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UNIVERSITAT DE BARCELONA

Abstract

MSc Fundamental Principles of Data Science

Optimizing Product Pricing and Sales Forecasting Through Advanced Data
Science: A case Study at Schneider Electric Iberia

by Jordi Segura i Pons

In the increasingly competitive global business milieu, product pricing optimization
and accurate sales forecasting are paramount. This MSc thesis probes these critical
areas in relation to Schneider Electric Iberia, a front-runner in the digital conver-
sion of energy management and automation. Our emphasis is on the adoption of
cutting-edge data science methodologies, including econometrics, Machine Learn-
ing, causality analysis, and Deep Learning, with a goal to both predict sales and
optimize price-points considering the demand elasticity of diverse products across
various markets.

The thesis initiates with an in-depth analysis of Schneider Electric’s extant pric-
ing and sales forecasting systems, proceeding to the selection of suitable data sci-
ence techniques for enhancement. Utilizing these methods, we devise and deploy
a pricing optimization model aimed at augmenting revenue or sales volume. This
model’s potential is then harnessed for sales forecasting, measuring its influence
on the company’s operations in aspects like efficiency, profitability, and strategic
decision-making amplifications.

Our methodology pivots on comprehensive data collection, meticulous preprocess-
ing, and insightful exploratory data analysis. We leverage the benefits of Graph
Causal Models for price optimization and the innovative Temporal Fusion Trans-
former (TFT) for sales forecasting, conjuring a formidable tool for strategic plan-
ning. The optimized prices and predictive sales model converge on an interactive
Tableau dashboard, endowing Schneider Electric Iberia with a user-friendly, accessi-
ble platform for data-driven decision making. This study aims to empower Schnei-
der Electric Iberia, while also making a noteworthy contribution to the wider field
of industrial technology and the deployment of AI in product pricing and sales fore-
casting.
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Chapter 1

Introduction

1.1 Motivation

In an increasingly competitive global marketplace, the quest for efficiency and opti-
mization permeates every corner of the business world. The realm of product pric-
ing and sales forecasting is no exception. Here, the science of prediction and the art
of optimization converge, driven by the transformative power of advanced data sci-
ence methodologies. The challenge of pricing optimization and sales forecasting is a
critical one for Schneider Electric Iberia. As a leader in digital transformation of en-
ergy management and automation in homes, buildings, data centers, infrastructure
and industries, the ability to predict and optimize is crucial to its sustained success.

Traditionally, pricing and sales forecasting has been the purview of historical data,
gut instincts and speculative market trends. However, with the advent of machine
learning and artificial intelligence, this landscape has undergone a seismic shift. Ad-
vanced data science techniques such as econometrics combined with Machine Learn-
ing, causality analysis, and Deep Learning models like transformer models can now
provide not only highly accurate predictions, but also the ability to optimize price
points based on the elasticity of demand for different products across various mar-
kets.

The motivation behind this MSc thesis lies in the potential these advanced tech-
niques offer. Harnessing these methodologies to find optimal pricing points that
maximize revenue or sales volume has the potential to drive Schneider Electric Iberia’s
operational efficiency and profitability to unprecedented heights. Furthermore, the
application of these techniques can provide invaluable insights into consumer be-
havior and market dynamics, opening new pathways for strategic decision making
and competitive advantage.

Beyond Schneider Electric Iberia, the broader implications of successfully apply-
ing these techniques are vast. As Industry 4.0 and IoT continue to drive digital
transformation, the efficient management of product pricing and sales forecasting
will become increasingly central to the operational efficiency of industries around
the world. This thesis therefore aims not only to tackle a complex problem within
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Schneider Electric Iberia, but also to contribute to the wider field of industrial tech-
nology and AI application.

1.2 Objectives

This MSc thesis focuses on the application of advanced data science techniques to
optimize product pricing and forecast sales. The objectives of this solution can be
outlined as follows:

1. Understanding Current Mechanisms: The initial objective involves a metic-
ulous investigation of the prevailing pricing and sales forecasting systems at
Schneider Electric Iberia. This will involve identifying potential limitations
and areas of improvement within the current strategies and methodologies.

2. Identifying Advanced Techniques: The next objective is to identify potent
data science techniques that can be leveraged in our scenario. This will neces-
sitate an in-depth exploration of econometrics, causality analysis, and trans-
former models, with a particular emphasis on their applications in pricing op-
timization and sales forecasting.

3. Developing a Pricing Model: The subsequent goal is to harness the selected
techniques to devise a robust model that optimizes product pricing across var-
ious markets. The model would be calibrated to maximize either revenue or
sales volume, based on Schneider Electric Iberia’s strategic priorities.

4. Implementing the Model for Sales Forecasting: With a successful pricing
model in place, our focus will then shift towards using this model to accu-
rately forecast future sales. This will necessitate validating the model’s pre-
dictive performance against historical sales data and refining it to optimize its
forecasting capabilities.

5. Assessing the Model’s Impact: The final objective is to evaluate the trans-
formative impact of our model on Schneider Electric Iberia’s operational pro-
cesses. This will involve assessing improvements in efficiency, profitability,
and strategic decision-making that are facilitated by our optimized pricing and
sales forecasting model.

A significant portion of our efforts thus far has been dedicated to collecting, clean-
ing, and preprocessing data. This labor-intensive, yet fundamental step lays the
groundwork for the application of advanced data science techniques, and indeed,
the successful fulfillment of all our objectives.
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1.3 Pipeline of the work

Our work commences with a meticulous data collection process explained in Chap-
ter 3.1, striking a balance between the overarching project objectives and the req-
uisite data to realize them. This process is far from merely aggregating figures; it
involves a deep understanding of the narratives these numbers weave within the
operational landscape of Schneider Electric Iberia. To achieve this, we ventured into
various sources of knowledge, including the Intel Data Store (IDS), SAP, and static
documentation, each contributing unique data points.

IDS, our primary resource for customer-centric information, provides detailed in-
sights into buyer demographics, characteristics, and behaviours. The Enterprise Re-
source Planning (ERP) system, SAP, serves as the repository of transactional data,
providing us with the historical price and sales data. Lastly, static documentation
offers critical information about product changes and additional product-specific
data unavailable in SAP.

Post data collection, the subsequent critical phase in our pipeline is data preprocess-
ing. We initiate this with data cleaning, where incorrect, incomplete, inconsistent,
and irrelevant parts of the data are identified and then corrected or removed. Next,
we identify and handle missing data appropriately to maintain the integrity of our
datasets.

The data then enters the exploratory data analysis phase explained in Chapter 3.2,
where we scrutinize the collected information to understand its structures, patterns,
and interactions. Here, the goal is to identify potential anomalies, formulate hy-
potheses for advanced statistical testing, and steer our future feature engineering
and model building efforts.

Once the data is analyzed, understood, and prepared, we venture into our first sig-
nificant objective: price optimization, well defined in Chapter 4.1. Graph Causal
Models form the backbone of this phase, assisting in determining optimal price
points that cater to the market’s demand elasticity. This process delivers a pricing
strategy that’s not only competitive but also sensitive to changes in demand due to
price adjustments.

Subsequently, we steer towards the second primary objective: sales forecasting,
seen in Chapter 4.2. The Temporal Fusion Transformer (TFT) steps in here, offer-
ing a blend of automated machine learning and statistical modeling that facilitates
more accurate and efficient forecasting of future sales.

Ultimately, the optimized prices are integrated with the predictive sales model. The
culmination of our work is then manifested in an interactive, easy-to-understand
dashboard created using Tableau that is shown in Chapter 4.3. This digital platform
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showcases the potential of our strategies, visualizes the results, and provides action-
able insights for Schneider Electric Iberia’s key stakeholders. All the process in this
pipeline it is well appreciated in the Figure A.1.
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Chapter 2

Understanding Elasticity and
Forecasting

In this chapter, we delve into the foundational theories and current applications of
price elasticity and sales forecasting. These concepts, vital to the effective function-
ing of modern economies, are significantly reshaped by the advent of advanced data
science methods. Further, we explore how these concepts are pertinent to our objec-
tive of optimizing product pricing and sales forecasting at Schneider Electric Iberia.
Additionally, we examine relevant literature and methodologies in these fields, illu-
minating their evolution and providing a context for our proposed work.

2.1 Understanding Price Elasticity of Demand

Price elasticity of demand is a fundamental concept in economics that quantifies the
responsiveness of the demand for a good or service to its price changes.1 It serves
as an important measure of price sensitivity and a crucial guide in decision-making
processes regarding pricing strategies.

The formal definition of price elasticity of demand (Ep) is the ratio of the percent-
age change in quantity demanded (%∆Q) to the percentage change in price (%∆P),
expressed as:

Ep =
%∆Q
%∆P

(2.1)

The significance of price elasticity lies in its ability to enable counterfactual reasoning
about prices and their effects on demand. For instance, if a retailer has estimated the
price elasticity of their product to be -3, they could infer that a 5% price increase
would lead to a 15% decrease in demand [1].

1Elasticity should not be confused with slope of the demand curve. Even though both are related to
the concept of responsiveness, they are different. The slope of the demand curve shows the absolute
change in quantity demanded due to an absolute change in price, while elasticity shows the relative
change.
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With knowledge of elasticity, a retailer can make informed decisions about their pric-
ing strategy. If the demand for a product is elastic (|Ep| > 1), an increase in price
could lead to a substantial drop in sales, reducing total revenue. On the other hand,
if the demand is inelastic (|Ep| < 1), demand is less sensitive to price changes and
a price increase could potentially raise total revenue. When the demand is unitary
elastic (|Ep| = 1), quantity demanded changes at the same rate as price, so total
revenue remains unaffected by price changes [2], easily understood also with the
representation in the Figure A.2

2.1.1 Methods of Estimating Price Elasticity

The quest for the accurate estimation of price elasticity is addressed by employing
a variety of methodologies. Our work mainly leverages the Midpoint Method, Or-
dinary Least Squares (OLS) as an Econometric Model, Double Machine Learning
(DML), and Graph Causal Models (GCM). A more comprehensive understanding of
these methods can be obtained as follows:

1. Midpoint Method: This technique is a more refined approach to calculating
elasticity, providing an average measure of responsiveness, and is especially
useful when the changes in price and quantity are relatively substantial. The
formula for the midpoint method is:

Ep =

Q2−Q1
Q1+Q2

2
P2−P1

P1+P2
2

(2.2)

where P1 and P2 represent the initial and final prices, and Q1 and Q2 represent
the initial and final quantities. By calculating the percentage change relative to
the midpoint rather than the initial value, the midpoint method offers a more
balanced measure of elasticity [1].

2. Ordinary Least Squares (OLS): OLS is a cornerstone method in econometrics,
commonly used in the estimation of price elasticity. It minimizes the sum of
the squares of the residuals, i.e., the differences between the observed and pre-
dicted values. The formula of the OLS estimator in a simple linear regression
model is:

β̂ = (X′X)−1X′Y (2.3)

where β̂ represents the OLS estimator, X is the matrix of independent vari-
ables, Y is the dependent variable vector, and ′ denotes matrix transposition.
Although OLS models are simple and interpretable, they require careful spec-
ification and understanding of potential confounding factors [3].
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3. Double Machine Learning (DML): This advanced method combines machine
learning and econometrics to control for confounding variables when estimat-
ing price elasticity. The DML procedure typically involves the following steps:

(a) De-meaning Process: Adjusting for baseline variations in price and quan-
tity per product type by subtracting their mean values.

(b) Feature Generation: Generating a set of features using potential covari-
ates like date, product type, month, and customer class.

(c) Model Training: Training two Random Forest Regressors, one for pre-
dicting quantity and the other for predicting price.

(d) Prediction and Residualization: Predicting the log of quantity and price
using the trained regressors and computing residuals.

(e) Elasticity Estimation: Estimating price elasticity by fitting an Ordinary
Least Squares (OLS) regression model on the residuals.

The use of machine learning to control for confounders increases the accuracy
of elasticity estimates, particularly in complex scenarios with high-dimensional
covariates [4].

4. Graph Causal Models (GCM): GCM, grounded in graph theory, visually il-
lustrates the relationships between different variables. This visualization aids
in comprehending and managing the complex causal relationships inherent in
price elasticity scenarios. GCM can capture and analyze the multifaceted in-
teractions between numerous variables, enabling more accurate and informed
sales forecasting.

2.1.2 Causality and Elasticity

Gaining an in-depth comprehension of price elasticity necessitates understanding
the notion of causality, which addresses the cause-and-effect associations between
different variables or events [5]. In the context of price elasticity, we focus on the
causal link between price, acting as the cause, and demand, being the effect.

An essential element of this causal examination is the application of counterfactu-
als, which facilitate envisioning alternative realities to actual events. This concept
allows us to consider questions such as, "How would the demand be impacted if we
reduced the price by 5%?"

Nevertheless, causality often transcends a straightforward cause-and-effect relation-
ship and is usually interspersed with confounding factors – variables that concur-
rently influence both the cause and the effect. To illustrate, within our price elas-
ticity scenario, the product’s quality could serve as a confounder. For instance, a
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high-quality, expensive product like a MacBook may sell more units than a lower-
priced, lower-quality product like a Chromebook. This could mislead us into believ-
ing that a higher price escalates demand. However, it’s the quality of the product
that simultaneously affects both the price and demand (See Figure A.3).

Modern advancements in data science and econometrics allow us to overcome these
challenges, enabling us to assess price elasticity with enhanced precision, even in
the presence of confounding variables. These advancements permit the application
of econometric models and machine learning techniques to scrutinize granular sales
data and guide informed pricing decisions [6]. Hence, the criticality of a compre-
hensive understanding of the price elasticity of demand and its estimation methods
for maximizing revenue in diverse market conditions cannot be overstated.

The acknowledgment of these concepts is pivotal for accurate price elasticity esti-
mation. Overlooking the role of confounding factors may introduce bias in our elas-
ticity estimates, potentially misleading us in formulating optimal pricing strategies
[7]. Therefore, state-of-the-art econometric models and advanced machine learning
methodologies strive to account for these confounders, leading to precise elasticity
estimates.

Graph Causal Models

Graph Causal Models (GCMs) are a powerful framework grounded in graph the-
ory that enables us to analyze complex causal relationships among variables. GCMs
provide a visual representation of the causal structure, allowing us to gain insights
into the intricate web of causal dependencies inherent in price elasticity scenarios.
By leveraging the principles of graph theory, GCMs facilitate a deeper understand-
ing of the causal relationships between pricing and sales dynamics, aiding us in the
development of accurate and reliable sales forecasting and price optimization strate-
gies.

In GCMs, variables are represented as nodes in a graph, and causal relationships
are depicted as edges connecting the nodes. This graphical representation helps us
visualize and comprehend the complex interactions and interdependencies among
different variables. GCMs enable us to identify direct causal effects and indirect
effects mediated through intermediate variables, capturing the multifaceted nature
of the causal relationships. The analysis of GCMs allows us to investigate the direct
and indirect impacts of pricing on sales, identifying the key drivers and uncovering
the underlying causal structure.

Formally, we can represent a GCM as a directed acyclic graph (DAG), where each
node corresponds to a variable, and the edges indicate causal relationships. Let G
= (V, E) denote our GCM, where V represents the set of variables and E represents
the set of directed edges. For each edge (i, j) ∈ E, it signifies a causal relationship
from variable i to variable j. By analyzing the graph structure and considering the
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directionality of the edges, we can infer the causal dependencies among the variables
and discern the factors that influence sales, see figure A.3.

To quantify the causal relationships and estimate the effects of variables on sales, we
can employ various causal inference methods within the GCM framework. These
methods include but are not limited to structural equation modeling, Bayesian net-
works, and potential outcome frameworks such as counterfactual analysis. By uti-
lizing these methods, we can estimate the causal effects of pricing decisions on sales
while accounting for confounding variables and other potential biases.

The application of GCMs in demand forecasting and price optimization provides
several benefits. Firstly, GCMs enable us to identify confounding variables, which
are factors that simultaneously influence both pricing and sales. By explicitly mod-
eling and controlling for these confounders, GCMs help us disentangle the direct
causal effects of pricing from the indirect effects mediated through other variables.
This facilitates a more accurate estimation of the causal impact of pricing decisions
on sales, enabling us to make informed pricing strategies and optimize revenue gen-
eration. [8]

Secondly, GCMs enhance the interpretability of the relationships between pricing
and sales. The graphical representation of the causal structure allows us to visu-
ally examine and understand the complex causal pathways and interdependencies
among variables. This interpretability aids us in identifying key drivers of sales and
provides insights into the underlying mechanisms governing the pricing-sales rela-
tionship.

Furthermore, GCMs can incorporate additional contextual information and external
factors that may influence sales. By including exogenous variables or external factors
as nodes in the graph, GCMs allow for a comprehensive analysis of the impact of
various factors on sales. This holistic view enables us to develop robust forecasting
models that account for a wide range of influencing factors, leading to more accurate
and reliable predictions.

By utilizing GCMs, we can identify potential confounding variables, gain insights
into the direct and indirect effects of pricing on sales, and ultimately, generate more
accurate and reliable sales forecasts [9].

Particularly for scenarios such as ours, where price and demand dynamics are influ-
enced by a multitude of interconnected factors, the application of GCMs is instru-
mental in revealing the underlying causal structure, thereby enhancing the precision
and reliability of sales forecasting and price optimization.

The incorporation of these methodologies is instrumental in estimating price elas-
ticity with high accuracy, accommodating the intricacies of real-world data. Under-
standing these methods is crucial for interpreting the work presented in this thesis.
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In the next section, we will probe into sales forecasting, exploring its significance,
methodologies, and its connection with our research on price elasticity.

2.2 Sales Forecasting

Sales forecasting represents a critical process of predicting future sales volumes, act-
ing as a pivotal driver for companies’ business decisions and offering visibility into
both short-term and long-term performance trajectories. As a key component of
strategic management, accurate sales forecasts enable organizations to effectively
plan production schedules, manage resources, and control financial activities, fos-
tering operational efficiency [10].

In recent years, the realm of sales forecasting has been radically transformed by the
advent of data science methodologies, particularly machine learning and artificial
intelligence technologies. These innovative methodologies present a substantial de-
parture from traditional statistical approaches, offering the capacity to navigate com-
plex data patterns and manage large-scale data sets. As a result, they yield signifi-
cantly enhanced forecast accuracy [11].

A case in point is the emergence of transformer models, a specialized category of
deep learning models that have demonstrated exceptional proficiency in capturing
long-range dependencies within data. This capability positions them as an ideal fit
for sales forecasting applications, where understanding historical trends and their
influence on future outcomes is crucial [12].

Enriching our sales forecasting model with the optimized pricing derived from our
elasticity analysis, we aim to augment the precision of our sales predictions. This
integration allows the model to account for the expected shifts in demand ensuing
from the proposed price adjustments, thereby creating a more holistic, responsive,
and accurate forecasting mechanism

2.2.1 Traditional vs. Modern Approaches

Traditional sales forecasting methods, commonly utilized for decades, are grounded
in statistical analysis. Time series analysis, including moving average models, au-
toregressive models, and exponential smoothing, has historically been employed
extensively.

Time series models focus on historical data, using past sales patterns to forecast fu-
ture sales. These models assume that the future will be a function of the past, which
makes them simple and effective when dealing with stable and linear trends. How-
ever, they often struggle when facing more complex scenarios. For instance, if mar-
ket dynamics undergo significant changes or if non-linear patterns exist in the sales
data, traditional models’ performance may deteriorate.
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One common method is the Autoregressive Integrated Moving Average (ARIMA) model,
which takes into account three aspects: autoregression (the relationship between an
observation and a number of lagged observations), differencing (making the time se-
ries stationary), and moving average (the dependency between an observation and
a residual error from a moving average model applied to lagged observations).

Exponential smoothing is another classic forecasting method. This approach applies
weights that decrease exponentially. The most recent observation has the highest
weight, and the weights decrease for older observations. The popular Holt-Winters
method, an extension of exponential smoothing, considers seasonality in the data.

Modern sales forecasting methods, propelled by advancements in machine learning
and artificial intelligence, are capable of dealing with the shortcomings of traditional
approaches. They offer superior performance in handling non-linear and complex
data patterns, making them ideal for today’s volatile and rapidly changing markets.

Machine learning-based forecasting methods encompass a wide range of techniques.
These include linear regression models, tree-based models like Random Forest and
Gradient Boosting Machines (GBM), Support Vector Machines (SVM), and neural
networks.

Linear regression models, while simple, can be powerful tools when relationships
between variables are linear. But they may fail when dealing with complex, non-
linear relationships in data.

Tree-based models, such as Random Forest and GBM, are non-parametric and can
handle both linear and non-linear relationships. They also allow interactions be-
tween variables. However, these models can become overly complex, leading to
overfitting where the model learns the training data too well and performs poorly
on new data.

On the other hand, deep learning models, including Recurrent Neural Networks
(RNN), Long Short-Term Memory (LSTM) units, and Gated Recurrent Units (GRU),
have shown great promise in sales forecasting. These models are excellent for se-
quential data, as they capture long-term dependencies in the data. This makes them
ideal for time series forecasting.

Transformative methodologies like the transformer model represent the latest ad-
vancements in this space. The transformer model, with its attention mechanism,
allows the model to focus on different parts of the input sequence when making
predictions, enhancing the accuracy of sales forecasts.

2.2.2 Temporal Fusion Transformer: Model Architecture

The Temporal Fusion Transformer (TFT) is a powerful, versatile, and highly in-
terpretable model developed for time series forecasting. It’s specifically designed
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to accommodate different types of inputs, including static, known past, and ob-
served past inputs, and employs specialized networks and encoders to generate
high-performance forecasts.

TFT incorporates a range of components to maximize its effectiveness and adapt-
ability, all of them can be observed in the Figure 2.1 where the architecture is rep-
resented. These include gating mechanisms, which allow the model to adapt to a
broad spectrum of datasets by bypassing unused components, and variable selec-
tion networks that improve generalization by prioritizing the most salient features.
Additionally, the TFT uses static covariate encoders to incorporate static features
into the modeling of temporal dynamics, thereby ensuring that the impact of static
factors, such as a store location, is adequately accounted for in the forecasts.

FIGURE 2.1: Bryan Lim et al, 2020. [13]

Gating Mechanisms

The TFT utilizes Gated Residual Networks (GRNs) as building blocks. These mecha-
nisms allow the model to adapt its depth and network complexity by selectively by-
passing unused components, providing flexibility and accommodating a wide range
of datasets and scenarios.

The GRN takes in a primary input a and an optional context vector c and yields the
output GRNω(a, c) as follows:
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GRNω(a, c) = LayerNorm(a + GLUω(η1)) (2.4)

where η1 = W1,ωη2 + b1,ω and η2 = ELU(W2,ωa + W3,ωc + b2,ω).

Here, ELU represents the Exponential Linear Unit activation function, η1 and η2 are
intermediate layers, LayerNorm is the standard layer normalization, and ω is an
index denoting weight sharing.

The Gated Linear Units (GLUs) are used as component gating layers, which provide
the flexibility to suppress any parts of the architecture that are not required for a
given dataset. The GLU takes the following form:

GLUω(γ) = σ(W4, ωγ + b4,ω)⊙ (W5,ωγ + b5,ω) (2.5)

where σ(·) is the sigmoid activation function, W(.) and b(.) are the weights and biases,
and ⊙ represents the element-wise Hadamard product.

By combining the GRNs and GLUs, the TFT can control the extent to which the
GRN contributes to the original input a, potentially skipping over the layer entirely
if necessary by setting the GLU outputs close to 0.

During training, dropout is applied before the gating layer and layer normalization
to η1.

The flexibility provided by these gating mechanisms allows the TFT to adapt its
network architecture based on the characteristics of the dataset, enabling it to effec-
tively handle a wide range of scenarios and achieve high performance in time series
forecasting tasks.

Variable Selection Networks

The variable selection networks ascertain the relevance of input variables at each
time step, thereby focusing on pivotal features and mitigating the influence of noisy
inputs. This enhances model performance by utilizing the learning capacity opti-
mally on the most informative variables.

In the TFT, the variable selection networks scrutinize both static and time-varying
covariates to discern the most critical variables for prediction, shedding light on
those with the highest predictive content. Categorical variables are represented us-
ing entity embeddings, while continuous variables undergo linear transformations
for compatibility with subsequent layer dimensions.

Implemented separately for static and time-varying covariates, the variable selec-
tion networks work on similar principles. Here, the focus is on the time-dependent
covariate selection, noting that analogous principles apply to static covariates.
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The transformed input of each variable (ξ(j)
t ) is processed through the variable selec-

tion network at every time step. The output, variable selection weights (vχt), signi-
fies the importance assigned to each variable.

These weights are derived by passing the transformed inputs (Ξt) and an external
context vector (cs) through a Gated Residual Network (GRN). The GRN considers
both inputs to generate the variable selection weights.

These weights dictate the contribution of each variable to the final prediction per
time step. TFT, by incorporating these weights, selectively accentuates the most
significant variables while minimizing the influence of the less informative ones.
Thus, variable selection networks are critical in tailoring TFT’s learning focus for
improved forecasting.

Encoder and Decoder

The TFT (Temporal Fusion Transformer) incorporates static metadata by utilizing
separate GRN (Gated Residual Network) encoders to produce context vectors. These
context vectors play a crucial role in incorporating static features into the temporal
dynamics of the model. By utilizing separate encoders, TFT ensures that the impact
of static factors, such as static covariates or metadata, is adequately accounted for in
the forecasts.

The temporal fusion decoder in TFT is responsible for learning temporal relation-
ships within the time series data. It consists of several layers that work together to
capture dependencies and enhance forecasting performance.

1. Sequence-to-Sequence Layer: The decoder begins with a sequence-to-sequence
layer, which is responsible for enhancing the locality of the input data. This
layer leverages local context and patterns to improve forecasting accuracy. In
TFT, a sequence-to-sequence model, such as an LSTM encoder-decoder, is used
to handle the differing number of past and future inputs.

2. Static Enrichment Layer: Following the sequence-to-sequence layer, TFT in-
corporates a static enrichment layer. This layer enhances the temporal features
with static metadata. The static enrichment layer ensures that static covariates
and metadata have a significant influence on the temporal dynamics of the
model.

3. Temporal Self-Attention Layer: TFT utilizes a temporal self-attention layer to
capture dependencies and relationships across different time steps. The self-
attention mechanism allows the model to learn long-range dependencies and
identify important patterns in the time series data. Masking techniques are
applied to preserve causal information flow within the self-attention layer.
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4. Position-Wise Feed-Forward Layer: After the temporal self-attention layer,
TFT applies a position-wise feed-forward layer. This layer introduces non-
linear processing to the outputs of the self-attention layer, further enhancing
the representation and capturing complex temporal relationships.

Gating mechanisms and skip connections are employed throughout the encoder and
decoder to facilitate training and simplify the model’s complexity when additional
complexity is not required. These mechanisms provide adaptive depth and network
complexity to accommodate a wide range of datasets and scenarios.

By integrating static metadata through separate encoders and utilizing the various
layers in the decoder, TFT effectively learns and models the temporal dynamics of
the time series data, capturing dependencies, incorporating static factors, and pro-
ducing accurate forecasts.

Multi-Head Attention Mechanism

The Temporal Fusion Transformer (TFT) utilizes a self-attention mechanism, a re-
fined form of the multi-head attention employed in transformer architectures. This
mechanism enables TFT to identify long-term dependencies across various time
steps in the input sequence.

Attention mechanisms typically assign weights to values based on the relationships
between keys and queries. The attention function, noted as Attention(Q, K, V), calcu-
lates weighted sums of values influenced by the similarity between keys and queries.
Scaled dot-product attention is a popular choice where attention weights are derived
from applying a softmax function to the dot product of queries and keys, normalized
by the square root of the query dimension.

To augment the standard attention mechanism’s learning capacity, multi-head atten-
tion is incorporated. Here, different attention heads operate in different representa-
tion subspaces, each with its unique key, query, and value weights. The outputs
from all heads are concatenated and linearly combined using head-specific weights,
forming the final representation.

TFT modifies the multi-head attention for enhanced explainability and interpretabil-
ity. Contrary to using distinct values for each head, TFT shares the values across all
heads. Consequently, attention weights alone don’t denote a specific feature’s im-
portance. The outputs of all heads are then aggregated additively, resulting in a joint
representation that detects multiple temporal patterns and pays attention to a shared
set of input features.

This altered multi-head attention in TFT, known as "interpretable multi-head atten-
tion," allows the model to discern diverse temporal patterns while focusing on per-
tinent features in an interpretable, efficient manner. The value-sharing across heads
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facilitates a collective ensemble over attention weights, thus amplifying representa-
tion capacity.

Quantile Outputs

In addition to point forecasts, the TFT model also generates prediction intervals or
quantile forecasts. This allows for a probabilistic representation of the forecasted
values and provides an estimate of the uncertainty associated with the predictions.

To generate quantile forecasts, the TFT model simultaneously predicts various per-
centiles at each time step, such as the 10th, 50th, and 90th percentiles. Each quantile
represents a specific level of confidence or probability. The quantile forecasts are
obtained through a linear transformation of the output from the temporal fusion
decoder.

The formula for calculating the quantile forecast at a given quantile q, time step t,
and prediction horizon τ is as follows:

ŷ(q, t, τ) = Wqψ̃(t, τ) + bq (2.6)

Here, Wq represents a linear coefficient matrix of size 1 × d, and bq is a bias term
of size 1. The ψ̃(t, τ) term refers to the output from the temporal fusion decoder at
time step t and prediction horizon τ. By applying the linear transformation, the TFT
model produces the quantile forecast for the specified quantile at each time step.

It’s important to note that the forecasts are only generated for future horizons, de-
noted by τ ∈ 1, . . . , τmax. This ensures that the model focuses on predicting values
beyond the current time step.

By generating quantile forecasts, the TFT model provides not only point estimates
but also a range of likely values at different confidence levels. This enables decision-
makers to assess the uncertainty associated with the forecasts and make informed
decisions based on the probabilistic nature of the predictions.

2.3 Related Works and State-of-the-art

The field of demand forecasting and optimization has seen an impressive evolution
over the years with the advent of AI technologies. From simpler statistical methods
to complex machine learning models, and more recently the rise of advanced deep
learning methods, the state-of-the-art has been continually advancing. It is worth-
while to note that, while the simpler techniques have been largely superseded, they
still form a fundamental building block for understanding the core concepts and
intuition behind more sophisticated methods.
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Historically, various models have been used for demand forecasting and optimiza-
tion tasks, from traditional time series models such as Autoregressive Integrated
Moving Average (ARIMA) [14], Exponential Smoothing (ETS), and state space mod-
els, to more modern machine learning methods, such as Random Forests and Sup-
port Vector Machines. These methods have shown good performance in specific
scenarios, but often suffer when the forecasting problem involves complex temporal
dependencies, multivariate inputs, or when the data is affected by non-linear rela-
tionships and changing dynamics [15].

In recent years, deep learning methods have been increasingly adopted in demand
forecasting and optimization tasks, given their ability to model complex, non-linear
relationships, and their capacity to capture long-term temporal dependencies. Re-
current Neural Networks (RNNs), and particularly their variant Long Short-Term
Memory (LSTM), have been extensively applied for demand forecasting, due to
their intrinsic ability to handle sequential data. However, LSTMs often struggle
when dealing with very long sequences and multiple temporal patterns [16]. This
has prompted research towards models that can capture various temporal patterns
and hierarchies, leading to the development of models such as the Temporal Fusion
Transformer (TFT).

The TFT, introduced by Bryan Lim et al. in 2020, represents a significant milestone
in the evolution of demand forecasting models. By using a mix of convolutional and
recurrent layers, attention mechanisms, and gating, the TFT is capable of modeling
complex temporal relationships, variable selection, and interpretability. The authors
demonstrated that the TFT outperforms several baselines on a range of forecasting
tasks, thus establishing it as a state-of-the-art model for demand forecasting [13].

Parallel to the developments in demand forecasting, the field of optimization has
seen considerable advances. Traditional optimization techniques such as Linear Pro-
gramming (LP) and Integer Programming (IP) have been widely used in various
applications. However, these methods often struggle with problems that involve
complex constraints, non-linear objectives, or uncertainty in the parameters.

In the realm of AI, Reinforcement Learning (RL) has emerged as a powerful tool for
solving complex optimization problems. More recently, the concept of Graph Neural
Networks (GNNs) has been introduced for optimization tasks on graph-structured
data. The work of Joshi et al. [17] exemplify this approach, demonstrating the effi-
ciency of GNNs in solving classical optimization problems like the Travelling Sales-
man Problem (TSP) and the Vehicle Routing Problem (VRP).

Notably, the introduction of Graph Causal Model (GCM) by Peng et al. [18] marked
an important advancement in the intersection of optimization and causal inference.
GCMs exploit the structure of causal graphs to improve optimization in scenarios
with inherent causal structures, similar to what Narendra et al. [19] proposed in
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their work where they used counterfactual reasoning for optimization using Causal
Models .

Our work builds on this concept, further extending it to the intersection of demand
forecasting and optimization. We aim to leverage the power of causal inference
within the context of demand forecasting to enhance optimization strategies. By
incorporating causal graphs into our framework, we can capture the inherent causal
relationships between various factors influencing demand and utilize this knowl-
edge to improve the accuracy and efficiency of forecasting and optimization pro-
cesses.

Inspired by the success of deep learning models like the TFT in demand forecasting,
we propose a novel approach that combines the strengths of causal inference and
advanced machine learning techniques. Our framework integrates Graph Causal
Models (GCMs) with state-of-the-art deep learning architectures to create a unified
solution for demand forecasting and optimization problems.
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Chapter 3

Data Acquisition, Preprocessing
and Exploratory Data Analysis

The heart of our endeavor lies within the depths of Schneider Electric Iberia’s data.
It is here that the potential for uncovering optimal pricing points and forecasting
sales volumes resides. The third chapter of our journey, therefore, turns to the vital
stages of the Acquisition, Data Preprocessing and Exploratory Data Analysis (EDA).
These phases are not merely preliminary steps, but they form the backbone of our
investigation, laying the groundwork for the powerful methodologies we will em-
ploy.

The raw data that emerges from Schneider Electric Iberia’s diverse markets and myr-
iad product lines is both a treasure trove of insights and a labyrinth of complexity.
To navigate this labyrinth and extract the hidden treasure, we must diligently clean,
structure, and explore our data. It is through these careful preparations that we en-
sure the subsequent advanced data science techniques can truly shine and deliver
the insights we seek.

3.1 Crafting Our Dataset

Unraveling the intricacies of our data is akin to navigating a complex labyrinth. This
necessitates a granular dissection of each information source we leverage, revealing
the unique utility each one offers.

Our first tryst with the data begins with SAP, our primary information repository.
From its vast troves, we extracted price references for all materials in one specific
Helios1, the HDPNL. This Helios, as one of the primary product lines in Iberia, holds
immense potential for insightful analysis and impactful results. It is important to

1Helios, in the context of Schneider Electric, refers to a classification system for products, serving
as a method of organization and categorization. It allows for more efficient management and under-
standing of the diverse range of products.
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note that this work it can be replicated to others Helios, but we did not do it for both
time and computationally resources.

However, deciphering this dataset is not as straightforward as it may seem. The
price data does not follow a monthly organization but instead provides a range of
dates signifying when prices have changed for each material. These changes, usually
incremental, span over natural years from February of 2017 through to April of 2023.
The journey of deciphering this dataset is arduous, but it’s an endeavor that will
undoubtedly yield significant rewards. Our voyage through the data was not devoid
of challenges. As we delved into it, we encountered anomalies such as erroneous
prices like 0.00 and 9999.99. These anomalies, representative of incorrect prices or
special offer materials, were meticulously weeded out to maintain the integrity of
our data.

Having cleaned the dataset, we amalgamated the information spanning over mul-
tiple years into a single, cohesive Dataframe. Each material was assigned a unique
price per month, derived from the date ranges mentioned earlier. Progressing fur-
ther, we leveraged the static file received from the business to update outdated ref-
erences, imbuing our data with additional information on Activity, Subactivity, and
Status for each material. This enrichment was essential, particularly the Status data,
to account for materials that have been discontinued or are no longer active.

At the end of this meticulous exercise, we were left with a significantly refined
dataset of 217,289 rows, down from the initial 635,856 rows of activity. This translates
to over a 60% reduction through our cleansing process, demonstrating our commit-
ment to ensuring the precision and relevance of our data.

As our journey continued, we shifted our focus to the sales information, embarking
once more into the depths of SAP. This time, we targeted historical data from 2017
through 2023 for the HDPNL Helios, amounting to nearly 3 million rows of data. It’s
worth noting that our sales dynamics are anything but simple. While the price of a
sale tends to be based on the Material, disregarding the identity of the buyer or the
channel of distribution, the landscape changes when we delve into sales data. Here,
we are faced not with standardized prices but final prices, teeming with potential
discounts, special offers, and customizations particular to each transaction. Hence,
it’s vital to consider certain crucial elements when examining the sales dataset we
collected:

• Account Sold To ID: This pertains to the ID of the client to whom the material
was sold. We chose not to delve into this level of granularity for the current
work.

• Quantity: This signifies the number of units sold in a transaction.

• Gross Sales: This represents the total revenue garnered from the transaction.
It’s crucial to remember that this is not typically the product of the quantity
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and the price; rather, it may reflect a discounted price, the details of which are
not explicitly included in the dataset.

• Type of Transaction: The nature of a transaction can provide valuable insights
regarding the quantity sold or any discount applied. For our work, we focused
mainly on three types: ZCAM, ZOES, and ZNOR.

• Sales Territory: An information of the territory in Iberia we did the transac-
tion, which might give some valuable details to the models.

Having meticulously integrated the sales data from different years, we proceeded
with several essential data cleaning steps. This included filtering out Materials that
did not appear in at least three different years and six months per year, or those
that had sales below zero due to specific transaction types. Simultaneously, we en-
gineered new features such as the real price and the percentage change between
months. The next logical stride in our data journey was to fuse the price and sales
dataframes.

After successfully merging the datasets, we incorporated insights from our CRM
data stored in Intel Data Store, extracting vital data concerning the type of customer
for each sale (B2B, B2C, Design Firm, and so forth). Equipped with this enriched
dataset, we set our sights on an in-depth Exploratory Data Analysis (EDA) and Fea-
ture Engineering, seeking to uncover actionable insights for our subsequent steps.
It’s noteworthy that at this juncture, our dataset had expanded to nearly 2.5 million
rows, providing us with an abundance of data for our in-depth examination.

3.2 Exploratory Data Analysis

This section combines advanced visualization tools and data processing techniques
to understand our data’s complex landscape and translate these insights into com-
prehensible information for our business stakeholders. We’ll complement visual ex-
plorations with in-notebook analysis to highlight less apparent aspects of our data
and eliminate unessential elements. In essence, this journey involves a strategic
blend of visualization and analysis, jointly charting our course through Schneider
Electric Iberia’s intricate data landscape.

We embark on our Exploratory Data Analysis by detailing our utilization of Tableau.
A glance at Figure A.4 reveals the structure of our dashboard. At the top, the se-
lected Helios and the count of materials within it are distinctly visible, dynamically
responding to applied filters. These filters, located on the top-right, offer customiza-
tion based on Subactivity—our grouping methodology for materials—and Transac-
tion Type, which, as discussed earlier, plays a significant role in pricing variances
across types.
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A key metric presented here is the Schneider-referred ’Precio medio’ or the ’final
selling price’. This figure, more insightful than the standard list price, denotes the
final price at which a product is sold. The box plot at the top illustrates this for
selected subactivities (primarily those from Top References). We observe that the
majority of prices fall within reasonable levels, while a small fraction veer towards
the higher end. Nevertheless, these outliers do not present a significant cause for
alarm.

Beneath this, we’ve implemented a packed bubble graph displaying a cloud of prices—an
instrumental visual tool for spotting outliers and understanding how high-priced
materials cluster. The size and color of the bubbles represent the final price and their
grouping, respectively. To its right, another packed bubble graph represents the
distribution of material prices, categorized into bins of hundreds. While this visual-
ization is more business-focused than data-focused, it provides a quick overview of
our final price distribution, a crucial aspect which was not explicitly represented in
our data and lacked visualization tools in our business repertoire.

The top right quadrant showcases two distinct boxplots, each offering insights into
Transaction Type and Customer Classification, as seen in Figure A.5. These graphics
readily illustrate the variations in final prices across different Transaction Types, a
contrast less prevalent in Customer Classifications. Here, it’s worth noting that B2B
and B2C final prices appear strikingly similar, with more significant discrepancies
present in other categories like End Users.

In the lower half of the dashboard, as depicted in Figure A.6, we find a boxplot that
underscores the cumulative percentage change in prices from 2017 to 2023. This
particular perspective offers a unique understanding of the data, not in terms of
individual prices or final prices, but in the effective evolution of these prices over
time.

Further augmenting this perspective, the two packed bubble graphs below trace the
behavior of these prices. The homogeneity of color illustrates a consistency in price
increment patterns, which is logical considering price adjustments typically span
entire subactivities rather than individual materials.

The graph on the bottom right introduces another vital aspect for our future analy-
ses—the rate of price increase across these subactivities. It’s worth noting that price
increases do not necessarily mirror the hikes in final prices. Superimposed on this
graph is a histogram, tallying the quantity of materials present over the years. It
shows a stable trend for these categories, an expected finding given these represent
the most significant subactivities within our Helios.

Delving into the depths of our data, we enriched it with insights acquired through
advanced visualizations. A realization emerged: not all materials bear equal sig-
nificance, and similarly, not all subactivities carry the same weight. Informed by
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these insights and our continued dialogue with the Head of Pricing in Iberia and the
VicePresident of Data, we crafted a couple of plots showcasing these disparities.

The first plot (Figure A.7) illuminates the prominence of each subactivity, and the
second (Figure A.8) highlights the importance of each material. We quantified ’im-
portance’ via a metric referred to as ’weights’ by the business. Weights represented
the proportion of quantity sold within the entirety of Helios when evaluating subac-
tivities, and within the specific subactivity when evaluating materials.

The evolution of subactivities (Figure A.7) paints an intriguing picture. Back in 2017,
a mere seven subactivities constituted over 80% of the Helios’ total sales. This trend
persisted through 2022, save for one subactivity which ceased to contribute to sales.
Intriguingly, this pattern mirrored Pareto’s principle: 20% of all subactivities within
Helios (6 out of 30) accounted for 80% of the total sales. This data-driven insight,
coupled with business logic, reinforced our decision to focus our analysis on these
six prime subactivities.

Looking within these subactivities, we observed a similar pattern with materials.
As depicted in Figure A.8, a long tail of less significant materials existed alongside
a select few dominant ones. The solution lay in weighting each material within its
subactivity and retaining only the top 3.
As shown in our results (Figure 3.1), these top 3 materials constituted nearly 20%
of sales for their subactivity - a considerable share for just 3 references. Further-
more, aligning our data-driven insights with business acumen, we considered the
business-identified ’Referencias Faro’. These critical materials play a pivotal role
when it comes to price changes and adjustments.

In conjunction with our exploratory data analysis, and leveraging our cleaned dataset,
we aimed to augment the business value by generating more nuanced insights. Ac-
cordingly, we devised two additional dashboards.

The initial dashboard shown in Figure A.9 dissects the sales data. The topmost chart
illustrates the progressive increase in the Schneider Electric (SE) price for select sub-
activities, adjusted using the provided filters. Notably, we present the data at two
levels of granularity—subactivity and material, enhancing the precision of our anal-
ysis.

The subsequent chart highlights an interesting trend—while the SE price has esca-
lated, the final price has remained relatively stable over the past five years. This
suggests that despite the rise in price, our commercial team has maintained or even
augmented the final discounts offered to sustain sales. This trend, however, is some-
what offset by the positive news that the volume for these subactivities has remained
steady, indicating stable demand. The last pair of charts break down the final price
and quantity sold for these aggregated subactivities by transaction type. It is evident
from these visualizations that transaction types ZCAM and ZOES hold a majority
share in sales.
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The second dashboard in Figure A.10 provides comparable insights with a focus on
customer-related data. The initial three charts delineate the trajectory of the final
price for different subactivities and customer types, the prominent increase in vol-
ume for our B2B clientele, and the customer purchasing trends in a typical month.

These graphical representations provide insights into pricing strategies for different
customer types and subactivities, volume trends for B2B customers, and the usual
buying patterns of various customers within a month.

The last set of three histograms delivers a ranked classification showcasing our high-
est buying customers, the customers with the highest purchasing frequency, and
those contributing significantly to our revenue.

After this Exploration Data Anlysis phase, we decided motivated with our find-
ings to only analyse the combination of the top 3 materials and business ’Referen-
cias Faro’ logic, in the subactivities we found to be more important, ending with a
dataframe of 320k rows, reducing it from the 2.5M we initially had.

The top 3 materials suppose: 0.1797749709039136

For subactivity 'RA' in the year 2022, the top 3 materials are:

A9K17616: 0.0850847253351223 y es REFERENCIA FARO

A9K17216: 0.04966627533065715

A9K17610: 0.045023970238134134

FIGURE 3.1: Top 3 Materials after computing weights for our Subac-
tivity RA in the 2022. Own Source.

3.3 Feature Engineering

After cleansing the data, we initiated the process of Feature Engineering - a piv-
otal step to enhance the potency of our predictive models. This process consisted of
transforming the raw data into features that better represented the underlying prob-
lem to the predictive models, resulting in improved model accuracy on unseen data.
We applied several transformations, each tailored to cater to specific characteristics
of our data:

1. Data Type Conversion: Certain columns in the dataset were converted into
string format for consistency and ease of processing. These included ’Material’,
’Subactividad’, ’Cust_class’, and ’tx_type’. The ’Date’ column was converted
into a datetime object to facilitate time-based operations.

2. Time Feature Addition: We enriched our data with time-related attributes
such as the month and year of the transaction. Additionally, we added a
’time_idx’ attribute to capture the temporal relationship between the records
and a necessary feature for our Temporal Fusion Transformer model to have
time consistency.
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3. Aggregated Feature Addition: We added aggregated features to capture trends
in the data. These included calculating the average volume by ’Cust_class’,
’tx_type’, and ’Subactividad’ for each time period, which gives our models in-
formation based on these 3 categories as we have seen in the EDA Dashboard,
this might has an effect on our results.

4. Data Grouping: The data was grouped by several key features including ’Ma-
terial’, ’Subactividad’, ’Cust_class’, ’tx_type’, among others. Aggregated val-
ues for ’Price’, ’qty’, and ’ped_brutos’ were calculated for each group. We do
not want a granularity for each sales, instead we want data to be grouped in
those categories to easily investigate forecasting and optimization.

5. Price Feature Addition: Several price-related features were added to better
capture price trends and anomalies in the data. These included ’Precio_medio’,
logarithmic transformations of ’Precio_medio’, ’Price’, and ’Quantity’, and ’Dis-
count_pct’, refering to the percentage of discount in every transaction. All log-
arithmic transformations were safeguarded with a negligible constant to avoid
taking the logarithm of zero. These logarithms are going to be used in both TFT
model and Price Optimization, following OLS standards [5].

6. Minimum Encoder Length Assurance: Time series in the dataframe were val-
idated to have a minimum length, dictated by the encoder length and predic-
tion length. This validation was crucial to ensure the integrity of our analysis,
as only those series which had adequate past information for encoding and a
satisfactory future horizon for predictions were retained.

7. Filtering Based on Business Logic and Data Insights: Our data was further
refined based on the business knowledge and data insights we gained from
our exploratory analysis. This included focusing on specific transaction types,
’top_ref’ materials, and a select set of subactivities which had proven to have
significant sales.

This comprehensive feature engineering, designed to capture the intricacies and pat-
terns in the data, prepared us to embark on the next phase: training our models. Take
note that this step has further reduced and filtered our dataset, now remaining only
11539 rows of information, accounting for the Top References in every month from
the last 5 years and in the different transaction types and customer classification
possibilities.
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Chapter 4

Experiments and Results

This chapter is a cornerstone in our study, focusing on the analytical examinations
and subsequent findings related to two major scopes: Price Elasticity and Sales Fore-
casting. The goal of this chapter is to present a comprehensive account of our con-
ducted experiments, interpreting the results, and deriving meaningful insights that
could influence strategic decision-making.

Within these scopes, we explore a variety of aspects, each with a unique significance
and bearing on our overall analysis. To maintain clarity and ensure an organized
presentation, this chapter has been divided into two main sections, each devoted to
a distinct scope of our study.

4.1 Price Elasticity scope

In the Price Elasticity section, we will be discussing the nature of our experiment,
the specific metrics we used to quantify and analyze elasticity, our initial baseline
setup, and finally, the results obtained from the experiment.

4.1.1 Experiment 1: Ordinary Least Squares

Our initial investigation into price elasticity of demand involved the application of
Ordinary Least Squares (OLS) regression on binned, log-transformed variables, a
straightforward and transparent method that offers a preliminary understanding of
the dataset at hand.

Our dataset, covering all material types, was subjected to log transformation for
both price and quantity variables, following standard practice for elasticity studies
[9]. This transformation was carried out as the elasticity of demand can often be
approximated as a constant rate of change in quantity demanded relative to price,
which is more naturally expressed in logarithmic terms. Additionally, log transfor-
mation has the added benefit of mitigating the potential effects of extreme values
and ensuring a more linear relationship between price and quantity.
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To handle the inherent variability and noise present in the dataset, we divided the
range of our log-transformed price into 15 equal bins, averaging the log-transformed
quantities within each bin. This ’binned OLS’ approach served to reduce the influ-
ence of noise and outliers, providing a clearer visual depiction of the underlying
trend between price and quantity.

The OLS regression on these binned averages revealed a negative relationship be-
tween log-transformed price and quantity, a manifestation of the law of demand
that higher prices lead to lower quantities demanded. The estimated coefficient for
log-transformed price stood at approximately θ = −0.588. Interpreted in terms of
price elasticity, this suggests that a 1% increase in price would lead to a roughly
0.588% decrease in quantity demanded, assuming all else constant. The R-squared
value, a measure of goodness of fit, was found to be 0.789, indicating that the model
was able to explain approximately 78.9% of the variability in the log-transformed
quantity. The results can be seen in Figure A.11, the blue line is from the log-log
experiment.

While this preliminary analysis serves as a useful starting point, it’s important to
remember that it falls into the category of a ’naive’ analysis, in the sense that it does
not control for potential confounding factors that could affect both price and quan-
tity. The subsequent phases of our study will delve deeper, aiming to elucidate a
more accurate picture of the causal relationship between price and quantity.

4.1.2 Experiment 2: Double Machine Learning

The Double Machine Learning (DML) approach provides a powerful technique
for estimating causal effects in high-dimensional settings. It is particularly effec-
tive when the number of features is large or even exceeds the number of observa-
tions. DML excels at addressing the challenge of parameter estimation where high-
dimensional nuisance parameters, although not of immediate interest, significantly
affect the analysis.

The price elasticity of demand, computed using DML, is given by the coefficient
β1 from the OLS regression model, defined as the partial derivative of the natural
logarithm of quantity (Q) with respect to the natural logarithm of price (P), i.e.,

β1 = θ =
∂ ln(Q)

∂ ln(P)

Our results have shown a negative Elasticity in the figure A.12. The graph displays
the "naive" approach, depicted in blue, which presents a basic correlation between
log-quantity and log-price without any control for confounding variables. Despite
the evident scatter, a negative relationship can be observed, signifying that an in-
crease in prices corresponds to a reduction in demand, with the estimated regression
coefficient being around θ ≈ −0.6.
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The orange line offers a visual representation of the outcome derived from the Dou-
ble Machine Learning (DML) technique, having adjusted for potential confounding
influences. A steeper slope can be seen, suggesting an increased elasticity of demand
( θ ≈ −7). Alongside this, there is a notable increase in the dispersion of the rela-
tionship, which is less than ideal. However, it is important to acknowledge that a
significant decrease in price variance is evident (reflected in the reduced range of the
line on the x-axis), attributable to the DML residualization process which accounts
for much of this variation.

4.1.3 Experiment 3: Graph Causal Model

As a first step, we collected a comprehensive set of variables that we considered
could influence both price and quantity. These variables include elements such as
production cost, market competition, consumer income, and preferences, to name a
few. This exhaustive list served as our nodes in the graph.

Next, we established the edges or causal relationships between these nodes based
on theoretical considerations, prior knowledge, and initial data exploration. These
directed edges represent our assumptions about the cause-and-effect relationships
between variables. Two primary elements, ’Material’ and ’Subactividad’, directly
influence both ’Price’ (the original global cost) and ’Precio_medio’ (the final price),
with ’Price’ further impacting ’Precio_medio’. The final price is also influenced by
’Cust_class’, the customer classification, and ’tx_type’, the type of transaction.

’qty’, representing quantity or volume, is shaped by temporal variables (’time_idx’
and ’month’), transaction type, customer class, and the final price, signifying its sen-
sitivity to various factors. See Figure A.13 where all the variables involved are rep-
resented.

Given the complexity of real-world economic systems, we made simplifying as-
sumptions about the causal graph’s structure to aid in estimation. We assumed a
"causal sufficiency" condition, that is, there are no common causes of any pair of
variables in our graph that we have not included.

We took our constructed Generative Causal Model (GCM) and applied it to the
dataset we gathered, producing an effective ’causal version’ of the data. This al-
lowed us to simulate the causal effects of different variables on our target outcome:
demand. A central part of this process was computing the Price Elasticity of Demand
(PED).

To calculate PED, we simulated a series of price changes in our model and observed
the resulting changes in quantity demanded. The computed PED values provide an
estimate of the percentage change in demand that would result from a 1% change
in price. For increased precision, we considered a range of percentage changes, not
merely a 1% alteration. With the computed PED, we could estimate how changes in
price might affect demand, giving us a tool for strategic decision-making.
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Finally, we conducted a backtesting process on our data to find the price that maxi-
mizes revenue. We considered a range of percentage changes in price and simulated
their effects on demand and, consequently, revenue. Through this process, we found
the optimal price point that maximizes revenue for each data point in our dataset.
In addition, we computed the corresponding quantity and revenue at these opti-
mal price points. This rigorous backtesting procedure helps to validate our model’s
effectiveness in maximizing revenue while also providing practical, data-driven in-
sights for pricing strategies. We will present the final results in the section 4.3.2. It’s
important to emphasize that our objective is neither prediction nor classification but
rather adjusting historical data. Therefore, gauging the precision or accuracy of our
model can be particularly challenging.

4.2 Sales Forecasting scope

Subsequently, we delve into Sales Forecasting, a fundamental part of business strat-
egy that allows for effective planning and resource allocation. Similar to the previous
section, we will introduce the experiments.

4.2.1 Experiment 1

Firstly, the data is filtered based on certain conditions. In this basic experiment we
tried to find patterns only for a concrete transaction type because of business beliefs
of being the most stable and logical one. Not only this but we did not provide any
further information more than temporal one, price and quantity. Before training
the TFT model, the mean absolute error (MAE) of a simple naive baseline model,
predicting the next value as the last available value from the history, is calculated for
future comparison with the TFT model.

The TFT model is then configured and trained. It’s worth noting that to improve
training, several techniques are used, including early stopping to prevent overfit-
ting, learning rate monitoring for better optimization, and logging with TensorBoard
for tracking the training process. The model is trained with a particular set of hyper-
parameters including hidden size, dropout rate, learning rate, and others. Obviously
for a time series, we usually do not shuffle the training set, and the division has been
done leaving 6 months for test, and the rest for train and validation.

After the model is trained, its performance is evaluated by calculating the mean
absolute error on the validation set. The results show an improvement over the
simple baseline model but the error is yet too high, which makes us change the data
fed.
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4.2.2 Experiment 2

In this second experiment we changed and enriched the dataset because of the com-
plexity inherited in the data in the first experiment, the model was not able to see the
different patterns for different customer classifications. Therefore in this experiment,
we trained the Transformer over all the data, using the top references as previously
stated, and we used as group_ids1 the Material, Customer Classification and Trans-
action Type.

We will see in our results 4.3.2 that this is always the minimum classification because
we discovered it was impossible to see any kind of patterns in a higher granularity.
We also used more features, like the percentage of discount, the monthly average
volume by Customer type, by transaction type and by subactivity. We also incorpo-
rated a lag in quantity of 1,3 and 6 months.

4.2.3 Results

In Experiment 1, our initial benchmark is set by the Baseline model, a rudimentary
forecasting approach predicting the subsequent value as the final observable value
from historical data. This simplistic model produces a mean absolute error (MAE)
of 1193.29. In contrast, the Temporal Fusion Transformer (TFT) model demonstrates
an improved MAE during the training stage (405.0), which however increases dur-
ing the validation (943.0) and testing phases (1479.28). This trend might suggest
an overfitting scenario, where the model is excessively tailored to the training data,
diminishing its generalization capabilities on unseen validation and test data.

Upon integrating hyperparameter tuning into the TFT model, we observe a substan-
tial improvement across all stages — with MAE results for training, validation, and
testing being 364.0, 693.0, and 1111.55 respectively. This enhancement is attributed
to the optimization of the model’s configurations specific to the task at hand via
hyperparameter tuning, which subsequently boosts the model’s performance.

Experiment 2 follows a similar pattern albeit with significantly lower MAE values.
The baseline model here yields an MAE of 367.51. The TFT model, akin to Exper-
iment 1, exhibits an escalating MAE from training (102.0) to validation (254.0) and
testing phases (408.49), potentially suggesting an overfitting issue. However, the
lower MAEs relative to Experiment 1 implies that the data is less complex due to the
reason we are grouping by Material, transaction type and customer classification,
making it more susceptible to effective modeling with the TFT approach.

When incorporating hyperparameter tuning in Experiment 2’s TFT model, we again
notice enhanced performance, albeit the MAE shows a mild increase from train-
ing (203.0) to validation (231.0) and testing stages (367.61). Interestingly, the testing
MAE of the hyperparameter-tuned TFT model approximates that of the baseline

1Group Ids allow the TFT model to divide the time series in groups, dealing with each group inde-
pendently from the others.
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TABLE 4.1: Experiment Results. Metric used is MAE

Baseline TFT TFT w/ Hyperparameter Tuning

Train Validation Test Train Validation Test

Experiment 1 1193.29 405.0 943.0 1479.28 364.0 693.0 1111.55
Experiment 2 367.51 102.0 254.0 408.49 203.0 231.0 367.61

model in Experiment 2. This observation may suggest an inherent limitation in the
performance achievable with the given data and task setup, at least when using this
specific model with its current hyperparameter configuration. All the exact results
can be seen in the Table 4.1

To finish the results, the Temporal Fusion Transformer allows us to see the impor-
tance for each part. In the Figure A.16, we can see how the temporal attention fol-
lows a logical structure, giving more importance to more recent data. The encoder
and decoder importances make also sense, while the encoder gives more importance
to the lagged features of quantity, the decoder gives more importance to the month
for a possible seasonality we believe and features like the final price, indicating a
strong relationship between quantity-price.

4.3 Final results and Presentation

In this last section we will see how our results are combined and how do we present
the final results to the business, giving them a tool to interactively see which deci-
sions should they take.

4.3.1 Combining both models

Our aim is to elucidate the combination of different models used to optimize Schnei-
der Electric’s (SE) time series data, which concludes in April 2023. Initially, Graph
Causal Models (GCMs) were employed to optimize SE’s time series data, enabling
the identification of optimal price points for each month to maximize revenue. This
optimization was performed within our predetermined range of prices, ensuring re-
alistic transitions in pricing; substantial increments such as 100% month-to-month
increases were strictly avoided. This results in what we define as the ’Optimized’
time series, which concludes in the same month as the original SE time series and
provides an optimized price for that month aimed at revenue maximization.

The next step in our method involves feeding this optimized price back into the
original SE time series. We utilize the Temporal Fusion Transformer (TFT) model to
forecast the optimal price for the final month that would result in maximizing both
revenue and the quantity sold for the subsequent six months.
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By integrating these methodologies, we can simultaneously optimize historical data
and generate future predictions. This approach enriches our understanding of price
elasticity for key materials within a specific customer and transaction type, offering
valuable insights into how commercial negotiations could be more effectively con-
ducted. Moreover, it provides an estimation of future sales under different pricing
strategies: a) maintaining current pricing as per the original SE time series, b) shift-
ing to optimized pricing based on historical data, and c) adopting optimal pricing
for maximizing either future revenue or volume. This comprehensive approach thus
holds significant implications for price negotiations and sales forecasting.

4.3.2 Presentation of results

In conclusion, we have emphasized an essential, yet often overlooked component in
the realm of Data Science - the effective presentation of results. Recognizing the in-
dispensability of this aspect from the onset of our project, we employed the Tableau
software to create a series of dashboards. Some of these, as introduced in Chap-
ter 3.2, offer rich insights derived from the comprehensive data compilation and
cleaning process, a novel undertaking for Schneider Iberia. These interactive and
comprehensible dashboards not only elevate the value of our work but also provide
a beneficial tool to aid business decisions.

Finally, we present two concluding dashboards designed to elucidate the results de-
rived from our models. The inaugural dashboard, referenced as the Optimization
dashboard in Figure 4.1, comprises four graphs and the customary filters of Mate-
rial, Customer, and Transaction type. The first graph elucidates the Price Elasticity
of Demand (PED), indicating in this particular instance that the material exhibits
inelastic behavior. This information implies that Schneider could potentially raise
prices without adversely affecting sales, given the observed inelasticity. The subse-
quent graphs illustrate, in green, the original pricing, volume, and resultant revenue
as per Schneider Electric’s policy. Conversely, the red lines represent the prospective
outcomes given optimal pricing. These illustrations reveal that the red revenue (rep-
resenting optimized pricing strategy) consistently surpasses the original green rev-
enue, thereby highlighting the potential benefits of the optimized pricing approach.

The second dashboard, in Figure 4.2, is engineered to guide business decisions con-
cerning optimal pricing strategies. As discussed in the previous subsection, we now
have at our disposal 3 distinct time series: the original Schneider time series, and
two novel series depicting optimum outcomes for revenue and volume, respectively.
This dashboard provides a comparative analysis of these time series, showcasing
their predicted behavior in terms of price, volume, and resultant revenue over a fu-
ture timeframe. The dash vertical line indicates the last known datapoint. Note that
we deploy the Temporal Fusion Transformer (TFT) to forecast volume, hence we
keep prices constant as their evolution cannot be accurately predicted.
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FIGURE 4.1: Dashboard for Price Optimization. Own Source.

FIGURE 4.2: Dashboard for Sales Forecasting. Own Source.
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Chapter 5

Conclusions and future work

In this thesis, the primary objective was to employ data science methodologies to
address a pertinent real-world problem within the context of Schneider Electric, a
leading multinational corporation. The successful fulfillment of this objective is at-
tributed to the rigorous execution of various phases of data science, including metic-
ulous data collection, preprocessing, and exploratory data analysis.

Data collection and preprocessing incorporated not only insightful data understand-
ing but also the implementation of business logic. An integral part of this process
was ongoing communication with key individuals in Schneider Electric’s Iberia divi-
sion, which allowed for the successful realization of the project. Equally important
was the translation of complex data into intuitive and meaningful visualizations,
demonstrated in Chapter 3.2.

Upon successful completion of the initial phase of data collection and cleaning, this
study implemented a causality-based model to determine elasticity and optimize
these materials. This innovative approach involved comparisons with other experi-
ments such as ordinary least squares (OLS) and double machine learning. While it is
challenging to ascertain the realism of the counterfactual world due to multiple con-
founding variables, the data and insights shared by the Pricing Heads at Schneider
suggest that most confounding variables have been adequately addressed.

In parallel, a state-of-the-art model, Temporal Fusion Transformer (TFT), was uti-
lized for volume prediction. However, the complexities and inherent randomness
in the data may have limited the model’s predictive power. This limitation can be
attributed to the business model of Schneider’s clients, most of whom operate on
a business-to-business (B2B) model. The indirect nature of these relationships in-
troduces a level of separation that could be impacting prediction accuracy. Future
work should further explore these time series, potentially employing more exhaus-
tive feature engineering, testing other models, and exploring the possibility of using
foundational or pretrained models to discern latent patterns.

Ultimately, this thesis presents a complete end-to-end project that not only visualizes
the results of both the causality-based and TFT models but also provides business
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insights into Schneider’s data. These insights include recognizing patterns such as
stable final prices for clients despite increasing list prices, and identifying client seg-
ments that buy more of certain transaction types or subactivities. Such information,
often implicit and held by long-standing department members, has been explicitly
delineated and visualized in this study. This knowledge is invaluable for Schneider
Electric as it embarks on future business strategies and decisions.

As for future directions, the immediate task would be to enhance the performance of
the sales forecasting model. Additionally, the applicability of this pipeline to other
Helios activities could be explored. Given the similar or identical data structure, the
data collection and feature engineering pipeline should not necessitate major alter-
ations. However, any successor to this project must remain cognizant of the critical
role of stakeholders and business developers in interpreting and assessing the in-
sights derived logically. Consequently, each Helios activity should be examined in
conjunction with the respective department head to determine suitable courses of
action.

A potential improvement could be the implementation of continuous integration/-
continuous deployment (CI/CD) procedures. This would enable the ingestion of
the most recent month’s data into the pipeline and facilitate monthly retraining of
the model to forecast the upcoming two quarters. While this final step of model de-
ployment was not realized due to constraints of time and complexity, it represents a
worthwhile endeavor for future work.
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Appendix A

Annex

Link to the Github repository of our MSc Thesis, please read the README file.

https://github.com/Goodjorx/price-elasticity-thesis/tree/main
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FIGURE A.1: Workflow of our end-to-end Data Science Project. Own
Source
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FIGURE A.2: Elasticity of Demand, visual representation. [20]

FIGURE A.3: A minimum (i.e. incomplete) causal graph between
price and quantity, with product quality as only confounder. θ refers

to the Elasticity [9]
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FIGURE A.4: General view of the EDA Dashboard. Own Source.

FIGURE A.5: First part of the Dashboard. Own Source.

FIGURE A.6: Second part of the Dashboard. Own Source.
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FIGURE A.7: Top Subactivities in HDPNL Helios, only showing the
ones with higher weight than 5%. Own Source.

FIGURE A.8: Top Materials in the whole Helios, showing the top 15.
Own Source.
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FIGURE A.9: Dashboard analyzing sellings and prices. Own Source.

FIGURE A.10: Dashboard analyzing customer behavior. Own Source.

FIGURE A.11: OLS results for Elasticity. Own Source.
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FIGURE A.12: DML results for Elasticity. Own Source.

FIGURE A.13: GCM structure for Elasticity. Own Source.
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(A) Results on validation data for experiment 1 us-
ing the TFT.

(B) Results on validation data for experiment 1 us-
ing the TFT.

FIGURE A.14: Results for experiment 1.

(A) Results on validation data for experiment 2 us-
ing the TFT.

(B) Results on validation data for experiment 2 us-
ing the TFT.

FIGURE A.15: Results for experiment 2.

(A) Temporal Attention. (B) Static Variable importance.

(C) Encoder importance. (D) Decoder importance.

FIGURE A.16: Importances in Experiment 2
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