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Abstract
Let A and A′ be abelian varieties defined over a number field k of dimension g ≥ 1.
For g ≤ 3, we show that the following local-global principle holds: A and A′ are
quadratic twists of each other if and only if, for almost all primes p of k of good
reduction for A and A′, the reductions Ap and A′

p are quadratic twists of each other.
This result is known when g = 1, in which case it has appeared in works by Kings,
Rajan, Ramakrishnan, and Serre.We provide an example that violates this local-global
principle in dimension g = 4.

1 Introduction

1.1 Main result

Let k be a number field and let A be an abelian variety defined over k of dimension
g ≥ 1. We will denote by Aψ the twist of A corresponding to a given 1-cocycle
ψ : Gk → Aut(AQ), where Gk denotes the absolute Galois group of k. We will say
that an abelian variety A′ defined over k is a quadratic twist of A if it is isogenous over
k to Aχ for some (possibly trivial) quadratic character χ : Gk → {±1} ⊆ Aut(AQ).
Let �k be the set of nonzero prime ideals of the ring of integers of k. For p ∈ �k ,
denote by kp the residue field of k at p, and if p is of good reduction for A, let Ap be the
reduction of A modulo p. Let f Ap be the the characteristic polynomial of Frobenius
relative to kp acting on an �-adic Tate module of Ap for some prime � coprime to p.
If p is of good reduction for both A and A′, we will say that A and A′ are locally
quadratic twists at p if Ap and A′

p are quadratic twists, that is, if either
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770 F. Fité

f Ap(T ) = f A′
p
(T ) or f Ap(T ) = f A′

p
(−T ) .

One easily sees that if A and A′ are quadratic twists, then

A andA′ are locally quadratic twists at almost all primes of�k . (1.1)

Throughout the article, by “almost all primes of�k” we mean “all primes in a (Dirich-
let) density 1 subset of�k”. Our main object of study will be the converse of the above
implication. The following is our main result.

Theorem 1.1 Let A and A′ be abelian varieties defined over k of dimension g ≤ 3.
Suppose that (1.1) holds for A and A′. Then A and A′ are quadratic twists.

We complement the above theorem by providing two abelian fourfolds defined
over Q that are locally quadratic twists at all odd primes, but which are not quadratic
twists. Let ap(A) denote the Frobenius trace of A at p. The above theorem is not true if
one replaces condition (1.1) by the weaker condition that ap(A) and ap(A′) coincide
up to sign for almost all p in �k . Under this weaker hypothesis, it is easy to find
counterexamples, and we give one in dimension g = 2. Both examples can be found
in §6.

1.2 Previous results

Theorem 1.1 is known if g = 1 (at least if A does not have complex multiplication
defined over k). There are different proofs of this fact in works of Serre [21, p. 324],
Kings [13, p. 90-91], and Ramakrishnan [18, Thm. B] (note that in these works the
results are generally phrased in terms of Galois representations attached to modular
forms). In the CM case, there is a closely related result by Wong [27, Cor. 1].

The dimension g = 1 case of Theorem 1.1 can also be retrieved from a general
result on �-adic representations due to Rajan [17]. More in general, as we will explain
in §2, this result implies that if two abelian varieties A and A′ satisfy (1.1), then AQ

and A′
Q
are isogenous. Refining this conclusion to the statement of Theorem 1.1 is the

goal of this article.
The above mentioned results are just a few instances of a vast literature on local-

global principles concerning abelian varieties over number fields. Our problem is
closely related to a recent result of Khare and Larsen [12]. They show that the base
changes AQ and A′

Q
are isogenous if and only if for almost1 all primes p in �k so are

the base changes Ap × kp and A′
p × kp, where kp denotes an algebraic closure of kp.

Our methods of proof and those of [12] are rather different (mainly due to the fact that
ours is a question sensitive to base change).

In fact, we only prove the local-global principle investigated in this article for
certain classes of abelian varietes. The fact that these classes end up encompassing

1 Actually in [12] it suffices to assume that a sufficiently large density of primes of �k has the required
property. Obtaining an analogous refinement of Theorem 1.1 seems an interesting question, which we have
not attempted to address in this article.
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On a local-global 771

those of dimension g ≤ 3 may be regarded as an “accident in low dimension”. This is
reminiscent of other local-global questions concerning abelian varieties over number
fields. For example, Katz [11] showed that if g ≤ 2 and for almost all p the cardinality
of Ap(kp) is divisible by some prime number m, then there exists an abelian variety
A′ isogenous to A such that m divides the order of the torsion subgroup of A′(k); he
also showed that this fails to be true if g ≥ 3.

1.3 Outline of the article

The methods employed to prove Theorem 1.1 all involve the study of the �-adic
representation �A,� attached to the abelian variety A. Let us briefly summarize them.
We will say that a subset A of the set of abelian varieties defined over the number
field k satisfies the local-global QT principle if any pair of abelian varieties in A that
satisfy (1.1) are quadratic twists.

In §2, we record some background results. We start by deriving some consequences
of Faltings isogeny theorem; this implies, for example, that if A and A′ satisfy (1.1),
then A and A′ share the same endomorphism field K . We then show that the result
by Rajan mentioned above implies that the local-global QT principle holds for those
abelian varieties A such that End(AQ) = Z. We conclude §2 by describing some con-
nections with the theory of Sato–Tate groups. Our proof of Theorem 1.1 is independent
of the Sato–Tate conjecture, but it does benefit from the classification of Sato–Tate
groups of abelian varieties of dimension ≤ 3.

Suppose that A and A′ satisfy (1.1). The main results of §3 are two variants of
Rajan’s theorem that build on [22]: Theorem 3.1 applies when �A,� has an unrepeated
strongly absolutely irreducible factor; Theorem 3.3 shows that, under a certain techni-
cal assumption, the base changes AK and A′

K are quadratic twists. A common strategy
in later sections consists on first applying Theorem 3.3, and then using arguments spe-
cific to the situation of interest to descend the validity of the local-global QT principle
from K to k.

In §4, we consider families of abelian varieties for which the methods described in
the previous paragraph fail to apply. Those include abelian varieties that are geomet-
rically isogenous to the power of an elliptic curve. In this case, the Tate module tensor
decompositions obtained in [5] allow to translate our problem concerning �-adic rep-
resentations of degree 2g into one concerning Artin representations of degree g. This
reduction by half in the degree of the representations turns out to be crucial. Indeed,
the corresponding local-global principle for Artin representations is almost immediate
when g is odd, and, while it can fail for even g, it does hold for g = 2. This can be seen
by means of reinterpreting Ramakrishnan’s theorem [18, Thm. B] in the context of
Artin representations. Hence, Ramakrishnan’s theorem, originally conceived to treat
the dimension g = 1 case of our problem, ends up playing an important role in its
generalization in dimension g = 2. In §4.3, we show that produtcs of geometrically
pairwise nonisogenous elliptic curves with complex multiplication satisfy the local-
global QT principle. In this section, we use Hecke’s equidistribution theorem [10] at
several points; this is natural and intuitive, but it would have sufficed to use instead
results from [22].
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772 F. Fité

In §5, we complete the proof of Theorem 1.1. The proof takes into account the
different possibilities for End(AQ)⊗Q.Many caseswere covered in previous sections.
Other cases, as mentioned above, involve invoking Theorem 3.1 or Theorem 3.3, and
then providing a few adhoc arguments. As an example of the latter, wemention the case
in which A is isogenous to the product of an elliptic curve E and and abelian surface B
such that Hom(EQ, BQ) = 0. If E does not have CM, then Theorem 1.1 immediately
follows from Theorem 3.1. However, if E has CM, Theorem 3.1 essentially only
provides two quadratic characters χ and ψ such that A′ ∼ Eχ × Bψ . That one can
take χ = ψ is the content of Proposition 5.6.

1.4 Notation and terminology

Throughout the article, k is a number field, and A and A′ are abelian varieties defined
over k of dimension g ≥ 1. All algebraic extensions of k are assumed to be contained
in a fixed algebraic closure Q of Q. If L/k is one such field extension, then we
will write GL to denote the absolute Galois group Gal(Q/L), and AL to denote the
base change A ×k L . We denote by End0(A) the endomorphism algebra of A, and
refer to End0(AQ) as the geometric endomorphism algebra of A. However, due to a
widely used convention, when we say that A has complex multiplication (CM), we
in fact mean that AQ has CM. Whenever it becomes necessary to ask that the CM
be defined over k, we will explicitly specify it. If E is a field and θ : Gk → GLr (E)

is a representation, then θ |L denotes the restriction of θ to GL , and θ∨ denotes the
contragredient representation of θ . We will say that θ is absolutely irreducible if θ ⊗E
is irreducible, where E denotes an algebraic closure of E .Wewill say that θ is strongly
absolutely irreducible if θ |L is absolutely irreducible for every finite extension L/k.

2 Generalities

We will derive some properties that A and A′ must satisfy in case (1.1) holds. First
we record some elementary consequences of Faltings isogeny theorem [2]; then we
describe some implications of a theorem of Rajan; finally we explain the connection
of our problem to the theory of Sato–Tate groups and derive some consequences of
their classification for abelian surfaces.

2.1 Consequences of faltings isogeny theorem

For a prime number �, let V�(A) denote the rational �-adic Tate module of A. There
is a continuous action of Gk on V�(A) which gives rise to an �-adic representation
�A,� : Gk → Aut(V�(A)). For p ∈ �k , denote by Frp an arithmetic Frobenius element
at p. By the work of Weil, if p is of good reduction for A and does not divide �, then

Lp(A, T ) := det
(
1 − �A,�(Frp)T

)
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On a local-global 773

is a polynomial of degree 2g with integer coefficients which does not depend on the
choice of �. One easily verifies that �Aχ ,� � χ ⊗ �A,� for any quadratic character χ ,
and Faltings isogeny theorem then gives that A′ is a quadratic twist of A by χ if and
only if �A′,� � χ ⊗ �A,�. Together with the fact that Lp(A, T ) coincides with the
reverse Weil polynomial T 2g fAp(1/T ) of the reduction Ap, this has the following
consequence.

Lemma 2.1 If A and A′ are quadratic twists, then they are locally quadratic twists at
every prime p which is of good reduction for both.

Throughout this article we will denote by K/k the endomorphism field of A, that
is, the minimal extension K/k such that End(AK ) � End(AQ). It is a finite and Galois
extension.

Lemma 2.2 Suppose that (1.1) holds for A and A′. Then End0(AL) and End0(A′
L)

have the same dimension for every finite extension L/k. In particular, A and A′ share
the same endomorphism field.

Proof The lemma follows from the isomorphism

End(AL) ⊗Z Q� � (
V�(A) ⊗ V�(A)∨

)GL � (
V�(A

′) ⊗ V�(A
′)∨

)GL

� End(A′
L) ⊗Z Q� .

The central isomorphism follows from (1.1) and the Chebotarev density theorem. �


2.2 Rajan’s theorem

Let Eλ denote a finite extension of Q�, and let �, �′ : Gk → GLr (Eλ) be continuous,
semisimple representations unramified outside a finite set S ⊆ �k . Consider the set

SM(�, �′) := {p ∈ �k − S | Tr(�(Frp)) = Tr(�′(Frp))} .

With the above notations, Rajan [17, Thm. 2, part i)] shows the following.

Theorem 2.3 (Rajan) Let F/k be a finite extension such that the Zariski closures of
�(GF ) and �′(GF ) are connected. If the upper density of SM(�|F , �′|F ) is positive,
then there exists a finite Galois extension L/k containing F/k such that �|L � �′|L .

Rajan’s theorem relates to the local-global QT principle by means of next lemma.

Lemma 2.4 Suppose that there exists a density 1 subset � ⊆ �k such that for every
p ∈ � there exists εp ∈ {±1} such that Tr(�′(Frp)) = εp ·Tr(�(Frp)). Then for every
finite extension F/k, the set SM(�|F , �′|F ) has a positive upper density.

Proof We first claim that there exists a density 1 subset �′ ⊆ �F such that for
every p ∈ �′ there exists χp ∈ {±1} such that Tr(�′(Frp)) = χp · Tr(�(Frp)).
Indeed, the hypothesis implies that � ⊗ � � �′ ⊗ �′. In particular, we have � ⊗
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774 F. Fité

�|F � �′ ⊗ �′|F . Hence the claim. But this implies that, if the lemma were false, then
Tr(�(Frp)) = −Tr(�′(Frp)) for all p in a density 1 subset of �F . The Chebotarev
density theorem would then imply that Tr(�|F ) = −Tr(�′|F ), which contradicts
Tr(�(id)) = Tr(�′(id)). �


Rajan’s theorem has the following consequence (see [17, Thm. 2, part iii)]).

Corollary 2.5 (Rajan) Suppose that the hypotheses of Theorem2.3 hold, and thatmore-
over � is strongly absolutely irreducible. Then there exists a finite Galois extension

L/k and a character χ : Gal(L/k) → Q
×
such that �′ � χ ⊗ �.

Proof By Theorem 2.3 there exists a finite Galois extension L/k such that �|L � �′|L .
Since � is strongly absolutely irreducible, Schur’s lemma shows that the space

HomGL (�
′, �) � (�′ ⊗ �∨)GL

is 1-dimensional. Let χ denote the character of the action of Gal(L/k) on this space.
Then

HomGk (�
′, χ ⊗ �) � HomGk

(
�′ ⊗ �∨, (�′ ⊗ �∨)GL

)
�= 0 .

Since χ ⊗ � is irreducible and has the same dimension as �′, we have �′ � χ ⊗ �. �

We will apply Theorem 2.3 when � and �′ are the �-adic representations attached

to A and A′. The following is a consequence of Rajan’s theorem.

Corollary 2.6 Suppose that (1.1) holds for A and A′. Then there exists a finite Galois
extension L/k such that AL and A′

L are isogenous.

Proof There exists a finite extension F/k such that the Zariski closures of �A,�(GF )

and �A′,�(GF ) are connected. By Lemma 2.4, the representations �A,�|F and �A′,�|F
satisfy the hypotheses of Theorem 2.3. Hence, there exists a finite Galois extension
L/k containing F/k such that �A,�|L � �A′,�|L , and so AL and A′

L are isogenous. �

We now use the above corollaries to show that the local-global QT principle holds

for abelian varieties with trivial geometric endomorphism ring.

Corollary 2.7 Suppose that End(AQ) � Z and that (1.1) holds for A and A′. Then A
and A′ are quadratic twists.

Proof By Faltings isogeny theorem, for every finite extension L/k we have an
isomorphism

EndGL (V�(A)) ⊗Q�
Q� � End(AL) ⊗Z Q� � Q� ,

which implies that�A,� is strongly absolutely irreducible. ByCorollary 2.5, there exists
a finiteGalois extension L/k and a characterχ ofGal(L/k) such that�A′,� � χ⊗�A,�.
Again by Faltings isogeny theorem, there is an isomorphism

HomGL (V�(A), V�(A
′)) � Hom(AL , A′

L) ⊗Z Q� � Q�(χ) ,
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On a local-global 775

whereQ�(χ)meansQ� equipped with the action of Gal(L/k) via χ . Hence Gal(L/k)
acts on Hom(AL , A′

L) � Z via χ , and thus χ must be quadratic. �


2.3 The connection with Sato–Tate groups

Throughout this section suppose that A and A′ have dimension g ≤ 3. The Sato–Tate
group of A, denoted ST(A), is a closed real Lie subgroup of USp(2g), only defined up
to conjugacy. It captures important arithmetic information of A and it is conjectured
to predict the limiting distribution of the Frobenius elements attached to A. See [1]
for its definition in our context; see [23] for a conditional definition in a more general
context. Let us denote by ST(A)0 the connected component of the identity in ST(A),
and by π0(ST(A)) the group of components of ST(A).

Lemma 2.8 Suppose that (1.1) holds for A and A′. Then

π0(ST(A)) � π0(ST(A′)) and ST(A)0 � ST(A′)0 .

Proof By Lemma 2.2, A and A′ have the same endomorphism field K/k, and by
[6, Prop. 2.17], there is an isomorphism π0(ST(A)) � Gal(K/k). The second
isomorphism follows from Corollary 2.5 and [1, Rem. 3.2]. �


For every p ∈ �k of good reduction for A, one defines a semisimple conjugacy
class sp of ST(A) as in [6, Def. 2.9]. The Sato–Tate conjecture for A is the prediction
that the sequence {sp}p, where the indexing set of primes is ordered by norm, is
equidistributed with respect to the projection of the Haar measure of ST(A) on its set
of conjugacy classes. The characteristic polynomial

∑
i ai T

i ∈ R[T ] of an element
of USp(2g) is monic and palindromic, and it is hence determined by the g-tuple
a = (a1, . . . , ag). If we denote by Xg the set of g-tuples obtained in this way, then
there is a bijection Conj(USp(2g)) � Xg . Let ap denote the image of sp under the
map

Conj(ST(A)) → Conj(USp(2g)) � Xg .

We will denote by μ the projection on Xg , via the above map, of the Haar measure of
ST(A). Define similarly s′

p, a
′
p and μ′.

Let π(x) denote the number of primes p in �k of good reduction for A such that
Nm(p) ≤ x . The Sato–Tate conjecture implies that

∫

a∈Xg

f (a)μ = lim
x→∞

1

π(x)

∑

Nm(p)≤x

f (ap) (2.1)

for every C-valued continuous function f on Xg .

Lemma 2.9 Suppose that (1.1) holds for the abelian varieties A and A′ of dimension
g ≤ 3. If the Sato–Tate conjecture holds for A and A′, then the Sato–Tate groups of
A and A′ coincide.
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776 F. Fité

Proof Given a ∈ Xg and a g-tupe of nonnegative integer numbers e = (e1, . . . , eg),
let us write ae to denote ae11 · · · aegg . By [8, Prop. 6.16] and Lemma 2.8, it suffices to
show that

∫

a∈Xg

aeμ =
∫

a∈Xg

aeμ′ (2.2)

for every e. Let w(e) denote
∑

i iei . Since −1 ∈ ST(A), we have that both members
of (2.2) are 0 if w(e) is odd. Suppose from now one that w(e) is even. If A and A′ are
locally quadratic twists at p, then s′

p = ±sp, and hence a′e
p = aep. Then (2.2) follows

from (2.1). �

Remark 2.10 Lemma 2.9 will not be used in the sequel. Since the Sato-Tate group of
an abelian variety is invariant under quadratic twist, Lemma 2.9 can be recovered from
Theorem 1.1 (without assuming the Sato–Tate conjecture).

2.4 Consequences of the classification of Sato–Tate groups

The next two results represent partial progress toward Theorem 1.1 and will be used
to simplify some proofs in subsequent sections. We use the notations for Sato–Tate
groups introduced in [6] and [8], and present in the data base [14].

Proposition 2.11 Suppose that (1.1) holds for the abelian surfaces A and A′, and:

(i) The Sato–Tate group of A is distinct from C4,1, Fac.
(ii) There exists a character χ of Gk such that �A′,� � χ ⊗ �A,�.

Then A and A′ are quadratic twists.

Proof By comparing determinants of �A,� and �A′,� we see that χ4 = 1. It will suffice
to prove that in fact χ2 = 1. Suppose that the order of χ were 4. Let � ⊆ �k denote
the density 1 set of primes p of good reduction for A and A′, of absolute residue degree
1, and such that A and A′ are locally quadratic twists at p. Define z2,0 as the upper
density of the set of primes p ∈ � such that the coefficient bp of T 2 in Lp(A, T ) is 0.
For every p ∈ � such that χ(Frp) has order 4, condition i i) implies that bp is zero. In
particular, we see that z2,0 ≥ 1/2. It is proven in the course of [20, Thm. 3] that z2,0 is
the proportion of connected components C of the Sato–Tate group of A such that, for
all γ ∈ C , the coefficient of T 2 in the characteristic polynomial of γ is 0. Interpreted
as this proportion, the quantity z2,0 can be read from [6, Table 8] (see columns ‘c’
and ‘z2’; note that z2,0 is the central term of z2). By inspection of the table, one finds
that C4,1 and Fac are the only two Sato–Tate groups of abelian surfaces for which
z2,0 ≥ 1/2. �


The next lemma accounts for cases uncovered by the previous proposition. For its
proof it is convenient to introduce the following notion. For a finite Galois extension
F/k, A will be said to have Frobenius traces concentrated in F if Tr(�A,�(Frp)) = 0
for every p ∈ �k of good reduction for A which does not split completely in F/k.
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Lemma 2.12 Let A and A′ be abelian surfaces defined over k. Let K/k denote the
endomorphism field of A. Suppose that:

(i) The Sato–Tate group of A is C4,1, Fac.
(ii) There is a character ψ of Gk such that ψ |K is quadratic and �A′,� � ψ ⊗ �A,�.

Then A and A′ are quadratic twists.

Proof Let E/k be the cyclic extension cut out by ψ . By hypothesis i i), we have that
[E : E ∩ K ] ≤ 2. Hypothesis i) implies that A has Frobenius traces concentrated in
K . If E ⊆ K , then this implies that

�A′,� � ψ ⊗ �A,� � �A,� , (2.3)

and hence A and A′ are in fact isogenous. Suppose from now on that [E : E ∩K ] = 2.
We may assume that ψ is quartic as otherwise there is nothing to show. Then
Gal(EK/k) is a group of order 8 with two normal subgroups of order 2 yield-
ing quotients isomorphic to C4. This uniquely determines the isomorphism class of
Gal(EK/k), which must be C2 × C4. In this case, one readily sees that there exists a
quadratic subextension F/k of EK/k such that EK = FK . Let χ denote the nontriv-
ial character of Gal(F/k). If follows that χ |K = ψ |K and henceψ ⊗�A,� � χ ⊗�A,�

by the fact that A has Frobenius traces concentrated in K . �


3 Variants of Rajan’s theorem

In this section, relying on the results of [22], we will prove variants of Corollary 2.5,
which will later play a crucial role in the proof of Theorem 1.1. Resume the notations
of §2.2. The following variant of Corollary 2.5 drops the condition that � and �′ be
strongly absolutely irreducible representations.

Theorem 3.1 Let �, �′ : Gk → GLr (Eλ) be continuous, semisimple representations
unramified outside a finite set S ⊆ �k . Suppose that there exists a density 1 subset
� ⊆ �k such that for every p ∈ � there exists εp ∈ {±1} such that

Tr(�′(Frp)) = εp · Tr(�(Frp)) . (3.1)

Suppose moreover that

� � �1 ⊕ �2 , �′ � �′
1 ⊕ �′

2 , �i , �
′
i : Gk → GLri (Eλ) ,

where �1 is strongly absolutely irreducible, the Zariski closure of its image is
connected, and satisfies

HomGF (�1, �2) = HomGF (�1, �
′
2) = 0 (3.2)

for every finite extension F/k. Then there exists a quadratic character χ of Gk such
that �′ � χ ⊗ �.
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778 F. Fité

Proof ByTheorem2.3, there exists a finite extension L/k such that�|L � �′
L . By (3.2),

we have �i |L � �′
i |L , and then the argument in the proof of Corollary 2.5 yields a

character χ1 satisfying �′
1 � χ1 ⊗ �1. For a p ∈ �, we may rewrite (3.1) as

(χ1(Frp) − εp) · Tr(�1(Frp)) − εp · Tr(�2(Frp)) + Tr(�′
2(Frp)) = 0 .

Let Gi (resp. G ′
i ) denote the Zariski closure of �i (Gk) (resp. of �′

i (Gk)) in GLri .
Denote by X1 the finite set im(χ1) ± 1 ⊆ Q. Choose a nonzero x1 in X1 and x2 in
{±1}. Let Wx1,x2 denote the subvariety of G1 × G2 × G ′

2 cut by the equation

x1 · Tr(g1) + x2 · Tr(g2) + Tr(g′
2) = 0 forg1 ∈ G1, g2 ∈ G2, g

′
2 ∈ G ′

2.

Note that Wx1,x2 ∩ G1 is a closed subvariety of G1. It is properly contained in G1, as
otherwise we would obtain a relation among the traces of �1, �2, and �′

2 that would
contradict (3.2). Hence, the connectedness of G1 implies that dim(Wx1,x2 ∩ G1) <

dim(G1). Let H be the (finite) union of the closed proper subvarieties Wx1,x2 ∩ G1
attached to choices of the x1, x2 as above. Then, by [22, Thm. 10, Thm. 8] the density
of the set of primes p ∈ � for which �1(Frp) belongs to H is zero. We conclude that
for every prime p in a subset of �, still of density 1, we have χ1(Frp) = εp, which in
particular implies that χ1 is quadratic. Therefore, for every p in a density 1 subset of
�k , we have Tr(�′(Frp)) = χ1(Frp) · Tr(�(Frp)), and the theorem follows from the
semisimplicity of � and �′. �


We will typically apply Theorem 3.1 when � and �′ are �A,� and �A′,�, and A has
dimension ≤ 3 and all endomorphisms defined over k (in this situation, the Zariski
closure of �(Gk) is connected; see [6, Prop. 2.17]). The following is the most basic
application.

Corollary 3.2 Let A and A′ be elliptic curves defined over k for which (1.1) holds.
Then A and A′ are quadratic twists.

Proof As recalled in §1, the result is known if �A,� is irreducible. If A is an elliptic
curve with CM defined over k, then �A,� satisfies the hypotheses of Theorem 3.1. �


The following result asserts that the local-global QT principle holds over the
endomorphism field under a mild technical hypothesis.

Theorem 3.3 Suppose that (1.1) holds for A and A′, and that, if K/k denotes the
endomorphim field of A, then the Zariski closures of �A,�(GK ) and �A′,�(GK ) are
connected. Then there exists a quadratic character χ of GK such that A′

K ∼ AK ,χ

and such that the field extension L/K cut out by χ satisfies that L/k is Galois.

Proof Suppose that AK and A′
K are not isogenous, as otherwise the result is clear.

Since the Zariski closures of �A,�(GK ) and �A,�(GK ) are connected, we can choose
a prime � such that

�A,�|K �
⊕

i

�
⊕ni
i , �A′,�|K �

⊕

i

�′⊕n′
i

i ,
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where the �i (resp. �′
i ) are strongly absolutely irreducible representations of GK pair-

wise nonisomorphic even after restriction to a finite extension of K . After reordering
the �i , Corollary 2.6 provides a finite extension L ′/K such that �i |L ′ � �′

i |L ′ . In
particular ni = n′

i . There exists a density 1 subset � ⊆ �K such that for every p ∈ �

there exists χp ∈ {±1} such that Tr(�A′,�(Frp)) = χp · Tr(�A,�(Frp)). The argument
in the proof of Corollary 2.5 shows that there exists a character χ1 of GK such that
�′
1 � χ1 ⊗ �1. For every p ∈ �, we thus have

n1(χ1(Frp) − χp) · Tr(�1(Frp)) − χp ·
∑

i≥2

ni Tr(�i (Frp))+
∑

i≥2

ni Tr(�
′
i (Frp))=0.

Arguing as in the proof of Theorem 3.1, we see that �A′,�|K � χ1⊗�A,�|K and that χ1
is quadratic. If L/K is the quadratic extension cut out by χ1, then there is an isogeny
from AL to A′

L . Hence L/k is the minimal extension over which all homomorphisms
from AQ to A′

Q
are defined, and so L/k is Galois. �


4 Products of elliptic curves

In this section we consider abelian varieties which are Q-isogenous to products of
elliptic curves. In §4.2 we examine the case of Q-isogenous factors. In this situation,
Theorem 3.1 fails to apply, but the local-global QT principle will follow by combining
theTatemodule tensor decompositions obtained in [5]with a theoremofRamakrishnan
that we recall in §4.1. Finally, in §4.3 we consider the case of a product of pairwise
geometrically nonisogenous elliptic curves with CM.

4.1 Ramakrishnan’s theorem

Let L/k be a finite Galois extension, V aQ-vector space, and θ : Gal(L/k) → GL(V )

an Artin representation. Let

adθ : Gal(L/k) → Aut(End(V )) , adθ (s)( f ) := θ(s) ◦ f ◦ θ(s)−1

denote the adjoint representation of θ . It satifies adθ � θ ⊗ θ∨. Note that if ad0θ
denotes the restriction of adθ on the subspace of trace 0 elements of End(V ), then
adθ � 1 ⊕ ad0θ , where 1 denotes the trivial representation.

The next theorem of Ramakrishnan [18, Thm. B] shows that, in the 2-dimensional
case, θ can be recovered from ad0θ up to twist by a character (beware that Ramakrish-
nan’s original theorem applies to general �-adic representations; we will only apply it
to Artin representations).

Theorem 4.1 (Ramakrishnan) If θ, θ ′ : Gal(L/k) → GL2(Q) are Artin representa-
tions with ad0θ � ad0

θ ′ , then there is a character χ of Gal(L/k) such that θ ′ �
χ ⊗ θ .
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Proof It follows from Schur Lemma that θ is irreducible if and only if 1 is not an
irreducible constituent of ad0θ . Hence, θ

′ is irreducible if and only if θ is irreducible.
See [18, Thm. B] for the proof in the case that both θ and θ ′ are irreducible. If both θ

and θ ′ are reducible, the proof is an elementary exercise left to the reader. �

Remark 4.2 If θ, θ ′ : Gk → GL3(Q) are Artin representations such that ad0θ � ad0

θ ′ , it
is not necessarily true that there exists a character χ such that θ ′ � χ ⊗θ . To construct
an example of this, let L/k be a degree 24 Galois extension with Galois group D4×C3,
let ν denote a non-selfdual degree 2 irreducible representation of Gal(L/k), and let
ω denote the determinant of ν. One easily verifies that θ = 1 ⊕ ν and θ ′ = ω ⊕ ν

provide the desired example.

We will be concerned with the following consequence of the above theorem.

Corollary 4.3 Let θ, θ ′ : Gal(L/k) → GLg(Q) be Artin representations. Suppose that
g is 2 or odd. If for every s ∈ Gal(L/k), there exists χs ∈ {±1} such that

det(1 − θ ′(s)T ) = det(1 − χs · θ(s)T ) , (4.1)

then there exists a quadratic character χ : Gal(L/k) → Q× such that θ ′ � χ ⊗ θ .

Proof By comparing the leading coefficients of both sides of (4.1), one obtains

det(θ ′(s)) = χ
g
s · det(θ(s)) (4.2)

for every s in Gal(L/k). If g is odd, define the character χ := det(θ ′)/ det(θ). Since
it satisfies χ(s) = χs for every s, it is quadratic and θ ′ � χ ⊗ θ as desired. Suppose
next that g = 2. Then (4.1) implies that ad0θ � ad0

θ ′ . Hence by Theorem 4.1 there

exists a character χ : Gal(L/k) → Q
×
such that θ ′ � χ ⊗ θ . Taking determinants of

this isomorphism and comparing with (4.2), one finds that χ is in fact quadratic. �

Remark 4.4 The above corollary fails to hold for general even values of g. Let L/k
denote a biquadratic extension. Let ϕ and ψ denote two distinct nontrivial characters
of Gal(L/k). It is easy to verify that the degree 6 Artin representations

θ := 1⊕3 ⊕ ϕ ⊕ ψ ⊕ ϕψ , θ ′ := 1⊕2 ⊕ ϕ⊕2 ⊕ ψ⊕2 .

verify (4.1), while there is no character χ of Gal(L/k) such that θ ′ � χ ⊗ θ .

4.2 Tatemodule tensor decompositions

In this section, we consider some families of geometrically isotypic abelian varieties,
that is, abelian varieties that are Q-isogenous to the power of an (absolutely) simple
one. We will rely on the description of the Tate module of one such variety given in
[5, Thm. 1.1]. We next restate that theorem in our particular cases of interest.

Fix a complex conjugation σ in GQ. Let � be an �-adic representation of Gk

unramified outside a finite set S ⊆ �k . We will denote by �σ the �-adic representation
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defined by �σ (s) := �(σ sσ−1) for every s ∈ Gk . Given a number field F , we will
say that � is F-rational if det(1 − �(Frp)T ) ∈ F[T ] for every p ∈ �k − S. If θ is
an Artin representation with coefficients in F , we will denote by θ the representation
with coefficients in σ(F) defined by θ(s) := σ(θ(s)).

Theorem 4.5 ( [5]) Suppose that AQ is isogenous to the power of either:

(a) an elliptic curve without CM; or
(b) an abelian surface with quaternionic multiplication (QM); or
(c) an elliptic curve with CM by a quadratic imaginary field M.

Then there exists a number field F such that for every prime � totally split in F:

(i) If a) or b) hold, then

�A,� � θ ⊗Q�
� ,

where θ : Gk → GLg(F) is an Artin representation, and � : Gk → GL2(Q�) is
a strongly absolutely irreducible F-rational �-adic representation.

(ii) If c) holds, then F contains M and

�A,�|kM � (θ ⊗Q�
χ) ⊕ (θ ⊗Q�

χ) ,

where θ : GkM → GLg(F) is an Artin representation and χ, χ : GkM → Q×
�

are F-rational continuous characters. Moreover, the �-adic representations
θ ⊗Q�

χ and θ ⊗Q�
χ are in fact M-rational. Finally, if k �= kM, then

�A,� � IndkkM (θ ⊗Q�
χ) and θ ⊗Q�

χ |kM � θσ ⊗Q�
χσ |kM . (4.3)

Remark 4.6 There is a particular situation of case i) of the above theorem in which the
representations θ, � admit especially explicit descriptions. Suppose that there exists
an elliptic curve B without CM and defined over k such that AQ and Bg

Q
are isogenous

(by [4, Thm. 2.21], this happens for example whenever g is odd). Then we may take
F = Q, � = �B,�, and θ = Hom0(Bg

Q
, AQ), in which case the theorem follows from

[3, Thm. 3.1].

The above theorem is a crucial input for Theorems 4.9 and 4.11, whose proofs will
also need the following auxiliary lemma on the abundance of ordinary primes. Let p
be a prime of �k of good reduction for A lying over the rational prime p. We say that
p is ordinary if the central coefficient of Lp(A, T ) is not divisible by p, equivalently,
if g of the roots of Lp(A, T ) have p-adic valuation 0; we say that p is supersingular
if all the roots of Lp(A, T ) are of the form ζ Nm(p)−1/2, where ζ is a root of unity
and Nm(p) is the absolute norm of p.

Lemma 4.7 Suppose that AQ is isogenous to the power of an elliptic curve B. If B
has CM, say by a quadratic imaginary field M, suppose that k = kM. Then the set of
primes of ordinary reduction for A has density 1.

123



782 F. Fité

Proof We claim that a prime p of �k of good reduction for A is either ordinary or
supersingular. Indeed, let q denote Nm(p), let αp be a root of Lp(A, T ), and let

v : Q×
p → Q denote the p-adic valuation normalized so that v(q) is 1. By hypothesis,

there exists a finite Galois extension K/k such that AK is isogenous to the power
of an elliptic curve over K . If f ≥ 1 denotes the residue degree of p in K/k, then
Ap ×Fq Fq f is isogenous to the power of an elliptic curve over Fq f , and hence the

valuation v(α
f
p ) is either 0, f , or f /2. In the first two cases, p is ordinary, and in the

latter case p is supersingular. We need to show that the set S of supersingular primes
has density 0. If B does not have CM, let θ and � be as in part i) of Theorem 4.5.
If p ∈ S, then Tr(�(Fr(p))) is divisible by

√
q and hence is limited to finitely many

possibilities. By [22], this implies that S has density 0. If B has CM, let χ be as in part
i i) of Theorem 4.5. If p ∈ S, then χ(Frp) = ζ

√
q , where ζ is a root of unity whose

order is bounded in terms of g. By [22] or [10], and under the assumption k = kM ,
this implies that S has density 0. �

Remark 4.8 When g is odd and B has no CM, the above lemma admits an even simpler
proof. In this case, by Remark 4.6, there is an elliptic curve B defined over k and an
Artin representation θ such that �A,� � θ ⊗ �B,�. Thus a prime of good reduction of
A is ordinary for A if and only if it is ordinary for B. That the set of primes ordinary
for B has density 1 is well known.

Theorem 4.9 Suppose that (1.1) holds for A and A′, and that:

(i) The dimension g of A is either odd or equal to 2.
(ii) AQ is either an abelian surface with QM or isogenous to the power of an elliptic

curve without CM.

Then A and A′ are quadratic twists.
Proof By Corollary 2.6 there is a finite Galois extension L/k such that AL and A′

L
are isogenous. Hence A′ also satisfies hypothesis i i). After possibly enlarging L/k,
by Theorem 4.5, there are a number field F , Artin representations θ, θ ′ of Gal(L/k)
realizable over F , and F-rational �-adic representations �, �′ of Gk of degree 2 such
that �A,� � θ ⊗Q�

� and �A′,� � θ ′ ⊗Q�
�′, where � is a prime totally split in F . Since

�|L � �′|L and � is strongly absolutely irreducible, there is a character χ of Gal(L/k)
such that �′ � χ ⊗ �. If p ∈ �k is a prime of good reduction for A, let αp and βp be
the eigenvalues of �(Frp). By [20, Thm. 3] and Lemma 4.7, there exists a density 1
subset � ⊆ �k of primes of good reduction for A and A′ such that for every p ∈ �

the quotient αp/βp is not a root of unity, and

det(1 − (θ ′ ⊗ χ ⊗ �)(Frp)T ) = det(1 − εp · (θ ⊗ �)(Frp)T )

for some εp ∈ {±1}. Hence for every p ∈ � we have

det(1 − αp · (θ ′ ⊗ χ)(Frp)T ) = det(1 − εpαp · θ(Frp)T ) .

Since � has density 1, for every s ∈ Gal(L/k) there must be εs ∈ {±1} such that

det(1 − (θ ′ ⊗ χ)(s)T ) = det(1 − εs · θ(s)T ) .
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Since i) holds, by Corollary 4.3, there exists a quadratic character ϕ of Gal(L/k) such
that θ ′ ⊗ χ � ϕ ⊗ θ . Therefore �A′,� � θ ′ ⊗ χ ⊗ � � ϕ ⊗ θ ⊗ � � ϕ ⊗ �A,�. �

Remark 4.10 We note that the theorem above is not true for general even values of g.
Let E be an elliptic curve definedover kwithoutCM.Let A and A′ be the 6-dimensional
abelian varieties E⊗θ and E⊗θ ′, where θ and θ ′ are the Artin representations defined
in Remark 4.4. Then A and A′ are locally quadratic twists at almost all primes of �k .
However, if there were a quadratic character ε of Gk such that �A′,� � ε ⊗ �A,�, then,
arguing as in the proof of the above theorem, we would obtain that θ ′ is isomorphic
to ε ⊗ θ , which contradicts Remark 4.4.

Theorem 4.11 Suppose that (1.1) holds for A and A′, and that:

(i) The dimension g of A is either odd or equal to 2.
(ii) AQ is isogenous to the power of an elliptic curve with CM.

Then A and A′ are quadratic twists.

Proof Let M denote the quadratic imaginary field associated with the elliptic factor of
A. Suppose first that M is contained in k. By arguing as in the proof of Theorem 4.9,
using Theorem 4.5 we can find a finite Galois extension L/k, a number field F ,
Artin representations θ, θ ′ : Gal(L/k) → GLg(F), and continuous F-rational �-adic
characters χ, χ ′, χ, χ ′ of Gk such that

�A,� � (θ ⊗ χ) ⊕ (θ ⊕ χ) , and �A′,� � (θ ′ ⊗ χ ′) ⊕ (θ
′ ⊕ χ ′) , (4.4)

where � is a prime totally split in F . After reordering χ and χ if necessary, we may
assume that χ |L � χ ′|L . Therefore there exists a character ψ of Gal(L/k) such that
χ ′ � ψχ . By Lemma 4.7 there exists a density 1 subset � ⊆ �k of primes of good
reduction for A and A′ such that for every p ∈ � the quotient χ(Frp)/χ(Frp) is not a
root of unity, and

det
(
1 − (θ ′ ⊗ ψχ ⊕ θ

′ ⊗ ψχ)(Frp)T
)

= det
(
1 − εp · (θ ⊗ χ ⊕ θ ⊗ χ)(Frp)T

)

for some εp ∈ {±1}. Hence for every p ∈ � we have

det
(
1 − (θ ′ ⊗ ψχ)(Frp)T

) = det
(
1 − εp · (θ ⊗ χ)(Frp)T

)
.

Since � has density 1, for every s ∈ Gal(L/k) there must be εs ∈ {±1} such that

det(1 − (θ ′ ⊗ ψ)(s)T ) = det(1 − εs · θ(s)T ).

Corollary 4.3 yields a quadratic character ϕ of Gk such that θ ′ ⊗ ψ � ϕ ⊗ θ . Thus

�A′,� � (θ ′ ⊗ ψχ) ⊕ (θ
′ ⊗ ψχ) � ϕ ⊗ (θ ⊗ χ ⊕ θ ⊗ χ) � ϕ ⊗ �A,� .
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Suppose now that M is not contained in k. Arguing as in the previous case, we see
that there are a continuous character χ : GkM → Q×

� , a quadratic character ϕ of
Gal(L/kM), and an Artin representation θ of Gal(L/kM) such that

�A,� � IndkkM (θ ⊗ χ) , �A′,� � IndkkM (ϕ ⊗ θ ⊗ χ) , ϕσ ⊗ θσ � ϕ ⊗ θσ .

The third of the above isomorphisms follows from

ϕσ ⊗ θσ ⊗ χσ � ϕ ⊗ θ ⊗ χ � ϕ ⊗ θ ⊗ χ � ϕ ⊗ θσ ⊗ χσ ,

where we have used (4.3). Suppose that g is odd. Taking determinants of ϕσ ⊗ θσ �
ϕ ⊗ θσ , we get (ϕσ )g = ϕg , that is, ϕσ and ϕ coincide as characters of Gal(L/kM).
Hence ϕ extends to a character ϕ̃ of Gal(L/k), and

�A′,� � ϕ̃ ⊗ IndkkM (θ ⊗ χ) � ϕ̃ ⊗ �A,� .

Taking determinants of the above isomorphism, we see that ϕ̃2g = 1. Since trivially
we also have ϕ̃4 = 1, the fact that g is odd implies that ϕ̃ is quadratic. If g = 2, then
apply Lemma 4.12 below taking N = kM . �


The next lemma is applied in the proof of the above theorem in the case g = 2. We
state and prove it also in the case g = 3 for future reference.

Lemma 4.12 Suppose that (1.1) holds for A and A′, and that:

(i) A and A′ have dimension ≤ 3.
(ii) There exist a quadratic extension N/k contained in the endomorphism field K/k

and a quadratic character χ : GN → {±1} such that AN ,χ ∼ A′
N .

(iii) A has Frobenius traces concentrated in N.

Then A and A′ are quadratic twists.

Proof Let E/N denote the field extension cut out by χ . Let EGal/k denote the Galois
closure of E/k. Since E/k contains the quadratic subextension N/k, the possibilities
forGal(EGal/k) areC2×C2, C4, orD4. In the first two cases, the characterχ extends to
a character χ̃ of Gal(EGal/k) such that χ̃4 = 1. By i i i), we have that �A′,� � χ̃⊗�A,�.
If g = 3, then χ̃6 = 1, and hence χ̃ must be quadratic. If g = 2, the lemma follows
from Proposition 2.11 and Lemma 2.12 (note that χ̃ |K is indeed quadratic). Suppose
finally that Gal(EGal/k) � D4. Then there exists a biquadratic extension F/k such
that FN = EGal. Therefore, there exists a (quadratic) character ψ of Gal(F/k) such
that ψ |N = χ |N . By i i i), we have that �A′,� � ψ ⊗ �A,�, which completes the proof
of the lemma. �


4.3 Products of pairwise geometrically nonisogenous elliptic curves

In this section we prove that the local-global QT principle holds for products of pair-
wise geometrically nonisogenous elliptic curves. We resume the notations from the
previous section. The following lemma will be used in this and later sections.
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Lemma 4.13 Let A be an abelian variety defined over k. Suppose that AQ is isogenous

to the product B × C of abelian varieties B,C defined over Q such that

Hom(B,Cs) = 0 (4.5)

for all s ∈ Gk. Then there exist abelian varieties B′,C ′ defined over k such that A is
isogenous to B ′ × C ′.

Proof Choose an isogenyϕ : B×C → AQ. Let B
′ denote the abelian subvariety of AQ

generated by ϕ(B) and its Galois conjugates ϕ(B)s for s ∈ Gk . DefineC ′ analogously.
Note that B ′ andC ′ are defined over k. By (4.5), we have Hom(B ′,C ′) = 0, and hence
the addition map ψ : B ′ × C ′ → A has finite kernel. Therefore

dim(A) ≥ dim(B ′) + dim(C ′) ≥ dim(B) + dim(C) = dim(A) .

Hence A and B ′ × C ′ have the same dimension, and thus ψ is an isogeny. �

By the above lemma and Theorem 3.1, the local-global QT principle holds for

products of pairwise geometrically nonisogenous elliptic curves one of whose factors
does not have CM. From now on, we focus on the case that all factors have CM.

Lemma 4.14 Suppose that A is isogenous to the product of g elliptic curves Ei with
CM, say by Mi , and pairwise not Q-isogenous. Then there is a subset � ⊆ �k of
density 1 consisting of primes of absolute residue degree 1 and of good reduction for
A such that for every p ∈ �, of norm p, we have

Lp(A, T ) =
g∏

i=1

(1 − αi T )(1 − pα−1
i T ) , (4.6)

where the reciprocal roots αi ∈ Q satisfy:

(i) If p splits in Mi , then αi ∈ Mi − Q and αi/
√
p is not a root of unity.

(ii) If p is inert in Mi , then αi = √−p and αi /∈ Mj for any j .

Proof If p splits in kMi , consider the decomposition �Ei ,�|kM � χ ⊕ χ from Theo-
rem 4.5 noting that χ is an Mi -rational Hecke character in this case; if p is inert in
kMi , then use the description of �Ei as the induction of χ from kMi down to k. We
spare the details to the reader. �

Proposition 4.15 Suppose that (1.1) holds for A and A′, and that AQ is isogenous to
the product of g nonisogenous elliptic curves with CM. Then A and A′ are quadratic
twists.

Proof By Corollary 2.6 and Lemma 4.13, there exist elliptic curves Ei , E ′
i defined

over k such that Ei,Q and E ′
i,Q

are isogenous, and A ∼ ∏
i Ei and A′ ∼ ∏

i E
′
i .

Suppose first that g = 2. Lemma 4.13 also implies that if Mi denotes the CM field of
Ei , then the endomorphism field K of A is kM1M2. From the description of Lp(A, T )
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from Lemma 4.14, we see that Ei and E ′
i satisfy (1.1). Then, by Corollary 3.2, there

are quadratic characters ϕi of Gk such that �E ′
i ,�

� ϕi ⊗ �Ei ,�. By Theorem 3.3, we
must have ϕ1|K = ϕ2|K . Let now χi denote the nontrivial character of Gal(kMi/k)
if this group is nontrivial, and the trivial character otherwise. There exist integers
δ1, δ2 ∈ {0, 1} such that ϕ2 = χ

δ1
1 χ

δ2
2 ϕ1. Then

�A′,� � (ϕ1 ⊗ �E1,�) ⊕ (χ
δ1
1 χ

δ2
2 ϕ1 ⊗ �E2,�) � χ

δ1
1 ϕ1 ⊗ (�E1,� ⊕ �E2,�) � χ

δ1
1 ϕ1

⊗ �A,� ,

where we have used that χi ⊗ �Ei ,� � �Ei ,�.
Suppose now that g ≥ 3. By hypothesis, there exists a density 1 subset � ⊆ �k

such that for every p ∈ � there exists εp ∈ {±1} such that Lp(A′, T ) = Lp(A, εpT ).
Let Ai := E1 × Ei and A′

i := E ′
1 × E ′

i for every i ≥ 2. From the description
of Lp(A, T ) from Lemma 4.14, by shrinking � if necessary, we may assume that
Lp(A′

i , T ) = Lp(Ai , εpT ) for every p ∈ �. By the g = 2 case, there exists a
quadratic character ϕi of Gk such that A′

i ∼ Ai,ϕi . Hence

εp · Tr(�Ai ,�(Frp)) = Tr(�A′
i ,�

(Frp)) = ϕi (Frp) · Tr(�Ai ,�(Frp)) (4.7)

for every p ∈ �. Moreover, by Hecke’s equidistribution theorem, there is a density 1
subset �′ ⊆ � such that for every p ∈ �′, we have Tr(�Ai ,�(Frp)) �= 0 unless p
is both inert in M1 and Mi . Let �i ⊆ �′ be the subset of those p which are split in
M1 or split in Mi . Note that �2 ∩ �i has density equal to 5/8. From (4.7), for every
p ∈ �2 ∩ �i , we have ϕi (Frp) = εp = ϕ2(Frp). Since ϕi and ϕ2 are quadratic and
coincide on a set of Frobenius elements of density > 1/2, they must coincide. Hence
A′ ∼ ∏

i E
′
i ∼ ∏

i Ei,ϕ2 ∼ Aϕ2 . �


5 Proof of themain theorem

We borrow from [6, §4.1] the labels A, . . . ,F for the absolute type of an abelian
surface. See [7, §3.2.1] or [8, §3.5] for the description of the absolute types A, . . . ,N
of an abelian threefold. Note that if (1.1) holds for A and A′, then they have the same
absolute type by Corollary 2.6. Recall that they also have the same endomorphism
field by Lemma 2.2. To complete the proof of Theorem 1.1 we will distinguish the
cases g = 2 and g = 3. Before, we recall a construction that will be used in several
proofs (in fact, it has already appeared implicitly via Theorem 4.5). We refer to [19,
Chap. II] for further details.

Remark 5.1 Let B be an abelian variety defined over k of dimension g, and let M be a
number field. Suppose that there is aQ-algebra embedding M ↪→ End0(B). Choose a
prime � totally split in M , so that the [M : Q] embeddings λi : M ↪→ Q�, take values
in Q�. Define

Vλi (B) := V�(B) ⊗M⊗Q�,λi Q� , (5.1)
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whereQ� is being regarded as anM⊗Q�-module via λi . It has dimension 2g/[M : Q]
as a vector space over Q�. We let Gk act naturally on V�(B) and trivially onQ�. With
this action, there is an isomorphism V�(B) � ⊕

i Vλi (B).

5.1 Abelian surfaces

Throughout this section assume g = 2. Theorem 1.1 follows from Theorem 3.1 or
Corollary 2.7 if the absolute type of A and A′ is A, from Theorem 3.1 if it is C, from
Theorem 4.9 if it is E, and from Theorem 4.11 if it is F. We will complete the proof
of Theorem 1.1 in the remaining cases.

5.1.1 Absolute type D

The case that AQ is the product of two elliptic curves is covered by Proposition 4.15.
Assume from now on that the geometric endomorphism algebra of A is a quartic CM
field, which we will call M . By [24, p. 515, Proposition 3] and [25, p.64], one of the
following three cases occurs:

(i) K = k and End0(A) � M .
(ii) K/k is quadratic and End0(A) is a real quadratic field.
(iii) K/k is cyclic of degree 4 and End0(A) � Q.

Let � be a prime totally split in M , and let λ1, . . . , λ4 be the embeddings of M intoQ�.
The following lemma is an easy consequence of Faltings isogeny theorem.

Lemma 5.2 We have HomGK (Vλi , Vλ j ) = 0 for i �= j , and EndGK (Vλi ) � Q�.

Set n = 4/[K : k] = [End0(A) : Q]. By [15, Thm. 3, Rem. 2, p. 186] (see also the
first part of the proof of [5, Thm. 2.9]), there is an isomorphism

V�(A) �
n⊕

i=1

IndkK (Vλi ) (5.2)

of Gk-modules, where we assume that λ1, . . . , λn have been ordered so that their
restrictions to End0(A) are all distinct. Note that A falls in case (i) (resp. ii, iii) if and
only if so does A′.

Proposition 5.3 If End0(AQ) is a quartic CM field, then Theorem 1.1 holds.

Proof In case (i), the proposition follows from Theorem 3.1. Note that �A,� satisfies
the hypotheses of this theorem by Lemma 5.2. In case (ii) (resp. iii), the proposition
follows from case (i) (resp. ii) and Lemma 4.12. Note that we can apply this lemma
since A has Frobenius traces concentrated in K as it follows from (5.2). �

Remark 5.4 An alternative way to prove Proposition 5.3 in case i) consists in choosing
a prime � inert in M . Then V�(A) is an Mλ-module of dimension 1, and hence strongly
absolutely irreducible. Therefore there exists a character ϕ of Gk such that �A′,� �
ϕ ⊗ �A,�, and then the proposition follows from Proposition 2.11.
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5.1.2 Absolute type B

Suppose that A has absolute type B, that is, AQ is either:

(i) isogenous to the product of two nonisogenous non CM elliptic curves, or
(ii) simple and M := End0(AQ) is a real quadratic field.

The endomorphism field K/k is at most quadratic. If K = k, then Theorem 1.1
follows from Theorem 3.1. Assume that K/k is quadratic. Let � be a prime, which we
assume split in M if we are in case i). Then, there are strongly absolutely irreducible
�-adic representations �, �′ : GK → GL2(Q�) such that �A,� � IndkK (�) and �A′,� �
IndkK (�′). In case i), we have that AK is isogenous to the product of two elliptic
curves E1, E2 defined over K , and we may take � = �Ei ,�; in case ii), let � be the
representation afforded by Vλ(A), where λ is an embedding of M into Q�. Theorem
1.1 then follows from the case K = k and Lemma 4.12.

5.2 Abelian threefolds

In this section we assume that g = 3. If the absolute type of A is A, then Theorem 1.1
follows from Corollary 2.7 or Theorem 3.1; if it isM, it follows from Theorem 4.9; if
it is N, it follows from Theorem 4.11.

Lemma 5.5 If A has absolute type C, D, G, I, or K, then Theorem 1.1 holds.

Proof By Lemma 4.13, there exist abelian varieties B, B ′ defined over k such that A
is isogenous to B × B ′ and End(BQ) � Z. By Faltings isogeny theorem, there exist
Q�[Gk]-modules V , V ′ such that V�(A) � V ⊕ V ′ and EndGF (V ) � Q� for every
finite extension F/k. Then the lemma follows from Theorem 3.1. �


The next two results consider abelian threefolds that contain an elliptic factor E
with CM by M that is not geometrically isogenous to any other factor.

Proposition 5.6 Let B be an abelian surface defined over k, and χ andψ be quadratic
characters. Suppose that Hom(EQ, BQ) = 0 and that (1.1) holds for A := E × B
and A′ := Eχ × Bψ . Then A and A′ are quadratic twists.

Proof We may reduce to the case that χ = 1. Indeed, this particular case of the
proposition applies to the pair A and A′

χ , and A and A′
χ are quadratic twists if and

only if so are A and A′. Assume henceforth that χ = 1.
We will assume that k �= kM , as otherwise the proposition follows from The-

orem 3.1. Also by Theorem 3.1, there is a quadratic character ε of GkM such that
AkM,ε ∼ A′

kM . In fact, the proof of the theorem shows that ε satisfies EkM ∼
EkM,ε, which implies that ε must be trivial. Let ϕ denote the nontrivial charac-
ter of Gal(kM/k). We will assume that ψ �= 1, as otherwise there is nothing
to show. We will also assume that ϕ �= ψ , as otherwise the result follows from
A′ ∼ E × Bϕ ∼ Eϕ × Bϕ ∼ Aϕ . By taking the restriction of scalars of AkM ∼ A′

kM
from kM to k, we obtain

B × Bϕ ∼ Bψ × Bψϕ . (5.3)
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We will distinguish three cases: a) B is simple (over k); b) B ∼ C × D, where C and
D are elliptic curves over k which are not quadratic twists. c) B ∼ C × Cξ , where C
is an elliptic curve over k and ξ is a quadratic character.

Suppose that a) holds. From (5.3) we see that either B ∼ Bψ or Bϕ ∼ Bψ . In the
first case, we obtain that A ∼ A′, and in the latter case we have

A′ ∼ E × Bψ ∼ Eϕ × Bϕ ∼ Aϕ .

Suppose that b) holds. Then (5.3) implies thatC ∼ Cψ orC ∼ Cψϕ and D ∼ Dψ or
D ∼ Dψϕ . We claim that there exists i ∈ {0, 1} such that C ∼ Cψϕi and D ∼ Dψϕi .
Indeed, otherwise A would be the product of three elliptic curves with CM by the
quadratic fields attached to the characters ϕ,ψ, ϕψ �= 1. But this is absurd, for the
quadratic fields attached to these characters cannot all be simultaneously imaginary.
By the claim, we have

A′ ∼ E × Cψ × Dψ ∼ E × Cϕi × Dϕi ∼ Aϕi .

Suppose finally that c) holds. In this case, (5.3) amounts to

(1 + ξ)(1 + ϕ)Tr(�C,�) = ψ(1 + ξ)(1 + ϕ)Tr(�C,�) .

Since there exists a density 1 subset �′ of �kM such that for every p ∈ �′ the trace
of �C,�(Frp) is nonzero, the above equality implies

1 + ξ |kM = ψ |kM (1 + ξ |kM ) .

Hence, either ψ |kM = 1 or ψ |kM = ξ |kM . We deduce that there exist i, j ∈ {0, 1}
such that ψ = ϕiξ j , and then A′ ∼ E × Cψ × Cξψ ∼ E × Cϕi × Cξϕi ∼ Aϕi . �

Corollary 5.7 Let B and B ′ be abelian surfaces defined over k, and E and E ′ be elliptic
curves defined over k with CM. IfHom(EQ, BQ) = 0 and (1.1) holds for A := E × B
and A′ := E ′ × B ′, then A and A′ are quadratic twists.
Proof By Theorem 3.1, there exists a quadratic character ϕ of GkM such that

E ′
kM × B ′

kM ∼ EkM,ϕ × BkM,ϕ .

Since Hom(EQ, BQ) = 0, it follows that E ′
kM ∼ EkM,ϕ and B ′

kM ∼ BkM,ϕ . In
particular, for every prime p ∈ �k split in kM , except for a density 0 set, E and E ′
(resp. B and B ′) are locally quadratic twists at p. Similarly, for every p ∈ �k inert in
kM , except for a density 0 set, the facts that Lp(E, T ) = 1 + Nm(p)T 2 and that A
and A′ are locally quadratic twists at p imply that E and E ′ (resp. B and B ′) are locally
quadratic twists at p. Hence, by Corollary 3.2 and the case g = 2 of Theorem 1.1,
there exist quadratic characters χ,ψ of Gk such that E ′ ∼ Eχ and B ′ ∼ Bψ , and then
the corollary follows from Proposition 5.6. �

Corollary 5.8 If A has absolute type F, J, or L, then Theorem 1.1 holds.

Proof It suffices to note that by Lemma 4.13 we can apply Corollary 5.7. �
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5.2.1 Absolute type B

In this case End0(AQ) is a quadratic imaginary field. If K = k, then Theorem 1.1
follows from Theorem 3.1. Otherwise, K/k is quadratic and A and A′ have Sato–
Tate group N (U(3)). Then, for a prime � totally split in M , we have that V�(A) �
IndkK (Vλ(A)), where λ is an embedding of M intoQ�. Theorem 1.1 then follows from
the case K = k and Lemma 4.12.

5.2.2 Absolute type E

We will need the following lemma.

Lemma 5.9 Suppose that (1.1) holds for A and A′, and that:

(i) The endomorphism field K/k of A is a degree 3 cyclic extension.
(ii) A has Frobenius traces concentrated in K .

Then A and A′ are quadratic twists.
Proof By Theorem 3.3, there is a quadratic character χ of GK such that A′

K ∼ AK ,χ

cutting out an extension L/K such that L/k is Galois. If L = K , the lemma is clear.
Otherwise Gal(L/k) � S3 of C6. In any case, there is a quadratic extension F/k such
that L = FK . Let ψ be the nontrivial quadratic character of F/k, so that ψ |K = χ .
By i i), we have �A,� ⊗ ψ = �A,� ⊗ χ , and the lemma follows. �


Let us return to the case that A has absolute type E. We can choose a prime � such
that �A,�|K � �1 ⊕ �2 ⊕ �3, where the �i : GK → GL2(Q�) are strongly absolutely
irreducible pairwise nonisomorphic representations. If �A,� is reducible, then one of
the �i descends to Gk and the Zariski closure of its image is connected. Theorem 1.1
then follows from Theorem 3.1. Suppose that �A,� is irreducible. Then, K/k has
degree 3 or 6, depending on whether the Sato–Tate group of A is Es or Es,t . In the
first case, Theorem 1.1 follows from Lemma 5.9. In the second case, let N/k be the
quadratic subextension of K/k. By the previous case, AN and A′

N are quadratic twists,
and then Theorem 1.1 follows from Lemma 4.12.

5.2.3 Absolute type H

We may assume that A is absolutely simple and that End0(AQ) is a sextic CM field
M , as otherwise Theorem 1.1 follows from Corollary 5.7. From [8, §4.3], we see that
one of the following cases occurs:

(i) K = k and End0(A) � M .
(ii) K/k is quadratic and End0(A) is a real cubic field.
(iii) K/k is cyclic of order 3 and End0(A) is an imaginary quadratic field.
(iv) K/k is cyclic of order 6 and End0(A) � Q.

Let � be a prime totally split in M . If we set n = 6/[K : k] = [End0(A) : Q], then
V�(A) admits a decomposition analogous to (5.2), and hence A has Frobenius traces
concentrated in K . In case (i), Theorem 1.1 follows from Theorem 3.1. In case (ii)
(resp. iii, iv), it follows from case i) and Lemma 4.12 (resp. case i) and Lemma 5.9,
case (iii) and Lemma 4.12.
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6 Examples

In this final section, we provide two examples. Let A be an abelian variety defined
over the number field k, and let � be a prime. For a prime p of �k coprime to �, we let
ap(A) denote Tr(�A,�(Frp)).

6.1 First example

Wewill exhibit two abelian surfaces A and A′ defined overQwhich, despite not being
quadratic twists, satisfy ap(A) = ±ap(A′) for all rational odd primes p. Let C and
C ′ denote the genus 2 curves defined over Q given by

y2 = x5 − x and y2 = x5 + 4x .

Let A and A′ denote the Jacobians ofC andC ′. Note thatC andC ′ have good reduction
outside 2 and thus so do A and A′.

Proposition 6.1 For every odd prime p, we have ap(A) = ±ap(A′). Nonetheless, A
and A′ are not quadratic twists.

Proof By computing L3(A, T ) and L3(A′, T ), one sees that A3 and A′
3 are not

quadratic twists, and hence neither are A and A′. Let p be an odd prime. We will
rely on the results of [9] in order to show that ap(A) = ±ap(A′). Accordingly to

[9, Table 5], define K = Q(
√
2, i), L = K (21/4), and L ′ = K (

√
2 + √

2). Let r
(resp. s, s′) denote the residue degree of p in K (resp. L , L ′). Since L ∩ L ′ = K and
Gal(L/Q) � C2 × C4 and Gal(L/Q) � D4, we have three cases: i) if r = 1, then
s, s′ = 1 or 2; if r = 2, then s, s′ = 2 or 4; if r = 4, then s = s′ = 4. Then [9, Prop.
4.9], implies that ap(A) = ap(A′) = 0 in cases ii) and iii), and that ap(A) = ±ap(A′)
in case i). �


6.2 Second example

We will exhibit two abelian fourfolds A and A′ defined over Q which, despite not
being quadratic twists, are locally quadratic twists at all rational odd primes. This
example was obtained by means of a computer exploration of the family of curves
y2 = x9 + ax , with a ∈ Q, carried by Edgar Costa, to whom I express my deepest
gratitude. Let C and C ′ denote the genus 4 curves defined over Q and given by the
affine models

y2 = x9 + x and y2 = x9 + 16x .

Let A and A′ denote the Jacobians ofC andC ′. Note thatC andC ′ have good reduction
outside 2 and thus so do A and A′.

Proposition 6.2 For every odd prime p, the reductions Ap and A′
p are quadratic twists.

Nonetheless, A and A′ are not.
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Proof Let L/Q denote the minimal extension over which all homomorphisms from
AQ to A′

Q
are defined. By [26, Thm. 4.2], the extension L/Q is finite, Galois, and

unramified outside 2. We first show that A and A′ are not quadratic twists. Suppose
the contrary, that is, that there exists a quadratic character χ : GQ → {±1} such that
A′ ∼ Aχ . Note that χ necessarily factors through an at most quadratic subextension
N/Q of L/Q. Hence, N/Q is unramified outside 2, which means that N is either Q,
Q(

√
2), Q(i), or Q(

√−2). One easily computes

Tr �A,�(Fr17) = −8 , Tr �A′,�(Fr17) = 8 ,

which implies that 17 is inert in N . This is however a contradictionwith the possibilities
determined for N .

Let p be an odd prime. We will next show that Ap and A′
p are quadratic twists. Let

F denote Q(21/4). Note that the map

φ : CF → C ′
F , φ(x, y) = (

√
2x, 29/4y) (6.1)

defines an isomorphism. If p ≡ 1, 7 (mod 8), then a := 21/2 ∈ Fp. The isomorphism
shows that Ap and A′

p are quadratic twists. Suppose from now on that p ≡ 3, 5
(mod 8). We claim that Ap and A′

p are in fact isogenous. By Lemma 6.3 below, there
exist integers s and s′ such that

L p(A, T ) = 1 + sT 4 + p4T 8 , L p(A
′, T ) = 1 + s′T 4 + p4T 8 . (6.2)

The relations between elementary symmetric polynomials and power sums show that
(6.2) implies that #C(Fpi ) = #C ′(Fpi ) = pi + 1 for i = 1, . . . , 3. But (6.1) imme-
diately implies that #C(Fp4) = #C ′(Fp4). Thus L p(A, T ) = L p(A′, T ), and Ap

and A′
p are isogenous. �


Lemma 6.3 Let A denote the Jacobian of a curve defined by an affine model y2 =
x9+cx for c ∈ Q×. For every prime p ≡ 3, 5 (mod 8) of good reduction for A, there
exists an integer s such that the L-polynomial of A at p is of the form

L p(A, T ) = 1 + sT 4 + p4T 8 .

Proof We will apply [16, Thm. 1.1] with m1 = 9, n1 = 0, m = 1, n = 2, k1 = c,
k2 = −1, ξ1 = 7/16, and ξ2 = 1/2. In light of part (2) of loc. cit., it suffices to show
that the integer μ(ξ) appearing in that formula is 4. Here ξ denotes the pair of rational
numbers (ξ1, ξ2). By the discussion preceding [16, Thm. 1.1], μ(ξ) is the order of p
in (Z/16Z)×. If p ≡ 3, 5 (mod 8), then this order is 4. �
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