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RESUM DE LA TESI 

Títol: Marcadors electroencefalogràfics espontanis i basats en pertorbacions en l’estudi 

de la salut cerebral 

introducció: La salut cerebral és l'estat òptim del funcionament cerebral que permet a 

l’individu assolir el seu màxim potencial al llarg de la vida, independentment de la 

presència o absència de malalties. Per poder promoure i preservar la salut cerebral 

enfront de la malaltia, és fonamental descobrir els seus determinants cerebrals. Alguns 

dels principals reptes per a la salut cerebral són els trastorns mentals i les malalties 

neurodegeneratives, els més prevalents dels quals són els trastorns de l'estat d'ànim, 

l'esquizofrènia i la malaltia d'Alzheimer. Des del punt de vista fisiopatològic, aquestes 

malalties comparteixen disfuncions en la transmissió sinàptica, arrelades en processos 

inhibitoris i excitatoris, que podrien ser detectables mitjançant l'electroencefalografia i 

potencialment modificables mitjançant tècniques d’estimulació cerebral no invasives. 

Per tant, en aquesta tesi hem investigat biomarcadors candidats de la salut cerebral 

que podrien ser neurofisiològicament rellevants en el context de malalties comunes 

que la desafien, i, el que és més important, que són potencialment modificables. 

Hipòtesis: Les hipòtesis generals són: 1) els biomarcadors candidats de la salut cerebral 

són detectables mitjançant mètodes no invasius i potencialment escalables, i 2)  

revelen mecanismes rellevants per a malalties que presenten disfuncions en la 

transmissió sinàptica , arrelades en processos excitatoris i inhibitoris. Les hipòtesis 

específiques per a cadascun dels tres estudis d'aquesta tesi són: 1) Es pot construir un 

"model de joguina" de la resiliència cerebral utilitzant una pertorbació cerebral 

controlada per simular l'estressor i avaluar la reactivitat cerebral com a indicador de la 

resposta de l'organisme. Aquest model integrat permetrà identificar una signatura 

distintiva de la resiliència cerebral davant de l’impacte anticipat dels estressors 

psicosocials associats a la pandèmia de la COVID-19. 2) Les anomalies inhibitòries dels 

pacients amb esquizofrènia durant una tasca de memòria de treball visual són 

detectables i es poden aprofundir mitjançant un model interpretable d'aprenentatge 

automàtic, per tal de diferenciar pacients de controls utilitzant només dades 

d'electroencefalografia (EEG). 3) l'excitabilitat cortical més elevada es correlaciona amb 
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concentracions més altes de tau fosforilada secretada en plasma, mentre que no 

s'observà cap associació amb la concentració de ‘neurofilament light’ de secreció 

passiva. 

Objectius: L'objectiu principal d'aquesta tesi és investigar biomarcadors candidats de la 

salut cerebral que siguin potencialment translacionals i modificables en el context 

d'alguns dels seus reptes més prevalents. Els objectius específics de cadascun dels tres 

estudis són: 1) construir un "model de joguina" de la resiliència cerebral i emprar-lo en 

el context dels estressors psicosocials associats a la pandèmia de la COVID-19. 2) 

implementar un algoritme interpretable d'aprenentatge automàtic que pugui 

diferenciar pacients de controls basant-se únicament en dades d'EEG, alhora que reveli 

els mecanismes neurofisiològiques específics que donat lloc a la classificació. 3) establir 

la relació entre l'excitabilitat cortical i les proteïnes implicades en la fisiopatologia de la 

malaltia d'Alzheimer utilitzant mètodes no invasius. 

Mètodes: S’ha utilitzat electroencefalografia (EEG) en repòs i durant tasca, així com 

també amb estimulació magnètica transcranial concurrent (EMT-EEG), per tal d’obtenir 

mètriques d'excitabilitat cortical espontànies i basades en pertorbacions. El potencial 

d'aquestes mètriques com a biomarcadors candidats de la salut cerebral es va 

investigar en tres escenaris diferents corresponents a tres estudis. L'estudi 1 va 

incloure una submostra de 74 participants del projecte Barcelona Brain Health 

Initiative (BBHI), que van completar EMT-EEG, una bateria de proves 

neuropsicològiques i avaluació de la salut mental abans de l'inici de la pandèmia i en 

tres moments addicionals durant aquesta. L'estudi 2 va incloure 15 pacients amb 

esquizofrènia i 15 controls sans, que van realitzar una tasca de memòria de treball 

visual amb EEG. Es van utilitzar mètodes d'anàlisi estadística univariable per avaluar les 

dades conductuals i d'EEG, mentre que es va utilitzar un algoritme interpretable 

d'aprenentatge automàtic únicament amb dades d'EEG. A l'estudi 3, es van emprar la 

concentració de tau fosforilada a l'aminoàcid 181 (p-tau181) i cadena lleugera(NfL) en 

plasma, així com les dades d'EEG en repòs en 648 participants de la cohort del BBHI. 

Addicionalment, en una submostra de 47 participants també disposàvem de EMT-EEG. 
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Resultats: A l'estudi 1, els individus que varen experimentar un efecte negatiu en la 

seva salut mental durant la pandèmia, van mostrar una resposta significativament més 

alta de la resposta d’EEG evocada per EMT a l’escorça prefrontal esquerre, quan la 

comparem amb la resposta d’individus que van romandre estables. Aquesta signatura, 

juntament amb els nivells d'educació, va ser significativament predictiva de l'estat de 

salut mental durant la pandèmia. A l'estudi 2, els pacients van mostrar una supressió 

significativament més baixa de la banda de freqüència alfa que els controls en 

moments crítics de la tasca de memòria de treball. L’algoritme d’aprenentatge 

automàtic interpretable va discriminar amb èxit els pacients dels controls. Les regions 

de la sèrie temporal d'EEG que van resultar més discriminants coincidien amb els 

regions temporals on les diferències en alfa eren més pronunciades. A l’estudi 3, tant 

les mesures d’excitabilitat cortical espontànies com les basades en pertorbacions 

estaven significativament associades amb la concentració de p-tau181, però no amb 

NfL.  

Discussió: En aquesta tesi, composta per tres estudis, hem revelat nous biomarcadors 

candidats de la salut cerebral en el context de la resiliència mental, l'esquizofrènia i la 

malaltia d'Alzheimer en els seus estadis inicials. A més, això s'ha aconseguit utilitzant 

mètodes no invasius i potencialment escalables. Els biomarcadors candidats identificats 

revelen alteracions potencials de la transmissió sinàptica, arrelades en processos 

inhibitoris i excitatoris que, per tant, són potencialment modificables mitjançant 

mètodes no invasius d’estimulació transcranial elèctrica i magnètica. 

Conclusions: Les conclusions de la tesi són les següents: 1) La resiliència en salut 

mental es pot modelar entenent-la com a la resposta del cervell a una pertorbació 

controlada que, a més a més, és predictiva de la potencial vulnerabilitat a estressors 

psicosocials futurs, tals com aquells associats a la pandèmia de la COVID-19. 2) Els 

algoritmes d'aprenentatge automàtic interpretable i el EEG durant tasques poden 

identificar dèficits inhibitoris en l'esquizofrènia, fins i tot quan el rendiment cognitiu es 

troba preservat. 3) Els marcadors d’excitabilitat cortical estan associats a les 

concentracions de p-tau en individus sans de mitjana edat, de manera coherent amb el 

paper presumpte de l'excitabilitat neuronal en la secreció de p-tau. 4) Per tant, el EEG 
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espontani i també el basat en pertorbacions ha revelat biomarcadors candidats no 

invasius de la salut cerebral que estan arrelats en la transmissió sinàptica inhibitòria i 

excitatòria.
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CHAPTER 1. General Introduction 

1.1. Brain Health challenges and biomarkers 

The World Health Organization recently defined Brain Health as “the state of 

brain functioning across cognitive, sensory, social-emotional, behavioral and motor 

domains, allowing a person to realize their full potential over the life course, 

irrespective of the presence or absence of disorders” (Word Health Organization, 

2022). Importantly, this definition underscores that brain health does not mean 

absence of disease, but rather that there is a potentially quantifiable set of factors that 

determine optimal cognitive, mental and social functioning, regardless of disease 

(Hachinski et al., 2021). This optimal state results from the continuous and dynamic 

interaction of individual and environmental factors across the lifespan; including 

genetic endowment, personality and life experiences, as well as a safe, healthy and 

positively engaging environment (Hachinski, 2023). This lifespan perspective, in turn, 

puts the accent on the cerebral determinants of neuronal development, adaptation, 

repair and compensation, as the brain grows and faces disease- and aging-related 

changes. This thesis is motivated by the timely and pressing need for scalable and 

potentially modifiable brain health biomarkers that are relevant for the early detection 

and neurophysiological understanding of the most globally prevalent disorders 

threatening it. Neuropsychiatric and neurodegenerative disorders stand as some of the 

most significant and prevalent threats to brain health. In our increasingly aging 

population, we have seen a sharp increase in the number of people affected by 

neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease, affecting 

over 7 million people in Europe alone. This figure is expected to double every 20 years 

as the population ages (Long et al., 2023). Alzheimer’s disease (AD) is the most 

prevalent neurodegenerative disorder and the leading cause of dementia and currently 

has no cure. Similarly, even before the coronavirus disease 2019 (COVID-19) pandemic, 

mental health problems affected around 20% of the population in the European Union 

(European Commission, 2023), and 970 million people worldwide (Word Health 

Organization, 2022). In the first year of the pandemic, estimates point to a 25% 

increase in the general prevalence of depression and anxiety symptoms (Bueno-Notivol 
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et al., 2021). Although effective treatments exist, around one in three patients with 

most prevalent disorders —major depressive disorder and schizophrenia— are 

treatment resistant (McIntyre et al., 2023; Mørup et al., 2020). Neurodegenerative and 

mental health disorders are, therefore, pandemics in their own right. Consequently, 

researchers and public health agencies around the world have been focusing their 

efforts not only in improving our understanding of these prevalent disorders to develop 

more effective treatments, but also on early detection and prevention strategies, to 

either halt or slow down disease onset and progression. In this context, it is crucial to 

develop early disease biomarkers that are capable of accurately predicting the risk of 

developing disease, while providing insights that are pathophysiologically relevant. 

Furthermore, the candidate biomarkers for preclinical early detection should rely on 

non-invasive, inexpensive, and readily available methods, if they are to be scalable to 

an early detection screening scenario (Abi-Dargham et al., 2023; Chimthanawala et al., 

2023). In this context, electroencephalography (EEG) is a tool that can capture the 

electrical activity of the brain while fulfilling these scalability criteria. Indeed, the 

underlaying neurophysiopathology of mood disorders, schizophrenia and AD are 

closely linked to dysfunctions in electric synaptic transmission (Duman and Aghajanian, 

2012; Howes et al., 2023; Pichet Binette et al., 2022), which further makes EEG a well 

suited method for biomarker discovery for these disorders. Furthermore, electric brain 

activity can be induced in a controlled and precise manner via transcranial electric and 

magnetic stimulation techniques, which can selectively recruit different neuronal 

elements and circuits, while also fulfilling the scalability criteria, for they are non-

invasive, inexpensive, and already commonly available in research and clinical settings. 

Current technical advances make it possible to combine non-invasive brain stimulation 

and EEG, allowing the interference of the ongoing electrical activity of the brain and 

the capture of its direct response in real-time. Thus, by combining these methods, we 

can probe the implication and significance of specific neuronal circuits in the 

neurophysiology of disease. Importantly, electric synaptic transmission is plastic and 

directly regulated by excitatory and inhibitory processes, which can also be promoted 

via long-term depression- and potentiation-like mechanisms by these non-invasive 

stimulation techniques. This highlights the translational utility of these methods to 

reveal candidate biomarkers, that are also modifiable by these very same methods, 



28 

 

offering potentially disease-modifying interventions within the same methodological 

framework. Consequently, in this thesis we focus on the discovery of EEG candidate 

biomarkers for early detection of mental health disorders and AD. These biomarkers 

should also provide mechanistic insights on the neurophysiology of disease and be 

informative of new potential treatment targets using non-invasive brain stimulation, 

with the overarching goal of promoting and maintaining optimal brain health when 

facing disease. 

1.2. Non-invasive capture and modulation of electric synaptic transmission 

1.2.1. Physiological basis of EEG 

As this thesis is focused on the discovery of EEG candidate biomarkers relying 

on synaptic transmission mechanisms, the findings and implications of the studies that 

form this thesis should be interpreted within the scope of what EEG can actually 

measure. EEG devices consist of a set of electrodes connected to a differential signal 

amplifier and digitization unit. Electrodes placed on the scalp record the electrical 

activity of the brain as a differential voltage signal reflecting the summation of 

postsynaptic potentials from tenths of thousands of synchronized pyramidal neurons 

(Figure 1. A; Buzsaki, 2006). Corresponding evidence from local field potential —

electrodes inserted into the brain— research shows that scalp EEG reflects what local 

field potentials record, but spatiotemporally smoothed, due to the distortions and 

attenuations produced by the tissues the electric field must pass through before 

reaching the electrodes on the scalp; pia matter, cerebrospinal fluid, arachnoid space, 

bone and skin (Figure 1. B; Buzsáki et al., 2012). Therefore, only the summation of 

many synchronous individual extracellular field changes will be detectable at the scalp 

(Cohen, 2017). Local field potential recordings pick up the intra- and extracellular 

electric fields resulting from the superposition of all neuronal transmembrane currents 

generated by the movement of ions in and out of the membrane. Thus, the main 

contributor to these extracellular fields are synaptic currents generated by excitatory 

NMDA and AMPA neurotransmission at the synapse of the cell’s soma and dendrites, 

which effectively cause depolarization of these cells. While GABA mediated inhibitory 

neurotransmission would be thought to add little to the extracellular field, 
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paradoxically, its action often causes depolarization of spiking pyramidal neurons until 

they hyperpolarize (Glickfeld et al., 2009), effectively yielding a significant contribution 

to the extracellular field. Therefore, EEG registers the spatiotemporally smoothed

extracellular fields generated by the synchronous activation of many pyramidal cortical 

neurons, which is, in turn, regulated by afferent excitatory and inhibitory synaptic 

transmission.

Figure 1. Basic physiological principles of EEG and correspondence with local field 

potentials. A) shows the extracellular field generated by an active synapse between a 

pyramidal cortical neuron and an afferent axon; as the electric activity must then pass 

though the different tissues separating the cortex from the electrode placed on top of 

the scalp, which then picks up the signal and send it to a diferential amplifier. B) shows 

a 6 second recording of slow EEG waves during sleep (in red), with the electrode placed 

on the scalp at the vertex (Cz), and the simultaneous local field potential recordings (in 

blue) from the supplementary motor area (SM), entorhinal cortex (EC), hypocampus 

(HC) and amygdala. The black dots show neuron activity spikes, while the green lines 

show multi-unit activity. A) was extracted from Bear et. al., (2020) and B) was extracted 

from (Buzsáki et al., 2012)
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1.2.2. Transcranial electric and magnetic stimulation 

Electric brain activity can be perturbed, modulated, or modified using non-

invasive transcranial electric and magnetic stimulation (from now on TES and TMS, 

respectively), thus offering an additional avenue over EEG to further investigate 

synaptic transmission and potentially modify it. Therefore, given the translational focus 

of this thesis, which is aimed at candidate biomarker discovery that can also be 

informative of potential disease modifying interventions, here we offer a general 

overview of the non-invasive stimulation methods that will be referenced throughout 

the thesis.  

The most ubiquitous TES technique in research and clinical practice is tDCS. In 

this technique, a low-amplitude direct electric current between 1 and 2mA in 

amplitude, is passed between two or more electrodes placed on the scalp, so that 

some of the current will pass not only through the path of least resistance (i.e., skin), 

but also through the brain. The effect of this current on the cortex is the increase or 

decrease (i.e., excitation or inhibition) of the neuronal resting membrane potential, 

thus modulating the firing likelihood of neurons. The direction of this membrane 

polarization effect is selectively modulated by the polarity of the stimulating 

electrodes, whereby a cathodal montage tends towards depolarization or excitation, 

while an anodal montage tends to promote hyperpolarization or inhibition (Figure 2. A; 

Lefaucheur and Wendling, 2019; Yamada and Sumiyoshi, 2021). Stimulation is usually 

delivered over a period of 20 to 30 minutes and its effects on cortical excitability can 

outlast stimulation for up to 120 minutes (Jamil et al., 2017). These plastic changes 

have been linked to long-term depression and potentiation (LTP and LTD, respectively) 

synaptic processes (Kronberg et al., 2017). By repeatedly delivering tDCS sessions over 

the course of multiple days, it is believed that the plastic changes become progressively 

more durable (Monte-Silva et al., 2013, 2010), lasting for days, or even months 

(Brunoni et al., 2012). This potentially cumulative effect is thought to be the basis of 

successful therapeutic applications of tDCS (Lefaucheur and Wendling, 2019). This 

method has the added advantage of being inexpensive, mobile and easy to use, making 

it a viable candidate for home-based therapeutic interventions (Silva-Filho et al., 2022). 
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TMS relies on the basic principles of electromagnetic induction (Faraday, 1832), 

to deliver electromagnetic pulses through a coil that, unlike tDCS, can induce an 

effective electric current on the axons and bodies of neurons causing them to 

depolarize (Barker et al., 1985). The intensity of a single TMS pulse, relative to the 

threshold from which effective pyramidal neuronal depolarization is induced, can be 

modulated to selectively target different neuronal populations; a subthreshold pulse 

will mostly affect afferent interneuron circuits, while near threshold stimulation will 

also recruit excitatory afferents, finally, suprathreshold stimulation will additionally 

directly depolarize pyramidal cortical neurons (Schmidt and Brandt, 2021). Thus, by 

pairing pulses (i.e., paired pulse TMS) at different intensities relative to the threshold 

and with different time intervals between them (ranging from 1ms up to 100ms), it is 

possible to probe the effect of a conditioning pulse on a suprathreshold stimulus test 

pulse, revealing the contribution of different interneuron circuits to the test stimulus 

(Cash and Ziemann, 2021). If pulses are repeated in succession for at least 30 minutes, 

it is possible to induce plastic changes akin to LTP and LTD of synaptic transmission that 

outlast stimulation for at least 30min (Pascual-Leone et al., 1994; Wagner et al., 2007). 

Repeated TMS (rTMS) at a frequency below 5Hz (typically 1 Hz) promotes inhibition of 

cortical activity, while frequencies above (typically 10, 15 or 20 Hz) promote excitability. 

For safety reasons, high-frequency protocols are typically delivered in trains with 

pauses in between (Rossini et al., 2015). A new generation of patterned rTMS protocols 

deliver bursts of gamma frequency pulse triplets (50 Hz) repeated at theta frequency (5 

Hz), these protocols have thus been termed theta burst stimulation (TBS), and produce 

analogous effects to conventional rTMS protocols, but with a significantly shorter total 

stimulation durations of around 3 minutes (Huang et al., 2005a). The choice of gamma 

stimulation within theta cycles is grounded on observations of patterned neuronal 

firing in CA1 pyramidal hippocampal neurons in rats during spatial exploration, as well 

as in cell cultures, whereby LTP mediated plasticity was found to result from gamma 

bursts of spike activity at a theta frequency (Capocchi et al., 1992; Larson and 

Munkácsy, 2015). When TBS is delivered continuously, it promotes inhibition of cortical 

activity and when delivered in trains with a pause of 8 seconds in between, it promotes 

excitability (Figure 2. B). As with tDCS, when rTMS stimulation is repeated for several 
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sessions throughout multiple days, the plastic changes appear to become more 

durable, extending for days or even months after stimulation (Lefaucheur et al., 2014).

Figure 2. Illustration of A) tDCS and B) TMS protocols. Original figure created with 

BioRender.com.

Importantly, it has been shown that the effects of these non-invasive 

stimulation techniques propagate from the site of stimulation to other anatomically 

and functionally connected brain regions (Jog et al., 2023; Kabakov et al., 2012; 

Kearney-Ramos et al., 2018; Kunze et al., 2016; Ozdemir et al., 2020; Vink et al., 2018; 

Voineskos et al., 2010). This characteristic makes these methods suitable to study and 

potentially modulate brain connectivity patterns. Given the outlined capacity of TES 

and TMS techniques to induce plastic changes that outlast stimulation and propagate 

beyond the stimulation site, these methods have been extensively used to treat a great 

variety of neurologic and psychiatric conditions coursing with connectivity and

inhibition/excitation imbalances, such as stroke, chronic pain, cognitive impairment,

schizophrenia or major depressive disorder (Bhattacharya et al., 2022).
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1.2.3. Concurrent TMS-EEG

The effects of TES and TMS on cortical excitability have been extensively studied 

on the primary motor cortex, as the output of the corticospinal tract can be reliably 

measured peripherally. For instance, single pulse TMS of the motor cortex induces the 

depolarization of cortical motor neurons, triggering action potentials that travel down 

through the corticospinal tract to the peripheral nerves until they reach the muscle 

fibers, consequently triggering a muscle contraction (Hallett, 2000).  In this case, the 

brain response is thus indirectly measured at the targeted muscles (Figure 3; e.g., using 

electromyography).

Figure 3. Simplified schematic of TMS stimulation of the primary motor cortex (M1) as 

it travels down the corticospinal tract and to the muscle, causing a motor contraction 

which can be captured as a motor evoked potential (MEP) using electromyography 

(EMG). Modified from Bear et al., (2020) with BioRender.com

The direct neuronal effects of stimulation can be captured  with concurrent EEG 

during TMS (TMS-EEG). Single pulse TMS has been shown to induce stable and 
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reproducible cortical responses  (Ozdemir et al., 2021a, 2021b), termed TMS-evoked 

potentials, that reflect the dynamic shifts in the inhibition/excitation balance in cortical 

circuits, with its different peaks and troughs reflecting the contributions of different 

neurotransmission systems (Belardinelli et al., 2021; Darmani et al., 2016; Ghazaleh 

Darmani et al., 2019; Du et al., 2018; Ferrarelli et al., 2010; I Premoli et al., 2014; 

Isabella Premoli et al., 2017, 2014; Salavati et al., 2018; Sarasso et al., 2015; Ziemann et 

al., 2015), throughout the time-course of the brain response to the TMS pulse, which 

lasts up to 300ms after the pulse (Figure 4).

Figure 4. Schematic of the pharmaco-physiological mechanisms of TMS evoked EEG 

potentials after single-pulse TMS of the primary motor cortex. The dashed vertical line 

represents the time of the TMS pulse (0ms). The peaks and troughs are labeled ‘P’ and 

‘N’, respectively, followed by the approximate time in milliseconds at which they 

typically occur. ALP, alprazolam; BAC, baclofen; BRV, brivaracetam; CBZ, carbamazepine; 

DMO, dextromethorphan; DZP, diazepam; LTG, lamotrigine; LEV, levetiracetam; PER, 

perampanel; ZLP, zolpidem. Extracted from Darmani et al., (2019).
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1.3. Biomarkers of mental health resilience during the COVID-19 pandemic

1.3.1. The mental health impact of the COVID-19 pandemic

Mental health has long been one of the main public health challenges, but its 

relevance and impact were brought into a bright focus after the severe acute 

respiratory syndrome coronavirus 2 outbreak gave rise to the COVID-19. As cases 

surged worldwide and healthcare systems faced immense pressure and collapse, on 

March 11th of 2020 the WHO declared COVID-19 a pandemic. To try and contain the 

spread of the virus, most governments enforced drastic measures, such as lockdowns, 

travel bans, social distancing measures and quarantines, with unprecedented societal 

and economic consequences. As a result of the fear of the pandemic and the 

psychosocial stress produced by the enforced measures, the prevalence of depression 

and anxiety increased globally by 25% in 2020. As illustrated in Figure 5,  Santomauro 

et al., (2021) reported an additional 53.2 million new cases of major depressive 

disorder and 76.2 million cases of anxiety that were directly caused by the psychosocial 

stressors produced by the pandemic, with and uneven impact across age groups and 

gender; younger people and females being hit the hardest.

Figure 5. Increased prevalence of major depressive and anxiety disorders in 2020 as a 

direct result of the COVID-19 pandemic. Adapted from Santomauro et al., (2021).
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While the pandemic had a global overall negative impact on mental health, 

when confronted with similar stressors or insults, individuals exhibit varying degrees of 

vulnerability; some may experience more pronounced negative effects, while others, 

owing to their inherent “resilience”, demonstrate minimal or no impact and may even 

thrive in the face of adversity (Pascual-Leone and Bartres-Faz, 2021). 

1.3.2. Mental health resilience 

Pascual-Leone and Bartres-Faz (2021) recognized that the concept of resilience 

is highly heterogeneous, with its definition changing across different disciplines and 

fields of study. In this thesis, we adhere to the general definition proposed by the 

authors that resilience is essentially a homeostatic mechanism, whereby an organism is 

able to cope with a given stressor by either resisting it or adapting to successfully 

compensate its impact. In this definition the stressor can be acute or chronic, 

psychological or physical, and internal or external in origin. Importantly, in this 

definition, resilience is a capacity that can be present both in health and in the 

presence of disease. Within this framework, in the particular case of mental health, 

resilience comprises the mechanisms that help an individual avoid developing illnesses, 

mental health issues, or distress when faced with stressful or traumatic situations 

(Moore et al., 2020; Russo et al., 2012). In this context, resilience is contraposed to 

psychological vulnerability, which refers to a diminished capacity to manage stressors 

and is considered a predisposing factor for psychopathological conditions (Wright et al., 

2013). However, resilience and vulnerability are not simply opposites but rather 

represent two extremes of a spectrum. This spectrum is believed to be the dynamic 

result of complex interactions between individual and contextual factors (Cathomas et 

al., 2019; Rutter, 2012; Tost et al., 2015). Such factors include genetic makeup, 

demographic characteristics, socio-economic background, early developmental 

experiences, access to healthcare, living conditions, adherence to certain lifestyle 

behaviors (like cognitive, physical activities, nutritional choices, and sleep patterns), 

participation in emotion-regulation strategies such as meditation, the quality of social 

connections and early support, and educational attainment (Campbell-Sills et al., 2009; 

Frankish and Horton, 2017; Gelfo et al., 2018; Livingston et al., 2017; Di Marco et al., 

2014).  
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Resilience in the context of mental health has also been shown to rely on a 

specific neurophysiological substrate (Cathomas et al., 2019; Russo et al., 2012). 

Research involving animal subjects and human neuroimaging has identified several 

brain regions and functional networks that are likely significant in determining 

resilience and vulnerability to mental health disorders. These discoveries are heavily 

grounded in the concept of ‘functional brain networks’, which is the result of decades 

of research made possible by functional magnetic resonance imaging (fMRI), a 

neuroimaging technique that detects changes in the blood-oxygen level dependent 

signal, with the assumption that increased blood flow indicates increased neural 

activity in a given brain region (Biswal et al., 1995). This approach to understanding 

brain function represented a major paradigm shift from the classical model that 

considered brain function as arranged in discrete modules corresponding to isolated 

brain regions (Brodmann, 1909; Fodor, 1983). Instead, fMRI revealed that brain activity 

is rather distributed across interconnected groups of brain regions that form networks 

working in synchrony to support brain function (Biswal et al., 1995; Raichle et al., 

2001), furthermore, these networks are themselves connected with one another and 

balance each other in a dynamic manner (Rubinov and Sporns, 2010). Therefore, the 

resulting picture of brain functional organization looks more like a complex and 

dynamic interplay of juxtaposing systems whereby the whole brain is interconnected 

and recruitment of neural resources for a particular function takes the form of balance 

shifts between such networks (Hansen et al., 2015; Menon and Uddin, 2010). While 

still an evolving field it is generally recognized that there are at least seven 

fundamental functional networks in the adult human brain supporting basic processes 

subtending cognitive function (Figure 6; Thomas Yeo et al., 2011).  
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Figure 6. Seven-functional network parcellation of the human cerebral cortex based on 

1000 subjects. Extracted form Yeo at al., (2011)

In the field of psychological resilience, functional and structural neuroimaging 

research consistently highlights, both cortical and subcortical structures implicated in 

stress response and emotional regulation, including the amygdala, insular, anterior 

cingulate and prefrontal cortices (Kong et al., 2015; Waugh et al., 2008). Furthermore, 

large-scale functional systems associated with these regions have also been found to 

relate to psychological resilience, particularly the relative activity between three

functional networks implicated in higher-level cognitive functioning and emotional 

processing, the default mode network (DMN), the salience network (SN, also known as 

ventral attention network) and the frontoparietal control network (FPN; Cathomas et 

al., 2019; van Oort et al., 2017; Watanabe and Takeda, 2022).

A singular cortical structure, that is part of the FPN, the left prefrontal cortex, is 

recognized as a key player (Maier and Watkins, 2010; Varela et al., 2012), with its size, 
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activity, and connectivity with limbic areas being positively associated with resilience to 

trauma and adverse childhood events (Bolsinger et al., 2018). Furthermore, 

longitudinal fMRI studies have observed that children who effectively manage the 

amygdala's emotional reactions through the FPN are more resilient to depression after 

maltreatment (Rodman et al., 2019). The role of prefrontal function extends to the 

pathophysiology and management of psychiatric disorders, especially major depressive 

disorder (Hare & Duman, 2020 or  Pizzagalli & Roberts, 2022) and schizophrenia (Dienel 

et al., 2022; Smucny et al., 2022). Lastly, the prefrontal cortex is not just central to 

psychological resilience and psychiatric disorders but is also suggested as a key area for 

cognitive resilience during normal aging and in relation to brain deterioration and 

pathology in AD (Ewers et al., 2021; Franzmeier et al., 2018, 2017; Neitzel et al., 2019). 

While the neural substrate of resilience is likely distributed throughout several brain 

networks and regions, given its transversal implication across the resilience spectrum, 

it is plausible that the prefrontal cortex is a central node that serves as their anchor. 

This anchor is also likely a key mediator of the positive influences of developmental, 

environmental, and socioeconomic factors (Pascual-Leone and Bartres-Faz, 2021).  

1.3.3. A toy model of brain resilience 

The recognition that resilience serves as a fundamental defense for mental 

health when facing stressors (Feder et al., 2019), underscores the importance of 

comprehending its determinants and neurophysiological underpinnings. This 

understanding is crucial for fostering resilience as a proactive measure to prevent the 

onset of mental health disorders. In this context, global psychologically stressful events 

such as the pandemic and associated lockdowns provide an unprecedented 

opportunity to elucidate the neuropsychological factors and inherent 

neurophysiological mechanisms that contribute to either resilience or vulnerability.  

We have seen that the neural substrate of resilience is a complex phenomenon 

resulting from the interaction of many internal and external factors. However, it is 

possible to study complex systems by building on a simplified model first. This idea is 

well stablished in theoretical physics, where ‘toy models’ refer to simplified models of 

more complex phenomena that can however be used to provide a quantitative 
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explanation and make reliable predictions (Georgescu, 2012; Marzuoli, 2008). To 

achieve this, we can draw inspiration from the animal studies on the 

neurophysiological substrate of resilience that employ stimuli that can be precisely 

quantified and controlled, for example using tail-shock stress paradigms (Seligman et 

al., 1975), in which a mild electric shock is given to the tail of rats or mice. This 

paradigm was used, among others, to establish the mechanism of ‘learned 

helplessness’, whereby, after being exposed to uncontrollable stress, an animal will be 

unable to escape from subsequent aversive situations, even when it has control over 

them (Landgraf et al., 2015). Similarly, TMS can be used to induce precisely controlled 

and transient perturbations of brain activity in vivo in awake humans on a specific brain 

location, and the reaction of the brain can then be captured in real-time with 

concurrent EEG. This makes the basis for a toy-model: we can induce a controlled 

perturbation of a region found to be part of the neurophysiological substrate of 

resilience — the prefrontal cortex— and measure the brain response profile of a given 

individual to this perturbation, as if it were a stressor or insult the brain must cope 

with. Then we can evaluate how the TMS-EEG response profile correlates with 

resilience or vulnerability to an event such as the COVID-19 pandemic or in the 

presence of diseases such as schizophrenia or AD.  

1.4. Biomarkers of cognitive disfunction in schizophrenia 

1.4.1. The heterogeneity problem in psychiatry and schizophrenia 

It is a common issue in psychiatry that a particular disorder may be caused by a 

different set of causal mechanisms, moreover, clinical manifestation is also variable 

across individuals with apparently similar pathophysiological conditions; meaning, 

there is no clear necessary conditions to be meet for a disease to develop with a 

particular set of symptoms. Thus, psychiatric diagnosis, treatment and management 

are ‘heterogeneous’ in nature and, therefore, challenging (Feczko et al., 2019). A 

Disease that has been recognized as particularly heterogeneous in psychiatry is 

schizophrenia (Wolfers et al., 2018). 

Schizophrenia is a serious and disabling mental health condition with a 

worldwide occurrence of approximately 0.28% (Charlson et al., 2018), that leads to 
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considerable social and economic impacts. Moreover, around 30% of patients are 

treatment resistant at some point during the disease  (Mørup et al., 2020). Its 

symptoms are categorized into two main categories: positive symptoms such as 

hallucinations, delusions, and disorganized thought processes, and negative symptoms 

including reduced emotional expression, withdrawal from social interactions, and 

cognitive deficits affecting memory and decision-making abilities (Batinic, 2019; 

Mosolov and Yaltonskaya, 2022). It is a neurodevelopmental disorder believed to 

originate from a combination of genetic predispositions and early environmental 

influences (Van Os et al., 2010; Robinson and Bergen, 2021; Seidman and Mirsky, 

2017), which disrupt the brain's development and result in compromised functional 

brain network connectivity (Howes and Shatalina, 2022; Liu et al., 2021) and abnormal 

brain activity (Anticevic et al., 2015a, 2015b). The underlying mechanisms may involve 

changes in dopamine, GABA and glutamate neurotransmission, leading to an 

imbalance between excitatory and inhibitory signals within brain circuits that 

ultimately affects the synchronization of brain oscillatory activity (Hirano and Uhlhaas, 

2021). Despite over one-hundred years after the term was first used and a growing 

body of research on all aspects of the disease, our understanding and treatment of 

schizophrenia has not advanced enough to provide effective interventions for this 

largely developmental disorder. This lack can be attributed, at least in part, to the 

inherent difficulties in diagnosing the disease in the first place, owing to the 

heterogeneity of its pathophysiology (Alnæs et al., 2019; Wolfers et al., 2018) and 

clinical manifestation (Bosia et al., 2019; Dollfus and Brazo, 1997). This led to diving the 

disease into an ever-growing number of subtypes, and the inevitable conclusion that 

schizophrenia is a spectrum disorder (for a historical overview see Jablensky, 2010) 

covering a variety of genetic and neurophysiological abnormalities, and clinical 

symptoms. 

1.4.2. Neuroimaging and EEG correlates of schizophrenia 

Decades of neuroimaging research on the neurophysiological underpinnings of 

schizophrenia lead to the identification of several brain abnormalities associated with 

schizophrenia, these include macroscopic structural brain changes, and most 

consistently, alterations in synaptic microstructure and metabolism. The most 
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consistent findings in structural magnetic resonance imaging of schizophrenia —when 

compared to healthy controls— are decreased grey matter volume and density (Kuo & 

Pogue-Geile, 2019) and cortical gyrification (Sasabayashi et al., 2021), which indexes 

the ratio of the length of the folded cortical contour to the length of the outer brain 

surface (Zilles et al., 1988). At the level of synapse, abnormalities have been reported 

regarding density and metabolism. Common findings include decreased synaptic 

density, which can be measured by-proxy from synaptic vesicle protein 2A (SV2A) using 

positron emission tomography (PET), and has been shown to be decreased in patients 

with chronic schizophrenia compared to matched controls (Onwordi et al., 2020; 

Radhakrishnan et al., 2021), as well as microstructural abnormalities measured by 

neurite orientation and density imaging, which has been reported to be decreased in 

schizophrenia patients when compared to healthy controls (Kraguljac et al., 2023; 

Nazeri et al., 2017).  Metabolic abnormalities include reduced levels of N-

acetylaspartase (Onwordi et al., 2020; Radhakrishnan et al., 2021), measured using 

magnetic resonance spectroscopy, as well as reduced glucose reuptake during resting 

state (Townsend et al., 2023), measured using fluorodeoxyglucose-PET. Nevertheless, 

these findings are not always consistent across studies, possibly owing to the variability 

in the disease subtypes sampled and methods used. Moreover, the candidate 

biomarkers with higher sensitivity to detect the most specific synaptic abnormalities in 

schizophrenia are expensive and require exposure to radioactivity (Figure 7; Howes et 

al., 2023).  
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Figure 7. Schematic of neuroimaging abnormalities reported in schizophrenia, with an 

emphasis on the advantages and disadvantages of each method regarding its specificity 

to detect synaptic disfunction. Extracted from Howes et al., (2023).

The reviewed structural and synaptic abnormalities constitute the 

pathophysiological substrate for the functional brain abnormalities reported in an 

ample body of research using resting and task-based fMRI in schizophrenia research.  

Research during resting state fMRI most consistently report abnormalities in the SN

(Menon and Uddin, 2010; Palaniyappan and Liddle, 2012) and DMN networks (Hu et 

al., 2017), and thalamocortical dysconnectivity (Chen et al., 2020; Ramsay et al., 2023; 

Wei et al., 2022),  when compared to healthy controls. Another common finding is 

overall decreased connectivity or brain synchrony, which has been attributed to 

GABAergic interneuron disfunction in schizophrenia (Pujol et al., 2023). While for task-

based fMRI, a recent metanalysis by Picó-Pérez et al., (2022), most consistently 

identified decreased activation of the dorsomedial prefrontal cortex, the 
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supplementary motor area, and the right inferior frontal gyrus, when compared to 

healthy controls. 

These methods have provided crucial insights on the neurobiology of 

schizophrenia and constitute valuable candidate biomarkers. However, findings are 

often inconsistent across studies (Dabiri et al., 2022; Howes et al., 2023; Picó-Pérez et 

al., 2022), and the methods used are expensive and may involve exposure to 

radioactivity. Therefore, these candidate biomarkers are inevitably restricted to 

research settings.  EEG on the other hand, is a cheaper, more practical, thus, potentially 

clinically scalable method. An ample body of research on differential diagnostic of 

schizophrenia and prediction of transition to psychosis, has identified several resting 

state and task-based EEG correlates. The most consistent findings across EEG studies 

targeting the frequency domain include abnormalities in alpha (Trajkovic et al., 2021) 

and gamma (Reilly et al., 2018) oscillations. Alpha rhythms (between 8 to 12Hz), 

constitute a dominant frequency in the human brain mediating long-range and 

thalamocortical connectivity (Scheeringa et al., 2012), as well as inhibition and gating 

processes related to attention, resource allocation and inhibition of task-irrelevant 

brain regions (Jensen and Mazaheri, 2010; Klimesch, 2012). A recent metanalysis of 

resting state alpha power differences between patients with high and low risk for 

transition to psychosis found that those at high risk had significantly lower alpha power 

and peak alpha (i.e., alpha slowing) —the frequency at which alpha band peaks in the 

power spectrum— at the right frontoparietal control network. Similarly, resting state 

studies comparing patient and healthy controls found consistently decreased alpha 

power and peak alpha at frontal, parietal and temporal cortices (Begré et al., 2003; 

Murphy and Öngür, 2019; Pascual-Marqui et al., 1999; Ramyead et al., 2016). Gamma 

band oscillations (between 30 and 100HZ) have been shown to be generated by the 

synchronized activation of cortical pyramidal neuronal assemblies (Fries et al., 2007; 

Womelsdorf et al., 2007) which is mediated by parvalbumin-positive GABAergic 

interneurons (Bartos et al., 2007), and are therefore fundamental in cortico-cortical 

communication supporting general cognitive functioning (Fries, 2009; Roux et al., 

2012). Resting state studies comparing schizophrenia patients with healthy controls 

consistently find increases in gamma power, most prominently over the frontal cortex 
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(Ramyead et al., 2016, 2015; Tikka et al., 2014). During tasks, the most consistent 

findings also include abnormalities in the alpha and gamma bands. Specifically, event 

related studies find decreased desynchronization of alpha, particularly during events 

related to inhibition of distractors, possibly indicating an attentional inhibitory deficit 

(Boudewyn and Carter, 2018; Kayser et al., 2014).  In the gamma band, studies most 

consistently report decreased evoked and induced power throughout a variety of 

cognitive tasks in patients after a first psychotic episode or at high risk of developing 

psychosis (Reilly et al., 2018), also pointing at inhibitory deficits. Another group of EEG 

abnormalities in schizophrenia comes from event-related potential (ERP) studies, which 

most consistently report impairments in the sensory gating-related P50 (Atagun et al., 

2020) and N100 (Rosburg, 2018) ERP components, as well as amplitude reductions in 

memory- and attention-related mismatch negativity (Erickson et al., 2016) and P300 

(Qiu et al., 2014) ERPs. 

1.4.3. Working memory deficits in schizophrenia 

Among the heterogenous landscape of symptoms in schizophrenia, perhaps the 

most consistent core cognitive impairment affects working memory (WM), which has 

been found to be strongly predictive of functional outcome and prognosis (Chan et al., 

2000; Fu et al., 2017; Gold et al., 2019; Jenkins et al., 2018) an might be an early 

indicator for transition into psychosis (Tao et al., 2023). WM is typically described as a 

system with a limited capacity for temporarily holding and manipulating information 

needed for complex, goal-oriented behaviors such as understanding, learning, and 

reasoning (Baddeley, 2010; D’Esposito and Postle, 2015) and  it depends on and 

interacts with other cognitive processes, including attention and executive function 

(D’Esposito and Postle, 2015; Luck and Vogel, 2013). It has been shown that 

schizophrenia patients exhibit widespread deficits across various WM subprocesses 

and modalities (Luck and Vogel, 2013), including issues with proactive cognitive 

control, which involves maintaining goal-related information in WM to influence 

behavior (Barch and Ceaser, 2012), and unusually concentrated and intense attentional 

focus of processing resources (Luck et al., 2019). Even among high-functioning patients 

with generally intact WM capabilities, inconsistencies like increased variability in 
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reaction times have been reported (Rentrop et al., 2010a), suggesting subtle 

information processing impairments. 

1.4.4. Data-driven diagnostic and patient classification in schizophrenia 

While the body of research outlined in the previous sections has brought us 

closer to understanding the neurophysiology of schizophrenia and its cognitive impacts 

—owing to the proverbial heterogeneity problem— they had limited translation in the 

improvement of differential diagnostic and the development of novel treatment 

strategies. With the growing advances in artificial intelligence, the field of psychiatry 

has recently turned to machine learning to progress in these areas. This move is partly 

motivated by the limitations posed by conventional univariate statistical methods, 

which are suitable for group-level distinction of patients from controls or patient 

subgroups, but fall short in differential diagnostic at the individual level (Scangos et al., 

2023). 

Machine learning is a subset of artificial intelligence where algorithms learn 

from and make decisions based on data. Unlike traditional programming, where rules 

are explicitly coded, machine learning algorithms build a model from sample data or 

experience to predict or decide without explicit programming. Classic machine learning 

models include linear regression, where a linear equation is fit to observed data to 

predict a continuous output (Galton, 1886); decision trees, which split the data into 

smaller subsets based on feature values, creating a tree-like structure of decisions that 

lead to predictions or classifications (Quinlan, 1986);  and K-nearest neighbors, which 

classify a data point based on how its 'k' nearest neighbors in the feature space are 

classified (Kaplan and Meier, 1958). Modern and more complex machine learning 

algorithms are becoming popular tools in precision psychiatry research to enhance 

diagnostic differentiation at the individual level. Particularly, support vector machines, 

which can classify high-dimensional data (i.e., when the number of features is greater 

than the number of observations) by finding the best boundary (or hyperplane) that 

separates data points in a given dataset into classes or subsets (Cortes and Vapnik, 

1995); deep neural networks (DNNs), that mimic the human brain’s interconnected 

neuronal computations to learn hierarchical representations of the input data 
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(Rumelhart et al., 1986); and convolutional neural networks (CNNs), which are DNNs 

specialized in finding spatial hierarchies and patterns in input data that has the shape 

of a matrix or grid (e.g., images; Krizhevsky et al., 2012), which makes them particularly 

well suited for neuroimaging. 

 Recent studies have demonstrated the use of machine learning using 

neuroimaging data in patients with schizophrenia to distinguish patients from controls 

and patient subtypes with notable accuracy, using variations of the algorithms 

described above (for a recent review see Cortes-Briones et al., 2022). A limited number 

of this studies have used EEG data alone, either during resting state (Phang et al., 2020; 

Ruiz De Miras et al., 2023; Shim et al., 2016; Shoeibi et al., 2021; Sun et al., 2021)  or 

during working memory (Johannesen et al., 2016) or oddball tasks (Shim et al., 2016), 

showcasing unprecedented potential for clinically applicable diagnostic enhancements. 

However, while efficient in classification, these algorithms pose one major drawback, 

they are ‘black-boxes’, due to the opaque manner in which they process input data to 

produce specific outcomes (Sheu, 2020). This means that the potentially 

neurophysiology revealing features in the data that led to a successful classification 

remain hidden. As a result, there's a growing demand for more transparent and 

interpretable deep learning models (Barros et al., 2021).  

One promising solution is the revolutionary concept of the self-attention 

mechanism, as outlined in the influential paper by Bahdanau, Cho, and Bengio (2015). 

Originally developed for machine language processing and generation, this mechanism 

allows inputs to interact with each other (i.e., each word in a sentence can look at 

other words) and weigh their influence on the model's output. This was a major shift 

from previous models that processed inputs sequentially. The mechanism mimics how 

human visual perception works. For example, when looking at a scene containing a 

salient feature, such as a lion in the jungle, traditional CNN models would first extract 

texture and structural features and then generalize them to a semantic level, while a 

human might spot the lion at first glance. Another crucial feature of models 

incorporating the attention mechanism is their interpretability; the network’s attention 

layers provide a probability distribution over the input space, offering insights into the 
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network's internal operations by directly mapping the relative importance of each 

feature in reaching a decision or performing a classification to the input space (de 

Santana Correia and Colombini, 2022; Škrlj et al., 2020). 

Therefore, by leveraging modern machine learning algorithms that incorporate 

the attention mechanism and are intrinsically interpretable, we can target one of the 

most consistent symptoms of schizophrenia —working memory impairment— using a 

well stablished and sensitive experimental paradigm, the visuospatial change detection 

task. By relying on inexpensive and potentially scalable methods like EEG, we can 

produce a diagnostic enhancement that is clinically usable for discriminating between 

patients at an individual level. Finally, these methods might provide insights into the 

neurophysiological mechanisms behind the impairment.  

1.5. Biomarkers of cortical excitability and protein pathology in AD 

1.5.1. The pathophysiology of Alzheimer’s disease 

Alzheimer’s disease (AD) is a slowly progressing neurodegenerative disease 

with no effective treatment that affects an estimated 10% of people older than 65 

years of age, with an estimated 50 million people worldwide currently living with the 

disease. The majority of AD cases have a late onset at 65 years or older and prevalence 

increases with age and depending on biological sex; at age 85 and older at least 30% of 

people have AD and, regardless of age of onset, woman are more prone to develop AD 

than men (Figure 8), according to the latest estimates (Gustavsson et al., 2023; Rajan et 

al., 2021). With the increase in life expectancy over the last century the number of 

people suffering from AD has increased exponentially (Valenza and Scuderi, 2022), and 

it is projected to triple by 2050 as population grows and ages (Nichols et al., 2022).  

AD has been described as a continuum (Jack et al., 2018), since its time course 

spans several decades, and pathological molecular brain changes begin as early as 20 

years before the apparition of first symptoms (Montine et al., 2012). AD is believed to 

be caused by the confluence of aging, environmental influences, cardiovascular, 

genetic and lifestyle risk factors (Breijyeh and Karaman, 2020). In the early stages, the 

gradual accumulation of misfolded amyloid-beta ( ) protein forms plaques in the 
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extracellular space, triggering the secretion and increased deposition of soluble

phosphorylated tau (p-tau) protein, which then forms insoluble and toxic 

neurofibrillary tangles intracellularly, ensuing neurodegeneration and the onset of 

cognitive symptoms as pathology spreads throughout the brain (Jack and Holtzman, 

2013). The mechanisms of spread are poorly understood, but recent research has 

shown that tau pathology has an initial epicenter at the temporal cortex that will then 

spread through anatomically and functionally connected regions until reaching a 

plateau in the late stage of AD (Pichet Binette et al., 2022; Steward et al., 2023), at 

which point dementia will often be evident. See Figure 8 for a timeline of the AD 

hallmark events described.

Figure 8. Schematic model of tau pathology accumulation and spread throughout the 

course of Alzheimer’s disease. Adapted from Binette et al., (2022).

1.5.2. Biomarkers for early detection of Alzheimer’s disease

Currently, the most stablished biomarkers for AD detection and disease 

progression monitoring include the proteins implicated in the pathogenesis of the 

disease. Early disease biomarkers include and tau concentrations measured in 

cerebrospinal fluid (CSF) via lumbar puncture, as well as using PET. These markers 
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can detect AD in the preclinical stage, years before the onset of symptoms (Hansson, 

2021). As first symptoms appear, often in the form of mild cognitive impairment (MCI), 

 and tau pathology will have already spread throughout the brain and caused 

significant neurodegeneration, therefore, increased tau concentrations become 

detectable in PET imaging (Ossenkoppele et al., 2016) and significant concentrations of 

neurofilament light (NfL; Gaetani et al., 2019) —which is released as a byproduct of 

neuroaxonal injury (Gaetani et al., 2019)— are detectable in CSF, while widespread 

synaptic dysfunction can be detected at this stage as increased neurogranin 

concentrations in CSF, which is a postsynaptic protein involved in long-term 

potentiation and synaptic plasticity (Portelius et al., 2015). Due to neurodegeneration, 

brain volume reductions can also be detected using magnetic resonance imaging 

(Frisoni et al., 2010). As the disease progress into its late-stage with severe cognitive 

impact and dementia, brain wide synaptic dysfunction will be detectable by PET 

imaging of the SV2A, which assesses synaptic density (Carson et al., 2022), and 

fluorodeoxyglucose PET, which asses glucose metabolism (Chételat et al., 2020). Finally, 

astrocyte activation and degeneration can be assessed by the YKL-40 

neuroinflammation biomarker in CSF (Craig-Schapiro et al., 2010). 

The reviewed biomarkers are correlated with the different pathophysiological 

stages of AD and can detect AD years before symptoms onset. However, owing to their 

costly and invasive nature, they are not ideal candidates for early pre-clinical 

population screening, which would allow detecting individuals at risk of developing the 

disease early on. However, a new generation of blood-based biomarkers for measuring 

, p-tau and NfL concentrations have been recently developed and found to correlate 

with the more stablished CSF and PET biomarkers (Blennow et al., 2010; Mattsson-

Carlgren et al., 2023; Simrén et al., 2021; Teunissen et al., 2022). Given their relatively 

lower cost and non-invasive nature, these are better candidates for early population 

screening.  

1.5.3. The role of cortical excitability in Alzheimer’s disease 

While the hallmark pathophysiological events that occur throughout the course 

of AD have been consistently described, and we have a broad range of biomarkers that 
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correlate with them, we lack an understanding about the links in this chain of events. A 

crucial missing link is the mechanism by which  pathology leads to the increased 

deposition of hyperphosphorylated tau. Research in mouse models of AD and cell 

cultures consistently shows that even before plaque formation, the introduction of 

extracellular soluble , triggers hyperexcitability in hippocampal CA1 pyramidal 

neurons (Busche et al., 2012, 2008). While administration of -secretase inhibitors, 

which reduces soluble  levels, restores neuronal activity to control levels (Busche et 

al., 2012; Ghatak et al., 2019). Further in vivo research in mice has shown that neuronal 

activation promotes and enhances tau secretion in the post-synaptic neuron (Pooler et 

al., 2013; Schultz et al., 2018; Wu et al., 2016; Yamada et al., 2014). Thus, trans-

synaptic activation promoted by soluble  is a candidate mechanism for the secretion 

and propagation of tau pathology. While the specific mechanisms are poorly 

understood (Targa Dias Anastacio et al., 2022), it has been proposed that the presence 

of soluble  can form ionic pores in the neuronal membrane (Arispe et al., 1993; Ho 

et al., 2001), thereby increasing Ca2+ influx, and reduce the expression of voltage-gated 

potassium channels, while increasing NMDA receptor activation via increased D-serine 

(Wu et al., 2004) and glutamate release and reduced glutamate uptake (Arias et al., 

1995; Li et al., 2009; Parpura-Gill et al., 1997). Next it has been proposed that tau could 

further promote hyperexcitability, by altering glutamate levels as well as the expression 

and function of voltage-gated potassium channels and NMDA receptors, which would 

further potentiate the effects of  pathology in a vicious cycle (Zott et al., 2019). This 

model is consistent with the known fact that in early AD, general hyperexcitability is 

another early hallmark of the disease (Samudra et al., 2023), leading to epileptiform 

discharges (Kural et al., 2020) and seizures (Pandis and Scarmeas, 2012), and coincides 

with the rapid spread of tau pathology, until it plateaus and hyperexcitability resolves 

in advanced AD (Pichet Binette et al., 2022).  

Given that the evidence reviewed points at neuronal excitability as the putative 

mechanism by which increases in soluble  may trigger p-tau secretion and trans-

synaptic spread, early changes in cortical excitability in AD constitute a promising 

candidate biomarker for early AD detection (Samudra et al., 2023; Targa Dias Anastacio 
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et al., 2022). In this context, it is now possible to measure cortical excitability non-

invasively in humans in vivo using EEG.  

Recent research has shown that we can capture the overall cortical balance of 

excitation and inhibition using simple resting state EEG. After decomposing the EEG 

activity into the frequency domain, the power decreases as a function of frequency, 

whereby lower frequencies will contain most of the power in the spectra. This function 

follows a power distribution that can be described as 1/fx, where f is frequency, and the 

exponent x denotes the steepness or slope of the power spectrum. This aperiodic non-

oscillatory feature was originally regarded as background noise that should be removed 

to capture the ‘true’ oscillatory activity in the power spectrum (Gyurkovics et al., 2021). 

However, recent research in mice and macaque, as well as computational modeling, 

show that, far from being irrelevant noise, the slope of the power spectrum likely 

reflects the overall balance of excitation and inhibition (Clements et al., 2021; 

Donoghue et al., 2020; Gao et al., 2017), whereby steeper slopes reflect a shift in the 

balance towards inhibition and vice versa.  

Cortical excitability can also be measured more directly using TMS-EEG. As 

introduced in section 1.1.3, the peaks and troughs of the TMS evoked potentials reflect 

the contributions of distinct excitatory and inhibitory neurotransmitter systems. Of 

particular interest to derive a cortical excitability biomarker that potentially interacts 

with  and p-tau pathology, is the latter components of the evoked potential (160-

240ms after the TMS pulse), which have been shown to reflect voltage gated sodium 

channel (VGSC)-excitability. This was demonstrated in pharmacological studies 

employing VGSC blockers commonly used to treat epilepsy (Meisel et al., 2015), such 

as carbamazepine and lamotrigine, which consistently suppresses these late evoked 

components (Ghazaleh Darmani et al., 2019; Isabella Premoli et al., 2017).  

Therefore, cortical excitability can be effectively modified via readily available 

pharmacological interventions that act by reducing excitability through the selective 

blocking of ion channels, thereby inhibiting excitatory synaptic transmission (Bialer and 

White, 2010). However, these drugs affect whole brain neurotransmitter systems and 

have a certain degree of toxicity. Hence, they produce unwanted side effects, such as 
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coordination disturbances, cognitive dysfunctions or adverse psychiatric effects, and 

cutaneous, hematological and hepatic or pancreatic reactions (Perucca and Gilliam, 

2012). Alternatively, non-invasive transcranial stimulation techniques such as low-

frequency rTMS, cTBS and cathodal tDCS can effectively induce long lasting decreases 

of cortical excitability, via long-term depression-like mechanisms (Houdayer et al., 

2008; Huang et al., 2005b; Kronberg et al., 2017; Pascual-Leone et al., 1994; Valero-

Cabré et al., 2007), and importantly, without comparable side effects. Furthermore, 

unlike antiepileptic drugs, these stimulation techniques can selectively target brain 

regions of interest (Lynch et al., 2022; Momi et al., 2021), for instance, they could be 

used to target tau epicenters such as the temporal cortex, to inhibit spread to other 

connected regions. 

Therefore, there is now non-invasive and potentially scalable methods —blood-

based , p-tau and NfL concentrations, and resting state EEG and TMS-EEG—  to study 

biomarkers of cortical excitability in preclinical AD while investigating their interaction 

with  and p-tau in vivo in humans. The findings derived from this research can then 

be used to inform non-invasive interventions to target cortical excitability. Current new 

generation interventions for AD aim at clearing of  and tau, therefore, given the 

potential mediating role of excitability, reducing excitability could complement and 

potentially augment the effects of  and p-tau clearing drugs. 
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CHAPTER 2. Hypotheses and Objectives 

2.1. General Hypothesis 

1) Candidate biomarkers of brain health are detectable using non-invasive and 

potentially scalable methods. 

2) The proposed candidate biomarkers provide mechanistic insights relevant to 

diseases presenting disfunctions in synaptic transmission related to 

excitatory and inhibitory processes. 

2.2. Specific Hypotheses 

2.2.1. Study 1 

1) A ‘toy model’ of brain resilience can be built with a controlled TMS brain 

perturbation modeling the stressor and the EEG reactivity to it modeling the 

response of the organism. 

2) The proposed ‘toy model’ identifies a signature of brain resilience to the 

future impact of psychosocial stressors associated with the COVID-19 

pandemic. 

2.2.2. Study 2 

1) Behavioral and neurophysiological abnormalities of schizophrenia patients 

can be detected in the EEG during a standard visual working memory task 

using univariate statistical methods. 

2) An interpretable machine learning model incorporating the attention 

mechanism, can discriminate patients from matched healthy controls, 

relying on EEG data alone and provide insights relevant to the underlying 

neurophysiological abnormalities detected by univariate statistical methods. 

2.2.3. Study 3 

1) Spontaneous and perturbation-based EEG markers of cortical excitability are 

correlated with plasma concentration of secreted phosphorylated tau in 

healthy middle-aged adults. 
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2) Higher cortical excitability is associated with higher p-tau concentrations but 

not with passively released neurofilament light concentration in plasma. 

2.3. General Objective 

1) The objective of the experimental work reported in this thesis is to investigate 

translational and modifiable candidate biomarkers of brain health in the context 

of some of its most prevalent challenges: mental health vulnerability, 

schizophrenia, and Alzheimer’s disease. 

2.4. Specific Objectives 

2.4.1. Study 1 

1) Build a ‘toy model’ of brain resilience and vulnerability and showcase it in 

the context of the negative mental health impact of the psychosocial 

stressors associated with the COVID-19 pandemic.  

2.4.2. Study 2 

1) Implement an interpretable machine learning model based on the attention 

mechanism, that can distinguish patients from controls, based on EEG data 

alone, and reveal the neurophysiological signatures differentiating them. 

2.4.3. Study 3 

1) Establish the relationship between cortical excitability and secreted p-tau in 

a healthy middle-aged population using non-invasive methods. 
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CHAPTER 3. Materials, Methods, and Results 
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3.1. STUDY 1 
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A B S T R A C T

Psychosocial hardships associated with the COVID-19 pandemic led many individuals to suffer adverse mental
health consequences, however, others show no negative effects. We hypothesized that the electroencephalo-
graphic (EEG) response to transcranial magnetic stimulation (TMS) could serve as a toy-model of an individual's
capacity to resist psychological stress, in this case linked to the COVID-19 pandemic. We analyzed data from 74
participants who underwent mental health monitoring and concurrent electroencephalography with transcranial
magnetic stimulation of the left dorsolateral prefrontal cortex (L-DLPFC) and left inferior parietal lobule (L-IPL).
Within the following 19 months, mental health was reassessed at three timepoints during lock-down confinement
and different phases of de-escalation in Spain. Compared with participants who remained stable, those who
experienced increased mental distress showed, months earlier, significantly larger late EEG responses locally after
L-DLPFC stimulation (but not globally nor after L-IPL stimulation). This response, together with years of formal
education, was significantly predictive of mental health status during the pandemic. These findings reveal that the
effect of TMS perturbation offers a predictive toy model of psychosocial stress response, as exemplified by the
COVID-19 pandemic.

1. Introduction

The stressors associated with the coronavirus disease (COVID-19)
pandemic, as well as the restrictions imposed to contain the spread of the
virus, are expected to increase the global burden on mental health
(Pfefferbaum and North, 2020; Torales et al., 2020). The World Health
Organization has acknowledged this fact (Giacalone et al., 2020) and
highlighted the importance of integrating mental health into the pre-
paredness and response plans to public health emergencies (WHO,
2021). Some studies estimate a 25% increase in the general prevalence of

depression and anxiety symptoms (Bueno-Notivol et al., 2021). However,
whereas some individuals' mental wellbeing will be negatively impacted,
others - on account of their ‘resilience’ - will not be affected, or even
thrive in the face of adversity (Pascual-Leone and Bartres-Faz, 2021).

The concept of resilience is highly heterogeneous with various
meanings across different fields of study (Pascual-Leone and Bartres-Faz,
2021). Here we use resilience to refer to the processes that enable an
individual to resist the development of illness, mental health problems or
distress when confronted with stressful events or trauma (Moore et al.,
2020; Russo et al., 2012). Conversely, psychological vulnerability is
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reduced ability to cope with stressors, which would constitute a risk
factor for developing psychopathology (Wright et al., 2013). Rather than
a dichotomy, resilience and vulnerability can be understood as opposite
ends of a continuum, which likely reflects the dynamic product of a
complex interplay of individual and environmental factors (Cathomas
et al., 2019; Rutter, 2012; Tost et al., 2015), including genetic and de-
mographic characteristics, socio-economic status, developmental cir-
cumstances, access to health care, living conditions, adherence to certain
lifestyle factors (e.g. cognitive, physical, nutritional and sleep habits),
engagement in emotion-regulation practices such as meditation, social
relations and support (particularly early in life), and years of education
(Campbell-Sills et al., 2009; Di Marco et al., 2014; Frankish and Horton,
2017; Gelfo et al., 2018; Livingston et al., 2017).

Evidence from animal models and human neuroimaging studies have
identified several brain regions and networks that likely play a role in the
continuum of resilience and vulnerability. Converging evidence points at
the crucial roles of anterior cingulate and insular cortices and their
connections within the salience network (Menon, 2015; Menon and
Uddin, 2010), as well as limbic structures, such as the amygdala and the
ventral striatum (Holz et al., 2020). Additionally, the prefrontal cortex
has been identified as an important structure (Maier and Watkins, 2010).
Specifically, prefrontal cortical volume, activation and connectivity with
limbic structures, positively correlate with resilience to traumatic events
(Bolsinger et al., 2018); and longitudinal studies using functional mag-
netic resonance imaging (fMRI) found that children who were better able
to regulate amygdala's emotional response through recruitment of the
frontoparietal network exhibited greater resilience to developing
depressive symptoms following maltreatment (Rodman et al., 2019).
Prefrontal function is also involved in the pathophysiology and treatment
of psychiatric conditions, most prominently, major depressive disorder
(Hare and Duman, 2020) and schizophrenia (Selemon and Zecevic,
2015). Finally, the prefrontal cortex appears to not only play a central
role in psychological resilience and psychiatric pathophysiology, but has
been also proposed as a hub region for cognitive resilience in normal
aging (Franzmeier et al., 2017b) as well as to brain atrophy and pa-
thology associated with Alzheimer's disease (Franzmeier et al., 2018;
Neitzel et al., 2019). Therefore, in the present study we focused on the
prefrontal cortex to investigate the neural substrate of resilience to
mental health impact of the COVID-19 pandemic and, argued that single
pulse transcranial magnetic stimulation (TMS) in combination with
electroencephalography (EEG) could be used in human experimental
designs akin to the intervention-based animal studies of the neural sub-
strate of resilience.

Animal studies that employ stimuli that can be precisely quantified
and controlled, for example using tail-shock stress paradigms (Seligman
et al., 1975) in which a mild electric shock is given to the tail of rats or
mice, illustrate the power of such interventional experimental ap-
proaches to gain mechanistic insights into the substrate of resilience.
Similar approaches in human research combining non-invasive brain
stimulation with neuroimaging are possible. For example, Shafi and
colleagues (Shafi et al., 2015) have shown that brain responses to TMS
allow identifying abnormal cortical activity patterns before the mani-
festation of clinical symptoms in some forms of epilepsy. More recently,
Abellaneda-P�erez and colleagues (Abellaneda-P�erez et al., 2019) have
shown that the default mode network's response profile to intermittent
theta burst stimulation of the inferior parietal lobule can be used to
predict cognitive decline or maintenance after a three-year follow-up in
an aging population, well over and above of what baseline neuroimaging
data alone could predict. Furthermore, recent methodological advances
(Ozdemir et al., 2020, 2021b), have revealed that single pulse TMS can
be used concurrently with EEG to produce highly specific and reliable
cortical response profiles.

We propose that TMS-EEG can be a ‘toy model’ of the impact of a
perturbation onto an individual brain and provide a quantitative obser-
vation of the effect of the controlled external perturbation on brain dy-
namics that can be used to test specific predictions about a complex

system. In theoretical physics ‘toy-models’ refer to simple models which
nevertheless provide a quantitative explanation and reliable prediction of
a given phenomenon (Georgescu, 2012; Marzuoli, 2008). Specifically, as
illustrated in Figure 1, here we use the EEG response to TMS as a ‘toy
model’ predictive of the eventual (months later) impact of the COVID
pandemic and confinement on mental health. We hypothesized that in-
dividual differences in the electrophysiological cortical response to single
pulse TMS brain perturbation of the left dorsolateral prefrontal cortex,
compared to another control cortical target (i.e., inferior parietal lobule),
and recorded using EEG, would be predictive of psychological distress
outcomes during the COVID-19 pandemic and confinement. Our findings
contribute to the understanding of biological brain mechanisms of
resilience processes and identify a potential target and novel strategy to
promote individual resilience.

2. Results

2.1. The dynamics of the EEG response to TMS perturbation differentiate
individuals eventually found to have a ‘negative’ impact on mental health
status, from those who remained ‘stable’, during the COVID-19 pandemic

Assessments of mental health using the four-item patient health
questionnaire (PHQ-4), an ultra-brief depression and anxiety screening
self-report questionnaire, were obtained prior to the COVID-19 pandemic
and up to three additional times during the pandemic. If during all
timepoints across the confinement, the PHQ-4 score was lower or equal
than before the pandemic outbreak, subjects were classified as ‘stable’ (n
¼ 32). Conversely, if a given subject had a higher score at any timepoint
during the pandemic, they were classified as having a ‘negative’ impact
(n ¼ 32). Because not all participants completed stimulation at both
target locations, the subgroups used in this analysis were actually smaller
for each stimulation target (for L-DLPFC, 23 stable and 25 negative; for L-
IPL, 22 stable and 23 negative). To make sure that the mental health
impact of the pandemic was related to the levels of stress perceived
during the outbreak, we tested for correlation between the average score
of the three pandemic PHQ-4 timepoints, and the scores of the 14-item
perceived stress scale (Cohen et al., 1983), which was also completed
by participants during the pandemic, and found a strong positive corre-
lation (Rs ¼ .69; p < .001), indicating that subjects experiencing more
stress during the pandemic also had a larger mental health impact.
Overall, participants had a low to moderate level of perceived stress
during the pandemic (Mdn ¼ 14; range from 2 to 32). Additionally, to
rule out that the groups significantly differed demographically, in resting
motor threshold or pre-COVID PHQ-4 score, a multivariate ANOVA was
used to compare both groups regarding four independent variables (age,
years of education, pre-COVID PHQ4 score and resting motor threshold;
see supplementary table S1 for descriptive statistics), which showed that
the groups did not differ in any of these variables (F (4, 63) ¼ 3.869, p ¼
0.130; Wilk's lambda ¼ 0.888, partial η2 ¼ 7.111).

Point-by-point non-parametric permutation testing (1000 permuta-
tions) with cluster correction for multiple comparisons (Cohen, 2014) on
the TMS-EEG evoked time-series, revealed a single broad cluster (i.e.,
202–269 ms post-stimulus) surviving correction for multiple compari-
sons, only during stimulation of the left dorsolateral prefrontal cortex
(L-DLPFC) (Figure 2, A). Inspection of the topographical distributions in
source space for the surviving cluster, confirms that individuals whose
mental health was negatively impacted had a qualitatively stronger
frontal activation than those who remained stable (Figure 2, B). There
were no significant clusters revealed after analysis of the responses to the
left inferior parietal lobule (L-IPL) control target (Figure 2, C and D), nor
for the distributed responses to stimulation on either target (Figure S2).

Finally, given that only a subsample (i.e., 50% of participants)
completed stimulation of both targets, we additionally run permutation
testing of the local TMS-EEG evoked time-series after DLPFC stimulation,
but including only the participants that had undergone stimulation of
both targets. The results on this subsample of participants are comparable
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to the full sample (Figure S3), since the broad cluster surviving multiple
comparisons correction remains in the same location, albeit slightly
shorter in duration (i.e., from 200 to 253 ms after the TMS pulse).

2.2. Local EEG response to TMS perturbation of the left dorsolateral
prefrontal cortex predicts mental health during the pandemic's lockdown
confinement

Without dividing the sample into two groups, a multiple linear
regression model was fit to determine the potential of TMS evoked EEG
perturbation of the L-DLPFC to predict mental health outcomes after the
COVID-19 pandemic outbreak and the strict lock-down confinement
imposed to curb community transmission of the virus. The model's
response variable was the mean of the total scores for the three PHQ-4
questionnaires, which were completed by participants during the lock-
down confinement. Candidate predictors were the local and global
(i.e., distributed) brain EEG reactivity to the TMS pulse — recorded
before the pandemic outbreak —, as well as their interaction with the
stimulation target definition method (i.e., functional or anatomical).
Additionally, we included age, gender, and years of formal education as
predictors, because these are demographic and individual factors
partially predictive of resilience to stress (Campbell-Sills et al., 2009).
Finally, we included as a predictor the number of months before the
pandemic since each subject underwent TMS-EEG. This was included to
control for the possibility that the amount of time passed from stimula-
tion to pandemic would have an impact in the prediction.

The full linear regression model for the L-DLPFC stimulation target
significantly predicted mental health during the pandemic (F (8,47) ¼
3.1, p ¼ .007, R2

adj ¼ .234), and revealed as significant predictors the
local brain reactivity to TMS (t ¼ 3.27, p < .002) and years of formal
education (t¼ -2.86, p¼ .006). See supplementary Table S2 (model “Full
DLPFC”) for detailed results. Both predictors were independent from

each other, as reveled by the lack of correlation between them (R2 ¼
.187, p ¼ .167). Subsequently, we tested a reduced model (F (2,53) ¼
10.5, p < .001, R2

adj ¼ .257) retaining only as predictors local brain
reactivity (t ¼ 3.66, p < .001) and education (t ¼ -3.40, p ¼ .001). See
supplementary table S2 (model “Reduced DLPFC”) for detailed results.
Likelihood ratio test comparing the two models showed that the full
model did not provide a better fit than the reduced one (χ2 (6)¼ 4.98, p¼
.546). The lower Akaik and Bayesian information criteria (AIC and BIC,
respectively) values for the reduced model further suggest a better and
more parsimonious fit (AICfull ¼ 79.83, AICreduced ¼ 72.82; BICfull ¼
98.06, BICreduced ¼ 78.89). Figure 3 illustrates the linear relationship
between the significant predictors and the response variable in the
reduced model. Analysis of variance of the reduced model revealed that
local L-DLPFC reactivity explained 12.79% of total variance in mental
health during the pandemic, while education explained 15.64%.

To confirm that our findings were specifically associated with pre-
frontal reactivity, we fitted a model replacing the predictors for local and
global EEG reactivity with those measured when stimulating the L-IPL.
The regression model for this control stimulation target did not signifi-
cantly predict mental health during the pandemic (F (8,46) ¼ 0.4, p ¼
.915, R2

adj ¼ -.097). See supplementary table S2 (model “Full IPL”) for
detailed results.

To demonstrate the specificity of the stimulation itself, a model was
fitted where we added the local baseline pre-TMS activity as an additional
predictor to the reduced L-DLPFC model. The resulting model, while still
significant (F (3,47) ¼ 7.09, p < .001, R2

adj ¼ .25), revealed that baseline
pre-TMS EEG activity did not significantly contribute to predict mental
health during the pandemic (t ¼ .67, p ¼ .507). See supplementary table
S2 (model “Reduced þ Baseline”) for detailed results.

Finally, to ensure that the results are consistent, even when only
considering the subsample of participants who completed stimulation of
both targets, a model was fitted with only this subsample and the local

Figure 1. Schematic Illustration of the toy-model approach in our study design. MRI-guided single pulse TMS perturbation is used to experimentally model as the
stressor, captured by evoked EEG reactivity, and measured at local and distributed (i.e., global) levels. We examined whether this ‘toy-model’ can predict the eventual
impact of the COVID-19 on mental health assessed months later. We further hypothesized the stressor would be moderated by demographic and individual factors such
as years of formal education. Modified from Pascual-Leone and Bartr�es-Faz (Pascual-Leone and Bartres-Faz, 2021).
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Figure 2. Results of permutation testing of the difference between stable and negatively impacted individuals on the TMS evoked EEG time-series. A) shows the
significant differences at the local EEG time-series during L-DLPFC stimulation in grey vertical bands, while the vertical green band highlights the cluster surviving
correction for multiple comparisons. B) shows the topographical distribution in source space of the response to L-DLPFC stimulation during the green shaded time-
window in A, for both groups and their difference. C) depicts the results of permutation testing for the control stimulation of the L-IPL. D) shows the topographical
distribution for the same time window as B, for both groups and their difference. Red and blue contours along the plot lines in A and C depict the standard error of the
mean. DLPFC, dorsolateral prefrontal cortex; IPL, inferior parietal lobule.

Figure 3. Scatter plots illustrating the linear relationship between the predictors and the response variable in the reduced model. Black line in each plot depicts the
least squares regression line; shaded grey contours depict 95% confidence intervals. The response variable depicted here in the y-axis is Box-Cox transformed (λ ¼
-0.078). PHQ-4, four item patient health questionnaire; DLPFC, dorsolateral prefrontal cortex; AUC, area under the curve.
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response to IPL stimulation added as a predictor to the reduced model.
The resulting model was still significant (F (3,33) ¼ 3.25; p ¼ .034) and
revealed that, while local DLPFC reactivity (t ¼ 2.44, p ¼ .021) and ed-
ucation (t¼ -2.46, p ¼ .019) were significant, local IPL reactivity was not
(t ¼ -1.03, p ¼ .311). See supplementary table S2 (model “Reduced
Subsample þ IPL) for detailed results.

3. Discussion

We tested the EEG brain reactivity to TMS perturbation as a toy model
of mental health outcomes in the face of the COVID-19 pandemic and
lockdown confinement. The results show that the local response to TMS
perturbation of the left DLPFC — measured months before the pandemic
outbreak— offers a predictive marker of the future mental health impact
of the pandemic and confinement. These results serve as a proof of
concept that understanding the TMS pulse as an external transitory insult
allows quantification of the brain responses and identifies critical and
specific substrates of susceptibility to more complex stressors. At the core
of this ‘toy-model’ is the assumption that single TMS stimuli can be un-
derstood as transitory perturbations or insults in themselves. This is
supported by evidence showing that the stimuli interfere with ongoing
brain activity by suddenly injecting an amount of current into the neural
circuitry that disrupts ongoing brain activity, resulting in phase resetting
and TMS-evoked perturbation of the ongoing EEG (Rocchi et al., 2018).
Indeed, failure to suppress this perturbation can lead— in the presence of
pathological conditions such as stroke or epilepsy — to a cascading
synchronization of neuronal activity that in turn might lead to a seizure
(Kimiskidis, 2019; Kimiskidis et al., 2017). Thus, we can interpret the
present results as showing that in the presence of such a brain state
disruption, a more resilient brain is better able to tolerate the perturba-
tion. A link between the ability of the brain to withstand a targeted attack
and resilience, has also been proposed by Santarnecchi and colleagues
employing in-silico models (Santarnecchi et al., 2015), but the present
study is the first to offer direct experimental support on a topic of sub-
stantial timely relevance.

Our findings are specific to TMS prefrontal perturbation, because
neither the response to L-IPL stimulation, nor the pre-TMS baseline EEG
activity held significant predictive value. Moreover, we show that the
findings are restricted locally to the stimulated area, because the
distributed measure of response could not differentiate stable from
negatively impacted individuals and did not yield significant predictive
value. Nevertheless, years of formal education was also found to be
predictive of mental health during the pandemic, which is unsurprising
given the well-known epidemiological-level notion that individuals with
higher socioeconomic status (encompassing, among others, educational
attainment and income) have lower odds of being depressed (Lorant
et al., 2003), and that education might be a protective factor both against
cognitive as well as emotional vulnerability, by boosting a higher effi-
ciency on top-down emotional regulatory processes (Huang et al., 2019).
In this context, and while education and TMS-EEG reactivity were in-
dependent from one another in this analysis, it is still plausible that both
reflect prefrontal function, and is therefore, their joint inclusion that best
predicted mental health status during the pandemic.

Dividing the sample into participants who remained stable and those
who had a negative change in mental health during the pandemic,
allowed us to directly compare the dynamics of the EEG response to the
TMS perturbation, revealing that the most discriminative time segment
after TMS perturbation of the local L-DLPFC is the late TMS evoked
response between 202ms and 269ms post-TMS. Interestingly, this occurs
in the vicinity of the commonly found P180 EEG evoked component in
response to single TMS pulses of the primary motor cortex (Lioumis et al.,
2009). This component has been found to significantly decrease after
application of voltage-gated sodium channel blockers, such as lamo-
trigine and carbamazepine (Darmani and Ziemann, 2019; Premoli et al.,
2017), indicating that this component reflects cortical excitability.
Therefore, we propose that higher amplitudes found in vulnerable

individuals may be reflective of cortical hyperexcitability. Furthermore,
the amplitude of late TMS-EEG responses (¼>180 ms) is related to
GABA-B mediated inhibition, as it is significantly reduced after long in-
terval intracortical inhibition (de Goede et al., 2020). Therefore, the
increased amplitude in late EEG responses found in individuals that had a
negative impact, when compared to the ones who remained stable, might
reflect a relatively lower intracortical inhibitory capacity and point to
differential levels of activation of parvo-albumin positive cells and
integrity of peri-neural nets – main substrates of intracortical
excitability-inhibition balance (Favuzzi et al., 2017; Xue et al., 2014).
This would predict that conditions that alter and disrupt parvo-albumin
positive cells and integrity of peri-neural nets, such as status post trau-
matic brain injury, early stages of Alzheimer's disease, or schizophrenia,
would be associated with a loss of resilience and increased vulnerability
to stressors. Epidemiologic data appear to support such notions (Buckley
et al., 2009; Ehrenberg et al., 2018; Hammond et al., 2019).

Our results are novel and relevant in advancing our understanding of
the neural mechanisms of resilience. However, this study has some lim-
itations. We had to conduct the regression analysis on each stimulation
target separately due to missing data, which may have hindered statis-
tical power. The regression analysis results would benefit from further
validation on a separate independent sample to be able to make reliable
predictions of mental health outcomes based on the response to TMS
perturbation. Moreover, due to the limited number of participants rela-
tive to the number of mental health monitoring timepoints during the
pandemic, we were unable to account for all the mental health trajec-
tories that have been described in the literature, such as people who have
a negative impact but eventually recover (e.g., Gambin et al., 2021).
Instead, in the permutation analysis, we focused on dichotomizing the
two main trajectories (i.e., resilient vs vulnerable). Future studies should
investigate the neurophysiological signature in response to stimulation of
subjects who recover in the medium or long term, and that here were all
classified as vulnerable. Finally, the changes in mental health observed
during the pandemic were small overall, with most participants not
surpassing clinical screening thresholds for depression and anxiety,
therefore, a sample with a broader range of mental health impact could
provide a clearer picture of the neurophysiological determinants of such
impact. However, despite the narrow range of mental health changes, we
are still able to show that TMS-EEG can detect a neurophysiological
signature underlying the future differential impact of the pandemic on
mental health.

The presented results are not only relevant as a proof of concept for
using intervention-based designs in neuroimaging investigations of the
neural basis of resilience, but also add to the existing evidence of a pri-
mary role of the left prefrontal cortex in resilience processes (Bolsinger
et al., 2018; Dedovic et al., 2009; Franzmeier et al., 2017a, 2017b,
2017b, 2018, 2017b; Holz et al., 2020; Neitzel et al., 2019; Rodman et al.,
2019; Stern et al., 2018). This, in turn, singles out the prefrontal cortex as
a promising target for interventions aiming to promote positive outcomes
after disrupting events such as the pandemic and associated social re-
strictions, including the potentially transformative possibility of using
non-invasive stimulation to promote brain resilience by modulating
prefrontal brain activity. Several of our results and other lines of evidence
support such potentially transformative therapeutic intervention: (1) the
known protective role of higher prefrontal function to the deleterious
mental health effects of stress and trauma (Bolsinger et al., 2018;
Rodman et al., 2019); (2) the link we have demonstrated between the
L-DLPFC response to a brain perturbation and the mental health out-
comes when facing the stressors associated with the pandemic; (3) our
finding of exaggerated response to TMS perturbation of the L-DLPFC in
individuals that would be negatively impacted by pandemic related
stress; and (4) the established ability of non-invasive stimulation tech-
niques to induce long lasting brain plastic changes (Huang et al., 2017).
Finally, the identified electrophysiological dynamics in the local DLPFC
response to TMS perturbation is a potential neurophysiological marker
that might be useful in a preventive precision medicine framework, when
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assessing the potential risk of deleterious mental health impacts for a
given individual, when exposed to future stressful events such as a new
pandemic.

4. Methods

4.1. Study design

In the present study we analyzed existing data from participants of the
longitudinal study ‘Barcelona Brain Health Initiative’, BBHI for short
(Cattaneo et al., 2018). In mid-March 2020, during the COVID-19
epidemic, the BBHI launched a longitudinal substudy to investigate the
mental and brain health impact of societal and personal restrictions
imposed by the pandemic (Bartr�es-Faz et al., 2021; Pascual-Leone et al.,
2021). For the present report, we selected those BBHI participants who
had undergone concurrent TMS-EEG between July 2018 and February
2020, before the COVID-19 pandemic outbreak, as well as mental health
monitoring before and during the lockdown using the Patient Health
Questionnaire for Depression and Anxiety (PHQ-4), a standardized
ultra-brief tool for detecting both anxiety and depressive disorders
(Kroenke et al., 2009). The scale was administered at four different
timepoints; one between November 2018 and January 2020, hence
before a mandatory lockdown that was issued by the Spanish Govern-
ment on March 14th 2020, and another three timepoints during the
pandemic, spanning a total of 3 months during the strictest
home-confinement and initial phases of de-escalation (Figure 4).

The sample included 74 healthy adults (45 male) ranging from 42 to
66 years (M¼ 55.07; SD¼ 7.1), with a range of years of formal education
from 8 to 28 years (M ¼ 18.01; SD ¼ 3.85). Consistent with the BBHI
general inclusion criteria, none of these individuals reported a medical
diagnosis of any major neuropsychiatric disorder (including mood and
anxiety disorders) at study entrance and had normal cognitive function as
assessed by comprehensive neuropsychological testing (Cattaneo et al.,
2018). All participants gave written informed consent, and the local
ethics committee (Comit�e d’�Etica i Investigaci�o Clínica de la Uni�o Cata-
lana d'Hospitals) approved the protocols here described and conformed
to the Declaration of Helsinki for research involving human subjects.

The objective of this analysis was to evaluate the potential of using
the brain response to TMS perturbation – quantified by EEG – as a toy
model of the mental health impact of a complex stressor, namely, the
COVID-19 pandemic and confinement, the impact of which was quanti-
fied with the PHQ-4 questionnaires. Given the known involvement of the
prefrontal cortex in various forms of resilience, we hypothesized that the

EEG response to left dorsolateral prefrontal stimulation would be pre-
dictive of mental health during the pandemic. Stimulation on the left
inferior parietal lobule was included in the analysis as a control stimu-
lation condition.

4.2. Neuronavigated TMS-EEG

Transcranial magnetic stimulation was delivered over the left
dorsolateral prefrontal cortex (L-DLPFC) and the left inferior parietal
lobule (L-IPL). Stimulation was guided by a BrainSight neuronavigation
system (RogueResearch, Inc., Canada). Targets were determined for
each individual based on either anatomy or the cortical parcellation by
Yeo and colleagues (Thomas Yeo et al., 2011). See supplementary
materials for MRI acquisition parameters and target determination
procedures. Stimulation intensity was 120% of resting motor threshold,
determined as the minimum intensity required to elicit motor evoked
potentials in the first dorsal interosseous muscle of the relaxed right
hand, of at least 50μV peak-to-peak, in at least five out of ten trials
(Rossini et al., 2015). For each target, 120 single biphasic pulses were
delivered through an MCF-B65 butterfly coil, using a MagPro X100
stimulator (Magventure, Inc., Denmark), with a random inter-pulse
interval between four and six seconds. The order of targets was ran-
domized for each participant. In order to attenuate auditory evoked
responses induced by the TMS coil click, participants listened to
white-noise through earplug-earbuds at their maximum comfortable
volume. Stimulation was performed concurrently with EEG using a TMS
compatible ActiChamp 64-channel amplifier system, coupled with an
ActiCap Slim with active electrodes (BrainProducts, GmbH., Germany).
While the use of active electrodes is relatively novel in the context of
TMS-EEG, recent research has successfully used them to evaluate TMS
evoked brain reactivity (to cite some, Gamboa Arana et al., 2020;
Ozdemir et al., 2021b, 2021a, 2020; Redondo-Cam�os et al., 2022;
Rocchi et al., 2021). Moreover, it has been recently shown that the TMS
evoked potential waveforms are reliable and comparable to those ob-
tained with passive electrodes (Mancuso et al., 2021), provided that
interelectrode impedance is kept low. Therefore, we monitored elec-
trode impedance to make sure it was kept under 5kΩ for all electrodes
and throughout the experiment. EEG data was recorded DC to 500Hz
and digitized at a 1KHz sampling rate. While 76% of participants
completed stimulation of the L-DLPFC and 74% completed stimulation
of the L-IPL, only 50% of participants completed stimulation on both
targets. For this reason, statistical analysis was conducted separately for
each stimulation target.

Figure 4. Timeline of relevant events for the study cohort. According to the Spanish Government state of alarm dictation orders and subsequent de-escalation (https
://www.boe.es/eli/es/rd/2020/03/14/463/con). 1st, 2nd and 3rd indicate the three PHQ-4 based mental health monitoring timepoints during the pandemic. PHQ-4,
four item patient health questionnaire; COVID-19, coronavirus diesease 2019; TMS-EEG, transcraneal magnetic stimulation with concurrent electroencephalography.
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4.3. Mental health assessment

Mental health was measured using the PHQ-4, an ultra-brief four item
depression and anxiety screening self-report questionnaire, that consists
of a 2-item depression scale (PHQ-2) and a 2-item anxiety scale (GAD-2).
Each subitem scores in the range of 0–6, with combined range from 0 to
12. On each subscale a score of 3 or greater is considered positive for
screening purposes. The test was administered a total of four times in an
online format, once before the pandemic and at three timepoints during
the confinement and de-escalation. All participants in this analysis
completed the pre-pandemic questionnaire andmost completed the three
additional ones during the pandemic (69%), however, few participants
completed only two (23%) or one (8%) of them. For the purposes of
quantifying mental health status during the pandemic in the regression
models, we used the mean of total scores from the completed question-
naires during the pandemic.

4.4. EEG data preprocessing and analysis

All EEG data was preprocessed using functions from the EEGLAB
toolbox (Delorme and Makeig, 2004) and the TESA plugin (Mutanen
et al., 2020; Rogasch et al., 2017). Source reconstruction and analysis
was performed using Brainstorm (Tadel et al., 2019) and custom made
Matlab (The MathWorks, Inc., USA) scripts.

First, the datawas segmented around the TMSpulse (�1000 to1000ms
from the pulse) and baseline corrected (�900 ms to -100 ms from the
pulse). Then the direct electrical pulse artifact (between -2 ms and 14 ms
from pulse) was zero-padded. Bad channels were then identified via visual
inspection and removed (range from 0 to 3; M ¼ 0.49, SD ¼ 0.76). Bad
epochswerefirst tagged based on threshold voltage (>100 μV), probability
and kurtosis using the inbuilt TESA plugin functions, visual inspection
ensured that the epochswere correctly tagged and that no bad epochswere
missed, then they were removed from further analysis (range from 0 to 53;
M ¼ 20.59; SD ¼ 9.66). A first round of fast independent component
analysis (ICA) was used to reject any remains of the immediate electrical
pulse artifact (range from 0 to 3; M ¼ 0.67; SD ¼ 0.65). The zero-padded
pulse artifact was then linearly interpolated, and the data was re-
referenced to the average of all channels. Finally, a second round of ICA
was used to reject any other remaining artifacts (e.g., muscle, eye-
movements, heartbeat and others), as well as the somatosensory and
auditory potentials evoked by transcutaneous scalp nerve excitation and
coil firing sounds, respectively (range from 21 to 23: M ¼ 28.37; SD ¼
2.77). These are commonplace preprocessing procedures for TMS-EEGdata
and have been described in greater detail elsewhere (Rogasch et al., 2017).

The cleaned preprocessed data was then used for source reconstruc-
tion in Brainstorm. For each subject a forward model was estimated via
the openMEEG algorithm (Kybic et al., 2005) using the default settings
(i.e., 3 layers with 1922 vertices each; skull and scalp conductivities of 1
and brain conductivity of 0.0125; adaptative integration), and based on
each subject's T1 and T2 weighted MRI images and digitized real elec-
trode locations, when available (the 29 subjects for which anatomical
target determination was used, had no digitized electrode locations,
therefore, the standard 10-10 electrode locations were used instead). The
inverse solution was estimated using the minimum norm imaging
method (Salmelin and Baillet, 2009). Sources were then computed as
current density maps for constrained orientations only (i.e., normal to
cortex). These are commonplace source reconstruction procedures for
TMS-EEG data and have been described in greater detail elsewhere
(Ozdemir et al., 2020, 2021a, 2021b).

4.5. Local and distributed EEG measures of the response to TMS
perturbation

To quantify EEG derived brain reactivity measures to the TMS pulse
we computed the following global (i.e., distributed) and local reactivity
measures:

Global response: the global mean field amplitude (GMFA; Lehmann
and Skrandies, 1980) of the TMS evoked potentials (TEPs) in sensor
space, was taken as the estimated time-series of the global brain response
to the TMS pulse. This measure was computed according to the following
formula:

GMFAðtÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi(Pk

i ðVi ðtÞ–VmeanðtÞÞ2
K

)vuut

Where Vi(t) is the voltage at electrode i at a certain point in time, Vmean(t)
is the mean of instantaneous TEP across electrodes, and K is the number
of electrodes.

Local response: To extract local measures, we first defined a region of
interest (ROI) of 100 vertices around each subject's stimulation target
coordinate, which corresponds to a cortex surface area of approximately
10 cm2. Then the TEP response at the targeted location in source space
was taken as the local reactivity time-series. To allow group level sta-
tistics, the TEP time-series in source space of each vertex within the target
ROI were rectified, averaged together, and then normalized via z-score
transformation:

z¼(TEP-μ)/σ

Where μ is the average of the pre-stimulus baseline (-500ms to -3 ms) and
σ is the standard deviation of the baseline.

For both global and local TMS response measures, the trapezoidal
integration from 15 ms to 400 ms post-TMS stimulus was used in the
regression analyses as an estimate of the overall response to TMS
perturbation.

4.6. Statistical analysis

Statistical analysis was performed in RStudio (RStudio Team, 2020)
and Matlab 2020b.

To compare the global and local TMS evoked time-series for each
target we conducted four permutation-based tests. In each test, we
computed the difference of means for each data point within the time-
series time-window of interest (from 15 ms to 400 ms after the TMS
pulse). In each of the 1000 permutations, the labels for each group
(resilient or vulnerable) were scrambled. The resulting p-values were
adjusted for multiple comparisons using cluster correction (Cohen,
2014), whereby the size and magnitude of a given cluster of significant
timepoints is considered to survive correction if the size and magnitude
of the cluster is above 95% of all cluster sizes and magnitudes discovered
during permutation testing. To test the consistency of the significant
results on the subsample of participants that completed stimulation on
both targets, an additional permutation-based test was run on this sub-
sample. To test the correlation between perceived stress and mental
health during the pandemic a Spearman rank correlation was used.

To investigate the predictive value of TMS reactivity at a local and
global levels we used two multiple linear regression models, one for each
stimulation target (i.e., L-DLPFC and L-IPL). The full model included as
predictors the local and global TMS brain reactivity measures, age,
gender, and years of education. Additionally, and to control for the
possibility that the target definition method influenced the candidate
reactivity measures, we included the interaction between the targeting
method (2 levels: anatomical or functional) and both local and global
reactivity measures, for each model. In each regression model the
response variable was each subject's mean of the completed pandemic
PHQ-4 scores. In the presence of significant predictors, a reduced model
including only those was defined and compared against the full model.
To determine the better fitting model, we used the likelihood ratio test
and further confirmed the result based on the AIC and BIC values. To
assert the TMS induced specificity of the findings, we fitted an additional
model where the possible contribution of the pre-TMS stimulus baseline
to the prediction of mental health was tested. Finally, to confirm the
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consistency of the results on the subsample of participants that completed
stimulation on both targets, a model was fitted adding the local IPL
reactivity as a predictor and including only the subsample participants.

Lilliefors test on each model's residuals revealed that they were not
normally distributed, therefore, we transformed the response variable in
each model using Box-Cox transformation, resulting in normally
distributed residuals, therefore, the results reported in this work corre-
spond to the regression models with the transformed response variable.
Assumptions of multicollinearity, autocorrelation and heteroscedasticity
were met in each model.
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Structural MRI acquisition parameters 

T1 and T2-weighted anatomical MRI scans were obtained for all participants 

and used for neuronavigation and EEG source reconstruction. Participants undertook a 

high resolution (0.8x0.8x0.8mm^3) 3D MP-RAGE T1 weighted structural magnetic 

resonance image obtained from a 3T Siemens Magnetom Prisma machine. A total of 

208 contiguous axial slices were obtained in ascending fashion (sequence parameters of 

repetition time = 2400ms, echo time = 2.22ms, TI = 1000ms, flip angle = 8º, slice 

thickness=0.8 mm and field of view =256mm). Additionally, a high resolution 

(0.8x0.8x0.8mm^3) 3D SPC T2 weighted structural magnetic resonance image was 

obtained from the same machine (sequence parameters of repetition time = 3200ms, 

echo time = 563ms, flip angle = 120º, slice thickness=0.8 mm and field of view 

=256mm). Image quality control measures were implemented manually by a trained 

MRI technician to ensure that these did not contain MRI artifacts or excessive motion. 

The T1 was used for neuronavigation, while the T2 was used, together with the T1, to 

produce high quality segmentations and meshes for EEG source reconstruction. 

 

TMS target determination procedures 

For the 29 first subjects of the sample, which were recorded in 2018, 

individualized targets were determined anatomically. Left-DLPFC stimulation was 

targeted at the superior half of the middle frontal gyrus, approximately 3 cm anterior to 

the precentral sulcus. Left-IPL was targeted at the superior edge of the angular gyrus, 

roughly 1cm inferior to the intraparietal sulcus. For the remaining 45 subjects, which 

were recorded between 2019 and 2020, targets were determined based on the group-

level resting-state seven functional networks parcellation by Yeo and colleagues 

(Thomas Yeo et al., 2011), according to the method described first by Ozdemir and 



3 
 

colleagues (Ozdemir et al., 2020). Briefly, confidence maps for each resting state 

network across a sample of 1000 healthy subjects were used. In these maps, each vertex 

has a confidence value of belonging to a particular network (ranging from -1 to 1), with 

larger values indicating higher confidence. Using these maps at the group level it is 

possible to select the most consistent and reliable regions, within the angular gyrus and 

the middle frontal gyrus. Each individual’s T1 was then linearly transformed to the MNI 

space. Finally, the invers transform was used to return the coordinates of interest to each 

subject’s native space, by using the FSL’s (Jenkinson et al., 2012) FNIRT tool. These 

individual coordinates were then used to guide stimulation using a BrainSight 

neuronavigation system (RogueResearch, Inc., Canada). 

The mean MNI coordinates of the anatomical targeting method were x=-44, y=-67, 

z=44 for IPL and x=-33, y=37, z=48 for L-DLPFC. While mean coordinates of the 

functional targeting method were x=-53, y=-51, z=18 for IPL and x=-43, y=34, z=42 for 

L-DLPFC. Figure S1 shows these mean target coordinates on the MNI template. 

In order to account for a possible effect of the targeting method on the predictors of 

interest, target determination method was included in the main analysis as an interaction 

term for each TMS-EEG reactivity measure. 
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Fig. S1. Mean L-IPL and L-DLPFC coordinates for each targeting method overlayed on 

the MNI template. Yellow and red ROIs correspond to a projection of the PFC and IPL, 

respectively, from the 17- network Schaefer parcellation of the Yeo atlas (Schaefer et 

al., 2018).

DLPFC
IPL
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Fig. S2. Uncorrected significant results after permutation testing, of stable against 

individuals with a negative mental health impact, for global reactivity to DLPFC and 

IPL stimulation. Grey regions highlight significant differences between curves prior to 

cluster correction for multiple comparisons. Shaded blue and red contours along the 

curves depict the standard error of the mean. GMFA: global mean field amplitude. 

DLPFC, dorsolateral prefrontal cortex; IPL, inferior parietal lobule. 

Fig. S3. Results of permutation testing for local reactivity after DLPFC stimulation with 

all participants and only with participants that completed stimulation at both targets 

(which corresponds to 50% of the sample). Grey regions highlight significant 

differences between curves prior to cluster correction for multiple comparisons. Green 

regions highlight significant differences after correction for multiple comparisons. 
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Shaded blue and red contours along the curves depict the standard error of the mean. 

Note that the curves are similar in both graphs and the green regions have similar 

locations and lengths. Any discrepancies between the grey areas of the original graph 

depicted in Figure 2.A and the left panel of this figure are inherent to permutation 

testing inconsistencies between test runs for uncorrected results. 
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Table S1. Descriptive statistics of variables used in multivariate MANOVA. Means 
and standard deviations are reported. PHQ4, four-item patient health questionnaire; 
COVID, coronavirus disease; RMT, resting motor threshold; MSO, maximum 
stimulator output. 
 
Mental 
Health 
Outcome 

Age Gender Years of 
Education 

PHQ4 
Score Pre-
COVID 

RMT 
(%MSO) 

Stable  
(n=32) 

55.16 ±7.23 18 male 18.47 ±3.46 2.16 ±2.49 61.47 ±9.17 

Negative 
(n=32) 

55.34 ±7.21 22 male 17.72 ±3.98 1 ±1.29 63.28 ±10.70 

 
  



7 
 

Table S2. Detailed results of the five regression models employed. The three values 

for each predictor report regression estimates, standard errors in parenthesis and the t-

statistic. 
 

 Dependent variable: 
  
 Mental Health During Lock-down 
 (Full DLPFC) (Reduced DLPFC) (Full IPL) (Reduced+Baseline EEG) (Reduced Subsample+IPL) 

 
DLPFC Local 0.001** 0.0004***  0.0004*** 0.0004* 

 (0.0002) (0.0001)  (0.0001) (0.0002) 
 t = 3.270 t = 3.662  t = 3.631 t = 2.437 
      

DLPFC Global -0.000     
 (0.000)     

 t = -1.619     
      

IPL Local   -0.0001  -0.0003 
   (0.0003)  (0.0003) 
   t = -0.217  t = -1.029 
      

IPL Global   -0.000   
   (0.000)   

   t = -0.219   
      

Age -0.013  -0.011   

 (0.009)  (0.013)   
 t = -1.420  t = -0.823   
      

Gender 0.163  -0.067   
 (0.147)  (0.201)   

 t = 1.107  t = -0.334   
      

Education -0.049** -0.053** -0.028 -0.053** -0.071* 
 (0.017) (0.016) (0.025) (0.016) (0.029) 
 t = -2.863 t = -3.404 t = -1.109 t = -3.361 t = -2.458 
      

TMS Date 0.013  -0.026   

 (0.020)  (0.024)   
 t = 0.674  t = -1.105   
      

DLPFC Local : Targeting Method -0.0003     
 (0.0002)     

 t = -1.349     
      

DLPFC Global : Targeting Method 0.000     

 (0.000)     
 t = 0.976     
      

IPL Local : Targeting Method   0.0001   
   (0.0004)   

   t = 0.307   
      

IPL Global : Targeting Method   0.000   

   (0.000)   
   t = 0.281   
      

DLPFC Local pre-TMS Baseline    0.003  
    (0.004)  

    t = 0.668  
      

Constant 1.798** 1.219*** 2.254* 0.221 1.924** 
 (0.614) (0.285) (1.003) (1.522) (0.561) 
 t = 2.926 t = 4.279 t = 2.247 t = 0.145 t = 3.427 
       

Observations 56 56 55 56 37 

R2 0.345 0.284 0.065 0.291 0.228 
Adjusted R2 0.234 0.257 -0.097 0.250 0.158 

Residual Std. Error 0.459 (df = 47) 0.452 (df = 53) 0.643 (df = 46) 0.454 (df = 52) 0.673 (df = 33) 
F Statistic 3.099** (df = 8; 47) 10.533*** (df = 2; 53) 0.400 (df = 8; 46) 7.098*** (df = 3; 52) 3.248* (df = 3; 33) 

 
Note: *p<.05; **p<.01; ***p<.001 
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4 item Patient Health Questionnaire (PHQ-4) 

 
  Over the last 2 weeks, how often have you  
  been bothered by the following problems? Not  

at all 
Several 

days 

More than 
half the 

days 

Nearly 
every day 

        1.  Feeling nervous, anxious or on edge 0 1 2 3 

        2.  Not being able to stop or control worrying 0 1 2 3 

        3.  Little interest or pleasure in doing things 0 1 2 3 

        4.  Feeling down, depressed, or hopeless 0 1 2 3 

 
 
 
 
 
Scoring 
 
PHQ-4 total score ranges from 0 to 12, with categories of psychological distress 
being: 

 None  0-2 
 Mild  3-5 
 Moderate 6-8 
 Severe 9-12  

 
Anxiety subscale = sum of items 1 and 2  (score range, 0 to 6) 
Depression subscale = sum of items 3 and 4 (score range, 0 to 6) 
On each subscale, a score of 3 or greater is considered positive for screening 
purposes 
 
 
Kroenke, K., Spitzer, R.L., Williams, J.B.W., Löwe, B., 2009. An Ultra-Brief Screening 
Scale for Anxiety and Depression: The PHQ–4. Psychosomatics 50, 613–621. 
https://doi.org/10.1016/s0033-3182(09)70864-3  
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Perceived Stress Scale (PSS) 
 

1. In the last month, how often have you been upset because of something 
that happened unexpectedly?  

2. In the last month, how often have you felt that you were unable to control 
important things in your life?  

3. In the last month, how often have you felt nervous and “stressed”?  
4. In the last month, how often have you dealt successfully with irritating life 

hassles?  
5. In the last month, how often have you felt that you were effectively 

coping with important changes that were occurring in your life?  
6. In the last month, how often have you felt confident about your ability to 

handle your personal problems?  
7. In the last month, how often have you felt that things were going your 

way?  
8. In the last month, how often have you found that you could not cope with 

all the things that you had to do?  
9. In the last month, how often have you been able to control irritations in 

your life?  
10. In the last month, how often have you felt that you were on top of things?  
11. In the last month, how often have you been angered because of things 

that happened that were outside of your control?  
12. In the last month, how often have you found yourself thinking about 

things that you have to accomplish?  
13. In the last month, how often have you been able to control the way you 

spend your time?  
14. In the last month, how often have you felt difficulties were piling up so 

high that you could not overcome them?  
 
Scoring 
 

 [0=never; 1=almost never; 2=sometimes; 3=fairly often; 4=very often]  
 Items 4, 5, 6, 7, 9, 10, and 13 are scored in reverse direction. 
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3.2. STUDY 2 
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Universitari de Neurorehabilitació Adscrit a la UAB, Barcelona, Spain, 8Department of Psychology,
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Introduction: Patients with schizophrenia typically exhibit deficits in working

memory (WM) associated with abnormalities in brain activity. Alterations in the

encoding, maintenance and retrieval phases of sequential WM tasks are well

established. However, due to the heterogeneity of symptoms and complexity of

its neurophysiological underpinnings, differential diagnosis remains a challenge.

We conducted an electroencephalographic (EEG) study during a visual WM task in

fifteen schizophrenia patients and fifteen healthy controls. We hypothesized that

EEG abnormalities during the task could be identified, and patients successfully

classified by an interpretable machine learning algorithm.

Methods: We tested a custom dense attention network (DAN) machine

learning model to discriminate patients from control subjects and compared

its performance with simpler and more commonly used machine learning

models. Additionally, we analyzed behavioral performance, event-related EEG

potentials, and time-frequency representations of the evoked responses to

further characterize abnormalities in patients during WM.

Results: The DANmodel was significantly accurate in discriminating patients from

healthy controls, ACC = 0.69, SD = 0.05. There were no significant differences

between groups, conditions, or their interaction in behavioral performance or

event-related potentials. However, patients showed significantly lower alpha

suppression in the task preparation, memory encoding, maintenance, and

retrieval phases F(1,28) = 5.93, p = 0.022, η2 = 0.149. Further analysis revealed that

the two highest peaks in the attention value vector of the DAN model overlapped

in time with the preparation and memory retrieval phases, as well as with two of

the four significant time-frequency ROIs.
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Discussion: These results highlight the potential utility of interpretable machine

learning algorithms as an aid in diagnosis of schizophrenia and other psychiatric

disorders presenting oscillatory abnormalities.

KEYWORDS

schizophrenia, working memory (WM), contralateral delay activity (CDA),

electroencephalography (EEG), dense attention network (DAN)

1. Introduction

Schizophrenia is a severe neuropsychiatric disorder with a
global prevalence of 0.28% and a significant socioeconomic burden
(1). The symptoms of schizophrenia can be divided into positive
(i.e., hallucinations, delusions and disorganized thinking) and
negative [i.e., decreased emotional expression, social withdrawal,
and cognitive impairments of memory and executive functions;
(2, 3)]. Schizophrenia is thought to be a neurodevelopmental
disorder caused by interaction of genetic and early environmental
risk factors (4–6), resulting in impaired large-scale connectivity (7,
8) and aberrant brain activity (9, 10). Pathophysiological changes
include altered dopamine and glutamate neurotransmission, which
is thought to be related to a disruption in the balance of excitation
and inhibition in cortical microcircuits, contributing to altered
synchronization of neuronal oscillations (11).

Impairment of working memory (WM) is a core cognitive
deficit in schizophrenia that significantly correlates with functional
capacity and outcome (12), and has been proposed as a warning
sign of conversion to psychosis (13). WM is often defined
as a system with limited capacity for the temporary storage
and manipulation of representations of information necessary
to guide behavior in complex goal-directed tasks such as
comprehension, learning, and reasoning (14), and it overlaps
with other cognitive domains such as attention and executive
function (15). In schizophrenia, deficits can be observed in all
WM subprocesses and stimulus types (16), and are associated
with impairments in proactive cognitive control [i.e., the ability
to actively represent goal information in working memory to
guide behavior (16)] or attention hyperfocus [i.e., an abnormally
narrow and intense focusing of processing resources; (17)].
Deficits have also been detected, in high-functioning patients with
preserved WM performance, in the form of increased reaction
time variability (18), which has been interpreted as impaired
information processing. The visual modality of WM is particularly
relevant in schizophrenia, as it strongly correlates with measures
of higher cognitive functions and, according to some estimates,
may account for up to 40% of the cognitive deficit in patients with
schizophrenia (19).

Working memory tasks can be constructed to engage different
WM subprocesses either simultaneously [e.g., N-back tasks; (20,
21)] or sequentially [e.g., verbal span tasks, visuospatial change
detection tasks; (22, 23)]. Sequential tasks are particularly useful to
probe behavioral performance and brain activity during separate
time periods of the WM task corresponding to task preparation,
encoding, maintenance, and retrieval of information, all of which
have been shown to be affected in schizophrenia (24–26).

Electroencephalographic (EEG) studies of event-related
potentials (ERPs) elicited during working memory tasks, have
shown abnormalities in electrical activity during early evoked
responses and late, cognition-related components of schizophrenia
patients (27). In visual WM, a lateralized change detection task
(23) elicits a corresponding ERP component, the contralateral
delay activity (CDA), which has been shown to be closely related
to WM capacity and is modulated by load (28). CDA studies
in schizophrenia have shown that visual WM capacity is lower,
relative to healthy controls, and that patients also show specific
impairments in attention control during the task (29). In addition
to ERP abnormalities, studies also found changes on synchronized
neuronal oscillations in several frequency bands. Specifically,
gamma (>30 Hz), which is involved in sensory processing
(30) and maintenance of WM information (31), shows lack of
synchronization in schizophrenia patients during WM tasks [e.g.,
(32)]. Theta (4–7 Hz), which supports long range connectivity
and coordination of WM items (33), has been reported to be
abnormally high during resting state (34) and decoupled from
gamma during WM performance (35). Finally, alpha (8–12 Hz)
desynchronization (also known as alpha suppression), which
reflects the active inhibition of task-irrelevant information (36,
37), has been shown to be impaired in schizophrenia patients
and individuals at risk of psychosis during working memory and
oddball tasks (24, 38–41).

While these studies have significantly advanced our
understanding of the neurophysiological basis of schizophrenia,
they typically rely on univariate statistical methods that, while
suitable for group-level comparisons, are insufficient for the
purposes of individual diagnosis within the framework of precision
psychiatry (42, 43). Moreover, these studies highlight the fact
that schizophrenia exhibits heterogenic symptoms and intricate
neurophysiological foundations that cannot be attributed to a
single brain area or neural process and that might be shared
across psychiatric disorders (44). This complexity makes precise
differential diagnosis and neurophysiological characterization of
individual patients challenging. To confront these challenges, the
field of psychiatry has increasingly turned to machine learning,
a class of artificial intelligence approaches where algorithms
are designed to make successful predictions without explicit
programming (45). A growing number of studies have used
EEG data to successfully classify patients and controls with
high accuracy (46–52). These results have the potential to yield
clinically translatable improvements in diagnosis. However,
the best performance is often achieved by deep convolutional
neural network models, which are said to be “black boxes,”
since there is no straightforward solution to disentangle how the
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algorithm transforms the input data to model a particular output
(53). This characteristic limits their utility for investigating the
neurophysiological substrate of schizophrenia and identifying
suitable biomarkers for early detection, consequently, more
transparent and interpretable deep learning models are needed to
fill this gap (54).

A promising alternative is the dense attention network (DAN),
a type of deep learning model based on the attention model (55),
a simple mechanism that scatters input signals and highlights only
the parts of the feature space that are relevant to the task at hand.
Crucially, the attention layers can output a probability distribution
over the input space, thus providing an insight into the inner
workings of the neural network, in the form of a one-to one
mapping of the relative contribution of each feature in the input
space (56, 57).

Here, we took a data-driven machine learning approach
to determine the distribution of EEG signatures specific to
schizophrenia patients over the time course of a visuospatial
change detection task. Based on previous encouraging reports (46–
52), we hypothesized that machine learning could be used to
successfully classify patients from controls based on EEG alone.
We chose an interpretable subtype of machine learning based
on the attention model (55), with the hypothesis that specific
temporal signatures would be most discriminative of patients and
controls. We hypothesized that differences between schizophrenia
patients and control subjects would also be evident using univariate
statistical methods, particularly on oscillatory activity related to
attention control (i.e., in the alpha frequency band), which has been
consistently reported to be impaired in patients with schizophrenia,
and would be most prominent during the task preparation,
encoding, maintenance or memory retrieval phases of the task
time-course (24, 39, 41). Finally, we expected this significantly
different task segments to overlap with the features found to
be most discriminative by the DAN model. This correspondence
is of crucial importance if machine learning is to become not
just a diagnostic aid, but also a tool capable of proving the
neurophysiological substrate of schizophrenia (54).

2. Materials and methods

2.1. Study participants

Fifteen patients with a mean age of 28.1 years, SD = 3.9, and
an average of 13.4 years of education, SD = 1.1, were recruited
from the Department for Psychotherapy of Psychotic Disorders
at the University Psychiatric Clinic Ljubljana (see Supplementary
Table 1 for descriptive statistics on demographics). All participants
included in the study were male, due to a lack of a representative
number of female participants available at the time of recruitment.
All patients had a diagnosis of schizophrenia (12 subjects) or
schizoaffective disorder (3 subjects). The diagnoses were confirmed
according to the DSM-IV criteria by experienced clinicians (BŠ
and JB) involved in the study. At the time of the experiment, all
patients were taking second generation antipsychotic medication
and were in stable symptomatic remission, with an average PANSS
score (58) of 77.1 (SD = 15.3), and were cleared for inclusion in
psychodynamic group psychotherapy. The patients’ mean duration

of illness was 6.1 years (SD = 3.3), and the mean number of
hospitalizations was 2.9 (SD = 2.1). For further clinical details, see
Supplementary Table 1.

Additionally, we recruited a control group of 15 male
participants of comparable age, M = 26.8 years, SD = 5.5, and
years of education, M = 14.4, SD = 1.2. The study was approved
by the Medical Ethics Committee of the Republic of Slovenia and
all participants signed an informed consent form according to the
Declaration of Helsinki.

2.2. Visual working memory task and EEG
recording

A lateralized change detection task with distractors (23, 59) was
implemented using PsychoPy (60). First, participants were shown
an arrow cue for 200 ms, the direction of which indicated to which
half of the visual field they should direct their attention. This was
followed first by a fixation cross shown for 400 ms and then by a
memory array shown for 300 ms. The memory array consisted of 2
or 4 rectangles (in each half of the visual field). The rectangles were
colored either blue, or blue and red (in the distractor condition),
and were shown in one of 4 possible orientations (0◦, 45◦, 90◦,
or 135◦). Participants were asked to remember the orientations
of the blue rectangles shown on the cued side of the visual field.
The presentation of the memory array was followed by a delay of
1400 ms before the presentation of a test array, that remained for
4 s and was then followed by 2 s without any stimulus. The test
array was either identical to the memory array or with only one of
the randomly selected (blue) rectangles on the cued side changing
its orientation in half of the trials. The participants’ task was to
indicate whether any of the target items had changed by pressing
the corresponding button on a response box (Figure 1).

There were three task conditions, differing in the number of
target items and the presence of a distractor:

1. A condition with two blue rectangles shown on each side
(low memory load; condition 2),
2. A condition with four blue rectangles shown on each side
(high memory load: condition 4), and
3. A condition with two blue and two red rectangles shown on
each side (distractor condition; condition 2+2).

In the 2+2 condition, participants had to successfully
inhibit the two red distractor rectangles presented together with
the two blue memory rectangles. The trials belonging to the
different conditions were interleaved within a block. Participants
were familiarized with the task during the practice trials, and
the experimenter ensured that they all performed with at
least 70% accuracy.

Participants performed 200 trials for each of the three
conditions in an electrically shielded and soundproofed roomwhile
seated in a comfortable chair in front of a cathode ray monitor.
Throughout the task, the EEG signal was recorded using four
BrainAmp amplifiers connected to a 128-channel actiCAP system
with active electrodes in a standard montage (Brain Products
GmbH, Munich, Germany). The EEG was recorded with a 2000 Hz
low-pass filter and digitized at a sampling rate of 500 Hz.
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FIGURE 1

Visual working memory trial time-course. Doted square containing the blue item on the lower left part of the test array illustrates an item that
changed from the memory array.

2.3. Working memory task performance
metrics

To compare behavioral task performance between groups we
computed memory capacity index K (61) and intra-individual
reaction time variability (see Supplementary Table 2 for detailed
descriptive statistics of task performance).

2.3.1. Working memory capacity
WM capacity index K was calculated for each subject and

condition using the Pashler variant of the formula appropriate for
a whole-display variant of a change detection task (61):

K = N
(
HR − FAR
1 − FAR

)

Where HR is the hit rate, FAR is the false alarm rate, and N is the
number of to-be-remembered items.

2.3.2. Intra-individual reaction time variability
Rentrop and colleagues (18) reported schizophrenia patients

with relatively well-preserved WM performance still showed
higher intraindividual variability in reaction times. Therefore, we
compared the coefficient of variation of reaction times between the
two groups, which was defined as the ratio of the standard deviation
to the mean of the reaction times.

2.4. EEG preprocessing

Electroencephalographic data were preprocessed using
EEGLAB functions (62) and custom-made MATLAB (The
MathWorks Inc., Massachusetts, USA) scripts. Data were first
filtered with a high-pass filter with a 0.5 Hz frequency cutoff,
then the line frequency noise was removed from the signal using
the CleanLine algorithm (63). Visual inspection was aided by
statistical thresholding based on variance and Kurtosis to identify
bad channels, M = 15.3, SD = 4.6. Next data were referenced
to the average of the mastoid channels (i.e., TP9 and TP10)
and segmented into epochs around the onset of the memory
array (−1,000 ms to 4,500 ms). At this point, epoched data were
visually inspected, and epochs that contained obvious artifacts
(e.g., high-frequency or muscular artifacts) were removed. Because
lateral eye movements would impact the magnitude of the CDA,

electrooculogram channels were visually inspected for the time
period from the presentation of arrow cue to the presentation
of memory array, and all epochs with eye blinks or horizontal
eye movements in this period were also discarded, bringing the
total average of epochs removed to 47.6.3, SD = 29.5. Next, the
AMICA algorithm (64) was used to identify and then remove any
remaining artifactual independent components M = 6.4, SD = 2.4.
Last, the channels previously removed from the data were spline
interpolated based on the signal from the neighboring electrodes.

2.5. Machine learning methods and
empirical evaluation

The aim of this analysis was to investigate the potential of
machine learning methods to discriminate patients from controls.
Given the heterogeneous nature of schizophrenia, our aim was to
produce a model capable of discriminating between patients and
controls without relying on any specific clinical data, leveraging
only EEG data that has been preprocessed using relatively simple
and well-established procedures. The dense attention network
model was deliberately chosen because it retains a sufficient level
of interpretability to explain which events were most important
in distinguishing patients from controls over the time course of
the experiment (57) The dimensionality reduction of the data, the
construction of the DAN architecture, and its evaluation, were
performed using in house methods (a detailed description can be
found in Supplementary material; scripts and data used to design,
train, and evaluate the different machine learning models1). Briefly,
the dimensionality of the preprocessed data was reduced from 4d
to 1d by incremental stepwise averaging of three of the four original
dimensions (i.e., 3 conditions left and 3 right, 128 channels, 2,750
time-points and 153 trials on average):

Sγ = 1
RNZ

R∑
μ = 1

(

N∑
ν = 1

(

Z∑
σ = 1

Mμνγσ))

Where μ, ν, γ, and σ stand for condition, channel, time, and trial,
respectively. In this way, a 1d array was created for each subject
while preserving the temporal characteristics of the data. This
simplified dimensionality of the data allowed us to train a dense

1 https://gitlab.com/MaticKu/shizo
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attention network model (DAN). The final input dataset used in
the model was numeric and consisted of 30 instances (i.e., number
of subjects), each described by 2,750 features (i.e., corresponding
to the preserved time dimension after the incremental stepwise
averaging of the original 4d EEG data set).

Empirical evaluation of model performance consisted of leave-
one-out cross-validation repeated ten times for each model. For the
DAN model there were 160 possible configurations evaluated. We
used the Adam optimization algorithm (65) and we considered the
following parameters: dropout rate (0.01, 0.05, 0.2, and 0.5) hidden
layer size (16, 32, 64, and 128), number of epochs (2, 4, 8, 16, and
32) and learning rate (0.001 and 0.0001).

The performance of the model was compared with the
performance of other simpler architectures (i.e., linear regression,
radio frequency machine learning, support vector machine, radial
basis function and k-nearest neighbor), and common deep
learning models (convolutional neural network and feed forward
neural network).

We report the average and standard deviation of the resulting
accuracy, precision and recall from these iterations. We also report
the F1 scores, computed as follows:

F1 = 2
precision · recall
precision + recall

All models were implemented using the PyTorch deep learning
library (66) and evaluated on a Tesla graphics card accelerator
(Nvidia Corp. Santa Clara, USA).

Throughout training of the DAN model, a bijection is
maintained with the input space (i.e., the attention layer
corresponds to the input space in a one-to-one relationship).
Therefore, we were able to use the attention layer’s output directly
as a probability distribution over the input space. This attention
value vector quantifies the contribution of each feature (EEG time-
point in the WM task time-course) in the distinction between
patients and controls.

2.6. Event related potential analysis

In order to capture the electrophysiological correlate of WM
capacity, we computed the contralateral delayed activity (CDA)
as the difference between the contralateral and ipsilateral (relative
to the cued side for the memory array) ERP waveforms using
an established procedure (23, 28). For each subject, the mean
amplitude of the resulting CDA difference curves was measured for
the average of all parieto-occipital electrodes and the time segment
from 500 ms to 900 ms after the presentation of the memory array
(Figure 2). The resulting mean CDA amplitude data were used for
further statistical analysis.

2.7. Time-frequency analysis

To compare the oscillatory dynamics between patients and
controls, throughout the trial time course, we performed a time-
frequency analysis of total power (i.e., comprising induced and
evoked power) for the epoched data. Data was decomposed into
the time-frequency domain by convolving a set of complex Morlet
wavelets from 1 Hz to 60 Hz, in steps of 1 Hz, with a logarithmically

spaced wavelet width of 4–10 cycles. The resulting time-frequency
maps were normalized as the decibel (db) change from baseline
(i.e.,−850 to−650ms from thememory array presentation). Time-
frequency regions of interest (ROIs) were then determined based
on the mainWM task phases and frequency bands. Specifically, the
time segments of interest (i.e., ROIs x-axis) were, preparation for
the task (−400 to 0 ms), encoding (0–300 ms), maintenance (300–
1,700 ms) and retrieval of the memory array (1,700–3,060 ms). The
end of the time window for the memory retrieval phase was chosen
based on the average reaction time plus one standard deviation
in the slower group (i.e., patients; Supplementary Table 2). We
included four frequency bands of interest (i.e., ROIs y-axis), theta
(4–7 Hz), alpha (8–12 Hz), beta (13–29 Hz) and gamma (30–
60 Hz) to explore possible group differences across the frequency
spectrum. For further statistical analysis, the average of all time-
frequency data points within each ROI for each subject and
condition was used.

2.8. Statistical analysis

For behavioral analysis a mixed design ANOVA was used
for memory capacity K and another for reaction-time variability.
For ERP analysis one mixed design ANOVA was used. For time-
frequency total power four mixed design ANOVAs were used, one
for each frequency band. All statistical tests were implemented in R
(67). Greenhouse-Geisser correction was used in case of sphericity
violations. All post-hoc comparisons were performed with paired or
Welch’s t-tests with Bonferroni corrections.

3. Results

3.1. Memory capacity K

To test for differences in memory capacity between groups
and conditions we used a mixed design ANOVA with a within-
subject factor condition (condition 2, condition 2+2 and condition
4) and a between-subject factor group (patient vs. control). The
test revealed no significant main effect of group, F(1,28) = 2.21,
p = 0.149, η2 = 0.043, but there was a significant effect of condition,
F(2,56) = 33.74, p < 0.001, η2 = 0.344. Post-hoc analysis with a
pairwise t-test revealed that in condition 4, M = 2.57, SD = 0.86,
memory capacity K was significantly higher than in conditions 2,
M = 1.81, SD = 0.14, p < 0.001, d = 1.236 and 2+2, M = 1.76,
SD = 0.32 p < 0.001, d = 1.245. There was no interaction between
group and condition, F(2,56) = 1.13, p = 0.329, η2 = 0.017.

3.2. Reaction time’s coefficient of
variation

A mixed design ANOVA with a within-subject factor of
condition (condition 2, condition 2+2 and condition 4) and a
between-subject factor of group (patient vs. control) was used to
test for differences in the coefficient of variation. The test revealed
no significant main effect condition, F(2,56) = 1.08, p = 0.345,
η2 = 0.007, group, F(1,28) = 2.49, p = 0.125, η2 = 0.068, or their
interaction F(2,56) = 1.14, p = 0.326, η2 = 0.007.
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FIGURE 2

Grand average contralateral delayed activity waveforms per each group (i.e., patients left panel and controls right panel) and condition (2 items in
blue, 4 items in red and 2+2 items in black), averaged over parieto-occipital electrodes. Vertical gray lines at time 0 correspond to the presentation
of the memory array. Horizontal gray lines correspond to 0 amplitude. Horizontal doted black lines mark the time segment (500–900 ms after
memory array onset) from which we extracted the average CDA amplitude for each subject.

3.3. Contralateral delay activity’s mean
amplitude

To examine the differences in mean CDA amplitude between
the two groups and the three experimental conditions, we used
a mixed design ANOVA with a within-subject factor condition
(condition 2, condition 2+2, and condition 4) and a between-
subject factor of group (patient vs. control). This analysis revealed
no significant main effect of group F(1,28) = 0.22, p = 0.642,
η2 = 0.004, condition, F(2,56) = 3.12, p = 0.065, η2 = 0.048, or their
interaction F(2,56) = 0.41, p = 0.617, η2 = 0.007.

3.4. Time-frequency power
representation

To investigate possible differences between patients and
controls in overall power at four frequency bands, we used a mixed
design ANOVA for each frequency band with a within-subject
factor condition (condition 2, condition 2+2, and condition 4),
a within-subject factor WM task phase (preparation, encoding,
maintenance, retrieval), and a between-subject factor group (patient
vs. control). This analysis revealed a significant group effect,
F(1,28) = 5.93, p = 0.022, η2 = 0.149, and interaction between group,
condition and task phase, F(6,168) = 2.20, p = 0.046, η2 = 0.002,
only for the alpha frequency band (for complete results in the
theta, beta, and gamma bands see Supplementary Section 5 and
Supplementary Figure 3). Post-hoc analysis with Welch’s t-test
revealed that patients had overall higher alpha power (i.e., less alpha
suppression), M = −1.04, SD = 0.89, than controls, M = −2.33,
SD = 1.84, t(20.24) = 2.43, p = 0.024, d = 0.889.

To unravel the triple interaction, we ran an additional mixed
design ANOVA for each of the fourWM task phases, with a within-
subject factor condition (condition 2, condition 2+2, and condition
4) and a between-subject factor group (patients vs. controls). We
found that groups differed in each of the 4 WM task phases
(Figure 3). During task preparation, F(1,28) = 6.16, p = 0.019,
η2 = 0.167, patients,M = −1.09, SD = 0.81, had higher alpha power
than controls, M = −2.36, SD = 1.81, t(19.41) = 2.48, p = 0.022,
d = 0.906. During memory encoding, F(1,28) = 5.73, p = 0.024,
η2 = 0.159, patients,M = −0.83, SD = 1.00, had higher alpha power
than controls, M = −2.17, SD = 1.93, t(21.04) = 2.39, p = 0.026,
d = 0.874. During memory maintenance, we found a significant
interaction between group and condition, F(2,56) = 3.28, p = 0.045,
η2 = 0.013. A follow-up analysis revealed that the interaction
was driven by the decrease in alpha power from condition 2+2,
M = −1.03, SD = 0.96, to condition 4, M = −1.13, SD = 0.99,
in patients, and increase in alpha power from condition 2+2,
M = −2.63, SD = 2.14, to condition 4, M = −1.96, SD = 1.75, in
controls. Finally, duringmemory retrieval, F(1,28) = 4.73, p = 0.038,
η2 = 0.133, patients,M = −1.13, SD = 1.13, had higher alpha power
than controls, M = −2.50, SD = 2.16, t(21.12) = 2.17, p = 0.041,
d = 0.794.

To summarize, there was a significant difference between
patients and controls in the alpha frequency band, but not in
other frequency bands. This difference was observed in all four
task phases. In support to these univariate results, the difference
between patients and controls can also be visually evaluated in
time-frequency difference maps, where it can be seen that the
differences in alpha band peak after the presentation of the main
task stimuli, namely, directional cue, memory array and test array
(Figure 4).
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FIGURE 3

Average alpha power baseline normalized in patient (blue line) and control (red line) groups in three different conditions (2, 2+2, and 4) and four WM
task phases (preparation, encoding, maintenance, and retrieval). The error bars represent standard error of the mean.

FIGURE 4

Unthresholded average time-frequency representation of total power difference of patients and controls (i.e., patients–controls).
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TABLE 1 Summary of the empirical evaluation average results for the different machine learning architectures used.

Model Accuracy F1 Recall Precision

DAN 0.69 ± (0.05) 0.71 ± (0.07) 0.77 ± (0.11) 0.67 ± (0.03)

FFNN 0.71 ± (0.03) 0.72 ± (0.03) 0.73 ± (0.05) 0.70 ± (0.02)

CNN 0.69 ± (0.05) 0.72 ± (0.05) 0.81 ± (0.05) 0.66 ± (0.04)

LR 0.65 ± (0.0) 0.67 ± (0.0) 0.69 ± (0.0) 0.64 ± (0.0)

SVM linear 0.62 ± (0.0) 0.62 ± (0.0) 0.62 ± (0.0) 0.62 ± (0.0)

SVM poly 0.62 ± (0.0) 0.58 ± (0.0) 0.54 ± (0.0) 0.64 ± (0.0)

KNN 0.69 ± (0.0) 0.71 ± (0.0) 0.77 ± (0.0) 0.67 ± (0.0)

RF 0.56 ± (0.08) 0.58 ± (0.09) 0.62 ± (0.11) 0.55 ± (0.07)

SVM rbf 0.58 ± (0.0) 0.62 ± (0.0) 0.69 ± (0.0) 0.56 ± (0.0)

Standard deviations in parenthesis. CNN, convolutional neural network; DAN, dense attention network; FFNN, feed forward neural network; KNN, K-nearest neighbor; LR, linear regression;
RF, radio frequency machine learning; SVM, support vector machine; rbf, radial basis function.

FIGURE 5

DAN attention value vector (in black; y-axis scale on the right side of plot) overlayed on the group difference time-frequency total power
time-frequency map for the average of all parieto-occipital electrodes. The difference was computed by subtracting the grand average map of total
power of controls from patients (i.e., patients–controls). The colormap is thresholded, for visualization purposes only, to show no color for values
lower than 30% of the maximum difference value of 2. See Figure 4 for unthresholded map.

3.5. Machine learning performance and
interpretation

The results from the empirical evaluation show that the
DAN model consistently demonstrated accuracy in discriminating
patients from controls significantly above chance, ACC = 0.69,
SD = 0.05, F1 = 0.71, SD = 0.07, Recall = 0.77, SD = 0.11,
PRC = 0.67, SD = 0.03 (Table 1). This model outperformed
simpler architectures, such as the support vector machine, while

performing similarly to other common deep neural network
models, such as the convolutional neural network. Full results for
all models tested under different subsets of the feature space (i.e.,
task conditions) can be found in Supplementary Figure 1 and
Supplementary Table 3.

Projecting the DAN attention value over the WM task timeline
and onto the time-frequency map of group differences shows that
the time pointsmost relevant to themodel’s discrimination between
groups (i.e., attention value) overlap with time-frequency ROIs that
were found to be significantly different between groups (Figure 5),
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and correspond to the task preparation and memory retrieval
phases of the WM task.

4. Discussion

In this study, we investigated the WM performance and
associated EEG signatures of schizophrenia patients and compared
them to healthy controls. The results show that in our sample
neither WM performance, measured by memory index K and
reaction time variability, nor CDA amplitude showed a significant
difference between patients and controls. However, statistical
analysis in the time-frequency domain revealed, a significant
group effect in all time segments of interest (task preparation,
memory encoding, maintenance and retrieval) in the alpha-band
range (8–12 Hz). We demonstrated that a simple dimensionality
reduction procedure consisting of incremental stepwise averaging,
that preserves the temporal characteristics of the EEG signal, can
be used as input to train a DANmachine learning model capable of
successfully discriminating patients from control subjects based on
the EEG signal after standard preprocessing alone, with accuracy
significantly above chance (ACC = 0.69). We then compared the
model’s performance with simpler machine learning architectures,
as well as more common deep neural network models, showing
similar performance. Finally, direct mapping of the attention value
vector with the WM task trial time course, revealed that the most
discriminative time points for the classification overlapped with the
task preparation and memory retrieval phases, as well as with the
identified time-frequency regions of interest that show significant
group differences in alpha suppression, with patients showing less
suppression than controls at these ROIs.

4.1. Normal WM performance and
contralateral delay activity in
schizophrenia patients

In our study, behavioral and CDA results did not differ
significantly between patients and controls. This is in contrast
with previous studies that generally find working memory
performance deficits in schizophrenia (68, 69). Recent studies
have found associations between poor performance and deficits
in consolidation or early maintenance of stimuli (24), deficits in
attention and executive control (70) or less efficient allocation
of memory resources (71). Previous studies also report CDA
amplitude differences between patients and controls, with
amplitude being larger than that of control subjects at low memory
load but smaller at high memory load (29), even when their
maximum visual WM capacity is equal to that of control subjects.
This pattern of impairment may support the theory of inefficient
attention hyperfocus on a small number of items, especially when
they are salient (17).

Normal behavioral and CDA results in our sample suggest that
patients performed well on this particular visual WM task. These
results are consistent with previous research showing no differences
between high-functioning individuals with schizophrenia and
healthy controls in task performance (18, 72) and working
memory related ERPs (73, 74). Thus, given the preserved working

memory performance and lack of significant CDA abnormalities,
our findings may be more representative of high-functioning
patients. In this context, it is worth noting that, at the time
of recruitment and throughout the data gathering phase, our
patients were asymptomatic and engaged in psychodynamic
group psychotherapy. While this criterion alone need not imply
high-functioning status, given the known associations between
engagement in psychodynamic psychotherapy and functional
outcome (75), it is reasonable to suspect that our patients might
potentially be close to high-functioning.

4.2. Schizophrenia patients exhibit
decreased suppression of alpha spectral
power during visual WM task

Our analysis revealed significantly lower suppression of
non-lateralized parietal alpha spectral power during the task
preparation, memory encoding, maintenance, and retrieval phases
of the visual WM change detection task. Given the recognized
role of oscillations in the alpha frequency band in long-range
synchronization (38), top-down control (76, 77), attention (78) and
cortical inhibition (79, 80), our time-frequency results may reflect a
deficit that makes it difficult for patients to inhibit task-irrelevant
brain regions and processes and to maintain efficient attention
control, regardless of the experimental condition. These results
are consistent with existing literature reporting alpha suppression
abnormalities in schizophrenia during working memory tasks (24,
38–41). In the presence of these potential inhibitory and attention
deficits, patients might have been able to maintain behavioral
performance through various compensatory strategies, such as
greater attention effort (17) reflected by less alpha suppression.

4.3. Deep attention networks can
discriminate high performing individuals
with schizophrenia from healthy controls
in EEG data after dimensionality
reduction

The dense attention network model implemented in this
study was able to classify patients and controls with an
accuracy significantly above chance, ACC = 0.69 outperforming
simpler machine learning architectures, while achieving similar
performance to more commonly used deep network models.
Moreover, our attention model revealed the relative importance of
each feature in the input space for the successful classification of
patients and controls. This was possible owing to our proposed
data aggregation technique (i.e., incremental stepwise averaging),
that allowed us to reduce each patient’s preprocessed EEG data
to a one-dimensional vector, while preserving the temporal
characteristics of the signal.

The results show that the time points that were most
discriminative for the machine learning algorithm, overlapped
with both the preparatory and memory retrieval phases during
the task, as well as with ROIs selected from the time-frequency
maps. Furthermore, the two highest peaks in The DAN attention

Frontiers in Psychiatry 09 frontiersin.org



Perellón-Alfonso et al. 10.3389/fpsyt.2023.1205119

value vector were found to overlap with the significant main
effect of group found in time-frequency ROIs in the alpha band
during task preparation and memory retrieval phases. Based on
this congruence, we can conclude with high confidence (81) that
the DAN model’s decision to classify subjects as patients or
controls is based on the same aspects of the data that were
revealed by the time-frequency analysis. Given that the detected
abnormalities are oscillatory in nature and the DAN algorithm
partially operates by convolution (82), it might have been specially
suited to detect oscillatory signatures in the EEG. Because,
similarly, decomposition of the EEG into the time-frequency
domain is often accomplished by convolution of the EEG signal
with complex Morlet wavelets, which was our method of choice for
the time-frequency analysis in this study.

These results add to the rapidly growing body of literature
reporting encouraging results in the use of machine learning to
classify patients and controls in schizophrenia (46–52), with the
ultimate goal of aiding and improving the challenging diagnosis of
such heterogeneous disorder (83). Furthermore, the demonstrated
interpretability of our model highlights that machine learning can
be designed to serve not only as a diagnostic aid in classification,
but also to probe the neurophysiological correlates of schizophrenia
and, potentially, other psychiatric disorders.

4.4. Limitations and future directions

This study has some limitations. Our sample size was small,
which may have affected statistical power. However, this is a
consequence of the challenging goal of recruiting a homogeneous
group of schizophrenia patients. Furthermore, our sample is
constituted exclusively by males, which may limit the translational
value of the study. Finally, although the accuracy of our DAN
machine learning model is significant and provides additional
information about the differences between patients and controls, it
is not robust enough to support the direct diagnosis or classification
of patients on its own.

Nevertheless, the machine learning and time-frequency results
both suggest that in schizophrenia there is a significant impact
on working memory processes during the task preparation and
maintenance phases. Even in high performing patients that show
no significant impact in behavioral performance or ERP correlates,
when compared to healthy controls. Furthermore, the features
studied could be combined with a broader set of features to
support more accurate identification of patients. In that fashion,
these techniques could be used as a diagnostic complement to
more established clinical assessment methods to help in early
detection or differential diagnosis of neuropsychiatric disorders
with suspected oscillatory abnormalities. Moreover, the DAN
model’s accuracy could still be further improved by enriching its
input with relevant multimodal data. For instance, as we have
argued that the oscillatory abnormalities in the alpha band may
indicate an inhibitory and attention deficit, future research could
design experiments that would not only include EEG, but also
additional techniques such as pupillometry, to measure changes in
attention and arousal (84), or non-invasive stimulation, to directly
probe the role of inhibitory neural circuits during the task (85).
Finally, based on the neurophysiological insight provided by our

model, we further encourage the incorporation of interpretable
models in schizophrenia research.
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1 Empirical evaluation of the machine learning models 

1.1 Simple feedforward networks

We began our empirical evaluation by implementing a series of simple feedforward neural networks, 
which took as input the vectors describing individual patients. At this point, we already performed 
initial experiments with Logistic Regression, where the baseline performance of 65% (F1 score) was 
established. Feedforward (or dense) neural networks can be, when properly regularized, suitable for 
low-data scenarios. These neural networks are composed of layers, comprised of computational units 
– neurons. The whole neural network is trained via the process of backpropagation, an optimization 
procedure where errors obtained by comparing the predictions against the target (real) values are 
propagated and used to update the weights of the neural network.  

1.2 The attention mechanism

Recent advancements in natural language processing rely on the notion of neural attention, a simple 
mechanism which scatters the input signals and highlights only the parts of the feature space which are 
relevant to the task at hand. This concept is thoroughly explained elsewhere (Škrlj et al., 2020), 
therefore, we introduce here only the necessary ideas to understand this analysis. Originally, the 
attention mechanism was used for neural translation purposes, where a mapping between two 
sequences needed to be learned. Such, attention layer (La) can be formulated as: 

where Q, K and V are the query, key and value, respectively. The query and key sequence’s indices 
are thus associated with a given value. Here we explored how a similar idea performs on simple, 
feedforward neural networks and time-dependent inputs extracted from the reduced EEG data.  

1.3 Dense Attention Networks

The attention mechanism is inspired by the recently introduced language models (Devlin et al., 2019), 
and for our data it can be defined as: 
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For the first layer, followed by standard dense layers with additional regularization in form of the 
dropout. The W thus corresponds to a weight matrix and X to the whole input time series. When used 
directly as output, such attention layers emit a probability distribution across the input space, offering 
a window into the inner workings of the neural network and a potential opportunity to identify whether 
some spurious correlations were learnt.  

1.4 Model interpretability 

In terms of how models are interpretable, we can distinguish between two main interpretability types. 
Symbolic models, such as trees or similar, which yield conjuncts of features, are directly interpretable 
to a human observer. Statistical methods, such as neural networks are commonly interpreted post-hoc 
– their predictions are approximated one-by-one and aggregated. However, the attention mechanism 
offers an alternative, as it maintains a bijection with the input space throughout the training (the 
attention layer corresponds to the input space in a one-to-one manner). The main caveat is that if the 
network learns correlations which are not causal, the attention will similarly emphasize wrong parts of 
the input space. We explored qualitatively, whether the attention vectors, once aggregated across all 
correctly predicted classifications, highlight timepoints that are also relevant with respect to the 
experimental design. The attention mechanism, thus, offers one approach to understand which 
segments of the feature space are relevant. However, as the inputs are aggregated prior to being fed to 
a neural network, this mechanism does not help with explanations related to individual conditions. 
Here, we developed a different approach which tackles this issue in a different manner altogether. Note 
that six possible task conditions were measured. As these conditions represent potentially individual 
parts of the feature space, we can design an evaluation procedure, where the models are trained on 
subsets of the space of all conditions (results are summarized in supplementary table S3 and figure S1). 

2 Time-Frequency statistical analysis results of ROIs in the theta, beta and gamma 
frequency bands 

A mixed design ANOVA with a within-subject factor condition (condition 2, condition 2+2, and 
condition 4), a within-subject factor task phase (preparation, encoding, maintenance, retrieval), and a 
between-subject factor group (patient vs. control) on average power in theta range revealed a 
significant main effect of task phase, F(3,84) = 50.25, p <.001, 2 = .067. A pairwise analysis with 
Bonferroni correction revealed that theta power was higher during encoding, M = 0.13, SD = 1.88, 
than during the maintenance, M = -1.13, SD = 1.81, p = .046. For beta frequency band, we found a 
significant main effect of task phase, F(3,84) = 3.53, p = .026, 2 = .018, as well as significant 
interaction between task phase and condition, F(6, 168) = 5.57, p < 001, 2 = .009. A pairwise 
analysis with Bonferroni correction revealed that beta power was higher during maintenance, M = -
0.50, SD = 0.58, than during the retrieval, M = -0.69, SD = 0.68, p = .049. When task phase was held 
constant, beta power was different between conditions during the retrieval only, F(2, 56) = 9.10, p = 
.004, 2 = .044, but not during the other three task phases  (p>0.05). A pairwise analysis with 
Bonferroni correction revealed that during the retrieval phase beta power was significantly more 
negative at condition 2+2, M = -0.88, SD = 0.65, when compared to condition 2, M = -0.64, SD = 
0.66, p = .012,  and condition 4, M = -0.55, SD = 0.71, p = .004. Finally, we found a significant main 
effect of task phase at gamma frequency band, F(3, 84) = 3.28, p = 025, 2 = .020. A pairwise 
analysis with Bonferroni correction revealed that gamma power was almost significantly different 
between maintenance and retrieval periods, p = .053. 
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Table S1. Demographics and clinical properties of study participants 

Participant property Patient group Control group 

Age [mean (SD)] 28.1 (3.87) 26.8 (5.54) 

Years of education [mean 
(SD)] 

13.4 (1.12) 14.4 (1.18) 

Handedness [N]   

    Right 14 13 

    Left 1 1 

    Ambidextrous  0 1 

Antipsychotic medication 
[N] 

  

    Aripiprazole 4 0 

    Olanzapine 3 0 

    Clozapine 5 0 

    Quetiapine 2 0 

    Risperidone 3 0 

    Paliperidone 1 0 
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    Amisulpride 2 0 

ICD-10 F code [N]   

    F 20.0 12 0 

    F 25 3 0 

PSP [mean (SD)] 53.73 (8.28) N/A 

EASE [mean (SD)]   

    Cognition 35.5 (14.3) N/A 

    Presence 42.4 (13.9) N/A 

    Body 13.3 (15.3) N/A 

    Transitivism 18.7 (22.0) N/A 

    Existential 19.1 (14.8) N/A 

    Hyperreflexivity 2.1 (0.9) N/A 

PANSS [mean (SD)] 77.07 (15.29) N/A 
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Table S2. Working memory task performance. H = hit rate; F = false alarm rate; K = memory capacity 
index. 

WM performance Experimental group Control group 

Condition 2   

    Errors when different 
[mean (SD]) 

7.5 (4.2) 11.4 (8.2) 

    Errors when same 
[mean(SD)] 

4.2 (4.2) 5.8 (4.3) 

    All errors [mean(SD)] 11.7 (6.9) 17.2 (10.6) 

    Accuracy [mean(SD)] 94.5 (3.3) 91.7 (4.9) 

    H – F [mean(SD)] 0.9 (0.07) 0.84 (0.1) 

    K 1.79 (0.13) 1.67 (0.21) 

Reaction time 840.27 (403.45) 764.10 (372.71) 

Condition 4    

    Errors when different 
[mean (SD]) 

27.8 (15.7) 39.7 (22.3) 

    Errors when same 
[mean(SD)] 

12.9 (9.2) 8.3 (5.7) 

    All errors [mean(SD)] 40.7 (20.5) 48.0 (23.2) 

    Accuracy [mean(SD)] 81.0 (9.5) 77.7 (10.9) 

    H – F [mean(SD)] 0.64 (0.21) 0.55 (0.22) 

    K 2.47 (0.77) 2.19 (0.86) 

Reaction time 990.21 (497.95) 959.11 (472.68) 
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Condition 2+2   

    Errors when different 
[mean (SD]) 

7.7 (7.1) 14.8 (16.7) 

    Errors when same 
[mean(SD)] 

5.2 (3.7) 7.9 (6.9) 

    All errors [mean(SD)] 12.9 (9.8) 22.7 (22.1) 

    Accuracy [mean(SD)] 94.1 (3.6) 89.4 (10.3) 

    H – F [mean(SD)] 0.89 (0.09) 0.79 (0.21) 

    K 1.74 (0.19) 1.59 (0.42) 

Reaction time 883.18 (435.30) 776.83 (369.26) 

Overall reaction time 904.45 (451.60) 833.24 (417.23) 

 

Table S3. Average performance metrics and standard deviation (in parenthesis) for each machine 
learning model tested in each subset of the feature space (i.e., experimental condition 2, 2+2 and 4 
items; for both right and left visual hemifield presentation). CNN, convolutional neural network; DAN, 
dense attentional network; FFNN, feed forward neural network; KNN, K-nearest neighbour; LR, linear 
regression; RF, radio frequency machine learning; SVM, support vector machine; rbf, radial basis 
function. 

Model Condition Accuracy F1 Recall Precision 

CNN 2 left 0.67 ± (0.03) 0.7 ± (0.01) 0.77 ± (0.11) 0.65 ± (0.06) 

CNN 2 right 0.71 ± (0.03) 0.73 ± (0.02) 0.77 ± (0.0) 0.69 ± (0.03) 

CNN 2+2 left 0.69 ± (0.11) 0.72 ± (0.11) 0.81 ± (0.16) 0.65 ± (0.07) 

CNN 2+2 right 0.71 ± (0.03) 0.72 ± (0.03) 0.73 ± (0.05) 0.7 ± (0.02) 

CNN 4 left 0.71 ± (0.14) 0.73 ± (0.12) 0.77 ± (0.11) 0.69 ± (0.13) 
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CNN 4 right 0.71 ± (0.08) 0.73 ± (0.12) 0.81 ± (0.27) 0.68 ± (0.01) 

CNN all 0.69 ± (0.05) 0.72 ± (0.05) 0.81 ± (0.05) 0.66 ± (0.04) 

DAN 2 left 0.62 ± (0.05) 0.62 ± (0.09) 0.65 ± (0.16) 0.6 ± (0.03) 

DAN 2 right 0.75 ± (0.03) 0.75 ± (0.05) 0.77 ± (0.11) 0.74 ± (0.01) 

DAN 2+2 left 0.62 ± (0.05) 0.66 ± (0.05) 0.73 ± (0.05) 0.59 ± (0.04) 

DAN 2 right 0.63 ± (0.08) 0.69 ± (0.06) 0.81 ± (0.05) 0.6 ± (0.06) 

DAN 4 left 0.56 ± (0.14) 0.65 ± (0.09) 0.81 ± (0.05) 0.54 ± (0.1) 

DAN 4 right 0.75 ± (0.03) 0.79 ± (0.02) 0.92 ± (0.0) 0.69 ± (0.03) 

DAN all 0.69 ± (0.05) 0.71 ± (0.07) 0.77 ± (0.11) 0.67 ± (0.03) 

FFNN 2 left 0.77 ± (0.0) 0.78 ± (0.01) 0.81 ± (0.05) 0.75 ± (0.03) 

FFNN 2 right 0.79 ± (0.03) 0.8 ± (0.02) 0.85 ± (0.0) 0.76 ± (0.04) 

FFNN 2+2  left 0.67 ± (0.03) 0.69 ± (0.03) 0.73 ± (0.05) 0.65 ± (0.02) 

FFNN 2+2  right 0.67 ± (0.08) 0.72 ± (0.05) 0.85 ± (0.0) 0.63 ± (0.08) 

FFNN 4 left 0.67 ± (0.03) 0.7 ± (0.05) 0.77 ± (0.11) 0.64 ± (0.0) 

FFNN 4 right 0.67 ± (0.03) 0.71 ± (0.0) 0.81 ± (0.05) 0.64 ± (0.04) 

FFNN all 0.71 ± (0.03) 0.72 ± (0.03) 0.73 ± (0.05) 0.7 ± (0.02) 

KNN 2 left 0.62 ± (0.0) 0.55 ± (0.0) 0.46 ± (0.0) 0.67 ± (0.0) 

KNN 2 right 0.5 ± (0.0) 0.55 ± (0.0) 0.62 ± (0.0) 0.5 ± (0.0) 

KNN 2+2  left 0.54 ± (0.0) 0.6 ± (0.0) 0.69 ± (0.0) 0.53 ± (0.0) 

KNN 2+2  right 0.65 ± (0.0) 0.71 ± (0.0) 0.85 ± (0.0) 0.61 ± (0.0) 
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KNN 4 left 0.54 ± (0.0) 0.57 ± (0.0) 0.62 ± (0.0) 0.53 ± (0.0) 

KNN 4 right 0.65 ± (0.0) 0.67 ± (0.0) 0.69 ± (0.0) 0.64 ± (0.0) 

KNN all 0.69 ± (0.0) 0.71 ± (0.0) 0.77 ± (0.0) 0.67 ± (0.0) 

LR 2 left 0.73 ± (0.0) 0.72 ± (0.0) 0.69 ± (0.0) 0.75 ± (0.0) 

LR 2 right 0.69 ± (0.0) 0.71 ± (0.0) 0.77 ± (0.0) 0.67 ± (0.0) 

LR 2+2  left 0.58 ± (0.0) 0.56 ± (0.0) 0.54 ± (0.0) 0.58 ± (0.0) 

LR 2+2  right 0.58 ± (0.0) 0.65 ± (0.0) 0.77 ± (0.0) 0.56 ± (0.0) 

LR 4 left 0.62 ± (0.0) 0.67 ± (0.0) 0.77 ± (0.0) 0.59 ± (0.0) 

LR 4 right 0.62 ± (0.0) 0.64 ± (0.0) 0.69 ± (0.0) 0.6 ± (0.0) 

LR all 0.65 ± (0.0) 0.67 ± (0.0) 0.69 ± (0.0) 0.64 ± (0.0) 

RF 2 left 0.6 ± (0.03) 0.55 ± (0.01) 0.5 ± (0.05) 0.62 ± (0.06) 

RF 2 right 0.62 ± (0.11) 0.64 ± (0.1) 0.69 ± (0.11) 0.6 ± (0.09) 

RF 2+2  left 0.44 ± (0.08) 0.43 ± (0.0) 0.42 ± (0.05) 0.45 ± (0.07) 

RF 2+2  right 0.58 ± (0.05) 0.61 ± (0.05) 0.65 ± (0.05) 0.57 ± (0.05) 

RF 4 left 0.38 ± (0.11) 0.36 ± (0.15) 0.35 ± (0.16) 0.37 ± (0.13) 

RF 4 right 0.58 ± (0.05) 0.57 ± (0.1) 0.58 ± (0.16) 0.57 ± (0.04) 

RF all 0.56 ± (0.08) 0.58 ± (0.09) 0.62 ± (0.11) 0.55 ± (0.07) 

SVM linear 2 left 0.73 ± (0.0) 0.72 ± (0.0) 0.69 ± (0.0) 0.75 ± (0.0) 

SVM linear 2 right 0.58 ± (0.0) 0.59 ± (0.0) 0.62 ± (0.0) 0.57 ± (0.0) 

SVM linear 2+2  left 0.54 ± (0.0) 0.5 ± (0.0) 0.46 ± (0.0) 0.55 ± (0.0) 
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SVM linear 2+2  right 0.65 ± (0.0) 0.67 ± (0.0) 0.69 ± (0.0) 0.64 ± (0.0) 

SVM linear 4 left 0.62 ± (0.0) 0.64 ± (0.0) 0.69 ± (0.0) 0.6 ± (0.0) 

SVM linear 4 right 0.58 ± (0.0) 0.56 ± (0.0) 0.54 ± (0.0) 0.58 ± (0.0) 

SVM linear all 0.62 ± (0.0) 0.62 ± (0.0) 0.62 ± (0.0) 0.62 ± (0.0) 

SVM poly 2 left 0.54 ± (0.0) 0.4 ± (0.0) 0.31 ± (0.0) 0.57 ± (0.0) 

SVM poly 2 right 0.73 ± (0.0) 0.72 ± (0.0) 0.69 ± (0.0) 0.75 ± (0.0) 

SVM poly 2+2  left 0.62 ± (0.0) 0.55 ± (0.0) 0.46 ± (0.0) 0.67 ± (0.0) 

SVM poly 2+2  right 0.5 ± (0.0) 0.48 ± (0.0) 0.46 ± (0.0) 0.5 ± (0.0) 

SVM poly 4 left 0.5 ± (0.0) 0.38 ± (0.0) 0.31 ± (0.0) 0.5 ± (0.0) 

SVM poly 4 right 0.62 ± (0.0) 0.62 ± (0.0) 0.62 ± (0.0) 0.62 ± (0.0) 

SVM poly all 0.62 ± (0.0) 0.58 ± (0.0) 0.54 ± (0.0) 0.64 ± (0.0) 

SVM rbf 2 left 0.42 ± (0.0) 0.44 ± (0.0) 0.46 ± (0.0) 0.43 ± (0.0) 

SVM rbf 2 right 0.5 ± (0.0) 0.48 ± (0.0) 0.46 ± (0.0) 0.5 ± (0.0) 

SVM rbf 2+2  left 0.42 ± (0.0) 0.4 ± (0.0) 0.38 ± (0.0) 0.42 ± (0.0) 

SVM rbf 2+2  right 0.38 ± (0.0) 0.38 ± (0.0) 0.38 ± (0.0) 0.38 ± (0.0) 

SVM rbf 4 left 0.27 ± (0.0) 0.24 ± (0.0) 0.23 ± (0.0) 0.25 ± (0.0) 

SVM rbf 4 right 0.42 ± (0.0) 0.44 ± (0.0) 0.46 ± (0.0) 0.43 ± (0.0) 

SVM rbf all 0.58 ± (0.0) 0.62 ± (0.0) 0.69 ± (0.0) 0.56 ± (0.0) 
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Figure S1. Bar graph ilustrating average performance metrics (black bars show standard deviations) 
for each machine learning model tested in each subset of the feature space (i.e., experimental condition 
2, 2+2 and 4 items; for both right and left visual hemifield presentation). CNN, convolutional neural 
network; DAN, dense attentional network; FFNN, feed forward neural network; KNN, K-nearest 
neighbour; LR, linear regression; RF, radio frequency machine learning; SVM, support vector 
machine; rbf, radial basis function.
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Figure S2. Average power values for patients (blue line) and controls (red line) in four WM task 
phases (preparation, encoding, maintenance, and retrieval) and four frequency bands (theta, alpha, 
beta, and gamma). The error bars represent standard error of mean. 
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Abstract:  
In early-stage Alzheimer’s disease (AD) amyloid-
hyperactivity, thereby potentially triggering activity-dependent neuronal secretion of 
phosphorylated tau (p-tau), ensuing tau aggregation and spread. Therefore, cortical 
excitability is a candidate biomarker for early AD detection. Moreover, lowering neuronal 

is, however, a lack of understanding of the relationship between cortical excitability and 
p-tau increase in vivo. Therefore, in a sample of 658 healthy middle-aged (between 40-
65 years of age) participants of the Barcelona Brain Health Initiative cohort study, we 
examined the relation of blood-based tau, phosphorylated at amino acid 181 (p-tau181), 
reflecting neuronal p-tau secretion; neurofilament light chain (NfL), as a passively 
released control for p-tau181; and electroencephalography (EEG) markers of cortical 
excitability. A subsample of 47 participants also completed a controlled brain 
perturbation approach via transcranial magnetic stimulation (TMS) with concurrent EEG. 
Results show that both spontaneous (i.e., resting-state) and perturbation-based TMS-EEG 
markers, are associated with blood p-tau181, particularly in older individuals. The 
perturbation-based marker was found to be a significantly more sensitive predictor of p-
tau181 concentration than the spontaneous EEG-based marker. The relationships 
observed are not present for the NfL control. These results show that relationships 
between p-tau181 and cortical excitability are present in healthy middle-aged subjects 
and that p-tau181 increases may reflect activity-dependent secretion. 
 
Keywords: Alzheimer’s Disease; Tau; EEG; Transcranial Magnetic Stimulation; 
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INTRODUCTION 
In early-stage Alzheimer's disease (AD), the buildup of amyloid-
increased levels of soluble phosphorylated tau protein (p-tau), which can be detected 
using cerebrospinal fluid (CSF) and blood-based biomarkers.1 Recent research shows that 
this rise is strongly predictive of the accumulation and spread of insoluble tau aggregates 
and subsequent cognitive decline.2 
 
Hyperexcitability is a hallmark of early AD and research in human patients and mouse 
models consistently show hyperexcitability at the single neuron level, as well as in neural 
networks or entire brain systems.3,4 Further evidence from research in mice shows that 

.5 Subsequently, this 
hyperexcitability contributes to trigger the secretion of tau, which propagates through 
trans-synaptic transmission to affect distal brain regions.6 Functional magnetic resonance 
imaging (fMRI) research in humans has further shown that the spread of tau pathology 
occurs preferentially through functionally connected brain regions,7 leading to neuronal 
degeneration. Therefore, changes in neuronal excitability potentially constitute a 
pathophysiologically relevant biomarker for early detection of AD. 
 

,8 

neuronal excitability, reducing it could further complement these treatments.9 Readily 
available antiepileptic medications, for instance, can effectively reduce overall cortical 
excitability,10 but they often produce unwanted side-effects and affect whole brain 
neurotransmitter systems. Conversely, non-invasive brain stimulation techniques can 
reduce cortical excitability in specific brain regions, without comparable side-effects, via 
long term depression-like mechanisms,11–14 and could be applied on specific functional 
connectivity nodes,15,16 to target specific pathways of preferential tau spread.  
 
Therefore, cortical excitability is a modifiable factor that could provide a new avenue of 
potentially disease-modifying interventions targeting the A -tau axis in AD. While the 
link between hyperexcitability and tau pathology is better established in the early stages 
of AD,3 and there is a relation between cortical hyperexcitability and cognitive 
dysfunction,4 we still lack understanding of how cortical excitability might be related to 

-unimpaired populations. 
 
T , and excitability have been mainly investigated in 
animal models of AD. However, we now have available tools to study these relationships 
in vivo in humans. Blood-based biomarkers have been recently developed,17 paving the 
way for research at any clinical stage, as well as in preclinical healthy populations.18 
Moreover, recent developments in electroencephalography (EEG), make it possible to 
study cortical excitability non-invasively, either based on spontaneous activity during 
resting-state, or elicited by controlled brain perturbations using transcranial magnetic 
stimulation (TMS). Specifically, recent studies have shown that the EEG power 
spectrum’s 1/f-like activity partially reflects the overall cortical balance of excitation and 
inhibition,19,20 and its abnormality in AD has been established21 and shown to relate to 
cognitive function.22 Whereas single-pulse TMS produces a repeatable evoked EEG 
response, its later components (160 to 240ms after the pulse) directly relating to voltage-
gated sodium channel (VGSC)-mediated excitability, as the response can be directly 
inhibited by VGSC blockers such as carbamazepine.23,24 
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In this study, we aim at establishing the relationships between cortical excitability and p-
tau detectable in blood plasma in a healthy middle-aged population. To achieve this 
objective, we first tested the relationship between cortical excitability, measured as the 
EEG brain reactivity to a controlled TMS perturbation, and blood phosphorylated tau at 
amino acid 181 (p-tau181) concentration, and compared it to neurofilament light chain 
(NfL) concentration in blood, which is thought to be passively released into the blood 
stream as a result of axonal damage and cell death, irrespective of the underlying cause.25 
Second, we tested the relationship between cortical excitation/inhibition balance, 
measured from spontaneous resting state EEG activity, and plasma p-tau181 
concentration, comparing it to NfL. Finally, we compared the value of the spontaneous 
and perturbation-based measures of cortical excitability in explaining p-tau181 
concentration. Given the evidence that excitability might stimulate the secretion and 
propagation of tau,5,6 we hypothesized that higher excitability would correlate with higher 
concentration of p-tau181, but not with NfL. We also hypothesized that perturbation-
based measures would be a more sensitive predictor of p-tau181 concentration, because 
spontaneous-based excitation/inhibition balance represents a more heterogeneous 
measure of complex excitatory and inhibitory interactions,26 which precludes a direct 
estimation of net excitability. 
 

MATERIAL AND METHODS 

Study Participants 
Participants were recruited from the Barcelona Brain Health Initiative project (BBHI)27 
an ongoing longitudinal study that investigates brain health determinants in middle-aged 
adults. A main inclusion criterion for the project is absence of any neurological or 
psychiatric condition. For the present study we selected all participants who completed 
both blood extraction and resting-state EEG, and whose data survived preprocessing. The 
final sample included consists of 648 subjects aged 40-65 years, M=52.3 SD=7.2, 307 
female. A subsample of 47 participants (aged 40-64 years, M=54.8 SD=7.1, 16 female) 
additionally completed TMS with concurrent EEG (from now on TMS-EEG). The study 
protocols were approved by the Comitè Ètic d’Investigació (CEIm) de la Fundació Unió 
Catalana d’Hospitals (ref. CEIC 17/06) and all participants gave their informed consent 
to participate in accordance to the declaration of Helsinki. 
 
Blood-based biomarkers 
Ethylenediaminetetraacetic acid plasma samples were collected through venipuncture. 
Plasma concentrations of phosphorylated p-tau181 and NfL were measured using Single 
molecule array (Simoa) methods on an HD-X instrument (Quanterix, Billerica, MA, 
USA), as previously described.28,29 
 
TMS-EEG recording and preprocessing 
TMS was applied over the left dorsolateral prefrontal cortex (L-PFC) and the left inferior 
parietal lobule (L-IPL). Stimulation was guided by a BrainSight neuronavigation system 
(RogueResearch, Inc., Canada). The targets were determined based on either anatomy –
for subjects recorded before 2019 (n=27)– or the functional cortical parcellation by Yeo 
and colleagues30 –for subjects studied after 2019 (n=20). See supplementary materials for 
MRI acquisition parameters and detailed target determination procedures. Stimulation 
was set to 120% of resting motor threshold, determined as the lowest intensity needed to 

-to-peak in the first dorsal 
interosseous muscle on the relaxed right hand, achieving this in a minimum of 3 out of 6 
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attempts.31 For each designated target, a series of 120 single biphasic pulses were 
administered using an MCF-B65 butterfly coil attached to a MagPro X100 stimulator 
(Magventure, Inc., Denmark). Pulses were spaced randomly, ranging between four to six 
seconds apart. The sequence in which targets were stimulated was shuffled for every 
participant. To diminish the auditory responses triggered by the click from the TMS coil, 
participants were equipped with earplug-earbuds emitting white noise at their maximum 
tolerated volume. EEG was recorded concurrently using a TMS-compatible ActiChamp 
64-channel amplifier system, paired with an ActiCap Slim featuring active electrodes 
(from BrainProducts, GmbH., Germany). Electrode impedance was consistently 

recording. EEG data was captured 
from DC to 500Hz and converted into a digital format at a rate of 1KHz. The preprocessed 
TMS-evoked potential data was then used for source localization (see supplementary 
materials for source localization procedures). 
 
Resting-state EEG recording and preprocessing 
EEG was recorded for 10 minutes at rest (i.e., 5 minutes eyes closed, 5 minutes eyes open) 
using an Enobio 32 channel system (Neuroelectrics, Spain) at a sampling rate of 512 Hz 
with a 50Hz notch filter of order 1. Electrode impedance for all channels was kept below 
25 
muscle related artifacts, and hence guarantees a higher survival rate and quality during 
automatic data preprocessing. 
 
Data was preprocessed using a fully automated pipeline developed in house (see 
supplementary materials for pipeline script and details) and consisting of EEGLAB32 and 
custom-made MATLAB functions (The MathWorks INC. USA). The pipeline ran 
through all the 748 EEG resting-state datasets and logged the number of bad channels and 
epochs. For the current analysis we kept only those datasets that retained at least 22 out 
of 32 channels and 100 artifact free epochs, resulting in 648 individual clean recordings 
for subsequent statistical analysis. 
 
TMS-EEG perturbation based cortical excitability 
To quantify VGSC mediated excitability at each stimulation target location we first 
defined a region of interest (ROI) of 100 vertices around each subject's stimulation target 
coordinate, which corresponds to a cortex surface area of approximately 10 cm2. To allow 
group level statistics, the TMS-evoked potential (TEP) time-series in source space of each 
vertex within the target ROI were rectified, averaged together, and then normalized via 
z-score transformation: 

z=(TEP-  
 

-stimulus baseline (from -500 ms to -3 ms relative to the 

trapezoidal integration (i.e., area under the curve) of the normalized TEP between 160 
and 240ms after the TMS pulse (Figure 1, B). 
 
Spontaneous resting state EEG cortical excitation/inhibition balance 
To estimate excitation/inhibition balance, first the EEG power spectrum was computed 
via the Welch’s method, whereby the fast Fourier transform of each 2 second epoch is 
computed and then all epochs’ spectra are averaged together. The aperiodic component 
of the EEG spectrum (i.e., 1/f -like activity) was estimated using the fooof toolbox,20 and 
then the exponent (i.e., slope) of the aperiodic fit line was taken as the estimate of 1/f -
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like activity and, hence, as a proxy of cortical inhibition/excitation balance,19 with stepper 
slopes (i.e., higher values) indicating a shift in the balance towards inhibition and vice-
versa (Figure 1, D).

Figure 1. Illustration of EEG cortical excitability markers. A) illustrates the TMS-evoked perturbation of the EEG and 
the spatial region of interest in source space (grey transparent patch over L-PFC) and, B) the time-window taken from 
the TMS-evoked EEG timeseries to compute the perturbation-based marker of VGSC excitability (grey transparency 
spanning from 160 to 240ms after TMS pulse). C) illustrates the recording of resting state EEG and, D) the 
decomposition of the power spectrum at rest to isolate the aperiodic component, the slope of which we take here as 
the spontaneous marker for excitation/inhibition balance. In both B and D panels, grand average waveforms for all 
participants included in the study are shown. EEG, electroencephalography; L-PFC, left prefrontal cortex; VGSC, 
voltage-gated sodium channel. 

Statistical analysis
All statistical analyses were performed in R version 4.2.3 (R Foundation for Statistical 
Computing, Vienna, Austria).

To determine the relation of perturbation-based VGSC mediated excitability and p-tau181 
in the TMS-EEG subsample (n=47), we used stepwise general linear modeling to 
determine the best fitting model and discard irrelevant predictors. The criterion for 
removing predictors was the models’ chi-squared test of the change in the deviance that 
results from removing the term. The starting model included all main effects and 
interactions of perturbation-based excitability (at both L-IPL and L-PFC targets), age,
biological sex and TMS targeting method (i.e., functional or anatomical). The final model 
reported in the results section included the main effects of age and VGSC excitability at 
the L-PFC target as well as their interaction. 

To determine the relation of spontaneous excitation/inhibition balance, during resting-
state EEG, with p-tau181 concentration, in the full sample (n=648), we analogously used 
stepwise general linear modeling. The starting model included all possible main effects 
and interactions of spontaneous excitability, age, and biological sex. The final model 
reported in the results section included the main effects of age and spontaneous 
excitability, as well as their interaction. Due to the gamma-like distribution of p-tau181 
values in this sample, models were fitted with a gamma distribution and a “log” link 
function.

To compare the predictive value of the spontaneous excitation/inhibition balance and 
perturbation-based excitability, we used an additional model including the predictors 
from both models.
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Finally, to show that cortical excitability markers are more likely related to secreted 
proteins that pass into the blood stream, rather than passively released proteins, we 
contrasted these models with NfL, by running the final models with NfL instead of p-
tau181 as the response variable. 
 
RESULTS 
 
Perturbation-based cortical excitability is positively correlated with secreted p-
tau181 after 61 years of age 
To investigate the relationship between perturbation-based cortical excitability and p-
tau181 concentration, we fitted a linear regression model with a response variable p-
tau181, and the predictors age, perturbation-based-excitability, and their interaction, 
F(43, 4)=5.86, p=.002, =.29, revealing a trend level main effect of perturbation-based-
excitability, =-.019, p=.061, and a significant interaction between perturbation-based-
excitability and age, =3.6e-4, p=.036. A Johnson-Neyman interaction analysis was used 
to further study the interaction between age and perturbation-based-excitability, 
revealing that perturbation-based-excitability significantly predicts p-tau181 
concentration starting at age 61 (Figure 2). 

 
Figure 2. Johnson-Neyman interval plot illustrating the age interval at which the relationship between perturbation-
based excitability and p-tau181 is significant (i.e., 61 to 65 years of age). n.s.= non-significant. 

To show that the relationship is specific to potentially secreted p-tau protein, rather than 
passively released proteins, we fitted a linear regression model replacing the response 
variable p-tau181 with NfL, F(43, 4)=6.32 -value, p=.001, =.31, revealing no significant 
main effect of age, p=.109, perturbation-based excitability, p=.649, or interaction 
between them, p=.556. 
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Spontaneous cortical excitation/inhibition balance is positively correlated with 
secreted p-tau181 after 54 years of age 
To investigate the relationship between spontaneous cortical excitation/inhibition balance 
and p-tau181 concentration, we fitted a general linear model with a response variable p-
tau181, and the predictors age, spontaneous-excitability, and their interactions, F(644, 
4)=5.07, p=.002, =.03, revealing a trend level main effect of spontaneous-excitability, 

=-.45, p=.060, and a significant interaction between spontaneous-excitability and age, 
=.009,  p=.029. A Johnson-Neyman interval analysis was used to probe the interaction 

between age and spontaneous-excitability, revealing that spontaneous-excitability 
significantly predicts p-tau181 concentration starting at age 54 (Figure 3). 

 
Figure 3. Johnson-Neyman interval plot illustrating the age interval at which the relationship between spontaneous 
excitability and p-tau181 is significant (i.e., 54-65 years of age). n.s.= non-significant. 

To show that the relationship is specific to potentially secreted p-tau protein, rather than 
passively released proteins, we fitted a linear regression model replacing the response 
variable p-tau181 with NfL, F(644, 4)=62.9 -value, p<.001, =.22, revealing a significant 
main effect of age, =-.021  p<.001, but no significant main effect of spontaneous-
excitability, p=.339, or interaction between age and spontaneous-excitability, p=.311. 
 
Perturbation based excitability is a better predictor of p-tau181 concentration than 
spontaneous excitation/inhibition balance 
To compare the predictive value of perturbation based excitability against spontaneous 
excitation/inhibition balance, we fitted a full linear regression model with a response 
variable p-tau181, and the predictors age, perturbation-based-excitability, their 
interaction, and spontaneous-excitability, and its interaction with age F(41, 6)=3.627, 
p=.008, =.31, revealing a trend level main effect of perturbation-based excitability, =-
.021, p=.051, and a significant interaction between perturbation-based excitability and 
age, =3.8e-04 p=.031. However, there was no significant main effect of spontaneous-
excitability, p=.834, or an interaction with age, p=.926. 
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Model comparisons between this full model and the reduced one (i.e., with only 
perturbation-based excitability, age, and their interaction as predictors), revealed that the 
reduced model is a better fit to the response variable p-tau181, because the full model is 
not significantly better than the reduced one, p=.616. Moreover, smaller Akaike 
Information Criterion (AIC) and Bayesian Information Criterion (BIC) values, as well as 
the larger Bayes factor, further support the reduced model as the better fitting of the two 
(Table 1).  
 
Table 1. Model comparisons results of the full (spontaneous+perturbation) Vs reduced (perturbation only) model. 

Regression Model AIC BIC Bayes Factor p  
Spontaneous + Perturbation 181.8 194.7 .03 .616 .31 
Perturbation only 178.9 188.1 26.9  .29 

 
DISCUSSION 
We established the relationship between cortical excitability and secreted p-tau in a 
healthy middle-aged population and did so by leveraging non-invasive and potentially 
scalable methods.  
 
As hypothesized, the more sensitive and direct marker of cortical excitability, induced by 
TMS perturbation, shows that the higher the cortical excitability, the higher the p-tau181 
concentration is. This result is consistent with the recently shown synergic relationship 

,33 
activity becomes ineffective.34 
study precludes us from directly testing this hypothesis. Moreover, our sample consists 
of healthy middle-aged adults, and it is currently unknown what is the nature of the 

 p-tau and its compounded impact on neuronal excitability in 
the healthy adult brain.  
 
Conversely, the results also show that cortical excitation/inhibition balance is positively 
correlated with p-tau181 concentration. Computational modeling, as well as evidence 
from research in mice and macaques,19 suggest that flatter slopes in the aperiodic 
component of the power spectrum might indicate an inhibitory deficit, thus stepper slopes 
might indicate that the balance is shifter towards inhibition. In this context, our results 
would indicate that the more the excitation/inhibition balance is shifted towards inhibition 
(i.e., steeper slopes) the higher the p-tau181 concentrations are. While this may appear in 
opposition with the finding obtained in the perturbation-based model, it is important to 
note that the perturbation-based marker is location specific, and more importantly, it is 
specific to VGSC excitability. Thus, it more directly reflects the excitability of pyramidal 
neurons at the stimulation site.23,24 In contrast, the spontaneous marker is an 
heterogeneous measure likely reflecting the global complex interplay of multiple 
excitatory and inhibitory neurotransmission pathways throughout the cortex.26,35 Thus, it 
lacks the spatial and neurophysiological specificity of the perturbation-based metric. 
Therefore, the relationship we observed is not directly comparable or analogous between 
spontaneous and perturbation-based metrics, and the former might not be sensitive 
enough to detect the subtle and localized excitability increases that the later revealed to 
be associated with higher ptau181 concentration.  
 
Interestingly, our results show that relationships between excitability and p-tau are 
dependent on age, becoming significant after the ages of 54 and 61 for spontaneous and 
perturbation-based excitability, respectively. There is ample evidence that in normal 
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aging there is measurable structural and functional brain deterioration of the brain,36,37 
encompassing biochemical, metabolic, cellular, and molecular changes.38 Therefore, a 
possible explanation for the non-linear associations we report here, might be that at late 
middle age, normal aging-related brain deterioration may reach a critical threshold from 

-tau might start to manifest, at least in part, 
in the form of changes in cortical excitability. Similarly, recent research on the same 
BBHI cohort also shows that even in the absence of pathology, subtle decreases in dual-
task gait performance become noticeable only after 54 years of age.39 
 
We have also shown that the relationships observed between cortical excitability markers 
and p-tau do not hold for NfL. This highlights that the presented markers of cortical 
excitability are probably related to secreted protein passing to the blood stream when 
dissolved, rather than being passively released as a byproduct of axonal damage and cell 
death. Although both NfL and tau can be either passively released or secreted into the 
extracellular space, tau secretion has been observed in a regulated manner in healthy and 
pathological conditions,40 while passive release of tau has been mostly observed as a 
byproduct of cell death or injury after an acute stroke.41 Conversely, NfL concentration 
have been shown to increase in CSF and blood proportionally to the degree of axonal 
damage, both in normal aging and in neurodegenerative diseases,25 suggesting that NfL 
is mostly passively released as a byproduct of cell injury. 
 

and our sample only includes middle aged subjects. This precludes us from exploring how 
the relationships described progress into older ages and pathology. Nevertheless, we have 
shown, for the first time, that cortical excitability changes are related to p-tau 
concentration starting at late middle age, even in the absence of obvious amyloid and tau 
pathology or cognitive decline. Research in preclinical healthy populations is crucial if 
we are to detect individuals at risk of developing disease and be able to delay or prevent 

-tau 
buildup early on. In this regard, we have shown that readily available blood-based 
biomarkers and non-invasive electrophysiology can be used to study the associations 
between cortical excitability and proteins implicated in the pathophysiology of 
neurodegenerative disorders. This is important from an early disease detection standpoint, 
but also provides neurophysiological insights about the relationships between p-tau and 
cortical excitability, which represents a potentially modifiable and complementary target 
to combat disease early on, as cortical excitability can be effectively reduced using 
pharmacological and non-invasive brain stimulation interventions. 
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Automated preprocessing pipeline for resting EEG 

First, data is down-sampled to 250Hz and high pass filtered at 1Hz. Then line 

noise at 50Hz and harmonic frequencies is further attenuated using the Cleanline 

algorithm (Mullen, 2012). Excessively noisy or disconnected electrode channels are 

detected using the clean_artifacts function (Kothe & Makeig, 2013) and spherically 

interpolated from neighboring channels. Data is then re-referenced to the average of all 

channels. Next, the continuous electroencephalogram (EEG) is segmented into non-

overlapping two-second-long epochs. Finally, a custom-made function detects and 

removes noisy epochs based on Kurtosis, joint probability, and amplitude thresholding 

(±100 μV). 

 

Structural MRI acquisition parameters 

All participants received T1- and T2-weighted anatomical MRI scans, which 

served as a basis for neuronavigation and EEG source reconstruction. These high-

resolution (0.8x0.8x0.8mm3) scans included a 3D MP-RAGE T1-weighted structural 

MRI from a 3T Siemens Magnetom Prisma at the Unitat d’Imatge per Ressonància 

Magnètica IDIBAPS (Institut d’Investigacions Biomèdiques August Pi i Sunyer) at 

Hospital Clínic de Barcelona. The T1 scan comprised 208 axial slices captured 

sequentially with specific parameters (TR = 2400ms, TE = 2.22ms, TI = 1000ms, flip 

angle = 8º, slice thickness = 0.8 mm, and FOV = 256mm). Similarly, a 3D SPC T2-

weighted MRI was acquired using the same equipment, with its own set of parameters 

(rTR = 3200ms, TE = 563ms, flip angle = 120º, slice thickness = 0.8 mm, and FOV = 

256mm). María Cabello-Toscano and Lídia Mulet-Pons meticulously checked the images 

for quality, ensuring no MRI artifacts or excessive motion were present. The T1 images 
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facilitated neuronavigation, while both T1 and T2 images contributed to producing 

detailed segmentations and meshes vital for EEG source reconstruction. 

 

TMS target determination procedures 

For the 27 subjects recorded during 2018, personalized targets subjects were 

identified anatomically. The superior portion of the middle frontal gyrus, about 3 cm 

ahead of the precentral sulcus, was the focus for Left Prefrontal Cortex (L-PFC) 

stimulation. Similarly, the Left Inferior Parietal lobule (L-IPL) aimed at the top edge of 

the angular gyrus, nearly 1 cm below the intraparietal sulcus. For the subsequent 20 

participants recorded from 2019 to 2020, target identification relied on the group-level 

analysis of the seven functional networks parcellation by Yeo et al. (2011), employing a 

technique initially proposed by Ozdemir et al. (2020). This method utilized confidence 

maps from a 1000-healthy subject dataset, where each vertex was assigned a confidence 

score between -1 and 1, indicating its association with a specific network. The most stable 

and reliable areas within the angular gyrus and middle frontal gyrus were chosen at the 

group level. Each subject's T1 image was linearly transformed into MNI space and then 

inversely transformed back to individual native space using the FSL’s FNIRT tool 

(Woolrich et al., 2009). These coordinates where used to guide precise stimulation using 

a BrainSight neuronavigation system (RogueResearch, Inc., Canada). 

Anatomically targeted mean MNI coordinates were x=-44, y=-67, z=44 for IPL and 

x=-33, y=37, z=48 for L-PFC. Functionally targeted coordinates were x=-53, y=-51, z=18 

for IPL and x=-43, y=34, z=42 for L-PFC, as depicted in Figure S1 on the MNI template. 

To explore the impact of the targeting method on relevant predictors, an interaction term 

for each perturbation-based marker (i.e., at each target) was integrated into the main 

statistical analysis. 
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Source localization of TMS evoked potentials 

Brainstorm software (Tadel et al., 2019) was employed for source reconstruction. 

A forward model was created for each participant using the openMEEG algorithm (Kybic 

et al., 2005). The process adhered to standard settings, including three layers with 1922 

vertices each, skull and scalp conductivities set at 1, and a brain conductivity of 0.0125, 

along with adaptive integration. This model was formulated based on each individual's 

T1 and T2 weighted MRI scans and the positions of electrodes as recorded. The minimum 

norm imaging method (Salmelin & Baillet, 2009) was then used to estimate the inverse 

solution. Subsequently, sources were derived as current density maps, with a focus on 

constrained orientations, specifically normal to the cortex).

Fig. S1. The average coordinates for L-IPL and L-DLPFC from each targeting technique 

were superimposed on the MNI template. The regions of interest (ROIs) were highlighted 

DLPFC
IPL
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in yellow and red, representing the projected areas of the PFC and IPL, respectively. 

These projections were derived from the 17-network Schaefer partition of the Yeo atlas 

(Schaefer et al., 2018). Figure extracted from supplementary materials of Perellón-

Alfonso et. al. (Perellón-Alfonso et al., 2022). 
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CHAPTER 4. General Discussion 

In this thesis, comprised of three studies, we have unveiled novel candidate 

biomarkers of brain health in the context of mental health resilience, schizophrenia, 

and early Alzheimer’s disease. Importantly, this has been accomplished using non-

invasive and scalable methods, consisting of resting state and task-based EEG, 

concurrent TMS-EEG, and blood-based p-tau and NfL concentration measurements. 

Thus, we have shown that EEG —by itself or in combination with transcranial magnetic 

stimulation— can be effectively used to reveal potential biomarkers for a variety of 

brain health challenges. Indeed, the conditions that are the object of this thesis, are, at 

the fundamental level, intrinsically related; they involve risk factors or disfunctions 

which are grounded in inhibitory and excitatory neuronal processes that are essentially 

electrophysiological in nature and, hence, can be potentially captured and interfered 

with EEG and TMS, respectively. Moreover, the findings reported here advance our 

understanding of the neurophysiological mechanisms underlying the resilience or 

vulnerability to psychosocial stressors, here associated with the COVID-19 pandemic; 

the subtle oscillatory abnormalities in working memory subprocesses in cognitively 

preserved schizophrenia patients; and the associations between cortical excitability 

and proteins implicated in AD pathology. It is also worth noting that the populations 

sampled in these three studies are healthy, or asymptomatic, which showcases the 

sensitivity of the proposed biomarkers to detect subtle potential abnormalities, even in 

the absence of obvious pathology. This underscores the potential of these candidate 

biomarkers to capture warning signs of intrinsic vulnerability, subtle disfunction or 

impending pathology. This predictive capability is of crucial importance for early 

detection and, hence, to provide a preclinical window of opportunity to implement 

timely interventions to prevent the occurrence of pathology, ameliorate symptoms, or 

even delay their onset and, hence, promote the best possible functional outcome, that 

is, optimal brain health. In this context, the choice of electrophysiological correlates in 

this thesis, has the intended benefit of informing potential interventions that could 

effectively modify them, with the specific corollary objectives of promoting mental 

health resilience, ameliorating the cognitive impact of oscillatory abnormalities in 

schizophrenia, and reducing the spread of protein pathology in preclinical AD. As 
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described in greater detail in the introduction chapter, we can modulate brain activity 

by tapping into the excitatory and inhibitory processes of the brain using either 

pharmacological interventions or electric and magnetic brain stimulation techniques. 

In the first study, we presented a toy-model concept to investigate candidate 

biomarkers of resilience and vulnerability to the deleterious mental health impacts of 

the psychosocial stressors of the COVID-19 pandemic and associated lockdowns. We 

used a controlled TMS brain perturbation to model the stressor, and the EEG reactivity 

to it to model the organism response. The idea that single pulse TMS can be 

understood as a “perturbation” or temporary insult might be considered controversial, 

as typically the term has been tied to lesional rTMS protocols that effectively inhibit a 

particular brain function, such as in speech arrest paradigms, whereby a short (i.e., few 

seconds) train of TMS pulses is delivered at 2Hz over the inferior frontal gyrus while the 

subject counts backwards (Borowczyk et al., 2022). However, there is evidence that a 

single TMS pulse interferes with brain activity by injecting a current that effectively 

disrupts endogenous electrical brain activity. In support of this point of view, 

concurrent TMS-EEG studies have shown that the pulse induces phase resetting — an 

external event related change in brain oscillatory activity— (Rocchi et al., 2018), and 

possibly reflects deterministic properties of the stimulated neuronal circuits that 

propagate through anatomically and functionally connected brain regions (Casarotto et 

al., 2010; Momi et al., 2021). Moreover, evidence from research in epilepsy shows that 

single pulse TMS stimulation can trigger a cascade of synchronous neuronal excitability 

resulting in epileptiform discharges (Kimiskidis, 2019; Kimiskidis et al., 2017), which is 

suggestive of the perturbational nature of the stimulus. Further supporting this notion, 

it has been shown that the fMRI and EEG response profile to single pulse TMS in 

patients with epilepsy was consistent with hyperexcitability. If we are therefore 

defining single pulse TMS as a brain perturbation, we can also consider it a stressor or 

transitory insult to the brain. 

This non-invasive perturbation modeling approach, combining EEG and TMS to 

predict the mental health outcome of psychosocial stressors associated with the 

COVID-19 pandemic, revealed that subjects who experienced a measurable negative 
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impact in mental health, also had an exaggerated EEG evoked response to the 

controlled and targeted TMS perturbation —months before the pandemic— when 

compared to those who had no negative impact. The revealed signature was localized 

to the left prefrontal cortex (L-PFC), as there were no group differences after 

stimulation of the left inferior parietal lobule (L-IPL), which served as control, nor when 

comparing the global whole-brain response to stimulation. The groups significantly 

separated in the TMS evoked EEG response of the L-PFC between 202 and 262ms after 

the pulse.  This time-window overlaps with the 160-240ms time-window when the 

P180 component typically occurs, which possibly reflects VGSC-mediated excitability. 

Pharmacological studies have shown that VGSC blockers can effectively inhibit this TMS 

evoked EEG component (G Darmani et al., 2019; I Premoli et al., 2017). Moreover, the 

evoked responses 180ms after the pulse have also been shown to be modulated by 

GABA-B inhibitory interneurons, as the evoked response is effectively reduced after 

application of long-interval intracortical inhibition, using paired-pulse TMS paradigms 

(de Goede et al., 2020). Therefore, we can interpret this resilience signature as 

reflecting the brain's capacity to withstand or successfully inhibit a stressor, transient 

insult, or disturbance of a critical node or anchor within the networks and brain regions 

underlying psychological resilience. Importantly, the discovery that vulnerability might 

be linked to the disruption of parvalbumin-positive cells (i.e., the largest group of 

GABAergic interneurons) and, consequently, of perineuronal nets, which encase these 

cells and play a pivotal role in neurodevelopmental and post-injury plasticity (Fawcett 

et al., 2019), underscores the potential translatability of this candidate biomarker to 

pathologies involving disruption of these neuronal populations. Such pathologies 

include traumatic brain injury, schizophrenia, or Alzheimer's disease (AD), where we 

can thus conceivable predict that these conditions would be associated with a loss of 

resilience and increased susceptibility to stressors, as suggested by epidemiological 

findings on the presence of psychiatric comorbidities in these disorders (Buckley et al., 

2009; Ehrenberg et al., 2018; Hammond et al., 2019). Finally, the revealed resilience 

signature could serve explain the considerable variability observed in mental health 

trajectories during the pandemic and associated lockdowns observed in a recent two-

year post-COVID 19 outbreak follow-up (Bayes-Marin et al., 2023).  
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In the second study we investigated subtle oscillatory abnormalities in 

schizophrenia patients, using EEG during a visual WM task. Contrary to our initial 

hypothesis, we show that our sample of patients do not exhibit lesser working memory 

performance nor higher reaction time variability than healthy matched controls. We 

also did not see any significant differences in the EEG event related response —

contralateral delay activity (CDA)— that indexes neural memory capacity during the 

task. This supports that our sample of patients had preserved working memory 

performance and could be considered high-functioning individuals, which typically 

perform comparably to healthy controls in cognitive tasks (Heinrichs et al., 2015; 

Rentrop et al., 2010b), and do not exhibit WM related differences in CDA amplitude or 

latency (Light et al., 2010; So et al., 2018). This is further supported by the fact that our 

patients were asymptomatic at the time of recruitment and were engaged in 

psychodynamic psychotherapy, which has been shown to positively correlate with 

overall functional outcome (Modesti et al., 2023). However, even in high-functioning 

patients, it is thought that working memory related subprocesses are still 

fundamentally affected. However, due to either above average cognitive performance 

or successful compensatory mechanisms —such as attentional hyperfocus— these 

abnormalities are masked, effectively yielding normal working memory performance 

(Luck et al., 2019).  However, a data driven approach on the oscillatory components of 

the EEG evoked response, revealed that patients had significantly lower alpha 

suppression in all phases of the working memory task (i.e., task preparation, memory 

encoding, maintenance, and retrieval), when compared to controls. There is ample 

evidence of abnormalities in the alpha band, which plays a crucial role in basic 

processes subtending cognitive functioning, such as long-range brain synchrony and 

top-down control (Doesburg et al., 2009; Scheeringa et al., 2012; Von Stein et al., 2000) 

—fundamental drivers of functional connectivity— and, importantly, attentional and 

cortical inhibitory processes (Jensen and Mazaheri, 2010; Klimesch, 2012; Klimesch et 

al., 2007; Thut et al., 2006), which have been found to be consistently affected in 

schizophrenia (Lewis et al., 2005; Radhu et al., 2015; Trajkovic et al., 2021). Our results 

coincide with previous findings reporting decreased alpha suppression in schizophrenia 

spectrum during working memory, suggestive of inhibitory deficits (Doesburg et al., 

2009; Erickson et al., 2017; Kustermann et al., 2016; Ramyead et al., 2019), likely 
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related to known disfunctions in parvalbumin-positive cells in schizophrenia (Kaar et 

al., 2019). We then implemented a custom machine learning architecture, 

incorporating the attention mechanism, which was used to differentiate patients from 

controls based on standardly preprocessed EEG data alone. This interpretable model 

revealed that the temporal windows throughout the WM task time-course that were 

most discriminative between patients and controls, overlapped with the task phases 

which were also found to be significantly different between groups in the exploratory 

oscillatory analysis. This indicates that the machine learning model was able to detect 

the same oscillatory abnormalities, indicative of inhibitory deficits in schizophrenia. 

This shows that interpretable machine learning models can be used to distinguish 

patients from controls, even when cognitive performance is preserved, and at the 

same time, provide mechanistic insights on the neurophysiological underpinnings of 

the disease. Therefore, we have shown that decreased event related desynchronization 

of alpha oscillations during working memory is a sensitive candidate biomarker for 

schizophrenia detection and differentiation —linked to inhibitory deficits— that can be 

revealed by either time-frequency decomposition of the EEG or interpretable machine 

learning models, which showcases the potential for individual diagnostic applications in 

a precision psychiatry framework. 

In the third study we established, for the first time, the relationship between 

cortical excitability and p-tau in a healthy middle-aged population, by leveraging non-

invasive methods. We have shown that p-tau concentration in plasma is partially 

explainable by spontaneous and perturbation-based excitability metrics. Specifically, 

higher perturbation-based excitability, as indexed by the late components (i.e., 160-

240ms) of the TMS evoked EEG response, is correlated with higher concentrations of p-

tau. It h

excitability (Busche et al., 2019), when considered independently; the former would 

promote excitability (Palop and Mucke, 2016) and the latter inhibition 

al., 2019). Recent findings however, 

(Busche and Hyman, 2020; DeVos et al., 2018).  Moreover, it has also been shown that 

-tau, possibly through the promotion of 
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neuronal excitability (Pichet Binette et al., 2022). Therefore, our results might reflect 

this synergic relationship, which would predict both higher levels of p-tau as well as 

higher excitability. Conversely, and contrary to our initial hypothesis, the spontaneous 

EEG metric of inhibition/excitation balance, showed that the stepper the slope of the 

aperiodic component of the EEG spectra —meaning the balance is shifted towards 

inhibition—, the higher the p-tau concentration. However, it must be noted that this 

metric is an heterogeneous measure possibly reflecting the complex interaction of 

excitatory and inhibitory intraneuronal populations (Ahmad et al., 2022), which 

precludes direct quantification of net excitation and inhibition. In contrast, the 

perturbation marker reflects VGSC mediated excitability, which more directly quantifies 

net cortical pyramidal neuron excitability, regardless of interneuron interactions. 

Moreover, the results further show that the perturbation marker is more sensitive than 

the spontaneous one, as it better predicts p-tau concentrations in a subsample an 

order of magnitude smaller. Importantly, we also found that the correlation between 

excitability and p-tau concentration becomes significant only at late middle age. These 

non-linear relationships with age could indicate early potentially pathological processes 

, related to changes associated with the aging brain. It is well known that, 

even in non-pathological aging, there is widespread brain deterioration, with changes 

spanning from the molecular and cell level up to and including whole brain systems 

(Fjell and Walhovd, 2010; Lee and Kim, 2022; Tomasi and Volkow, 2012). Finally, we 

have shown that cortical excitability is related to secreted p-tau, rather than passively 

released proteins, such as NfL. This is significant, as it shows that cortical excitability is 

likely associated with p-tau secretion, which stands as a fundamental driver in AD 

pathology in its early stages. This underscores the potential relevance of the proposed 

candidate biomarkers for early detection of protein pathology implicated in AD. 

In this thesis we have discovered three candidate biomarkers of brain health 

that are relevant to fundamental pathological threats, based on non-invasive, readily 

available methods, and thus potentially scalable and translatable to a clinical 

preventive and diagnostic screening scenario. Studies 1 and 3 leveraged the same 

sample of participants, belonging to the Barcelona Brain Health Initiative project 

(Cattaneo et al., 2018), to show that using TMS to transitorily perturb ongoing brain 
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activity can reveal preclinical EEG signatures of inhibitory and excitatory processes with 

high spatial and neurophysiological specificity, that are predictive of an individual’s 

brain health status and potential resilience. Specifically, in study 1 we have shown that 

we can model the future mental health impact —months later— of psychosocial 

stressors, by encouraging a brain reaction in a controlled experimental framework by 

using TMS perturbations. Similarly, in study 3 we have shown that the same 

methodology can be used to tap into the role of cortical excitability in protein secretion 

mechanisms implicated in the early stages of AD. In study 2, we selected a sample of 

asymptomatic and likely high-functioning schizophrenia patients to investigate subtle 

oscillatory abnormalities associated with inhibitory deficits in working memory, 

showcasing the potential of interpretable machine learning algorithms to detect these 

EEG signatures and use them to differentiate patients form controls, even when 

conventional neuropsychological and psychophysics methods could not distinguish 

them. All three of the identified correlates of brain health are grounded on and reflect 

the excitatory and inhibitory processes that constitute causative neurophysiological 

disfunctions in synaptic transmission of highly prevalent neuropsychiatric and 

neurodegenerative disorders. 

These studies were intrinsically limited by the characteristics of the samples and 

other methodological constraints. In study 1 and the subsample receiving TMS-EEG in 

study 3, some of the subjects received stimulation based on anatomical targeting while 

others based on functionally determined targeting, while the topographic distances 

between targets where relatively small, this introduced an additional variable that 

needed to be accounted for, however this was controlled directly in statistical analysis 

in each study by adding a targeting method interaction term to the predictors of 

interest. Moreover, in this sample not all participants completed stimulation at both L-

PFC and L-IPL stimulation targets; for study 1 this required running regression analysis 

for each target separately, potentially hindering statistical power. Moreover, in study 1, 

the mental health changes during the pandemic timepoints sampled, when compared 

to pre-pandemic measurements, were relatively small, in most cases not reaching 

clinical thresholds for anxiety and depression. Therefore, the predictive clinical value of 

the revealed resilience and vulnerability signatures would have benefited from a 
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sample incorporating a sufficient sample of clinically affected individuals. In study 3 

participants were healthy middle-aged individuals, therefore, while the revealed 

relationships of cortical excitability and p-tau might be relevant to AD pathology, 

further validation on early-stage AD patients or older individuals would be needed to 

corroborate the relationships observed and determine how they might change with 

aging and the onset of protein pathology. Moreover, in study 3 our interpretation of 

sample. Nevertheless, given the known high correlation between PET- -tau181 

concentration in plasma (Mielke et al., 2018), it is reasonable to assume that higher 

concentration of p- 2, to properly 

validate the differential diagnostic value of the detected oscillatory signature and 

evaluate its potential in tackling the heterogeneity problem in psychiatry, it would be 

necessary to include different subtypes of schizophrenia with varying degrees of 

working memory impairment, as well as other disorders presenting similar 

impairments and dysfunctions in working memory subprocesses, such as bipolar 

disorder (Saldarini et al., 2022).  

Despite these limitations, the proposed candidate biomarkers reflect excitatory 

and inhibitory processes that are known to play a fundamental role in the 

neruophysiopathology of mental health and neurodegenerative disorders. This is 

important, because as described in greater detail in the introduction chapter, synaptic 

transmission can be effectively modified via non-invasive brain stimulation protocols. In 

study 1,  we showed that hyperactivity in response to a TMS perturbation of the L-PFC 

was predictive of higher mental health vulnerability to psychosocial stressors, we 

argued this excitability could be caused by deficient GABAergic inhibition. Moreover, 

while the resilience ‘toy model’ we proposed was applied to the psychosocial stressors 

associated with the COVID-19 pandemic and lockdowns, this model is meant to be 

translatable to resilience when facing other potentially stressful scenarios, such as hip 

replacement surgery (Zhang et al., 2022) or exposure to potential trauma (e.g., disaster 

relief or warzone workers), as well as . Therefore, a plausible intervention would 

consist in promoting inhibition at the L-PFC via low frequency rTMS, cTBS or cathodal 

tDCS, thus potentially increasing resilience by targeting the hypothesized inhibitory 
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disfunction at the critical L-PFC target. Similarly, in study 2 we have shown that high-

performing schizophrenia patients exhibit alpha suppression abnormalities in bilateral 

parietal-occipital cortex, which is likely related to deficient inhibition in critical 

subprocesses of working memory  (i.e., task preparation, encoding, maintenance and 

retrieval). Therefore, a plausible intervention would consist in promoting inhibition of 

the parietal-occipital cortex using low-frequency rTMS, cTBS, or cathodal tDCS. Finally, 

in study 3 we have shown that higher cortical excitability is correlated with higher p-tau 

concentrations, which likely promotes the spread of tau pathology throughout the 

cortex. Current interventions targeting the removal of A  and tau could be 

complemented by targeting the hypothesized mediating mechanism —cortical 

excitability. Thus, a plausible intervention would consist in promoting inhibition as an 

addon treatment to protein removal therapies, whereby low-frequency rTMS, cTBS or 

cathodal tDCS would be delivered over a tau epicenter, such as the temporal cortex 

(Figure 8).  
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Figure 8. Proposed workflow from candidate biomarkers, through dysfunctional 

mechanisms, to biomarker-informed NIBS intervention. A) illustrates the perturbation-

based EEG signature of resilience. Extracted from Perellón-Alfonso et al., (2022). B) 

Illustrates the oscillatory EEG signature of WM disfunction in schizophrenia. Modified 

from Perellón-Alfonso et al., (2023). C) Illustrates the perturbation-based EEG cortical 

excitability marker of p-tau concentration. Original made with R version 4.2.3 (R 

Foundation for Statistical Computing, Vienna, Austria). D) Schematic of synaptic 

transmission dysfunction rooted in GABAergic inhibitory deficits. Original made with 

BioRender.com. E) Schematic illustration of excitability mediated transsynaptic spread 
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of tau pathology in AD. Adapted from Binette et. al., (2022). F) and G) illustrate the 

proposed inhibitory TES and TMS interventions. Original made with BioRender.com.  

Remarkably these interventions are inexpensive, readily available and produce 

minimal or no side effects. TMS is delivered through expensive equipment that 

requires trained and experienced technicians to operate it, therefore treatments must 

be administered at a clinic and typically require multiple daily sessions to produce long-

lasting plastic changes. In contrast, transcranial electric current stimulation is relatively 

inexpensive and can be delivered at home with minimal remote guidance (Paneva et 

al., 2022), which offers a solution potentially scalable to mass population usage. This is 

supported by a growing number of successful home TES clinical trials targeting mental 

health disorders, such as depression and anxiety, or neurologic disorders affecting 

cognition, such as dementia or multiple sclerosis (Antonenko et al., 2022; Charvet et 

al., 2023b, 2023a; Pilloni, 2023; Pilloni et al., 2022; Silva-Filho et al., 2022). These 

studies have shown that home-based neuromodulation using TES is feasible and safe in 

a variety of conditions. For instance, in a recent pilot study not included in this thesis, 

we stablished the feasibility and safety of a home-based TES intervention targeting the 

left angular gyrus, which produced memory performance improvements in all 

participants (Cappon et al., 2023). 
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CONCLUSIONS 

 

1. Mental health resilience can be modeled as the brain's response to a controlled 

perturbation that predicts future vulnerability to psychosocial stressors associated 

with the COVID-19 pandemic and indicates potentially decreased inhibitory 

capacity. 

 

2. Interpretable machine learning algorithms can detect inhibitory deficits in 

schizophrenia based on electroencephalographic data alone, even when cognitive 

performance is preserved. 

 

3. Electroencephalography markers of cortical excitability are associated with plasma 

p-tau concentration in healthy middle-aged subjects, aligning with the putative role 

-promotion of p-tau secretion in early Alzheimer’s 

disease. 

 

4. Spontaneous and perturbation-based electroencephalography revealed non-

invasive candidate biomarkers of brain health that are rooted in inhibitory and 

excitatory synaptic transmission. 
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