health determinants 

into a unique risk model. However, the realisation of a multilevel model that 

incorporates data from the four essential domains, namely: 1) clinical data, 2) 

population health, 3) informal care, and 4) biomedical research, remains as a utopia. 

This can partly be attributed to the complexities of integrating omics data, 

encompassing genomics, transcriptomics, proteomics, and metabolomics, into holistic 

modelling strategies. Research has indicated that the disease-specific nature of omics 

biomarkers presents challenges for its universal application across a spectrum of 

disease conditions(164). Although the potential of omics research is vast it is still an 

emerging field, as highlighted in the findings reported by high-impact research projects 

such as the Human Genome Project(165) or the International Human Epigenome 
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Consortium(166). Continuous advancements are being made, but a comprehensive 

understanding of the interplay among the human genome, interactome and diseasome 

remains elusive(167–169). Another factoring that hinders the practical application of 

multiomics data in the proposed modelling strategies is the vastness of omics datasets. 

Their hyperdimensional nature needs advanced computational tools and deep 

expertise for practical analysis and application. It should also be mentioned that there 

is no standard model for the persistence of omics data, as is the case with clinical data, 

like with OpenEHR(170). Nevertheless, despite these challenges, the current modelling 

approach has demonstrated notable efficacy. Its accomplishments are evidence to its 

potential, even without completely embracing the MCPM model. With advancements 

in omics research and the refinement of our computational capabilities, the MCPM as 

it is conceptualized should soon become a reality. 

In addition, the multisource data integration requires for deep interdisciplinary 

collaboration. However, the current healthcare processes, built on traditional 

workflows, are no longer sufficient to meet the multifaceted demands of today's 

challenges on collaborative healthcare. The emergence of Adaptive Case Management 

(ACM)(171,172) tools offers promising prospects in this scenario. ACM tools, designed 

with adaptability at their core, facilitate seamless communication among professionals 

and empower them to respond to individual patients' dynamic needs. By integrating 

these tools, healthcare systems can transition from rigid procedural routines to more 

fluid, responsive, and patient-centric models, ensuring that care is comprehensive and 

tailored to the unique requirements of each patient. Embedding AI risk assessment 

models within ACM is still an unmet need and would represent a significant 

advancement in pursuing safer, more effective, and highly personalized 

healthcare(172). 

Other factors such as the absence of standard data models or the lack of the 

appropriate infrastructure have been also determinant to limit the adoption of the 

MCPM approach coupled within the LHS framework (see Appendix: Personalized 

Medicine meets Artificial Intelligence; Chapter 10: “Multilevel Modelling with AI: The 

Synergy-COPD Endeavour” for more information), which is still considered an 

idealised vision for the future of healthcare. However, this scenario is getting closer 
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every day. Locally, the Catalan health system recognises this momentum, fostering 

governmental initiatives such as the Catalan Information Systems Master Plan(173). 

This is not mere technological upgrades but strategic endeavours to reconfigure 

healthcare's foundation. 

The Master plan's main aim is to generate a new clinical history based on OpenEHR,  to 

generate a unique and common data model that all SISCAT(174) stakeholders will use 

to register, store, exchange, and process health-related information. In addition, the 

model also contemplates the generation of an analytical repository (Figure 13), 

boasting a range of analytical tools, varying in complexity, designed to perform 

multiple tasks. 

 

Figure 13: Diagram of the architecture of the analytical repository conceived in the Catalan 

Information Systems Master Plan. The data collection layer integrates cloud services with 
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necessary structured and unstructured on-site data sources. The analysis layer manages the 

extraction of data from varied sources, converting it to the appropriate format for storage and 

analysis in the target data lake or warehouse. The application layer offers a gateway to 

standard platform services for data analytics, while the preprocessing layer ensures the 

business intelligence applications integrate with specific clinical workstations and patient 

portals. Figure taken from (173). 

 

These tools serve diverse purposes, from generating reports and dashboards, 

performing searches in indexed fields, undertaking multidimensional analyses, and 

devising AI-powered tools, recommendations, and clinical instruments. Over time, this 

repository is projected to incorporate various data types from public health, mental 

health, social care, and unstructured data sources, including textual content, imagery, 

and digital media platforms. Envisioning such comprehensive predictive models, as 

discussed in this PhD thesis, accentuates the significance of weaving together diverse 

datasets. 

In this regard, transitioning from academical formulations such as this PhD thesis to 

tangible, real-world implementation marks a pivotal milestone for any healthcare 

advancement. In this regard, the Catalan health system, with its mature digital 

infrastructure, offers an unparalleled environment for such a transformation. Within 

this ecosystem, the models presented in this thesis would not be just assessed; also 

contextualized, enhanced, and optimized, benefiting from the system's comprehensive 

data resources, robust infrastructure, and analytical capabilities. This thesis could 

contribute in fostering innovations to undergo rigorous inspection, iterative 

refinement, and continuous evaluation, ensuring maximum utility for both patients 

and healthcare professionals aligning perfectly with the principles of a LHS. 
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CONCLUSIONS 

 

1. Embracing holistic health risk assessment strategies that considers 

multimorbidity assessment and other health determinants is fundamental for 

steering health system transformations towards patient-focused, value-driven 

healthcare. 

 

2. The assessment of the burden of multimorbidity is a core driver in risk 

evaluations of chronic care. The use of morbidity groupers becomes crucial in 

predictive modelling, offering advantages ranging from the characterisation of 

clinical complexity to the reduction of the analysis’s dimensionality, favouring 

the models’ explainability. 

 

3. Population-based and clinically oriented health risk assessment are 

complementary and synergistic entities. Nevertheless, the ethical and 

regulatory dimensions of using health data for clinical forecasting must be 

thoroughly evaluated, and the interventions must be tailored to the local 

legislation. 

 

4. The transference and adoption of mature health risk assessment strategies 

across different sites is achievable, if the following conditions are met: 

a. Strong political commitment. 

b. Appropriate digital infrastructure ensuring dynamic interoperability 

among needed datasets.  

c. Willingness to overcome potential limitations for secondary health data 

use, due to GDPR compliance. 

 

5. Incorporating insights from disease trajectories analysis, in terms of temporal 

disease-disease association weights, while improving the filtering of indirect 

disease associations using Bayesian direct multimorbidity maps, reported 

promising prospects to adjust the morbidity burden assessment to an index 
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disease and its comorbid conditions and enhance the prediction of the 

progression of multimorbidity.  



83 
 

REFERENCES 

 

1.  Vetrano DL, Calderón-Larrañaga A, Marengoni A, Onder G, Bauer JM, Cesari M, 
et al. An International Perspective on Chronic Multimorbidity: Approaching the 
Elephant in the Room. J Gerontol A Biol Sci Med Sci. 2018;73(10):1350–6.  

2.  Buja A, Claus M, Perin L, Rivera M, Corti MC, Avossa F, et al. Multimorbidity 
patterns in high-need, high-cost elderly patients. PLoS One. 2018 Dec 1;13(12).  

3.  Hajat C, Stein E. The global burden of multiple chronic conditions: A narrative 
review. Prev Med Reports. 2018 Dec 1;12:284–93.  

4.  Garin N, Olaya B, Moneta MV, Miret M, Lobo A, Ayuso-Mateos JL, et al. Impact 
of Multimorbidity on Disability and Quality of Life in the Spanish Older 
Population. PLoS One. 2014 Nov 6;9(11):e111498.  

5.  Hilderink HBM, Plasmans MHD, Snijders BEP, Boshuizen HC, René MJJC(, Poos ), 
et al. Accounting for multimorbidity can affect the estimation of the Burden of 
Disease: a comparison of approaches. 2016;  

6.  Dragioti E, Radua J, Solmi M, Gosling CJ, Oliver D, Lascialfari F, et al. Impact of 
mental disorders on clinical outcomes of physical diseases: an umbrella review 
assessing population attributable fraction and generalized impact fraction. 
World Psychiatry. 2023 Feb 1;22(1):86–104.  

7.  Langan J, Stewart W M, Smith DJ. Multimorbidity and mental health: can 
psychiatry rise to the challenge? Br J Psychiatry. 2013 Jun;202(6):391–3.  

8.  Monterde D, Vela E, Clèries M, Garcia-Eroles L, Roca J, Pérez-Sust P. 
Multimorbidity as a predictor of health service utilization in primary care: a 
registry-based study of the Catalan population. 2020 Feb 17;21(1).  

9.  Lehnert T, Heider D, Leicht H, Heinrich S, Corrieri S, Luppa M, et al. Review: 
Health Care Utilization and Costs of Elderly Persons With Multiple Chronic 
Conditions: http://dx.doi.org/101177/1077558711399580. 2011 Aug 
3;68(4):387–420.  

10.  Tran PB, Kazibwe J, Nikolaidis GF, Linnosmaa I, Rijken M, van Olmen J. Costs of 
multimorbidity: a systematic review and meta-analyses. BMC Med. 2022 Dec 
1;20(1).  

11.  Rahman MH, Rana HK, Peng S, Kibria MG, Islam MZ, Mahmud SMH, et al. 
Bioinformatics and system biology approaches to identify pathophysiological 
impact of COVID-19 to the progression and severity of neurological diseases. 
Comput Biol Med. 2021 Nov 1;138:104859.  

12.  Taraschi A, Cimini C, Colosimo A, Ramal-Sanchez M, Moussa F, Mokh S, et al. 
Human Immune System Diseasome Networks and Female Oviductal 
Microenvironment: New Horizons to be Discovered. Front Genet. 2022 Jan 



84 
 

27;12:2752.  

13.  Chauhan PK, Sowdhamini R. Integrative network analysis interweaves the 
missing links in cardiomyopathy diseasome. Sci Reports 2022 121. 2022 Nov 
16;12(1):1–11.  

14.  Calderón-Larrañaga A, Vetrano DL, Ferrucci L, Mercer SW, Marengoni A, Onder 
G, et al. Multimorbidity and functional impairment-bidirectional interplay, 
synergistic effects and common pathways. J Intern Med. 2019 Mar 
1;285(3):255–71.  

15.  Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S. Inflammaging and ‘Garb-
aging.’ Trends Endocrinol Metab. 2017 Mar 1;28(3):199–212.  

16.  Sies H. Oxidative stress: a concept in redox biology and medicine. 2015;  

17.  Cesari M, Penninx BWJH, Pahor M, Lauretani F, Corsi AM, Williams GR, et al. 
Inflammatory Markers and Physical Performance in Older Persons: The 
InCHIANTI Study. Journals Gerontol - Ser A Biol Sci Med Sci. 2004;59(3):242–8.  

18.  McEwen BS. Protection and Damage from Acute and Chronic Stress: Allostasis 
and Allostatic Overload and Relevance to the Pathophysiology of Psychiatric 
Disorders. Ann N Y Acad Sci. 2004 Dec 1;1032(1):1–7.  

19.  Zhou X, Menche J, Barabási AL, Sharma A. Human symptoms-disease network. 
Nat Commun. 2014 Jun 26;5.  

20.  Menche J, Sharma A, Kitsak M, Ghiassian SD, Vidal M, Loscalzo J, et al. 
Uncovering disease-disease relationships through the incomplete human 
interactome. Science. 2015 Feb 2;347(6224):1257601.  

21.  Goh K Il, Choi IG. Exploring the human diseasome: the human disease network. 
Brief Funct Genomics. 2012 Nov;11(6):533–42.  

22.  Barabási A-L. Network Medicine — From Obesity to the “Diseasome.” N Engl J 
Med. 2007 Jul 26;357(4):404–7.  

23.  Murray SA, Kendall M, Boyd K, Sheikh A. Illness trajectories and palliative care. 
BMJ. 2005 Apr 28;330(7498):1007–11.  

24.  Jensen AB, Moseley PL, Oprea TI, Ellesøe SG, Eriksson R, Schmock H, et al. 
Temporal disease trajectories condensed from population-wide registry data 
covering 6.2 million patients. Nat Commun 2014 51. 2014 Jun 24;5(1):1–10.  

25.  Siggaard T, Reguant R, Jørgensen IF, Haue AD, Lademann M, Aguayo-Orozco A, 
et al. Disease trajectory browser for exploring temporal, population-wide 
disease progression patterns in 7.2 million Danish patients. Nat Commun. 2020 
Dec 1;11(1).  

26.  Tinetti ME, Fried TR, Boyd CM. Designing Health Care for the Most Common 
Chronic Condition—Multimorbidity. JAMA. 2012 Jun 6;307(23):2493.  

27.  Bretos-Azcona PE, Sánchez-Iriso E, Cabasés Hita JM. Tailoring integrated care 
services for high-risk patients with multiple chronic conditions: A risk 



85 
 

stratification approach using cluster analysis. BMC Health Serv Res. 
2020;20(1):1–9.  

28.  Hewner S, Sullivan SS, Yu G. Reducing Emergency Room Visits and In-
Hospitalizations by Implementing Best Practice for Transitional Care Using 
Innovative Technology and Big Data. Worldviews Evidence-Based Nurs. 2018 Jun 
1;15(3):170–7.  

29.  Morrison J, Palumbo MV, Rambur B. Reducing Preventable Hospitalizations With 
Two Models of Transitional Care. J Nurs Scholarsh. 2016 May 1;48(3):322–9.  

30.  Flores M, Glusman G, Brogaard K, Price ND, Hood L. P4 medicine: How systems 
medicine will transform the healthcare sector and society. Vol. 10, Personalized 
Medicine. NIH Public Access; 2013. p. 565–76.  

31.  Federoff HJ, Gostin LO. Evolving from reductionism to holism: Is there a future 
for systems medicine? Vol. 302, JAMA - Journal of the American Medical 
Association. JAMA; 2009. p. 994–6.  

32.  Diederichs C, Berger K, Bartels DB. The measurement of multiple chronic 
diseases - A systematic review on existing multimorbidity indices. Journals 
Gerontol - Ser A Biol Sci Med Sci. 2011;66 A(3):301–11.  

33.  Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying 
prognostic comorbidity in longitudinal studies: development and validation. J 
Chronic Dis. 1987;40(5):373–83.  

34.  Elixhauser A, Steiner C, Harris DR, Coffey RM. Comorbidity measures for use 
with administrative data. Med Care. 1998;36(1):8–27.  

35.  Johns Hopkins ACG® System [Internet]. [cited 2023 Aug 29]. Available from: 
https://www.hopkinsacg.org/ 

36.  3MTM Clinical Risk Groups (CRGs)  | 3M [Internet]. [cited 2023 Apr 24]. Available 
from: https://www.3m.com/3M/en_US/health-information-systems-us/drive-
value-based-care/patient-classification-methodologies/crgs/ 

37.  3MTM All Patient Refined Diagnosis Related Groups (APR DRG) | 3M [Internet]. 
[cited 2023 Aug 29]. Available from: https://www.3m.com/3M/en_US/health-
information-systems-us/drive-value-based-care/patient-classification-
methodologies/apr-drgs/ 

38.  Vela E, Clèries M, Monterde D, Carot-Sans G, Coca M, Valero-Bover D, et al. 
Performance of quantitative measures of multimorbidity: a population-based 
retrospective analysis. BMC Public Heal 2021 211. 2021 Oct;21(1):1–9.  

39.  Monterde D, Vela E, Clèries M. Adjusted morbidity groups: A new multiple 
morbidity measurement of use in Primary Care. Aten primaria. 2016 Dec 
1;48(10):674–82.  

40.  Monterde D, Vela E, Clèries M, García Eroles L, Pérez Sust P. Validity of adjusted 
morbidity groups with respect to clinical risk groups in the field of primary care. 
Aten Primaria. 2018 Feb 9;51(3):153–61.  



86 
 

41.  Monterde D, Carot-Sans G, Cainzos-Achirica M, Abilleira S, Coca M, Vela E, et al. 
Performance of Three Measures of Comorbidity in Predicting Critical COVID-19: 
A Retrospective Analysis of 4607 Hospitalized Patients. 2021;  

42.  Monterde D, Cainzos-Achirica M, Cossio-Gil Y, García-Eroles L, Pérez-Sust P, 
Arrufat M, et al. Performance of Comprehensive Risk Adjustment for the 
Prediction of In-Hospital Events Using Administrative Healthcare Data: The 
Queralt Indices. Risk Manag Healthc Policy. 2020;13:271.  

43.  Catalan Health Service [Internet]. [cited 2023 Jan 21]. Available from: 
https://catsalut.gencat.cat/ca/inici/ 

44.  Catalan Health Department. Shared Clinical History in Catalonia [Internet]. [cited 
2023 Jun 16]. Available from: 
https://salutweb.gencat.cat/ca/ambits_actuacio/linies_dactuacio/tic/sistemes-
informacio/gestio-assistencial/hc3/index.html#googtrans(ca%7Cen) 

45.  Marin-Gomez FX, Mendioroz-Peña J, Mayer MA, Méndez-Boo L, Mora N, 
Hermosilla E, et al. Comparing the clinical characteristics and mortality of 
residential and non-residential older people with COVID-19: Retrospective 
observational study. Int J Environ Res Public Health. 2022 Jan 1;19(1):483.  

46.  Roso-Llorach A, Serra-Picamal X, Cos FX, Pallejà-Millán M, Mateu L, Rosell A, et 
al. Evolving mortality and clinical outcomes of hospitalized subjects during 
successive COVID-19 waves in Catalonia, Spain. Glob Epidemiol. 2022 Dec 
1;4:100071.  

47.  Barrio-Cortes J, Soria-Ruiz-Ogarrio M, Martínez-Cuevas M, Castaño-Reguillo A, 
Bandeira-de Oliveira M, Beca-Martínez MT, et al. Use of primary and hospital 
care health services by chronic patients according to risk level by adjusted 
morbidity groups. BMC Health Serv Res. 2021 Dec 1;21(1):1–13.  

48.  Barrio-Cortes J, Castaño-Reguillo A, Beca-Martínez MT, Bandeira-de Oliveira M, 
López-Rodríguez C, Jaime-Sisó MÁ. Chronic diseases in the geriatric population: 
morbidity and use of primary care services according to risk level. BMC Geriatr. 
2021 Dec 1;21(1):1–11.  

49.  Vela E, Tényi Á, Cano I, Monterde D, Cleries M, Garcia-Altes A, et al. Population-
based analysis of patients with COPD in Catalonia: a cohort study with 
implications for clinical management. BMJ Open. 2018 Mar 1;8(3):e017283.  

50.  Dueñas-Espin I, Vela E, Pauws S, Bescos C, Cano I, Cleries M, et al. Proposals for 
enhanced health risk assessment and stratification in an integrated care 
scenario. BMJ Open. 2016 Apr 1;6(4):e010301.  

51.  Cano I, Dueñas-Espín I, Hernandez C, De Batlle J, Benavent J, Contel JC, et al. 
Protocol for regional implementation of community-based collaborative 
management of complex chronic patients. npj Prim Care Respir Med. 
2017;27(1):1–6.  

52.  Cerezo-Cerezo J, Arias-López C. GOOD PRACTICE BRIEF - Population 
stratification: A fundamental instrument used for population health 



87 
 

management in Spain. 2018.  

53.  Haas LR, Takahashi P, Shah ND, Stroebel RJ, Bernand ME, Finnie DM, et al. Risk-
stratification methods for identifying patients for care coordination. Am J Manag 
Care. 2013;19(9):725–32.  

54.  Nuti S, Vainieri M, Bonini A. Disinvestment for re-allocation: A process to 
identify priorities in healthcare. Health Policy (New York). 2010;95(2–3):137–43.  

55.  Marshall M, Klazinga N, Leatherman S, Hardy C, Bergmann E, Pisco L, et al. OECD 
Health Care Quality Indicator Project. The expert panel on primary care 
prevention and health promotion. Int J Qual Heal Care. 2006 Sep 
1;18(suppl_1):21–5.  

56.  Porter ME. Value-based health care delivery. Ann Surg. 2008 Oct;248(4):503–9.  

57.  Porter ME, Teisberg EO. Redefining Health Care: Creating Value-Based 
Competition on Results. Harvard Business School Press. 2006.  

58.  Mattie H, Reidy P, Bachtiger P, Lindemer E, Nikolaev N, Jouni M, et al. A 
Framework for Predicting Impactability of Digital Care Management Using 
Machine Learning Methods. https://home.liebertpub.com/pop. 2020 Jul 
28;23(4):319–25.  

59.  Smith MA, Yu M, Huling JD, Wang X, DeLonay A, Jaffery J. Impactability 
Modeling for Reducing Medicare Accountable Care Organization Payments and 
Hospital Events in High-Need High-Cost Patients: Longitudinal Cohort Study. J 
Med Internet Res 2022;24(6)e29420 https//www.jmir.org/2022/6/e29420. 2022 
Jun 13;24(6):e29420.  

60.  Institute and Faculty of Actuaries. Impactability Modelling for Population Health 
Management. A review of current concepts and practices. 2020.  

61.  Sackett DL, Rosenberg WMC, Gray JAM, Haynes RB, Richardson WS. Evidence 
based medicine: what it is and what it isn’t. BMJ  Br Med J. 1996 Jan 
1;312(7023):71.  

62.  Topol EJ. High-performance medicine: the convergence of human and artificial 
intelligence. Nat Med. 2019;25:44–56.  

63.  Greenhalgh T, Howick J, Maskrey N, Brassey J, Burch D, Burton M, et al. Essay: 
Evidence based medicine: a movement in crisis? BMJ. 2014 Jun 13;348.  

64.  Beam AL, Kohane IS. Big Data and Machine Learning in Health Care. JAMA. 2018 
Apr 3;319(13):1317–8.  

65.  Johnson AEW, Ghassemi MM, Nemati S, Niehaus KE, Clifton D, Clifford GD. 
Machine Learning and Decision Support in Critical Care. Proc IEEE Inst Electr 
Electron Eng. 2016 Feb 1;104(2):444.  

66.  Hunt DL, Haynes RB, Hanna SE, Smith K. Effects of computer-based clinical 
decision support systems on physician performance and patient outcomes: A 
systematic review. Vol. 280, Journal of the American Medical Association. JAMA; 
1998. p. 1339–46.  



88 
 

67.  Sutton RT, Pincock D, Baumgart DC, Sadowski DC, Fedorak RN, Kroeker KI. An 
overview of clinical decision support systems: benefits, risks, and strategies for 
success. npj Digit Med. 2020;3(1):1–10.  

68.  Georgiou A, Prgomet M, Markewycz A, Adams E, Westbrook JI. The impact of 
computerized provider order entry systems on medical-imaging services: A 
systematic review. J Am Med Informatics Assoc. 2011;18(3):335–40.  

69.  Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. 
Development and validation of a deep learning algorithm for detection of 
diabetic retinopathy in retinal fundus photographs. JAMA - J Am Med Assoc. 
2016;316(22):2402–10.  

70.  Spyridonos P, Cavouras D, Ravazoula P, Nikiforidis G. A computer-based 
diagnostic and prognostic system for assessing urinary bladder tumour grade 
and predicting cancer recurrence. 
http://dx.doi.org/101080/1463923021000043723. 2009 Jun;27(2):111–22.  

71.  Berner E. Clinical Decision Support Systems: Theory and practice. 3rd ed. Berner 
ES, editor. New York, NY: Springer New York; 2016. (Health Informatics).  

72.  Bell CM, Jalali A, Mensah E. A Decision Support Tool for Using an ICD-10 
Anatomographer to Address Admission Coding Inaccuracies: A Commentary. 
Online J Public Health Inform. 2013;5(2):3–6.  

73.  Sequist TD, Zaslavsky AM, Marshall R, Fletcher RH, Ayanian JZ. Patient and 
physician reminders to promote colorectal cancer screening A randomized 
controlled trial. Arch Intern Med. 2009 Feb 23;169(4):364–71.  

74.  McDonald CJ, Hui SL, Tierney WM. Effects of computer reminders for influenza 
vaccination on morbidity during influenza epidemics. MD Comput. 1992 Sep 
1;9(5):304–12.  

75.  Graumlich JF, Novotny NL, Stephen Nace G, Kaushal H, Ibrahim-Ali W, 
Theivanayagam S, et al. Patient readmissions, emergency visits, and adverse 
events after software-assisted discharge from hospital: Cluster randomized trial. 
J Hosp Med. 2009 Sep 1;4(7):E11–9.  

76.  Islam F, Sabbe M, Heeren P, Milisen K. Consistency of decision support software-
integrated telephone triage and associated factors: a systematic review. BMC 
Med Inform Decis Mak. 2021;21(1):1–10.  

77.  McMullin ST, Lonergan TP, Rynearson CS, Doerr TD, Veregge PA, Scanlan ES. 
Impact of an evidence-based computerized decision support system on primary 
care prescription costs. Ann Fam Med. 2004;2(5):494–8.  

78.  World Health Organization(WHO). Determinants of health [Internet]. [cited 
2023 Sep 3]. Available from: https://www.who.int/news-room/questions-and-
answers/item/determinants-of-he 

79.  Holmgren AJ, Adler-Milstein J, McCullough J. Are all certified EHRs created 
equal? Assessing the relationship between EHR vendor and hospital meaningful 
use performance. J Am Med Inform Assoc. 2018 Jun 1;25(6):654.  



89 
 

80.  Wright A, Sittig DF, Ash JS, Sharma S, Pang JE, Middleton B. Clinical Decision 
Support Capabilities of Commercially-available Clinical Information Systems. J 
Am Med Inform Assoc. 2009 Sep;16(5):637.  

81.  Osheroff JA, Teich JM, Middleton B, Steen EB, Wright A, Detmer DE. A Roadmap 
for National Action on Clinical Decision Support. J Am Med Inform Assoc. 2007 
Mar;14(2):141.  

82.  Quinn TP, Jacobs S, Senadeera M, Le V, Coghlan S. The three ghosts of medical 
AI: Can the black-box present deliver? Artif Intell Med. 2022 Feb 1;124:102158.  

83.  Maddox TM, Albert NM, Borden WB, Curtis LH, Ferguson TB, Kao DP, et al. The 
learning healthcare system and cardiovascular care: A scientific statement from 
the American Heart Association. Vol. 135, Circulation. 2017. 826–857 p.  

84.  Flynn AJ, Friedman CP, Boisvert P, Landis-Lewis Z, Lagoze C. The Knowledge 
Object Reference Ontology (KORO): A formalism to support management and 
sharing of computable biomedical knowledge for learning health systems. Learn 
Heal Syst. 2018 Apr 1;2(2):e10054.  

85.  Cano I, Lluch-Ariet M, Gomez-Cabrero D, Maier D, Kalko S, Cascante M, et al. 
Biomedical research in a digital health framework. J Transl Med. 2014 Nov 
28;12(Suppl 2):S10.  

86.  Miralles F, Gomez-Cabrero D, Lluch-Ariet M, Tegnér J, Cascante M, Roca J. 
Predictive medicine: Outcomes, challenges and opportunities in the Synergy-
COPD project. J Transl Med. 2014;12(Suppl 2):1–8.  

87.  Roca J, Tenyi A, Cano I. Digital Health for Enhanced Understanding and 
Management of Chronic Conditions: COPD as a Use Case. In: Wolkenhauer O, 
editor. Systems Medicine: Integrative, Qualitative and Computational 
Approaches. Elsevier; 2020. p. 264–74.  

88.  Olza A, Millán E, Rodríguez-Álvarez MX. Development and validation of 
predictive models for unplanned hospitalization in the Basque Country: 
analyzing the variability of non-deterministic algorithms. BMC Med Inform Decis 
Mak. 2023;23(1):152.  

89.  Valderas JM, Kotzeva A, Espallargues M, Guyatt G, Ferrans CE, Halyard MY, et al. 
The impact of measuring patient-reported outcomes in clinical practice: A 
systematic review of the literature. Qual Life Res. 2008;17(2):179–93.  

90.  Gottlieb LM, Tirozzi KJ, Manchanda R, Burns AR, Sandel MT. Moving electronic 
medical records upstream incorporating social determinants of health. Am J 
Prev Med. 2015 Feb 1;48(2):215–8.  

91.  Castelyn G, Laranjo L, Schreier G, Gallego B. Predictive performance and impact 
of algorithms in remote monitoring of chronic conditions: A systematic review 
and meta-analysis. Int J Med Inform. 2021;156:104620.  

92.  Piwek L, Ellis DA, Andrews S, Joinson A. The Rise of Consumer Health Wearables: 
Promises and Barriers. PLoS Med. 2016;13(2):1–9.  



90 
 

93.  Denny JC, Rutter JL, Goldstein DB, Philippakis A, Smoller JW, Jenkins G, et al. The 
“All of Us” Research Program. N Engl J Med. 2019;381(7):668–76.  

94.  Torkamani A, Andersen KG, Steinhubl SR, Topol EJ. High-Definition Medicine. 
Cell. 2017;170(5):828–43.  

95.  Stover AM, Haverman L, van Oers HA, Greenhalgh J, Potter CM, Ahmed S, et al. 
Using an implementation science approach to implement and evaluate patient-
reported outcome measures (PROM) initiatives in routine care settings. Qual 
Life Res. 2021;30(11):3015–33.  

96.  Knapp A, Harst L, Hager S, Schmitt J, Scheibe M. Use of patient-reported 
outcome measures and patient-reported experience measures within evaluation 
studies of telemedicine applications: Systematic review. J Med Internet Res. 
2021;23(11).  

97.  Karczewski KJ, Snyder MP. Integrative omics for health and disease. Nat Rev 
Genet 2018 195. 2018 Feb 26;19(5):299–310.  

98.  Subramanian I, Verma S, Kumar S, Jere A, Anamika K. Multi-omics Data 
Integration, Interpretation, and Its Application. Bioinform Biol Insights. 2020 Jan 
31;14.  

99.  Argelaguet R, Velten B, Arnol D, Dietrich S, Zenz T, Marioni JC, et al. Multi-Omics 
Factor Analysis—a framework for unsupervised integration of multi-omics data 
sets. Mol Syst Biol. 2018 Jun 1;14(6):e8124.  

100.  Bright TJ, Wong A, Dhurjati R, Bristow E, Bastian L, Coeytaux RR, et al. Effect of 
Clinical Decision-Support Systems. Ann Intern Med. 2012 Jul 3;157(1):29.  

101.  Doos L, Packer C, Ward D, Simpson S, Stevens A. Past speculations of the future: 
a review of the methods used for forecasting emerging health technologies. 
2015;  

102.  Trinkley KE, Kahn MG, Bennett TD, Glasgow RE, Haugen H, Kao DP, et al. 
Integrating the Practical Robust Implementation and Sustainability Model With 
Best Practices in Clinical Decision Support Design: Implementation Science 
Approach. J Med Internet Res. 2020 Oct 1;22(10).  

103.  Collin CB, Gebhardt T, Golebiewski M, Karaderi T, Hillemanns M, Khan FM, et al. 
Computational Models for Clinical Applications in Personalized Medicine—
Guidelines and Recommendations for Data Integration and Model Validation. J 
Pers Med. 2022;12(2).  

104.  Kilsdonk E, Peute LW, Jaspers MWM. Factors influencing implementation 
success of guideline-based clinical decision support systems: A systematic 
review and gaps analysis. Int J Med Inform. 2017 Feb 1;98:56–64.  

105.  Belling K, Caldara M, Collin CB, Gebhardt T, Golebiewski M, Karaderi T, et al. 
Towards in silico approaches for personalised medicine – Recommendations for 
verifying and validating predictive computational models in EU collaborative 
research. 2023.  



91 
 

106.  D’Amore JD, Li C, McCrary L, Niloff JM, Sittig DF, McCoy AB, et al. Using Clinical 
Data Standards to Measure Quality: A New Approach. Appl Clin Inform. 2018 
Apr 1;9(2):422–31.  

107.  Health Level Seven International. Health Level Seven International - Homepage | 
HL7 International [Internet]. [cited 2023 Sep 3]. Available from: 
https://www.hl7.org/ 

108.  Health Level Seven International. HL7 FHIR Foundation [Internet]. [cited 2023 
Sep 3]. Available from: https://fhir.org/ 

109.  Clinical Data Interchange Standards Consortium. CDISC Standards in the Clinical 
Research Process [Internet]. [cited 2023 Sep 3]. Available from: 
https://www.cdisc.org/standards 

110.  Observational Health Data Sciences and Informatics. The OMOP Common Data 
Model [Internet]. [cited 2023 Sep 3]. Available from: 
https://www.ohdsi.org/data-standardization/ 

111.  openEHR. openEHR [Internet]. [cited 2023 Sep 3]. Available from: 
https://openehr.org/ 

112.  CTN 139 Technical Committee. Health informatics. Electronic health record 
communication. Part 1: Reference model (ISO 13606-1:2019).  

113.  European Health Data Space. European Health Data Space [Internet]. [cited 
2023 Sep 3]. Available from: https://health.ec.europa.eu/ehealth-digital-health-
and-care/european-health-data-space_en 

114.  EU-Stands4pm. EU-Stands4pm: Home [Internet]. [cited 2023 Sep 3]. Available 
from: https://www.eu-stands4pm.eu/home 

115.  International Organization for Standardization. ISO/TS 9491-1:2023 - 
Biotechnology — Predictive computational models in personalized medicine 
research — Part 1: Constructing, verifying and validating models [Internet]. 
[cited 2023 Sep 3]. Available from: https://www.iso.org/standard/83516.html 

116.  Health Research & Innovation Cloud. HealthyCloud – Health Research & 
Innovation Cloud | HealthyCloud | Project | Fact sheet | H2020 | CORDIS | 
European Commission [Internet]. [cited 2023 Sep 3]. Available from: 
https://cordis.europa.eu/project/id/965345 

117.  Medical Device Coordination Group. Guidance - MDCG endorsed documents 
and other guidance [Internet]. [cited 2023 Sep 3]. Available from: 
https://health.ec.europa.eu/medical-devices-sector/new-regulations/guidance-
mdcg-endorsed-documents-and-other-guidance_en 

118.  Mahadevaiah G, Prasad R V., Bermejo I, Jaffray D, Dekker A, Wee L. Artificial 
intelligence-based clinical decision support in modern medical physics: 
Selection, acceptance, commissioning, and quality assurance. Med Phys. 2020 
May 1;47(5):e228–35.  

119.  Kilsdonk E, Peute LWP, Knijnenburg SL, Jaspers MWM. Factors Known to 



92 
 

Influence Acceptance of Clinical Decision Support Systems. Stud Health Technol 
Inform. 2011;169:150–4.  

120.  Gutiérrez-Rojas L, Porras-Segovia A, Dunne H, Andrade-González N, Cervilla J. 
Prevalence and correlates of major depressive disorder: a systematic review. 
Brazilian J Psychiatry. 2020;42(6):657–72.  

121.  Damschroder LJ, Reardon CM, Opra Widerquist MA, Lowery J. Conceptualizing 
outcomes for use with the Consolidated Framework for Implementation 
Research (CFIR): the CFIR Outcomes Addendum. Implement Sci. 2022 Dec 
1;17(1).  

122.  Feldstein AC, Glasgow RE. A Practical, Robust Implementation and Sustainability 
Model (PRISM) for Integrating Research Findings into Practice. Jt Comm J Qual 
Patient Saf. 2008 Apr 1;34(4):228–43.  

123.  JADECARE (2020-2023). Joint Action on implementation of digitally enabled 
integrated person-centred care [Internet]. 2020. Available from: 
https://www.jadecare.eu/ 

124.  TRAJECTOME (2020-2023). Temporal disease map-based stratification of 
depression-related multimorbidities: towards quantitative investigations of 
patient trajectories and predictions of multi-target drug candidates [Internet]. 
2020. Available from: https://semmelweis.hu/trajectome/en/ 

125.  Rijken M, Bekkema N, Boeckxstaens P, Schellevis FG, De Maeseneer JM, 
Groenewegen PP. Chronic Disease Management Programmes: An adequate 
response to patients’ needs? Heal Expect. 2014;17(5):608–21.  

126.  Hernández C, Alonso A, Garcia-Aymerich J, Serra I, Marti D, Rodriguez-Roisin R, 
et al. Effectiveness of community-based integrated care in frail COPD patients: a 
randomised controlled trial. NPJ Prim care Respir Med. 2015 Apr 9;25.  

127.  Kindig D. What Are We Talking About When We Talk About Population Health? 
[Internet]. Health Affairs Forefront. 2015 [cited 2023 May 26]. Available from: 
https://www.healthaffairs.org/content/forefront/we-talking-we-talk-
population-health 

128.  Marx P, Antal P, Bolgar B, Bagdy G, Deakin B, Juhasz G. Comorbidities in the 
diseasome are more apparent than real: What Bayesian filtering reveals about 
the comorbidities of depression. PLoS Comput Biol. 2017 Jun 1;13(6).  

129.  Bolgár B, Antal P. VB-MK-LMF: Fusion of drugs, targets and interactions using 
variational Bayesian multiple kernel logistic matrix factorization. BMC 
Bioinformatics. 2017 Oct 4;18(1):1–18.  

130.  Fernandes M, Vieira SM, Leite F, Palos C, Finkelstein S, Sousa JMC. Clinical 
Decision Support Systems for Triage in the Emergency Department using 
Intelligent Systems: a Review. Artif Intell Med. 2020 Jan 1;102:101762.  

131.  Sánchez-Salmerón R, Gómez-Urquiza JL, Albendín-García L, Correa-Rodríguez M, 
Martos-Cabrera MB, Velando-Soriano A, et al. Machine learning methods 
applied to triage in emergency services: A systematic review. Int Emerg Nurs. 



93 
 

2022 Jan 1;60:101109.  

132.  Kansagara D, Englander H, Salanitro A, Kagen D, Theobald C, Freeman M, et al. 
Risk Prediction Models for Hospital Readmission: A Systematic Review. Risk 
Predict Model Hosp Readmission A Syst Rev. 2011;  

133.  Li J, Du G, Clouser JM, Stromberg A, Mays G, Sorra J, et al. Improving evidence-
based grouping of transitional care strategies in hospital implementation using 
statistical tools and expert review. BMC Health Serv Res. 2021 Dec 1;21(1):1–20.  

134.  Jamei M, Nisnevich A, Wetchler E, Sudat S, Liu E. Predicting all-cause risk of 30-
day hospital readmission using artificial neural networks. PLoS One. 2017;  

135.  Liu W, Stansbury C, Singh K, Ryan AM, Sukul D, Mahmoudi E, et al. Predicting 30-
day hospital readmissions using artificial neural networks with medical code 
embedding. PLoS One. 2020 Apr 1;15(4):e0221606.  

136.  Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M, et al. Scalable and 
accurate deep learning with electronic health records. 2018;1:18.  

137.  Farré N, Vela E, Clèries M, Bustins M, Cainzos-Achirica M, Enjuanes C, et al. 
Medical resource use and expenditure in patients with chronic heart failure: a 
population-based analysis of 88 195 patients. Eur J Heart Fail. 2016 Sep 
1;18(9):1132–40.  

138.  Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK Biobank: An 
Open Access Resource for Identifying the Causes of a Wide Range of Complex 
Diseases of Middle and Old Age. PLoS Med. 2015 Mar 1;12(3):1001779.  

139.  Borodulin K, Tolonen H, Jousilahti P, Jula A, Juolevi A, Koskinen S, et al. Cohort 
profile: The national finRiSK study. Vol. 47, International Journal of 
Epidemiology. Oxford University Press; 2018. p. 696-696I.  

140.  Valsta L, Kaartinen N, Tapanainen H, Männistö S, Sääksjärvi K, Suomessa R. 
FinHealth 2017 Study : Methods. THL; 2019.  

141.  Heistaro S. Methodology report : Health 2000 survey. Kansanterveyslaitos; 
2008.  

142.  Calle ML, Urrea V. Letter to the editor: Stability of Random Forest importance 
measures. Brief Bioinform. 2011;12(1):86–9.  

143.  Brazier JE, Harper R, Jones NM, O’Cathain A, Thomas KJ, Usherwood T, et al. 
Validating the SF-36 health survey questionnaire: new outcome measure for 
primary care. BMJ. 1992 Jul 18;305(6846):160–4.  

144.  Mahoney F, Barthel D. Functional evaluation: the Barthel index. Md State Med J. 
1965;14(2):61–5.  

145.  Bergstrom N, Demuth PJ, Braden BJ. A clinical trial of the Braden Scale for 
Predicting Pressure Sore Risk. Nurs Clin North Am. 1987 Jun 1;22(2):417–28.  

146.  Guigoz Y, Vellas BJ. Malnutrition in the elderly: the Mini Nutritional Assessment 
(MNA). Ther Umsch. 1997;54(6):345—350.  



94 
 

147.  Barber JH, Wallis JB, McKeating E. A postal screening questionnaire in 
preventive geriatric care. J R Coll Gen Pract. 1980;30(210):49–51.  

148.  Kim HS, Lee S, Kim JH. Real-world evidence versus randomized controlled trial: 
Clinical research based on electronic medical records. J Korean Med Sci. 
2018;33(34):1–7.  

149.  Thompson D. Replication of Randomized, Controlled Trials Using Real-World 
Data: What Could Go Wrong? Value Heal. 2021;24(1):112–5.  

150.  Mihaylov I, Kańduła M, Krachunov M, Vassilev D. A novel framework for 
horizontal and vertical data integration in cancer studies with application to 
survival time prediction models. Biol Direct. 2019;14(1):1–17.  

151.  Ngiam KY, Khor IW. Big data and machine learning algorithms for health-care 
delivery. Lancet Oncol. 2019 May 1;20(5):e262–73.  

152.  Takura T, Hirano Goto K, Honda A. Development of a predictive model for 
integrated medical and long-term care resource consumption based on health 
behaviour: application of healthcare big data of patients with circulatory 
diseases. BMC Med. 2021 Dec 1;19(1):1–16.  

153.  Ribeiro MT, Singh S, Guestrin C. “Why should i trust you?” Explaining the 
predictions of any classifier. In: Proceedings of the ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining. San Francisco; 2016. p. 
1135–44.  

154.  Zhang K, Zhang Y, Wang M. A Unified Approach to Interpreting Model 
Predictions Scott. In: 31st Conference on Neural Information Processing Systems 
(NIPS). Long Beach; 2017. p. 426–30.  

155.  Ribeiro MT, Singh S, Guestrin C. Anchors: High-Precision Model-Agnostic 
Explanations. Proc AAAI Conf Artif Intell. 2018 Apr 25;32(1):1527–35.  

156.  Conley J, O’Brien CW, Leff BA, Bolen S, Zulman D. Alternative Strategies to 
Inpatient Hospitalization for Acute Medical Conditions: A Systematic Review. 
JAMA Intern Med. 2016 Nov 1;176(11):1693–702.  

157.  Wong JB, Cohen JT. Hospital care at home: Better, cheaper, faster? Ann Intern 
Med. 2020 Jan 21;172(2):145–6.  

158.  Leong MQ, Lim CW, Lai YF. Comparison of Hospital-at-Home models: a 
systematic review of reviews. BMJ Open. 2021;11:43285.  

159.  PAIK project [Internet]. [cited 2023 Sep 21]. Available from: 
https://paik.vmh.ee/en 

160.  Van Der Zee J, Kroneman MW. Bismarck or Beveridge: A beauty contest 
between dinosaurs. BMC Health Serv Res. 2007 Jun 26;7(1):1–11.  

161.  Cichon M, Normand C. Between Beveridge and Bismarck--options for health 
care financing in central and eastern Europe. World Heal forum. 
1994;15(4):323–8.  



95 
 

162.  Abbafati C, Abbas KM, Abbasi-Kangevari M, Abd-Allah F, Abdelalim A, Abdollahi 
M, et al. Global burden of 369 diseases and injuries in 204 countries and 
territories, 1990–2019: a systematic analysis for the Global Burden of Disease 
Study 2019. Lancet. 2020 Oct 17;396(10258):1204–22.  

163.  Haagsma JA, Polinder S, Cassini A, Colzani E, Havelaar AH. Review of disability 
weight studies: Comparison of methodological choices and values. Popul Health 
Metr. 2014;12(1).  

164.  Qin G, Zhao XM. A survey on computational approaches to identifying disease 
biomarkers based on molecular networks. J Theor Biol. 2014 Dec 7;362:9–16.  

165.  The Human Genome Project [Internet]. [cited 2023 Sep 26]. Available from: 
https://www.genome.gov/human-genome-project 

166.  International Human Epigenome Consortium [Internet]. [cited 2023 Sep 26]. 
Available from: https://ihec-epigenomes.org/welcome/ 

167.  Navratil V, de Chassey B, Combe CR, Lotteau V. When the human viral infectome 
and diseasome networks collide: Towards a systems biology platform for the 
aetiology of human diseases. BMC Syst Biol. 2011;5(January).  

168.  Charles S, Natarajan J. Two way network construction and analysis of mRNA, 
miRNA and lncRNA reveals critical regulators and regulatory modules in 
cardiovascular diseases. Genes and Genomics. 2020;42(8):855–67.  

169.  Al-Harazi O, Al Insaif S, Al-Ajlan MA, Kaya N, Dzimiri N, Colak D. Integrated 
Genomic and Network-Based Analyses of Complex Diseases and Human Disease 
Network. J Genet Genomics. 2016 Jun 20;43(6):349–67.  

170.  Holmes C, McDonald F, Jones M, Ozdemir V, Graham JE. Standardization and 
Omics Science: Technical and Social Dimensions Are Inseparable and Demand 
Symmetrical Study. OMICS. 2010 Jun 1;14(3):327.  

171.  Cano I, Alonso A, Hernandez C, Burgos F, Barberan-Garcia A, Roldan J, et al. An 
adaptive case management system to support integrated care services: Lessons 
learned from the NEXES project. J Biomed Inform. 2015 Jun 1;55:11–22.  

172.  Herranz C, Martín L, Dana F, Sisó-Almirall A, Roca J, Cano I. Health Circuit: a 
practice-proven adaptive case management approach for innovative healthcare 
services. J Med Internet Res. 2023;  

173.  Department of Health. Generalitat de Catalunya. The Catalan Information 
Systems Master Plan Building a digital health strategy for Catalonia together. 
2019.  

174.  Catalan Health Service. SISCAT: Catalonia’s comprehensive health system for 
public use [Internet]. [cited 2023 Sep 12]. Available from: 
https://catsalut.gencat.cat/ca/coneix-catsalut/presentacio/model-sanitari-
catala/siscat/index.html#googtrans(ca%7Cen) 

175.  Lamb JR, Jennings LL, Gudmundsdottir V, Gudnason V, Emilsson V. It’s in Our 
Blood: A Glimpse of Personalized Medicine. Trends Mol Med. 2021;27(1):20–30.  


	RGC_COVER
	TESI_FINAL
	75d2f2bba180ae889999e4c4146a256cb633cfb4cb827324c4958cf5516cfcc3.pdf
	Part II: Consolidated Evidence
	10: Multilevel Modelling with AI: The Synergy-COPD Endeavour
	10.1 Multisource Predictive Modelling for Enhanced Clinical Risk Assessment
	10.2 Computational Modelling for Enhanced Understanding and Management of COPD and Its Co-morbidities: The Synergy-COPD Project
	10.3 Multilevel Data Integration and Advanced AI/ML: Beyond Synergy-COPD
	10.4 From Systems Medicine to Integrated Care
	10.5 Deployment and Adoption Strategies
	10.6 Conclusions
	References



	75d2f2bba180ae889999e4c4146a256cb633cfb4cb827324c4958cf5516cfcc3.pdf
	75d2f2bba180ae889999e4c4146a256cb633cfb4cb827324c4958cf5516cfcc3.pdf




