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Abstract

In addition to the general issue that fewer interpersonal contacts reduce the speed of con-

tagion, less attention has been paid to the spatial configuration of such contacts. In Italy,

COVID-19 severely affected the most industrialized area of the country, where the network of

commuting flows is particularly dense. We investigate the relationship between workers’ mo-

bility and the diffusion of the disease by computing, for each municipality, the intensive and

extensive margins of commuting flows and by measuring excess mortality over the period of

January-May 2020. We find that, if commuting patterns were 90% of the ones observed in the

data, Italy would have suffered approximately 2 300 fewer fatalities during the first pandemic

cycle.
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Introduction

The daily mobility of individuals for motives of labour is one of the main features of developed

societies, so the spatial extent of local labour markets is in fact defined on the basis of the

geography of commuting flows. The openness of such areas generates costs and benefits for

the governance of the local economy, particularly in the case of a pandemic, as it is one of the

conditions that determine their ability to contain such an intense health disaster (Gong et al.,

2020). In this article, we investigate how the openness of local labour markets, as defined by

the structure of the commuting network, influences the resilience of cities to health shocks, such

as the COVID-19 outbreak. In particular, we explore the aforementioned dynamics in Italy, the

first Western country to be deeply affected by the disease.

There are several reasons why we believe that such an empirical analysis is needed for a

thorough comprehension of the phenomenon. First, the initial burst of the virus spread across
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Italy first and foremost in the most industrialized area of the country, suggesting a correlation

between the structural features of local economies and the epidemic. Second, places character-

ized by high density of economic activities also exhibit dense networks of spatial interactions

(especially in the form of commuting flows), and these flows in their turn place such places at

more severe epidemiological risk, as shown by past (Charu et al., 2017; Zhou et al., 2019) and

present (Fang et al., 2020; Glaeser et al., 2020) epidemics. In fact, Bergamo, the city among

the provincial capitals with the largest share of incoming and outgoing workers compared to the

population overall, is the one that also experienced the greatest increase in fatalities recorded

in March 2020 (+429%), compared to the 2015-2019 average. Not surprisingly, the openness

of Bergamo’s labour market is remarkable because it is the epicentre of the largest industrial

district in the whole nation1

In response to the diffusion of COVID-19 during the first months of 2020, several national

governments imposed unprecedented lockdown restrictions to slow the infection rate and save

lives. Indeed, in the absence of medical treatments, such as vaccines or pharmaceuticals, the

limitation of interpersonal contacts was the key policy for containing viral infections (Haushofer

and Metcalf, 2020; Van Bavel et al., 2020). As a result, the travel behaviours of people have been

drastically altered (De Vos, 2020), with dramatic economic and social consequences (Bonaccorsi

et al., 2020).

Although the literature exploring the main drivers of the geographical diffusion of COVID-19

is sizeable, understanding how local economies are related to the perturbation caused by the

pandemic is still an open research question. In this article, we contribute to this ongoing debate

by investigating the role played by the spatial extent of local labour markets in filtering the initial

spread of the disease through workers mobility and, therefore, in influencing the resilience of

cities to the health shock.

To this end, we analyse the pre-existing characteristics of commuting patterns at the mu-

nicipality level2 using data from the latest official country-wide assessment of mobility for Italy.

Similarly, we measure the local depth of the pandemic shock by considering excess mortality

over the period of January-May 2020, comprising several weeks both before and after the most

critical part of the first pandemic cycle. We also consider a broad set of additional municipality

characteristics to control for other specific dynamics. After assembling the novel dataset, our

empirical strategy exploits within-municipality variation in excess mortality over time by esti-

mating a two-way fixed effects model in which all of our explanatory variables are interacted

with month dummies.

Our article provides some relevant novelties in two directions: first, we examine the structure

of the commuting network by computing both the intensive and extensive margins of commuting

flows; and second, we exploit more granular and heterogeneous data by performing the analysis

at the municipality level, while most of the previous studies focused on main cities, provinces,

or regions.

More precisely, we compute two synthetic indices that describe commuting flows under dif-

ferent perspectives: the intensity of external mobility and the centrality of each municipality.
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The first index - the intensive margin - is defined as the total number of workers moving from

and to a municipality over its population, similar to what is proposed by Murgante et al. (2020).

In other words, it is a proxy for the share of the population exposed to the possibility of the

virus being imported from elsewhere. The second index - the extensive margin - is based on

the topological concept of relative degree centrality of a node within a network, measuring the

importance and the openness of a municipality, as defined by Patuelli et al. (2009, 2010). In

other words, the aim is to measure the number of other different places (each of which may have

a different infection rate) to which the municipality is connected.

In addition, we further investigate the commuting dynamics by exploring the spatial hetero-

geneity of lockdown intensities induced by different government policies, such as the anticipation

of mobility restrictions (imposed using containment areas) and the reduction of active workers

(imposed using the closure of non-essential economic activities). Shedding light on whether such

measures played a role in flattening the mortality curve is therefore important in the design of

future policies aimed at containing new outbreaks.

Our findings suggest that the spatial extent of local labour markets was crucial in influencing

the resilience of cities to the COVID-19 health shock. In particular, a 1 percentage point increase

in the intensive margin is associated, on average, with 1.43 and 0.91 percentage point increases in

excess mortality in March and April 2020, respectively, while the same increase in the extensive

margin is associated with a 3.44 increase in our outcome of interest in April. As a result, more

isolated and less central places are found to be more resilient than others. Moreover, we report

suggestive evidence on the role of containment areas and businesses closure in reducing COVID-

19-related fatalities - and therefore in increasing the resilience of local economies - by cutting

down mobility among municipalities.

Within the massive empirical literature on COVID-19, our research is mainly related to

two separate lines of work that have proposed commuting flows and the characteristics of local

economies as major explanations for the observed unequal spread of COVID-19 across sub-

national areas. By focusing on those contributions dealing with the Italian context3, a first

strand of research has shown that human mobility played a crucial role in the propagation of

the disease during the first wave of the pandemic, as highlighted by the striking relationship

between mobility flows and both the net reproduction number (Rt) of the virus (Cintia et al.,

2020) and the resulting excess mortality (Ascani et al., 2021b; Iacus et al., 2020). Linked to

this line of work, a group of studies have analysed the mobility patterns of people during the

emergency and the consequent change in the structure of commuting flows, including Beria and

Lunkar (2021) and Pepe et al. (2020). A second strand of research has emphasized how the

most industrialized area of the country was more severely affected by the earliest phase of the

pandemic due to its socioeconomic characteristics, such as greater domestic and international

connectivity (Bourdin et al., 2021), and a greater degree of interaction between workers employed

in locations endowed with a high density of industries (Ascani et al., 2021a). Hence, more

productive and interconnected areas were found to be more exposed to the spread of infectious

diseases than others (Bloise and Tancioni, 2021).
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Within the broad literature on regional resilience, our research is also related to a rich

amount of studies that have analysed how the social, demographic, and economic characteristics

of territories determine their heterogeneous resilience to a particular shock, including (among

others) Bristow and Healy (2014); Diodato and Weterings (2015); Kitsos and Bishop (2018),

and Martin et al. (2016).

In this article, we connect these three strands of research by investigating the interplay

between labour market dynamics, the initial spread of COVID-19, and the resilience to the

shock.

The remainder of the article is organized as follows. First, we provide a conceptual framework

to the notion of resilience in times of a pandemic and we briefly summarize the timeline of the

COVID-19 crisis in Italy. Second, we describe the data used in the analysis. Third, we discuss

the empirical strategy, our main results, and the robustness checks. Finally, we explore the

spatial heterogeneity of lockdown intensities and we conclude the study.

The anatomy of resilience shaped by COVID-19

Resilience in a time of pandemic

In the current COVID-19 crisis, the notion of resilience has increasingly taken up not only

within academic research, but also within institutional and policy debates. Such multidis-

ciplinary concept does not have a unique definition, as its meaning varies according to the

purposes for which it is used and depends on the scale, nature, and duration of the shock to

which it refers (Martin, 2018). Broadly speaking, it defines the ability of a system to absorb an

external shock, bounce back, and reorganize itself afterwards. Such concept has been progres-

sively introduced into the regional economic research when a proliferation of studies started to

tackle the question of why some local economies where more resilient than others in facing an

increasing number of shocks and disruptions, such as natural hazards (e.g., Hong et al., 2021;

Zhou et al., 2010) and financial crisis (e.g., Capello et al., 2015; Davies, 2011).

Following the conceptual framework developed by Martin and Sunley (2015) and Martin

et al. (2016), the resilience of a local system is usually defined as a complex process involving

several phases, such as i) the vulnerability to a shock (defined as the propensity to be hit by that

shock), ii) the resistance to it (measured as the impact of the shock on a specific outcome), iii)

the reorientation after the shock (defined as the ability to adjust and adapt to the shock), and iv)

the recoverability from the shock (measured by the speed of return to a previous equilibrium).

According to the same framework, these phases are influenced by many factors, such as local

economic characteristics and any supportive policy aimed at softening the impact of the shock

(see Figure 1 for a detailed explanation of each phase of the resilience process).

[Figure 1 about here.]

Compared to the other shocks to which the literature on regional resilience normally refers

to, the specific features of the disruption caused by COVID-19 are of a different nature, so
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that their analysis has given rise to new research questions (Gong et al., 2020). For instance,

understanding why some places were more severely affected than others during the first wave of

the pandemic is still a relatively unexplored issue. Given that infectious diseases tend to spread

through human interaction, the risk for a local economy of being hit by a health shock strongly

depends on its openness, which is shaped by the daily mobility of individuals for motives of

labour. Therefore, the analysis of the geography of commuting flows is crucial when it comes

to understanding the vulnerability phase (Massaro et al., 2018). Furthermore, these flows affect

a type of resistance called “human” resistance (Ascani et al., 2021b), which can be measured

as excess mortality compared to a previous average. In its turn, such an unfortunate outcome

directly affects the “economic” resistance of a local system because it determines the introduction

of lockdown restrictions (aimed at slowing down the infection rate) on which the reorientation

and recoverability phases crucially depend.

Since our period of analysis covers a period in which the health crisis has always been far

from over, this article focuses on the first two phases of the resilience process (i.e., those included

in the area bounded by the dotted line in Figure 1). On this basis, we investigate the extent to

which the pre-existing commuting network - shaped by the structural features of local economies

- affected excess mortality during the first pandemic cycle in Italy. Although partial, this analysis

may represents a first assessment of the resilience of cities to the COVID-19 health shock.

COVID-19 in Italy

Our empirical analysis focuses on Italy, the first Western country that was forced to shut

down its economy to “flatten the curve” and contain the diffusion of COVID-19. Therefore,

Italy represents the ideal scenario for investigating the relationship between commuting flows

and the initial diffusion of the virus because government and citizens were unprepared to face

the pandemic, while both policymakers and populations of other European countries have been

influenced by the Italian case. Such an unfortunate situation limits the number of confounding

factors because there were no countermeasures or policy responses during the first weeks of the

outbreak.

The timeline of the main events that occurred during the first wave of the pandemic (sum-

marised in Figure 2) is the following. The first two COVID-19 cases in Italy were officially de-

tected on January 30, after a Chinese couple travelled fromWuhan to Milan, Verona, Parma, and

Florence. The first cases of secondary transmission were identified near Codogno and Vo’ (two

municipalities in the Lombardy and Veneto regions, respectively) on February 21, and two days

later, the Italian government enforced mobility restrictions into and from these areas (DPCM1,

2020). On March 4, all schools and universities were closed (DPCM2, 2020). On March 8, the

lockdown was imposed for the first relevant “red zone” of the country (DPCM3, 2020), that is,

the whole Lombardy region and 14 additional provinces within the Emilia-Romagna, Marche,

Piedmont, and Veneto regions4 (see Figure 7 for a detailed map). On March 11, the lockdown

was extended to the whole nation (DPCM4, 2020), and many business activities open to the
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public were forced to close. Between March 22 and March 25, the “economic” lockdown was

tightened further by shutting down all non-essential economic activities and prohibiting any

movement of people on Italian soil with few exceptions, such as for work or health reasons

(DPCM5, 2020; DPCM6, 2020). This step marked the so called “phase 1” of the epidemic,

which gradually ended between May 4 and May 18.

[Figure 2 about here.]

Data

To study the spatial diffusion of the recent COVID-19 pandemic, we rely on two main data

sources: the Italian National Institute of Statistics (ISTAT) and the Italian Institute for Envi-

ronmental Protection and Research (ISPRA). In the following section we describe the variables

used in the empirical analysis.

Measuring resilience through excess mortality

For 7 357 Italian municipalities out of 7 904 (covering approximately 95% of the total pop-

ulation), we obtain data released by ISTAT on July 9, 2020, that is, the monthly number of

fatalities occurring during the first five months of 2020 and the average monthly number of

fatalities occurring during the same period in 2015-2019. For the sake of simplicity, we refer

to the latter data as the “baseline” throughout the rest of the article. Then, our outcome of

interest is mortality growth, defined as the increase in fatalities recorded in January, February,

March, April and May 2020 compared to the same period in the “baseline”5:

mortality growthit =
fatalities2020it − fatalitiesbaselineit

fatalitiesbaselineit

(1)

where i and t denote the municipality and the month, respectively. This measure of the

incidence of COVID-19 is directly related to the notion of local resilience (Boschma, 2015)

since it computes the burden of the disease as a deviation from a pre-existing trend. We

consider excess mortality our main outcome of interest over the official number of COVID-

19 cases because it allows us to overcome, at least partially, major measurement errors and

endogeneity issues related to the number of reported cases, such as non-random differences

in screening procedures and testing capacity among areas. Indeed, it allows us to observe any

COVID-19-related fatalities, even before February 21, when the first Italian COVID-19 hotspots

were identified6. Similarly, we prefer total fatalities over official COVID-19 fatalities because

the latter are no longer considered a reliable measure due to differences in classification among

hospitals (Buonanno et al., 2020). Moreover, it is plausible to expect that the official numbers are

underestimating the true increase in mortality since a substantial number of people died without

being tested (Ciminelli and Garcia-Mandicó, 2020; Bartoszek et al., 2020). Indeed, during the

first quarter of 2020, Italy experienced 46 909 more deaths with respect to the average number of
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fatalities occurring in the same period during 2015-2019, while the official COVID-19 fatalities

declared by the Department of Civil Protection numbered 27 938 (INPS, 2020). Hence, it is

likely that the majority of the remaining 18 971 fatalities were also caused by the pandemic7. In

addition, the use of such measures also allows us to consider the indirect effects of the pandemic,

such as the possible increase in fatalities caused by other diseases that were not treated as usual

due to hospital congestion.

Measuring the spatial extent of local labour markets

The aim of this article is to investigate the role played by the spatial extent of local labour

markets in influencing their resilience to the spread of COVID-19. To this end, we use data

on the network of commuting flows reported in the 2011 census in the form of a nationwide

origin-destination matrix. We measure the intensity of external mobility of each municipality

by considering both the out-flows, indicating the total number of workers wij moving from their

residential municipality i to any other municipality j = 1 . . . n (excluding j = i), and the in-flows,

indicating the total number of workers wji moving to municipality i from any other municipality

j. We compute, for each municipality, the intensive margin of commuting, defined as the sum

of the incoming and outgoing flows over the 2011 population of the area:

intensive margini =

∑n
j=1(wij + wji)

populationi
(2)

We also consider a topological index. We first compute the total number of direct outward

and inward connections of each municipality (degree centrality), that is, the set of origin-

destination routes used by at least one worker to commute. Then, we define the extensive

margin of commuting as the ratio between the observed and the maximum possible number of

connections (n− 1) of a municipality:

extensive margini =
degree centralityi

n− 1
(3)

Control variables

To separate the effect of commuting flows from other confounding factors, we consider an-

other important dimension linked to the movement of people, such as internal mobility. To this

end - and by relying on the same 2011 census - we compute an internal mobility index as the

ratio of self-flows, indicating the total number of workers wii moving within their residential

municipality i to reach the workplace, to the 2011 population of the area.

Then, we further control for other variables potentially correlated with both excess mortality

and commuting patterns. In particular, we add all those predictors that are essential in standard

epidemiological models to explain the spatial diffusion of a disease (e.g., Bisin and Moro, 2020).

Given that living in urban areas and in close proximity is likely to increase the probability of

infection (Armillei et al., 2021; Desmet and Wacziarg, 2021), we first capture relevant geographic
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and demographic characteristics by including two dummy variables that take the value of 1 if

a municipality is located near the sea (coastal) or at medium-high altitude (mountainous) and

0 otherwise, the log of the population density (ln density), and a proxy of physical proximity,

defined as the log of the average number of square metres per inhabitant in occupied dwellings

(ln house m2 pc).

Second, given that the fatality rates for males are two to three times higher than for females

(Porcheddu et al., 2020), that the fatality rate is positively correlated with a larger presence of

elderly people (Knittel and Ozaltun, 2020), that nursing homes and hospitals were the locations

of the first outbreaks of the pandemic (Barnett and Grabowski, 2020), and that pollution can

be an important co-determinant of COVID-19-related fatalities in northern Italy8 (Coker et al.,

2020; Conticini et al., 2020; Dettori et al., 2021), we also control for five measures of vulnerability

to the pandemic: the share of male population at the municipality level (share males), the

share of population older than 75 years old at the municipality level (share over75), the share

of individuals older than 65 years old cohabiting with younger individuals at the municipality

level (share cohab over65), the number of hospital beds per inhabitant at the province level

(hospital beds pc), and the PM10, defined as the average values of µg/m3 at the province level

(pm10).

Third, we account for differences in economic structure between areas by including a dummy

variable that takes the value of 1 if a municipality is located within an industrial district (district)

and 0 otherwise. Indeed, recent literature shows how thicker local labour markets (characterized

by high density of industries) may foster higher levels of business and social interactions (e.g.,

Ascani et al., 2021b). Finally, we have seen how the pandemic has induced many workers

to perform their duties from home, preventing them from traveling. Thus, it might be that

municipalities with larger numbers of “remote” workers experienced fewer COVID-19-related

fatalities with respect to others. To capture this possible dynamic, we compute a working

remotely index (remote working) by weighting the set of working remotely indices provided by

Barbieri et al. (2021) by the labour force composition of each municipality (as defined by the

1-digit ATECO9 sections).

All of the data are publicly available10. Table A.1 reports standard descriptive statistics of

the variables used in the empirical analysis, Table A.2 summarizes their definition (as well as

their reference year, the unit of observation, and the data source), while Figure B.2 reports a

correlation matrix among covariates.

Descriptive evidence

In this section we briefly describe the spatial patterns of our main variables of interest. Figure

3 plots the spatial evolution of mortality growth in March 2020, i.e., when Italy was severely

affected by the pandemic (see Figure B.3 for the same map in the other months). Clearly, we

can note how COVID-19-related fatalities appear to be spatially clustered in the northern part

of Italy, particularly in the Lombardy region and across the Po Valley area11. Overall, the virus
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spread first and foremost in the most industrialized area of the country, suggesting a possible

correlation between the structural features of local economies, such as the spatial interactions

of workers, and the epidemic. As we can see in Figures 4 and 5, this area also shows high

density of commuting flows, both in the intensive and the extensive components (see Figure

B.4 for additional maps of other control variables). The visual correlation, especially between

excess mortality and the intensity of external mobility, is striking and suggests a specific role of

commuting flows in placing more connected places at more severe epidemiological risks.

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

Empirical analysis

Econometric model

To examine the relationship between the characteristics of commuting flows and excess mor-

tality, we estimate the following equation:

mortality growthit = β0 + βtintensive margini × δt + γtextensive margini × δt

+ ηtZi × δt + αi + δt + ϵit
(4)

where mortality growthit measures the increase in fatalities occurring in municipality i in

month t, compared to the same period at “baseline”. On the right-hand side, intensive margini

and extensive margini are our municipality commuting indices interacted with a vector of

monthly specific fixed effects, δt, accounting for the nationwide common evolution of excess mor-

tality in a given month, such as the seasonal trend. By excluding January as the pre-outbreak

period, the vectors of coefficients βt and γt capture the impact of the structural characteris-

tics of commuting flows on excess mortality over the various months of the pandemic cycle.

Zi × δt indicates the internal mobility, geographic, demographic, vulnerability, and economic

controls, also interacted with month dummies. Then, αi is a full set of municipality-level fixed

effects intended to absorb any difference in excess mortality due to time-invariant characteristics.

Hence, by controlling for all of these observed and unobserved characteristics, our identifying

assumption is that no other factor correlated with workers commuting systematically affects

excess mortality. Finally, given that the geography of commuting flows analysed in this article

essentially describes the spatial extent of local labour markets (Kropp and Schwengler, 2016),

ϵit are heteroskedasticity- and autocorrelation-consistent standard errors, respectively clustered

at the local labour market (LLM) level.
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Estimation results

Tables 1 and 2 report regression results for Equation 4. The rationale for the structure of the

two tables (which can be read sequentially) is to progressively include fixed effects and control

variables to test the strength of our estimates.

In Table 1, the first two columns report the estimated coefficients for the specifications in

which the intensive and extensive margins, interacted with month dummies, are included one at

a time. Accordingly, the main effects of the interactions are included as well. In column 3, the

two margins are simultaneously estimated, while in column 4, the specification adds a full set of

region fixed effects because the Italian national health system is managed at the regional level.

Finally, column 5 substitutes the region fixed effects with a full set of municipality fixed effects to

better control for time-invariant characteristics of each observation potentially correlated with

both excess mortality and commuting flows12. Overall, almost all of the estimated coefficients of

the two margins preserve their signs and significance throughout the columns, their magnitudes

decreasing as the specifications become less parsimonious.

[Table 1 about here.]

In Table 2 we report estimates of regressions in which we have extended the set of controls.

Interestingly, the estimated coefficients of the two margins remain consistent as, moving from the

most parsimonious specification in column 1 to the most extended in column 4, their magnitude

decreases without leading to a substantial increase in the standard error. Thus, our estimates

suggest an important role played by the spatial extent of local labour markets in influencing

the resilience of municipalities during the COVID-19 outbreak. Indeed, the intensity of external

mobility - the intensive margin - and the topological centrality of a municipality - the extensive

margin - are positively correlated with excess mortality during the most critical part of the

pandemic. This empirical evidence suggests how greater connectivity renders places less resilient

to epidemic health shocks.

[Table 2 about here.]

For simplicity, we discuss further only the estimates in column 4 because they are obtained

with the most complete specification in relation to our data. Given that January is our reference

period, regression results are close to zero and not statistically significant in February, that is,

when the COVID-19 virus had just begun to spread. As expected, the intensive margin shows

its strongest correlation with excess mortality in March, when Italy was suddenly and severely

affected by the pandemic. The coefficient indicates that, holding constant the other variables,

a 1 percentage point increase in the share of population moving from and to a municipality is

associated, on average, with a 1.43 percentage point increase in excess mortality. Then, following

the introduction of all of the containment measures previously described, this positive correlation

remain significant in April but with a smaller magnitude (0.91), while it loses significance and

approaches zero in May, hinting how the lockdown was crucial in reducing excess mortality by
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cutting down workers mobility among municipalities. The extensive margin, instead, shows

its statistically significant correlation only in April, likely because the most central nodes of the

commuting network played a pivotal role in spreading the disease later. The coefficient indicates

that a 1 percentage point increase in the ratio between the observed and the maximum possible

number of connections of a municipality is associated, on average, with a 3.44 percentage point

increase in our outcome of interest, all else being equal13.

That said, we provide some back-of-the-envelope calculations by considering three scenar-

ios in which the intensive margins among Italian municipalities would be equal to 90%, 80%,

and 70% of those actually observed in our data. In other words, we are interested in under-

standing what the reduction in mortality growth would have been had commuting flows been

lower. For each scenario, Figure 6 shows these median reductions for the months in which our

intensive margin coefficients are strongly significant. By focusing on the mildest scenario14,

where our commuting index is cut by 10%, 4.8% and 5.3% median reductions in mortality growth

on March and April would translates into 1 346 and 997 lives saved15 across Italy, respectively.

[Figure 6 about here.]

Robustness checks

In the following section we briefly describe a set of robustness checks aimed at corroborating

our empirical findings. First, the intensive margin, which is defined as the sum of incoming

and outgoing flows over the population of the area, could have some “extreme” values. Indeed,

as shown in Figure 4, for 58 of 7 345 municipalities, the value of this index is greater than

1, implying that the number of workers moving from and to the municipality is greater than

the number of residents. To check that these possible outliers are not affecting our results, we

winsorize the intensive margin by setting all of the data greater than the 99th percentile to

the 99th percentile and all of the data less than the 1st percentile to the 1st percentile. By so

doing, we obtain an index that takes values between 0 and 1. Accordingly, we also winsorize

in the same way the extensive margin. Then, we estimate the most complete specification of

Equation 4 with these new variables. As shown in column 1 of Table 3, the regression results are

very consistent with the main ones provided in Table 2, indicating that these possible outliers

are not driving our estimates.

Second, the first wave of COVID-19 has spread dramatically in some regions and not in

others. The reasons for this phenomenon are difficult to assess since they most likely depend

on many factors that favour the spread of the disease through different channels. For instance,

in Italy, the virus severely affected the most industrialized regions, such as Lombardy, Emilia-

Romagna, Piedmont, and Veneto, which differ from the rest of the country in several character-

istics. Thus, it might be relevant to verify that our previous findings are not affected by such

differences among areas. To this end, we estimate the most complete specification of Equation

4 with a more “balanced” sample by considering only the municipalities located within these
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four regions. The regression results provided in column 2 of Table 3 suggest that the inten-

sity of external mobility remains a determining factor in spread of the disease in the northern

regions, while there is no evidence that the topology of the network contributed as well. Our

interpretation is that, within the most infected areas of the country, what matters most is the

total number of workers moving between municipalities, rather than the number of different

connections.

Third, despite 9-year lagged explanatory variables perhaps solving some endogeneity issues, a

reasonable concern is whether the 2011 commuting flows remain informative about the current

ones. As proved by Gatto et al. (2020), they are since the spatial patterns of work-related

mobility seem to be remarkably preserved over such a long time interval. Moreover, we further

test the consistency over time of the commuting network by comparing the 2011 share of outgoing

flows, indicating the total number of workers moving from a municipality over its population,

with the 2019 ones16. As shown by the regression line depicted in Figure B.6, we find an almost

one-to-one association between the two shares (R2 = 0.95). Finally, we computed the intensive

and extensive margins using the 2001 and 1991 official country-wide assessments of mobility for

Italy. If our 2011 mobility patterns are truly “structural”, we should expect similar estimates

by relying on the 2001 and 1991 data. Once again, we estimate the most complete specification

of Equation 4, and the related regression results are provided in columns 3 and 4 of Table 3.

The estimated coefficients involving the intensive margin are consistent in sign, significance,

and magnitude with the main ones provided by Table 2 (lending additional reliability to our

empirical findings), while the estimated coefficient involving the extensive margin in April is

barely not statistically significant using the 2001 data.

[Table 3 about here.]

Spatial heterogeneity implied by lockdown intensities

In this section, we provide some further evidence for the relationship between the spatial

extent of local labour markets and the initial diffusion of the virus by exploring the spatial

heterogeneity of lockdown intensities induced by two policy interventions. The first source

of geographical heterogeneity is based on some municipalities being located within the first

relevant “red zone” of the country, which was enforced on March 8 (DPCM3, 2020). In this

area, mobility restrictions were anticipated compared to the rest of Italy; hence, it is plausible to

expect that this early reduction in workers commuting played a role in flattening the mortality

curve more rapidly inside the “red zone” than outside17. The second source of geographical

heterogeneity is based on the “economic” lockdown imposed between March 22 and March 25

(DPCM5, 2020; DPCM6, 2020), which forced the closure of non-essential economic activities,

as well as those with high indices of physical proximity (Barbieri et al., 2021), indicating that

the different sectoral composition of economic activities among municipalities leads to different

shares of inactive workers, which consequently translate into different reductions in commuting

flows between areas.
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The introduction of the “red zone”

We start our analysis by first considering the heterogeneity imposed by the introduction of a

containment area, such as the “red zone”. To this end, we first set a dummy variable (red zone)

equal to 1 if a municipality is located within the locked area, the boundaries of which are drawn

in Figure 7.

[Figure 7 about here.]

Then, we estimate the following augmented version of Equation 4:

mortality growthit = β0 + θtintensive margini × red zonei × δt

+ ωtextensive margini × red zonei × δt

+ βtintensive margini × δt + γtextensive margini × δt

+ ψtred zonei × δt + ηtZi × δt + αi + δt + ϵit

(5)

where we add the triple interactions among; i) the intensive and extensive margins; ii) the

red zone dummy; and iii) the set of month dummies. Accordingly, the area main effects are

also included.

Table 4 reports regression results for Equation 5. Similar to Table 2, all of the specifications

include month and municipality fixed effects, while columns 1-4 progressively add our sets of

control variables. We focus on the coefficients estimated by the most complete specification in

column 4. Given that the “red zone” was enforced on March 8, that the incubation time of the

disease can be approximated in approximately 5 days (Lauer et al., 2020), and that reported

COVID-19 fatalities tend to occur around 18-21 days after infection (Yang et al., 2020), we

should observe an impact of the anticipated mobility restrictions in the area in reducing mortality

from April onwards. As expected, the coefficients associated with the triple interactions involving

the intensive margin in April and May are negative, but only the latter is statistically significant.

This outcome suggests how an early reduction in the intensity of commuting flows, induced by

an anticipated lockdown, could foster - after some weeks - a faster reduction in excess mortality

related to external mobility, compared to areas without restrictions. Thus, containment areas

could be useful to increase the resilience of local economies. Here, the triple interactions involving

the extensive margin are not at all significant, likely because of collinearity with the red zone

dummy, which captures most of the variability, as shown in Figure 518. Finally, we clearly find

a positive and consequently decreasing correlation between being located within the “red zone”

and excess mortality. This finding confirms that the boundaries of the containment area were

based on the high infection rate of the municipalities within it.

[Table 4 about here.]
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The introduction of the “economic” lockdown

We now turn to exploiting the variation in the share of inactive workers due to the closure of

non-essential economic activities. To this end, we rely on the most recent official data provided

by ISTAT19 to compute the number of active and inactive workers for each municipality, which

are based on the list of ATECO sectors not suspended by the Italian government during the first

part of 2020 (see Table A.4 for a detailed list of sectors that were allowed to operate). Then,

we compute our share of interest by simply dividing the number of inactive workers by the total

number of workers in the area:

share inactivei =
inactive wi

wi
(6)

At this point, we are interested in understanding how much this “economic” lockdown has

tightened commuting flows among municipalities, given that many workers no longer had to

reach their workplaces. To do so, we compute the share of inactive commuters for each munici-

pality in the following way:

share inactive commutersi =

∑n
j=1(wij × share inactivej + wji × share inactivei)∑n

j=1(wij + wji)
(7)

where the total number of workers moving from and to a municipality (as explained in Equa-

tion 2) has been first multiplied by the share of inactive workers in the municipality of destination

and then weighted by the total incoming and outgoing flows. Next, we define municipalities with

the largest share of inactive commuters by setting a dummy variable (high inactive) that equals

1 if the value computed through Equation 7 is greater than the 66th percentile. These munici-

palities - visually correlated with the most industrialized regions of the country - are plotted in

Figure 8.

[Figure 8 about here.]

To test whether the closure of non-essential economic activities played a role in reducing

COVID-19-related fatalities by tightening commuting flows further, we estimate the following

augmented version of Equation 4:

mortality growthit = β0 + θtintensive margini × high inactivei × δt

+ βtintensive margini × δt + γtextensive margini × δt

+ ψthigh inactivei × δt + ηtZi × δt + αi + δt + ϵit

(8)

where we add the triple interaction among: i) the intensive margin; ii) the high inactive

dummy; and iii) the set of month dummies. Accordingly, the area main effects are included.

Note that we do not add the triple interaction involving the extensive margin because the closure
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of non-essential economic activities affected the intensity of commuting flows, rather than the

number of connections between municipalities.

Table 5 reports regression results for Equation 8. Different from the previous tables, column

1 directly reports the estimated coefficients for the most complete specification. Here, the

negative and significant coefficient associated with the triple interaction in April suggests that

municipalities with the largest share of inactive commuters would benefit from a faster reduction

in excess mortality. Interestingly, this finding is in line with the recent empirical evidence

provided by Borri et al. (2020) and Di Porto et al. (2020). In columns 2 and 3, we further

examined this point by splitting the sample between municipalities located inside and outside

the “red zone”. The rationale for the sample split is testing whether this second policy made an

additional contribution to reducing COVID-19-related fatalities - through a further restriction

of workers commuting - even within an area that had already been affected by the first policy.

As it is plausible to expect, the effectiveness of the “economic” lockdown in reducing commuting

flows further (and therefore in better controlling virus transmissions) lessened within the “red

zone”. In fact, the coefficients associated with the triple interactions are nowhere significant

in column 2. Conversely, the coefficients retain their magnitudes and significance in column 3,

indicating that the national dynamics also hold outside the “red zone”. Accordingly, the same

explanation applies.

[Table 5 about here.]

Conclusions

The diffusion of COVID-19 is imposing tremendous challenges on our society, and it seems

that now, more than in the past few decades, geography is considered a crucial feature for

resilience to such a shock. With reference to the Italian case, the virus spread first and foremost

in the most industrialized area of the country, where the high density of economic activities

also exhibits dense networks of commuting flows. To the best of our knowledge, this article

is among the very few exploring the role played by the openness of local labour markets, as

defined by the structure of the commuting network, in filtering the initial spread of the virus

and, therefore, in influencing the resilience of Italian municipalities to the health shock. To this

end, we computed the intensive and extensive margins of commuting flows, and we measured

the spread of COVID-19 by considering excess mortality over the first five months of 2020, with

clear implications in terms of measurement of resilience.

Using a rich and novel dataset, we have found that, during the most critical part of the first

pandemic cycle (i.e., March and April 2020), municipalities with larger shares of population

commuting from and to their borders for motives of labour tended to have higher COVID-19-

related fatalities. Moreover, our findings also indicate that it is not only the intensity of external

mobility that can influence the speed of diffusion of the virus and the depth of the shock but also

the centrality of each municipality within a network of commuting flows. Indeed, municipalities
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strongly connected to many other different places experienced higher excess mortality in April

as well. A back-of-the-envelope calculation suggests that, if structural commuting patterns

were 90% of the ones observed in the data, Italy would have suffered 1 346 and 997 fewer

fatalities in March and April 2020, respectively. Finally, we explored the spatial heterogeneity

of lockdown intensities induced by different government policies, such as the introduction of the

first relevant “red zone” of the country and the closure of non-essential economic activities. We

report suggestive evidence on the role of these policies in favouring a faster reduction in excess

mortality and, therefore, in increasing the resilience of local economies.

The overall conclusion arising from our analysis is that places more isolated and less central

are found to be more resilient than others, all else being equal. This finding, in its turn, suggests

policy actions to strengthen the resistance to the shock - and overcome the epidemic - considering

not only the intensity of commuting flows but also addressing specific hotspots, central in the

network of commuting flows.
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Notes

1Industrial districts are “self-contained” labour markets mainly consisting of small- and medium-sized enter-

prises specializing in the same economic activity. According to the latest industry and services national census,

the industrial district of Bergamo is the largest in terms of population (802 731) and embedded municipalities

(123).
2To avoid misunderstandings, we understand the openness of local labour markets by means of commuting

flows at the municipality level. This choice is driven by the need to exploit excess mortality data as granular as

possible. Therefore, our empirical analysis does not use the official definition of local labour market (as defined

by the Italian National Institute of Statistics) as the unit of observation.
3For the sake of conciseness, this unavoidably incomplete literature review focuses only on those contributions

that have used the Italian scenario as their case study.
4The 14 additional provinces that completed the containment areas are Modena, Parma, Piacenza, Reggio

nell’Emilia, Rimini, Pesaro e Urbino, Alessandria, Asti, Novara, Verbano-Cusio-Ossola, Vercelli, Padova, Treviso,

and Venezia.
5The evolution of excess mortality in Italy during the period of analysis is plotted in Figure B.1. We acknowl-

edge an anonymous Referee for pointing out the existence of alternative estimates of excess mortality for Italy,

such as the one provided by Cerqua et al. (2021) using machine learning techniques. Unfortunately, we are not

able to fit our model specification (which is based on monthly data) with estimates computed over different time

intervals.
6By analysing the first three complete genomes of SARS-CoV-2, Zehender et al. (2020) showed that the virus

was present in Italy weeks before the first reported case.
7During the period of May 25-July 15 2020, the Italian Ministry of Health and ISTAT conducted an epidemio-

logical investigation to estimate the percentage of the population that likely contracted the infection by sampling

150 000 individuals throughout the whole Italian territory. The results (based on 64 660 serological tests) show

that the number of people who contracted the virus is equal to 2.5% of the population and therefore 6 times

more than the official COVID-19 cases detected over the pandemic cycle (ISTAT, 2020).
8Several studies in the medical literature have shown that individuals living in highly polluted areas have a

reduced capacity to react to respiratory diseases and pneumonias (Pope III and Dockery, 2006).
9The ATECO 2007 classification is the Italian equivalent of the European NACE Rev. 2 classification.

10mortality growth data are retrieved from https://www.istat.it/it/archivio/240401. intensive margin,

extensive margin, and internal mobility data are retrieved from https://www.istat.it/it/archivio/157423.

coastal, mountainous, and ln density data are retrieved from https://www.istat.it/it/archivio/156224.

ln house m2 pc, share over75, and share cohab over65 data are retrieved from http://ottomilacensus.istat.

it/. share males and hospital beds pc data are retrieved from http://dati.istat.it/. pm10 data are re-

trieved from https://www.isprambiente.gov.it/it/pubblicazioni/stato-dellambiente. district data are re-

trieved from https://www.istat.it/it/archivio/150320. remote working data are retrieved from http://

dati-censimentoindustriaeservizi.istat.it/Index.aspx and Barbieri et al. (2021).
11Nevertheless, by relying on a spatial weights matrix constructed through Euclidean distances without neigh-

bourless municipalities, the Moran’s I index for spatial autocorrelation of our outcome of interest is relatively

low (0.13).
12Given that our intensive margin and extensive margin are time-invariant variables, they are omitted from

column 5 because of collinearity with municipality fixed effects.
13For the sake of completeness, estimates of all of the control variables (supported by a brief discussion) are

reported in Table A.3, while Figure B.5 plots the coefficients of the most complete specification of Table 2 with

their 95% and 99% confidence intervals.
14By way of example, this scenario would correspond to the situation in which the city of Bergamo, the

provincial capital with both the highest intensive margin and mortality growth in March (as discussed in the

introductory section, would have commuting flows comparable to the provincial capital of Monza.

17

https://www.istat.it/it/archivio/240401
https://www.istat.it/it/archivio/157423
https://www.istat.it/it/archivio/156224
http://ottomilacensus.istat.it/
http://ottomilacensus.istat.it/
http://dati.istat.it/
https://www.isprambiente.gov.it/it/pubblicazioni/stato-dellambiente
https://www.istat.it/it/archivio/150320
http://dati-censimentoindustriaeservizi.istat.it/Index.aspx
http://dati-censimentoindustriaeservizi.istat.it/Index.aspx


15With reference to our 7 357 municipalities, the average number of fatalities occurring in Italy at the “baseline”

were 55 065 in March and 49 144 in April, while the total number of fatalities occurring during the same months

in the 2020 were 82 867 (+50.5%) and 67 805 (+38.0%), respectively. According to the reductions in mortality

growth for these months computed by our back-of-the-envelope calculations, the mildest scenario would have led

to mortality growth of 48.0% (50.5%-(50.5%*4.8%)) in March and 35.9% (38.0%-(38.0%*5.3%) in April. Hence,

the “counterfactual” number of fatalities during the most critical part of the pandemic cycle would have been

81 521 in March and 66 808 in April.
16Although a more up to date origin-destination matrix would undoubtedly be preferred, it is not available. At

the municipality level, the most recent data on commuting (retrieved from http://dati-censimentipermanenti.

istat.it/Index.aspx) provide information only on the aggregate 2019 out-flows.
17Caselli et al. (2020), providing empirical evidence that this containment area significantly lowered individual

mobility.
18For the same reason, the estimated coefficients of the extensive margin interacted with month dummies are

not directly interpretable.
19Data are retrieved from https://www.istat.it/it/archivio/241341. For the sake of clarity, ISTAT data

(which are based on the 2017 Frame Territoriale register) focus on workers in the industrial and service sectors.

Workers employed in other economic activities, such as agriculture and public administration, are excluded from

the registry because these sectors are outside the scope of business statistics.
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INPS, 2020. Analisi della mortalità nel periodo di epidemia da covid-19 (in Italian). Retrieved 15

June 2020 from https://www.inps.it/docallegatiNP/Mig/Dati_analisi_bilanci/Nota_

CGSA_mortal_Covid19_def.pdf.

ISTAT, 2020. Primi risultati dell’indagine di sieroprevalenza sul sars-cov-2 (in Ital-

ian). Retrieved 15 June 2020 from https://www.istat.it/it/files//2020/08/

ReportPrimiRisultatiIndagineSiero.pdf.

Kitsos, A., Bishop, P., 2018. Economic resilience in Great Britain: the crisis impact and its

determining factors for local authority districts. The Annals of Regional Science 60, 329–347.

Knittel, C.R., Ozaltun, B., 2020. What does and does not correlate with COVID-19 death rates.

NBER Working Paper No. 27391 .

Kropp, P., Schwengler, B., 2016. Three-step method for delineating functional labour market

regions. Regional Studies 50, 429–445.

Lauer, S.A., Grantz, K.H., Bi, Q., Jones, F.K., Zheng, Q., Meredith, H.R., Azman, A.S., Reich,

N.G., Lessler, J., 2020. The incubation period of coronavirus disease 2019 (COVID-19) from

publicly reported confirmed cases: estimation and application. Annals of internal medicine

172, 577–582.

Martin, R., Sunley, P., 2015. On the notion of regional economic resilience: conceptualization

and explanation. Journal of Economic Geography 15, 1–42.

Martin, R., Sunley, P., Gardiner, B., Tyler, P., 2016. How regions react to recessions: Resilience

and the role of economic structure. Regional Studies 50, 561–585.

Martin, R.L., 2018. Shocking aspects of regional development: Towards an economic geography

of resilience, in: The new Oxford handbook of economic geography, pp. 839–864.

Massaro, E., Ganin, A., Perra, N., Linkov, I., Vespignani, A., 2018. Resilience management

during large-scale epidemic outbreaks. Scientific reports 8, 1–9.

22

https://www.inps.it/docallegatiNP/Mig/Dati_analisi_bilanci/Nota_CGSA_mortal_Covid19_def.pdf
https://www.inps.it/docallegatiNP/Mig/Dati_analisi_bilanci/Nota_CGSA_mortal_Covid19_def.pdf
https://www.istat.it/it/files//2020/08/ReportPrimiRisultatiIndagineSiero.pdf
https://www.istat.it/it/files//2020/08/ReportPrimiRisultatiIndagineSiero.pdf


Murgante, B., Borruso, G., Balletto, G., Castiglia, P., Dettori, M., 2020. Why Italy First?

Health, Geographical and Planning aspects of the Covid-19 outbreak. Sustainability 12,

5064.

Patuelli, R., Reggiani, A., Nijkamp, P., Bade, F.J., 2009. Spatial and commuting networks, in:

Complexity and spatial networks. Springer, pp. 257–271.

Patuelli, R., Reggiani, A., Nijkamp, P., Bade, F.J., 2010. The evolution of the commuting

network in Germany: Spatial and connectivity patterns. Journal of Transport and Land Use

2, 5–37.

Pepe, E., Bajardi, P., Gauvin, L., Privitera, F., Lake, B., Cattuto, C., Tizzoni, M., 2020.

Covid-19 outbreak response, a dataset to assess mobility changes in Italy following national

lockdown. Scientific data 7, 1–7.

Pope III, C.A., Dockery, D.W., 2006. Health effects of fine particulate air pollution: lines that

connect. Journal of the air & waste management association 56, 709–742.

Porcheddu, R., Serra, C., Kelvin, D., Kelvin, N., Rubino, S., 2020. Similarity in case fatality

rates (CFR) of COVID-19/SARS-COV-2 in Italy and China. The Journal of Infection in

Developing Countries 14, 125–128.

Van Bavel, J.J., Baicker, K., Boggio, P.S., Capraro, V., Cichocka, A., Cikara, M., Crockett,

M.J., Crum, A.J., Douglas, K.M., Druckman, J.N., et al., 2020. Using social and behavioural

science to support COVID-19 pandemic response. Nature Human Behaviour 4, 460–471.

Yang, X., Yu, Y., Xu, J., Shu, H., Liu, H., Wu, Y., Zhang, L., Yu, Z., Fang, M., Yu, T., et al.,

2020. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in

Wuhan, China: a single-centered, retrospective, observational study. The Lancet Respiratory

Medicine 8, 475–481.

Zehender, G., Lai, A., Bergna, A., Meroni, L., Riva, A., Balotta, C., Tarkowski, M., Gabrieli, A.,

Bernacchia, D., Rusconi, S., et al., 2020. Genomic characterization and phylogenetic analysis

of SARS-COV-2 in Italy. Journal of Medical Virology 92, 1637–1640.

Zhou, H., Wang, J., Wan, J., Jia, H., 2010. Resilience to natural hazards: a geographic per-

spective. Natural hazards 53, 21–41.

Zhou, S., Zhou, S., Liu, L., Zhang, M., Kang, M., Xiao, J., Song, T., 2019. Examining the effect

of the environment and commuting flow from/to epidemic areas on the spread of Dengue

Fever. International Journal of Environmental Research and Public Health 16, 5013.

23



List of Figures

1. Process of local resilience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2. Timeline of the main events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3. mortality growth in March 2020, by municipality . . . . . . . . . . . . . . . . . . 27
4. intensive margin, by municipality . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5. extensive margin, by municipality . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6. Reduction in mortality growth, by month and scenario . . . . . . . . . . . . . . 30
7. red zone enforced on March 8, 2020 . . . . . . . . . . . . . . . . . . . . . . . . . 31
8. share inactive commuters, by municipality . . . . . . . . . . . . . . . . . . . . . 32

24



Figure 1: Process of local resilience

Source: Adapted from Martin and Sunley (2015) and Martin et al. (2016).
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Figure 2: Timeline of the main events

Notes: The figure shows the timeline of the main events that occurred in Italy during the first wave of the
pandemic; hence, dates refer to the 2020. Source: Authors’ own elaboration.
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Figure 3: mortality growth in March 2020, by municipality

Source: Authors’ own elaboration.
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Figure 4: intensive margin, by municipality

Source: Authors’ own elaboration.
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Figure 5: extensive margin, by municipality

Source: Authors’ own elaboration.
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Figure 6: Reduction in mortality growth, by month and scenario

Notes: Estimates are based on back-of-the-envelope calculations along three scenarios in which the intensive
margins would be equal to 90%, 80%, and 70% of those really observed in our data.
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Figure 7: red zone enforced on March 8, 2020

Source: Authors’ own elaboration.
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Figure 8: share inactive commuters, by municipality

Source: Authors’ own elaboration.
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Table 1: Commuting indices and mortality growth (part 1)

mortality growth

(1) (2) (3) (4) (5)

intensive margin× February 0.024 0.054 0.067 0.078
(0.085) (0.089) (0.088) (0.090)

intensive margin×March 2.326*** 2.053*** 2.050*** 2.070***
(0.442) (0.342) (0.342) (0.341)

intensive margin×April 1.304*** 1.178*** 1.175*** 1.191***
(0.148) (0.156) (0.155) (0.158)

intensive margin×May 0.137 0.133 0.128 0.157*
(0.085) (0.088) (0.088) (0.089)

extensive margin× February -1.122 -1.365* -1.475* -1.424*
(0.806) (0.824) (0.820) (0.826)

extensive margin×March 21.020** 11.770* 11.760 11.750
(8.515) (7.141) (7.142) (7.150)

extensive margin×April 10.720*** 5.434*** 5.446*** 5.380***
(1.713) (1.497) (1.500) (1.484)

extensive margin×May 0.779 0.183 0.141 0.146
(0.878) (0.885) (0.885) (0.879)

intensive margin 0.055 0.074 -0.441***
(0.049) (0.051) (0.081)

extensive margin -0.519 -0.854 -5.551***
(0.579) (0.583) (1.238)

constant -0.052** -0.027 -0.048** 0.143*** -0.033
(0.022) (0.018) (0.023) (0.045) (0.025)

Month FE ✓ ✓ ✓ ✓ ✓
Region FE ✓
Municipality FE ✓

Observations 35 916 35 916 35 916 35 916 35 916
R2 0.07 0.06 0.07 0.10 0.08

Notes: All of the specifications present OLS estimates and include month, region, and municipal-
ity fixed effects as indicated. Standard errors clustered at the LLM level appear in parentheses.
Significance values: ***p<0.01, **p<0.05, *p<0.10.
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Table 2: Commuting indices and mortality growth (part 2)

mortality growth

(1) (2) (3) (4)

intensive margin× February 0.114 0.120 0.096 0.098
(0.095) (0.102) (0.103) (0.108)

intensive margin×March 1.896*** 1.804*** 1.430*** 1.427***
(0.299) (0.292) (0.285) (0.277)

intensive margin×April 1.141*** 1.034*** 0.882*** 0.906***
(0.170) (0.173) (0.166) (0.162)

intensive margin×May 0.153 0.107 0.095 0.095
(0.094) (0.099) (0.104) (0.108)

extensive margin× February -1.881** -0.698 -0.748 -0.771
(0.891) (1.075) (1.086) (1.093)

extensive margin×March 14.000 11.820 6.064 8.556
(8.531) (7.995) (6.930) (6.596)

extensive margin×April 6.032*** 6.263*** 2.643* 3.442**
(1.767) (1.680) (1.567) (1.590)

extensive margin×May 0.198 -0.405 -1.352 -1.620
(0.926) (1.026) (1.054) (1.109)

constant -0.034 -0.034 -0.034 -0.033
(0.025) (0.025) (0.024) (0.024)

Month FE ✓ ✓ ✓ ✓
Municipality FE ✓ ✓ ✓ ✓
Internal mobility × δt ✓ ✓ ✓ ✓
Geographic controls × δt ✓ ✓ ✓
Demographic controls × δt ✓ ✓ ✓
Vulnerability controls × δt ✓ ✓
Economic controls × δt ✓

Observations 35 916 35 916 35 916 35 916
R2 0.08 0.09 0.10 0.11

Notes: All of the specifications present OLS estimates and include month and
municipality fixed effects. Standard errors clustered at the LLM level appear in
parentheses. Significance values: ***p<0.01, **p<0.05, *p<0.10.
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Table 3: Commuting indices and mortality growth (robustness checks)

mortality growth

Winsorized Subsample 2001 data 1991 data

(1) (2) (3) (4)

intensive margin× February 0.203 0.084 0.082 0.024
(0.144) (0.127) (0.106) (0.114)

intensive margin×March 1.940*** 0.994** 1.488*** 1.587***
(0.353) (0.419) (0.327) (0.391)

intensive margin×April 1.317*** 0.525** 0.880*** 0.736***
(0.200) (0.219) (0.168) (0.175)

intensive margin×May 0.210 -0.043 0.062 0.002
(0.150) (0.130) (0.108) (0.115)

extensive margin× February -1.690 -0.932 -0.499 -0.974
(1.979) (1.292) (1.455) (1.801)

extensive margin×March 15.900 4.008 6.405 6.335
(11.090) (5.971) (8.032) (9.622)

extensive margin×April 5.368* -0.722 3.130 0.125
(2.775) (2.129) (1.948) (2.695)

extensive margin×May -2.993 -0.254 -1.788 -2.961
(1.999) (1.526) (1.394) (1.935)

constant -0.033 -0.045 -0.034 -0.034
(0.023) (0.044) (0.024) (0.024)

Month FE ✓ ✓ ✓ ✓
Municipality FE ✓ ✓ ✓ ✓
Internal mobility × δt ✓ ✓ ✓ ✓
Geographic controls × δt ✓ ✓ ✓ ✓
Demographic controls × δt ✓ ✓ ✓ ✓
Vulnerability controls × δt ✓ ✓ ✓ ✓
Economic controls × δt ✓ ✓ ✓ ✓

Observations 35 916 16 451 35 916 35 916
R2 0.11 0.16 0.10 0.10

Notes: All of the specifications present OLS estimates and include month and munic-
ipality fixed effects. Standard errors clustered at the LLM level appear in parentheses.
Significance values: ***p<0.01, **p<0.05, *p<0.10.
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Table 4: Commuting indices and mortality growth (red zone)

mortality growth

(1) (2) (3) (4)

intensive margin× red zone× February -0.143 -0.126 -0.115 -0.113
(0.183) (0.196) (0.199) (0.199)

intensive margin× red zone×March 0.950 0.634 0.762 0.774
(0.618) (0.621) (0.610) (0.604)

intensive margin× red zone×April -0.577* -0.525 -0.376 -0.366
(0.323) (0.326) (0.332) (0.334)

intensive margin× red zone×May -0.498*** -0.463** -0.442** -0.439**
(0.191) (0.196) (0.197) (0.196)

extensive margin× red zone× February 1.571 0.728 0.478 0.481
(1.867) (1.899) (1.928) (1.929)

extensive margin× red zone×March 4.835 2.236 4.306 3.033
(9.099) (9.868) (9.724) (9.337)

extensive margin× red zone×April 3.054 2.190 3.598 3.206
(2.892) (3.133) (2.838) (2.736)

extensive margin× red zone×May 2.100 2.556 2.926 3.165
(1.922) (1.994) (2.063) (2.126)

intensive margin× February 0.144 0.147 0.130 0.134
(0.136) (0.147) (0.153) (0.157)

intensive margin×March 0.551*** 0.757*** 0.661*** 0.764***
(0.181) (0.208) (0.220) (0.252)

intensive margin×April 0.964*** 0.939*** 0.867*** 0.923***
(0.183) (0.188) (0.187) (0.195)

intensive margin×May 0.272** 0.234 0.244* 0.243
(0.136) (0.143) (0.148) (0.153)

extensive margin× February -3.171** -1.518 -1.267 -1.365
(1.544) (1.772) (1.815) (1.832)

extensive margin×March -4.728* -3.225 -5.602 -2.857
(2.831) (4.156) (3.849) (3.622)

extensive margin×April -1.700 -0.030 -2.787 -2.100
(2.371) (2.890) (2.487) (2.421)

extensive margin×May -1.992 -2.944 -3.814** -4.488**
(1.580) (1.838) (1.878) (1.976)

red zone× February 0.079 0.088 0.092 0.099
(0.083) (0.095) (0.101) (0.103)

red zone×March 1.193*** 1.425*** 1.189*** 1.144***
(0.356) (0.391) (0.371) (0.376)

red zone×April 0.837*** 0.823*** 0.690*** 0.691***
(0.128) (0.141) (0.151) (0.151)

red zone×May 0.284*** 0.265** 0.250** 0.271**
(0.101) (0.107) (0.115) (0.117)

constant -0.033 -0.033 -0.033 -0.033
(0.022) (0.022) (0.022) (0.022)

Month FE ✓ ✓ ✓ ✓
Municipality FE ✓ ✓ ✓ ✓
Internal mobility × δt ✓ ✓ ✓ ✓
Geographic controls × δt ✓ ✓ ✓
Demographic controls × δt ✓ ✓ ✓
Vulnerability controls × δt ✓ ✓
Economic controls × δt ✓

Observations 35 916 35 916 35 916 35 916
R2 0.12 0.12 0.12 0.13

Notes: All of the specifications present OLS estimates and include month and municipality
fixed effects. Standard errors clustered at the LLM level appear in parentheses. Significance
values: ***p<0.01, **p<0.05, *p<0.10.
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Table 5: Commuting indices and mortality growth (high inactive)

mortality growth

Italy inside red zone outside red zone

(1) (2) (3)

intensive margin× high inactive× February 0.144 0.003 0.222
(0.192) (0.303) (0.305)

intensive margin× high inactive×March -0.084 0.202 -0.012
(0.572) (1.031) (0.504)

intensive margin× high inactive×April -0.651** -0.457 -0.866**
(0.296) (0.547) (0.342)

intensive margin× high inactive×May -0.165 0.076 -0.318
(0.198) (0.345) (0.301)

intensive margin× February 0.045 0.055 0.092
(0.126) (0.202) (0.183)

intensive margin×March 1.391*** 1.239** 0.733***
(0.324) (0.608) (0.189)

intensive margin×April 1.164*** 0.826* 1.304***
(0.241) (0.488) (0.247)

intensive margin×May 0.167 -0.199 0.402**
(0.139) (0.229) (0.188)

extensive margin× February -0.669 -0.861 -1.758
(1.120) (1.399) (2.133)

extensive margin×March 8.769 -0.491 -3.408
(6.550) (6.226) (2.431)

extensive margin×April 2.978* -4.992** -0.078
(1.657) (2.387) (2.380)

extensive margin×May -1.765 -1.372 -4.751**
(1.130) (1.786) (1.954)

high inactive× February -0.057 0.025 -0.095
(0.086) (0.158) (0.117)

high inactive×March 0.213 0.086 -0.027
(0.248) (0.557) (0.191)

high inactive×April 0.225** 0.242 0.177
(0.113) (0.266) (0.138)

high inactive×May 0.041 -0.005 0.034
(0.091) (0.196) (0.119)

constant -0.033 -0.035 -0.032**
(0.024) (0.053) (0.015)

Month FE ✓ ✓ ✓
Municipality FE ✓ ✓ ✓
Internal mobility × δt ✓ ✓ ✓
Geographic controls × δt ✓ ✓ ✓
Demographic controls × δt ✓ ✓ ✓
Vulnerability controls × δt ✓ ✓ ✓
Economic controls × δt ✓ ✓ ✓

Observations 35 911 11 869 24 042
R2 0.11 0.22 0.03

Notes: All of the specifications present OLS estimates and include month and municipality fixed
effects. Standard errors clustered at the LLM level appear in parentheses. Significance values:
***p<0.01, **p<0.05, *p<0.10.
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Supplemental File

Appendix A Additional Tables

Table A.1: Descriptive statistics

Mean SD Minimum Maximum Observations

mortality growth 0.313 1.540 -1.000 39.000 35916
intensive margin 0.334 0.189 0.000 3.898 36725
extensive margin 0.012 0.013 0.000 0.339 36725
internal mobility 0.114 0.053 0.000 0.403 36725
coastal 0.078 0.268 0.000 1.000 36725
mountainous 0.732 0.443 0.000 1.000 36725
ln density 4.718 1.406 -0.266 9.411 36725
ln house m2 pc 3.763 0.134 3.266 4.450 36725
share males 0.496 0.017 0.414 0.650 36725
share over75 0.119 0.042 0.025 0.435 36725
share cohab over65 0.360 0.124 0.075 1.781 36725
hospital beds pc 0.004 0.001 0.000 0.007 36725
pm10 29.678 8.746 14.000 46.000 36725
district 0.265 0.441 0.000 1.000 36725
remote working 0.471 0.019 0.384 0.609 36725

Notes: The table reports standard descriptive statistics of the variables used in the
empirical analysis.
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Table A.2: Variables description

Variable Measure Yeara
Unit of

Source
observation

mortality growth Growth rate between the 2020 monthly fatalities
and the 2015-2019 average monthly fatalities.

2020 Municipality ISTAT

intensive margin Sum of out-flows and in-flows divided by total pop-
ulation.

2011 Municipality ISTAT

extensive margin Sum of outward and inward connections divided
by maximum possible number of connections.

2011 Municipality ISTAT

internal mobility Self-flows divided by total population. 2011 Municipality ISTAT
coastal Dummy equal to 1 if the municipality is located

near the sea.
2011 Municipality ISTAT

mountainous Dummy equal to 1 if the municipality is located at
medium-high altitude.

2011 Municipality ISTAT

ln density Log of population divided by municipality area
(km2).

2019 Municipality ISTAT

ln house m2 pc Log of the average number of m2 per inhabitant. 2011 Municipality ISTAT
share males Male population divided by total population. 2019 Municipality ISTAT
share over75 Population older than 75 years old divided by total

population.
2011 Municipality ISTAT

share cohab over65 Number of individuals older than 65 years old di-
vided by total cohabitants.

2011 Municipality ISTAT

hospital beds pc Number of hospital beds per inhabitant. 2017 Province ISTAT
pm10 Average value of µg/m3. 2017 Province ISPRA
district Dummy equal to 1 if the municipality is located

within an industrial district.
2011 Municipality ISTAT

remote working Weighted average of the labour force composition
for the 1-digit ATECO working remotely indices.

2011 Municipality ISTAT

a Note that the number of Italian municipalities decreased from 8 092 in 2011 to 7 904 in 2020. Hence, we
precisely combined data by considering all of the administrative variations occurring in Italy during these
9 years, such as the establishment of new municipalities and the suppression of others. Considering that
mortality growth data are available for 7 357 municipalities, we ended up with 7 345 observations for each
month.
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Table A.3: Commuting indices and mortality growth (part 3)

mortality growth

(1) (2) (3) (4)

intensive margin× February 0.114 0.120 0.096 0.098
(0.095) (0.102) (0.103) (0.108)

intensive margin×March 1.896*** 1.804*** 1.430*** 1.427***
(0.299) (0.292) (0.285) (0.277)

intensive margin×April 1.141*** 1.034*** 0.882*** 0.906***
(0.170) (0.173) (0.166) (0.162)

intensive margin×May 0.153 0.107 0.095 0.095
(0.094) (0.099) (0.104) (0.108)

extensive margin× February -1.881** -0.698 -0.748 -0.771
(0.891) (1.075) (1.086) (1.093)

extensive margin×March 14.000 11.820 6.064 8.556
(8.531) (7.995) (6.930) (6.596)

extensive margin×April 6.032*** 6.263*** 2.643* 3.442**
(1.767) (1.680) (1.567) (1.590)

extensive margin×May 0.198 -0.405 -1.352 -1.620
(0.926) (1.026) (1.054) (1.109)

internal mobility × February 0.412 0.406 0.472 0.484
(0.318) (0.342) (0.346) (0.367)

internal mobility ×March -2.033 -1.700 -0.042 -0.483
(1.299) (1.288) (1.129) (1.206)

internal mobility ×April -0.584 -0.205 0.473 0.396
(0.513) (0.506) (0.520) (0.531)

internal mobility ×May -0.049 0.154 0.215 0.265
(0.349) (0.357) (0.361) (0.381)

coastal × February -0.065 -0.060 -0.062
(0.047) (0.049) (0.051)

coastal ×March -0.398*** -0.215** -0.182**
(0.106) (0.100) (0.091)

coastal ×April -0.228*** -0.155** -0.157**
(0.063) (0.065) (0.073)

coastal ×May -0.085* -0.061 -0.064
(0.048) (0.049) (0.051)

mountainous× February 0.027 0.028 0.027
(0.034) (0.037) (0.037)

mountainous×March -0.281 -0.073 -0.073
(0.177) (0.167) (0.167)

mountainous×April -0.064 -0.002 -0.005
(0.080) (0.076) (0.076)

mountainous×May 0.046 0.051 0.0513
(0.040) (0.044) (0.043)

ln density × February -0.014 0.003 0.004
(0.020) (0.022) (0.022)

ln density ×March -0.035 -0.056 -0.057
(0.059) (0.066) (0.060)

ln density ×April -0.001 -0.018 -0.014
(0.030) (0.035) (0.038)

ln density ×May 0.026 0.018 0.018
(0.020) (0.021) (0.022)

ln house m2 pc× February -0.018 0.007 0.011
(0.149) (0.169) (0.171)

ln house m2 pc×March -0.636 -1.428** -1.561***
(0.490) (0.581) (0.572)

ln house m2 pc×April 0.476* -0.063 -0.082
(0.243) (0.291) (0.299)

ln house m2 pc×May 0.239 0.087 0.010

Continued on next page
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Table A.3 – continued from previous page

mortality growth

(1) (2) (3) (4)

(0.183) (0.196) (0.202)
share males× February 2.425 2.420

(1.631) (1.649)
share males×March 8.683*** 7.528***

(2.969) (2.621)
share males×April -1.242 -1.605

(1.888) (1.851)
share males×May -2.777* -2.658*

(1.480) (1.479)
share over75× February 0.361 0.385

(1.855) (1.879)
share over75×March -0.789 -0.301

(3.609) (3.533)
share over75×April -3.932 -3.759

(2.607) (2.595)
share over75×May 0.396 0.306

(1.944) (1.952)
share cohab over65× February -0.058 -0.070

(0.673) (0.680)
share cohab over65×March 0.531 0.485

(1.195) (1.181)
share cohab over65×April 1.737* 1.714*

(0.949) (0.950)
share cohab over65×May 0.006 0.016

(0.709) (0.717)
hospital beds pc× February 20.600 20.320

(21.620) (21.680)
hospital beds pc×March -43.860 -44.200

(64.560) (66.320)
hospital beds pc×April 60.520** 60.000**

(30.090) (30.230)
hospital beds pc×May 31.110 30.830

(24.050) (24.130)
pm10× February -0.001 -0.001

(0.003) (0.003)
pm10×March 0.054*** 0.049***

(0.012) (0.011)
pm10×April 0.022*** 0.021***

(0.005) (0.005)
pm10×May 0.005* 0.005*

(0.003) (0.003)
district× February -0.010

(0.045)
district×March 0.531*

(0.280)
district×April 0.133

(0.093)
district×May -0.053

(0.049)
remote working × February -0.038

(1.339)
remote working ×March -8.424***

(2.750)
remote working ×April -3.301*

(1.959)
remote working ×May 0.876

Continued on next page
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Table A.3 – continued from previous page

mortality growth

(1) (2) (3) (4)

(1.370)
constant -0.034 -0.034 -0.034 -0.033

(0.025) (0.025) (0.024) (0.024)

Month FE ✓ ✓ ✓ ✓
Municipality FE ✓ ✓ ✓ ✓

Observations 35 916 35 916 35 916 35 916
R2 0.08 0.09 0.10 0.11

Notes: All of the specifications present OLS estimates and include month and munic-
ipality fixed effects. Standard errors clustered at the LLM level appear in parentheses.
Significance values: ***p<0.01, **p<0.05, *p<0.10. Almost all coefficients associated
with the control variables respect the expected sign during the most critical part of
the pandemic cycle (i.e., March and April). Among those statistically significant, ex-
cess mortality appears to be - ceteris paribus - higher in municipalities with a larger
share of males, with more intergenerational dependence, with more hospital beds per
inhabitant, with higher pollution levels, and with a denser local labour market. On
the other hand, excess mortality seems to be lower in municipalities with a plausibly
better air quality (i.e., near the sea) and with larger numbers of potential “remote”
workers.
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Table A.4: ATECO sectors allowed to operate during the “economic” lockdown

ATECO
Description

Section Code

A: Agriculture 01 Crop and animal production
03 Fishing and aquaculture

B: Mining 05 Mining of coal and lignite
06 Extraction of crude petroleum and natural gas
09.1 Support activities for petroleum and natural gas extrac-

tion

C: Manufacturing 10 Manufacture of food products
11 Manufacture of beverages
13.95 Manufacture of non-wovens and articles made from non-

wovens, except apparel
13.96 Manufacture of other technical and industrial textiles
14.12 Manufacture of workwear
16.24 Manufacture of wooden containers
17 Manufacture of paper and paper products
18 Printing and reproduction of recorded media
19 Manufacture of coke and refined petroleum products
20 Manufacture of chemicals and chemical products
21 Manufacture of basic pharmaceutical products and phar-

maceutical preparations
22.2 Manufacture of plastic products
23.13 Manufacture of hollow glass
23.19 Manufacture and processing of other glass, including tech-

nical glassware
25.21 Manufacture of central heating radiators and boilers
25.92 Manufacture of light metal packaging
26.6 Manufacture of irradiation, electromedical and elec-

trotherapeutic equipment
27.1 Manufacture of electric motors, generators, transformers

and electricity distribution
27.2 Manufacture of batteries and accumulators
28.29 Manufacture of other general-purpose machinery n.e.c.a

28.95 Manufacture of machinery for paper and paperboard pro-
duction

28.96 Manufacture of plastic and rubber machinery
32.50 Manufacture of medical and dental instruments and sup-

plies
32.99 Other manufacturing n.e.c.a

33 Repair and installation of machinery and equipment

D: Energy, Gas 35 Electricity, gas, steam and air conditioning supply

E: Water, Waste 36 Water collection, treatment and supply
37 Sewerage
38 Waste collection, treatment and disposal activities; mate-

rials recovery
39 Remediation activities and other waste management ser-

vices

F: Construction 42 Civil engineering
43.2 Electrical, plumbing and other construction installation

activities

G: Trade 45.2 Maintenance and repair of motor vehicles
45.3 Sale of motor vehicle parts and accessories
45.4 Sale, maintenance and repair of motorcycles and related

parts and accessories
46.2 Wholesale of agricultural raw materials and live animals

Continued on next page
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Table A.4 – continued from previous page

ATECO
Description

Section Code

46.3 Wholesale of food, beverages and tobacco
46.46 Wholesale of pharmaceutical goods
46.49 Wholesale of other household goods
46.61 Wholesale of agricultural machinery, equipment and sup-

plies
46.69 Wholesale of other machinery and equipment
46.71 Wholesale of solid, liquid and gaseous fuels and related

products

H: Transportation 49 Land transport and transport via pipelines
50 Water transport
51 Air transport
52 Warehousing and support activities for transportation
53 Postal and courier activities

I: Accommodation 55.1 Hotels and similar accommodations

J: Information 58 Publishing activities
59 Motion picture, video and television programme produc-

tion and sound recording
60 Programming and broadcasting activities
61 Telecommunications
62 Computer programming, consultancy and related activi-

ties
63 Information service activities

K: Finance, Insurance 64 Financial service activities, except insurance and pension
funding

65 Insurance, reinsurance and pension funding, except com-
pulsory social security

66 Activities auxiliary to financial services and insurance ac-
tivities

M: Professional services 69 Legal and accounting activities
70 Activities of head offices; management consultancy activ-

ities
71 Architectural and engineering activities; technical testing

and analysis
72 Scientific research and development
74 Other professional, scientific and technical activities
75 Veterinary activities

N: Other services 78.2 Temporary employment agency activities
80.1 Private security activities
80.2 Security systems service activities
81.2 Cleaning activities
82.20 Activities of call centres
82.92 Packaging activities
82.99 Other business support service activities n.e.c.a

O: Public administration 84 Public administration and defence; compulsory social se-
curity

P: Education 85 Education

Q: Health 86 Human health activities
87 Residential care activities
88 Social work activities without accommodations

S: Other activities 94 Activities of membership organizations
95.11 Repair of computers and peripheral equipment

Continued on next page
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Table A.4 – continued from previous page

ATECO
Description

Section Code

95.12 Repair of communication equipment
95.22 Repair of household appliances and home and garden

equipment

T: Household activities 97 Activities of households as employers of domestic person-
nel

a Not elsewhere classified.
Notes: We refer to the revised list of ATECO sectors provided by the Italian government on March
25, which integrated the previous list provided on March 22. Some of the ATECO categories are
specified also at the 5-digit level. For simplicity, we consider as active any 4-digit ATECO sector
embedding the 5-digit one.
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Appendix B Additional Figures

Figure B.1: Evolution of mortality growth in Italy, January-May 2020

Notes: The figure plots the evolution of excess mortality in Italy during the period of analysis. It points out how
the containment measures adopted in March 2020 were essential in flattening the curve since mortality growth
was reduced to almost the pre-pandemic level by May. Source: Authors’ own elaboration.
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Figure B.3: mortality growth, by month and municipality

(a) January 2020 (b) February 2020

(c) March 2020 (d) April 2020

(e) May 2020

Source: Authors’ own elaboration.
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Figure B.4: Control variables, by municipality

(a) internal mobility (b) share over75

(c) hospital beds pc (d) pm10

(e) district (f) remote working

Source: Authors’ own elaboration.
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Figure B.5: Estimated coefficients of the commuting indices, by month

Notes: The figure plots the coefficients of the specification in column 4 of Table 2. Horizontal bands represent ±
1.96 and ± 2.58 times the standard error of each point estimate. The figure clearly shows the decreasing trend
over time in the magnitude of all coefficients from March onwards, suggesting how the lockdown was crucial in
reducing excess mortality. Source: Authors’ own elaboration.
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Figure B.6: Relationship between the 2011 and 2019 shares of outgoing flows

Notes: The figure plots the 2011 and 2019 shares of outgoing flows, indicating the total number of workers
moving from a municipality over the corresponding-year population. The figure clearly shows an almost one-to-
one association between the two shares (R2 = 0.95), suggesting how the spatial patterns of work-related mobility
is remarkably preserved over time. Source: Authors’ own elaboration.
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