
UNIVERSITAT DE BARCELONA

FUNDAMENTAL PRINCIPLES OF DATA SCIENCE MASTER’S
THESIS

Using Deep Learning Techniques in Click-Through Rate
Prediction Focusing on a DeepFM Model and a Comparative
Analysis of the Volatility of Prediction Vectors of Different

Models

Author:
JD O’HEA

Supervisor:
Dr. Jordi VITRIA

A thesis submitted in partial fulfillment of the requirements
for the degree of MSc in Fundamental Principles of Data Science

in the

Facultat de Matemàtiques i Informàtica

June 30, 2023

http://www.ub.edu
https://algorismes.github.io/
http://mat.ub.edu

iii

Contents

Abstract vii

Acknowledgements ix

1 Introduction 1

2 Background 3
2.1 Smadex . 3

2.1.1 Technology at Smadex . 3
2.1.2 Dataset background . 3

2.2 Real time bidding . 4
2.3 Click-through rate prediction . 4

3 Method 5
3.1 Data . 5

3.1.1 Data Exploration . 5
Target Label Imbalance . 5
Data Types . 6

3.1.2 Data Preprocessing . 6
Dealing with missing values . 6
Creating New Columns . 7
One-hot-encoding . 7
Hashing Bucket . 7
Train, Validation, & Test Split . 8

3.2 Models . 8
3.2.1 Logistic Regression . 8
3.2.2 Factorisation Machine . 8
3.2.3 Deep & Cross Network . 9
3.2.4 Deep Factorisation Machine . 10
3.2.5 DCN vs DeepFM . 11
3.2.6 FuxiCTR Repository . 11

3.3 Analysing Volatility of Predictions of Models 11
3.3.1 Changing Distribution of Predictions 11
3.3.2 Changing Values of Sample Predictions 12

4 Experimental Setup 13
4.1 Training . 13

4.1.1 Hyperparameters . 13
Logistic Regression . 13
Embedding Dimensions . 13
Hidden Units . 13
Net Dropout . 14
Hashing Parameters . 14

4.1.2 Log Loss Function . 14
4.1.3 Amazon Web Services Instance 15

4.2 Evaluation . 15
4.2.1 Metrics . 15

iv

Relative Information Gain . 15
Area Under the ROC Curve . 16

5 Results 19
5.1 Embedding Dimensions . 19

5.1.1 Prediction Time . 19
5.1.2 Training time . 20
5.1.3 Relative Information Gain . 20
5.1.4 Area Under the ROC Curve . 21

5.2 Hidden Units . 22
5.2.1 Prediction Time . 22
5.2.2 Training Time . 23
5.2.3 Relative Information Gain . 23
5.2.4 Area Under the ROC Curve . 23

5.3 Net Dropout . 25
5.3.1 Prediction Time . 25
5.3.2 Training Time . 26
5.3.3 Relative Information Gain . 27
5.3.4 Area Under the ROC Curve . 28

5.4 Logistic Regression . 29
5.5 Best Performances . 29

5.5.1 Prediction Time . 29
5.5.2 Training Time . 29
5.5.3 Relative Information Gain . 30
5.5.4 Area Under the ROC Curve . 30

5.6 Results on the Test Set . 31
5.7 Hashing buckets . 32

5.7.1 Logistic Regression . 32
Prediction Time . 32
Training Time . 32
Relative Information Gain . 33
Area under the ROC Curve . 34

5.7.2 Deep & Cross Network . 34
5.8 Volatility of Prediction Vectors . 35

5.8.1 Shuffling Training Set . 35
5.8.2 Downsampling Training Set . 35

6 Discussion 37
6.1 Inference Time & Relative Information Gain 37
6.2 Logistic Regression vs Deep Learning Models 37
6.3 Embedding Dimensions and Hidden Units 38
6.4 DCN Overfitting . 38
6.5 Use of Net Dropout . 39
6.6 Unsuccessful Experiments . 39
6.7 Hashing Buckets . 39
6.8 Test Set Results . 40
6.9 Volatility of Prediction Vectors . 40

7 Conclusion 43
7.1 Hashing Buckets . 43
7.2 Volatility of Prediction Vectors . 44

v

8 Future work 45
8.1 Data Volume . 45
8.2 Logistic Regression . 45
8.3 Hashing buckets . 45
8.4 Volatility of predictions . 45

Appendix A 47

Bibliography 49

vii

UNIVERSITAT DE BARCELONA

Abstract
Facultat de Matemàtiques i Informàtica

MSc

Using Deep Learning Techniques in Click-Through Rate Prediction Focusing on
a DeepFM Model and a Comparative Analysis of the Volatility of Prediction

Vectors of Different Models

by JD O’HEA

Using deep learning in prediction of click-through rate (CTR) is becoming main
stream for advertisers engaging in real time bidding (RTB). However, there are im-
plications for adopting a deep learning algorithm to predict CTR and to evaluate a
user impression while engaging in real time bidding. In this paper, we explore two
state of the art deep learning methods, DeepFM and DCN, using Logistic Regression
and Factorization Machine models as a benchmark.

We explore their predictive power and the trade off of each model time with re-
spect to training times, inference times, effects of dimension of input data when us-
ing hashing buckets, and volatility of prediction of models from training to training.
We experiment comprehensively throughout our research with the goal of striking a
balance between discovering the best predictor of CTR to enhance a company’s RTB
strategy whilst understanding the cost of chasing a (usually) more complex imple-
mentation in order to obtain an increase in predictive power.

The deep learning models outperform Logistic Regression in RIG, with the DeepFM
model achieving the best RIG however the opposite is true for model complexity,
training, and inference times. Increasing the hashing bucket size leads to better per-
formances across Logistic Regression. Finally, we look at the volatility of a mod-
els prediction vector under retraining with different training data conditions while
keeping in mind the goal of developing a real bidding algorithm that takes as input
the output of our CTR prediction model.

HTTP://WWW.UB.EDU
http://mat.ub.edu

ix

Acknowledgements
Thank you to my research partner, Celine Odding. I have thoroughly enjoyed this
journey with you, and I am proud of the work we have produced.

To Elchanan Solomon and Victor Delgado, thank you for your unwavering help and
support throughout this journey to completing our work.

A special thank you to our supervisor, Jordi Vitria, not only for the scope of the the-
sis but also for the entire master’s program, creating an environment that provided
me with the best year of education I have experienced in my academic journey. You
have created something special in this master’s program.

To my amazing friends from the MSc program, your friendship has been a highlight
of this journey. You have always been hardworking, dedicated, lighthearted, and
most importantly, always available for a laugh. I’ve truly made friends for a lifetime.

To my parents, I can never repay the intangible debt I owe to you, but I look forward
to trying now, armed with the education you worked so hard to provide me.

Finally, my best friend and life partner, Caoimhe, to whom I am deeply grateful.
Your unwavering support and love have been the cornerstone of my success. Here’s
to our next adventure together.

1

Chapter 1

Introduction

———————————————————–
As advertisements now reach a much larger audience online, ones place on the web
have become indispensable. Online advertisements are retrieved through real time
bidding (RTB), where advertisers bid for an ad space with the highest bidder get-
ting the opportunity to place this advertisement on the desired place, making this
method similar to the stock market.

A helpful technique for companies in this process of bidding on advertisements is
the use of click-through rate (CTR) prediction, in which the likelihood of a user
clicking on an advertisement is calculated. Several approaches have been evaluated
for this technique, varying from Logistic Regression as used by Richardson, Domi-
nowska, and Ragno, 2007 to multiple deep learning models (Zhang et al., 2021).

Smadex is a company that creates such algorithms to automate the process of buying
and selling advertisements. Since the company is using Logistic Regression now for
CTR prediction, we will introduce deep learning models in this research to broaden
the scope of possible algorithms. Three new techniques are being deployed, Factori-
sation Machine (FM) (Blondel et al., 2016), Deep Factorisation Machine (DeepFM)
(Guo et al., 2017) and Deep & Cross Network (DCN) (Wang et al., 2017), with our
main focus on the latter two.

We run different experiments on both Logistic Regression and the deep learning
models. For each deep learning model, we try different hyperparameters to find
the optimal result that may outperform Logistic Regression. The metrics used in
this thesis to evaluate the differences between models are Relative Information Gain
(RIG) and Area Under the ROC Curve (AUC), which will be explained in detail fur-
ther in this thesis.

Additional to our initial experiments, we deployed two other smaller experiments in
this research. We assess different hashing bucket sizes when preprocessing the data,
leading to a smaller collision rate within the hashed data. We analyse the hypothesis
if a smaller collision rate would lead to better performances for the models.

We also go on to investigate prediction volatility of the models. We define the pre-
diction vector volatility of a model to be the extent to which the vector predictions of
a model on a dataset changes when there is a change to the conditions under which
the model is trained on. That being the model and it’s parameters remain the same
while the nature of the training data changes in some way. This change can be a
different sampling, data drift, or reordering of the dataset to give a few examples.

2 Chapter 1. Introduction

Contributions

This thesis is written by JD O’Hea and Celine Odding as a team project. We will
briefly describe each of our contributions to this work, beginning with the work of
Celine followed by the work of JD. Finally, we provide a link to our GitHub reposi-
tory where you can find the experiments conducted for our thesis.

Celine Odding:
In this thesis, my main focus was on implementing and deploying the Deep & Cross
Network (DCN). To accomplish this, it was important to first understand the com-
plexity of this model, and ultimately running several experiments. The additional
experiment was the impact of the use of different hashing bucket sizes, studying the
outcomes on Logistic Regression and a small study on different hyperparameters of
the DCN model. This study on the DCN model was of particular importance, given
that it served as the central focus of my research.

JD O’Hea:
My primary interest is on the Deep Factorisation Machine (DeepFM) model. I im-
plemented and experimented with a DeepFM model in line with our agreed experi-
mentation process. Furthermore with our resulting models I undertook a prediction
volatility analysis which I proceed to define and explore in my respective sections.
I measure volatility using two metrics, Kullback-Leibler KL Divergence and Mean
Absolute Difference (MAD) between two prediction vectors, and interpret the re-
sults for each of the models in our study. The volatility study helps to provide a
fuller picture when evaluating the pros and cons of each model and deciding which
model to develop into a production application.

Github:
Github Repository Thesis

https://github.com/jdohea/fuxi.git

3

Chapter 2

Background

———————————————————–

In this chapter, we discuss three important elements of the project. We introduce our
case study, Smadex. Then we describe our dataset. Finally we clarify core concepts
of the research: real time bidding and click through rate.

2.1 Smadex

This research has been put forward by Smadex, an Entravision company. Smadex
is a Demand Side Platform (DSP). A DSP is a company that creates software and al-
gorithmic solutions to automate the process of buying and selling ad impressions in
real time. A typical customer of Smadex would be an entity that has a product or ser-
vice they wish to advertise for on a given medium. Smadex purchases internet user
impressions on ad exchanges. Ad exchanges are similar to stock exchanges in that
they allow advertisers and publishers to buy and sell ad inventory directly through
real time bidding (RTB), and without the need to have an intermediary involved in
the transaction.

2.1.1 Technology at Smadex

Smadex uses the distributed computing framework Apache Spark. Apache Spark is
an open-source unified analytics engine for large-scale data processing. We keep in
mind the limitations and the cost of switching technology when weighing the pros
and cons of our results.

2.1.2 Dataset background

The dataset Smadex provides is a fully labelled user impression dataset generated
in-house from their own current RTB algorithms. It contains a row per user im-
pression. The specific dataset are tasked with is a gaming dataset where Smadex’s
clients are gaming company (details on columns are available in Table ??, Appendix
A). Smadex advertises on behalf of the gaming company through in app advertise-
ments. In this dataset a conversion is when a user impression results in an installa-
tion within 2 weeks of having had an impression on the advertisement that Smadex
exposed the user to.

Smadex challenges us to beat their baseline Logistic Regression model on the given
dataset using a Deep Learning model. Again, we take into account the machine
learnign capabilities of the Apache Spark MLlib when we are weighing the pros and
cons of our results.

4 Chapter 2. Background

2.2 Real time bidding

Real time bidding (RTB) is a popular and optimistic business model for online com-
putational advertising. RTB operates similarly to the stock market, as it uses com-
puter algorithms to automatically buy and sell advertisements in real-time (Yuan,
Wang, and Zhao, 2013). Advertisers bid for ad space, and the highest bidder gets to
show their ads to the desired audience, maximizing their reach and visibility among
the target audience.

When an ad is bought by the highest bidder, it is shown to specific people based
on their data information. Specifically, ads are shown to individuals who are most
likely to be interested in advertisers’ offerings based on their demographic infor-
mation, browsing behavior, and other relevant data. This personalized approach
increases the effectiveness of display advertising, ensuring that the right message
reaches the right people at the right time.

RTB has revolutionized online advertising by changing the way ads are bought and
sold. Instead of the traditional methods of purchasing media space or specific ad
slots, RTB focuses on buying ad space that targets specific audiences. This shift in
approach is expected to become the standard business model for online advertising
in the future (Yuan et al., 2014).

2.3 Click-through rate prediction

Click-through rate (CTR) is an important metric in the world of online advertising,
serving as a measure of the effectiveness and engagement of ad campaigns. CTR
represents the likelihood of a user clicking on a particular advertisement after be-
ing exposed to it (Yang and Zhai, 2022). Predicting the CTR of an advertisement is
valuable because it helps advertising platforms generate more revenue and increases
user satisfaction. Therefore, it is an important topic in the field of online advertising
for both marketing purposes and research (Xiong et al., 2019).

Several factors influence the CTR of online advertisements, including gender, age,
type of advertisement, and the timely and effective prediction of the CTR of online
advertising and the advertisement text itself (Wang, 2020).

Following Wang, 2020, advertising prediction models are generally divided into two
categories: shallow learning models and deep learning models. Shallow learning
models refer to traditional machine learning algorithms that have been widely used
in the field of advertising prediction. These models typically involve linear regres-
sion, Logistic Regression, decision trees, random forests, and gradient boosting al-
gorithms (Ruppert, 2004).

On the other hand, deep learning models have become very popular in recent years
due to their ability to discover complicated patterns and comprehend complex in-
formation present in large datasets. These sophisticated models, such as deep neu-
ral networks, convolutional neural networks, recurrent neural networks, and trans-
formers, have consistently delivered impressive performance across various domains.
This demonstrates their effectiveness in accurately predicting the performance of ad-
vertisements (LeCun, Bengio, and Hinton, 2015).

5

Chapter 3

Method

———————————————————–

This chapter contains a detailed analysis of the data, focusing on data exploration
and preprocessing techniques. Following the data analysis, we introduce and dis-
cuss the various models employed in our experiments.

Given that there is yet to be a comparative study of DeepFM and Deep & Cross
(DCN) on a real time bidding dataset, the experimentation is designed to explore
the strength and weaknesses of both techniques and to compare the results from
each.

3.1 Data

The final dataset obtained from Smadex was for the month of December 2022. Each
row represents a user impression i.e. an internet/app user saw the ad, and has a
label in {1,0}. It was preprocessed by downsampling the non-converted impressions
at a rate of 1 in 200, this was done due to memory limitations. The total number
of remaining rows is 675,625. There is a bias in the data given that this is only data
that Smadex themselves have already deemed worth bidding on. They explore and
exploit a number of techniques in order to effectively bid an win impressions on the
ad exchanges. These algorithms are outside the scope of this study.

3.1.1 Data Exploration

Target Label Imbalance

Even after down sampling of the non-converted (negative) class we still have a large
label imbalance of approximately 1 to 28 as shown in Figure 3.1, with the majority
class being the non-converted.

FIGURE 3.1: Pie chart showing data label imbalance.

6 Chapter 3. Method

Data Types

There are originally 24 feature columns in total. They contain information at the
time of impression such as timestamps, locations, user device information, mo-
bile/internet carrier, ad exchange information, advertisement information, and de-
tails about the website that the impression was made on. See Table ??, Appendix
A, for a breakdown and description of each of the columns. The data set contains,
numeric, categorical, and ordinal data.

3.1.2 Data Preprocessing

After exploring the data, the preprocessing stage of the data is done in multiple
steps. Initially, we address any missing values present in the dataset. Subsequently,
we create additional columns for timezones and release dates. To encode categori-
cal variables, both one-hot-encoding and the hashing trick are applied. Finally, the
dataset is split into training, validation, and test sets.

Dealing with missing values

The first step in preprocessing the data is dealing with any missing values in the
dataset. Some columns have a much higher proportion of missing values than oth-
ers as you can see in Figure 3.2. We utilise missing values across the dataset by
making it a unique value for the categorical columns. We decided to remove two
features with exceptional high missing values, since they added no relevant infor-
mation to our research.

There is a single numerical column that has missing values. "release_mrsp" is the
release price of the phone model. If there is a missing value here we fill it with the
average price for the phone make. If that is missing the average price for the device
operating system is used. If that is also missing it is filled with the dataset average
release_mrsp. The column is then normalised using a Min-max scaler.

FIGURE 3.2: Percentage of missing values per column

3.1. Data 7

Creating New Columns

The dataset records impressions (an advertisement shown to a user) within a specific
time range, storing each action along with its corresponding date and time. How-
ever, these values are stored for multiple different countries, where each country has
its own timezone. Therefore, both information of the date and the country region
were needed to get time zones for each sample. Subsequently, the date is converted
to its corresponding local time in a specific time zone.

After retrieving the local time of each impression, we made a new feature that re-
turns the time of the day categorized into five possible outcomes: "late night", "morn-
ing", "afternoon", "evening" and "early night". Additionally, another feature was cre-
ated to indicate the day of the week.

There is a feature "release_date" which is this release date of the device model. This
feature was transformed into an ordinal value from oldest to newest, i.e. the oldest
date in the training data set gets 1 and the newest gets the largest value available.
This is also subsequently min-max scaled.

One-hot-encoding

To handle categorical data, specifically non-numerical values, we have used both
one-hot-encoding (OHE) and hashing. OHE is a technique that transforms all cate-
gorical values into binary vectors. For each categorical value, a new vector is repre-
sented to signify the presence of the categorical value, e.g. [0,1,0].

By hand selecting columns which we identified through domain knowledge as likely
to have high value but also having a low number of unique ensures when we OHE
the column all the information will be preserved and the increase in dimensionality
as a result of OHE will be reasonable.

Hashing Bucket

Hashing refers to the technique in which categorical data is transformed into nu-
merical data, using a hashing function, where each value is mapped into a specific
bucket in a fixed-size hash table. This causes hashing to be more memory-efficient
than OHE since it is significantly reducing the memory required compared to cre-
ating a binary vector for each unique category in OHE. Moreover, hashing allows
for faster computations compared to OHE when dealing with diverse categorical
variables. Hashing is a widely adopted technique when developing CTR prediction
algorithms such as in Pan et al., 2018, and in Smadex also. For these reasons, we use
hashing to deal with features with many unique values and use OHE for elements
with only a small number of categories.

We use python’s implementation of MurmurHash3 hash function mmh3.hash(), which
is a non-cryptographic hash function. It is widely used for generating hash values
of input data, such as strings or byte arrays. It takes the input data and produces a
32-bit hash value as output.

The MurmurHash3 algorithm involves a series of bitwise and arithmetic operations,
including shifts, rotations, and XOR operations, applied to the input data. It aims to
generate hash values with good distribution and performance characteristics. The
output of the function is an integer number. In order to get this output within the
range of our number of buckets, we take the modulus of the output;

8 Chapter 3. Method

The number of buckets is determined based on the available memory, and specific
details can be found in Section 4.1.1. Subsequently, as we obtained additional mem-
ory storage, we increased the bucket size and conducted further experiments.
As there are more unique values than buckets, there are multiple values from mul-
tiple columns getting assigned to the same bucket. When this happens we call this
a collision. To calculate how often this happens we define the collision rate in Equa-
tion 3.1. The value #UniqueHashValues is the number of buckets and the #UniqueIn-
putValues is a count of number of unique values across all of the columns that we
are hashing. You can see an overview of which columns were hashes in Table ??,
Appendix A.

Collision Rate (%) =
(

1 − #UniqueHashValues
#UniqueInputValues

)
× 100 (3.1)

Train, Validation, & Test Split

There is a full month of data. We sorted the data by the "req_date" column, which
is the request date of the user to the website. All data before the 15th of December
2022 was taken as training data, from the 15th to before the 22nd as validation data,
and the remainder up to and including the 30th of December as test data.

3.2 Models

We will explain all models used in our experiments, starting with Logistic Regres-
sion, followed by Factorisation Machine, Deep & Cross Network and Deep Factori-
sation Machine. Since our main focus is on the DCN and DeepFM model, we will
explain the differences between the two, followed by the framework with which the
models are developed and deployed.

3.2.1 Logistic Regression

Logistic Regression (LR) is a statistical model used for binary problems, where the
dependent variable acquires two possible outcomes. LR is widely used across fields
like statistics, machine learning, and social sciences due to its simplicity and inter-
pretability (Agresti, 2015). Because of this simplicity, LR is a good fit in estimating
CTR predictions since it can handle large-scale datasets with numerous features.
Moreover, interpretable results allows advertisers to understand the factors influ-
encing ad bidding decisions.

In LR, the coefficients show us how much each independent variable affects the like-
lihood of a positive outcome. These coefficients are estimated using methods like
maximum likelihood estimation. Once we have the estimated coefficients, we can
use them to understand the importance of each independent variable in predicting
whether the outcome will be positive or negative (Lemeshow, Sturdivant, and Hos-
mer Jr, 2013). The formula for computing Logistic Regression can be seen below in
equation 3.2.

f (z) =
1

1 + e−z (3.2)

3.2.2 Factorisation Machine

Factorisation Machines (FMs) are a type of supervised learning method that can ef-
fectively use second-order combinations of features, even when dealing with data

3.2. Models 9

that has a high number of dimensions (Blondel et al., 2016). Second-order combina-
tions of features stand for looking at how pairs of features interact with each other.
In FMs, these combinations involve considering the relationships between different
pairs of features. FMs can use these interactions to make better predictions and han-
dle data with many different features. By understanding how pairs of features work
together, FMs can find important patterns and make more accurate predictions.

Another advantage of FMs is that they excel at handling sparse data, which refers
to datasets that are characterized by a substantial number of missing or zero values,
making them particularly suitable for applications such as recommender systems,
where the data often contain high sparsity (Rendle, 2010).

3.2.3 Deep & Cross Network

Since the use of FMs, there have been efforts to improve them by making them more
complex by extending them to higher orders (Yang and Gittens, 2015). However,
this often resulted in a large number of parameters, which can render them compu-
tationally expensive. In contrast, Deep Neural Networks (DNN) are able to capture
complex relationships between features because they use lower dimensional repre-
sentations of the features (embedding vectors) and non-linear activation functions.
As a result, this allows DNNs to learn high-degree feature interactions in a more
efficient manner than FMs.

FIGURE 3.3: Complete DCN model (Wang et al., 2017)

Figure 3.3 shows the representation of a full DCN model. The model starts with
an embedding layer, which serves as a dimensionality reducer. Since many input
features consist of categorical variables, these features are often one-hot-encoded.
This means that for every category a new feature is consisting a binary value, which
shows whether a category is present or not. With many features and the numerous
categories per feature, this can lead to high-dimensional feature spaces. The intro-
duction of an embedding layer can reduce the high-dimensionality by transforming
binary features to dense vectors (Wang et al., 2017). Furthermore, the stacking layer
stacks the embedding vector along with the normalized dense features into one vec-
tor which will then be used as an input.

10 Chapter 3. Method

The Deep & Cross Network (DCN) consists of both a DNN and a cross network. The
latter is a new network structure that has been introduced to apply feature crossing
automatically (Wang et al., 2017). The special structure of the cross network causes
the degree of cross features to grow with layer depth, which can be seen in the figure
3.4 below.

FIGURE 3.4: Representation of a cross layer (Wang et al., 2017)

The cross network has few parameters, which limits its ability to handle complex
interactions. To overcome this, a deep network is included alongside it to capture
those complex interactions. This deep network is a fully connected neural network.

Next, a combination layer takes the outputs from the cross network and deep net-
work, combines them into a single vector by concatenating them, and then inputs
this combined vector into a logit layer with a sigmoid activation function. The sig-
moid function is used to generate a probability value between 0 and 1, which can be
interpreted as the likelihood of a particular outcome.

3.2.4 Deep Factorisation Machine

Like DCN, DeepFM is a hybrid model that leverages the strengths of both feed for-
ward neural networks and factorisation machines. It consists of two main compo-
nents: a factorisation machine (FM) as described earlier and a neural network. It’s
implementation for CTR predictions was first proposed by Guo et al., 2017.

FIGURE 3.5: Complete DeepFM Model (Guo et al., 2017)

As we can see in Figure 3.5 the DeepFM model is similar to the DCN architecture as
seen in Figure 3.3. There is an embedding layer to reduce dimensionality through
a dense vector. In a parallel process there is a neural network and a Factorisation
Machine. The outputs of these two processes are then combined in an output layer
consisting of a sigmoid function.

3.3. Analysing Volatility of Predictions of Models 11

3.2.5 DCN vs DeepFM

DeepFM and DCN have many common components differingin only one. They
have the embedding layers, neural network, and output layer in common. The only
component they differ on is of course their respective Factorisation Machine and
Cross Network Components. Leveraging these commonalities we can draw many
parallels in their implementation and complete a rigorous comparison of their be-
haviours and performances. A caveat worth noting is that the factorisation machine
component of DeepFM is singled layered, where as cross net component of DCN has
3 layers. This configuration is kept constant throughout the study. Their respective
widths is determined by the output dimension of the embedding layer.

3.2.6 FuxiCTR Repository

To develop FM, DeepFM, and DCN we leverage the FuxiCTR repository (Zhu et
al., 2021). FuxiCTR provides an open-source library for CTR prediction, with key
features in configurability, tunability, and reproducibility. The goal of the FuxiCTR
project is to benefit both researchers and practitioners with the goal of open bench-
marking for CTR prediction tasks. The repository is primarily leveraging the Pytorch
framework, however there are many implementations of models in TensorFlow also.

3.3 Analysing Volatility of Predictions of Models

In click through rate prediction and real time bidding, it is one thing to be able to
have an accurate prediction of how likely an impression is to convert, and it is an-
other thing to estimate an expected value of that conversion, and the another thing
again to strike a balance between putting in a bid for the impression high enough to
win the bid whilst at the same time not over-bidding for the impression.

Solving bid price optimisation problem is outside of the scope of this study. The
outputs of the models developed as part of this work are inputs for such a RTB algo-
rithm. However such a bidding algorithm would desire certain properties from our
models to maximise it’s ability to successfully bid on impressions while maximising
value realisation.

To analyse a model retraining under changing data conditions I take two approaches.
In the first approach I simply shuffle the training data and re-train the model on the
same data and analyse the prediction vectors for volatility. In the second approach
I downsample the training data and compare the prediction variables to the same
prediction vector as in the first training of the model which was trained on the full
training set. Downsampling vs using a full training set better represents reality in
that in reality there is increasing amounts of data and we want to know how suscep-
tible a model is to prediction volatility while we have changing data volumes and
we retrain a model.

3.3.1 Changing Distribution of Predictions

If there is a large shift in the distribution of predictions our models produce at each
retraining, the bidding algorithms would need to adapt it’s strategy in order to ac-
count for this shifting. This adds further complexity to the bidding strategy thus this
is an undesirable property. To analyse a shift in prediction from training to training
I use the Kullback-Leibler (KL) Divergence to measure how one generated distribu-
tion of predictions differs from another distribution generated from the same model
after retraining.

12 Chapter 3. Method

KL Divergence quantifies how much one distribution diverges from another. It is
non-negative and becomes zero when the two distributions are identical.

KL(P||Q) = ∑ P(x) log
(

P(x)
Q(x)

)
(3.3)

In Equation 3.3 we see the the definition KL divergence where P and Q represent
the two probability distributions being compared, and x represents the individual
probabilities of the prediction value of a sample being in a range. x is obtained by
binning the prediction values, counting them, and normalising the counts in order
to obtain a probability distribution for each model.

KL divergence is not symmetrical and does not satisfy the triangle inequality, how-
ever it is a good reference for us to consider how divergent our models become after
a retraining from a reference distribution. Here I took the reference distribution to be
the model trained on the original training data set and then to create a data change
for the model I shuffled the training data and made predictions on the same sample
data. With the resulting prediction vectors.

3.3.2 Changing Values of Sample Predictions

Theoretically the distribution of a models predictions could remain constant from
training to training but the values each individual sample is assigned could change
dramatically. I calculated the sum of the Mean Absolute Difference (MAD) for two
prediction vectors from the same sample of data with different models to give us an
intuition to the extent of the difference in predictions.

Mean Absolute Difference (MAD) =
n

∑
i=1

|pi − qi| (3.4)

13

Chapter 4

Experimental Setup

———————————————————–

This chapter gives an in-depth description of the experiments that have been com-
pleted in this thesis. We discuss training setup and experimentation with different
variations of hyperparameters and then we compare for all three models. We also
introduce log loss and our Amazon web service instances on which we ran our ex-
periments. Finally, we discuss our evaluation metrics used to compare our model
performances.

4.1 Training

4.1.1 Hyperparameters

We selected the embedding dimensions and net dropout as the parameters to com-
pare across all three models in our experiments. Additionally, for the DCN and
DeepFM models, we also considered the hidden units parameter. The reason for
excluding the hidden units parameter for the FM model is that it does not have
any hidden units and therefore cannot be modified. Then we will also discuss the
parameters related to hashing, which were applied during the data preprocessing
stage.

Logistic Regression

As a baseline we implemented scikit-learn’s Logistic Regression (Pedregosa et al.,
2011). The setup includes ’l2’ penalty, a regularisation method also referred to as
ridge regression. The penalty term is the squared sum of the model’s coefficients,
multiplied by a regularization parameter. This penalty encourages the model to
have smaller and more balanced weights, reducing the likelihood of overfitting.
Limited-memory Broyden-Fletcher-Goldfarb-Shanno (lbfgs) was set as the solver.
This solver is specifically for solving optimization problems associated with differ-
entiable functions. It is a quasi-Newton method that approximates the Hessian ma-
trix of the objective function.

Embedding Dimensions

The embedding dimensions were first optimised for, searching for the best dimen-
sions from the set of {2,4,5,7,10,20,40,60,80,100}. Since our dataset was much smaller
than the dataset used in Guo et al., 2017 and Yang and Gittens, 2015, we decided to
use a variety of smaller embedding layers next to the larger embedding layers.

Hidden Units

Next we optimised for hidden units, we searched through the configuration of {[32,32],
[64,64], [128,128]}. This configuration results in a two layer feed forward neural net-
work with the respective units per layer. The number of hidden units per layer was

14 Chapter 4. Experimental Setup

kept constant, as concluded in Guo et al., 2017, increasing the complexity of the
model did not always bring with it benefits and they found the "constant" network,
each layer having the same dimension, was empirically better than any other options
explored.

Net Dropout

As with any model that grows in complexity and begins to overfit, using dropout is
a useful technique for regularising a model and ensuring generalisability. With our
more complex models we experimented with dropout rates in the set {0.0, 0.01, 0.1}
to see if we could begin to see an improvement in the larger models.

Hashing Parameters

Memory and time limitations forced us to set the number of buckets to 1000. This
value resulted in a collision rate of 95.4%. Since this rate is quite high, we decided
to use extra resources and increase the bucket size to 5000 and 10000. For Logistic
Regression, we conducted experiments using both bucket sizes, while for the DCN
model, we utilized a bucket size of 5000 in the experiments.

A hashing bucket size of 5000 led to a collision rate of 77.3%, whereas a hashing
bucket size of 10000 led to a collision rate of 59.5%, showing a great decrease in
collision rate. The experiments with the bigger hashing bucket sizes are done to
research whether a lower collision rate would lead to better performances.

4.1.2 Log Loss Function

Log Loss (a.k.a. Binary Cross Entropy) was used as our loss function as we have
a binary classification tasks. It measures the dissimilarity between the predicted
probabilities and the true labels for each instance. The Log Loss is computed using
the following equation:

LogLoss = − 1
N

N

∑
i=1

(yi · log(pi) + (1 − yi) · log(1 − pi)) (4.1)

Here, N represents the total number of instances, yi is the true label (either 0 or 1) for
the ith instance, and pi is the predicted probability for the ith instance. The Log Loss
function quantifies the dissimilarity between the predicted probabilities (pi) and the
true labels (yi). For positive instances (yi = 1), the first term (yi · log(pi)) penalizes
low predicted probabilities (pi) as they deviate from the true label of 1. For negative
instances (yi = 0), the second term ((1 − yi) · log(1 − pi)) penalizes high predicted
probabilities (pi) as they deviate from the true label of 0. The Log Loss function is
averaged over all instances in the dataset, providing a measure of the overall dis-
similarity between the predicted probabilities and the true labels.

Down-sampling the data due to memory restrictions means the data set is not repre-
sentative of the true balance. To ensure we optimised the models for the real world
data balance the loss of the individual samples were weighted relative to the down
sample rate. Thus the final loss function used is the Weighted Log Loss.

WeightedLogLoss = − 1
N

N

∑
i=1

(wi · [yi · log(pi) + (1 − yi) · log(1 − pi)]) (4.2)

The variable wi is introduced here. In this case, if yi is 1 the wi takes the value of
1 and if yi is 0 then wi takes value 200. This corrects for the down sampling of the

4.2. Evaluation 15

0 labelled data. Finally this loss function is utilised in all of our relevant employed
models.

4.1.3 Amazon Web Services Instance

We ran our experiments on a G5 Amazon Web Services (AWS) instance (Types, 2023).
This instance contains a 24GB memory Graphics Processing Unit (GPU), 4 virtual
Central Processing Units (vCPUs) and 16GB Random Access Memory (RAM). Due
to the nature of our smaller models and low dimensional data set we were not able
to realise an increase in speed of training time with the GPUs. This is likely because
the bottle neck in our problem was not in the vast matrix multiplication you expe-
rience with larger models, but in the transfer of large amounts of data between the
RAM and the GPU’s memory. In the end of the initial experiments it was faster to
train and run our models on the CPU only. The instances also come preinstalled
with Python version 3.10.10 and Pytorch version 2.0.0 and these packages were used
throughout our experimentation.

Allocating swap memory was necessary when loading the large datasets into mem-
ory. The methodology for loading the data set exceeded the available 24GB of the
instances. Swap memory is a portion of the hard drive designated for temporarily
storing data that cannot fit entirely in RAM. Using swap memory involves trans-
ferring data between RAM and disk, which can significantly slow down data ac-
cess and processing times. Although swap memory was required for the data load,
we monitored the training and inference processes and the swap memory was not
utilised at any other point in our experiments.

4.2 Evaluation

4.2.1 Metrics

The performance metrics monitored in this research was the Relative Information
Gain (RIG) and Area Under the ROC Curve (AUC).

Relative Information Gain

Normalised Log Loss (NLL), also known as Normalised Cross Entropy, is an evalu-
ation metric which enables us to measure and compare model performance. It was
introduced by He et al., 2014 with the following formula 4.3.

NormalisedLogLoss =
− 1

N ∑N
i=1 wi (yi · ln(pi) + (1 − yi) · ln(1 − pi))

− 1
N ∑N

i=1 wi (yi · ln(p̄) + (1 − yi) · ln(1 − p̄))
(4.3)

• N is the size of the test set (total number of ad impressions).

• yi is the observed label for sample i

• p̄ is the observed click-through rate (proportion of clicks to ad impressions) in
the test set. This also needs to be adjusted for the down sampling and is done
so as in Equation 4.4. Note this equation can be derived given that we down
sampled from 200 to 1 for the negative class. y is the true label vector of our
test dataset and the average of this is the number of positive labels divided by
the total number of labels in y

• pi, where pi ∈ R and 0 ≤ pi ≤ 1, is our model’s predicted probability score
(that the user will click).

16 Chapter 4. Experimental Setup

• p, where p ∈ {0, 1}, is the observed probability score (often referred to as the
label). 1 indicates that the user did click (the probability of click is 1 since
we’re certain they clicked): P(click|user, ad) = 1. 0 indicates that the user
didn’t click (the probability of click is 0 since we’re certain they didn’t click):
P(click|user, ad) = 0.

p̄ =
1

1 − 200 + 200
avg(y)

(4.4)

RelativeInformationGain = 1 − NormalisedLogLoss (4.5)

The numerator in the Equation 4.3 calculates the cross-entropy between the pre-
dicted probability scores (pi) and the observed labels (yi), while the denominator
term calculates the cross-entropy between the observed labels yi and the observed
click-through rate (p̄). The cross-entropy is averaged over all the instances in the test
set, giving the Normalized Log Loss value.

Intuitively, the Normalised Log Loss can be interpreted as the relative improvement
of the trained models predictions pi compared to a model that predicts a constant
value of the observed probability of converting p̄. Subsequently 1− NormalisedLogLoss
gives us RIG, the greater the RIG score the better the model.

Area Under the ROC Curve

The Area Under the Receiver Operating Characteristic Curve (AUC) is a widely used
performance metric in binary classification tasks, providing an evaluation of the clas-
sifier’s ability to discriminate between positive and negative instances. It quantifies
the overall quality of the model’s predictions across different classification thresh-
olds.

The Receiver Operating Characteristic (ROC) curve is a graphical representation that
illustrates the trade-off between the true positive rate (TPR) and the false positive
rate (FPR) at various classification thresholds. The TPR, also known as sensitivity or
recall, measures the proportion of positive instances correctly classified as positive.
On the other hand, the FPR represents the proportion of negative instances incor-
rectly classified as positive.

The AUC is calculated by integrating the ROC curve, which represents the proba-
bility that a randomly chosen positive instance is ranked higher than a randomly
chosen negative instance by the classifier. A higher AUC value indicates a better
classifier performance, where an AUC of 1 represents a perfect classifier, and an
AUC of 0.5 suggests random guessing.
The AUC can be computed using the following equation:

AUC =
∫ ∞

−∞
TPR(FPR)δFPR (4.6)

TPR(FPR) represents the interpolated true positive rate at each false positive rate
value, and the integration is performed over the range of possible FPR values. The
integral essentially computes the area under the ROC curve.

The AUC metric is advantageous as it remains unaffected by the classification thresh-
old selection, making it suitable for comparing different classifiers and assessing
their overall performance. Additionally, AUC is particularly useful in imbalanced

4.2. Evaluation 17

datasets where the number of positive and negative instances differs significantly,
as it does in our case.

19

Chapter 5

Results

———————————————————–

In this chapter, we will discuss the analysis of the experimental outcomes. The
results will be organized based on various hyperparameters across the three deep
learning models. Following that, we will assess the performance of Logistic Regres-
sion in comparison to the deep learning models, using their best parameters which
resulted into their best outcomes.

5.1 Embedding Dimensions

We ran the three deep learning models on different embedding sizes, ranging from 4
to 100. For all models and different embedding sizes, prediction time, training time,
AUC and RIG were calculated and shown in this section.

5.1.1 Prediction Time

Figure 5.1 shows prediction time for different numbers of dimensions, where time
is represent in seconds. For all models, prediction time increased when the num-
ber of dimensions increased as well. We see the biggest change in the DCN model,
which had a lower prediction time than the other models with lower embedding di-
mensions. However, as the number of embedding dimensions increased, prediction
time for the DCN model increased too, leading into the highest prediction time of all
models.

FIGURE 5.1: Graph of the prediction time vs embedding dimensions

20 Chapter 5. Results

5.1.2 Training time

The next figure, Figure 5.2, shows training time in minutes against embedding di-
mensions. A big outlier in this graph is the FM model, which showed a high training
time for 80 dimensions. Nevertheless, the DCN and DeepFM models exhibited more
stable performance, with the DCN model slightly outperforming the DeepFM model
for 60 dimensions.

FIGURE 5.2: Graph of the training time vs embedding dimensions

5.1.3 Relative Information Gain

FIGURE 5.3: Graph of the relative information gain vs embedding
dimensions

The graph presented in Figure 5.3 shows the relationship between different embed-
ding dimensions and their corresponding Relative Information Gain (RIG). It is ev-
ident that as the number of embedding dimensions increased, all models exhibited
a decrease in performance. However, the DCN model demonstrated two notable
outliers. Specifically, when utilizing higher embedding dimensions of 60 and 80, the
RIG for the DCN model dropped to zero.

5.1. Embedding Dimensions 21

FIGURE 5.4: Graph of AUC vs embedding dimensions

5.1.4 Area Under the ROC Curve

Within this paragraph, the final graph, presented in Figure 5.4, illustrates the AUC
score across different embedding dimensions. The performance of all three models
remained relatively stable, yielding similar outcomes. However, as observed in pre-
vious graphs, an outlier was apparent in the DCN model. Notably, for the highest
dimensions of 60 and 80, the AUC score for the DCN model experienced a significant
decline, differing from the consistent performance observed in other cases.

22 Chapter 5. Results

5.2 Hidden Units

As there are no hidden units in the FM model, we only compared the DCN model
and the DeepFM model for different hidden units. Again, prediction time, training
time, NLL and AUC are plotted for the two models.

5.2.1 Prediction Time

Like mentioned, we only evaluated the DCN and DeepFM model for this case.
Figure 5.5 shows us that prediction time (in seconds) overall took longer for the
DeepFM model than for the DCN model. To show the difference within the differ-
ent hidden units for both models, we have created a Table 5.1 which can be seen
below.

FIGURE 5.5: Bar chart of prediction time vs hidden units

The table shows us that the DCN model achieved its fastest prediction time with
hidden units of [64,64], while the DeepFM model performed fastest with hidden
units of [32,32]. Nevertheless, both models did not show great differences between
different hidden units within each model.

TABLE 5.1: Prediction Time for DCN and DeepFM Models with Dif-
ferent Hidden Units

Hidden Units DCN (time in s) DeepFM (time in s)

32,32 63 98
64,64 61 105
128,128 62 103

5.2. Hidden Units 23

5.2.2 Training Time

The graph in Figure 5.6 displays the training time in minutes for each model across
different hidden units. As observed, the DeepFM model required more time to train
compared to the DCN model, with the longest training time observed for hidden
units of [32,32]. Examining Table 5.2 in detail, we can observe that the training time
for the DCN model did not significantly vary across different hidden units. How-
ever, the DeepFM model showed a notable difference of approximately 12 minutes
between the hidden units [32,32] and [128,128].

FIGURE 5.6: Bar chart of training time vs hidden units

TABLE 5.2: Training Time for DCN and DeepFM Models with Differ-
ent Hidden Units

Hidden Units DCN (time in min) DeepFM (time in min)

32,32 75.4 199.4
64,64 75.6 190.0
128,128 74.3 187.3

5.2.3 Relative Information Gain

The RIG is compared for each model and the different hidden units, as shown in
Figure 5.7. The results indicated that there was not a significant difference between
the two models, as well as among the different hidden units, suggesting similar per-
formances.

Upon examining Table 5.3, it can be observed that the DCN model resulted into
the same RIG for all hidden units. On the other hand, the RIG performance of the
DeepFM model decreased as the hidden units increased in size. Note that the re-
sults are not rounded, as even the slightest variation can make a difference. This is
important to ensure that the smallest changes in results are accounted for.

5.2.4 Area Under the ROC Curve

Similar to the results seen in Figure 5.7, the results in Figure 5.8 shows similar results
for both models in terms of performance of the AUC. Again, results did not differ

24 Chapter 5. Results

FIGURE 5.7: Bar chart of RIG vs hidden units

TABLE 5.3: RIG for DCN and DeepFM Models with Different Hidden
Units

Hidden Units DCN (RIG) DeepFM (RIG)

32,32 0.106626 0.107288
64,64 0.106626 0.104496
128,128 0.106626 0.096661

significantly between both the two models and for each different value for the hid-
den units.

As observed in Table 5.4, it becomes evident that the AUC yielded identical results
for each of the different hidden units within the DCN model. This similarity was
consistent with the observations made for the RIG results of the DCN model, as pre-
sented in Table 5.3. In contrast, the DeepFM model demonstrated slight variations
across the different hidden units, with the best performance achieved when using
hidden units of [128,128].

TABLE 5.4: AUC for DCN and DeepFM Models with Different Hid-
den Units

Hidden Units DCN (AUC) DeepFM (AUC)

32,32 0.856674 0.858533
64,64 0.856674 0.858465
128,128 0.856674 0.858952

5.3. Net Dropout 25

FIGURE 5.8: Bar chart of AUC vs hidden units

5.3 Net Dropout

Three different dropout rates, namely 0, 0.1 and 0.01, were applied to the DCN
model and DeepFM model. We selected the embedding layer with the best result
for both models, which was 7. However, we chose a different value for the hid-
den units than the one that achieved the best performance. This decision was made
because the best performance for both models was observed with hidden units of
[32,32], and we wanted to test the dropout rates against a higher value ([128,128])
for hidden units. This is done for the reason that larger hidden units could reduce
overfitting of the models with a dropout rate. Again we show the four different
metrics for each model and each dropout rate.

5.3.1 Prediction Time

FIGURE 5.9: Bar chart of prediction time vs net dropout

Starting with observing the prediction time for different dropout rates, Figure 5.9
displays that the DeepFM model required more time for predictions compared to
the DCN model. Having a closer look at the results in Table 5.5, the DCN model
showed the shortest prediction times in seconds for both dropout rates of 0 and 0.01.

26 Chapter 5. Results

On the other hand, the DeepFM model performed optimally with a dropout rate of
0.1.

TABLE 5.5: Prediction Time for DCN and DeepFM Models with Dif-
ferent Dropout Rates

Dropout Rates DCN (time in s) DeepFM (time in s)

0 62 103
0.1 63 102
0.01 62 103

5.3.2 Training Time

Just like the prediction time we have seen in 5.9, the DeepFM model took longer in
time to train than the DCN model did. We can see small differences for the differ-
ent dropout rates in the DCN model, whereas the DeepFM showed bigger different
results.

FIGURE 5.10: Bar chart of training time vs net dropout

The differences in results for both models can be observed in Table 5.6. We can
observe the DCN model required the least amount of minutes for training with a
dropout rate of 0, so without using dropout. The DeepFM, on the other hand, exhib-
ited the shortest training duration with a dropout rate of 0.01, indicating a significant
difference of approximately 21 minutes compared to training without dropout.

TABLE 5.6: Training Time for DCN and DeepFM Models with Differ-
ent Dropout Rates

Dropout Rates DCN (time in minutes) DeepFM (time in minutes)

0 74.3 187.3
0.1 76.4 162.1
0.01 74.0 166.0

5.3. Net Dropout 27

5.3.3 Relative Information Gain

Figure 5.12 displays the RIG for both models and their best performances, compared
for different dropout rates. Overall, the DCN model showed a higher RIG compared
to the DeepFM model.

FIGURE 5.11: Bar chart of RIG vs net dropout

Again, we do not round results in Table 5.7 given that even the slightest variation can
yield a notable impact. Observable is the fact that the DCN model did not change
in RIG for different dropout rates. On the other hand, the DeepFM model exhibited
only minor variations in RIG when subjected to different dropout rates.

TABLE 5.7: RIG for DCN and DeepFM Models with Different
Dropout Rates

Dropout Rates DCN (RIG) DeepFM (RIG)

0 0.106626 0.096661
0.1 0.106626 0.093338
0.01 0.106626 0.093016

28 Chapter 5. Results

5.3.4 Area Under the ROC Curve

Regarding the optimal hyperparameters for both models, the AUC results demon-
strated minimal variation across different dropout rates. This observation, shown
in Figure 5.12, indicated that the performance of both models remained relatively
consistent regardless of the dropout rate employed.

FIGURE 5.12: Bar chart of AUC vs net dropout

Table 5.8 gives us a closer look for different results in AUC for the three dropout
rates. Remarkably, the DCN model showed the same results for all three dropout
rates, whereas the DeepFM model again did not show much difference in AUC per-
fomance for the different dropout rates.

TABLE 5.8: AUC for DCN and DeepFM Models with Different
Dropout Rates

Dropout Rates DCN (RIG) DeepFM (AUC)

0 0.856674 0.858952
0.1 0.856674 0.857745
0.01 0.856674 0.857997

5.4. Logistic Regression 29

5.4 Logistic Regression

Logistic Regression is evaluated using the hyperparameters discussed in Chapter
4.1.1. Table 5.9 presents the results for all four metrics obtained from Logistic Re-
gression.

TABLE 5.9: Logistic Regression Results

Metric Logistic Regression
Prediction Time (s) 0.51

Training Time (minutes) 1.2
RIG 0.103333
AUC 0.852689

5.5 Best Performances

Finally, we are comparing all three models with their best outcomes against Logistic
Regression, these include FM, DeepFM and DCN. For each model we have chosen
the hyperparameters that led to the best RIG. All four metrics are evaluated again.

5.5.1 Prediction Time

The graph in Figure 5.13 displays that Logistic Regression had the shortest predic-
tion time, while the DCN model had the longest, with a difference of approximately
100 seconds. The DeepFM and FM models have had the same prediction time for
their best configurations.

FIGURE 5.13: Bar chart of prediction time for all models

5.5.2 Training Time

When comparing the training times of the different models, Figure 5.14 highlights
significant variations among them. Logistic Regression required the shortest train-
ing time, while the DeepFM model took the longest, with a difference of over 180
minutes, equivalent to more than three hours. It is worth noting the substantial
difference between Logistic Regression and the three deep learning models. While
the deep learning models took at least an hour to train, Logistic Regression only
required less than a minute.

30 Chapter 5. Results

FIGURE 5.14: Bar chart of training time for all models

5.5.3 Relative Information Gain

FIGURE 5.15: Bar chart of RIG for all models

Considering that the best performance was determined based on RIG, it is intrigu-
ing to examine the performance of all models in this regard. Figure 5.15 illustrates
that Logistic Regression had the poorest performance compared to all other mod-
els. Although the differences in outcomes are not substantial, the DeepFM model
outperformed the others.

5.5.4 Area Under the ROC Curve

The final metric we are observing for all four models is the AUC, which can be
seen in Figure 5.16. Remarkably, these results show the same order of performance
of the models as seen with RIG in Figure 5.15. Logistic Regression again had the
poorest performance, whereas the DeepFM model (slightly) outperformed all the
other models.

5.6. Results on the Test Set 31

FIGURE 5.16: Bar chart of AUC for all models

5.6 Results on the Test Set

In Table 5.10 we see the results from running the best hyperparameters for each
model type on the test set. The model was trained on the full set of the train and
validation set. We see the DeepFM model achieved the highest RIG again closely
followed by DCN, then surprisingly FM achieved a better score than LR.

TABLE 5.10: Test Set Results

Model RIG
Logistic Regression 0.103136

FM 0.105089
DCN 0.111865

DeepFM 0.112846

32 Chapter 5. Results

5.7 Hashing buckets

After evaluation of the best models, the method of hashing is considered. Previous
experiments were done with a hashing bucket of 1000. In this section hashing buck-
ets of 5000 and 10000 were determined where Logistic Regression will be evaluated
first, followed by the DCN model.

5.7.1 Logistic Regression

Prediction Time

As shown in Figure 5.17, the prediction time increased as the hashing bucket size
increased. Moreover, the increase in prediction time was twice as much for each dif-
ferent number of buckets. However, it is worth noticing that this time is in seconds,
leading even the largest bucket size to a prediction time of only 7 seconds.

FIGURE 5.17: Bar chart of prediction times for different hashing buck-
ets in LR

Training Time

Training time is measured in minutes, and also shows an increase as the bucket size
increased, as seen in Figure 5.18. With 1000 buckets, the training time was less than
a minute, whereas the largest bucket size of 10000 resulted in a training time of more
than 7 minutes.

5.7. Hashing buckets 33

FIGURE 5.18: Bar chart of training time for different hashing buckets
in LR

Relative Information Gain

The graph in Figure 5.19 shows the most important results, namely the RIG for
each of the different hashing buckets. We see an increase in RIG as the bucket size
increased, surpassing the performance in RIG achieved by the best deep learning
models, making Logistic Regression the best model in terms of performance. This
improvement is noticeable already with a bucket size of 5000, and further improved
with a hashing bucket size of 10000.

FIGURE 5.19: Bar chart of RIG for different hashing buckets in LR

34 Chapter 5. Results

Area under the ROC Curve

Even though there was not much of a change in results for AUC, Figure 5.20 shows
again improvement in performance as the bucket size increased. Just like the RIG
performances seen in Figure 5.19, Logistic Regression beat the best deep learning in
AUC. Again, this happened already with a bucket size of 5000 and further improved
with a bucket size of 10000.

FIGURE 5.20: Bar chart of AUC for different hashing buckets in LR

5.7.2 Deep & Cross Network

For the DCN model, we decided to use the best hyperparameters and run the same
experiment with a hashing bucket size of 5000 instead of 1000. Just to show a small
study on tweaking hyperparameters, we only increased the embedding size where
all results can be seen in Table 5.11.

As the embedding size increases, all the hyperparameters increase too. There is
an exception on this behaviour, where both RIG and AUC decrease between the
embedding sizes of 30 and 50. Moreover, all experiments showed worse results than
obtained with a hashing bucket size of 1000.

TABLE 5.11: DCN (5000 buckets)

Metric Embedding 7 Embedding 15 Embedding 30 Embedding 50
Prediction Time (s) 69 84 101 131

Training Time (minutes) 101 110 121 124
RIG 0.088781 0.089149 0.089212 0.088038
AUC 0.843055 0.843689 0.842541 0.840875

5.8. Volatility of Prediction Vectors 35

5.8 Volatility of Prediction Vectors

5.8.1 Shuffling Training Set

The effects on volatility of simply shuffling the training set is explored here. As
expected in Figure 5.12 and Figure 5.13 we see a KL Divergence and Mean absolute
difference of 0.00. This is because training a LR model is equivalent to solving a
convex optimisation problem thus the order of data has no impact on the global
optimum the model converges to given the same set of data.
Interestingly, DCN appeared to have a large KL Divergence and Mean Absolute
Difference compared to it’s counterparts.

TABLE 5.12: KL Divergence of Prediction Vector Distributions for Dif-
ferent Models with a Shuffled Training Set

Model KL Divergence
LR 0.000000
FM 0.000413

DeepFM 0.001368
DCN 0.021580

TABLE 5.13: Mean Absolute Difference of Prediction Variables with a
Shuffled Training Set

Model Mean Absolute Difference
LR 0.000000
FM 0.000060

DeepFM 0.000075
DCN 0.001216

5.8.2 Downsampling Training Set

By downsampling the training set by 50% and comparing the prediction vector of a
model trained on the downsampled set with the original training set, we simulated
a changing volume of data and we could get an understanding of the implications
of that change in volume in training on the volatility in the predictions for the vali-
dation set.

TABLE 5.14: KL Divergence of Prediction Vector Distributions for Dif-
ferent Models with a Fractional Training Set

Model KL Divergence
FM 0.000098

DeepFM 0.000331
LR 0.000495

DCN 0.014095

Interestingly in Figure 5.14 the DeepFM appeared to have a lesser distribution di-
vergence than LR. The DCN also appeared to have a relatively more significant
divergent distribution. The same appeared to also be true for the Mean Absolute
Difference between the prediction vectors in Figure 5.15.
We see the Logistic Regression did not do as relatively well on the downsampled
data with only DCN being more volatile than it. Interestingly, FM was the least
volatile model on both metrics.

36 Chapter 5. Results

TABLE 5.15: Mean Absolute Difference of Prediction Vection with a
Shuffled Training Set

Model Mean Absolute Difference
FM 0.000009

DeepFM 0.000062
LR 0.000075

DCN 0.001182

37

Chapter 6

Discussion

———————————————————–

6.1 Inference Time & Relative Information Gain

The nature of RTB algorithms requires a trade off between a model with the best
predictive power and a model that can make predictions quickly. A company that
can make achieve high predictive power (in the form of RIG, for example) with a
low inference time will have a huge advantage on the ad exchanges. Conversely, if
you use an algorithm with high predictive power and a long inference time you will
miss the auction, and an algorithm with a low predictive power and short inference
time will result in winning many bids with a reduced return. This is why we focused
our analysis on the trade off of prediction time and RIG.

The model with the most superior prediction time was the DCN model, the DeepFM
model was a close second. Surprisingly, Logistic Regression had the lowest predic-
tion time. Note that both of these models were experimented on the same machine,
both on the same CPU.

When it comes to predictive power and RIG, the DeepFM model made the larges im-
provement from the LR model and the DCN model a close second. What is interest-
ing is that even with the simplistic deep learning models like we have implemented
here, we have been able to improve on the standard LR model in both inference time
and RIG.

When trying to strike a balance between inference time and predictive power, there
is a strong case for the DCN model. The DCN model had the lowest training time out
of the DeepFM and FM models and the quickest inference time, whilst still making
a significant improvement on LR.

6.2 Logistic Regression vs Deep Learning Models

We have managed to find deep learning models that are able to outperform LR in
predictive power when comparing on both RIG or AUC. However, this is not the
only consideration one has to make when trying to decide what will be your pro-
duction model.

LR is superior over the deep learning models when it comes to training speed, and
Apache Spark is limiting in the choice that is available having only a multi-layer per-
ceptron and factorisation machine components available to implement, not a cross
network component. Thus in Apache Spark MLlib, the DeepFM and FM models
were the only achievable architectures. This is great news from the perspective
of switching costs as cost of changing technologies is significantly reduced. The

38 Chapter 6. Discussion

DeepFM model was also satisfactory with respect to inference time. Although it did
not achieve the best inference time, it still manages to outperform the current incum-
bent LR.

We quickly noticed throughout our study that as we made the DCN and DeepFM
models more and more complex the models quickly began overfitting the data and
were unable to generalise. This is particularly relevant in Figure 5.3 where we see
the DCN RIG plummet with increasing complexity. This was the first indication we
saw that we may not have enough data, even with the low dimensional hashing size,
to be able to generalise. Despite this we managed to find a set of parameters for both
the DCN and DeepFM models that outperformed the LR model.

6.3 Embedding Dimensions and Hidden Units

The first parameter we evaluated for the four deep learning models was the embed-
ding dimensions. We conducted experiments with embedding sizes ranging from 5
to 100, with a step size of 20. However, we observed a decrease in performance for
most models. This was particularly noticeable for the DCN model, which exhibited
a decline in performance with the highest embedding dimensions, as depicted in
Figure 5.3 and Figure 5.4.

Instead of opting for higher embedding dimensions, we decided to use multiple em-
bedding dimensions within the range of 4 to 10. Since our dataset is not relatively
large, we believe that the best results were achieved with an embedding dimension
of 7.

Both the DCN and the DeepFM models were compared using different numbers of
hidden units. When examining the RIG and AUC metrics for the DCN model (see
Table 5.4 and Table 5.3), no changes were observed across different hidden unit con-
figurations. The reasons behind this observation will be discussed in section 6.4.

On the other hand, the DeepFM model achieved the best RIG when using [32,32]
hidden units. Although the AUC value remained unchanged, the best results for
AUC were obtained with [128,128] hidden units.

While [128,128] hidden units yielded the best AUC results, we still believe that the
[32,32] hidden unit configuration worked best for the DeepFM model. This belief is
based on the larger difference in results for the RIG metric and the minimal differ-
ence for AUC.

6.4 DCN Overfitting

As can be seen in some of the DCN model results, it’s metrics degrade and became
constant, such as in Table 5.3 and in Table 5.4. After some analysis and testing the
outcome with multiple hyperparameters, it seems that the model converged to the
same point and predicted the same value for each sample. This mainly happened on
runs with the larger embedding dimensions. We suspect that the cross network com-
ponent of the DCN model began to take precedent over the feed forward network
component and overfitted to the same point as the embedding dimensions were kept
constant, resulting in the same predictions and a constant evaluation metric. It was
surprising to see such a rapid degradation of predictive power as the complexity
of the DCN model increased. Based on this finding, it is important to pay special
attention to any signs of overfitting when implementing a DCN model.

6.5. Use of Net Dropout 39

6.5 Use of Net Dropout

In Section 5.3, we decided to use a higher number of hidden units to address overfit-
ting in the models when dropout was applied. For the RIG metric, the DCN model
consistently produced the same results, as shown in Table 5.7, likely due to reasons
discussed earlier. However, the DeepFM model exhibited performance differences
and generally performed less effectively when dropout was used.

Regarding the AUC metric, the results presented in Table 5.8 confirmed our findings.
The DCN model maintained consistent results, while the DeepFM model achieved
its best performance without utilizing dropout.

6.6 Unsuccessful Experiments

Surprisingly, the best performing embedding dimension parameter for DCN and
DeepFM was of size only 7, see Figure 5.3. This stayed true even when we exper-
imented with increasing embedding dimensions and size of the hidden unit layers
with a regulariser in the form of a drop out rate. In the end the smaller simpler
model with an embedding dimension of 7 won out. We suspect that with a more
larger more complex dataset, which can be achieved by increasing the number of
hashing buckets, that we would start to see the benefits of such experimentation.

6.7 Hashing Buckets

Like explained in Section 4.1.1, we used 3 different hashing bucket sizes, namely
1000, 5000 and 10000. All initial experiments were done with a bucket size of 1000,
and further exploration was done with the latter two. Since increasing the bucket
size led to a lower collision rate, we wanted to know if that would also result in bet-
ter performances for the models.

Starting with Logistic Regression, Figure 5.19 showed us that increasing the bucket
size indeed led to better performances. Not only did it lead to better performance
within Logistic Regression, but it also outperformed the best deep learning mod-
els. This shows evidence for our hypothesis and we thus believe that increasing the
hashing bucket size plays a big role in increasing performances.

Although the DCN model did not show better results with a larger hashing bucket,
as seen in Table 5.11, we believe it would with further experiments when tweaking
the hyperparameters and having a larger dataset. We believe this since the model
showed improvement using larger embedding dimensions, and could be even fur-
ther improved with more experiments. However, due to the limited scope of this
project, it was not possible to identify the optimal hyperparameters for the DCN
model with a hashing bucket size of 5000. Additionally, a larger dataset would be
advantageous for the deep learning models as there are numerous hyperparame-
ters that can be fine-tuned. The complexity of such models can be better captured
with an increased volume of data. Although we had more data available by using a
larger hashing bucket, additional data from the original dataset would likely further
enhance the model’s performance.

While it is true that increasing the bucket size yields improved performances, it is
important to note that this approach comes with a significant memory cost. The in-
creased memory requirements should be taken into consideration when considering
the adoption of this technique. However, if the necessary resources are available to

40 Chapter 6. Discussion

accommodate the larger memory requirements, the results obtained from increasing
the bucket size can be highly promising and beneficial.

6.8 Test Set Results

There were two surprising results from running our models on the test set. The first
is that the RIG improved significantly for all models on the test set. Second, Logistic
Regression was the worst performing model on the test set with respect to RIG.

It appears that in order for these deep learning methods to be effective, they required
huge amounts of data. It is clear that having a combination of the training set and
validation set to learn from the models were able to learn and generalise better to
the test set because of having a larger volume of data. There is further evidence that
there was not enough data to employ deep learning techniques when we look at the
best hyperparameters of the models. Relatively tiny deep learning models with em-
bedding dimensions of 7 and [32,32] hidden units in the neural network. This is a
very small deep learning model but is best suited to this dataset to avoid overfitting.

The DCN model (Yang and Gittens, 2015) and the DeepFM model (Guo et al., 2017)
both rely on a dataset obtained from Criteo Display Ads 1, which consists of over
40 million samples of impression data. In contrast, our combined dataset consisted
of 790,000 samples. This is encouraging as Smadex has the data available to meet
this volume of data, and despite not having that volume of data we were able to
discover a deep learning model that was able to generalise to the test set better than
the current logistic regression solution.

6.9 Volatility of Prediction Vectors

From Section 5.8.1, as expected because of the convex nature of LR, there is no
change to the prediction vector. For both the metrics the models had the same rank-
ing of volatility from best volatility LR to worst the worst model DCN. This ranking
corresponds to the same ranking you would do for complexity with DCN having
the most number of parameters (three cross layers and the hidden units in parallel),
then DeepFM (one FM layer and the hidden units in parallel), and then FM (a single
FM layer). Therefore an increase in complexity could be one explanation for the in-
crease in volatility for the non-convex models.

In Section 5.8.2 we see a more realistic simulation of data volume changing and the
effects this has on volatility. DCN remained the worst for volatility on both KL Di-
vergence and MAD metrics. FM had the most consistent predictor vector across
both metrics with also having a lower score and LR close behind DeepFM. FM likely
performed well in the downsampling analysis of volatility because it has a low com-
plexity, therefore a lower search space and given a reasonable amount of data it will
converge to a similar optimum on each run. The opposite is true for DeepFM and
DCN.

LR is likely overfitting the sampled data and then overfitted again on the full dataset.
However, it is likely the optimum on the new data that is different enough for it to
get a worse volatility score than DeepFM and FM. This however may be rectified if
it generalised better with hyperparameter tuning and more data.

When taking volatility and RIG into consideration when choosing a model to push
to production, DeepFM is the most attractive option as it perform relatively well on

1https://www.kaggle.com/competitions/criteo-display-ad-challenge/data

6.9. Volatility of Prediction Vectors 41

both volatility and RIG, where as the other models fell short on a combination of one
or the other or both.

43

Chapter 7

Conclusion

———————————————————–

We developed models from end to end, including an extensive exploratory data
analysis from production generated data of user impressions labelled with conver-
sions, to having fully developed tuned and tested deep learning models with an
extensive breakdown of the pros and cons of each.

An initial Logistic Regression model was developed inline with Smadex’s own in-
ternal algorithm to act as a baseline for the Deep Learning models. The most cutting
edge deep learning models, Deep Factorisation Machines and Deep Cross Net, in
the Real Time Bidding space were developed and compared with each other and
Logistic Regression.

Analysis was taken with the intent to find the best performing model for produc-
tion, in the case of Real Time Bidding this means a trade off between inference time
and predictive power. We found that both the Deep Cross Network and the Deep
Factorisation Machine improved on Logistic Regression on both of these metrics,
falling short on only training time. As the Deep Factorisation Machine achieved the
best predictive power and quicker inference time than Logistic Regression, we be-
lieve this to be the best resulting model despite Deep Cross Network achieving a
quicker inference time. Deep Factorisation Machine also has the advantage of hav-
ing it’s components available on Apache Spark MLlib, readily available for imple-
mentation.

7.1 Hashing Buckets

Our experiments with bigger hashing bucket sizes showed improvement in partic-
ular cases, specifically, in Logistic Regression. We have shown that performance got
better as the hashing bucket increased. We think this was demonstrated in Logistic
Regression due to its convexity, not having all the hyperparameters which the deep
learning models have to deal with.

In contrast, the deep learning models did not show improvement as the buckets
increased, but rather showed a decrease in performance. However, when tuning hy-
perparameters performance increased, giving the indication this could lead to bigger
improvement in the long run.

Given that deep learning models have previously outperformed Logistic Regression
when using 5000 hashing buckets, it is reasonable to believe that similar improve-
ments can be achieved with even larger bucket sizes. To accomplish this, a com-
bination of hyperparameter tuning and the use of more data should be employed.
By optimizing the model’s hyperparameters and incorporating a larger dataset, the
deep learning models have the potential to show better performance.

44 Chapter 7. Conclusion

Moreover, considering the observed performance improvement in Logistic Regres-
sion with increased hashing bucket sizes, we highly recommend the utilization of
larger hashing buckets in future applications. By leveraging the benefits of larger
bucket sizes, there is a greater likelihood of achieving better performances across
different models. Using this approach can make predictions more accurate and ef-
fective, leading to stronger and more reliable solutions.

7.2 Volatility of Prediction Vectors

Volatility is an additional consideration when deciding the best model to implement
for use in production on top of RIG, train time, and prediction time which we have
discussed thoroughly throughout this research. We have defined model prediction
volatility and outlined a methodology for testing the extent for which a model is
susceptible to volatility by using a combination of KL Divergence and MAD on it’s
prediction values. This is set out with the goal of being able to develop a more stable
model for a RTB algorithm to maximising return on ad spend.

Two perspectives of volatility were explored: effect of order of training data, and
effect of changing volume. Changing volume is a more suitable simulation because
it is a realistic scenario in RTB as data volume increases then models are retrained
so it becomes essential for the RTB algorithm placing bid values to maintain stable
prediction values from the CTR prediction component.

The results showed that DeepFM performed consistently well on each type of volatil-
ity analysis where as DCN was always the most volatile. We saw that FM showed
the most promise on volatility but it remains to be seen the extent to which volatility
effects the performance capabilities of RTB algorithms.

These results are an initial indication for the development of an end to end RTB al-
gorithm. There are many more experiments and requirements that need to be tested
before deployment, as discussed in Section 8.4.

45

Chapter 8

Future work

———————————————————–

8.1 Data Volume

Due to engineering constraints we have limited our study to a single machine and
training our models in memory. Because of the nature of the data, with only 1000
hashing buckets and 300 more OHE columns, we did not require a distributed data
system, nor did our models benefit from the sue of a GPU while training as the cost
of data transfer outweighed the benefits of improved iteration speed.

Throughout the study we were subject to overfitting. We saw this with the resulting
models all being "small" deep learning models, and we saw a quick degradation
in the generalisability on the validation set as we increased the complexity of our
models, such as in Figure 5.4 for the DCN model.

8.2 Logistic Regression

LR received minimal hyperparameter tuning. It requires further hyperparameter
tuning on the regularisation method and perhaps testing of other solvers. There
may be an improvement on LR’s metrics through testing of different combinations
of regularisation and solver and we leave this for further work.

8.3 Hashing buckets

As results shown us that increasing the hashing bucket size led to great develop-
ments, more on this research can still be analysed when having the proper resources
to do so. First of all, the hashing bucket size can be further increased, leading to a
lower collision rate since we have seen the positive outcome of increasing the buck-
ets sizes. Ideally, this would be tested on Logistic Regression, benefiting from its
convex nature, and later deployed on the deep learning models as well.

Furthermore, once experiments with larger hashing buckets are conducted, a fresh
examination of hyperparameters can be conducted on the deep learning models.
This study would involve incorporating additional data and increasing the bucket
size, potentially revealing further improvements in performance.

8.4 Volatility of predictions

Although we have developed a methodology and an intuition for the volatility of
a models predictions due to time and resource constraints our results are not em-
pirical. Next steps include running this experiment until there is a desired level of

46 Chapter 8. Future work

confidence in the results. For maximum robustness the experiments should be done
in line with the future work outlined in Section 8.1 on increasing data volume.
Another approach which was not explored here was to explore two completely in-
dependent training samples on the same validation set as opposed to what was out-
lined in Section 3.3 where the full dataset and a sample of the full dataset was com-
pared against each other.

Finally this work should be extended and developed in tandem with a RTB algo-
rithm and the ultimate performance metric that should be used should be to max-
imise the return on spend an algorithm achieves and a CTR prediction model com-
bined with a RTB algorithm that achieves that maximum should be chosen. How-
ever, it is clear that having a model that can give a reliable CTR prediction is a major
step in achieving that outcome

47

Appendix A

Column Name Transformation Description
inv_id deleted Inventory id. This is an internal ID that

identifies inventory at its most granular,
and is computed by hashing the pub-
lisher app/site, location, etc. Two impres-
sions with the same inv_id correspond to
the same piece of “real estate”.

inv_bundle hash A platform-specific application identifier
intended to be unique to the app and in-
dependent of the exchange. On Android,
this should be a bundle or package name
(e.g., com.foo.mygame). On iOS, it is a
numeric ID.

advertiser_bundle OHE Advertiser bundle. This is the bundle
specified in the line.

country hash Country where the ad was shown.
req_date new column Timestamp of the request.
dev_os OHE Device operating system (e.g., ’ios’, ’an-

droid’)
dev_osv deleted Device operating system version (e.g.,

’12.4.1’, ’8.1.0’)
dev_make OHE Device make (e.g., ’Apple’, ’Samsung’)

connection_type_id OHE Identifier of connection type of the device
(wifi, cellular data 2G, 3G, 4G,..)

req_carrier deleted Carrier or ISP (e.g., ’VERIZON’), using
exchange curated string names which
should be published to bidders a priori.

ad_size OHE Size of the creative used. (e.g., ’xlarge’, ’t-
interstitial’)

has_sha1 new column Boolean: True if dpid_hash is set, false
otherwise.

is_rewarded boolean Whether the user receives a reward for
viewing the ad.

is_video boolean Boolean to indicate if the bid is for a
video: 1 = true, 0 = false

line_group_id OHE Identifier of the campaign used in the bid.
req_city hash City using United Nations Code for Trade

& Transport Locations.

48 Chapter 8. Future work

Column Name Transformation Description
dev_type deleted The general type of device. (e.g., ’smart-

phone’, ’tablet’)
dev_model hash Device model (e.g., ’iphone xs’, ’SM-

J260T1’)
exchange_id hash Identifier of the exchange in our DB
is_waterfall deleted Boolean to indicate if the request belongs

to a waterfall: 1 = true, 0 = false, null =
undetermined

region OHE Region code using ISO-3166-2; 2-letter
state code if USA. (e.g., ’TX’, ’BA’)

release_date new column The release date of the device
release_msrp new column The release price of the device
inv_category hash The category of the inventory (publisher

app)
inv_subcategory deleted The subcategory of the inventory, when

relevant.
advertiser_category hash The category of the app we are advertis-

ing
advertiser_subcategory hash The subcategory of the app we are adver-

tising, when relevant
converted boolean 1 if the impression resulted in an install, 0

otherwise. This is the target variable

49

Bibliography

Agresti, Alan (2015). Foundations of Linear and Generalized Linear Models. Wiley.
Blondel, Mathieu et al. (2016). “Higher-Order Factorization Machines”. In: Advances

in Neural Information Processing Systems. Ed. by D. Lee et al. Vol. 29. Curran Asso-
ciates, Inc. URL: https://proceedings.neurips.cc/paper_files/paper/2016/
file/158fc2ddd52ec2cf54d3c161f2dd6517-Paper.pdf.

Guo, Huifeng et al. (2017). “DeepFM: a factorization-machine based neural network
for CTR prediction”. In.

He, Xinran et al. (2014). “Practical lessons from predicting clicks on ads at facebook”.
In: Proceedings of the eighth international workshop on data mining for online advertis-
ing, pp. 1–9.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning”. In: na-
ture 521.7553, pp. 436–444.

Lemeshow, Stanley, Rodney X Sturdivant, and David W Hosmer Jr (2013). Applied
logistic regression. John Wiley & Sons.

Pan, Junwei et al. (2018). “Field-weighted factorization machines for click-through
rate prediction in display advertising”. In: Proceedings of the 2018 World Wide Web
Conference, pp. 1349–1357.

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12, pp. 2825–2830.

Rendle, Steffen (2010). “Factorization machines”. In: 2010 IEEE International confer-
ence on data mining. IEEE, pp. 995–1000.

Richardson, Matthew, Ewa Dominowska, and Robert Ragno (2007). “Predicting clicks:
estimating the click-through rate for new ads”. In: Proceedings of the 16th interna-
tional conference on World Wide Web, pp. 521–530.

Ruppert, David (2004). The elements of statistical learning: data mining, inference, and
prediction.

Types, AWS Instance (2023). URL: https://aws.amazon.com/ec2/instance-types/.
Wang, Ruoxi et al. (2017). “Deep & Cross Network for Ad Click Predictions”. In:

CoRR abs/1708.05123. arXiv: 1708.05123. URL: http://arxiv.org/abs/1708.
05123.

Wang, Xinfei (2020). “A Survey of Online Advertising Click-Through Rate Prediction
Models”. In: 2020 IEEE International Conference on Information Technology,Big Data
and Artificial Intelligence (ICIBA). Vol. 1, pp. 516–521. DOI: 10.1109/ICIBA50161.
2020.9277337.

Xiong, Xi et al. (2019). “A clickthrough rate prediction algorithm based on users’
behaviors”. In: IEEE Access 7, pp. 174782–174792.

Yang, Jiyan and Alex Gittens (2015). “Tensor machines for learning target-specific
polynomial features”. In: CoRR abs/1504.01697. arXiv: 1504.01697. URL: http:
//arxiv.org/abs/1504.01697.

Yang, Yanwu and Panyu Zhai (2022). “Click-through rate prediction in online adver-
tising: A literature review”. In: Information Processing & Management 59.2, p. 102853.

Yuan, Shuai, Jun Wang, and Xiaoxue Zhao (2013). “Real-time bidding for online ad-
vertising: measurement and analysis”. In: Proceedings of the seventh international
workshop on data mining for online advertising, pp. 1–8.

Yuan, Yong et al. (2014). “A survey on real time bidding advertising”. In: Proceed-
ings of 2014 IEEE International Conference on Service Operations and Logistics, and
Informatics. IEEE, pp. 418–423.

https://proceedings.neurips.cc/paper_files/paper/2016/file/158fc2ddd52ec2cf54d3c161f2dd6517-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/158fc2ddd52ec2cf54d3c161f2dd6517-Paper.pdf
https://aws.amazon.com/ec2/instance-types/
https://arxiv.org/abs/1708.05123
http://arxiv.org/abs/1708.05123
http://arxiv.org/abs/1708.05123
https://doi.org/10.1109/ICIBA50161.2020.9277337
https://doi.org/10.1109/ICIBA50161.2020.9277337
https://arxiv.org/abs/1504.01697
http://arxiv.org/abs/1504.01697
http://arxiv.org/abs/1504.01697

50 Bibliography

Zhang, Weinan et al. (2021). “Deep learning for click-through rate estimation”. In:
arXiv preprint arXiv:2104.10584.

Zhu, Jieming et al. (2021). “Open Benchmarking for Click-Through Rate Prediction”.
In: CIKM ’21: The 30th ACM International Conference on Information and Knowledge
Management, Virtual Event, Queensland, Australia, November 1 - 5, 2021. Ed. by Gi-
anluca Demartini et al. ACM, pp. 2759–2769. DOI: 10.1145/3459637.3482486.
URL: https://doi.org/10.1145/3459637.3482486.

https://doi.org/10.1145/3459637.3482486
https://doi.org/10.1145/3459637.3482486

	Abstract
	Acknowledgements
	Introduction
	Background
	Smadex
	Technology at Smadex
	Dataset background

	Real time bidding
	Click-through rate prediction

	Method
	Data
	Data Exploration
	Target Label Imbalance
	Data Types

	Data Preprocessing
	Dealing with missing values
	Creating New Columns
	One-hot-encoding
	Hashing Bucket
	Train, Validation, & Test Split

	Models
	Logistic Regression
	Factorisation Machine
	Deep & Cross Network
	Deep Factorisation Machine
	DCN vs DeepFM
	FuxiCTR Repository

	Analysing Volatility of Predictions of Models
	Changing Distribution of Predictions
	Changing Values of Sample Predictions

	Experimental Setup
	Training
	Hyperparameters
	Logistic Regression
	Embedding Dimensions
	Hidden Units
	Net Dropout
	Hashing Parameters

	Log Loss Function
	Amazon Web Services Instance

	Evaluation
	Metrics
	Relative Information Gain
	Area Under the ROC Curve

	Results
	Embedding Dimensions
	Prediction Time
	Training time
	Relative Information Gain
	Area Under the ROC Curve

	Hidden Units
	Prediction Time
	Training Time
	Relative Information Gain
	Area Under the ROC Curve

	Net Dropout
	Prediction Time
	Training Time
	Relative Information Gain
	Area Under the ROC Curve

	Logistic Regression
	Best Performances
	Prediction Time
	Training Time
	Relative Information Gain
	Area Under the ROC Curve

	Results on the Test Set
	Hashing buckets
	Logistic Regression
	Prediction Time
	Training Time
	Relative Information Gain
	Area under the ROC Curve

	Deep & Cross Network

	Volatility of Prediction Vectors
	Shuffling Training Set
	Downsampling Training Set

	Discussion
	Inference Time & Relative Information Gain
	Logistic Regression vs Deep Learning Models
	Embedding Dimensions and Hidden Units
	DCN Overfitting
	Use of Net Dropout
	Unsuccessful Experiments
	Hashing Buckets
	Test Set Results
	Volatility of Prediction Vectors

	Conclusion
	Hashing Buckets
	Volatility of Prediction Vectors

	Future work
	Data Volume
	Logistic Regression
	Hashing buckets
	Volatility of predictions

	Appendix A
	Bibliography

