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Abstract

In this paper, we introduce the notion of a Klyachko diagram for a monomial ideal / in a
certain multi-graded polynomial ring, namely the Cox ring R of a smooth complete toric
variety, with irrelevant maximal ideal B. We present procedures to compute the Klyachko
diagram of I from its monomial generators, and to retrieve the B—saturation /%% of I from
its Klyachko diagram. We use this description to compute the first local cohomology module
H 113 (I). As an application, we find a formula for the Hilbert function of 7%, and a charac-
terization of monomial ideals with constant Hilbert polynomial, in terms of their Klyachko
diagram.

Keywords Monomial ideals - Cox ring - Klyachko filtrations - Local cohomology -
Hilbert function - Hilbert polynomial

1 Introduction

Lying in the crossroads of commutative algebra and combinatorics, monomial ideals play
a prominent role in the study of ideals in a polynomial ring R. Indeed, many properties
of arbitrary ideals / C R are reduced to the monomial case, which can often be tack-
led using combinatorial tools. For instance, it is a classical result due to Macaulay in [16],
that the Hilbert function of an ideal / C R coincides with the Hilbert function of its ini-
tial ideal in- (I), which is itself a monomial ideal (see for instance [7, Theorem 15.3]).
Since the advent of combinatorial commutative algebra, the theory of monomial ideals has
been linked with various topics in discrete mathematics, such as enumerative combinatorics,
graph theory, simplicial geometry or lattice polytopes (see [1, 6, 9-12, 20]).
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The aim of this paper is to introduce the Klyachko diagram of a monomial ideal, which
can be seen as a generalization of the classical staircase diagram, suited to study monomial
ideals inside non-standard graded polynomial rings. More precisely, we focus on the poly-
nomial ring R = C[xy, ..., x,] graded by the class group C1(X) = Z! of a smooth complete
toric variety X. That is, r = |X(1)] is the number of rays of the fan ¥ of X, and the degree
of a variable x; is the class in CI(X) of the torus-invariant Weil divisor D, corresponding to
the ray p;. The graded ring R can be considered as the Cox ring of the toric variety X, and it
appears in the construction of a toric variety by a GIT quotient [3, Chapter 5]. For instance,
if we consider X = IP"~!, we recover the polynomial ring with its classical Z-grading.

Apart from the Cox ring being a generalization of the classical Z—graded polynomial
ring, C1(X)—graded R—modules correspond to quasi-coherent sheaves on X. In particular,
a CI(X)—graded ideal I C R corresponds to an ideal sheaf Z on X such that

H)(X.T)= @ H'X.Z(@) = : B®) =1,
aeCl(X)

where B is the irrelevant ideal of X. It is a monomial maximal ideal determined combina-
torially by the fan X of the toric variety X. A Cl(X)—graded R—module E gives rise to
an equivariant sheaf if and only if E is Z"—graded (also called fine-graded). In particular,
equivariant ideal sheaves on X are in correspondence to monomial ideals in R.

In [14] and [15], Klyachko classified equivariant torsion-free sheaves on X in terms of fil-
tered collections of vector spaces. These filtered collections, parameterized by the cones of
the fan X, are often referred to in the literature as Klyachko filtrations (see Proposition 2.6).
In [19], this device was formalized by Perling, who introduced the notion of a ¥ —family,
obtaining a general classification of equivariant quasi-coherent sheaves. From a geometri-
cal point of view, these methods have been used in the last two decades to study equivariant
vector bundles on toric varieties (see [4, 5, 13, 18]). On the other hand, in [17], the present
authors used the theory of ¥ —families to study reflexive Cl1(X)—graded R—modules from
a commutative algebra perspective.

In this note, we use this construction to introduce the Klyachko diagram of a monomial
ideal I C R: a family of staircase-like diagrams parametrized by the cones of X encod-
ing algebraic properties of I (see for instance Example 3.5 and Fig. 2). In particular, the
Klyachko diagram is uniquely determined by the ideal /, up to B—saturation. We give pro-
cedures to compute the Klyachko diagram using the monomial generators of I as initial
data and conversely, to determine the generators of a B—saturated ideal /%% from a given
Klyachko diagram {(C{, A7)}secx. We also provide a method to compute the first local
cohomology module H 11; (I) with respect to B from the diagram {(C{, A)}sex, which
measures the saturatedness of 7. We then use the Klyachko diagram to give a formula for the
CI(X)—graded Hilbert function of 7% in terms of lattice polytopes. Finally, we characterize
monomial ideals / with constant Hilbert polynomial in terms of their Klyachko diagram.

Next we explain how this paper is organized. Section 2 contains all the preliminary
results and definitions needed for the rest of this work, and it is divided in two parts. In
Section 2.1, we recall the notation and basic results concerning toric varieties. In Section 2.2,
we recall the theory of Klyachko filtrations.

The remaining two sections are the main body of the paper. In Section 3, we define the
Klyachko diagram of a monomial ideal, and we establish its main properties. In Section 3.1,
we present a procedure to obtain the Klyachko diagram from the generators of a given
monomial ideal /, and we prove that it describes the collection of Klyachko filtrations of
I (Proposition 3.4). As a corollary, we show how the Klyachko diagram of the sum of
two monomial ideals can be computed. Conversely, in Section 3.2, we give a method to
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obtain a minimal set of generators of a B—saturated monomial ideal corresponding to a
given Klyachko diagram. Finally in Section 3.3, we use our previous results to compute
the first local cohomology module H 113 (I) (Proposition 3.15) which measures how different
I and 7% are. In the last part of this note, we give a formula for the Hilbert function of
a B—saturated monomial ideal in terms of its Klyachko diagram (Proposition 4.1), and
we finish characterizing the Klyachko diagram of monomial ideals with a constant Hilbert
polynomial (Corollary 4.4). In particular, we characterize all one dimensional monomial
ideals I C R in terms of the Klyachko diagram.

2 Preliminaries

In this section, we gather the basic notations, definitions and results about toric varieties
needed in the sequel. We recall the notion of a ¥ —family of an equivariant torsion-free
sheaf, as introduced in [19], and we end specializing it to the setting of equivariant ideal
sheaves.

2.1 Toric Varieties

Let X be an n—dimensional smooth complete toric variety with torus Ty = (C*)", associ-
atedtoafan ¥ C N @ R = R”", where N = Z" is the cocharacter lattice of T . We denote
by X (k) (respectively o (k)) the set of k—dimensional cones in X (respectively in o). We
refer to the cones p € X (1) as rays and we set n(p) € N to be the first non-zero lattice
point along p. We denote by M = Hom(N, Z) = Z" its character lattice and form € M,
we set x™ : Ty — C* the corresponding algebraic group homomorphism. For any cone
o € X, letoY beits dual cone, let Sy := 0¥ N M be the associated semigroup of characters
and C[S, ] the corresponding C—algebra. Then U, = Spec(C[S,]) C X is a Ty —invariant
affine subvariety of X. For any two cones T < o € X, there is a character m € M such that
S: = So + Z{m) and we have an inclusion U; — U, given by the natural morphism of
C—algebras C[S;] <> C[Ss1,m = C[S;].

There is a bijection between rays p € X (1) and Ty —invariant Weil divisors D,. Fur-
thermore, the T y —invariant Weil divisors generate the class group C1(X) of X. Indeed, we
have the exact sequence

0o-m% P zp, 5 cix) — o, (1)
pex(l)

where ¢ (m) = div(x™) = Zpex(l)(m, n(p))D,, for any character m € M; and w(D) =
[D] € CI(X) the class of an invariant Weil divisor D. Hence, CI1(X) is a finitely generated
abelian group. (See [3, Theorem 4.1.3]).

Let R = C[x, | p € X(1)] be a polynomial ring in |X(1)| variables. The Cox ring of
X is the C—algebra R endowed with a grading, not necessarily standard, given by the class
group CI(X) of X. We set deg(x,) := [D,] € CI(X), for each ray p € X(1). We write
R = C[xy, ..., x;] whenever X(1) = {p1, ..., p,} is the (ordered) set of rays of X. For a
cone o, we set

X0 = ]_[ xi, and B:={x% | 0 €X).
pieZ(\o (1)

B is called the irrelevant ideal. In fact, one has B = (x{’ | 0 € Zmax)-
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Remark 2.1 In general, the Cox ring can be defined for any variety X as the ring
RX)= P H'X O0D).
[D]ePic(X)

In the special case when X is a smooth toric variety it coincides with the polynomial ring
we defined above.

Example 2.2 (i) P" is a toric variety of dimension n. Let {eq, ..., e,} be a basis of N = Z".
The fan X associated to P has n + 1 rays: pp = cone(—e; — --- — ¢,) and p; = cone(e;)
for 1 <i < n;and n + 1 maximal cones oy := cone(ey, ..., e,;) and o (i) := cone({e; |
Jj Fi}U{—e —---—e,}) for 1 <i < n. Its associated Cox ring is C[xo, ..., x,] with
deg(x;) =1 for 0 <i < n, and its irrelevant ideal is B = (xq, ..., Xp)-

(ii) For a > 0, the Hirzebruch surface H, = P(Op1 & Opi(a)) is a toric surface. Let
N = 72 be alattice with {e, f}its standard basis, and set ug := —e+af,u; :=e,vg := — f
and vy := f. The fan X associated to H, has four rays pg = cone(ug), pi = cone(uy),

no = cone(vg) and n; = cone(vy); and four maximal cones opg = cone(uy, v1), op1 =
cone(u1, vo), o190 = cone(ug, v1) and o1 = cone(ug, vo). Its Cox ring is C[xg, x1, y0, ¥1]
with deg(xo) = deg(x;) = (1,0), deg(yo) = (0,1) and deg(y;) = (—a,1); and its
irrelevant ideal is B(X) = (x1y1, X1Y0, X0Y1, X0Y0)-

For any cone o € X, the localization of R at x% is a CI(X )—graded algebra R, ;. For

any Weil divisor D = }_ sy a,D,, there is an isomorphism between C[S,] and the
homogeneous [ D]—graded piece (R s )[p; sending x™ € C[S,] to the monomial 1’”“) =

[Tesay xf)m’p)ﬂ” € (R,s)p1. We have the following:

Proposition 2.3 (i) For any « € CI(X), there is a natural isomorphism R, =
(X, Ox (D)) for any Weil divisor D = Zp a, D, such that « = [D].

(i) If E is a Cl(X)—graded R-module, there is a quasi-coherent sheaff on X such that
I'(Us, E) = (Es)0, forany o € Z.

(iii) Izg isa ﬂuasicoherent sheaf on X, there is a C1(X)—graded R—module such that
E= E. E is coherent if and only if E is finitely generated.

(iv) E =0ifandonlyif B'E =0 forall | > 0.

(v) There is an exact sequence of C1(X)—graded modules

0 — HY(E) > E — HY(X, E) - H}(E) — 0.

Proof (i)—(iv) follow from [3, Proposition 5.3.3, Proposition 5.3.6, Proposition 5.3.7 and
Proposition 5.3.10]. (v) follows from [8, Proposition 2.3]. O

The module TE = Hf(X, E) is called the B—saturation of E. We say that E is
B—saturated if E = T'E, or equivalently if HY(E) = HL(E) = 0. If HY(E) = (0 ¢
B*°) =0, we say that E is B—torsion free.
2.2 Equivariant Sheaves and Klyachko Filtrations
Let X be a smooth complete toric variety with fan ¥ and R = C[xy, ..., x,] its associated

CI(X)—graded Cox ring. In this subsection, we introduce the notion of a X —family to
describe equivariant sheaves on X. We refer the reader to [19] and [14] for further details.

@ Springer



Klyachko Diagrams of Monomial Ideals 1501

Definition 2.4 For any t € Ty, let u; : X — X be the morphism given by the action of
Ty on X. A quasi-coherent sheaf £ on X is equivariant if there is a family of isomorphisms
{pr 1 u7E = Erety such that ¢y, 4, = ¢y, o uf, ¢y forany 11,1 € Ty.

Notice that any Z" —graded R—module is also Cl1(X)—graded. In [2], Batyrev and Cox
proved the following result:

Proposition 2.5 Let E be a CI(X)—graded R—module. The quasi-coherent sheaf E is
equivariant if and only if E is also 7" —graded.

Proof See [2, Proposition 4.17]. O

In [14] and [15], Klyachko observed that to any equivariant torsion-free sheaf we can
associate a family of filtered vector spaces, the so-called Klyachko filtration. In what fol-
lows we recall how this family can be constructed. Let £ be an equivariant sheaf on X
corresponding to a Z" —graded module E. For any degree o € CI(X), the exact sequence
(1) endows the homogeneous degree—« piece of E with an M —grading:

E, = @ E. pom), forany ze 71_1(01).
meM

Now, for any 0 € ¥ we consider the monomial x&, and the localized R,o —module Eo
remains 7" —graded. As before, for any a« € CI(X), (E s)q is M —graded. In particular,
taking @ = 0 we have:

E° :=(Es)o= P Es)pm = P E- )
meM meM
Since (E 4 )o is isomorphic to the C[S, ]—module I' (U, &), geometrically we can see (2)
as the isotypical decomposition of I'(U,, &) into Ty —eigenspaces of sections

T(Uy, &) = @ T Ws, E)p.
meM
Recall that the semigroup S, induces a preorder on the character lattice M: for any
m,m’ € M we say thatm <, m’if and only if m’"—m € Sy, or equivalently if (m'—m, u) >
0 for all u € o. For any two characters m <, m’, the multiplication by x™ ™ € C[S,]
yields the map
sz,m/ : E;l - Egl/'

For any m <, m’ <, m", we have

X’z’m =1 and X’Z’mu = X’Z/’m// o X;,m"
In particular, 7 is an isomorphism if m <, m’ and m’ <, m, or equivalently if m’—m €
ot. Wecall £ := {ED, Xg.m’} a o —family (see [19, Definition 4.2]).

On the other hand, let T < o be two cones in ¥ and m € M the character such that
S: = 8o + Z({m). There are isomorphisms C[S;] = C[S,],» and ET = E;'(,,, given by the
localization at x™. Thus, we have a morphism i°" : E° — ET, corresponding geometri-
cally to the restriction map of section modules I'(U,, £) — I'(Uy, £). For any character
m’ € M, the morphism i induces a linear map

0T . o T
i E. = E..

@ Springer



1502 R.M. Mir6-Roig, M. Salat-Molt6

We call {E"}gez a X —family (see [19, Definition 4.8]). In [19, Theorem 4.9] it is
proved that ¥ —families characterize equivariant sheaves on X or equivalently, B—saturated
R—modules. When £ is torsion-free, we have the following result.

Proposition 2.6 Let £ be an equivariant torsion-free sheaf of rank s and {E %Y its associated
Y. —family. The following holds:

(i) Foranym' <, m, the linear map sz’,m : B9, — Ej is injective.
(ii) Forany characterm € M, and any cones T < ¢ in %, the linearmap i,)* : E; — EJ,
is injective.
(iii) There is a vector space E = C* such that E,{,?} =E foranym € M.

We have the following commutative diagram:

(0)
EY) «——— E°,

~ 0
E = JX{/] JX;’,m
w\m

Moreover, for any character m € M, we have

HYX. &)= () Ej.

0 € X max

EY) —— EI.

Proof See [19, Section 4.4] and [15, Section 1.2 and 1.3]. O

Remark 2.7 (i) By Proposition 2.6, the ¥ —family { E° }oex, of a torsion-free sheaf £ of rank
s can be seen as a filtered collection of linear subspaces of a fixed ambient vector space E.
Geometrically, the vector space E can be identified with the s—dimensional vector space
['(Ty, &), for any character m € M.

(ii) The description of equivariant torsion-free sheaves given above is based on
[19, Section 4]. We note that our order of filtrations is reverse of that of Klyachko [14, 15].
In these references, the filtration is taken as a collection of linear subspaces of £(xp), the
fiber of £ at a point in the open orbit Uppy = Ty C X (see [19, Remark 4.25]).

Definition 2.8 Let £ be an equivariant torsion-free sheaf, the filtered collection of vec-
tor spaces {E, | m € M},cx given by its X —family is called the collection of Klyachko
filtrations of £.

In this note we focus on monomial ideals / in the Cl(X)—graded Cox ring R. Since
monomial ideals are naturally Z"—graded they correspond to torsion-free equivariant
sheaves of rank 1. Therefore, Proposition 2.6 shows that the ¥ —family of a monomial ideal
I is structured as a system of vector space filtrations of a I —dimensional vector space I = C,

which can be identified with 1,510 ! for any characterm € M.

Remark 2.9 Let {I7 |m € M},cx be the collection of Klyachko filtrations of a monomial

ideal I. Let mg € M be a character and identify I with 1,,{1%}. Foreacho € Y andm e M,
the linear subspace I C I can be either /] = I or I, = 0. Therefore, the collection of
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Klyachko filtrations of a monomial ideal is characterized by attaching to each cone ¢ € X,
the set of characters {m € M | I, # 0}.

We finish this preliminary section with an example which illustrates Proposition 2.6, and
shows how to compute the collection of Klyachko filtrations of a monomial ideal.

Example 2.10 Let R = Clxo, x1, x2] be the Cox ring of P? with fan ¥ as in Example 2.2(i).
Consider the monomial ideal I = (x%, X0X2, X0X1), we will compute the X —family

associated to /. We present / as follows:

(xf XX2 X0X1)

R(0,0,—2) @ R(—1,0, —1) @ R(—1, —1,0) 20257 1. 3)
Next, we localize at x@ = xox1x2 and we set R0} = R & the localized ring. For any
multidegree (ag, a1, az) € Z3, Rég(}) ) = C(xy°x}"x3?), the vector space spanned by

the monomial xooxflxgz On the other hand, any character m = (di, d») is embedded as

m = (—d) —d>, di, d») in Z3 via the exact sequence (1). To compute 1,1{10} we take the degree

m component of (3). This yields the following exact sequence of vector spaces

2
(x5 xoXx2 X0X1)

R19(0,0,-2),, & R¥(=1,0, =),y ® RV(=1, =1,0), I —o.

Thus, 7" = Cix, 6‘11 dzxill xgz) and there are isomorphisms ¢,,? 1% = 1. Let us now fix
the ray pp € X (1) and compute Iy, 0 for any character m = (di, dp) € 7. As before, we set

R” := R 5 the localization at X0 = x1x2. Now, for any multidegree («g, o1, o0p) € 73,

o [CHERIE I w20
(0. a1,02) | Q, if o <-—1

and restricting the exact sequence (3) to degree m = (d, d»), we have

o [Clhg T =L i —di—dr 2 0
0, if —dy—dy <-—1.

Similarly, we obtain

Im:{l, if d >0 Ipw{l, if >0
(=

0,if dg<—1 "™ ~00,if dy<-—1.

It only remains to compute the components in the ¥ —family associated to the two dimen-
sional cones in X. Let us consider op € X(2) with rays op(1) = {p1, p2}. We set
R := R & the localization at x%0 = xo and for any multidegree (xp, a1, a2) € 73,

R0

_ (C(xgoxi”xgz), if a1>0, ap>0
(@0,1,00)

0, if o <—loray <-—1.
As before, taking the component of degree m = (d1, dz) of (3) we obtain
I, if di=0andd, > 1, or

I’ZOE di>1landdr, >0
0, otherwise.
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Similarly, we obtain the remaining components of the X —family:

I, if —di —dy=0andd, > 2, or
= —dy—dy>1andd, >0
0, otherwise

102 = I if —d —d)>0andd; >0
m 0, otherwise.

3 Klyachko Diagrams of Monomial Ideals

In this section, we focus our attention on monomial ideals / in the Cox ring R of a smooth
complete toric variety X. Using the theory of Klyachko filtrations, we define the Kly-
achko diagram of I, and we show how it is determined combinatorially by the monomials
generating /. Conversely, we give a method to compute a minimal set of generators of a
B —saturated monomial ideal / from its Klyachko diagram. Finally, we compute the first
local cohomology module H 113 (I) for any monomial ideal 7 using its Klyachko diagram.

From now on, we fix a smooth complete toric variety X with fan X. We set r = | X (1)],
we denote by R = Cl[xy, ..., x,] its associated CI(X)—graded Cox ring and by B its
irrelevant ideal.

3.1 From a Monomial Ideal to a Klyachko Diagram

Let I = (my, ..., m;) be a monomial ideal. We write the monomials
ki ki ki i i i r .
mi =x ---x," =:x~, for k':=(ky,....k)€eZ, and 1=<i<=<t.

and we present [ as the image of a Z" —graded map as follows:

P r(-k) L p o, )
i=1
Thus, for any character m = (dy, ..., dy), I,LO} ~ C(xl(m’"("l)) om0y and there are
isomorphisms qb,{,? b I,LO} = I. Our first objective is to describe the subspaces I, C I for
any character m = (dj, ..., dy) and any cone o0 € 2. As observed in Remark 2.9, we want

to characterize the sets of characters {m € M | I # 0} for each cone o € X. Each of this
sets can be seen as the staricase diagram for the inclusion 7° C R as C[S,]—modules.

Lemma 3.1 Let I = (xX) C R, withk € 7~ be an ideal generated by a single monomial.
Then, for any cone ¢ = cone(p;,, ..., pi,) € 2,

o~ I ifme CE
n 0, otherwise,

where Cf = {m € M | (m, pi;) > ki;, for 1 < j <c}.

Proof The lemma follows from (4), when ¢t = 1 and using that

Cla{™ PR =Ry i m, py) — ki, 20, for 1 < j < ¢
0, otherwise.

RO, (k) = {
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We set CJ := C(“0 0)» and notice the inclusion Cf C Cg corresponding to (x5 c R°

.....

for any k € Z". Applying Lemma 3.1, repeatedly, we have:

Pmposition 32 Let I = (my,...,m;) C R be a monomial ideal with m; = ;E for
k' € ZLyand 1 <i <t. Then, for any cone o € X,

. t
1o = I, lmeUl-zlczi
m 0, otherwise.

Proof 1t follows from (4) that /7 = 0 if and only if Rﬁ,(—ki) =O0foralll <i <t. By
Lemma 3.1 this occurs if and only if m € M \ U§:1 C?, and the result follows. O

Notice that Proposition 3.2 already gives a description of the collection of Klyachko
filtrations of a monomial ideal. However, the information on the inclusion 7° C R? is
encoded in

t

t t c
c\Jeg =Neg e =MUtmeM 0= m p,) <k},
i=1

i=1 i=1j=1

which is the union of ¢’ sets. Indeed, foreach 1 < ji,..., j; <c,

Pjyj=im e M |0 < (m, pi,) <kj,....,0<(m, pi,) <Kk}

The Klyachko diagram defined below is used in Proposition 3.4 to give a more compact
alternative characterization of the collection of Klyachko filtrations of a monomial ideal. We
attach to the monomial ideal I a collection of pairs {(C?, A7)}oex constructed as follows.

For any ray p; € X(1), we sets; = Sp; = min{degpi (my), ..., degp,_ (m;)}. We write
s :=(s1,...,s), and for any c—dimensional cone o =cone(p;,, ..., p;.), we set
P
Cl:=C ={meM|(m p,) >si,, 1<p=<cl= ﬂclf
j=1
Next, we construct AY. First, for any subset of monomials S = {n1,...,ng} C
{my,...,m} withO < s <, we define A] (S) C C;’ recursively on s:

If s =0, then S = @ and we set:

AT@) :={m e M |s; <(m,pi),...,s. < {m,pi)}
Otherwise, s > 1 and there is a permutation ¢;, € G such that

deg, (ne, 1)) <deg, (ne, () <--- <deg, (N, (s)-

® Ifc =1 (and thus o is aray), then

A?(S) ={me M| Sip < (m, ,O,‘l) < degpil (n€i](1))}'
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® Otherwise, A7 (S) := U;:o A9(S); where:

AG(S) :={m e M| s, < (m, pi,) <deg, (ne, 1)}NA] @),

A7(S)j :=={m e M |deg, (ne,(j)) < (m,pi) <deg, (ne, j+n)}N

A(I’/({ne,-v(l),...,ns,-c(j)}), I<j=<s—1,
AJ(S); = {m € M | deg,, (ne,(») < (M. pi. JNA] (e 1y, -2 ey (o)D)

with o’ = cone(p;,, ..., pi._,)-

Finally, we define A] := AT ({m1, ..., m}).
Definition 3.3 We call the collection of pairs {(C{, A])}sex the Klyachko diagram of 1.

Observe that each of the pairs (C7, A7) depicts a staircase diagram of the inclusion /¢ C
R? (see also Example 3.5 below). Precisely, we have the following proposition showing
that the Klyachko diagram characterizes the ¥ —family of /.

Proposition 3.4 Let I = (my,...,m;) C R be a monomial ideal with m; = ;E for
k' eZlyand 1 <i <t. Let {(C{, A))}sex be the Klyachko diagram of 1. Then, for any

coneo € %,
1o~ I, me C;’ \ A
m 0, otherwise.

In particular it holds

t t
LJea =ci\AT ana C5\|JCT = A7 UCF\CT). (5)
i=1 B

i=1

Before proving this result let us see an example that illustrate Proposition 3.4, and shows
how to compute the Klyachko diagram of a monomial ideal.

Example 3.5 Let R = C[xo, x1, x2] be the Cox ring of P2 with fan ¥ as in Example 2.2(i),
and let /| = (x22, X0X2, X0X1) be the monomial ideal of Example 2.10. First, we compute
so = §1 = sp = 0 and we have

CP =A{(d1,dr) | dy +dp <0} C}' = {(d1.dr) | di > 0}

CP* ={(d1,d») | dr > 0}.

We compute A[Im. We order the monomials with respect to pz: deg, (xox1) = 0 <
deg,, (xox2) = 1 < deg,, (x3) = 2. We obtain

AP ({x2, x0x2, x0x1})o = B

AZ"({xg, x0x2, X0x1 D1 = {(d1, d2) | da = 0} N AP ({xox1})}
AIO({xé, xox2, x0x1})2 = {(d1, da) | d2 = 1} N AP ({xox1, x0x2})
AT ({x3, xox2, x0x1})3 = V.

Since A7'(fxox1}) = {(di,d2) | di = O} and A} ({xox1, xox2}) = @, we get
A(;O({xg,xoxz,xoxl})l = {(0,0)} and A(;O({x%,xoxz,xoxl})g = {. Therefore, A7 =
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e o o o °

e o o o o o

e o o o e o O

o e e o e o o O o
o o
e o o

?%.)1 o stand for points of A7’ (respectively A7' and A%?) inside the points e of C;° (respectively C;' and
I

{(0,0)}. Similarly, for the remaining cones we compute A(Ir' = {(0,0), (—1,1)} and
AT = . (See Figs. 1 and 2).
By Proposition 3.4, we have

I, me{d) +dy <0} I, mel{d; = 0}

]PO ~ [’O] =
™ 710, otherwise. ™ 710, otherwise.
d; >0
1102 ~ I’ me{dz = 0} 10'0 ~ Iv me d > O \{(01 0)}
" 710, otherwise. mo= 2=

0, otherwise.

di+dy <0|, f(0,0) d >0
I,me =
AR {dz >0 N(—l, 1)] o= )b me{dl +d <0

0, otherwise. 0, otherwise

12

which coincides with the ¥ —family computed in Example 2.10.

Proof of Proposition 3.4 First, we recall that for 1 < j <,

) (m,n(p1)) (m,n(py))
R

Xy ), (m,n(p;)) =0
0, otherwise.

Fig.2 The Klyachko diagram of
Fig. 1 represented together in a
single figure. The shadowed
region corresponds to each set
CJP\ A] fori =0,1,2

@ Springer



1508 R.M. Mir6-Roig, M. Salat-Molt6

If o = p; is aray, then we have

0, (m,n(p;)) <s;.
Otherwise, o = cone(p;,...,p;) for some 2 < ¢ < r. Assume that m €
AT ({my,...,m})j forsome 1 < j <t and¢;, € &, as above. Therefore,

deg,, (me, (j)) < (m, pi.) < deg, (me (j+1)))-

In particular, if j < ¢, we have RS (—k€icUTD) = ... = R9 (—kic ) = 0.1t suffices to see
that RS, (—k (")) = 0 for 1 < p < j. On the other hand, m € A ({me, (1), - .-, me_ (HD)-
We repeat the same argument for ¢’ = cone(p;,, ..., pi,_,) and the set of monomials
{me, (1), ..., me, (j}> and so on. This procedure stops either when dim(c’) = 1 or when
the set of monomials is empty. In the latter case, it follows straightforward that we arrived
at R;‘n(—keil(])) = ... = R%(—E”l(’)) = 0 and hence I = 0. In the case dim(¢’) = 1,
assume the set of monomials is {nq] (1) -0 Mg )} C {m1,...,m;} withs < j. Since we
have
sil S (m, /Oil) < degﬂil (nfil(l))’

then R;(—Eil(l)) = ... = R;fl(—keil(s)) = 0, and we obtain I = 0. Analogously, if
m e C;’ \ A7 we get R (—k?) #Oforsome 1 < p <t,s01] =L

Finally, (5) follows from a comparison with the description of I, in Proposition 3.2. [

Combining Propositions 3.2 and 3.4, the next result shows how to obtain the Klyachko
diagram of the sum of two monomial ideals.

Corollary 3.6 Let {(C{, A7)} and {(C], A9)} be the Klyachko diagrams of two monomial
ideals I and J, respectively. Then, the Klyachko diagram of I + J is given by
Cl., =imeM]| (m, p)=> min{s[IJ, J} pea(l)}
AT = (AT N AT U (A N(CE 0\ TN U (A N(CE,,\ CINU
€T\ (CTUCT).

Proof We write I = (gkl,...,gkl) and J = (ﬁl, ..., x"). Then, 91 = min{k1 .. k’},
st =min{tl, . B)and I+ 7 = o 2l k). It follows that s’” =
min{sj’., sf} and then

Clry=1{m e M| (m, p)=minfs,,s;}, peo(D)
In particular C{, C§ are contained in C7, ;. By Propositions 3.2 and 3.4 we have C7 ; \
ATy =(CT\ A“) U (C \ A9). Taking complementaries with respect to C7 ; it yields

AT =Cr N (CT N AP UCT \ AD)
(CHJ \N(CTNATN N (T, N (CTNAD)
= (AT U(CT,\CPHNATUCT,, \C"))

and the result follows. O

The following example illustrates Corollary 3.6.

Example 3.7 Let R (C[xo, X1, x2] be the Cox ring of P? with fan ¥ as in Example 2.2(i),

and let I = (x xz, x] X2, x]) and J = (xg1 , xlxg, x;‘xzz) be two monomial ideals. Notice
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that (s§, 57, 57) = (0,2,0) and (s, 57, 53) = (0,0,2), 50 g™, si 53ty = (0,0,0).
Hence, C7° = {d| = 2,d> > 0}, CO—{dl 20d222}andC1+J_{d1 > 0,dr > 0};
while C;" =C]'=C], ={di+dr<0,dy >0}and C]* =C? =CJ3 , = {d1 + dp <
0,d, = 0}

Computing the remaining Klyachko diagrams of / and J we obtain:

={(2,0), (2, 1),(2,2),(2,3),(3,0), % 0)}, A) = AT =¢
={(0,2), (0,3), (1,2), (2,2), (3,2)}, AT = A7 =0

Thus, applying Corollary 3.6 we get A7), = A‘,Ti ; =%and

ATy, =1(0,0), 0, 1), (0,2), (0,3), (1,0), (1, 1), (1,2), (2,0), (2, 1), (2, 2),
(3,0), (4,0)}.

Figure 3 illustrates this example.
We end this subsection with more examples on the compution of Klyachko diagrams.

Example 3.8 Let R = Clxop, x1, x2, x3] be the Cox ring of P3 with fan ¥ as in Exam-
ple 2.2(i), and let I = (xox1, x1x2x32, x22) be a monomial ideal. We have sg = s1 = 5o =
s3 = 0and

Cl ={(d1,d>,d3) | dy +dy +d3 < 0} C}' = {(d1. dr,d3) | dy = 0}
CP? ={(di,d»,d3) | dr > 0} CP* ={(di,dp,d3) | d3 = O}.

We compute A‘,TO. We order the monomials with respect to p3: deg s (X0X1) = deg 03 (xz)
0< degp3 (x1x2x32) = 2, and we obtain

AP (G =0

AP G =0

AP (G2 ={(d1,dr,d3) | 0 <d3 <2} n AT (fxox1, x3))
AP(G)3 = {(d1, da, d3) | 2 < d3} N AT ({xox1, X3, x1x2x3)).

where g = {xoxl,xlxzx%,xzz} and 06 = cone(pg, p2). We proceed computing

A ({xox1 xz}) ordering the two monomials with respect to p;: degpz(xoxl) =0 <

Fig.3 The part of the Klyachko diagram associated to the cone og of I, J and I 4 J respectively. The dotted
part corresponds to Cq® and the shadowed part to Co® \ AZ°
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deg,, (x%) = 2. We get

A(;(E({xoxl,xf})o =0

A7 (xoxt, 13 )1 = (@1, da. d3) | 0 < da < 2 N A7 (fxox1))

AP (xox1, x3D)2 = {(d1. db. d3) | 2 < da} 0 A7 ({xox1, x2}),
and AY'({Ixox1}) = {(di,d2,d3) | di = 0}, while A}'({xox1,x3}) = ¢. Hence,
AP (fxoxr, ¥2)) = {(d1,d2,d3) | 0 < dy < 2. d) = 0}, and

AT(G)2={(di.dr,d3) |0<d3 <2,0=<dp, <2, d; =0}

Similarly, we obtain A(;O({xoxl,xg,xlxzxg}) = A(;O({xoxl,xg,xlxzx%})l U A(;O({xoxl,
x3, x1x2x31)2 = {(d1, d, d3) | 0 < d» < 1, di = 0}. Hence,

AP (@3 ={(di.dr,d3) |2 <d3,0=<dy <1, d =0}, and
AP=((0,d2,d3) |0<d3 <1,0<dr < 1}U{(0,dp,d3) | 2<d3, 0 <dr < 1}.

Applying the same procedure for the remaining cones, we get

AT ={(—dy —d3.dr,d3) | 0 < da, d3 < 1} U{(—d3,0,d3) | 2 < d3}
AP =0
AP ={0,d2,d3) |0 <dyp <1, d3 < —dr} U{(d1,0, —d1) | 0 < d\}.

We notice that in this example A7' and A7 are unbounded.

Example 3.9 Let R = Clxo, x1, yo, y1] be the Cox ring of the Hirzebruch surface Hj
with fan ¥ as in Example 2.2(ii). R is endowed with a Zz—grading such that deg(xg) =
deg(x1) = (1, 0), deg(yo) = (0, 1) and deg(y;) = (—3, 1). We consider the monomial ideal
I = (x1, xgyl), SO Spy = Sp; = Sy = Sy, = 0. Thus,

Cl' ={(di,dp) | dy <3d2} C]' ={(d1,d) | dy = 0}
C'={d1.dy) |y <0} C]' ={(d1,d>) | dr >0}

We compute A0, We order the monomials with respect to n;: deg, (x;) = 0 <
deg,, (x3y1) = 1. We have

AT (G)o =¥
AT(G)1 = {(d1, da) | do = 0} N AP ({x1})
AT(G)o = {(d1,do) | do = 1} N AT (fx1, 331D,

where G = {x, x3y1}. Since A} ({x1}) = {(d1. d2) | di = 0} and A ({x1, x3y1}) = 9,
we obtain that A7 = {(0, 0)}. Applying the same procedure, we arrive at A7 = A7 =

A7 = . (See Fig. 4).

3.2 From a Klyachko Diagram to a Monomial Ideal

Our next goal is to find the minimal set of monomials generating the saturated ideal /
associated to a Klyachko diagram {(CY, A7)}sex. We may assume that A # @ for some
cone 0 € X. Otherwise, by Proposition 3.4 and Lemma 3.1 the ¥ —family of / would be
the ©—family of a principal monomial ideal. Then, I = (x}' ---x;"), where s; € Z such

that Cy/ = {m € M | (m, p;) > s;}.
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o] ¢ @ o o o o e o o o [o
0] ¢ o o o [e]
e o o o o o o o °
e © o o o o o o o o o °

Fig.4 Klyachko diagram of Example 3.5 (iii). It displays A7 (o) inside C;” (o) for (i, j) = (0,0), (1,0),

(0, 1), (1, 1), clockwise. In each picture [ places the origin (0,0) € M = z?

Since [ is C1(X)—graded and finitely generated, the monomials minimally generating /
belong in a finite number of homogeneous pieces. For any D = (a,)ex(1) € Z", we denote
by [D] = Zpd(l) ap[D,] € CI(X) the class of the corresponding Weil divisor in X. We

first start by providing a monomial basis of Ip; C R|p;.

Lemma 3.10 Let {(C], A))}sex be a Klyachko diagram of a B—saturated monomial ideal

I, and D = (ay)pes1) € Z". Then,

Iip) =<C<x'“+D|m e () €7D\ A} <D>>>.

0 € Zmax

Proof For any cone o0 € ¥ we have that

Ifpy = I§ (D) = € I(D)n. and
meM

R7py = Cx™ P | 'm e C§(D)).
On the other hand, for any m € M we have

I(D)y = H' X, I(D)w = ) I°(D)m.

0 € X max

By Proposition 3.4, for any cone o € X, Ij (D) # 0 if and only if m € C7 (D) \ AJ(D).

=@ () 5D = ., Cx"*P)

Hence,

meM o €Zmax me ﬂ (C7 (D) \ A‘;(D))

0 € X max

and the lemma follows.

O
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The following remark shows how shifting by a multidegree D € Z" affects the Klyachko
diagram.

Remark 3.11 Since X is smooth, for any D = (a,)pex(1) € Z" and any cone o € X, there
is a character 7, € M such that (7;, p) = a, for all p € o(1). Then, for any m € M
and p € o (), (m, p) +ap, = (m + 1, p), s0 Ry (D) = Ry, . It follows from (4) that
I9(D) = IF tro Therefore, the Klyachko diagram of the shifted monomial ideal 7 (D) is
given by
{C;’(D) =C{(D):=C] + 1
A(I’(D): A7 (D):= AJ + 15,

which is obtained applying translations to the original Klyachko diagram.

By Lemma 3.10 we already know a basis of each homogeneous piece of 1. Our next task
is to characterize which monomials in a homogeneous piece I g are divisible by a single
monomial x” 2 The following Lemma answers this question.

Lemma 3.12 Let {(CY, A))}sex be a Klyachko diagram of a B—saturated monomial ideal
I, and D = (ap)pez(l) €Z . Letm € mzmax(cy(D) \ A(;(D)) and let E = (bp)peE(l) €
Z" be such that b, > a, for all p € X(1). The set of monomials in I g) which are divisible
by 7m+D is

Te@"P) i= " (', p) = (m, p) +ap by p € E(D)}.

Proof For any m’ € M, the monomial x £ is divisible by x”*2 if and only if (m’, p) +

b, = {m, p) + a, for any p € ¥ (1), and the lemma follows. O

Now, let G = {§m1+kl, ., x™ K'Y be a finite set of monomials of possibly different
degrees. For any E = (b,)pex(1) € Z" such that b, > k;] forpe X(1)and 1 <i <t, we
define

TpG = Tp (™ ) U U T *E)

which describes the span of the monomials of G inside I} g;.

Finally, we can describe a finite set of generators of a B—saturated monomial ideal /
corresponding to a given Klyachko diagram. Since X is smooth we can assume that C1(X) =
Z([Dp,.1 1,..., [Dpi[ = Zt. Up to permutation of variables, we may also assume that i =
1,...,ig =¥, and for any a = (ay, ..., ap) € 7t we seta = (ar,...,a0,0,...,0)€Z".
For any u, v € 7! we say that v < u, if u; > v; for 1 <i <[, which defines a partial order.
We set Gy = ¥ and for any u € 7!, we define

o= | ime O @\ arm|\ U

0 € X max v=u

assuming we have determined G, for any v < u. Since [ is finitely generated, there are only
finitely many degrees u € Z! such that G, # .
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If R is the Cox ring of P"~!, and so R has the standard Z—grading, then by construc-
tion that method gives directly a minimal set of monomial generators for /. The following
example illustrates the method:

Example 3.13 (i) Let R = C[xg, x1, x2] b_e th¢ Cox ring of P2 (See Example 2.2(i)). Con-

sider the following Klyachko diagram {(C}, A})}o<i<2, where C} and A}, stand for C;’i and
ai.
AT

C)={(d1,d) | d1 =0, dy > 0}

2 __
C! = ((dy.do) | dy + da <0, dzzO}C’_{(d"d2)|dl+d2§0’ d > 0},

AY = {(0,0),(1,0)} and A} = A% = {(0,0)}. Applying the above procedure, we
obtain that Go = Gi = @, G» = {xox2, x1x2}, G3 = {xox}} and G; = ¢ for j > 4.
Hence, the saturated monomial ideal corresponding to this Klyachko diagram is I =
(xox2, X1X2, xoxlz).

(ii) Let R = C[xo, x1, x2, x3] be the Cox ring of P3 (See Example 2.2(i)). Consider the
following Klyachko diagram {(C;, Al})}og <3, where C; and A’} stand for C}’i and A(;i:

CY ={(d1,dr,d3) | di >0, dr > 0,d3 > 0}

Ci ={(d,dp.d3) | di +dy+d3 <0, dp > 0,d3 > 0}
C? ={(di,dr,d3) | di +dr+d3 <0, dy >0,d3 >0}
C} ={(di,dr,d3) | di +dr+d3 <0, di >0,dr > 0},

AY = {(0,0,d3) | d5 > 0} U{(0,1,0)} and A} = A2 = A3 = . Applying the above
procedure, we obtain that Gy = 0, G, = {x1}, G» = {x&xl,xlz,xlxz,xlx3,xzz,xz)q} \
T2,0,00ix1} = {x%, xpx3} and G j = ¥ for j > 3. Hence, the saturated monomial ideal
corresponding to this Klyachko diagram is I = (x, x22, X2X3).

In more general gradings, we cannot assure that this method gives a minimal set of gen-
erators of /, but a finite set of monomials generating /. However, we can extract from it a
minimal set of monomials generating / by using suitable monomial divisions. The following
example illustrates this situation:

Example 3.14 Let R = Cl[xp, x1, yo, y1] be the Cox ring of the Hirzebruch surface Hj
(see Example 2.2(ii)). In particular, R is Z>—graded with deg(xg) = deg(x;) = (1,0),
deg(yo) = (0, 1) and deg(y;) = (-3, 1). Let {(C?ij, A(;ij)}ogi,jsl be the Klyachko diagram
of Example 3.5 (iii). Applying the above procedure we obtain that G, = @ for any u €
Z2\{(1,0), (0, )}, and G 0) = {x1} and Go.1) = {x3y1, X3x1y1, Xox7y1, ¥} y1}. Hence
{x1, xg Y1, xgxl Vi, xoxlzyl,xl3 y1} is a set of generators for a saturated monomial ideal /
corresponding to this Klyachko diagram. However, the first monomial divides the three last

monomials. Therefore, I is minimally generated by {x, xS i}

3.3 Non-saturated Monomial Ideals

The previous subsections have shown that the theory of Klyachko diagrams is well suited
to describe saturated monomial ideals, but we cannot retrieve directly information of non-

saturated monomial ideals. In this subsection, we describe the quotient /%%'/] = H }3 (0))]
using the Klyachko diagram {(C{, A7)}sex and the generators of 1.
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Proposition 3.15 Let [ = @"“*E, Lo x JrE) be a monom{al ideql with Klyachko dia-
gram ((CY, A))}sex, such that for 1 < i <t,m; € M and k' = (k,lo)pei(l) € 7 satisfy
(mj, p) —l—k;) > 0forall p € £(1). Then, for any D = (a,)pex1) € Z',

t .
Hé(l)[m%C< " Plme () (€7(D)\ AT (D)) \UTD<x’"f+k’>>.

0 € Xmax i=1

Proof From Lemma 3.12, I;p) = Ui, TD(g’”'*E) C 1[553 By Proposition 3.4, the Kly-
achko diagram characterizes the saturation of /, and by Lemma 3.10 we have I[‘gi =
Cx"*Plm e N (C§ (D) \ AJ(D))), and the result follows. O

0 € Xmax

Example 3.16 Let R = C[xg, x1, x2] be the Cox ring of P2, B = (xp, x1,x2) and let I =
(xgxl, xoxlxg, x%, xf) be a monomial ideal. Computing its Klyachko diagram we obtain
so=s1 =5 =0,A% = {(0,0), (0, 1), (0,2)} and A! = A? = @. From Proposition 3.15
we obtain:

Hllg(l)o =0 H}g(l)3 = (xéxl xoxlz, X0X1X2, xlzxz,xlxg)
Hllg(l)l = C(x1) H}g(l)4 = (xé 12 xoxlxz,xoxzxz,xlzxzz)
Hy(I)2 = Clxoxi, x{, x1x2) Hp(D)s = Clxgxixa)

Hi(I); =0 for j>6.

4 Application: Hilbert Function of Monomial Ideals

In this section, we show how to compute the Hilbert function and Hilbert polynomial of a
B —saturated monomial ideal from its Klyachko diagram. As a consequence we develop a
formula for the Hilbert polynomial in terms of the Klyachko diagram.

For any ray p € (1), recall that Cj := {m € M|(m,p) > 0}, C§ = MNpeo) €7
for o € X. Recall by Lemma 3.1 that {CJ, #)},cx is the Klyachko diagram of the mono-
mial ideal (1), or equivalently of R. For any multidegree D € Z", we define Co(D) :=
ﬂoezmax Cg (D), such that Co(D) gives a monomial basis of Rp) (see Proposition 3.10).
The following result tells us how to compute the value of the Hilbert function of / from this
description.

Proposition 4.1 Let I be a B—saturated monomial ideal with Klyachko diagram
{(CT, AD)sex. Then, the Hilbert function of I is given by

hep@) =| | ((A7@ NCo@) U (Co@) \ Cf @)))

0 € X max

for any o € CI(X).
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Proof By Lemma 3.10, there is a bijection between a monomial basis of 1, (respectively of
Ry) and maeimax (Cf (@) \ AJ (@)) (respectively Co(@)). Thus,

hrsp(e) = [Co@\ | (] €7@\ Af @)

0 € Xmax

= U c@\ i@\ aj@)

0 € max

= | (af@ nco@) U Co@) \ Cf @))|.

0 € Xmax

O

In the following we remark how the above formula simplifies when I is an ideal
generated by monomials with no common factor.

Remark 4.2 Let I C R be a monomial ideal and x£ € R a monomial. We recall that the
Hilbert function of J = xX7 is

hryy(@) =hg(a) —hg(a —[k]) + hg/r(a — [k]). (6)

Thus, we can assume that the Klyachko diagram of I has s, = 0 for any p € X(1) and, its
Hilbert function is

hep@) =| | (A°@nCo@)|. ©)
0 € Zmax

Otherwise, I = (]_[ pes(l) X)) ) Iy where Iy is a monomial ideal with s, = O for any p €
% (1), and we can compute the Hilbert function of I using (6).

Example 4.3 Let R = C[xg, x1, x2] be the Cox ring of PZand I = (x%, X0X2, X0X1) as in
Example 3.5 (i). For any a € Z, we seta = (a, 0, 0) and

AP @) ={(0,00} A7'@ ={(@.0),(@a—1,1)} AP@ =4
Since sg = 51 = 52 = 0, by (7) we have the following Hilbert function:

0, r<-—1
hR/](l‘): 1, t=0
3, t>1.

In particular, the Hilbert polynomial of R/1 is Pr;; = 3 constant.

In the following result we characterize the Klyachko diagram of a monomial ideal 7
with constant Hilbert polynomial. In particular, notice that / is necessarily generated by
monomials without common factors.

Corollary 4.4 Let I be a monomial ideal with Klyachko diagram {(C§, AT)}sex. Then,
the Hilbert polynomial Pg; of I is constant if and only if s, = 0 for any p € %(1) and A
is finite for any 0 € Ximax. Moreover,

Pri(@) =Y |Al.

0 € Zmax
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Proof The left implication follows directly from Proposition 4.1 and Remark 4.2. Con-
versely, if s, > 0 for some p € X(1), then there is 0 € Xax such that p € o (1) and
Co(@) \ C;’ (@) increases with o, and Pg,; would not be constant. Now, assume that there is
some 0 € Xpax such that A9 is not finite. By construction, A contains a set A’ of the form

{me M| (m, pi))=ki,....(m, pi)=ki, (m, pi, ) =kit1, ..., {m, pi.) =k}

Since A’ (@) is not bounded in C§ (@), the number of points in A’ (@) NCy(a) increases with
a for a > 0. Therefore, it follows from (7) that the Hilbert function &g/ (a) of I increases
with o for o > 0. (I

Remark 4.5 Notice that by Corollary 4.4 we have characterized all monomial ideals / C R
with dim R/I = 1, in terms of the Klyachko diagram.

We finish by illustrating Corollary 4.4 with the following example.

Example 4.6 Let R =C[xo, x1, x2, x3] be the Cox ring of P3 and I=(xopx1, x22, x1x2x32) as
in Example 3.5 (ii). For any a € Z we set a and we have,

AP @) ={(0,d2,d3) | 0 < dp,d3 < 1}U{(0,da, d3) | d3 22,0 < dp < 1}
Al'@ ={(a—dy—d3,dp,d3) | 0 <da,d3 <1}U{(a —d3,0,d3) | d3 > 2}
AT @) =0

AP @) ={(0,dr,d3) |0<dy <1,d3 <a—dr}U{(d,0,a—dy) |d > 1}

Counting the number of different points in U?:o A7 (@), we obtain that hg/(0) = 1,
hgyr(1) =4,hg/1(2) =8, and fora > 3, hg/j(a) = 3(a + 1), for a > 3. Thus, the Hilbert
polynomial of I is Pg/r(a) = 3(a + 1).
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