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  Abstract  

 
The Difference-in-Difference (DiD) method is useful to test if an event has effects in a given 
outcome using non-experimental data. Based on DiD method, we propose alternative panel 
models to estimate the causal effects of the traffic accidents on driving behavior patterns: the 
total annual driving distance in km, the percent of km circulated above the speed limits, in urban 
areas and at night. We use a data set provided by an ”insurtech” company that uses car 
sensors to measure driving data over a period of three years. The estimation results show as 
the causal effects of accidents are different if we consider frequency of accidents, type of 
damages and whose fault is the accident. Furthermore, different profiles of policyholders in 
function of drivers and cars characteristics are associated with specific causal effects. 
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1 Introduction 
 

We analyze how an accident causes changes in the auto policyholder’s way of driving, e.g., if 
after the accident the driver becomes more careful or reduces the number of kilometers driven. 

We carried out a Difference-in-Differences (DiD) analysis with alternative outcomes on 
driving patterns and driving conditions, a type of information that is available through 
sensors data regularly collected by “insurtech” firms. With this aim, we selected a sample of 
policyholders that are observed over three years and they have the following characteristics: the 
first year (pre- treatment period) no drivers had accidents, the second year (treatment 
period) a few drivers had one or more accidents and the third year (post-treatment period) 
no drivers reported accidents either. We assume that having accident(s) in the second year is 
the “treatment” that could cause changes in the way of driving in the third year. We tested 
if these changes are statistically significant or not. 

In short, we show how insurance companies can use their data in a context similar to an 
experimental design and identify accidents causal effects, which can help better adjust the price 
of insurance to the anticipated profile of the insured. Furthermore, in a more general context, 
analyzing changes in driving patterns also has implications with regard to road safety. 

The DiD is a statistical technique used to estimate the causal effect of a treatment on an 
outcome of interest by using non-experimental data sets, this means that we can not control the 
assignment of the treatment, this could be assigned by chance. The basic idea behind the DiD 
analysis is to compare the change in the outcome over time, pre-treatment and post-treatment 
periods, between a treatment group (those who reported accidents) and a control group (those 
who did not report accidents). The untreated group should allow us to identify the temporal 
variation without presence of treatment in the treated group. By comparing the difference in 
the changes between the two groups it is estimated the causal effect of the treatment. 

The DiD based analysis can be applied to a wide range of research questions, such as 
evaluating the impact of a new policy on health outcomes, estimating the effect of a marketing 
campaign on sales or assessing the impact of a natural disaster on economic outcomes. Some 
examples of application are found in Di Tella and Schargrodsky (2004), Galiani et al. (2005) 
and Jeffrey et al. (2011). Furthermore, for a recent review on innovative methodologies on DiD 
based analysis see Roth et al. (2023). 

An important point is that the DiD method can help to address the issue of selection bias, 
which arises when treatment and control groups differ in ways that might affect the outcome 
of interest. By comparing the change in the outcome over time within each group, we can take 
into account any pre-existing differences between the groups. 

The DiD based analysis can be carried out using a linear regression where the treatment 
effect is estimated with the coefficient associated with the binary variable that identifies the 
treated group in the post-treatment period, this is the DiD model. In this work, this model 
allows us to estimate the causal effects on alternative outcomes of the occurrence of one o more 
accidents. We present an innovative application on auto insurance, where the treatment group 
includes those policyholders who have one or more accidents along a given treatment period and 
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the control group includes those insureds who do not have accidents during the same period. 
 

We compare the differences one year before (pre-treatment period) and one year after 
(post- treatment period) the accident(s) between the treatment group and the control 
group, for a set of variables that measure annual driving patterns (”percentage distances 
driven above the posted speed limits” and ”total distance in kilometers”) and driving 
conditions (”percentage kilometers at night” and ”percentage kilometers in urban areas”). 
The aim is to estimate the average treatment effect on the treated group (ATT), i.e. the 
causal effect on the group of policyholders reporting one or more accidents. 

The causal effect of having accidents could depend on the number or type of accidents. For 
example, the causal effect of an accident with body injuries (BI) may be different from that 
with only property damage (PD). Alternatively, the effect of an accident where the driver is at 
fault may also be different from that of an accident where the driver is not at fault. We note 
that the treatment and control groups are defined in a simplified way and the DiD model is 
generalized adding multiple treatment effects. 

Some relevant assumptions have to be accepted when estimating the DiD model. The main 
assumption is the parallel trends, which means that the trend in the outcome would have been 
the same for the treatment and control groups in the absence of the event. If this assumption is 
violated the DiD classical estimator based on linear regression is biased and inconsistent, if this 
assumption is not met we will have to consider other techniques, e.g., some semi-parametric 
estimator can be used (see Abadie, 2005; Athey and Imbens, 2006). However, there is not 
statistical inference to verify whether there are parallel trends and their analysis has to be 
based on the results found in similar studies and/or the past experiences. 

Alternatively, parallel trends can be assumed conditional on the values of a set of covariates, 
i.e. heterogeneity assumption. In this case the model has to be expanded by adding multiplica- 
tive effects of covariates with post-treatment period and treatment effects. In our study, this 
assumption is fundamental, given that causal effects of accidents on driving behavior depend 
on the characteristics of the drivers and cars. 

Another assumption of the DiD model is consistency or non anticipatory effects, that implies 
that in the pre-treatment period the outcome of the treatment group is not affected by the future 
event. In our case, this implies that in the period before treatment the driving patterns are not 
affected by a possible future accident(s), i.e., if the accident did not occur, driving behavior 
would not change. However, these driving patterns could be different in both groups in the 
pre-treatment period. We have commented previously in this introduction that DiD method 
addresses these differences between groups, in other words, it takes into account the selection 
bias. 

The structure of the paper is as follows. In Section 2, we describe the general notation and 
the DiD model. A new DiD model in insurance is presented in Section 3. In Section 4, the data 
and the estimation results are described. Finally, the paper ends with conclusions in Section 5. 
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2 The Difference-in-Difference method 

We have a set of N individuals that are observed for at least three times: pre-treatment, 

treatment and post-treatment periods. Commonly, in analysis based on the DiD methodology, 
the treatment period is reduced to an instant in time, so all is considered to happen in two 
periods, before and after the treatment. Here, taking into account the available information, 
the occurrence of the accident is assumed to possibly occur over a certain period, which in our 
case is one year. We identify the two compared periods as t = 1, 2, that are the pre-treatment 

and the post-treatment periods, respectively, in these two periods the policyholders did not 
report accident(s). The individuals form two groups, depending on whether they had reported 
accident(s) in the treatment period, the control group of those insureds that did not have 
accidents and the treatment group of those who suffered one or more accidents. From now on, 
in this section, we will use some similar notation as Roth et al. (2023). 

Let Di, i = 1, ..., N , be the variable that identifies the control (Di = 0) and the treatment 
(Di = 1) groups. Let Trit, t = 1, 2, be the variable that identifies the period of occurrence 
of the treatment in the treatment group, note that Trit = Di × I(t = 2), where I(·) is the 
indicator function, that is equal 1 if the condition in parentheses is true and equal 0 on the 
contrary, i.e. Trit is equal to 1 when the treatment group is doing in the last period. 

If we could observe all possible outcomes in both groups and both periods, for each individual 
i in period t we would have the following information: 

• Yit(0, 0) is the outcome in period t if the individual i is untreated in both periods. 

• Yit(0, 1) is the outcome in period t if the individual i is untreated in the first period and 

treated in the second period. 

• Yit(1, 0) is the outcome in period t if the individual i is treated in the first period and 

untreated in the second period. 

• Yit(1, 1) is the outcome in period t if the individual i is treated in both periods. 

In practice, we can only observe the values of Yit(0, 0) for the individual in the control group 
and Yit(0, 1) for the individual in the treatment group; the values of Yit(1, 0) and Yit(1, 1) are 
potential outcomes that we can not observe. Given the observed outcomes, we can simplify the 
notation in function of the post-treatment period, Yit(0) = Yit(0, 0) and Yit(1) = Yit(0, 1). In 
general, for i = 1, ..., N and t = 1, 2, the random variable that is measured can be expressed as: 

Yit = DiYit(1) + (1 − Di)Yit(0). 

The aim of the DiD method is to estimate the ATT in period t = 2, this is: 

ATT2 = E [Yi2(1) − Yi2(0)|Di = 1] . (1) 
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The problem with the expression (1) is that Yit(0) for the treatment group can not be 

observed in t = 2 and then we must have a value of Yi2(0) to replace in (1). So, we have to 

use the control group information to identify it. A way to can calculate the ATT2 consists of 
adding two assumptions. The first is the parallel trends, that is expressed as: 

 

E [Yi2(0) − Yi1(0)|Di = 1] = E [Yi2(0) − Yi1(0)|Di = 0] , 

i.e., if the treatment was not given, the difference between pre- and post-treatment periods is 
the same for the two groups. An example is shown in Figure 1. The parallel trends assumption 
can not be tested, it is usually analyzed using previous studies. 

The second assumption is called no anticipatory effects, this is related with the treatment 

group and it is expressed as Yi1(0) = Yi1(1) with Di = 1. This assumption implies that, for 
the treated group, the value of the outcome in the first period would have been the same no 
matter what happens in the future. 

Using these two assumptions, parallel trends and non anticipatory effects, we can identify 
the ATT2 as follows. First, from parallel trends expression we obtain that: 

E [Yi2(0)|Di = 1] = E [Yi1(0)|Di = 1] + E [Yi2(0) − Yi1(0)|Di = 0] 

and, second, from non anticipatory effect we have 

E [Yi1(0)|Di = 1] = E [Yi1(1)|Di = 1] . 

So, we can write Yi2(0) in function of the observed value as: 

E [Yi2(0)|Di = 1]  =  E [Yi1(1)|Di = 1] + E [Yi2(0) − Yi1(0)|Di = 0] = 

= E [Yi1|Di = 1] + E [Yi2 − Yi1|Di = 0] . 

Replacing the previous expression in (1) we obtain that, in function of the observed outcomes, 
the ATT2 is: 

 
ATT2 = E [Yi2(1) − Yi2(0)|Di = 1] = E [Yi2(1)|Di = 1] − E [Yi2(0)|Di = 1] =  

= E [Yi2|Di = 1] − E [Yi1|Di = 1] − E [Yi2 − Yi1|Di = 0] =  

= E [Yi2 − Yi1|Di = 1] − E [Yi2 − Yi1|Di = 0] . (2) 

The result expressed in (2) gives its name to the DiD method and can be estimated from sample 
means differences. 
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Figure 1: Parallel trends assumption. 

 

2.1 The alternative models 

The average treatment effect can also be identified from the following linear model that can be 
estimated using Ordinary Least Squares (OLS): 

Yit = α + θ · Di + ζ · I(t = 2) + τ · Trit + ϵit, (3) 

where ϵit, for i = 1, ..., N and t = 1, 2, are independent and identically distributed (iid) random 
errors. We remember that Trit = Di × I(t = 2) takes value 1 for treatment group in post- 

treatment period. From (3) we obtain E [Yi2 − Yi1|Di = 1] = (α + θ + ζ + τ ) − (α + θ) and 

E [Yi2 − Yi1|Di = 0] = (α + ζ) − α, then it is direct to obtain that the ATT2 defined in (2) is 
equal to the parameter τ , which can be interpreted as the causal effect of the treatment on Yit. 

The dependent variable in the model defined in (3) refers to individual i in period t, i.e. 
a panel data is required to estimate causal effect τ . If individual effects in panel data model 
specification are significant the ϵit are not iid and the OLS estimator of τ is not efficient. 

Alternatively, a panel data model with individual fixed effects αi and temporal fixed effects δt 

is used, this is called the two-way fixed effects (TWFE) model and it is specified as follows: 

Yit = αi + δt + τ · Trit + ϵit, (4) 
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where to prove that τ is equal to ATT2 is direct taking into account that E [Yi2 − Yi1|Di = 1] = 

(αi +δ2 +τ ) −(αi +δ1) and E [Yi2 − Yi1|Di = 0] = (αi +δ2) −(αi +δ1). The TWFE model can be 
estimated with the classical within estimator for individual and temporal fixed effects in panel 
data models. If individual fixed effects do not exist the OLS estimator of (3) is the best. Both 
estimators, the OLS and within, are consistent if the parallel trends and non anticipatory effects 
assumption is true. This last assumption is generally acceptable, but about the parallel trends 
there could be reasonable doubts, given that we have to assume that for all the policyholders 
the trends are the same. 

An alternative is to assume parallel trends conditional on covariates: 

E [Yi2(0) − Yi1(0)|Di = 1, Xi] = E [Yi2(0) − Yi1(0)|Di = 0, Xi] , 

where Xi = (Xi1, ..., Xik)′ is a vector of values of a set of time-invariant covariates that can be 

observed on the pre-treatment period. Directly, it is easy to deduce that the ATT2 conditioned 
on Xi can be expressed as: 

ATT2(Xi) = E [Yi2 − Yi1|Di = 1, Xi] − E [Yi2 − Yi1|Di = 0, Xi] . (5) 

To identify the ATT2(Xi), for each treated case with values Xi there must be at least some 
untreated cases with the same values of covariates. The model in (4) adding covariates can be 
extended as follows: 

Yit = αi + δt + τ · Trit + β1 · Xi1 · I(t = 2) + ... + βk · Xik · I(t = 2) + ϵit. (6) 

With the model specified in (6) we can avoid specification errors by adding explanatory vari- 
ables that have significant effects on the dependent variable. However, the causal effect of the 
treatment remains homogeneous for all individuals. To take into account the heterogeneity 
assumption, i.e. the ATT is different for each vector Xi, the TWFE model must include the 
interaction effects between treatment variable and covariates, in this case the TWFE model is: 

Yit = αi +δt +τ ·Trit +β1 ·Xi1 ·I(t = 2)+...+βk ·Xik ·I(t = 2)+γ1 ·Xi1 ·Trit +...+γk ·Xik ·Trit +ϵit, (7) 

Using the model specified in (7), the causal effects are identified as: 

ATT2(Xi)  =  E [Yi2 − Yi1|Di = 1, Xij] − E [Yi2 − Yi1|Di = 0] 

=  τ + β1 · Xi1 + ... + βk · Xik + γ1 · Xi1 + ... + γk · Xik − (β1 · Xi1 + ... + βk · Xik) 

=  τ + γ1 · Xi1 + ... + γk · Xik. (8) 

Note that the covariates may be time-variant, in this case Xit = (Xit1, ..., Xitk)′, t = 1, 2, and, 
in addition to the interaction effects of covariates with t = 2 (Xitj · I(t = 2), j = 1, ..., k) 
and Trit (Xitj · Trit, j = 1, ..., k), the covariates effects without interactions must be added 
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it it 

 

 
in the model (7). In the insurance application presented in this paper we had time-invariant 
covariates. 

The main drawback of the model (7) is the assumption that there is a linear relationship 
between the covariates and the dependent variable. Alternatively, Abadie (2005) proposes a 
nonparametric approach based on inverse weight estimators (IWE) to directly estimate the 

ATT2 conditional on covariates. 

 

3 Using Difference-in-Difference model in insurance 

Each policyholder is observed along three consecutive periods (three years), in the first year 
(pre-treatment period or t = 1) the policyholders have not had accidents, in the second year 
(treatment period) a few policyholders have one or more accidents and, finally, in the third 
year (post-treatment period or t = 2) the insureds have not had accidents either. The aim is 
to compare pre- and post-treatment periods, before and after the accident(s), and identify the 
causal effects of accident(s) on a set of outcomes related with the behavior of the drivers. 

Let ni, i = 1, ..., N , be the number of reported accidents of policyholder i in the treatment 

period. First, in the model specified in (7) we define: 

• Trit = 1 if ni > 0 and t = 2 and 

• Trit = 0 on the contrary, 

• Xi = (Xi1, ..., Xik) is a set of covariates related with characteristics, which are observed 
in the pre-treatment period and are time-invariant. 

Furthermore, we know that the treatment causal effect could differ depending on the number 
or type of accidents, i.e. we need to consider the intensity of treatment taking into account 
the number of accidents or their different types, depending on their severity or the driver’s 
responsibility. 

An alternative to the model specified in (7) is to replace the binary treatment variable 
(Trit) by a treatment variable that is equal to the number of accidents in the treatment period. 

However, this strategy has two difficulties. First, we must take into account in the model that 
covariates effects could be different for the different treatment intensities. Second, in general, 
the number of reported accidents is a variable with high right skewness, i.e., a lot of values are 
equal to 0 or 1 and there are very few cases with values larger than 2. In practice, we have 
observed that we do not have sufficient information to identify causal effects in function of the 
number of accidents. 

We propose specify the TWFE model with two treatment variables Tr(1) and Tr(2), that 

represent two different intensities in the treatment: 

′ 
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(1) (1) (2) 

• in function of the frequency, Trit = 1 if ni = 1 and Trit = 0 otherwise, and Trit = 1 if 
ni > 1 and Tr(2) = 0 otherwise, 

• in function of the damage type, Trit = 1 if there are one or more accidents with BI and 
Tr(1) = 0 otherwise, and Tr(2) = 1 if all the accidents are only with PD and Tr(2) = 0 

it it it 

otherwise, or 

• in function of fault, Trit = 1 if there are one or more accidents where the driver is at 

fault and Tr(1) = 0 otherwise, and Tr(2) = 1if in all the accidents the driver is not at 

fault and Tr(2) = 0 otherwise. 

Note that in the three cases the treatment variables are disjointed. With two treatment variables 

the TWFE DiD model especified in (4) and (6) are obtained replacing τ · Trit by τ1 · Tr(1) + 

τ2 · Tr(2). If we want taking into account the heterogeneity assumption the model is: 
 

Yit = αi + δt + τ1 · Tr(1) + τ2 · Tr(2) +  β1 · Xi1 · I(t = 2) + ... + βk · Xik · I(t = 2) 

+  γ(1) · Xi1 · Tr(1) + ... + γ(1) · Xik · Tr(1) 
1 it k it 

+  γ(2) · Xi1 · Tr(2) + ... + γ(2) · Xik · Tr(2) + ϵit. (9) 
1 it k it 

From model (9), the heterogeneous causal effect depending on Xi and treatment type l, l = 1, 2, 
is: 

ATT (l)(Xi) = τl + γ(l) · Xi1 + ... + γ(l) · Xik. (10) 
2 1 k 

For the particular case of homogeneous causal effect, the average treatment l, l = 1, 2, in 

treatment period is: 

ATT (l) = τl (11) 

 

4 Results in insurance data analysis 

We have a sample of N = 3, 611 policyholders having a car insurance in a Spanish company 
for at least three consecutive years (2009, 2010 and 2011). The first year (t = 2009) is the 
pre-treatment period, the last year (t = 2011) is the post-treatment period and the middle 
(t = 2010) is the treatment period when a small part of the drivers have one or more accidents. 
This database has been extracted from the one used in P érez-Mar´ın et al. (2019) for an inference 
analysis on speed changes in young drivers after an accident. The insureds in the sample were 
selected as follows: 

• The policyholders had driven 100 kilometers or more in the pre-treatment period. 
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• The policyholders had no accident(s) in the pre-treatment and post-treatment periods. 

• The policyholders had not had changes in the characteristic of their car insurance policies 
over the analyzed period. 

 

4.1 Background on telematics driving data 

Telematics driving data refers to the collection of information from individual vehicles in motion 
-Kirushanth and Kabaso (2018) connect telematics data collection with road safety. There has 
been an explosion of articles that analyzes this type of data jointly with accident information. 
Gao et al. (2023) analyze insurance claim frequency of commercial trucks using both Pois- 
son regression and several machine learning models, including regression tree, random forest, 
gradient boosting tree, XGBoost and neural network. They insist on the need to provide inter- 
pretation of predictive models in order to calculate transparent insurance premium calculation, 
as required by regulators. 

Telematics information helps to predict claim frequency (Baecke and Bocca, 2017; Ayuso 
et al., 2019; Huang and Meng, 2019; Winlaw et al., 2019; Meng et al., 2022; Gao et al., 2022). 
Guillen et al. (2019) insist on the zero-inflation phenomenon. The use of distance driven was 
the first factor to be identified as a determinant of increase accident risk. Lemaire et al. (2016) 
find that annual mileage is an extremely powerful predictor of the number of claims where 
the driver was at fault. Verbelen et al. (2018) find that such variables increase the predictive 
power and render the use of gender as a rating variable redundant. Ayuso et al. (2016) discuss 
differences between male and female drivers and study some specific features of young drivers 
(Ayuso et al., 2014; Pérez-Marín et al., 2019). 

Boucher et al. (2017) include policy duration in the risk exposure component in classical 
models (Lord et al., 2005; Boucher et al., 2007, 2009). Duval et al. (2024) introduce a longitudi- 
nal model that accounts for the dependence between contracts from the same insured. Boucher 
and Turcotte (2020) show that an approximately linear relationship between distance driven 
and claim frequency can be derived and that can be used to compute the premium surcharge for 
additional kilometers driven, or as the underlying model to construct Pay-as-you-drive (PAYD) 
insurance. Cheng et al. (2023) conclude that PAYD insurance is more efficient than fuel tax 
in reducing mileage due to the concavity relation of premium and driving distance. Litman 
(2007) pioneered the defense of distance-based pricing. He stated that distance-base pricing 
is technically and economically feasible, and can provide significant benefits to motorists and 
society (Ferreira Jr and Minikel, 2012). Denuit et al. (2019) state that the multivariate nature 
of telematics signals can be incorporated in usage-based insurance. Considering some depen- 
dencies is necessary (Bolancé et al., 2020). Henckaerts and Antonio (2022) establish the first 
steps towards dynamical real-time pricing. A complete review of papers related to insurance 
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can be found in Eling and Kraft (2020) and for those related to accident risk analysis there are 
a few revisions (Boylan et al., 2024; Chauhan and Yadav, 2024) 

Variable selection has played a central role in model specification with telematics variables 
(Chan et al., 2022; Jeong, 2022). Duval et al. (2022) develop a method to determine how 
much information about policyholders’ driving should be kept by an insurer. Using real data 
from a North American insurance company, that find that telematics data become redundant 
after about 3 months or 4,000 km of observation, at least from a claim classification perspec- 
tive. Wü thrich and Merz (2019) suggest combining classical generalized linear models and 
is extensions with neural networks. This is also confirmed by Duval et al. (2024) who state 
that combined models exhibit superior performance compared to log-linear models that rely on 
manually engineered telematics features. Pesantez-Narvaez et al. (2019) mention the difficulty 
to improve the predictive performance of parametric models in real data situation. Another 
strand of research concentrates on risky events rather than actual accidents (Guillen et al., 
2021b, 2020; Sun et al., 2021). Telematics data are also combined with external context data 
like traffic congestion, road condition and weather (Ma et al., 2018; Reig Torra et al., 2023; 
Masello et al., 2023) and can be informative of extreme behaviours (Guillen et al., 2021c,a; 
Pitarque and Guillen, 2022). 

 

4.2 Results 

We have combined telematic information with accidents reported to the insurance company for 
our sample of 3, 611 policyholders The mean of the number of reported accidents in treatment 
period is 0.1025. In Table 1 we show the frequency distribution of the number of accidents. 
We have 302 insureds that had accident(s) in treatment period, that represents the 8.36% of 
the drivers in the sample. On the one hand, among these, 145 drivers (4.02%) had accident(s) 
where they were at fault and 157 (4.35%) had only accidents where they were not at fault. On 
the other hand, 58 drivers (1.61%) suffered accident(s) with BI and the rest, 244 (6.75%), only 
have accident(s) with PD. 

 
Table 1: Distribution of the number of accidents in treatment period (2010) and number of 
policyholders that have reported accidents. 

ni = 0 1 2 3 4 5 Total insureds with accidents 

Frequency  3309 241 56 4 0 1 302 
Frequency not at fault 3454 120 32 4 0 1 157 
Frequency at fault 3466 121 24 0 0 0 145 
Frequency PD 3367 184 55 4 0 1 244 
Frequency BI 3553 57 1 0 0 0 58 
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In Table 2 some descriptive statistics of the outcome variables are shown: the mean, the 

standard deviation (STD), the minimum (Min), the median and the maximum (Max), respec- 
tively. These variables are measured annually and they are: total distance in km (Distance), 
percentage distances driven above the posted speed limits (Speed), percentage of km in urban 
areas (Urban) and percentage of km at night (Night). The variable Distance is the only one 
that is measured in absolute values, the rest are percentages. We note that the mean of the 
variable Distance decreases by more than 1500 km between pre- and post-treatment periods. 
The average percentage distances driven above the posted speed limits and in urban areas also 
decrease and the percentage of km at night practically remains constant. We analyze if these 
changes are different for drivers with or without accident(s) in 2010 (treatment period), i.e. the 
question is; is there a causal effect of accident(s) on the outcomes? Furthermore, we analyze 
if the causal effect is homogeneous or depends on a set of covariates. These time-invariant 
covariates are described in Table 3. 

 
Table 2: Descriptive statistics of outcome variables in pre- and post-treatment periods. 

Outcome t Mean STD Min Median Max 

Distance 2009 4833.1222 4785.4761 100.4160 3358.6900 34484.3290 
 2011 3243.7758 3098.5025 0.0000 2399.5550 34295.6730 

Speed 2009 8.6228 9.1769 0.0859 5.2937 68.6549 
 2011 6.1667 7.4436 0.0000 3.6083 60.9904 

Urban 2009 27.2223 15.4296 0.0000 23.8248 95.9362 
 2011 25.6910 15.8737 0.0000 22.1854 100.0000 

Night 2009 6.4167 6.6493 0.0000 4.3482 53.8559 
 2011 6.8884 8.1766 0.0000 4.1791 100.0000 

 

 
Table 3: Covariates used in the models (N=3,611). 

  Mean STD 

Age¡=25 =1 if age¡=25, =0 on the contrary 0.6333 0.4820 

Age license¡=5 =1 if age of license¡=5, =0 on the contrary 0.6849 0.4646 

Parking=yes =1 if car uses parking, =0 on the contrary 0.6483 0.4776 

Woman =1 if woman, =0 in man 0.4954 0.5000 

City =1 if zone is large metropolitan area, =0 on the contrary 0.1448 0.3520 

Car age¡=4 =1 if age of car¡=4, =0 on the contrary 0.5763 0.4942 

Power¡=100 =1 if car power¡=100 horsepower, =0 on the contrary 0.5910 0.4917 

 
In Table 3 we show as the covariates used in the DiD model are defined as binary variables. 
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We use this strategy to avoid the identification problems, given that for each Xi we need to have 

observed drivers with and without treatment. The binary variables are defined using criteria 
that frequently are used by the insurance companies to group their policyholders. 

For each outcome variable in Table 2, we estimated four models depending on how the 
treatment effects are included in the panel model, these models are described in Table 4. 

 
Table 4: Treatment effects in each TWFE panel model. 

Model I Trit Accidents =1 if there were accident(s) in 2010, =0 on the contrary 

Model II Tr1 
it 

Tr2 
it 

Accidents=1 

Accidents¿1 

=1 

=1 

if 

if 

there 

there 

was only one accident in 2010, =0 on the contrary 

were 2 or more accidents in 2010, =0 on the contrary 

Model III Tr1 
it 

Tr2 
it 

At fault 

Not at fault 

=1 

=1 

if 

if 

there 

there 

were accident(s) where the driver was at fault in 2010, =0 on the contrary 

were accident(s) where the driver was not at fault in 2010, =0 on the contrary 

Model IV Tr1 
it 

Tr2 
it 

BI 

PD 

=1 

=1 

if 

if 

there 

there 

were accident(s) with BI in 2010, =0 on the contrary 

were no accidents with BI in 2010, =0 on the contrary 

 
We first estimate the TWFE models assuming homogeneous causal effects of the treatments 

on outcomes, i.e. unconditional to the covariates vector Xi. In this case the covariates were 
included additively as in model especified in (6). The covariates included additively in each 
model for each outcome are selected using the stepwise algorithm of the R function stepAIC(), 
that is based on selecting the model with the best AIC (Akaike Information Criterion). In 

Table 5 are shown the estimated ATT2 associated with each treatment group defined in Table 
4, and the p-value of the statistic for testing if the effect is different from zero. We assume that 
the estimated effects are statistically significant when the p-value is ≤ 0.05. The full results of 
estimated models are shown in Table A1 in Appendix A, we also add the panel fixed effects 

test, the determination coefficient (R2) and the adjusted determination coefficient (Adjusted 

R2). 
We remember that the estimated parameters in Table 5 are consistent if non anticipatory 

effects, parallel trends and homogeneity assumptions are true. In our case, the first assumption 
implies that in 2009 (pre-treatment period) drivers in treatment group have the same behavior 
as the case of not having any accident in 2010, i.e. the change of the behavior must be due only 
to the occurrence of the accident. The second assumption involves that the outcome trends 
for the groups with and without accident(s) would have the same slopes if there had been no 
accidents. Finally, the homogeneity assumption is related with the fact that the causal effects 
are the same for all policyholders whatever its characteristics. We have tested that this last 
homogeneity assumptions is not true, given that we have found that some interaction effects 
between treatment variable and covariates are statistically significant. So, the estimator use 
in Table 5 is non consistent. If we compare these results with those associated with different 
drivers profiles in Tables A2, A3, A4 and A5, respectively, in Appendix B, we can find significant 
differences. 
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Table 5: Estimated ATT2 for each treatment group and each outcome. 
  Distance Speed Urban Night 

Model Treatment ATT2 p-value ATT2 p-value ATT2 p-value ATT2 p-value 

I Accidents 765.5157 0.0009 -0.0615 0.8571 -0.1409 0.8083 0.8394 0.0397 

II Accidents=1 885.7809 0.0005 0.1585 0.6755 -0.0989 0.8781 0.8457 0.0616 
 Accidents¿1 288.2723 0.5594 -0.9332 0.2034 -0.3074 0.8057 0.8144 0.3529 

III At fault 433.7275 0.1811 -0.5254 0.2752 -0.7209 0.3795 1.4163 0.0139 
 Not at fault 1071.4412 0.0006 0.3674 0.4282 0.3941 0.6176 0.3072 0.5792 

IV BI -43.4732 0.9315 -1.5716 0.0366 0.4774 0.7094 -0.3883 0.6655 
 PD 957.3485 0.0002 0.2965 0.4309 -0.2877 0.6537 1.1305 0.0120 

 
To estimate ATT2(Xi) and ATT (l)(Xi) defined in (5) and (10), respectively, that are as- 

sociate with different profiles of drivers we use the models specified in (7) for one treatment 

and (9) for two treatments. Similarly to additive model, we use the R function stepAIC() for 
selecting the covariates and the interaction effects with the treatment variable(s). The causal 
effects are shown in Table 6, in this case we show the causal effects that are significant at 5% 
and 10%, although we will focus on those that are significant at 5%. The statistic for testing is 
associated to the sum of the coefficient following (10). The full results of the estimated panel 
models are shown in Appendix B. 

The estimated values in Table 6 are interpreted as follows: 

• The values associated with the treatment variables (Accidents, Accidents=1, Accidents¿1, 
At fault, Not at fault, BI and PM) are the causal effects of accidents if all the covariates 
take value 0, i.e. the reference group is made up of older men, with more that 5 years 
with license, who do not use parking, they do not drive in large metropolitan areas and 
have older and high powered cars. 

• The values associated with the interaction effects of treatments with each covariate are 
the causal effects when this covariate takes value 1 and the rest of covariates are equal 
to 0, i.e. in Table 6 we show the results of whether the causal effect changes significantly 
with respect to the reference group if the covariate value is 1. 

Focusing on Distance outcome, we observe that, when the number of accidents is > 1 these 

cause the decreasing of annual driven distance in the reference group. This same effect is also 
negative in other groups of drivers that are represented in Table 6. Remaining the rest of the 
covariates at their reference values, the negative causal effects are found when: the age of the 
license becomes ≤ 5 or the parking is used or the driver is a woman or the power is ≤ 100. 
Furthermore, when there are BI the Distance outcome is also reduced in the reference group 
and this decrease is greater when “City”= 1 and lower when parking is used. In general, these 
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results show that the frequency and the severity of the accidents reduce the risk exposure, 
measured in annual driven distance in km, in some profiles of drivers. All of these results 
contradict those shown in Table 5, where the causal effects of accident(s) on the Distance 
variable were positive or non-significant. 

In Table 6 the significant causal effects of accidents on the Speed outcome are mostly 
negative in the four models. In Model I the effect of accident(s) on percentage distances driven 
above the posted speed limits is the most negative in the reference group, i.e. older men, with 
more than 5 years with a license, who do not use parking, they do not drive in large metropolitan 
areas and have older and high powered cars. This effect is also negative but weaker when the 

car age becomes ≤ 4. In Model II the most negative significant estimated ATT2 is associated 
with Accidents> 1 for policyholders that use parking and the rest of the characteristics are 
equal to those of the reference group. The negative causal effects in Model III are done when 
drivers have accident(s) where they are at fault and parking is used, keeping the rest of the 
covariates at their reference values. When drivers have all accident(s) where they are not at 
fault the negative effect are significant when the age of license becomes ≤ 5 and, alternatively, 

the positive effect is significant when the car power becomes ≤ 100. 
Focusing in Model IV for Speed outcome, the most negative causal effect is associated to 

accident(s) with BI for drivers in large metropolitan areas (“City”=1), remaining the rest of 
the covariates equal to 0. This negative effect also is done for accidents with BI for reference 
group. When the accident(s) only cause PD there is a significant negative effect when the age 
of license is ≤ 5 and the rest of the characteristics equal to those of the reference group. 

If we compare these results for Speed outcome with those that were shown in Table 5 we can 
conclude that, if we do not take into account the values of the covariates, we only find negative 
and significant causal effects when there are accident(s) with BI. Furthermore, we compare our 
results with those that shown in P érez-Mar´ın et al. (2019), these authors use a sample of drivers 
that have an accident and compare the Speed outcome six moth before and after the accident, 
they conclude that only the men decrease the percent of km circulated above the speed limit 
given that they tend to have a higher previous percent. Unlike this analysis, the DiD models 
have allowed us to find different types of drivers who change the value of the outcome Speed 
in the event of accidents. 

For the Urban outcome the significant effects in Table 6 are less numerous than for the rest 
of outcomes. In Model I, a significant negative effect of the treatment is found when the age 
of car is ≤ 4 and the same effect is positive for women. In Model II the negative treatment 

effect is found when frequency of accidents is 1 for drivers with age ≤ 25. On the contrary, the 
positive treatment effect is done when the frequency is greater than 1 for women. In Model III 
we have also found a negative and a positive treatment effect, the former is found when the 
drivers have accident(s) at fault for Car age ≤ 4 and the latter is done when the drivers are 
not at fault for women. Having accident(s) with BI have a negative effects when the car power 
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is ≤ 100 or the age of driver is ≤ 25. For PD, a negative causal effect is found when the age of 
car is ≤ 4. Having an accidents with BI increases significantly the Urban outcome for women 
comparing with men. In all cases keeping the rest of the covariates at their reference values 
equal zero. 

In general, after accident(s) the percent of distance at night does not reduce but in many 
cases increases. We obtain four negative significant effects after having accidents during the 
treatment period that are associated with the younger drivers or with less experience. Again, 
keeping the rest of the covariates equal to zero. 

In Figure 2, 3 and 4, respectively, we plot the trends between post- and pre-treatment 
period, for control and treatment groups for three driver profiles. These profiles are selected 
taking into account that we have drivers with these profiles in control and alternative treatment 
groups that are plotted (No accidents, Accidents, Accidents¿1, At fault and BI). In all plots the 
trend associated with control group is the solid line and those associated with the treatment 
groups are represented with different dashed lines. 

The trends plotted in Figure 2 are associated with men that are 25 or less years old, with 
a driven license with 5 or less years, that use parking at night, they do not drive in large 
metropolitan areas and have cars that are 4 or less years old, with power greater or equal to 
100 horsepower. The Speed (top right) is the outcome where the treatment groups have a 
trend more different of control group, i.e. to have accident(s) cause a greater decrease in the 
percentage distances driven above the posted speed limits than if there had been no accident. 
On the contrary, for this same profile, we observe that accident(s) with BI cause a lower decrease 
in the anual distance driven in km (top left) that the rest of groups. Causal effects on Urban 
at Night for this profile are weaker, i.e. trends appear more parallel. 

In Figures 3 and 4 we plots the trends for two women profiles. The former corresponds to 
women 25 years old or younger with a driven license with 5 or less years, that use parking at 
night, they drive in large metropolitan areas and have cars that are ≤ 4 years old, with power 
≤ 100. The latter are similar but with “City”=0, i.e. the same women who do not drive in 

large metropolitan areas. We highlight some interesting results in both figures. For example, 
focusing on the treatment group with BI we observe that, when “City”=1 (Figure 3), this type 
of accident causes a decrease in the annual distance and the percentage distance driven above 
the posted speed limits (top left and right, respectively) compared with other groups, that can 
even have positive trends between pre- and post-treatment periods. However, when City=0 the 
treatment group with BI accidents has positive trends for the Distance and Speed outcomes. 
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Table 6: Average treatment effects conditional on a given group of drivers that are statistically 
significant at 5% and 10%. 

 Distance Speed Urban Night 
 ATT2 p-value ATT2 p-value ATT2 p-value ATT2 p-value 

Treatment Model I 

Accidents 1800.9167 0.0001 -2.1943 0.0014   3.1725 0.0002 
Age≤ 25×Accidents 774.6821 0.0134       

Woman×Accidents 1113.4460 0.0126   2.4324 0.0161   

Car age≤ 4×Accidents   -1.1773 0.0313 -2.0776 0.0118 6.9745 0.0000 
 Model II 

Accidents= 1 2598.8106 0.0000 -1.3648 0.0169   2.0676 0.0437 
Accidents> 1 -6212.5020 0.0002 -3.4448 0.0690   4.8410 0.0480 
Age≤ 25× Accidents= 1     -3.8241 0.0029 -1.7776 0.0545 
Age license≤ 5× Accidents= 1 1110.0370 0.0022       

Woman× Accidents= 1 1143.9520 0.0170     4.2103 0.0001 
Car age≤ 4× Accidents= 1       4.7105 0.0001 
Power≤ 100× Accidents= 1   1.3439 0.0038 2.2053 0.0587   

Age≤ 25×Accidents> 1       -2.4141 0.0435 
Age license≤ 5×Accidents> 1 -2449.3760 0.0071       

Parking=yes×Accidents> 1 -4026.1460 0.0022 -6.1464 0.0000   7.5545 0.0000 
Woman×Accidents> 1 -4418.8390 0.0070   9.9955 0.0027   

Power≤ 100×Accidents> 1 -3904.5680 0.0100       

 Model III 

At fault   -1.8128 0.0722     

Not at fault 2328.9677 0.0012   -1.8450 0.0960 4.1360 0.0003 
Age≤ 25×At fault       -5.0394 0.0011 
Age license≤ 5×At fault       5.6167 0.0000 
Parking=yes×At fault   -4.1358 0.0000     

Woman×At fault       4.5788 0.0010 
City×At fault 2547.3550 0.0069       

Car age≤ 4×At fault     -2.1360 0.0177   

Age≤ 25×Not at fault 857.4130 0.0555       

Age license≤ 5×Not at fault   -3.9393 0.0020   -3.5596 0.0216 
Parking=yes×Not at fault       1.7443 0.0613 
Woman×Not at fault     2.5710 0.0097   

Car age≤ 4×Not at fault   2.3166 0.0959   9.2730 0.0000 
Power≤ 100×Not at fault 3335.6350 0.0000 2.9702 0.0008     

 Model IV 

BI -5376.1413 0.0001 -5.7546 0.0004     

PD 2745.2758 0.0000     2.1741 0.0203 
Age≤ 25×BI   -1.5722 0.0803     

Age license ≤ 5×BI       -5.7154 0.0200 
Parking=yes×BI -1861.3750 0.0420       

Woman×BI     12.2256 0.0000   

City×BI -10110.2700 0.0000 -11.0628 0.0002     

Car age≤ 4×BI       8.2204 0.0115 
Power≤ 100×BI     -7.7852 0.0005   

Age≤ 25×PD 991.1634 0.0055   -4.2491 0.0133 -2.4996 0.0058 
Age license≤ 5×PD   -2.9793 0.0048     

Woman×PD 1516.8160 0.0021     3.5200 0.0002 
Car age≤ 4×PD   1.8464 0.0998 -5.7907 0.0147 4.7800 0.0000 
Power≤ 100×PD   1.1580 0.0658     
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Figure 2: Estimated trends without accidents (control group) and with accidents (treatment 
groups) for a driver with the following values of covariates: “Age≤25”=1, “Age license≤5”=1, 
“Parking=yes”=1, “Woman”=0, “City”=0, “Car age≤4”=1 and “Power≤100”=0. 
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Figure 3: Estimated trends without accidents (control group) and with accidents (treatment 
groups) for a driver with the following values of covariates: “Age ≤25”=1, “Age license≤5”=1, 
“Parking=yes”=1, “Woman”=1, “City”=1, “Car age≤4”=1 and “Power≤100”=1. 
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Figure 4: Estimated trends without accidents (control group) and with accidents (treatment 
groups) for a driver with the following values of covariates: “Age ≤25”=1, “Age license≤5”=1, 
“Parking=yes”=1, “Woman”=1, “City”=0, “Car age≤4”=1 and “Power≤100”=1. 
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5 Conclusions 

We have used the DiD method to estimate the causal effects of accident(s) on a set of four 
outcomes: the annual distance in km, the percentage distances driven above the posted speed 
limits, the percentage of km in urban areas and the percentage of km at night. These variables 
measure the behavior and driving habits of the drivers. This data was collected by sensors 
that were used by an ”insurtech” company. We have found that these causal effects are not 
homogeneous, i.e., they change in function of the profiles of policyholders. 

The basic DiD model has been generalized in three ways, to take into account the frequency 
(if it is equal 1 or is greater than 1), the severity (if there was any bodily injury or if there was 
only property damage) and if the driver was at fault or not of the accident(s), i.e. different 
types of treatments. The estimated results for the different expanded models show how the 
causal effects are different depending on the type of treatment. 

We have defined disjointed pairs of treatment variables but, in fact, we can include different 
treatment variables that are not disjointed. The difficulty is that we need to have sufficient 
information to identify the different treatment effects given by the different treatments under 
control (for example, more than 1 accident, BI and at fault) conditional on the values of 
covariates. 

We have identified different driver profiles with different causal effects of treatment. These 
results could allow insurance companies to better adjust premiums to insured profiles. 

We have estimated positive and negative significant treatment effects. Comparing the four 
outcomes, that with the least significant effects is the percentage of km in urban areas. This 
outcome is the least sensitive to the occurrence of accident(s). 

The larger negative causal effects are obtained when the percentage distances driven above 
the posted speed limits is analyzed and, furthermore, the most negative effect is associated to 
accident(s) with bodily injury. 

About the total annual km, I have observed that on average this outcome decreases in more 
than 1500 km between pre- and post-treatment periods, this could be justified by the economic 
crisis that began in Spain in 2008, however, we found some positive causal effects of accidents 
that are basically associated to frequency = 1, accidents where the driver was not at fault (or 
at fault in city) and/or with only property damage. These results could be associated with 
drivers whose need to take the car increased. 

An issue associated with the data set is that we have to work with calendar years instead 
of with the annuity associated with each policy that takes into account the renewal date. 
Furthermore, we do not know the exact date on which the accident occurs. The causal effects 
in the post-treatment period could be reduced as the accidents occur closer to the beginning 

of the treatment period, due to a forgetting effect. This could cause some estimated ATT2 to 
not be statistically significant. 



24  

 

 
Finally, we note that using additive models can lead to negative predictions, as in our case it 

occurs for some profiles of drivers in the annual distance outcome. In this case, estimating the 
multiplicative model using the log-transformation of the dependent variable is a easy solution. 
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A Homogeneous models 

 
Table A1: Results of the withing estimations of the TWFE models with additive covariates. 

Model I Distance Speed Urban Night 
 Coefficient p-value Coefficient p-value Coefficient p-value Coefficient p-value 

Accidents 765.5157 0.0009 -0.0615 0.8571 -0.1409 0.8083 0.8394 0.0397 

Age≤<= 25c¸ -462.2032 0.0033 0.5306 0.0173   -2.2966 0.0000 

Age license≤ 5 -398.4944 0.0891   -0.8191 0.0183 1.1080 0.0077 

Parking=yes -823.3772 0.0000     -0.3996 0.0964 

Woman 203.0456 0.1135     0.6968 0.0030 

City 396.0378 0.0292 0.7574 0.0050 -0.8614 0.0600 0.8133 0.0117 
Car age≤ 4 318.1814 0.1335 0.9102 0.0000   -0.5728 0.1291 

Power≤ 100   1.0895 0.0000   -0.5006 0.0375 

Panel fixed effects test 1.2144 0.0000 3.0648 0.0000 4.1653 0.0000 1.3353 0.0000 
R2 0.7810 0.8725 0.9506 0.7707 

Adjusted R2 0.5608 0.7444 0.9011 0.5401 

Model II Distance Speed Urban Night 
 Coefficient p-value Coefficient p-value Coefficient p-value Coefficient p-value 

Accidents=1 885.7809 0.0005 0.1585 0.6755 -0.0989 0.8781 0.8457 0.0616 
Accidents¿1 288.2723 0.5594 -0.9332 0.2034 -0.3074 0.8057 0.8144 0.3529 

Age≤ 25 -461.5125 0.0033 0.5327 0.0169   -2.2966 0.0000 

Age license≤ 5 -396.4131 0.0907   -0.8173 0.0186 1.1082 0.0077 

Parking=yes -823.6921 0.0000     -0.3996 0.0964 

Woman 200.5855 0.1180     0.6967 0.0030 

City 395.7338 0.0293 0.7564 0.0050 -0.8615 0.0600 0.8132 0.0118 
Car age≤ 4 321.8557 0.1291 0.9190 0.0000   -0.5726 0.1293 

Power≤ 100   1.0880 0.0000   -0.5006 0.0375 

Panel fixed effects test 1.2138 0.0000 3.0646 0.0000 4.1638 0.0000 1.3347 0.0000 
R2 0.7810 0.8725 0.9506 0.7707 

Adjusted R2 0.5608 0.7444 0.9010 0.5399 

Model III Distance Speed Urban Night 
 Coefficient p-value Coefficient p-value Coefficient p-value Coefficient p-value 

At fault 433.7275 0.1811 -0.5254 0.2752 -0.7209 0.3795 1.4163 0.0139 
Not at fault 1071.4412 0.0006 0.3674 0.4282 0.3941 0.6176 0.3072 0.5792 

Age≤ 25 -467.4646 0.0029 0.5243 0.0187   -2.2875 0.0000 

Age license≤ 5 -395.1734 0.0917   -0.8122 0.0193 1.1024 0.0081 

Parking=yes -824.2571 0.0000     -0.3985 0.0973 

Woman 196.7375 0.1254     0.7087 0.0026 

City 397.0321 0.0288 0.7582 0.0049 -0.8598 0.0605 0.8113 0.0120 
Car age≤ 4 323.4534 0.1272 0.9192 0.0000   -0.5815 0.1235 

Power≤ 100   1.0905 0.0000   -0.5045 0.0361 

Panel fixed effects test 1.2144 0.0000 3.0648 0.0000 4.1653 0.0000 1.3353 0.0000 
R2 0.7810 0.8725 0.9507 0.7708 

Adjusted R2 0.5608 0.7444 0.9011 0.5401 

Model IV Distance Speed Urban Night 
 Coefficient p-value Coefficient p-value Coefficient p-value Coefficient p-value 

BI -43.4732 0.9315 -1.5716 0.0366 0.4774 0.7094 -0.3883 0.6655 
PD 957.3485 0.0002 0.2965 0.4309 -0.2877 0.6537 1.1305 0.0120 

Age≤ 25 -460.9415 0.0034 0.5342 0.0166   -2.2947 0.0000 

Age license≤ 5 -396.1436 0.0909   -0.8242 0.0176 1.1116 0.0075 

Parking=yes -819.0927 0.0000     -0.3930 0.1020 

Woman 197.7035 0.1234     0.6886 0.0034 
City 388.1634 0.0326 0.7413 0.0060 -0.8551 0.0620 0.8013 0.0131 

Car age≤ 4 322.7042 0.1280 0.9216 0.0000   -0.5660 0.1338 

Power≤ 100   1.0865 0.0000   -0.5003 0.0376 

Panel fixed effects test 1.2141 0.0000 3.0650 0.0000 4.1636 0.0000 1.3353 0.0000 
R2 0.7811 0.8725 0.9506 0.7708 

Adjusted R2 0.5609 0.7445 0.9011 0.5401 
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Table A2: Results for Model I of the withing estimations of the TWFE models with additive 
and multiplicative covariates. 
 Distance Speed Urban Night 
 Coefficient p-value Coefficient p-value Coefficient p-value Coefficient p-value 

Accidents 1800.9167 0.0001 -2.1943 0.0014 -0.0016 0.9988 3.1725 0.0002 

Age≤ 25 -380.5376 0.0186 0.5383 0.0158   -1.9703 0.0000 

Age license≤ 5 -396.9077 0.0904   -1.3965 0.0136 1.3678 0.0016 

Parking=yes -824.1886 0.0000     -0.4073 0.0897 

Woman 261.0746 0.0513     0.7013 0.0028 

City 399.3320 0.0278 0.7445 0.0057 -0.9408 0.0404 0.8089 0.0121 

Car age≤ 4 305.1440 0.1502 0.8338 0.0003 0.9216 0.0908 -0.9575 0.0153 

Power≤ 100   0.9449 0.0000 -0.5016 0.1305 -0.4992 0.0378 

Age≤ 25×Accidents -1026.2346 0.0412     -3.8708 0.0002 

Age license≤ 5× Accidents       -2.6787 0.0834 

Woman×Accidents -687.4710 0.1359 1.6542 0.0149 2.4340 0.0301   

City×Accidents         

Car age≤ 4×Accidents   1.0170 0.1466 -2.0760 0.0819 3.8020 0.0040 

Power≤ 100×Accidents   1.3526 0.0568     

Panel fixed effects test 1.1971 0.0000 3.0706 0.0000 4.0814 0.0000 1.3403 0.0000 
R2 0.7812 0.8727 0.9507 0.7715 

Adjusted R2 0.5610 0.7447 0.9012 0.5413 
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Table A3: Results for Model II of the withing estimations of the TWFE models with additive 
and multiplicative covariates. 

 Distance Speed Urban Night 
 Coefficient p-value Coefficient p-value Coefficient p-value Coefficient p-value 

Accidents=1 2598.8106 0.0000 -1.3648 0.0169 -0.3899 0.7980 2.0676 0.0437 

Accidents¿1 -6212.5020 0.0002 -3.4448 0.0690 3.6726 0.2276 4.8410 0.0480 

Age≤ 25 -442.0150 0.0049 0.5419 0.0151   -1.9379 0.0000 

Age license≤ 5 -345.6365 0.1455   -1.3102 0.0211 1.1985 0.0039 

Parking=yes -836.1211 0.0000     -0.3569 0.1554 

Woman 255.0043 0.0567     0.5900 0.0148 

City 415.4509 0.0220 0.7403 0.0060 -1.0073 0.0283 0.8244 0.0105 

Car age≤ 4 322.7443 0.1274 0.8669 0.0001 0.8100 0.1312 -0.8397 0.0290 

Power≤ 100   0.9166 0.0000 -0.5349 0.1217 -0.5360 0.0258 

Age≤ 25×Accidents=1     -3.4342 0.0120 -3.8453 0.0004 

Age license≤ 5×Accidents=1 -1488.7732 0.0071       

Parking=yes×Accidents=1     1.9992 0.1192 -1.9017 0.0416 

Woman×Accidents=1 -1454.8582 0.0043     2.1427 0.0182 

City×Accidents=1         

Car age≤ 4×Accidents=1       2.6428 0.0096 

Power≤ 100×Accidents=1   2.7087 0.0004 2.5952 0.0469   

Age≤ 25×Accidents¿1       -7.2551 0.0010 

Age license≤ 5× Accidents¿1 3763.1262 0.0066       

Parking=yes×Accidents¿1 2186.3561 0.0405 -2.7016 0.0733   2.7135 0.1427 

Woman×Accidents¿1 1793.6631 0.0858 3.0004 0.0444 6.3229 0.0142   

City×Accidents¿1         

Car age≤ 4×Accidents¿1   3.9602 0.0178 -4.4166 0.1243   

Power≤ 100×Accidents¿1 2307.9340 0.0250   -6.0810 0.0196   

Panel fixed effects test 1.2040 0.0000 3.0764 0.0000 4.0828 0.0000 1.3424 0.0000 
R2 0.7821 0.8730 0.9508 0.7720 

Adjusted R2 0.5622 0.7451 0.9012 0.5417 

 
Table A4: Results for Model III of the withing estimations of the TWFE models with additive 
and multiplicative covariates. 

 Distance Speed Urban Night 
 Coefficient p-value Coefficient p-value Coefficient p-value Coefficient p-value 

At fault 1075.4656 0.1048 -1.8128 0.0722 1.8502 0.1829 1.3552 0.2903 

Not at fault 2328.9677 0.0012 -0.1667 0.8625 -1.8450 0.0960 4.1360 0.0003 

Age≤ 25 -415.2950 0.0091 0.5709 0.0106   -2.0458 0.0000 

Age license≤ 5 -350.4346 0.1369   -1.3916 0.0139 1.3349 0.0018 

Parking=yes -821.2686 0.0000       

Woman 237.2905 0.0706     0.5981 0.0122 

City 334.8529 0.0708 0.7451 0.0056 -0.9338 0.0418 0.8114 0.0116 

Car age≤ 4 314.0550 0.1385 0.8195 0.0003 0.9102 0.0914 -0.9227 0.0166 

Power≤ 100   0.9372 0.0000 -0.5207 0.1162 -0.4567 0.0552 

Age≤ 25× At fault       -6.3946 0.0000 

Age license≤ 5×At fault -1142.5612 0.1299     4.2615 0.0059 

Parking=yes×At fault   -2.3230 0.0171     

Woman×At fault   2.0463 0.0346   3.2236 0.0063 

City×At fault 1471.8894 0.1033       

Car age≤ 4×At fault   2.8213 0.0061 -3.9863 0.0205   

Power≤ 100×At fault         

Age≤ 25×Not at fault -1471.5547 0.0335       

Age license≤ 5×Not at fault   -3.7726 0.0144   -7.6956 0.0000 

Parking=yes×Not at fault       -2.3918 0.0307 

Woman×Not at fault -1501.5149 0.0224   4.4160 0.0043   

City×Not at fault         

Car age≤ 4×Not at fault   2.4833 0.0879   5.1370 0.0033 

Power≤ 100×Not at fault 1006.6672 0.1196 3.1369 0.0008     

Panel fixed effects test 1.1968 0.0000 3.0799 0.0000 4.0840 0.0000 1.3437 0.0000 
R2 0.7815 0.8731 0.9508 0.7722 

Adjusted R2 0.5611 0.7452 0.9012 0.5423 
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Table A5: Results for Model IV of the withing estimations of the TWFE models with additive 
and multiplicative covariates. 

 Distance Speed Urban Night 
 Coefficient p-value Coefficient p-value Coefficient p-value Coefficient p-value 

BI -5376.1413 0.0001 -5.7546 0.0004 0.9331 0.6344 3.1062 0.1299 

PD 2745.2758 0.0000 -0.7618 0.3393 -1.3551 0.3967 2.1741 0.0203 

Age≤ 25 -397.0468 0.0139 0.5227 0.0204   -2.0089 0.0000 

Age license≤ 5 -366.3320 0.1175   -1.5369 0.0087 1.3090 0.0018 

Parking=yes -853.6193 0.0000     -0.4085 0.0889 

Woman 263.8871 0.0466     0.5969 0.0138 

City 422.8072 0.0203 0.7875 0.0036 -0.9380 0.0409 0.7676 0.0173 

Car age≤ 4 310.7016 0.1421 0.8631 0.0001 1.0127 0.0676 -0.8793 0.0235 

Power≤ 100   0.9218 0.0000 -0.5375 0.1198 -0.4963 0.0389 

Age≤ 25×BI 4351.6117 0.0005 4.1824 0.0234     

Age license≤ 5×BI       -8.8215 0.0107 

Parking=yes×BI 3514.7660 0.0014       

Woman×BI   3.6934 0.0176 11.2925 0.0001   

City×BI -4734.1244 0.0096 -5.3082 0.0493     

Car age≤ 4×BI       5.1142 0.0861 

Power≤ 100× BI     -8.7184 0.0020   

Age≤ 25×PD -1754.1125 0.0013   -2.8940 0.0741 -4.6737 0.0000 

Age license≤ 5×PD   -2.2176 0.0805 3.8610 0.1125   

Parking=yes×PD     2.4921 0.0505   

Woman×PD -1228.4595 0.0152     1.3459 0.1350 

City×PD         

Car age≤ 4×PD   2.6082 0.0289 -4.4356 0.0324 2.6059 0.0099 

Power≤ 100×PD   1.9198 0.0114 2.6914 0.0390   

Panel fixed effects test 1.2048 0.0000 3.0733 0.0000 4.0892 0.0000 1.3397 0.0000 
R2 0.7823 0.8730 0.9509 0.7717 

Adjusted R2 0.5626 0.7450 0.9014 0.5413 
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