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Abstract

Cancer, a complex disease, arises from accumulated somatic genomic and
epigenomic changes within tumor cells, typically acquired during an individual’s
lifetime. These alterations confer growth advantages, transforming normal cells
into cancerous ones. Differences among tumors originated in the same tissue,
have been demonstrated and characterized in diverse studies using large cohorts
of patients, such as The International Cancer Genome Consortium (ICGC) or The
Cancer Genome Atlas (TCGA). Furthermore, it is known that each tumor can be
formed by many cell populations, each accumulating different somatic genetic
mutations. This knowledge has put into question the traditional classification of
tumors, and how they are treated. Advancements in genome technologies, such
as next-generation sequencing, have played an important role in generating vast
amounts of tumor datasets, allowing sophisticated and ambitious bioinformatic
analyses. These technologies have been essential to comprehend tumor

formation and progression, and their potential translation into the clinics.

Using large-scale and public initiatives of cancer data, and through the
combination of genomic and transcriptomic analysis, we have been involved in
diverse cancer-related studies, primarily focused on the identification and
interpretation somatic genomic events. Therefore, the general goal of the work
described in this thesis is to expand the understanding of the genomic basis
behind tumors, through the analysis of somatic events, like somatic processed
pseudogenes and other previously unexplored genomic elements, i.e.

micropeptides.

First, in collaboration with Dr. Elias Campo from IDIBAPS, we participated in
a longitudinal study of Chronic Lymphocytic Leukemia. In particular, we were
focused on the analysis of somatic structural variants, to define and quantify their

cell frequency and incorporate them in the study of the subclonal architecture of
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CLL patients. Using diverse variant calling pipelines and experimental validations,
we first identified SVs and observed an increase in them during tumor
progression, particularly evident once the patients transformed into a more
aggressive form known Richter’s syndrome. We then designed a strategy to
calculate SV variant allele frequencies. This involved exploring coverage variability
and read alignment within these mutated genomic regions. Based on this analysis,
we could observe stable or decreased SV frequencies at diagnosis, contrasting

with increase at Richter transformation.

Another part of the thesis has been conducted in the context of the
Pancancer Analysis of Whole Genomes initiative, where we studied the landscape
of processed pseudogenes in 2585 cancer genomes and assessed their potential
functional impact. PPs represent mRNA copies randomly integrated into the
genome through retrotransposition. Prior to our study, these events were
described as somatic in only a few tumor types. We established a protocol based
on automatic rules applied to somatic structural variants and manual inspection
of the genomes, to detect such somatic event. We found evidence for 433
candidates somatic PPs across 251 tumor genomes, uncovering new cancer types
not examined before. Additionally, as a first approximation to study their
functional impact and using RNA-seq data exploration, we identified evidence of
expression of 17 PPs across 6 tumor types. The reconstruction of the potential PP-
host gene fusion transcripts allowed us to predict that these insertions generally

generate premature stop codons within the coding region of the host.

Finally, we focused on the identification of novel micropepitdes, a recently
discovered class of genetic elements. Micropeptides are small open reading
frames of less than 300 nucleotides that can code for stable and functional small
proteins. Among other observed functions, it has been shown that these small
peptides can suppress cancer growth and have important roles in cancer. We used

publicly available genomic and transcriptomic data to identify new micropeptides,
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focusing on non-annotated DNA regions. First, in collaboration with Dra. Maria
Abad from VHIO, we defined a catalog of more than 1.000.000 candidate
micropeptide sequences in non-annotated regions. To do so, we performed de
novo transcriptome assembly of 6 RNA-seq samples from pancreatic
adenocarcinoma human tissues, merged the predicted transcripts and in-silico
translated their sequences. Results were filtered to remove sequences
overlapping with known coding sequences and depending on their expression
values. The dataset was then used for analyzing pancreatic tumor samples with
mass spectrometry analysis. Secondly, complementing this collaboration, we lead
a different study focusing on the identification of new small ORFs within non-
annotated regions of the human genome. Based on evolutionary conservation
features at DNA and protein level, we identified a set of 8.289 candidate smORFs
within intergenic regions of the human genome. We then also analyzed their
potential transcription on 135 normal samples from the GTEX project, including
28 tissues. From this data, we could find expression evidence for 260 candidate
smORFs in at least one normal sample. Lastly, with the aim of exploring the role
of micropeptides in cancer we analyzed recurrence of somatic SNVs from the
ICGC. However, to date, we have not identified any cancer driver mutations within
these smORFs. We hope that extending this comparison to other collections of

somatic variants related to cancer can identify candidate cancer smORFs

Collectively, the presented thesis offers a comprehensive description of
somatic genomic events in cancer focusing on structural variation and processed
pseudogenes, as well as the evaluation of novel gene elements, providing a

foundation for future investigations.
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1. Strategy and thesis trajectory

Before starting, | would like to describe the trajectory of the presented thesis
to expose the bases of our decisions and the strategy we followed. The central
concept of my thesis, shared between all the projects | have been working on, is
studying somatic variations in cancer using large-scale datasets. These studies are
the basis to better understand tumor formation and progression and later apply
genomic oncology at the clinics. Under this wider objective, and for the sake of
clarity, we have divided this thesis in three chapters, each covering a specific goal
and strategy. As described below, the first one deals with our contribution in the
field of somatic SVs identification and characterization in tumor, in particular
within intratumor heterogeneity; the second covers our study of somatic
processed pseudogenes in cancer and their potential functional impact; and the
third one, divided in two different studies, describes our current and final project
where we aim at finding and characterizing new micropeptides in the context of

cancer.

Our group was involved in diverse studies regarding the Pan-Cancer analysis
of Whole Genomes (PCAWG) project since the beginning of this international
collaboration. For this reason, we had the opportunity to work with all the data
from PCAWG before its publication and explore somatic variation in more than 20
tumor primary sites. Motivated by recent publications about retrotransposition
and processed pseudogenes (PP) in cancer, we decided to explore these last
somatic events using the PCAWG data. Starting from somatic structural variants
previously identified by the consortium, | designed a strategy to identify somatic
processed pseudogenes in diverse cancer types. Then | used aligned tumor and
normal genome sequencing reads to manually validate the candidates we
obtained. Finally, | explored if they could have any functional impact. To do so, |

analyzed RNA-seq data from the same patients to look for fusion genes. This work



ended up in one of the main PCAWG articles, published in Nature Genetics in 2020
(1).

Before this work was published, we started a collaboration together with Dr.
Elias Campo and Dr. Ferran Nadeu from the IDIBAPS. The project was focused on
Chronic Lymphocytic Leukemia (CLL) and the study of intratumor heterogeneity
(ITH) and progression of disease. Using longitudinal samples collected at different
time points from around 20 patients, the main goal was to understand Richter’s
transformation, an aggressive alteration of CLL with dismal prognosis. Considering
the experience | gained with the previous project, my tasks within this
collaboration were centered on the identification of structural variants and their
classification, as to VAF. Firstly, | analyzed the results obtained from diverse
variant callers to filter and merge them. | performed this validation by combining
automatic and manual inspection. Therefore, we could end with an accurate set
of structural variants for each sample used for later published analysis (2,3).
Secondly, led by us and together with Romina Royo, we aimed to include
structural variation into the characterization of subclones and the description of
CLL intratumor heterogeneity. At that time, ITH was mainly studied using single
nucleotide variants and all pipelines used for identifying subclonality
systematically avoided structural variants. Using data from the CLL project, |
explored how to calculate the frequency of structural variants by identifying
sequencing reads covering each variant. Counting supporting reads was a
challenge because of the coverage variation among each sequenced sample. Our
strategy was based on including somatic structural variants within subclones
previously identified using single nucleotide variants. But while doing this work, a
computational method for inferring SVs cancer cell fraction was published. In fact,
it was also one of the articles from PCAWG project (4). We expected to explore

ITH including structural variants in diverse cancer types and using longitudinal



samples. This clearly limited our publication options to the point that we decided

to prioritize another project.

In parallel, in 2020, we collaborated with Dra. Maria Abad and Marion
Martinez from the Vall d’Hebron Institute of Oncology (VHIO). The project was
aimed at the identification of micropeptides in pancreatic adenocarcinoma using
mass spectrometry (MS) analysis. In this project were also involved Dr. Hector
Peinado and Dr. Javier Mufoz from the CNIO. In this collaboration, my task was
to create a dataset of novel and non-annotated candidate micropeptides to be
used for the interpretation of the Mass Spec results. | used RNA-seq data from the
same cancer type to be tissue-specific, since transcription and translation are. By
doing de novo transcriptome assembly of 6 patients, | obtained a set of transcripts
including both known and novel ones. | performed an in-silico translation of the
transcripts to obtained candidate micropeptides and | removed those overlapping
with known protein-coding genes. The set of candidates has been used for MS
analysis at CNIO. Nowadays, experimental validation of interesting results is done

at VHIO to end with a publication.

The knowledge we acquired regarding micropeptides, and the fact that they
have not been studied at the genome-wide level in cancer, opened the possibility
of searching and identifying these unexplored genetic elements in other cancer
types. We could foresee options of publication working on this strategy, as the
annotation of micropeptides in general is still highly imprecise and incomplete.
For this reason, we decided to focus on the identification of micropeptides and to
characterize their potential role in cancer. | mainly focused on micropeptides
during my second half of the thesis. Since nearly all published micropeptides are
identified within annotated genes, we decided to start the project through the
identification of novel candidate micropeptides by exploring highly conserved
intergenic regions across the entire human genome to later investigate their

potential role in cancer based on somatic mutations acquired within them.
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Although this was an ambitious project, we considered we had the tools to start
with it. In this line, we looked for micropeptides within conserved regions
previously identified in The Zoonomia Project (5). Based on the search of ortholog
sequences, we defined a set of candidates human micropeptides. To add more
supportive information on these candidate micropeptides, | explored expression
levels of our set of conserved and translated regions by analyzing RNA-seq data
from GTEX project (6). Finally, intending to explore the role of these novel
candidate micropeptides in cancer disease and tumorigenesis, | tested and
evaluated OncodriveCLUSTL (7), a driver discovery algorithm and explored all
somatic SNVs from The International Cancer Genome Consortium. However, and
despite the need for more analysis, we could not identify significant signals due
to the low number of somatic mutations present within these candidate

micropeptides.

During my PhD trajectory | have also mentored other students. | provided
guidance to Michelle Tomaselli for her final degree project. She tested the
published algorithm SVClone for calculating structural variants cancer cell
fraction. After this, | mentored her final master project focused on the analysis of
single nucleotide variants in Endometrial Cancer using topological whole exome
sequencing samples. This work was led by Dra. Rosaura Esteve-Puig and Dr. Xavier
Matias-Guiu from IDIBELL. | worked on the last figures and analysis together with
Romina Royo once Michelle finished her master project, as well as collaborated
on writing part of the manuscript. Finally, | served as the tutor of Laia Ollé during
her final degree project. She worked on the characterization of micropeptides
candidates in pancreatic adenocarcinoma, in particular, through their annotation
using ribosome profiling data from the public database sorfs.org. | reviewed their

written projects and oral presentations before presenting it at the university.



2. Introduction






2.1 The information storage system of
humans: the genome

Deoxyribonucleic Acid (DNA)(8) is the chemical name of the molecule
carrying genetic instructions in all living organisms. DNA is their central
information storage system, and it consists of a right-handed double helix formed
by two strands that wind around one another. The DNA helix is anti-parallel,
meaning the 5" end of one strand is paired with the 3’ end of its complementary,
and vice versa. Both strands are made of a sugar known as deoxyribose and
phosphate backbone, which have bases sticking out from it. The strands are held
together by hydrogen bonds between the bases; adenine (A) with thymine (T),
and cytosine (C) with guanine (G). These nitrogen bases are also exposed and
available for hydrogen bonding for other molecules that play vital roles in
replication and expression. Structurally it is organized into chromosomes and
functionally, into genes. Genes are the basic unit of heredity (9), containing the
information for building one or more molecules that help the body work. Genes
usually code for proteins, each of them with a particular characteristic or function.
They are located on a chromosome and consist of nucleotides arranged in a linear
manner. It is estimated that humans have about 20.000 genes (10). All the genetic
material of an organism, including genes and other elements controlling the
activity of genes is its genome, which in humans, plants and animal cells is housed

in the nucleus of nearly all of its cells.

Genetic information together with environmental factors characterize the
observable traits of each individual organism, also known as phenotype. However,
those characteristics do not come from DNA itself, but from the result of a specific

flow of information named The Central Dogma of Molecular Biology. This



describes the transfer of information stored in genes as DNA, which is transcribed
into ribonucleic acid (RNA), and translated into proteins (Fig 1). The concept was
developed by Crick in 1958, and it states that information cannot be transferred
from protein to either protein or nucleic acid (11). The transcription(12) of a
subset of genes into RNA molecules also describes a cell’s identity and its
biological activity. All these RNA molecules are collectively defined as the
transcriptome, which can differ between cell types and time. The transcriptome
is also essential for understanding development and disease. Although most of
the observable trait's information comes from genes and individual proteins, it is

now known that untranslated RNAs can actually be involved in the phenotype.

DNA

Deoxyribonucleic
Acid

TRANSCRIPTION

RNA

Ribonucleic acid

TRANSLATION

PROTEIN

[
2

Figure 1. Central dogma of molecular biology.




2.1.1 History of genetics: from Darwin to the Human Genome

Project

Based on the definition of the National Institute of General Medical Sciences
(10), genetics is the scientific study of genes and inheritance in living organisms,
and in particular of how certain qualities and traits are passed from parents to

offspring as a result of changes in DNA sequence.

In the 19th century, scientists started questioning why children resemble
one parent more than others or why some species have similarities between them
more closely than others. Scientists could observe similarities between the
offspring of animals and plants, but they could not understand why this

happened. These observations were the starting point of genetics.

In particular, it was in 1858, when Charles Darwin received a manuscript
from Alfred Russel Wallace exposing an evolution theory based on natural
selection. This theory coincided with the ideas about the evolution of species
Darwin was working on. One year later, Darwin presented and published together
Wallace's work, “The origin of species,” which describes how new species arose
via evolution and how natural selection uses natural variation to evolve new forms

(13).

A few years later, in 1865, Gregor Mendel presented his research on
inheritance in pea plants in the scientific journal Verhandlungen des
naturforschenden Vereines. Mendel tracked several phenotypes in peas across
different generations, developing homozygous lines, observing the offspring of
each kind of parent and analyzing the data statistically. This was the first empirical
evidence that traits were passed down measurably from parent to offspring and
the only approach utilized to understand genetic inheritance. Gregor Mendel
could describe the unit of heredity as a particle that does not change. Together
with Darwin’s work, his study suggested that all species might be related between

9



them, and because of inheriting different traits, they might drift apart through
natural selection. At the same time, Haeckel predicted that the hereditary

material was located in the nucleus (13).

It was in 1869 when Swiss physiological chemist Friedrich Miescher tried to
isolate and characterize the protein components of leukocytes. During his
experiments, he came across a substance from the cell nuclei. It has chemical
properties unlike any protein, including a much higher phosphorus content and
resistance to proteolysis. With this, Miescher identified in 1871 what he called
“nuclein” and demonstrated the material in the nucleus was what we now know
as nucleic acid (14). However, during this century, research was usually performed

in isolation, and genetics advanced slowly.

In 1900, other scientists performing similar experiments to Mendel’s work
arrived at the same conclusions and cited his work in their publications.
Subsequent to the rediscovery, linkage, lethal genes, and maternal inheritance

were described.

By the early 20th century, powerful light microscopes allowed scientists to
see into a cell’s nucleus. The observation of chromosomes combined with The
Chromosomal Theory of Inheritance (Walter Sutton and Theodor Boveri, 1904),
which defines the chromosome as the location of genes, linked them with trait
inheritance. They could also observe that chromosomes occur in matched pairs in
humans, one from the mother and one from the father. Chromosomal
abnormalities such as duplications, deletions, translocations, or inversions were

reported for the first time.

Although Miescher determined the material in the nucleus was nucleic acid
in the early 1870s, the community did not widely appreciate his discovery. In
1910, Albrecht Kossel was awarded for his discovery of the five nucleotide bases:

adenine, cytosine, guanine, thymine, and uracil (15). From the 1920s through the

10



1950s, other scientists continued to investigate the chemical nature of the
molecule, and diverse experiments concluded that DNA was indeed the genetic
material within the nucleus. The Russian biochemist Phoebus Levene proposed in
1919 that nucleic acids were composed of a series of nucleotides, which were
formed of one of four nitrogen-containing bases, a sugar molecule, and a
phosphate group. This was Levene’s “polynucleotide” model. Therefore, he was
the first to discover the order of the three major components of a single
nucleotide: phosphate-sugar-base (14). In 1943, Oswald Avery together with Colin
Macleod and Maclyn McCarty, proved that DNA carries genetic information.
Although at that time no one knew how it worked, they could demonstrate that
hereditary units, genes (16), are composed of DNA, not protein or RNA. Some
years later, Erwin Chargaff reached two major conclusions (Chargaff 1950). First,
the composition of DNA varies among species, and the same nucleotides do not
repeat in the same order. Second, almost all DNA maintains certain properties
even within different organisms or tissue types. The amount of adenine is usually
similar to the amount of thymine, and the amount of guanine approximates
cytosine (14). This second conclusion explains that A is bound to T, and C is bound

to G in the DNA structure.

New advances in genetics were applied in medicine, leading to the beginning
of modern human genetics in 1949. Moreover, the same year, the first textbook
of human genetics was published, and the American Journal of Human Genetics

was founded (17).

At King’s College in London, by the early 1950s, chemists Rosalind Elsie
Franklin and Maurice Wilkins worked with X-ray diffraction to study DNA. They
beamed X-rays through the molecule and obtained a shadow picture of the DNA
structure by how the X-rays bounced off the components. In January 1953,
Wilkins showed the resulting picture, known as “Exposure 51”7, to James Dewey

Watson without Franklin's knowledge. Chargaff’'s second conclusion together

11



with this X-ray crystallography work, were crucial to Watson and Crick’s proposal
regarding DNA structure. In April 1953, Watson and Crick published their famous
paper in Nature, proposing that the DNA molecule was composed of two chains
of nucleotides paired to form a double helix. They also explained how the DNA
molecule could replicate itself with high accuracy. For their work, Watson, Crick,
and Wilkins were awarded the Nobel Prize in 1962. However, regardless of her

contribution, Rosalind Franklin was not named a prize winner (16).

After the discovery of the double-helix, the breaking of the genetic code was
the second most important advance in molecular biology. In 1955, Severo Ochoa
isolated RNA polymerase, the enzyme that transcribes molecules of DNA into
RNA. Ochoa could then make the first synthetic RNA molecules which were
essential for deciphering the genetic code. Interpreting the genetic language was
the work of Marshall Nirenberg and his team at the National Institutes of Health.
In late 1960, Nirenberg and Heinrich Matthaei observed that introducing RNA into
a cell-free system resulted in synthesizing proteins, whereas adding DNA did not.
After this achievement, they added E. Coli extract to 20 test tubes containing a
mixture of all 20 amino acids. Each amino acid was radioactively tagged in one
test tube. Then, they added synthetic RNA made of uracil to each test tube, finding
unusual activity in the tube containing phenylalanine. The UUU triplet was the
first codon deciphered. In 1964 Nirenberg and Philip Leder discovered how to
determine the sequence of the nucleotides in each codon. Two years later,
Nirenberg had deciphered the 64 RNA codons for all 20 amino acids. Together
with Khorana and Robert Holley, Nirenberg won the Nobel Prize in 1968 “for their
interpretation of the genetic code and its function in protein synthesis”(18-20).
Also, in this period, Margarita Salas was working as a postdoctoral in Ochoa’s lab.
Salas not only found that replication, transcription and translation read DNA in
only one direction but also helped showing that UAA triplet represents a stop

codon (21) and therefore the end point of translation.
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Simultaneously, during 1959 and 1960 new methods for analyzing
chromosomes such as cytogenetics and new biochemical assays using cultured
cells revealed genetic causes behind many human diseases including cancer.
Moreover, the fundaments of mammalian sex determination were defined.
Individuals without a Y chromosome were shown to be female, whereas those
with a Y chromosome were male. Culture cells became widely used to study

monogenic human diseases (22).

Also, in the mid-20th century, the Darwinian theory of evolution was
confirmed. Scientists demonstrated experimentally that mutations could be
induced. Therefore, understanding the role of variation together with
environmental constraints allowed them to solidify the concept that natural
selection was a major factor in evolution (13). Modern Evolutionary Synthesis
linked Charles Darwin’s theory of evolution with Gregor Mendel’s studies
regarding genetic inheritance and variation. The term was the result of combining
Dobzhansky and Fisher's work. In 1968, Kimura proposed the neutral theory of
molecular evolution, which contends that at the molecular level, evolutionary

changes and polymorphisms are caused by random genetic drift (23).

In the 1970s, Arber (24) discovered restriction enzymes, molecules that
recognize and cut specific short sequences of DNA (25). At the same time, Smith
isolated and characterized the first Type Il restriction endonuclease (Hindll) and
determined the sequence of its cleavage site (26). Independent studies led to the
discovery of reverse transcriptase in retroviruses by Baltimore and Temin,
revolutionizing molecular biology (27). Moreover, in 1972, Berg assembled the
first DNA molecules combining genes from different organisms (28). This
technology, known as recombinant DNA, involves cutting DNA sequences using
restriction enzymes and fusing the strands with DNA ligases. The development of
recombinant DNA technology opened the way to genetic engineering, allowing

researchers to give new abilities or eliminate traits to organisms.
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In the late 20th century, the availability of reading nucleotides from the
genome becomes the next break in genetics. DNA sequencing techniques were
first described in 1977 by Sanger and Gilbert after Salas and her colleague Luis
Blanco isolated the DNA polymerase enzyme from the bacterial virus phi29. This
enzyme is involved in DNA replication copying each strand into identical DNA
molecules. The method published by Sanger (1977) is based on random
incorporation of chain-terminating inhibitors by DNA polymerase during in vitro
DNA replication, and it has been widely used for 40 years (29). Three years after
publishing Sanger sequencing, the first genome was sequenced by Sanger Group.
In particular, it was the bacteriophage ®X174 of E. coli. The enzyme isolated and
patented by Salas and Blanco is also widely used in forensics, studies of ancient
DNA and oncology. Three years after publishing Sanger sequencing, Wally Gilbert,
Paul Berg and Fred Sanger shared the Nobel Prize for Chemistry, for pioneering
DNA sequencing methods (15). Combining linkage analysis, fine mapping within
large pedigrees and Sanger sequencing, diverse human genes linked to rare,

monogenic and syndromic diseases were discovered (17).

Thanks to the discovery of another polymerase enzyme (Taq) that can
withstand high temperatures without denaturing, the PCR (polymerase chain
reaction) technique was reported by Mullins (1983). Due to all these findings, in
1986 (30), Hood, Smith and Hunkapiller launched the first automated DNA
sequencer. Researchers worldwide came together in consortiums and
collaborative groups, and the US Government together with the National
Institutes of Health (NIH) established the Human Genome Project (HGP) (1990).
The aim of the project was to sequence and map all the genes of our species,
Homo Sapiens. The firsts drafts of the human genome sequence, both from the
public HGP (31) and private Celera Genomics (32) were published in February

2001. However, it was in 2003 when the Human Genome Project (33) was
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completed covering 99 percent of the euchromatic portion of the genome and is

accurate to 99.99 percent (34).

2.1.1.1 Women'’s contribution to genetics

It is well known that women also contributed to genetics research during
19" and 20" centuries. However, institutionalized sexism has prevented them
from the recognition they deserve. Most of them are still not mentioned in
reviews, articles or books summarizing the history of genetics. Despite significant
progress, UNESCO reported on 2021 that only around 33% of the world’s

researchers are women (35).

Higher education was opened to women in the last three decades of the 19t
century, allowing the entry of women into the scientific workforce. However,
access to studentships, grants, fellowships, and established careers in universities
was absent for them. As the field of genetics was not yet institutionalized, it was
one of the earliest emerging disciplines to benefit from their contribution,
specifically in Mendelian genetics and heredity. Despite this, the system restricted
women to certain roles, even they gained a master's or doctoral degree. The job

titles they held were “assistant”, “technician”, “stockkeeper” or unpaid working

wife (36,37).

Considering the importance of their work, to highlight and bring women that
contributed to genetics to the fore, and although this section is not essential for
the understanding of the presented thesis, a summary of scientific women who

made important discoveries is provided here in alphabetical order (38-40).

Barbara McClintock (1902 —1992): Her studies in maize cytogenetics showed
how traits were suppressed or expressed between generations. She also
discovered transposable elements, DNA sequences that can change position

within a genome. For this work, she received The Nobel Prize in Physiology or
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Medicine in 1983, becoming the only woman who has received an unshared

Nobel Prize in this field.

Charlotte Auerbach (1899 — 1994): In collaboration with A. J. Clark, and J. M.
Robson, demonstrated that mustard gas could induce mutations in Drosophila

melanogaster. She was most known for discovering mutagenesis.

Edith Rebecca Saunders (1865 — 1945): She was the first collaborator of the
geneticist William Bateson, playing an active role in re-discovering Mendel's laws
and the study of trait inheritance in plants. Together with Bateson defined terms

like alleles, heterozygote, and homozygote.

Elizabeth Blackburn (1948 —): She is most known for her work on telomeres
and the co-discovery of telomerase. She was awarded the Nobel Prize in

Physiology or Medicine (2009) for this discovery.

Liane Russell nee Brauch (1923 — 2019): Producing many strains of mutated
mice she could demonstrate that in mammals, the Y-chromosome determined

the animal’s male gender.

Margaret Oakley Dayhoff (1925 — 1983): Known as the founder of
bioinformatics and one of the first scientists to combine mathematics,
computation, and biochemistry. She created the one-letter code for amino acids
and originated point accepted mutations. These are replacements of single amino

acids in the primary structure of a protein.

Margaret Wu: She developed a statistical tool known as Watterson estimator
that approximates the level of genetic diversity in a population contributing to

population genetics.

Marie Maynard Daly (1921 — 2003): Her research was focused on the

creation of proteins, as well as histones, proteins known to help package DNA into
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chromosomes. Daly’s research contributed to research into the structure of DNA.

She was the first Black woman to earn a doctorate in biochemistry in the U.S.

Martha Cowles Chase (1927 — 2003): Together with Alfred Hershey, they
published a paper showing DNA was the biochemical material that transmitted
genetic information and therefore DNA was the genetic material of life. The
Hershey-Chase experiment helped inspire Watson and Crick to solve the 3-D
structure of DNA. Hershey was awarded the Nobel Prize for the discovery, but

Chase was not included.

Mary Frances Lyon (1925 —2014): Working with mice she could demonstrate
X-chromosome inactivation, a process by which one X-chromosome is not

activated in some female mammals including humans.

Nettie Maria Stevens (1861 — 1912): Using as an experimental model the
yellow mealworm, she discovered that the combination of X and Y chromosomes
determined the sex of an individual. Her work expanded the fields of modern

genetics.

Ruth Sager (1918 — 1997): She investigated how cancer cells grow, multiply
and reduce their ability to maintain their chromosome structures. She theorized
that a set of genes might be key to halting the growth of cancer and identified

over 100 of them. These genes are now named tumor suppressor genes.

2.1.2 The post-genomic era

The publication of The Human Genome Project in 2003 transformed biology
and accelerated advancements in the genetic field. HGP was the starting point of

the post-genomic era.

Deciphering almost the entire sequence of the human DNA allowed
scientists to examine all genes, genetic variants and diseases, initiating the
comprehensive discovery and cataloguing of many parts of the human genome.
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Questions with implications for biology and medicine became approachable, and
experiments that were inconceivable years ago the publication started to be
routine. Establishing well-founded correlations between sequence variation and
phenotypes enable understanding the architecture of common complex diseases
such as diabetes, asthma or cancer as well as rare diseases or behavioral traits. All
this knowledge evolves in the personalization of therapies, early detection of
disease, ability to follow progression and treatment responses and stratification

of disease and patients.

The Human Genome Project inspired subsequent large-scale initiatives and
big science projects integrating cross-disciplinary efforts towards human
genomics and health. During the post-genomic era, advances in biomedical
sciences and expansive research have lent great contributions to better
understanding of the human condition and the causes and solutions for several
genetic diseases. In addition to GenBank, other online repositories such as the
University of California Santa Cruz (UCSC) (41) and Ensembl (42) were created to
host genome data in 2002. Projects including Haplotype Mapping (HapMap) (43),
1000 Genomes (44), The Genome 10K (45), or The Cancer Genome Atlas (TCGA)
(46) illustrated these great efforts in genomics and the progress of knowledge

(47-49).

The community predicted that individual genome sequences will play a
larger role in medical practice, and this has happened. In 2011 the first patient
saved by DNA sequencing was reported, as his one in 1 billion genetic mutation

of XIAP gene resulted to be treatable with cord transplant (47,48,50).

The Human Genome Project not only opened avenues in biology and medicine
but also in technology and computation. By 2000, the internet was reachable,
bandwidth adequate to move genome data and processing power accessible

(48). Although these developments were rapidly incorporated into biology,

18



advancements in bioinformatic tools to store, process, analyze and visualize
sequencing data were essential. Therefore, bioinformatic experts and
computational biologists emerged. Research groups focused on genomics and
working with NGS start combining multidisciplinary experts and usually require

sufficient computational infrastructures for data storage and analysis.

2.2 DNA and RNA studies in the post-genomic
era

Sanger sequencing, developed in the late 1970s by Frederick Sanger, allowed
scientists to read the DNA sequence of genes accurately and was instrumental in
several groundbreaking discoveries. However, Sanger sequencing had limitations,
primarily in its cost and throughput, making it impractical for large-scale genomic
studies. Following the interest generated by the HGP and, because of all the
research opportunities sequencing DNA could provide, the development of new
technologies rapidly evolved. Sanger sequencing needed to turn into a more
automatic, rapid and affordable technology. Companies realized this field could
be a successful business, so the market competition gave birth to an
overabundance of technologies with progressively higher sequencing throughput
at lower costs. Collectively, they were named as Next-Generation Sequencing
(NGS) (47). NGS revolutionized the field of genetics by enabling high-throughput,
cost-effective sequencing and making large-scale projects feasible. NGS has then
become the cornerstone of modern genetic research, allowing scientists to
explore complex genomic landscapes with unprecedent depth and speed, and

affecting bioinformatic analysis.
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2.2.1 Reading nucleotides: Next-Generation Sequencing

technology

Pyrosequencing was the first generation of NGS and measured the
enzymatic luminometric signal generated by pyrophosphate release during DNA
polymerization. 454 Life Sciences commercialized this technique and introduced
in 2003 the first DNA sequencer. In a single 4-hour run, the system could produce
around 400-500 bp-long reads with 99% accuracy and up to 25 million bp. The
same year, a new approach known as Sequencing by Synthesis (SBS) was
developed by Solexa and three years later, they launched their first commercial
sequencer named Genome Analyzer. This sequencer had a higher throughput in
a single run but reads were shorter. Nevertheless, they sequence both DNA
strands of each fragment providing paired-end reads separated by a known
distance and that enables more accurate read alignment. Solexa company was
acquired by Illumina in 2007, and its SBS commercialized approach supports
massively parallel sequencing and detect single bases as they are incorporated
into growing DNA strands. Illumina HiSeq X Ten sequencer machine allowed in
2014 large-scale whole genome sequencing (WGS) for $1000 per genome and has
the capability to sequence tens of thousands of genomes per year. In 2015, the
company was responsible for generating 90% of the world’s sequencing data and
70% of the market for DNA sequencers. Nowadays it is still the best sequencing
company of the market providing diverse platforms for different applications, all
of them with high output (1,2-6000 Gb), high accuracy, low cost per base and

diversity of library preparation configurations (47,51).

The classical protocol (Fig 2) for all NGS technologies initiates randomly
breaking DNA and creating fragment or mate-pair templates for single or paired-
end sequencing respectively. The protocol is followed by size selection and

adapters ligation to the end of the fragments. After that, DNA amplification is
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generally done. Fragments are PCR amplified only from one end (single-end read),
or both (paired-end reads) (Fig 3). These firsts steps are known as library
preparation. Templates are immobilized to a solid surface to allow thousands to
billions of reactions to be performed simultaneously. During the sequencing step,
nucleotides containing a fluorescent tag and a terminator that blocks
incorporation of the next base, bind through natural complementary to the DNA
template. The use of this reversible terminator nucleotide permits one nucleotide
to be incorporated at a time and is one of the adaptations over Sanger
sequencing. The fluorescent signal indicates which nucleotide has been added
and the terminator is then separated to allow the next base to binding the
template. This step is repeated for the length of the fragment end is being
sequenced, typically resulting in read lengths between 100 — 400 bp. If paired-end
is performed, reads are washed away after reading the forward DNA strand, and
the process repeats for the reverse strand resulting in two sequenced ends per

template (51-53).

The NGS protocol can be either applied to sequence the entire genome
(whole genome sequencing), only the known coding regions (3% of the whole
genome), that means the exome (whole exome sequencing, WES), or specific
regions (target sequencing). While WGS requires more time and higher costs,
WES, which is cheaper, works under the assumption that alterations in proteins
usually have a deleterious impact on genome regulation (54). Moreover, next-
generation sequencing allows reading not only DNA molecules but also RNA (RNA
sequencing, RNA-seq). Sequencers from PacBio or Nanopore can detect
nucleotide base modifications in RNA by monitoring reverse transcription in real
time, whereas the lllumina approach, among others, sequences the
complementary DNA (cDNA) obtained after converting RNA. NGS can also be used
to sequence DNA regions where proteins such as transcription factors or

chromatin-associated proteins are bound to regulate gene expression (ChlP-seq)
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or RNA regions covered by ribosomes (Ribo-seq) to study actively translated
mRNAs. Although some steps may change between these techniques to, for
example capture a specific molecule, in all cases generated NGS reads are usually
outputted in FASTQ files combining the nucleotide base sequence and associated

base quality scores.

Template DNA

FRAGMENTATION

Fragmented
— DNA

AMPLIFICATION

LIBRARY PREPARATION

LIGATION Adapters

-

SEQUENCING

ATCGCGGACGTA CAGTTAGCCAGT
CGTATTAGCGAT
TGTGACGATACA ACATGACCGATC

GTGGAATAACTA

Reads

Figure 2. Classical protocol applied in all next-generation sequencing technologies.



Although sequencing methodologies have evolved rapidly to cover many
applications and to be reasonable for diverse studies, there are still some
challenges to be overcome. The quality and properties of the sample clearly
influence the obtained results. However, the two most important challenges of

NGS are the read length and the error rates.

Read 1 Read 2
READ 1
Adapter — Adapter
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READ 2

Inner distance

L3
v

Insert size

A
~

Fragment length

A
v

Figure 3. Scheme for paired-end sequencing. Both ends of a DNA fragment are sequenced, and
distance between in nucleotides them is known.

After sequencing, obtained reads range between 75 and 900 bp being the
most used average length of 100 and 400 bp (55). While short read-lengths
comprise of shorter overlapping ends complicating the determination of the
preceding and following reads, longer reads simplify this assembly step and
require less rounds of the overall process. The shorter the reads are, the more
sequences may be similar in nucleotides resulting in ambiguity regarding their
precise position and in the inability to resolve repetitive regions. Additionally,
short reads are prone to miss larger variants such as insertions or deletions.
Paired-end sequencing can help solve these issues by sequencing the same
fragment from both ends and providing more positioning information than single-
end sequencing. In the other hand, library preparation and the sequencing
process itself are associated with sequence errors. The most common type is
substitution, where a nucleotide is replaced by another making the identification
of variants more difficult. Errors can appear to be platform specific, and distinct

sets of nucleotides such as GGT or GGC for lllumina technique, can be associated
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with poor sequencing performance. Base misincorporations or rearrangements
can also occur during the massive and simultaneous PCR amplification step. For
this reason and in order to increase the fidelity of the template sequence, PCR-
free library preparation can be applied for short-read sequencing. Lastly, the error
rate can also increase when the maximum read length of the platform is
approached. Specially if NGS is used for clinical diagnostics or treatment decision
making, variants should be validated by visual inspection of the aligned
sequencing data or additional Sanger sequencing of the candidate regions

(53,56,57).

2.2.2 Assembly process: reconstructing the sequence

Nucleotide reads generated by sequencers are usually far shorter than the
size of the genomes investigated when applying NGS protocols. By overlapping
these reads, the complete sequence can be deduced. This process is defined as
assembly, and it was developed to resolve limitations of current technologies that
are not able to sequence the whole genome on a single read. Depending on the
sample and type of raw data, this process has diverse flavors including genome,
transcriptome or metagenome assembly (47). Nevertheless, it usually starts by
filtering low quality reads and correcting errors from library preparation or
sequencing and continues computing a set of overlaps to find out the best
arrangement. The assembly process produces files that enable visualization and
interrogation of the sequence and are human-readable. The resulting files are
known as sequence alignment map (SAM) file or its binary version (BAM) and have

a smaller size than FASTQ files.

Independently of the sample analyzed but according to the availability of the
reference sequence or to the goal of the study, the assembly has two main
approaches. Reference- based sequence assembly is used when the reference

sequence from the same organism, or closely related species has been previously
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obtained. In this case, the reference sequence serves as a guide for the
reconstruction of reads. On the contrary, de novo sequence assembly does not
involve using a reference sequence. Is a more complicated process and requires
more computational resources (53,55). Short- single-read sequencing
approaches, for example, make it impossible to assemble human genome
sequences de novo because of its length and complexity. Therefore, sequencing

reads are usually compared against a reference (50).

Reference-based assemblies are usually performed for analyzing the human
genome or transcriptome to reduce computational resources and avoid
reconstruction issues. Despite, changes in the reference sequence may require
revalidation of the assembly, explaining for example, why the community is
mainly still using the GRCh37 human version instead of the latest one (GRCh38)
(56). Moreover, it should be considered that 70% of the human reference
sequence corresponds to a single individual and it does not represent global
human genomic variation. Dependence on a single assembly creates reference
biases, reducing the accuracy of genetic analyses. Even so this problem has not
been resolved yet, The Human Pangenome Reference Consortium is working to
create a more complete human reference genome representing global genomic
diversity (58). Another major limitation is the complication when mapping short
reads within repetitive or poorly characterized regions. As mentioned before,
paired-end reads can partially solve this issue assuming one of the reads of the

pair maps in a unique region (Fig 4).

Once NGS data is generated, the challenge remains on comprehensively
analyze and interpret the sequences, as well as in the large and powerful
computing environments needed to process the data. Following read alignment
to a reference genome or de novo assembly, data usually undergoes different
quality control steps with bioinformatic programs. Quality control includes

inspecting depth coverage of the sample, defined as the average number of reads
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that align to, or “cover,” known reference bases (Sequencing Coverage for NGS
Experiments, n.d.), base call quality scores, mapping quality, duplication rate and
strand bias. After this, to convert sequences into meaningful biological results,
diverse tools can be used depending on the goal of the project. As an example, in
order to identify variants related to a genetic disease, the sequenced and the
reference genome will be compared using variant calling algorithms capable of
detecting nucleotide sequence differences. Later, these changes will be
annotated and interpreted to understand their impact on the cell (McCombie et
al.,, 2019). More information regarding analysis protocols applied in cancer

genomics and transcriptomics is explained in the following section.

Single-end Paired-end
reads reads
Read 1 Read 2
I I I
I I I
I I I

Reference

Figure 4. Comparison of single-end and paired-end reads in NGS alignment. PE sequencing provides
additional information on fragment length and read orientation.

2.2.3 Integrating sequencing data in biomedical sciences.

Progression towards precision medicine.

NGS has been a changer in genetics. Before NGS, reading DNA was slow and
expensive, limiting our understanding of the genome. Using next-generation
sequencing, we are able to read DNA faster and at a lower cost. Therefore, we can
study genes in more detail and discover new genetic elements, as well as finding
changes that cause disease. NGS has opened up a whole new world of genetic

knowledge and possibilities.

In 2021, a total of 3.278 unique animals have had their nuclear genome

sequenced, assembled and publicly available in the GenBank database (60,61).
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The availability of complete genome reference sequences, together with faster,
cheaper and accurate NGS technologies to produce large amounts of sequencing
data, and bioinformatic tools to analyze them, have opened new horizons within
genetics research and lead to planning higher level projects. Next-generation
sequencing is used to study genomes of humans, animals, plants, microbes and
viruses. The number of applications is nearly limitless including searches for new
genes and their functions, discovery of diversities among individuals and disease-
related genes or locating common and rare variants that influence the risk of
developing complex diseases, as well as variants acquired during lifetime in
specific cell populations that can drive tumorigenesis. Specific techniques such as
RNA-Seq provides direct cell- and tissue-specific gene expression features,
guantification of transcripts, detection of splice variants and novel transcript
isoforms and chimeric gene fusions. The evaluation of the transcriptome profiles
is also valuable for understanding diseases (53,55,57,62). Integrating both DNA
and RNA analysis provides further evidence of altered function of mutated genes,

allowing for accurate definition of the basis of the disease.

Several human diseases are associated with genetic variants that can be
inherited from carrier parents (germline variants) or acquired during lifetime
(somatic variants). Despite all genetic diseases that can be studied using NGS, the
approach used for each can differ. Inherited rare diseases, which are those
affecting a low number of individuals, are usually the result of single-gene
mutations directly affecting a protein sequence. Therefore, target sequencing or
whole-exome sequencing are sufficient to identify the precise exonic mutations
causing the disease. Since whole-exome sequencing accounts for approximately
2% of the entire human genome, many disease-causing variants can be
discovered using this NGS approach. However, for interrogating non-coding
regions of the genome or transcriptome, as well as for studying large variants that

can even involve different chromosomes, whole-genome sequencing is needed
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(53,55). WGS is the most comprehensive NGS approach, so is commonly applied
to study genetics of complex diseases, which are caused by a combination of
variants distributed in coding and non-coding regions, and environmental factors
(63). This last approach is used more often in research than in the medical field.
For example, for diagnosis and stratification of cancer patients, the NGS assay
applied is typically targeted sequencing panels, which interrogates dozens or

hundreds of interesting genes that are known to be related with the disease.

Not only should the NGS assay differ depending on the disease, but also
other features, such as the coverage at which the sample is sequenced. To detect
most germline hetero- or homozygous variants, 30x coverage, meaning around
30 reads aligned across each sequenced nucleotide, is enough. However, to
identify rare somatic cancer variants, present in only a cell population and in low

frequency, higher coverage is needed (64).

DNA and RNA sequencing, as well as other omics data, are now mainstream
and contribute not only to biology but also to medicine for diagnosis, prognosis,
follow up and treatment decision. In both fields, research and patient care,
multiple traditional molecular assays may have to be performed for studying
multiple mutations and a large amount of tissue is needed. Using NGS, hundreds
and thousands of genes, target regions, or whole genome, can be interrogated in
one single test from small biopsy samples. NGS experiments link experimental
design with data analysis, and they can be combined with other classical methods
to have a greater insight into biological disease. Biomedical research projects have
changed the way they are designed. Therefore, instead of focusing on just one or
few variants, genes or proteins and using the function-to-genetic approach, they
aim to explore many regions at once to provide a wider genome representation
of variants (or genes) to later associate with disease. Moreover, due to its capacity

to massively sequence regions or genomes faster and cheaper, NGS is an
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important tool for precision medicine and offers new opportunities that can be

applied in patient care (56,57,65).

Precision medicine has revolutionized how we improve health and treat
disease. Although nowadays, the “one-size-fits-all" classical approach is still how
most medical treatments are designed, it is known that it is not effective in many
cases. Treatments can be very successful for a group of patients, while for others
not. On the contrary, precision medicine considers individual differences in
people’s genes, microbiomes, environments, family history and lifestyle. (Fig 5)
This information allows clinicians to make diagnostic and apply therapeutic
strategies precisely for each individual patient (66). In order to apply precision
medicine, biomedical research should be done to understand genetics and

biology behind a disease.
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Figure 5. One-size-fits-all and precision medicine approaches. Contrary to the classical approach, in
precision medicine differences between individuals are considered to make a diagnostic and apply
therapeutic strategies.
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2.3 Cancer: a collection of complex diseases

Through cell division, human cells grow and multiply in the body to form new
cells to replace those growing old or damaged. However, this orderly process can
break down and abnormal or damaging cells grow and multiply uncontrolled.
These cells may form tumors, lumps of tissue, which can be cancerous or not
(benign) (67). Clinical differences between benign and malignant tumors were
described by Gabriele Fallopius, who identified cancer cells to have irregular
shape, multi-lobulation, adhesion to neighboring tissues and more blood vessels

surrounding the lesion (68).

In the late 1800s, three fundamental theories described the cause of cancer,
proposing that was a product of chronic irritation, hypothesizing that was the
result of displaced embryonal tissue or suggesting cancer was caused by
infectious or pathogenic agents. Bernardino Ramazzini observed that nuns
suffered from high rates of breast cancer, which was attributed to their celibate
life. Harting and Hesse documented in 1879 that miners in the Black Forest
regions in Germany died due to lung cancer. Other non-occupational agents as
tobacco were associated with, in this case, nasal cancers, as well as viral infections
due to sexual promiscuity were also correlated with risk of cervical cancer.
Variations in the type of cancer found in different areas of the world were also
observed, and people who migrated to other countries developed types of cancer

common in their adopted countries, rather than their homelands (69).

Alfred Armand Louis Marie Velpeau, after examining malignant and benign
tumors under the microscope, wrote that cancer cells were merely a secondary
product rather than the essential element in the disease, and that there must exist
another intimate element which science would need to define the nature of
cancer. He was anticipating the genetic bases of cancer. Following the view of

Velpeau’s, Theodor Boveri first proposed a role for somatic mutations, those
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acquired during lifetime, in cancer development. Boveri suggested that loss of key
cellular attributes due to these mutations were important driver events in the
formation and progression of cancer, and that inheritance of germline variants
could play a role in disease susceptibility. It had taken 50 years of work for Boveri
to validate Velpeau’s intuition, and another half century for the emergence of
molecular biology and molecular genetics to confirm Boveri’s theory on the
nature of cancer (68,70). Viewing tumor as a cellular rather than an organ
problem led to confirm that cancer is a genetic disease involving dynamic changes

that lead to malfunctioning of the cellular properties.

Cancer is then defined as a collection of complex diseases. Is characterized
by uncontrolled cellular growth and division of abnormal cells due to the
accumulation of genetic and epigenetic changes and their subsequent natural
Darwinian selection when conferring advantages for the tumor cell. It can be
caused by genetic predisposition due to inherited mutations, also named
germline, somatic variants acquired during lifetime due to environmental factors
such as UV light or tobacco, genome instability, infections, chronic irritation, aging
or the combination of various of the mentioned factors (67,71). Genetic changes
usually tend to affect oncogenes, tumor suppressor genes and DNA repair genes.
Whereas alterations in oncogenes cause the activation of them allowing the cell
to grow and survive when they should not, variants in tumor suppressor genes
cause the loss of their function and lead to malignancy. Inherited mutations
inactivating one allele of a tumor suppressor increases the probability of
developing a tumor. Efforts regarding the identification of potential therapeutic
target genes have been mainly focused on oncogenes (70,72). As an example, the
most common loss of proapoptotic regulator through genomic mutation involves
the p53 tumor suppressor gene. The functional inactivation of this gene is seen in
more than 50% of human cancers. Epigenetic modifications can also influence

gene expression and contribute to cancer development. Moreover, interactions
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within the tumor microenvironment which consists of surrounding normal cells,
play an essential role in progression, survival of cancer cells, promote

angiogenesis and modulate immune responses (73).

There are more than 100 types of cancer, usually named depending on the
organ or tissue where tumor arises, and also described by the type of cells that
formed them. As an example, carcinomas, the most common type of cancer are
formed by epithelial cells, those that cover inside and outside surfaces of the
body, whereas sarcomas are developed in bone and soft tissues such as muscle
or fat, leukemias begin in the bone marrow and lymphomas in lymphocytes (T and
B cells) (67). Each cancer type has its own characteristics, progression, and
treatment responses, and even within the same type of cancer there can be
significant diversity between patients and at molecular level. These differences,
that have been well described in large-scale studies, are defined as intertumor
heterogeneity (Fig 6) (64). Understanding this heterogeneity allows for precise
treatment approaches tailored to each patient’s specific tumor characteristics,

increasing treatment efficacy and reducing adverse effects.

Figure 6. Intertumor heterogeneity, showing genetic and molecular differences across patients and
tumors.
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2.3.1 The hallmarks of cancer: decoding the complexity

Cancer genomes are altered at multiple sites due to tumorigenesis, a

multistep process by which normal cells undergo a series of genetic and

epigenetic changes leading to the formation of a tumor. Mutations or alterations

disrupt the normal regulatory mechanisms of cells, enabling a set of distinctive

traits or characteristics that are commonly observed in most malignant tumors,

collectively named as the hallmarks of cancer.

Six essential alterations in cell physiology that dictate malignant growth were

first described in 2000 by Hanahan and colleagues (73). These shared hallmarks

of cancer (Fig 7) that are acquired during tumor development include:

1)

Self-sufficiency in growth signals: cancer cells acquire molecular strategies to
achieve autonomy stimulating their own growth signals continuously and
reducing their dependence from normal tissue microenvironment. Many
oncogenes in the cancer catalog act by mimicking normal growth signaling,

leading to unregulated cell division and therefore, tumor formation.

Insensitivity to antigrowth signals: soluble growth and immobilized inhibitors
present in the extracellular matrix or surfaces nearby cells operate as
antiproliferative signals to maintain cellular quiescence and tissue
homeostasis in normal tissues. However, cancer cells can evade these
mechanisms, associated with the cell cycle clock, and bypass natural controls

on cell division.

Evading apoptosis: the apoptotic program is present in all cell types
throughout the body, including a series of steps that cause programmed
death of old and dysfunctional or unnecessary cells. Cancer cells become
resistant to apoptosis allowing them to survive and accumulate even under

unfavorable conditions.
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4) Limitless replicative potential: independent of the cell-to-cell signaling
pathways that limit multiplication, cells have a finite replicative potential.
Therefore, once they progressed through a certain number of duplications
they stop growing. This process is called senescence. Cancer cells can
maintain their telomeres, protective caps on the ends of chromosomes, and

consequently replicate unlimited and prevent cellular senescence.

5) Sustained angiogenesis: via an “angiogenic switch”, tumors induce the
formation of new blood vessels to ensure a dedicated blood, and

consequently, oxygen and nutrients, supply.

6) Tissue invasion and metastasis: during tumor development, primary tumor
masses spawn pioneer cells that move out, invading nearby tissues and
spreading to distant sites in the body. Tumors can succeed in these sites and

found new colonies, forming secondary tumors named metastases.

Later in 2011 and 2022, and due to the continuous study of tumor biology,
four novel attributes (2 in 2011, and 2 in 2022) of cancer cells were proposed and
added to the list of core hallmarks (Fig 7) (74,75). These new emerging hallmarks

are:

1) Reprogramming energy metabolism: uncontrolled cell proliferation also
involves adjustments on the metabolism, shifting the energy production to
fuel cell growth and division. Cancer cells reprogram their glucose metabolism
through what is called the Warburg effect, limiting their energy metabolism
mostly to glycolysis facilitating the biosynthesis of macromolecules and

organelles required for assembling new cells.

2) Evading immune destruction: although both the innate and adaptative
cellular arms of the immune system are able to contribute to immune
surveillance and tumor eradication, solid tumors managed to avoid detection

and evade destruction by the immune system.
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3)

Unlocking phenotypic plasticity: during organization of cells into tissues, the
end result of cellular differentiation is antiproliferative, being a barrier to
continuing growing. Cancer cells unlock the restricted capability for

phenotypic plasticity to escape from the terminal differentiation.

Senescent cells: senescence not only shuts down the cell division cycle, but
also evokes changes in cell morphology and metabolism, involving the release
of proteins such as chemokines, cytokines, and proteases. Therefore,
senescent cancer cells contribute to proliferative signaling, avoiding
apoptosis, inducing angiogenesis, stimulating invasion and metastasis, and
suppressing tumor immunity. A transitory state of senescence is well
documented under therapy resistance, representing a form of inactivity of
proliferating cancer cells, but more operative in other tumor stages of

development, progression, and metastasis.
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Figure 7. Hallmarks of cancer and enabling capabilities of cancer. Figure from Hannah
etal. 2022 (75).
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The acquisition of these hallmarks of cancer is made possible by four
enabling characteristics. The first two enabling characteristics were described in
2000 and included genome instability and tumor-promoting inflammation. Cancer
cells often increase the rates of mutation acquired in their genomes, including
changes and the loss of function in a growing number of genes involved in sensing
and repairing DNA damage, assuring correct chromosomal segregation in mitosis,
and in general affecting to genomic “caretaker” systems. These genetic events
can occur early in some tumor progression pathways and late in others. On the
other hand, chronic inflammation can supply bioactive molecules to the tumor
microenvironment, including growth factors, or enzymes that facilitate
angiogenesis, invasion, and metastasis (73). The last two well described enabling
characteristics consider epigenetic reprogramming, involving epigenetically
regulation of gene expression that facilitates the acquisition of hallmark
capabilities, and the presence of polymorphic microbiomes. Increasing evidence
has shown that variability in the microbiomes between individuals can have an
impact on cancer phenotypes. Some bacterial species stimulate proliferative
signaling and modulate growth suppression by modifying tumor suppressor

activity (75).

36



Understanding these hallmarks provides insights into the complex nature of
cancer and guides research efforts in the development of targeted therapies and
diagnostic approaches. In fact, targeted therapeutics can be categorized
according to the effects on one or more hallmarks. Most of these therapies have
been delivered directly to molecular targets involved in enabling particular
capabilities. However, not because of inhibiting one key pathway the tumor may
completely shut off a hallmark capability, and cells eventually adapt to the

selective pressure resulting in relapse (74).

2.3.2 Somatic variation in the human genome

Everyone is born with a collection of genetic variants that define our
genotype. This determines many aspects of our biology and our life, and together
with environmental factors predispose us to different kinds of disease as well as
prevent for others. These genetic variants are known as germline (Fig 8), and they

are normally studied in the context of rare and complex diseases.

Somatic variants (Fig 8) are genetic alterations that occur after conception
and therefore are acquired in somatic cells but not in germ cells (76). Unlike
germline variants, which are inherited from parents and present in every cell of
an individual, somatic variants are only present in certain cells or tissues and are
not passed on to offspring. These variants arise as spontaneous stochastic events
during lifetime, because of specific factors, including exposure to carcinogens (UV
light, pollution, chemical agents), chronic inflammation, lifestyle choices such as
smoking, diet and physical activity, DNA replication errors or the impact of
external stressors. Moreover, the risk of acquiring somatic mutations increases
with diverse inherited variants. These acquired variants can lead to dysregulation
of multiple essential cellular processes, including cell cycle control, DNA repair or
apoptosis, and therefore are one of the main causes of cancer in combination with

other genetic and epigenetic changes (72,77,78).
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Figure 8. Variation in the human genome. Germline variants are those inherited from the parents,
while somatic variants are acquired during lifetime. Whereas some germline variants can be
protective, others can directly cause rare diseases, or increase the risk of developing a complex
disease in combination with environmental factors. The majority of somatic variants acquired due to
mutagenesis do not result into a disease (passenger variants), whereas others are the cause of
cancer.

In cancer, characteristic patterns of somatic mutations found in the genomes
of the tumor are referred to as mutational signatures (54,79). These patterns
result from particular mutational processes that can be caused by factors such as
exposure to mutagens, defective DNA repair mechanisms or other cellular
processes. As an example, signature 1 represents a clock-like mutational process
(aging) and it is widely observed across all types of cancers. Each mutational
signature is characterized by a distinct combination of mutation types and the
specific nucleotide context in which these mutations occur. Their study provides
insights into the biological processes driving cancer development and progression
and helps to identify the causative processes and environmental exposures

contributing to tumor formation.
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Understanding the impact on cellular function of somatic variants itself, and
of mutational signatures, enables cancer classification, patient prognosis,
identification of therapeutic targets, prediction of response to certain treatments

and consequently, advancing precision medicine approaches.

2.3.2.1 Types of somatic variants

Genomic alterations are classified according to the type of DNA change in
single nucleotide variants (SNVs), small insertions and deletions (indels), copy
number alterations (CNAs) and structural variants (SVs) (54). A brief description

of them is provided below.

- Single nucleotide variants (Fig 9) occur at a single nucleotide in the DNA
sequence and involve its substitution with another at a specific position in the
genome. SNVs are the most common types of genetic mutations, the smallest
and the most easily detectable. Depending on their location in the genome,
they can lead to alterations in the genetic code, impacting the function of
genes and proteins, or may be benign with no detectable effect. Generally,
can be classified as missense variants if the altered codon is translated into a
different amino acid, stop gain or loss when they produce a new stop codon
within the sequence or delete it, or synonymous in case the substitution does

not implies a change in the translated amino acid.
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Small insertions and deletions (Fig 9) result from the insertion or deletion of
one or more nucleotides in the DNA sequence, usually up to 50 bp. They can
have significant consequences when appear genes, causing frameshift
mutations, altering the reading frames, disrupting splice sites and introducing
premature stop codons resulting into to the production of truncated or non-

functional proteins.
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Figure 9 Types of somatic variants. Up, representation of a single nucleotide
variant. Down, visualization of a short insertion (below) and deletion
(above). Small insertions and deletions are named as Indels.
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Copy number alterations refer to change (duplications or deletions) in the
number of copies of a particular segment of DNA within the genome. CNVs
(Copy Number Variants) can range in size from a few hundred base pairs to
large segments of DNA containing multiple genes, as well as entire
chromosomes. They can have significant effects on gene dosage and

expression levels. Thus, they can alter gene function.

Structural variants (Fig 10) are the most complex type of genetic alterations
and encompass DNA breaks and sequence reassembling elsewhere in the
genome. Unlike SNVs and indels, structural variants can encompass much
larger regions. Structural variants include large deletions and insertions, that
can involve new DNA from exogenous sources like viruses, duplications,
inversions and translations where more than one chromosome is involved.
Different types of translocations can be also defined. Whereas there is no loss
of genetic material in balanced translocation events, unbalanced
translocations cause the loss of DNA. Moreover, two-way exchanges between
non-homologous chromosomes are known as reciprocal translocations,
whether a one-way transfer of a segment into a non-homologous
chromosome is defined as nonreciprocal translocation. Generally, structural
variants can have significant consequences on gene regulation, gene fusion

and genomic stability, which is a hallmark of cancer.
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Figure 10. Types of somatic structural variation.

2.3.2.2 Variant calling analysis to describe the somatic variation

landscape of tumors

Three different research approaches are required to assess the genetic
profile of a disease depending on its type. To study the relationship between
complex diseases and inherited germline variants, genome-wide association
studies (GWAS) are used. These variants are used to be enriched in a subgroup of
individuals that increase their risk of developing a phenotype or complex disease
such as asthma, cardiovascular diseases or type 2 diabetes. A large number of
patients showing the selected phenotype as well as a subset of control patients
not presenting the phenotype are needed to compare their genetic variation
landscape, mainly within their exons. On the other hand, rare diseases, health
conditions with a very low prevalence in the population, can be studied using a
more cost-effective whole-exome sequencing or even target sequencing to only
identify pathogenic variants in coding regions of the genome, which are expected
to occur at high penetrance. The number of patients evaluated is lower and
mutations are not recurrently identified among all the cohort nor the entire

genome but can occur in specific genes. Finally, the analysis of somatic variants,
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which is mainly related to cancer, is done through the comparison of an individual
genome, evaluating those genomic positions where an alternate allele is
supported by cancer cells and not present in normal and healthy cells. Thus, in
order to identify recurrent variants across patients, a large number of sequenced

normal and their matched tumor samples from diverse patients is needed.

In the era of NGS, the general strategy to study cancer genomes and somatic
mutations starts, as mentioned, by comparing normal and matched tumor DNA
previously extracted and sequenced. Both sequences are aligned separately, and
the BAM files obtained are the inputs for the variant calling, which is the main

step for DNA alteration discovery.

The massive amount of data generated by NGS required the development of
algorithms based on statistical methods and computationally efficient. Variant
caller algorithms are bioinformatic tools used to detect and identify genetic
variants from high-throughput sequencing data. During the past years, many tools
have been created for both germline and somatic variant detection, with the main
difference being the usual need of a normal and matched tumor sequence to
identify acquired genetic variants in an individual. These methods can also be
grouped based on the variant type they are able to detect: SNVs, indels, CNVs and
SVs. Whereas some tools are dedicated to one single class, others can detect
different kinds of variants. However, the difficulty in finding each type is different,
being SNVs the easiest and SVs the most complex ones. Mismatches between
aligned reads and the reference genome allow to detect point mutations and
short insertions and deletions. Structural variants are called based on split reads,
part of a read maps to a different region or it appears as unmapped, and paired-
end read discrepancies regarding orientation, mapping chromosome and/or

insert size.
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Many factors can complicate variant calling steps, starting with technical
determinants such as sequencing errors and alignment artifacts and followed by
low frequency variants due to tumor heterogeneity or low purity of the sample.
Each variant caller applies a specific criterion to call variants with a determined
confidence, based on read depth, that is the number of unique reads in a
reference nucleotide, base quality or variant frequency. Variant callers have their
own strengths and limitations preventing the detection of false positive and false
negative events (53). For this reason, researchers typically combine the results of
diverse algorithms, applying a multi-variant calling approach to increase
sensitivity and reduce the rate of false negatives (54,79) and occasionally
reviewing the results through manual inspection. This approach has been
implemented in many institutional pipelines and main large-scale cancer

genomics projects.

Variant caller algorithms play a fundamental role in genomic research and
personalized medicine, enabling the identification of genetic variants associated
with disease. Nevertheless, once variants are detected, their potential to activate
oncogenesis, association with drug response or the disease evolution and
outcome must be evaluated through annotation and functional analysis. Variant
annotation is the process of assigning information to DNA variants and assessing
their possible pathogenicity. This step is a crucial point and is a challenging bridge
between machine and human-readable format (54). Although this interpretation
can be used by researchers and clinicians to tune precision therapies, and despite
numerous efforts to provide guidelines and best practices, its application to the
clinics is still complex and problematic. Diverse algorithms including Variant Effect
Predictor (VEP) (80), ANNOVAR (81) or PAVE
(https://github.com/hartwigmedical/hmftools/tree/master/pave), have been
also created to annotate genomic variants using information from diverse public

databases and estimating the consequence and impact of each variant.
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2.3.2.3 Public databases and catalogs of genomic variants

As the field of cancer genomics progresses, the intricate process of
sequencing, alignment, and variant calling has illuminated the need for robust
information technology infrastructures and sophisticated computational tools
(78). These components are vital for transforming raw data into meaningful
insights within the context of characterizing tumors in large-scale cohorts.
Moreover, the imperative to biologically understand the results and disseminate
findings has led to the development of public databases. These repositories
facilitate the search and sharing of results and drive the advancement of cancer
genomic research, underscoring their pivotal role in making such research not

only possible but also deeply impactful.

A wide range of databases collecting genomic variation have been
developed, including all kinds of variant annotations, and cancer specific catalogs.
Comprehensive databases of human genetic variation such as dbSNP (Single
Nucleotide Polymorphism Database) (82) or gnomAD (Genome Aggregation
Consortium) (83) can be used to annotate known germline variants and their
population frequencies. This information also allows to filter false positive events
identified as somatic. For functional annotation analysis, resources include
information found in literature and curated annotations. As an example, ClinVar
(84) is a widely used and freely available archive from the National Center for
Biotechnology Information (NCBI) that provides information for interpretation
and clinical significance genetic variants. Diverse tools for predicting the potential
impact of a variant have also been created, including PolyPhen-2 (85), for amino

acid substitutions or SIFT (86).

Focused on somatic mutations and cancer, one of the most well-known
databases is The Catalog of Somatic Mutations in Cancer (COSMIC), which

includes almost 6 millions of coding mutations across 1.4 million cancer samples.
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It also includes non-coding mutations, copy-number alterations, gene-fusions and
mutational signatures (87). Moreover, a catalog of driver genes (the Cancer Gene
Census) is also available to search or download. Although it is not a dedicated
annotation database, The Cancer Genome Atlas (Weinstein et al., 2013a) also
provides comprehensive genomic data for various cancer types, allowing to
analyze and annotate genetic variation. Other databases and web portals such as
IntoGen (89) are available to evaluate cancer driver genes previously identified in

large-scale cohorts.

2.3.3 Driver and passenger mutations in cancer

The number of genetic mutations present in the DNA of a tumor sample is
guantified in cancer genomics and is known as tumor mutational burden (TMB).
It includes the total count of somatic mutations; those acquired during lifetime
and therefore not present in all the cells of the body. TMB is typically expressed
as the number of mutations per mega base (Mb) of DNA and it is often obtained
using NGS techniques that allow the analysis of the tumor genomic profile. High
mutational load, representing a large accumulation of mutations, is usually
associated with environmental DNA damage and in clinical practice it can be

related with a better prognosis and longer survival (64).

The accumulation of specific combinations of genetic alterations or the
presence of mutations in a defined set of target cells results in higher propensity
for malignant progression. Therefore, not all somatic mutations promote cancer

development (77). Two categories of somatic mutations were defined.

Driver mutations directly or indirectly play significant roles in oncogenesis.
They occur in genes (called cancer driver genes) that regulate key cellular
processes, primarily enabling the previously mentioned hallmark capabilities
(64,71). Driver mutations likely occur at different stages of tumor evolution.
Diverse studies have revealed that normal cells frequently harbor one or more
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cancer driver mutations, and that the landscape of drivers and their expansion
greatly varies between tissues (<5% in colon cells carry drivers compared to >50%
in endometrium) (90). Most genes act as drivers in one or two tumor types, and
only around ten genes can drive more than 20 malignancies through mutations.
Moreover, mutations can drive tumorigenesis only under specific selective
constraints. On the other hand, passenger mutations are genetic alterations
resulting from genomic instability but do not have an impact on tumor growth.
The majority of somatic mutations found in cancer likely represent passenger
variants and only a minority are drivers. Therefore, passenger variants can provide
valuable information about the evolution of the tumor, can aid in understanding
the complex genomic landscape of cancer, and can be used in research to identify
specific mutational patterns. Because of this, they may also have implications in

precision medicine and target therapies.

2.3.3.1 Identification of cancer driver genes through

bioinformatic approaches

The identification of cancer driver genes is crucial in cancer genomics to
advance our understanding of the biology behind tumor formation and
progression, and to guide precision treatment and diagnosis approaches and
develop effective therapies that target specific genes driving the tumor, to
ultimately improve the patient’s quality of life. The search for gene abnormalities
that can lead to cancer development is one of the pillars of cancer research since
the discovery of a point mutation in HRAS gene that causes the activation and
transforming capacities in human bladder carcinoma (91). The improvement of
DNA sequencing technologies and the advance in the annotation of the human
genome enables us to reveal the landscape of somatic mutations in tumors. While

only a few tens of cancer driver genes were characterized through biochemical
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and molecular assays in the span of two or three decades, hundreds of cancer

genes have been identified using cancer genomics in less than two decades.

Since tumorigenesis follows a Darwinian evolution, spontaneous somatic
mutations acquired in diverse cells are positively selected when conferring
selective advantages for them. As a result, the patterns of mutations in specific
genes, those driving tumorigenesis, deviate from their expectation under neutral
mutagenesis. Following this assumption one common strategy to identify cancer
driver genes involves the analysis of somatic mutations across large-scale cancer
genomic datasets together with statistical methods to seek for genes mutated at

abnormal high frequencies across the cohort.

Driver discovery methods focus on one or more features of the mutational
pattern of genes. Bioinformatic tools can be used to detect unexpected clustering
of mutations in specific protein regions, to determine a bias towards the
accumulation of variants with high functional impact or deviation in the frequency
of trinucleotide changes (Fig 11). The obtained results allow to prioritize those
genes that are more likely to have a role in cancer to explore them deeply (71,92).
Mutational features may also reveal different tumorigenic mechanisms of the

same driver gene across tumor types.
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Figure 11. Observed mutations in different tumor types and across TP53 cancer driver gene.
Clustered and recurrent mutations have been identified within the gene by multiple algorithms.
Image from www.intogen.org.
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In 2020, the compendium of driver genes obtained through the analysis of
cancer exosomes comprised between 500 and 600 mutational drivers. Although
genes mutated at frequencies higher than 10% have already been discovered, it
is predicted that the number of identified drivers will increase. New drivers could
be derived from genes mutated at lower frequencies or in populations that have
been biased against in tumor genome sequencing projects, as well as of
conditions not profiled and new clinical samples including metastatic or relapse
tumors. Integrative approaches incorporating multi-omics data, integrating large-
scale cancer genomic datasets and functional genomics information will allow to

identify novel cancer driver genes.

2.3.4 Intratumor heterogeneity and clonal dynamics

Genomic differences among cancer patients diagnosed with the same tumor
type have been demonstrated and characterized and are known as intertumor

heterogeneity (Fig 12) (93).

Furthermore, it is well known that tumors are formed by many cell
populations (94—-97), and each of these can accumulate different somatic genetic
variants including passenger and driver mutations. This phenomenon is called
intratumor heterogeneity and refers to the presence of genetic, phenotypic,

morphological and functional diversity within the cells of a single tumor mass.

Figure 12. Intratumor heterogeneity. Tumors formed by diverse cell populations including genetic
and molecular differences.

49



Clonal dynamics, also known as tumor evolution (Fig 13), can be depicted as
a succession of clonal expansion rounds, where every round is driven by the
acquisition of additional mutational events. Mutations are acquired stochastically
because of proliferation and increased genomic instability. Then, as a Darwinian
evolution process, these mutations are selected, and cell populations named
clones are adapted resulting in ITH (90,98). The study of subclonality can reveal a
tumor’s life history and the temporal order of the acquired somatic events. In the
early phase of cancer evolution, founder mutations are acquired. This common
ancestor or trunk of the evolutionary tree branches into subclones due to genetic
instability and alterations in the tumor microenvironment, accumulating new
mutations and leading the heterogeneity within the tumor tissue. Usually,
mutations in driver genes are identified as founder mutations and consequently
are present in all cells being clonal (64,97). Even though the Darwinian process
can explain the history of tumors to some extent, the full spectrum of cancer
evolutionary trajectories is not sufficiently encompassed. Non-Darwinian
mechanisms have been also described and considered a form of evolution
through one-hit catastrophic events that bring multiple genetic alterations at the
same time. These macroevolutionary events can drive tumor initiation and

progression (99).

v

TIME

Figure 13. Tumor evolution during time. Cell populations at the beginning (left) grow and/or
disappear during time and depending on the received treatment. Relapse is shown at the end
(green cells).
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Intratumor heterogeneity has significant challenges in clinical management and is
likely the major cause of therapeutic resistance and tumor relapse. Clonal
diversity can provide a more diverse material on which selection can work,
allowing the tumor to therapeutic adaptation instead of extinction. The co-
existence of genetically distinct clones, that may interact between them also
modulates progression and therapeutic responses (98). Although in theory,
cancer therapy reduces genetic variation in cells, generally it only removes
sensible clones, eliminating competition for growth and resulting in the expansion
of subclones (98,100). The constantly changing environment of tumors underlies
their ever-changing dynamics, where clones that were dominant reach a
bottleneck and are depleted, whereas other minor subpopulations achieve a
favorable position later and become dominant. ITH is also associated with the
aggressiveness of the disease, as it has been demonstrated for example in
prostate cancer (96). Based on several studies, we now expect that most tumors

present a certain level of ITH.

An example of the strong relationship between subclonality and therapeutic
resistance can be found in chronic myelogenous leukemia (CML). Patients
diagnosed with CML show notable response to a treatment known as imatinib
mesylate, but a fraction of these patients relapse. Analysis of the tumor genome
of these patients showed the presence of resistant cell subpopulations, which are
selected by pressure once the treatment is given and leads to the expansion of
therapy insensitive cells causing relapse (98). Moreover, it has also been seen that
clonal evolution is more frequent in tumors receiving chemoimmunotherapy than
treatment-naive tumors, where the clonal architecture can be in equilibrium

(100).
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Understanding the complexity of intratumor heterogeneity is critical for
effective therapeutic strategies and precision medicine approaches that directly
target the diverse subclones within a tumor to achieve better patient outcomes.
Especially in the early stages of a tumor, identifying resistant clones could avoid

tumor relapse and improve cure rate.

2.3.4.1 High-throughput sequencing analysis to decipher cell

populations

Intratumor heterogeneity is then another level of complexity when studying
cancer. Analyzing genome sequencing data of bulk tumor samples and based on
the cancer cell fraction (CCF) of a set of somatic mutations, the subclonal
structure of tumors can be identified. Mutations with similar CCF will probably
represent the same cell population. Thus, clustering mutations based on their CCF
yields the subclonal architecture of a tumor sample. While mutations present in
all cells will be defined as clonal and are supposed to be from the initiating tumor
cell, mutations with a CCF lower than 1 and therefore present only in a subset of
cells will be named subclonal and acquired during tumor progression. Cancer cell
fraction could be estimated by adjusting variant allele frequencies (VAF) for local

copy number variation and sample purity (101).

The variant allele frequency of a set of somatic mutations can be directly
estimated from NGS read counts. It is the result of dividing the number of reads
supporting the variant allele by the total number of reads covering the genetic
position or region. The value can be multiplied by 100 to get the VAF as a
percentage. Since somatic mutations are mainly heterozygous, they are present
only in one allele and consequently should be identified in half of the total number
of reads covering their location. Therefore, if a somatic heterozygous mutation is

clonal meaning it is present in all cells, its VAF will be around 0,5 or 50%. Lower
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VAF values suggest the mutation is subclonal and a minor population of cells is

carrying the genetic variant.

Studying ITH implies new methodological challenges, especially if
subclonality is studied with standard sequencing depths. Low frequency variants,
i.e., subclonal mutations, are difficult to detect with high confidence when using
around 30x coverage samples. Moreover, variant allele frequencies are normally
calculated only for single nucleotide variants, but small insertions and deletions
and large structural variants could also be used. However, calculating the
frequency for these large variants is not as easy and becomes a challenge because

of read count is not straight forward with SVs.

Sequencing of a tumor sample only provides a static snapshot of its genetic
landscape. The subclonality analysis of multiple tumor samples from the same
cancer patient obtained from physically separate regions or different time points
of the tumor development, allows not only a better and precise reconstruction of
the cell populations but also their spatial distribution or their evolution during
time (2,102,103). Comparing the VAF of a set of mutations representing a
subclone and tracing them among longitudinal samples, researchers can evaluate
how these cell populations change, expand or disappear from the tumor mass.
The study of clonal dynamics together with clinical data can decipher, for
example, whether a specific therapy results in relapse because of a specific

resistant subclone.

Diverse bioinformatic tools (104,105) have been designed to cluster mutant
allele frequencies and reconstruct tumor evolution using NGS data of one or more

samples from a patient.
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2.3.5 Large-scale initiatives promoting cancer research

As a response to the heterogeneous nature of cancer, advancements in
technology and the collective effort to uncover the genetic landscape of cancer,

large-scale studies have emerged during the last years.

The development of high-throughput sequencing technologies, such as NGS,
becomes an increasing number of generated data ready to explore and analyze.
Alongside sequencing technologies, computational tools and algorithms to
analyze and interpret the data rapidly evolve, allowing cancer community to

process efficiently vast amounts of data.

Moreover, due to the heterogeneity of cancer patients, and in order to later
translate research into clinics applying precision medicine and focusing on the
genetic makeup of each individual patient, large numbers of samples are needed.
Therefore, the analysis of this data provides greater statistical power to detect
rare genetic variation, significant associations and recurrent variants linked to
cancer risk, prognosis and treatment response. Large-scale studies facilitate the
identification of biomarkers and therapeutic targets specific to certain cancer

subtypes that might not be evident in smaller studies.

Collaborative efforts among researchers, institutions, and countries became
essential to tackle the complex nature of cancer genetics. To promote cancer
research, diverse initiatives led by big consortia have organized international and
national projects collecting and sharing omics data. In this framework, the most
important and well-known initiatives have been the International Cancer Genome
Consortium (106) and The Cancer Genome Atlas (107), both of which aim to
coordinate cancer research projects including tens of cancer types and being

collaborative.

Whereas the ICGC is a global initiative involving many countries (Fig 14), each
leading the project and analysis of one cancer type, TCGA was launched by the
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National Cancer Institute (NCI) and the National Human Genome Research
Institute (NHGRI) and was based and coordinated within the United States. Spain
could contribute in the ICGC providing Chronic Lymphocytic Leukemia samples
and coordinating the project. Both initiatives aim to comprehensively characterize
genomic variation in multiple cancer types including samples from around 20 and
60 different primary sites respectively and facilitating cross-disciplinary research
collaborations. At this time, sequencing data can be downloaded and used for
research after an approved application, and results including genomic variation

can also be explored through their websites and data portals.

Figure 14. ICGC cancer projects and corresponding countries. Image from ZHang P. et al, (2011).

As an evolution of these large-scale projects mainly generating sequencing
data from thousands of tumors, the ICGC launched a new worldwide initiative
named the Pan-Cancer Analysis of Whole Genomes (PCAWG). In this new phase,
researchers intend to jointly analyze more than 2.600 normal-tumor whole
genome pairs across 38 cancer types. Data was harmonized, annotated and

homogeneously analyzed to later compare results among patients and cancer
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types. Following the main goals of cancer genomics, PCAWG aims to deeper
understand the molecular mechanisms behind tumor formation and evolution,
including genetic patterns, driver mutations and key pathways that span various
cancers. This study provides valuable insights on the identification of therapeutic
targets, contributing to prevention, diagnosis and treatment through precision
medicine and more effective cancer therapies. The PCAWG is the most
comprehensive analysis of cancer whole genomes up to date, and required an
infrastructure capable of performing large-scale analysis, enabling the storage of

high amounts of data and their study using computational and data access tools.

Recently, to strengthen cancer research and its translation into the clinics, a
new effort from the ICGC has been defined. ICGC-ARGO (Acceleration Research in
Genomic Oncology) aims to coordinate the integration of homogenic genomic
analysis and phenotypic data on 200.000 cancer patients. This dataset will be used

to decipher key clinical and biological questions.

2.3.6 Challenges in cancer research

Many years have passed since researchers started applying NGS data to
cancer research. However, in the field of omics data, the utilization for next-
generation sequencing technology, the implementation of large-scale studies,
and the translation of this research into the clinics, many challenges should still

be faced.

Storage, analysis and interpretation of large datasets can be managed thanks
to cloud-based solutions and local high-performance computers (HPC) clusters as
well as new bioinformatic tools. However, at a global level, data sharing and
standardization of the data is usually an obstacle in terms of methodological and
legal aspects. Combining data from different projects and platforms for meta-
analysis requires careful consideration of data harmonization, normalization and
correction of batch effects to ensure valid comparisons. Moreover, the huge
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number of tools, and the variety of for example variant caller algorithms that have
discrepancies among the results, complicate the integration of the analysis. Other
problematic procedures include the demanding characteristics of tumor samples,
such as low purity, formalin-fixed paraffin-embedded archival material that could
reduce sample quality, lack of matched-normal data. On the other hand, with the
increasing availability of genomic data, keeping patient privacy and addressing
ethical considerations related to data sharing and informed consent become a
must. Although these ethical concerns are essential for research, they can also
serve as hindrance since addressing them is neither immediate nor rapid, and

their resolution can vary across countries.

Lastly, the results obtained should be easily translated into clinical
applications. Not only are sophisticated algorithms needed for accurate

interpretation but also easy-to-use in clinical environments.

While these challenges exist, the use of NGS and large-scale studies in cancer
research holds great promise uncovering the complexity of the human genome

and advancing precision medicine.

2.4 Processed pseudogenes: a by-product of
L1 retrotransposition

The human genome is comprised of repetitive sequences, some of which are
thought to originate from viruses. These sequences have the capability to
transpose within the genome, generating multiple copies. Their study has been
crucial in understanding the evolutionary history of human genes. Mobile
elements have played a role in shaping the genome by promoting genomic
diversity and providing insights into ancient genetic events. Their transposition
within the genome could result in the formation of new functional genes or the

inhibition of coding sequences. Investigating their impact on the genetic
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landscape has shed light on the mechanisms underlying genetic innovation and
adaptation, offering valuable clues about human origins and evolutionary

development (108,109).

Mobile repetitive DNA, such as long interspersed elements (LINE) or Alu
repeats, form a considerable proportion of the human genome. In particular,
LINE-1 (L1) (Fig 15) composes about 17% of the entire human DNA content and
20% of the mouse genome. Although most repeat elements in the human genome
are inactive because of truncations, point mutations and rearrangements, it is
estimated that between 50 to 120 L1 are currently active being the most
functional autonomous retrotransposons in mammalian genomes. When
transcribed and translated, functional LINEs encode two proteins that coordinate
reverse transcription of their RNA template and integrate them back into the
genome (110-112). This process, involving the insertion of a DNA sequence
mediated by an RNA, is known as retrotransposition or “copy and paste”. In
humans, this is carried out through the mentioned proteins encoded by LINE
elements (LINE-1 ORF2 and ORF1) which function as reverse-transcriptase and
endonuclease (113). This machinery allows LINE elements to propagate in the
genome as parasitic units, usually at a distant site from the original element,
shaping the human genome over evolutionary time. It is estimated that about 79%
of human genes contain at least a segment of an L1 element within its

transcription unit (114).
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Figure 15. A human L1 element is 6Kb in length and encodes two ORF flanked by 5' and 3'
UTREs.

58



Pseudogenes are complete or partial copies of genes, usually unable to code
for functional polypeptides (115). Following the theory of neutral evolution by
Kimura in 1968, over time, pseudogenes accumulate random mutations that can
often cause disruption of the original reading frame. Therefore, these elements
seem to be unconstrained by selection. It is known that mammalian genomes
contain thousands of them (113) being the average density detected of 6.5 per
mega base for the whole human genome. In fact, there is a strong correlation
between the number of pseudogenes and the size of the chromosomes (116).
Most frequent pseudogenes come from multigene families with large copy
numbers. In general, housekeeping genes expressed in a wide range of tissue

types are more likely to generate retrotransposed copies.

Depending on the mechanisms they have been formed, pseudogenes are
classified as non-processed or processed. Those of the first category are the result
of segmental duplication of genes and subsequent loss of function by mutations.
A small fraction of duplicated genes will remain functional, being a source for the
formation of new gene functions and expression profiles and considered one of
the main drivers of evolution and a source for functional variability. The second
category, processed pseudogenes (PP), are formed through the
retrotransposition of mature mRNAs using L1 machinery (Fig 16). LINE-1, a still
active retrotransposon in humans, is able not only to mobilize its own transcripts
(cis preference), but also other repetitive elements such as Alu, SINE-VNTR-Alu,
and nonrepetitive sequences including mRNA from other genes (in trans).
Therefore, processed pseudogenes are a by-product of LINE-mediated
retrotransposition. PPs are found to be complementary DNA copies of mRNA
transcripts randomly integrated into the genome (110,112,117). Considering the
mechanism processed pseudogenes are formed, most of these sequences share
the following characteristics. Since PP are the result of reverse transcription of an

MRNA, they completely lack intron sequences and upstream promoters found in
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their functional paralogous gene, and many of them have a poly-A sequence after
the 3’ end. Usually, because they are mobilized and inserted into the genome
using the LINE1 machinery, they are flanked by repeat elements of 7-17bp that

were also present at the source region (110,113,115).
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Figure 16. Representation of processed pseudogene formation. A fragment of DNA (green)
is transcribed, and the resulting mRNA is retrotranscribed and inserted randomly in the
genome (pink).
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The functional equivalent gene of many pseudogenes are likely expressed in
the germline cell. Hence, mRNA transcripts of functional genes are easily
accessible for being potentially retrotranscribed during the next replication cycle
and, subsequently integrated into the genome through repair and ligation (115).
In a genome-wide study in 2003, among 20.000 pseudogenes identified in the
human genome, 28% were due to segmental duplication whereas 72% arose

through retrotransposition (116).

It is not clear if all human processed pseudogenes were formed recently in
evolutionary time or many years ago. Even more, if these sequences have been
highly mutated, they will not be detected as processed pseudogenes but
completely different nucleotide sequences. In a review in 1985, the author
claimed that all known pseudogenes arose after mammalian radiation,
approximately 100 million years ago. In 2003, a comparative analysis between
human PP and their orthologous region in the mouse genome was performed.
Based on that, they could observe that pseudogenes align better to a different
region in human than anywhere in the mouse genome. Therefore, the analyzed
PPs were formed after the human-mouse split over 90 MY ago. The orthology
criterion used in this study relies on the fact that retrotransposed mRNAs are
randomly integrated, likely, far from their source gene. Actually, chromosomal
localization studies revealed that PP and their functional genes are not syntenic,
meaning they are not on the same chromosome. Additionally, it is known that
their distribution does not correlate with the distribution of gene-rich regions
within chromosomes. This statement argues against the idea that relaxed
chromatin regions are more exposed to the integration of retrotransposed
elements. It has been observed that PPs are more abundant near telomeres

(115,116).
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Processed pseudogenes are considered “dead on arrival” (112). Most PP
acquire deleterious mutations to avoid them encoding functional polypeptides.
Probably they are inactivated as soon as they are inserted due to missing
promoters, frameshifts and truncation, and they cannot be transcribed by RNA
polymerase Il (115,116). Although genetic variants within them usually preclude
their translation into a functional peptide equivalent to the active source gene,
pseudogenes can affect genome function in diverse ways and influence evolution.
First, their mobilization to another location can place the retrocopy in a novel
regulatory context allowing the pseudogene to be transcribed and being an
important source of material for new gene formation on evolution. In 2005,
Harrison et al., identified about 4-6% of the known PPs expressed in the human
genome (118). One remarkable example of new gene formation is the insertion
of cyclophilin A (PPIA) into TRIM5 in the owl monkey genome. This gene fusion
confers resistance to HIV-1 infection (113). Transcriptional consequences can
include the expression of UTRs or introns of target genes, as well as the
production of antisense transcripts. When they are inserted within a gene, they
could cause its disruption resulting on an aberrant and nonfunctional transcript,
or not allowing it to be expressed. Finally, PP can also change the stability of the
source transcript and compete with it for micro-RNA binding because of sequence

similarity(110).

Germline L1s mobilization and processed pseudogenes formation have
contributed considerably to the evolution of genes and genomes (111). If the
event occurs in germ cells or during early embryonic development, it will be
passed to the following generations and fixed in the population (112). Gene
transcripts present as retrotransposed insertions in one or more individuals, but
absent from the reference genome, are considered polymorphisms and are
known as GRIPs (gene retrocopy insertion polymorphisms). Processed

pseudogenes polymorphisms are present in many mammalian genomes including
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mice, chimpanzees and humans and are an ongoing mechanism of mutation. In
2013, Ewing et al., explored GRIPs using available data from the 1.000 Genomes
Project. They could ascertain whether a particular polymorphic PP occurred more
frequently in one population than others. For example, insertions of POLR2C,
HSPE1 and SNRPC mRNAs appeared to be restricted in individuals with self-
reported African ancestry. Moreover, they could report 22 human, 201 mouse
and 9 chimp GRIPs in introns or exons that could lead to novel gene fusions,
modifying their function (113). Recently, in 2021, sideRETRO was published as a
mapping-based algorithm to identify retrocopies of genes, or PP in whole genome
and exome sequencing data. Using this algorithm, the authors analyzed five
individuals with WGS and WES data from 1000 Genomes Project. In the WGS data
they could identify 20 retrocopies, whereas in WES from the same individuals only

6 candidates (117).

Processed pseudogenes are not only retrotransposed in germline cells, but
also occur in somatic tissues including neural progenitor cells, stem cells, early
fetal development, induced pluripotent stem cells and tumors. Evidence of
somatic retrotransposition during early development has been observed in
Drosophila and in humans, contributing to a variety of human diseases such as
cancers and neuronal disorders (111,113,119). Among these events, somatic
processed pseudogenes are also included as a product of the capacity to act on
mMRNA that LINE elements have. As an example, Boer et al. described an exonized
retrotransposed TMF1 gene inserted in the CYBB human gene, which knocked out
the gene’s activity. The PP insertion was identified in a Dutch man diagnosed from
chronic granulomatous disease, an X-linked disorder. The newly created
processed pseudogene linked with the disease, occurred during early embryonic
development of the patient’s mother and around 15% of her lymphocytes
contained the insertion (120). As mentioned, somatic processed pseudogenes can

occur in various cancers, so the estimation of de novo retrotransposition events
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in normal and tumor cells is critical for understanding cancer formation and

progression, as well as tumor heterogeneity (121).

2.4.1 Somatic retrotransposition events in cancer

In 1992, Miki et al. reported the first somatic retrotransposition event. In this
case, they could observe an L1 insertion into the APC tumor suppressor gene of
colorectal cancer (122). Before new L1 insertions were detected by next-
generation sequencing, increased retrotransposition in tumors was predicted due
to cancer-associated hypomethylation and elevated transcription of L1s. Although
retrotransposition occurs at significant rates in normal somatic cells, they are
more easily detected once the cell clonally expands as a tumor. In that case, the
insertion would appear as a tumor-only event erroneously. However, somatic
individual mutational events appear randomly on the genome and are later
subjected to selective forces. Therefore, insertions proliferate preferentially in

tumors than normal tissues since cancer cells divide more rapidly (94,111,119).

Each genome can have its own and unique active L1s, and they can vary
between individuals in terms of activity having different “mutational power”.
Consequently, retrotransposition occurs frequently in some tumors but differs
greatly between cancer types, and individuals with the same cancer type. The
disruption of mechanisms that usually suppress TE activity promote mutagenic
retrotransposition in cancer. In 2012, by analyzing 43 WGS cancer samples Lee et
al. identified 194 somatic insertions of transposable elements (TE). Authors
developed a computational method (TE Analyzer or Tea) to detect the exact
position and mechanism of TE insertions from paired-end WGS data. The
evaluation of five different cancer types with Tea, reveals an average of TE
insertions per tumor type ranging from 0 to 29. Colorectal tumors showed the
highest frequency of somatic L1 insertions. In contrast, insertions were not

identified in blood or brain cancer tissues (94).

64



Somatic mobilization of gene-derived transcripts has also been detected in
cancer cells. Ewing et al. identified somatic processed pseudogenes by analyzing
high depth sequences from The Cancer Genome Atlas. This study was the first
comprehensive description of PP insertions in cancer. Itincluded 85 pairs of tumor
and normal genomes from acute myeloid leukemia (AML), breast cancer (BRCA),
colorectal adenocarcinoma (COAD), glioblastoma multiforme (GBM), lung
adenocarcinoma (LUAD), lung squamous carcinoma (LUSC) and ovarian
carcinoma (OV). Comparing normal and tumor samples from each patient, three
novel somatic processed pseudogene insertions were discovered in lung cancers
(113). In a different study including 244 cancer patients, the percentage of
somatic PP among all retrotransposition events was calculated. Of the total
number of observed L1 somatic retrotransposition events about 2,3% cause
mobilization of proximal exons or complete genes. Despite that, the range of
genomic elements that can be targeted by transduction was known to be larger
than just those near active L1 elements (111). The same year Cooke et al.
published in greater detail the study of exclusively somatic PP insertions in cancer.
Screening sequencing data from 660 cancer samples, they found 42 somatic PP in
17 samples (2,6%). These samples include 14 primary cases and 3 cell lines
sequences. As an example, they described the insertion of all five exons of the
gene FOPNL, into the eleventh intron of SND1. The somatic insertion identified in
a lung cancer included a portion of the 5 UTR and the full sequence of the 3" UTR.
Similar to the mentioned previous studies, acquired PP were present mainly in
lung and colorectal cancer. These results correlate with high rates of somatic

retrotransposition of LINE elements in these tumor types (110).
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Somatic retrotransposition events have been mostly detected in cancers of
epithelial cell origin with a rapid capacity to proliferate. Although many PP
insertions seem to be early events in tumor formation, some of them have been
shown to appear later during progression and not in all sections of the same
tumor (113,119). Highly expressed transcripts are expected to be templates for
somatic PP. In this way, the top expressed genes of a tumor tissue can be
recurrently retrotransposed and inserted in a tumor genome (110,121). Many
source genes seem to fall into similar functional categories. Gene ontology (GO)
analysis of these genes includes terms like ribosomal function, metabolic
processes, transcriptional regulation or signal transduction (113). Processed
pseudogene insertions are more likely to occur in intergenic or heterochromatic
regions than expected by chance. Also, in regions of the genome with a low exon
density (111). Even so, insertions can also be located within annotated genes, and
in that case tend to occur in genes frequently mutated in cancer including cancer

drivers (94).

The disruption of target genes by PP insertions can have a significant impact
on tumorigenesis. Despite the mutagenic potential of PP, it remains unexplored
the extent of contribution to tumor formation they have. The majority of somatic
PP are likely to be passenger mutations, but a few have oncogenic consequences.
For example, PP insertions within cancer driver genes or the amplification of
oncogene copy number may contribute to cancer development. Moreover,
insertions in untranslated regions (UTRs) or introns can also alter cell’s
transcriptional activity, typically resulting in lower expression levels (110). The
impact of retrotransposition events also depends on the orientation of the
inserted sequence on the target gene, being antisense insertions less disruptive
(94). Large scale studies across thousands of cancer genomes to identify somatic

PP can help us to understand their impact on tumors.
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2.4.2 Using NGS data to identify somatic retrotransposition

events

The identification of somatic retrotransposition events, including processed
pseudogenes, can have important implications for human cancer health. Diverse
projects started working on the discovery of PP using next-generation sequencing
data (110,111,113). Normal and tumor samples from initiatives such as 1000
Genomes, TCGA or the ICGC have been analyzed to identify both germline and
somatic events. In this section we will focus only on the detection of somatic

insertions.

Considering the mechanism PP are formed, there are various determining
hallmarks to describe this event. First, it isimportant to identify 5" and 3’ junctions
of the sequence insertion within the target region. Paired-end reads spanning the
insertion can be misinterpreted as balanced translocations (111), hence other
features should be considered. As PP are the result of mRNA reverse transcription,
a few sequencing reads should also cover exon-exon junctions of the source gene
showing the absence of introns. Finally, the presence of a poly-A tail, or repeat
sequences flanking the inserted sequence can be observed (119). To consider the
event as somatic, this mentioned hallmarks should be observed on tumor but not

on their matched normal DNA (110).

Massively parallel sequencing data, particularly WGS protocols, should help
to explore the presence of somatic PP in cancer. However, sequence analysis
pipelines usually lack sensitivity to detect rare insertions, especially if they occur
late in tumor development (119). Heterozygosity and cellular and genetic
heterogeneity of tumor samples can also result in lower frequency variants,
adding a layer of complexity. On the other hand, when processed pseudogenes
are flanked by repeat elements, their identification from short-read sequencing

becomes a challenge. Nearly identical TE make difficult to differentiate the true
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source or target regions (94). Therefore, and specific identification protocol
together with manual inspection of the sequences and experimental validation of

a significant number of candidates is needed to confirm their presence.

In 2014 Tubio et al., developed a bioinformatic pipeline named TraFiC
(Transposome Finder in Cancer) (111). Their pipeline is capable of detecting
various classes of retrotranspositions focusing on transposable elements, and it is
not exclusive for processed pseudogenes. From paired-end sequencing aligned
data, TraFiC inspects diverse read-pairs to identify insertions. Then, the pipeline
uses RepeatMasker (www.repeatmasker.org) to identify TE-like sequences among
unmapped reads with an aligned mate. Anchored reads with mates belonging to
the same TE type, sharing the orientation are clustered. Reciprocal clusters

represent both ends of one candidate TE insertion.

To specifically detect somatic processed pseudogenes in NGS data, Cooke et
al., designed another bioinformatic method (110). The method was created to
analyze targeted exome and genome-wide studies in cancer. In this case, paired-
end reads were aligned to the reference genome and transcriptome. These
alignments allow them to identify reads across canonical splice sites and between
a pseudogene and its insertion region. However, their method required at least
three exons from a single gene represented in the tumor DNA. To validate
candidate somatic PP, they performed PCR on tumor and matched normal

samples.

As presented in this thesis, we studied somatic processed pseudogenes using
2.589 tumor samples from the PCAWG dataset. After our results were published,
other pipelines were created with similar porpoises. SideRETRO, for example,
detects somatic and polymorphic insertions of retrocopies and processed
pseudogenes retroCNVs (117). This method is a mapping-based algorithm that

uses WGS or WES to identify the mentioned events, and provide their genomic
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insertion sites, zygosity, genomic context and parental genes. Comparable with
the method developed by Cooke et al., sideRETRO requires aligned sequences, a
reference genome and a reference transcriptome. Yet this pipeline was not able

to identify insertions within highly repetitive genomic regions.
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2.5 Translated small open reading frames:
micropeptides

Around 20.000 human genes are annotated as protein-coding genes,
covering less than 2% of the human genome (123). However, large-scale analysis
and computational advances have revealed that a larger portion of the genome is
transcribed and, at times, translated. Among this portion of the genome, a
considerable fraction of genes produces transcripts with mRNA-like features but
apparently without coding potential. These transcripts are long non-coding RNAs

(IncRNAs) and are longer than 200 nucleotides (124-126).

The number of novel transcripts obtained from RNA-seq increased the
attention paid to identifying the complete set of noncoding genes and protein-
coding ones. Ji et al., showed in 2015 that 40% of IncRNAs and pseudogenes
expressed in human cells were translated and could potentially be functional
proteins (127). Not only within these ncRNAs, but also within 5’UTR or intergenic
regions, a new class of genetic elements named small open reading frames
(smORFs) has been discovered in the last years. These missing coding genes added
complexity to the human genome annotation and proteome characterization. By
definition, smORFs are sequences of less than 300 nucleotides and small proteins
known as micropeptides can be directly translated from these short mRNAs.
Micropeptides, which comprise a sequence of in-frame codons, may be of low
abundance and can have tissue- and time-specific expression patterns. They differ
from known bioactive small peptides as they are not the result of post-
translational cleavage and modification of large pre-proteins, but are translated
from smORFs (128,129). These novel genetic elements have been misunderstood
since classical ORF-finding algorithms set a threshold length of 300 nt or 100

amino acids to detect them (125).
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Analysis of smORFs coding sequences not only revealed that these genes had
been discarded because of their short length, but also because of the classical
assumptions and expectations about a canonical gene structure and sequence.
The application of novel proteomic techniques has provided key findings
regarding the use of non-AUG initiation codons in human translation, as well as in
other eukaryotes and prokaryotes (128,130). In 2018, short and non-ATG-initiated
open reading frames that express proteins were found in non-protein coding
genes in mice (131). Diverse reports calculated that between 50 and 70% of
smORFs detected do not initiate with canonical AUG start codon. Percentages
differ depending on the experimental technique used for the study. The observed
frequency of canonical AUG start codon occupancy by ribosome profiling is
49,76% in humans and mice, followed by CUG (15, 44%), GUG (7,17%) and UUG
(4,17%) (132).

The identification of this hidden proteome opens the possibility to better
understand human biology and disease. Although experimental validation of each
peptide is needed to ultimately confirm their biological role, the function of
several micropeptides have been characterized. It is known that they can act as
regulators of larger protein complexes such as membrane-associated proteins
(124), but also independently in different manners. The first functional encoded
smORF in animals was described in 2007 by Galindo, M. I. et al. Their study was
focused on the tarsal-less (tal) gene in Drosophila, which expresses a 1.5 kilobase
(Kb) transcript previously classified as noncoding. Its classification was based on
having no ORF longer than 100 aa and no known homologies. However, several
candidate smORFs are present in the tal transcript and the peptides translated
from ORFs of just 11 aa mediate the function of the gene, having an important
role in development. Tarsal-less homologous genes were also identified in other
species, defining a new noncanonical gene family in metazoans and of ancient

origin (133). In 2008, 217 smORFs were identified using bioinformatics in
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Escherichia coli, and 18 were found to be needed for bacterial growth (134). In
humans, diverse studies have demonstrated that micropeptides are known to act
as regulators of biological processes such as DNA repair, RNA decapping, calcium
homeostasis, metabolism, stress signaling, myoblast fusion and cell death (125).
An 84-aa-long conserved peptide named Protein myomixer that mediates
myoblast fusion (135), or the SPAAR gene translated into a 90 aa micropeptide
which regulates muscle regeneration (136) are two examples of these known
functional micropeptides in humans. Linked to disease, Huang J et al. discovered
in 2017 the HOXB-AS3 peptide translated from the human IncRNA HOXB-AS3. This
micropeptide of 53-aa length suppresses colon cancer growth, and its loss is a
critical oncogenic event in this tumor type (137). Micropeptides with a significant
biological role are not only encoded by nuclear transcripts but also by the
mitochondrial genome. Humanin is translated from a mitochondrial smORF and it
is involved with programmed cell death (128). The functions of known
micropeptides are very heterogeneous. A list of known functional micropeptides

is provided in Table 1.

All these independent functional studies, together with the realization that
hundreds or thousands of smORFs are translated and conserved across
metazoans, demonstrated the importance of exploring micropeptides to
understand many aspects of biology and medicine clearly. Understanding their
origin, evolution and role is essential to clarify this underappreciated function of

the genome.
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Micropeptide

Polished rice
(Pri)
Toddler

AGD3

Myoregulin
(MLN)
DWORF

Myomixer

MRI-2

NoBody
(NBDY)
SPAAR

Humanin

MOTS-c
Minion

HOXB-AS3

Conservation

Insects

Vertebrates
Mammals

Mammals

Lamprey

Vertebrates

Mammals

Mammals

Human and
mouse
Different
species

14 species

Mammals

Primates

Function

Fly embryogenesis

Promotes cell
migration

Involve in stem cell
differentiation
Calcium
homeostasis

Enhance muscle
performance
Involve in
controlling muscle
performance

DNA repairing
process

MRNA recycling

Regulate muscle
regeneration

Involved in
program cell death

Metabolic
homeostasis
Muscle formation

Suppresses colon
cancer growth

Size
(AAs)
11-32
58

63

46

34

84

69

68

90
24

16

84
53

References

(133,138)

(139)
(140)

(141,142)

(143)

(144)

(145)

(146)

(136)

(147)

(148)

(135)
(137)

Table 1. - Micropeptides identified in animals and their biological functions. Table extracted from

(128).
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2.5.1 Classification of small ORFs

New ORFs, and in this case small ORFs, are usually classified according to

their relatively localization in known transcripts (Fig 17).

5' UTR CDS OVERLAP INTRON 3' UTR

mRNAs — - - Il - - - - - —

IncRNAs

Figure 17. Classification of smORFs based on their location and considering known annotated
genes (grey).

Considering gene structure, smORFs can be classified depending on whether
they overlap with 5" or 3" UTRs, introns or exons of known transcripts, as well as
with long non-coding RNAs or pseudogenes. They can be found in alternate CDS
frames or starting from non-canonical codons (149). Small ORFs have been also
identified among intergenic regions. However, there is no standard classification
or labeling for small ORFs, and diverse classes are described depending on the
study. Evidences of translation have been observed for all types of transcribed
smORFs, with different translation efficiencies and chance of detection. Size,
average rate of translation or the level of conservation differ among these classes

(124).

Open reading frames within intergenic regions seem to be the most
numerous in fruit flies and mammals and are known to have a median size of 22
codons according to a study done in 2017 (124). However, some studies
considered that intergenic smORFs are randomly generated by our genomes,

expecting not to be transcribed, nor functional. Therefore, the majority of the
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studies working on the identification of functional smORFs or micropeptides do

not consider this class of smORFs to avoid inflating the estimates.

It is known that a significant fraction of the translatome maps to
untranslated regions and sequences previously considered to be noncoding (150).
Consequently, the second most abundant class of ORFs are identified within the
5" untranslated regions of mMRNAs encoding canonical proteins. Upstream ORFs
(uORFs) have been reported in many organisms including yeast, flies, zebrafish
and mice. They commonly regulate the translation of the downstream canonical
ORFs in their transcript, and their presence often produces a repressive effect on
transcription or translation of the main coding sequence. Translated uORFs have
also been shown to form protein complexes with the protein encoded from the
main CDS of the same mRNA. Its pure cis-regulatory role fits with their low

translation levels and low sequence conservation (151).

Long non-coding ORFs (IncORFs) are small ORFs found in putative IncRNAs,
and the third most abundant class. Their size distribution is similar to that of
intergenic ORF and uORFs, with a median of 23 codons. Several RNAs previously
classified as IncRNAs have been shown to encode and translate peptides with
biomedically important functions, and to be highly conserved in evolution.
Although their amino acid usage is similar to random sequences, ribosome
footprints have been also detected in this smORFs class suggesting translation.
Since in IncORFs there is no downstream ORF encoding a functional protein, it is
difficult to imagine they have regulatory functions. However, it has been

hypothesized that they protect translation of downstream elements (152).

Lastly, smORFs found in exons of functionally monocistronic transcripts have
a median size of 79 codons and seem to be translated as efficiently as canonical

ORFs. Their amino acid composition resembles known protein coding genes and
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differs significantly from randomized RNA sequences. Hundreds of them have

been identified in humans.

2.5.2 Identification of micropeptides

Conventional gene annotation with ORF-finding algorithms has systematically
discarded small ORFs as coding genes because of their level of uncertainty in
terms of functionality, given their shorth length (128). Because they fall close to
the transcriptional and translational noise of the cell, both in size and in
expression levels, the validation and the functional characterization of
micropeptides have been challenging and limited, even at experimental level.
Computational and experimental approaches have been developed and
implemented to deduce coding potential, examine transcription and translation
of novel regions and identify putative protein products generated from sequences
previously annotated as noncoding, including also UTRs, introns and intergenic
DNA. Computational methods allow researchers to determine all possible ORFs,
but their results will probably include ORFs that are not translated or functional.
In contrast, experimental techniques such as ribosome profiling (Ribo-seq), mass
spectrometry (MS) or western blot and immuno-cytochemistry, can directly
discover protein products. However, these methods, especially the last two, are
not sensitive enough to detect low abundant micropeptides (125). In addition, to
complicate things even more, the expression and function of micropeptides is
tissue and time dependent. Overall, tiny sizes, low abundances, rapid degradation
and sample loss during preparation steps result in many technical challenges and

difficulties to work with micropeptides.

Applying both computational and experimental approaches appears to be
the best strategy for the study and identification of micropeptides. Combinatorial
methods can identify ORFs actively translated, non-canonical or species specific.

However, experimental data is needed, and often additional samples for low
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expressed transcripts (126). Transcription and/or translation are two criteria for
assuming that smORFs are functional even if they are within coding or non-coding
regions. Therefore, proteogenomics, that is the combination of peptidomics and
massively parallel RNA-sequencing seems to be an interesting field to discover
novel coding regions (125). Advancements over the past few years in diverse
technologies, allow scientists the discovery of a considerable set of putative
coding smORFs. Below, a brief description of the computational and experimental

methods most used in large-scale studies is given.

2.5.2.1 Computational annotation through in-silico evolutionary

approaches

Several strategies have been used to systematically annotate small ORFs
with coding potential (128). Based on in-silico translation of annotated transcript
regions, a set of SmORFs can be obtained. Transcripts should be converted into
amino acids following the corresponding genetic code. Usually, ORF are identified
using the most upstream canonical start codon (AUG) for each stop codon within
the sequence. The translation could be done starting from the first, second and
third nucleotide (3 in-frame), and for both forward and reverse strand (6 in-frame)
(153). Diverse studies also include non-canonical start codons as translation
origins. After translating the selected transcripts, sequences of 100 aa or less, are
defined as putative smORFs and therefore, candidate micropeptides. These
computational methods can identify all possible ORFs, even sequences are low
expressed or tissue specific, and without needing experimental data. However,
the results may include ORFs that are not translated and do not correspond to

micropeptides (126).

In addition to experimental validation, which is explained below,
conventional computational strategies have been invented and used to calculate

the coding potential of small ORFs. These strategies evaluate codon content,
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nucleotide composition, sequence homology, conservation between species, or
secondary structure (125,126,128). As an example, Mackowiak et al., developed
and implemented in 2015 a computational method to identify smORFs with high
accuracy by using conservation features and codon and amino acid usage. Their
identification started with in-silico translated sequences from an annotated
transcriptome together with published IncRNA catalogs. They identify hundreds
of previously unknown conserved smORFs in humans, mice, zebrafish, fruit fly and

C. elegans (153).

Among all the mentioned features, evolutionary conservation is a key sign
that a genomic region is functional. In gene prediction, cross-species comparisons
are a powerful technigue since most genes are subject to evolutionary pressure
to preserve their function and, therefore, their amino acid sequence. Therefore,
the conservation of putative coding sequences indicates purifying selection and
can be used to infer function through the identification of similar proteins
sequences with known function. (124,125,154). The term homology, used for
proteins and genes encoding it, refers to two sequences that have a common
ancestry. Two segments of DNA can share their ancestry because of speciation
events (orthologs) or duplication (paralogs). Whereas orthologous genes
generally conserved their main function, paralogs become different in sequence
and function over time (155). Orthology-based searching among species,
commonly based on sequence similarity, is performed to predict conserved
biological functions to annotated novel genes, or in this case, micropeptides.
Myoregulin, Phospholamban and Sarcolipin are some examples of micropeptides
identified from homology-based characterization. This group of micropeptides
share conserved peptide sequences and structure from flies to vertebrates, and

they are involved in Ca?* homeostasis (126,128).
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True conservation and homology are difficult to establish considering the
short length of smORFs. Compared with canonical proteins, smORFs have lower
guantitative conservation scores. Moreover, they have a higher probability of
obtaining low conservation scores by chance (128,156). It is also important to
ensure that sequence similarity is not because of short divergence time between
the species (150). However, diverse studies have shown that smORFs are widely
conserved on the sequence level in human and other species (124,126,129).
Sequence conservation rarely occurs far beyond the ORF and the absence of
insertions or deletions within their sequence implies conservation of the reading

frame.

Functional micropeptides also display a characteristic depletion of non-
synonymous compared to synonymous mutations when compared to their
orthologs (125,153). Generally, functional genes that are essential for cellular
processes are subjected to selection pressures showing a reduction of non-
synonymous variants, trying to preserve their amino acid sequence and their
function. Therefore, mutations that result in changes to the amino acid sequence,
are often selected against, and discarded through purifying selection. On the
other hand, synonymous variants , which do not alter the peptide sequence, are
less constrained and may be more tolerated and fixed within the population.
These different levels of selective pressure acting on synonymous and non-
synonymous substitutions in functional regions can be used as a signal for
functionality. This can be calculated using the substitution ratio (dN/dS), which is
defined as the ratio of non-synonymous to synonymous substitutions. The
substitution ratio is therefore a useful measure of the strength and mode of
natural selection action on protein-coding genes. When there are strong
structural constraints on a protein there is little or no accumulation of non-
synonymous changes. Therefore, the ratio for this sequence will approach zero.

In contrast, if protein sequences are not under selection the ratio will be
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approximately 1 (157-159). As an example, a program package for identifying
smORFs with high-coding potential was developed in 2010. The analysis pipeline
named sORF finder, is based not only on the hexamer composition of nucleotide
sequences but also evaluates synonymous and non-synonymous substitution

rates (160). Other computational identification methods are shown on Table 2.

Although conservation is useful to functionally characterize new smORFs, it
is not applicable for all. For example, evolutionary analyses are not able to infer
protein-coding or regulatory potential for “young” de novo proteins (152,156). It
is known that up to 1% protein-coding genes could be species-specific and of
recent origin. This idea is controversial and depends on the ability of
computational approaches to detect homologues. Whereas some studies
conclude some functional micropeptides are conserved, others support that most
translations do not show signs of constraint as coding sequences

(123,124,128,156).

Evolutionary conservation often suggests potential gene functionality.
Nonetheless, the mere presence of a conserved and translated peptide does not

inherently imply a critical or definitive biological function.
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Prediction Description Website References
tool

PhastCons Identification of evolutionary http://compge  (161)
conserved elements in a multiple  n cshl.edu/pha
alignment, given a phylogenetic st/
tree.

PhyloCSF Determines whether a multi- http://compbi  (162)
species nucleotide sequence o.mit.edu/

alignment is likely to represent a PhyloCSF
protein-coding region. Examines

the frequency of synonymous

codon substitutions and

conservative aa substitutions, and

low frequencies of other missense

and non-sense substitutions.

miPFinder Identifies and classifies potential https:// (163)
microproteins, small single- github.com/Da
domain proteins that act by Straub/miPFin

engaging their targets into protein  der
complexes. It takes into account

protein size, domain origination,

known protein interactions and
evolutionary origin.

MiPepid Machile-learning tool using https://github.  (164)
logistic regression with 4-mer com/MindAl/
features. Predicts whether a MiPepid

sequence encodes a micropeptide
based on its DNA sequence.

SORF Finder Program package for identifying http://evolver.  (160)
smORFs with high-coding psc.riken.
potential. Based on the hexamer ip/
nucleotide composition and the
potential functional constraint at
the aa level through evaluation of
syn and non-syn substitution
rates.
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smORFunction  Provides function prediction for https://www.c  (165)
smORFs by analyzing their uilab.cn/smorf
correlated genes with known unction/home
functional annotations.

UPEPperoni For 5’"UTR smORFs, based on http://upep-sc  (166)
conservation. mb.biosci.
ug.edu.au/

Table 2. - Current computational methods for smORF identification.

2.5.2.2 Ribosome profiling to monitor translation

Ribosome profiling is a deep sequencing method of mRNA fragments
attached to ribosomes that provides a genome-wide snapshot of active
translation (126,130). Ribosomes are complex molecular machines that link
amino acids in the exact order within a transcript to produce a protein product by
translating it (125). Stalling ribosomes on mMRNA and protecting the portion of
mMRNA from nuclease digestion, ribosome-protected RNA fragments (RPFs) can be
converted into DNA libraries for reading their sequence. For each RPF a ~30
nucleotide portion of MRNA is sequenced, producing a footprint fragment whose
sequence can be mapped indicating its exact position on the reference genome
and the mRNA it was translating. Ribosomes scan the coding sequences one
codon at a time, showing a characteristic three-nucleotide periodicity of the
translated region. Ribo-seq not only provides information about ribosome
positions but also reports the amount of translation of a gene (130). Changes in
protein expression that cannot be explained by transcript levels and translational
regulation can be studied by combining ribosome footprint density and mRNA
abundance measurements. Furthermore, since ribosome profiling requires only
the nuclease footprint from ribosomes, it is less sensitive than RNA-seq to

compromise RNA integrity of the sample (167).
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Ribo-seq helped to extend the understanding of human genome translation
and revealed thousands of open reading frames within noncoding and presumed
untranslated regions (150,167). Mudge et al. recently published the first phase of
an ongoing project. The aim of the consortium is to produce a standardized
catalog of human Ribo-seq ORFs longer than 16 aa, to bring protein-level evidence
into reference annotation databases. The presented catalog is the result of
analyzing seven Ribo-seq ORFs datasets, however the consortium will incorporate

a greater diversity of human cell types and tissues (156).

However, there is still a technical debate on whether low signal levels
represent productive translation or not. It is also known that strong association
and ribosome occupancy does not always guarantee active translation of the
region (124,126,128,130). Considering that actively translating ribosomes have a
discrete movement along the mRNA in three nucleotide steps, methods such as
the ORFscore have been developed to quantify the biased distribution of RPFs and
reduce noise in conventional analysis (129). They applied ORFscore to long non-
coding RNAs and uncharacterized processed transcripts from Ensembl. By
analyzing published ribosome foot printing data in Hela cells, they could define

135 translated smORF.

Other algorithms and metrics have been created based on ribosome-
profiling characteristics. RiboTaper, for example, exploits the subcodon resolution
of the obtained sequencing reads to reconstruct the full set of ORFs in coding and
non-coding transcripts. Applying this algorithm, Calviello et al., could identify 504
non-coding genes that harbor translated ORFs (130). Although some of the
encoded ORF identified were shorter than 300nt, this study was not centered on
micropeptides but in actively translated ORF. Researchers conclude that
guantifying the presence of significant ribosome footprint reads in regions shorter

than 20 amino acids becomes difficult.
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It also needs to be considered that true coding potential and function at
protein level is not certainly implied even though ribosome occupancy is
observed. Translation can have regulatory consequences, for example modulating

downstream ORF or peptides could be unstable.

2.5.2.3 Mass spectrometry to directly detect peptides

The gold standard in proteomics research is mass spectrometry, a powerful
technique to directly detect and quantify proteins and peptides (125). This
analytical tool measures the mass-to-charge ratio (m/z) of one or more molecules
present in a sample (Fig 18). Using these measurements, the exact molecular
weight of the sample components can also be calculated to identify unknown
compounds, quantify known proteins and determine their structure and chemical
properties (168,169) MS-based approaches help deciphering post-translational

modifications and infer insights in biological functions and signaling pathways.
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Figure 18. Schematic representation of MS/MS experiments.
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High-throughput analysis can be done using MS as this application can be

automated.

Usually, the protocol starts with the digestion of the complex mixture and
consists in a combination of high-performance liquid chromatography (LS), used
to separate the resulting peptides, followed by tandem mass spectrometry. This
protocol, referred as shotgun proteomics, has been applied to identify and
validate smORFs encoding micropeptides. However, since the detection of
peptides depends on factors such as sequence length an abundance, novel
micropeptides appear to be underrepresented when using shotgun proteomics
and its detection using MS faces diverse challenges (125,128,129,170). With the
aim of identifying micropeptides, LC/MS/MS protocols should be modified (171).

Detection is naturally biased towards the detection of more abundant
proteins. The average tissue content of micropeptides is very low, and because of
their instability are often subjected to rapid degradation or loss during sample
preparation (125,128,154,171). This insufficient concentration in cells makes
micropeptides detection difficult. Their identification can be likely benefit from an
enrichment step during sample preparation. Therefore, the discovery protocol
begins by enriching the proteome for low molecular weight peptides and small
proteins. As an example, an study focused on improving the identification of
encoded smORFs concluded that samples extracted in the lysis buffer detected
most micropeptides, whereas acid extraction resulted in the fewest number
(170). These efforts allowed them to identify 37 novel human micropeptides from

non-annotated coding RefSeq regions in a lung cancer cell line.

Since complex mixtures are difficult to fully analyze by MS, enzymatic
digestion is performed obtaining a large number of peptide products. Trypsin is
the proteolytic enzyme generally used, which cleaves peptides between arginine

or lysine and the adjacent amino acids. Yet, the small size of micropeptides and
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their tendency to contain fewer arginine and lysine residues, results in a low
number of tryptic peptides generated. Encoded smORFs do not generate large
enough signatures and have to be typically identified from a single peptide
(125,154,170). To improve its detection, alternative proteases can be used in

combination with trypsin (171).

After obtaining m/z ratio from the mass spectrometer, the measurements
have to be compared with a protein database to determine the sample
compounds. Standard MS protocols generally utilize databases of known proteins
and/or in-silico translated sequences using the canonical AUG start codon.
However, micropeptides have been previously systematically missed by genome
annotation because of their length and therefore, not included in these
mentioned databases. Moreover, diverse studies have confirmed that non-
canonical start codons can also initiate translation (154). To solve this problem,
custom generated databases have been used to identify non-annotated proteins
such as micropeptides. Protein sequence databases can be generated combining
genomic and transcriptomic data, for example, by performing three-frame
translation of the reference transcriptome, or RNA-seq data from a specific
sample. Known proteins are then computationally excluded from the dataset.
Proteogenomics, has enabled detection of missed gene products (128,170,171).
Creating a custom database containing all short peptides that could be translated
from the annotated transcriptome may result in a large set of peptides. Because
of the inflated search space, this strategy suffers from reduced sensitivity and
reliability. To avoid false positives peptide-spectral matches, expression level
cutoffs, or cell- and condition-specific RNA-seq data should be curated for each
experiment. By combining proteogenomics with RNA-seq experiments on K562
cells and restrictive filters, Slavoff et al., confirmed the presence of 37

micropeptides in this cell line (172).
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MS proteomics offers direct evidence of encoded small ORFs, although the
results can be biased depending on sequence composition. Numbers of identified
micropeptides vary not only between organisms but also among cell lines and
tested conditions. This information can also help reveal their biological
significance. Data obtained from MS coupled with genomic, transcriptomic and

translatomic data provides an alternative validation.

2.5.3 Published databases to study micropeptides

Diverse numbers of studies using computational, experimental or combining
both approaches for the identification of mp have been published during the last
8 years. Some of them provide public repositories and web tools to examine and

download identified micropeptides.

HaltORF was the first web-based searchable database that allows the
exploration of the human transcriptome of out-of-frame alternative open reading
frames with a start codon located in a strong Kozak context. Products of out-of-
frame alternative translation initiation result from distinct initiation codons
located in different ORF in known human mRNA. Although they provide protein
sequences of at least 24 amino acids long, it was not exclusively focused on

SmORFs (173).

In 2016, sORFs.org (174) was published as a novel repository of smORFs
identified using ribosome profiling. Experimental results from ribo-seq data are
combined with conservation analysis and MS rescanning. In their latest version
(175), authors provide smORFs identified in human, mice, fruit fly, zebrafish, rat
and Caenorhabditis elegans. They include 78 ribo-seq datasets, 34 of them from
human cell lines. Through their website (www.sorfs.org) you can, by default,
quickly lookup for smORFs. A BioMart interface is also provided for advanced
guery and data exportation. For each smORFs, sorfs.org includes their genomic

coordinates, the transcript and amino acid sequence, the annotation depending
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on its location (5" or 3" UTR, IncRNA, pseudogene, intronic, exonic, intergenic) and
the cell lines where it has been identified. Based on ribosome profiling data,
metrics such as ORFscore are calculated to indicate true coding sequences.
Conservation evidence are examined using PhyloCSF and sequence variation is

annotated from dbSNP, ClinVar and Cosmic databases.

Another smORF repository, specifically including small proteins identified in
IncRNA was published in 2017. SmProt collects data from ribosome profiling and
mass spectrometry experiments, known databases and literature mining. The first
version of SmProt includes 255.010 small proteins from 8 species including
human, and 291 cell lines or tissues (176). The new web server
(http://bigdata.ibp.ac.cn/SmProt/) can be used for search, browser, download
and submit information. Small ORFs are mapped to the genome and classified
depending on their location on known transcripts. On their updated version, they
improved the identification algorithm increasing its accuracy, predicted disease-
specific translation events and variants in smORFs and included small peptides
with non-AUG translation initiation. By analyzing 6.419 new ribo-seq datasets

they upgraded the number of small proteins to more than 3.6 million records.

OpenProt was published and available in 2019 with the aim of offering a
deeper and a more realistic and biologically relevant perspective of the proteome
(177). Although it is not focused only on micropeptides, it includes all ORFs longer
than 30 codons identified in transcripts, ncRNA and pseudogenes reported by
Ensembl and RefSeq. OpenProt contains all possible ORFs within the mentioned
sequences across 10 species. It also cumulates supporting evidence such as

protein conservation, translation and expression.
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Lately, and after starting our project in micropeptides, a repository of unique
smORFs identified in human and mice was released to allow comparison from
distinct original data sources. MetamORF (151) has been built collecting publicly
available smORFs data, reprocessing, normalizing, homogenizing it and
summarizing redundant information. However, MetamORF does not provide
novel sequences. It gathers data from sORFs.org, OpenProt, SmProt, uORFdb, a
comprehensive literature database on eukaryotic upstream open reading frames
(178), TisDB, a website providing alterative translation initiation sites (179), and
other RNA-seq and Ribo-seq or MS data repositories including RiboSegDB, PITDB
(180), TranslatomeDB (181) and RPFdb (182). MetamORF describes 664.771
unigue ORFs, including small ORFs, in the human genome, providing information
to locate them on the genome. Also in 2021, nORFs.org was publicly available,
containing 194.407 ORFs curated from OpenProt and sORFs.org. The length
distribution of ORFs in nORFs.org falls mostly below 100 amino acids and all
sequences have translation evidence from MS or ribosome profiling experiments

(149).

Small ORF have been usually identified within annotated coding and non-
coding regions but not in intergenic sequences, being generally unexplored.
However, the last two repositories as well as the updated version of SmProt and
sORFs.org start including encoded smORFs in non-annotated sequences. All these
databases can be useful to benchmark new smORF-finding algorithms as well as

to, for example, add more experimental evidence on an in-silico obtained set.
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3. Motivation and objectives
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The general goal of this thesis is to expand the understanding of the genomic
basis of the biology of tumors through the study of the potential contribution of
concrete processes and elements, such as somatic processed pseudogenes and

micropeptides.

The presented thesis can be divided into three main chapters covering
different projects, and activity periods which resulted from the combination of
prioritizing research opportunities, data availability and possibilities for
publication. The chronology and the motivation behind the strategic plan of the

presented thesis is explained in section 1: strategy and thesis trajectory.

For the sake of clarity, this thesis is divided and organized at thematic and
conceptual level, without considering chronology, resulting in the three following

blocks:

Chapter 1 - Analysis of somatic structural variants in CLL and their

incorporation into subclonality studies.

As part of a wide study to understand the genomic and molecular basis of
Richter Transformation in some CLL tumors (lead by Dr. E Campo from IDIBAPS),
our first aim and final contribution was centered in the general characterization
of SVs within these tumors (together with Dr. Royo from the group). In addition,
and in the same context, | also aimed at exploring and designing strategies to
characterize the distribution of SVs across the different subclones in these
tumors, which remains as an unsolved challenge within the community. In

particular, we here aimed at:

1) General characterization of SVs in CLL tumors (with Dr. Royo):
identification and manual validation of somatic SVs through the analysis of short-

read whole genome sequencing data.
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2) Define and generate strategies and methodologies to classify and assign

specific somatic SVs to previously defined tumor subclones of CLL tumors.

Chapter 2 - Identification of somatic processed pseudogenes in cancer and

evaluation of their functional impact.

In the context of the PanCancer Analysis of Whole Genomes project and, in
particular, within a study of somatic retrotransposition events in cancer (lead by
Dr. Tubio, Universidad de Santiago de Compostela) we had the opportunity to
contribute with a study, also related to structural variation in cancer, but now
focused on somatic retrotransposition events that generate processed
pseudogenes across a wide range of tumor genomes. Here, we aimed, not only
to identify and characterize somatic PPs at genomic level but also to assess their
functional impact on tumoral cells through the analysis of gene expression data.

Our specific goals are:

3) Develop and apply a methodology for the identification of somatic
processed pseudogenes across multiple cancer types by using short-read tumor

and normal genomic sequence data,

4) By using both genomic and transcriptomic data, we aimed at evaluating
the potential contribution of somatic PPs to tumors at functional level, both
through the disruption of functional elements (genes) in the genome, as well as

through their impact in gene expression as fusion transcripts.
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Chapter 3 - Identification and characterization of novel candidate

micropeptides using publicly available genomic and transcriptomic cancer data.

Small open reading frames are a new class of genes, currently unexplored in
cancer. Our main goal within this part of the thesis is the identification and
characterization of previously unknown micropeptides across the entire human
genome and to investigate their potential role in cancer. We did this at two
different levels: as part of a collaboration with the groups of Dra. Abad (VHIO) and
Dr. Hector Peinado and Dr. Javier Mufioz (CNIO) that covered experimental,
bioinformatic and mas-spectrometry identification and validation of Pancreatic
Adenocarcinoma (PACA) associated micropeptides; and internally in the group
with the aim of finding and annotating, at genome-wide level, all detectable
unknown intergenic micropeptides and to inspect their potential role in a wide

range of cancer types. The specific goals are:

5) To define a new catalog of candidate micropeptide sequences for the
mass-spectrometry searches, using transcriptomic data from pancreatic cancer

samples.

6) To identify new candidate intergenic smORF in the human genome using
comparative genomics and evolutionary conservation features and properties at

DNA and protein level,

7) To evaluate these findings by assessing their expression levels in normal

publicly available transcriptomes including diverse tissue types,

8) To identify candidate cancer driver smORFs by searching for somatic single

nucleotide variants detected in The International Cancer Genome Consortium.
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4. Methods
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4.1. Analysis of somatic structural variants in CLL and their

incorporation into subclonality studies

Chapter 1

The first chapter of this thesis summarizes the work we did in collaboration
with Dr. Elias Campo and Dr. Ferran Nadeu from IDIBAPS, and Dra. Romina Royo
(BSC). As part of a larger study which included CLL longitudinal samples with the
aim of understanding the biological basis and evolution of this cancer type, we
worked on the characterization of somatic SVs. Moreover, we evaluated
strategies to infer tumor subclonality based on these somatic variants, that are

usually excluded from ITH studies.
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4.1.1 Chronic lymphocytic leukemia longitudinal study cohort

The genomic study of Richter transformation in chronic lymphocytic
leukemia was approved by the Hospital Clinic of Barcelona Ethics Committee and
lead by Dr. Elias Campo. This study includes a total of 19 chronic lymphocytic
leukemia patients (9 female, 10 male) fulfilling the criteria of Richer
transformation (RT). The complete change into this more aggressive cancer form
was validated through pathological revision of all collected samples. Three out of
19 cases developed RT before therapy, whereas in the remaining cases the
aggressive transformation occurred after chemoimmunotherapy or after multiple
lines of treatment. Almost all patients (17) transform into a diffuse large B-cell
lymphoma-type, one developed a plasmablastic lymphoma transformation and
one had a prolymphocytic leukemia transformation. Within this cohort, 15 tumors

had unmutated IGHV (U-CLL) and 4 had mutated IGHV (M-CLL).

For all except one case longitudinal samples (range 2-8 samples/case) were
collected at different time points of the disease. Purity and tumor contamination
were considered to discard samples. The complete dataset encompassing
germline, CLL and RT samples was available for 12 patients, while 6 patients lacked

germline material and 1 case had not the previous CLL sample but only the RT.

This study cohort including 19 CLL patients was widely analyzed, described
and published (3). The structural variants identification pipeline, including the
merge of the results across variant callers and the rescue of SVs explained in this
chapter was applied to all CLL patients (13) were both germline and tumor
material was available. However, during all the work we have done on this project
and particularly when analyzing SVs subclonality, we mainly explored case 63.

Other cases including 365 and 1669 were also evaluated.
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4.1.1.1 Disease course of one pilot CLL case

From this longitudinal cohort, we mainly worked with one case. We used
case 63 (male, unmutated IGHV patient) as a pilot to explore and define the
strategy designed for quantifying variant allele frequencies of somatic structural

variants (Fig 19).

Tumor (4) and normal (1) WGS were available for case 63. Three different
time points were explored (T1, T2 and T3), having two tumor samples from
distinct tissues (peripheral blood — PB and lymph node — LN) for the first time
point. Time points one (T1) and two (T2) corresponded to samples diagnosed as
CLL, whereas the third time point (T3) was collected after Richter transformation.
Regarding its type of transformation, case 63 had a diffuse large B-cell ymphoma-
type (RT-DLBCL), as most of the studied cases in this cohort. Its chronic
lymphocytic leukemia tumor transformed into Richter after ~ 10 years from

diagnosis.

T T2 T3
RFCM R + Benda R+ldelalisib  RCHOP
- o- Lo+
PB
years

Figure 19. CLL case 63 follow-up. Longitudinal samples collected in time points 1, 2 and 3 are
represented as circles. Two samples from different tissues (LN and PB) are collected in T1. Sample in
T3 corresponded to RT. Treatments are shown above the arrows indicating when and how the patient
was treated. Samples are named based on the time point and tissue.
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Cases within this CLL cohort were grouped based on the therapy received
prior to RT. For case 63, its CLL tumor transformed into Richter after receiving
diverse targeted therapies. Concerning its treatment course, tumor samples (2)
corresponding to the first time point were collected before any treatment was
given to the patient. Between the first and second time points, a combination of
rituximab, fludarabine, cyclophosphamide and mitoxantrone (RFCM) was given to
the patient. Two more different target therapies (rituximab in combination with
bendamustine, and idelalisib together with rituximab) were used as treatments

after the second time point and before Richter transformation (third time point).

4.1.2 Whole genome sequencing and alignment

Whole-genome sequencing (~30x coverage and ~126/151 bp paired-end
reads) was performed for all patients including all the available tumor and normal
samples. After sequencing, a collection of reads encoded with the 4-letter
alphabet (C, G, T and A) referring to DNA nucleotides (cytosine, guanine, thymine
and adenine) were stored in FASTQ files. Quality alignment scores for each

nucleotide were also supplied in FASTQ files.

Paired-end reads were mapped to the human reference genome (GRCh37)
using BWA-MEM (v.0.7.15, https://github.com/Ih3/bwa). After alignment, for
each sequencing read its location on the human genome, mapping quality values
and mate read information were outputted in SAM files. The obtained SAM files
were converted into BAM and sorted using biobambam2 (v.2.0.65,
https://gitlab.com/german.tischler /biobambam?). FastQC (v.0.11.5,
www.bioinformatics.babraham.ac.uk/projects/fastqc) and Picard (v.2.10.2,
https://broadinstitute.github.io/picard) were used to extract quality control

metrics including the mean coverage for each sample.
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4.1.3 Somatic structural variants identification

Although somatic single nucleotide variants, short insertions and deletions
and copy number variation were also identified for the tumor genomes within this
cohort, the work presented in this thesis is only focused on somatic structural

variants. Therefore, only the variant calling analysis of SVs is described below.

A huge variety of variant callers have been designed by the community to
identify or “call” variants through genomes. Each of these tools have been
generated considering specific rules and criteria and therefore, variants detected
can differ among them. For this reason, filtering the results from a set of callers
and combining them can improve the identification of variants and remove false
calls. A brief description of the tools used for analyzing somatic structural variants
and the strategy designed for merging the results is explained in the following

sections.

4.1.3.1 Variant caller programs

Somatic structural variants were not identified for the six patients lacking the
germline sample but only for those 13 patients we could compare tumor versus
normal genomes. In patients who underwent allogenic stem-cell transplant (case
1523 and 4675) tumor versus patient’s germline and tumor versus donor’s
germline variant calling were performed. For these patients, we only considered
those variants that intersected between both analyses. Variant callers were run
by Romina Royo from the INB Computational Node 2 group at Barcelona

Supercomputing.

Four different variant caller programs were used to extract somatic
structural variants, including SMuFin (v.0.9.4), BRASS (v.6.0.5), SYABA (v.7.0.2) and
DELLY2 (v.0.8.1).
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- SMuFin (Somatic MUtation FINder) (183) is a reference-free method
able to detect somatic variants including multiple types by

comparing tumor samples with their matched normal samples.

- BRASS (184) examines paired-end sequencing reads marked as
unproperly paired to identify rearrangement breakpoints by

clustering their mapped locations and performing an assembly.

- SvABA (structural variation analysis by assembly) (185)also performs
local assembly to create groups of sequence reads that deviate from
the reference genome including unmapped or discordant reads and

compares them to the reference to annotate SVs and indels.

- DELLY2 (186) works as a prediction method based on read-depth,
paired-end and split-read information to discover all kinds of
structural variants (deletions, tandem duplications, inversions and
translocations). Diverse optional parameters were modified when
running DELLY2. We allowed 5% of tumor contamination in normal
(-c 0'05) and at least 5% of alternate reads in the tumor sample (-a
0’05). Moreover, the minimum size for deletions and insertions was
15bp (-m 15) and 400bp (-m 400) for inversions, intrachromosomic

translocations and duplications.

4.1.3.2 Variant validation through manual inspection of aligned

sequencing reads

Results obtained from each variant caller algorithm were manually inspected
to determine whether they were true somatic structural variants or not. Variant
validation was also used to define the parameters and criteria strategy to merge

SVs identified by multiple variant callers.
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Before defining our merging strategy, we not only inspect sequencing reads
of patients included in this Richter study (case 63, 365 and 1669) but also CLL
patients (cases 16, 48, 64, 373 and 853) analyzed by Puente et al. in 2015. These
five CLL cases were finally not included in this Richter’s research. From the set of
published structural variants (187) identified in CLL samples, we manually

inspected 35 SVs counting 15 experimentally validated.

Variant validation was done based on aligned tumor and normal sequencing
reads. To manually inspect the sequences, we used Samtools (v. 1.5) view mode.
Using BAM files, we searched for two different supporting read categories

including paired-end and split reads.

Considering structural variants are formed by two breakend regions
involving one (insertions, deletions, inversions, duplications or intrachromosomic
translocations) or two chromosomes (interchromosomic translocations),
supporting paired-end reads were those where each paired read was aligned
within one breakend region. Moreover, the observed insert size between them
differed from the expected (around 300bp) (Fig 20.A). On the other hand, split
reads were broken, and some nucleotides aligned through one breakend whereas
the remaining ones correspond to the second breakend location (Fig 20. B-C). If
needed, reads observed across the variant region were realigned using web Blastn
(nucleotide Basic local alignment search tool)
(https://blast.ncbi.nlm.nih.gov/Blast.cgi) and the human reference genome

(GRCh37).
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Figure 20. Representation of tumor generated(up) and aligned (down) reads supporting a
translocation. A) Paired-end read where each mate read is aligned in one chromosome. B
and C) Reads generated at the breakend position are splitted after the alignment.

For each manually validated structural variant, we counted the number of
supporting PE (paired-end) and split reads. We then analyzed whether the variant
was detected or not and if it was considered good or low quality by the variant

callers.

4.1.3.3 Filtering, merging and consensus variant calling results

To end with a list of somatic structural variants for each tumor sample based
on a multi-variant calling approach, the results obtained for the mentioned
algorithms were filtered and merged. Through manual validation of identified
structural variants we defined the final criteria to select consensus and
conservative data set of variants describing the somatic landscape of tumor

samples.

First, structural variants shorter than 100bp were removed from this analysis
and labeled as indels (small insertions and deletions). As the detection of the

breakend position of SVs is less precise and algorithms are usually not able to
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determine them with base pair resolution, we intersected variants considering a
window of 300 bp around break points. However, we only kept for downstream
analysis those SVs detected by at least two programs if a minimum of one
algorithm called the variant with high quality (MAPQ > 90 for BRASS, MAPQ = 60
for SYABA and DELLY2). We use Integrative Genome Viewer (IGV) to visually

inspect all structural variants.

4.1.3.4 Rescue of somatic structural variants from longitudinal

samples

Based on the information obtained from longitudinal samples of the same
patient, we rescue genomic alterations. Therefore, we could increase the number

of detected somatic SVs.

Those structural variants identified in one sample after the filtering and
merging step, were automatically added in the additional time point(s) of the
same patient if any of the variant callers detected the variant, independently of

the filters.

After all these steps, we ended with a list of conservative somatic structural
variants for each tumor sample included in the Richter’s cohort. Somatic
structural variants identified in case 63 were used to continue with our study of

subclonality in Richter’s transformation.
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4.1.4 Inferring structural variant allele frequencies to analyze

intratumor heterogeneity

The intratumor heterogeneity of a sample is characterized based on the
variant allele frequency of somatic tumor mutations. Variants of similar
frequencies are clustered together representing a specific cell population.
Moreover, the analysis of samples collected at different time points allows us to
reconstruct how these cell populations evolve during time and therefore, to
observe clonal dynamics of the tumor. Variant allele frequency is calculated using
aligned sequences and dividing the number of mutated reads by the total number
of reads covering the mutated position. It is usually calculated for single
nucleotide variants, or small insertions or deletions, but not for structural variants
including large indels, inversions, duplications, intra- and interchromosomal
rearrangements. This is due to the complexity of identifying all supporting reads
aligned through the reference genome and the variability of the coverage within
these large, mutated regions. For this reason, we first explored both supporting
reads and coverage variability among diverse selected structural variants and on
different CLL samples, including cases 63, and 365 from the Richter’s study to
understand the nature of the region. Coverage distribution in healthy and tumor
samples from CLL cases (29, 48 and 723) finally excluded for the publication, was

also evaluated.

Intending to design a strategy to calculate the variant allele frequency of
somatic structural variants identified in Chronic Lymphocytic Leukemia patients,
we started exploring somatic SV within an in-silico tumor sample. Then, we
applied this strategy to SVs identified in the CLL cohort and we focused our

analysis on case 63 using it as a pilot.

110



4.1.4.1 Analysis of aligned tumor reads in an in-silico sample

As structural variants involve large genomic regions, reads covering the
variant are usually challenging to align through the reference genome by the
algorithms. Therefore, few supporting reads can be unmapped and not detectable
on the BAM files. This loss of supporting reads directly influences the obtained

variant allele frequency.

So as to explore if all supporting reads are usually aligned and consequently,
can be identified from the BAM file, we started analyzing somatic structural
variants within an in-silico WGS sample (Fig 21.1). This artificial sequenced sample
was created by Dr. Jordi Valls in the context of his PhD thesis and in our group. To
generate a sample simulating a real genome sequence, human variants from the
1000 Genomes Project ADD REF and the PanCancer project were inserted. All the
artificial reads supporting each of these variants were known and searchable in

both FASTQ and BAM files created for this in-silico sample.

Manual inspection of in-silico SVs including a deletion (chr3:173048887-
chr3:173050455), and one inversion (chr20:53484361-chr20:53485620), both
bigger than 1000 bp, and one interchromosomal translocation (chr21:18877844-
chrX:131913425) was done to determine if all supporting reads were aligned. To
do this, we used Samtools (v.1.5) view mode to export and analyze aligned
sequencing reads. If needed, reads were realigned using the BLAT (Basic local
alignment tool) from the UCSC (https://genome.ucsc.edu/cgi-bin/hgBlat) and to

the GRCh37 reference genome.

We also explored mutated regions and a range of different window sizes
(10bp, 50bp, 100bp and 150bp) from each breakend (Fig 21.2) of the structural

variants to determine where supporting reads were aligned.
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Figure 21. Schema showing the evaluation of in-silico structural variants. 1) A determined genomic
region including the SV is analysed to search for aligned supporting reads.2) Different windows sizes
are defined to identify the region where supporting reads are usually aligned.

4.1.4.2 Calculating the variant allele frequency for in-silico

structural variants to define a strategy

All somatic SVs within the artificial in-silico sample were heterozygous, clonal
and not within copy number variants, thus their expected variant allele frequency
was around 0,5. That means half of the aligned reads should support the mutated
allele, whereas half covered the non-mutated allele. For this reason, the in-silico
sample was also used to define the strategy to calculate the variant allele
frequency of structural variants. Results obtained were compared with the

expected VAF (0,5) to adjust the strategy.
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To calculate the variant allele frequency of each structural variant, we
counted mutated reads and the total number of reads covering each position
within a region of 100bp from each breakend position (up or downstream
depending on the SV type) (Fig 22). Sequencing reads including mutated and non-
mutated were extracted from the BAM file using Samtools (v. 1.5). Mutated reads
included paired-end where each mate aligned within a breakend and do not have
the expected insert size (~300bp) and split reads, defined as broken reads aligned
through each breakend. Moreover, the number of mutated reads was corrected
by adding one more read in all the base pair positions where part of a split read
should be aligned, even if it does not directly appear on the BAM file. We then
calculated the VAF of each breakend (two per SV), dividing the mean of mutated
reads in 100bp by the mean of the total number of reads covering the same

region.
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NON-MUTATED READS
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2 23 3 ... 2 2 MUTATED
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Figure 22. Schema of the strategy applied to calculate the variant allele frequency of a breakpoint
based on aligned reads.

113



Following the described strategy, we analyzed the variant allele frequencies
of a set of structural variants present in the in-silico sample. This includes
deletions (n=45), intrachromosomal rearrangements (n=97) and inversions (n=20)

longer than 1000bp.

4.1.4.3 Applying the designed strategy to CLL longitudinal

samples

Following the strategy designed using the in-silico sample and mentioned on
the previous section, we calculated the variant allele frequency for the somatic
structural variants identified in CLL samples, including variants within the same
chromosome larger than 1000bp and interchromosomal variants. For this
analysis, to avoid an automatic misidentification of mutated reads, we removed
those structural variants identified in a sample that clustered together or nearby

(considering a windows size of 100 bp).

As for the in-silico sample, for each structural variant we calculated two
frequencies representing both breakends. We then compared the variant allele
frequencies of breakends corresponding to the same variant to analyze whether

they were similar or not and how to adjust them.

4.1.4.4 Deducing cancer cell fraction of structural variants and

clonal dynamics for one pilot CLL case

To study intratumor heterogeneity and the evolution of different cell
populations coexisting in one tumor sample, the variant allele frequency is
translated into a cancer cell fraction. This value represents the fraction of tumor
cells where the somatic variant is present. Similar CCF are clustered together to
represent cell populations. For this reason, to continue exploring intratumor
heterogeneity in CLL samples through somatic structural variants, the VAFs

obtained from the pilot CLL case (63) were translated into cancer cell fractions.
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Variant allele frequencies are converted into cancer cell fractions following

the equation (188):
CCF=VAF * 1/p * (p * Ntot: + (1-p) * Ntot,),

where p represents the purity of the tumor sample, meaning the fraction of
tumor cells within the sample, and Ntot is the number of chromosome copies in
tumor cells (Ntot:) and in normal cells (Ntot,) at the mutation locus. Usually, Ntot,
is 2 considering no copy number variation has occurred on normal cells. In those
cases, a breakend was identified within a somatic copy number variant, the
number of chromosome copies in tumor cells (Ntot:) was calculated from the
CNVs previously identified by variant callers and defined as the mean of total

number of alleles in each position within the 150bp mutated region.

We calculated the cancer cell fraction for each breakend identified in case
63 separately to avoid variability due to CNVs affecting just one region of the SV.
Finally, the CCF for somatic structural variants of this CLL case were obtained from
the mean of the CCFs of each breakend. The values obtained were compared
between longitudinal samples of the same patient (63) to observe the evolution

of somatic structural variants during time.

Results of chapter 1 starting in section 5.1 (page 161 ).
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4.2. Identification of somatic processed pseudogenes in cancer

and evaluation of their functional impact

Chapter 2

Within this chapter, and in the context of the Pan-Cancer analysis of Whole
Genomes, we analyzed more than 2.000 tumors and their matched normal
genomes to identify processed pseudogenes acquired somatically and explored
their potential functional impact in tumors. This work was published in Nature

Genetics in 2020, within a larger study of retrotransposition in cancer.
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4.2.1 Genomic and transcriptomic cancer data

In order to study the landscape of somatic processed pseudogenes in cancer
genomes, we used the PCAWG international cohort. From a set of 40 different
tumor types and subtypes, six were removed because of having less than 19
donors. In total, we explored 2589 donors distributed on 34 tumor types and
subtypes (Fig 23).
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Figure 23. Number of donors (y axis) in each PCAWG project, including 34 different tumor types for
diverse countries. Bars colored in grey correspond to discarded sets of genomes.

For the identification of somatic processed pseudogenes, we analyzed
tumor-normal pairs. The normal sample for each donor was essential to identify
somatic events, since they are only present in the tumor genome but not in its
normal mate. Therefore, we downloaded for each tumor-normal pair, whole
genome sequences formerly aligned using the GRCh37/hg19 refence genome.
This data was downloaded in BAM format files. We also used the PCAWG catalog
of somatic structural variation. This catalog was previously obtained by the
consortium after applying the three official PCAWG variant calling pipelines
(Sanger, Broad and DKFZ) and merged the results into VCF (Variant Caller Format)

files.
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After the identification of somatic PPs, we look for expression signals by
interrogating tumor RNA-seq data available for 144 samples containing the event.

RNA aligned reads in BAM files were downloaded from the PCAWG cohort.

4.2.2 Somatic processed pseudogenes identification

Due to the lack of standard protocols for the identification of somatic PPs,
we first explored different bioinformatic strategies with one donor with the aim
of generating an automatic protocol that could be extended to all PCAWG

samples.

We based our examination on recursive steps combining automatic searches
for somatic structural variants through VCF files that could point to PPs, with
manual inspection of the results by evaluating aligned tumor and normal reads
from the same donor. Using this approach, we came up with a combination of
some basic rules that provided candidate PPs. This set was then validated

manually resulting in a more restrictive list of somatic PPs.

Although the data analysis to identify somatic processed pseudogenes was
the same in any case, one or multiple donors, the workflow varied in order to
analyze 2589 donors automatically. Some statements were added, and the final
criteria was defined once the results in pilot candidates were observed. A
description of the genomic data analysis and the generation of the automatic

protocol is given below.
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4.2.2.1 Genomic data analysis

4.2.2.1.1 Candidate PP selection through VCF files

We adapted the protocol described by Cooke et al. (110) to identify
somatically acquired processed pseudogenes. As PPs are the result of the reverse
transcription and integration of an mRNA, the absence of introns and the
presence of exonic sequences in unexpected locations were used as main
characteristics to define an identification strategy. The combination of both
features was necessary to avoid misclassification of somatic events, including
translocations or deletions involving genes. Also, to prevent signals derived from

mMRNA contamination that can be found in DNA samples.

Based on these criteria, we expected to see on the somatic structural
variants VCF files, a) mutations joining an exon of this gene and any other part of
the genome, the insertion, and b) point mutations denoting exon-exon junctions

within the same gene, the candidate pseudogene. This is summarized in figure 24.
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Figure 24. Structural variants representing the main characteristics of PPs. A) Dotted lines indicate
two SVs pointing to an insertion of a PP (pink) in chromosome 4 (yellow) resulting in the somatic

fusion of a DNA within another genomic region. B) SV pointing t o a splicing event. Dotted line (SV)
representing the deletion/splicing on an intron as a result of the reverse transcription of an mRNA.
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Considering each structural variant is formed by two breakpoint positions,
we annotate both genomic locations, +/- 100 bp because of unprecise given
coordinates, using the RefSeq gene database (GRCh37/hgl19) (Fig 25) Structural
variants where none of the immediate flanking breakpoints mapped on an exon

were removed as they do not represent any of the mentioned PP features.

This SVs annotation provided us with information to select candidate

pseudogenes and to continue with the evaluation.
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Figure 25. Annotation of structural variants from a VCF file. Flanking positions of each breakend
mapped to the reference genome in order to identify exon-exon breakends (left) on the same and
exon-new loci breakend (right). In this example, MYC is the candidate pseudogene and appears
inserted within intron 1 of FOXAL.
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4.2.2.1.2 Manual validation: inspection of tumor sequencing

reads

The low reliability of automatic rules derives from the number of breaks not
included in the official PCAWG VCF files because of their doubtful identification,
as well as the number of false breakpoints obtained from these algorithms at the
time we were using this data. Moreover, precise genomic coordinates for the
structural variants are not consistently given since it is a challenge to define them.
For this reason, candidate pseudogenes selected from the VCF file were
confirmed with manual inspection of the tumor genome. BAM files including

genome sequencing reads were visualized using Samtools (v.1.5).

On top of the main features used (absence of introns and evidence of
insertion into new loci), two reads-based conditions were evaluated on the tumor
genome: i) paired-end reads and ii) split reads. A description of how these

conditions were used is explained below.

i) Paired-end reads. As explained before, the term is used when both
ends of the DNA fragment are sequenced and distance between
them (i.e. insert size) is known. In WGS data used for this study, the

insert size was around 300 bp.

PE reads where one end maps to an exon of the candidate
pseudogene and its mate into the new integration loci support the
insertion of the PP. PE reads mapping, each, a different exon of the
candidate pseudogene with an insert size larger than expected,
highlight splicing events on the source gene fig 26. We rely on the
fact that these exons will be together in the tumor genome, as part
of the same DNA fragment. However, they are aligned to the
reference genome with larger distances than expected because

intronic sequence separation. We could only identify these second

122



PE reads when the size of the introns in the source gene was large

enough.

Split reads are sequences that break when mapping to the reference
genome. That is when only some bases of the read map somewhere
on the reference genome, whereas the remaining nucleotides are
unmapped. Split reads add further evidence to SVs events and
usually, when realigned provide the precise coordinates for each
breakpoint. Therefore, both the insertion site within a new loci and
exon-exon junctions of the PP can be observed accurately if the two

halves of the split read align across the structural variant fig 26.
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Figure 26., Tumor sequencing reads supporting PP formation. A, B) Paired-end reads supporting the
insertion site. One read aligned in the insertion loci and its mate within an exon of the source gene. C)
Split read mapping the insertion point. D, E) Split reads mapping splice junctions of the same transcript
(source gene). When these reads (read 2 D and read 1 E) are aligned to the reference genome,
sequences are broken, as these exons are separated by an intron sequence in the reference genome.
Distance between these PE is larger than the expected (insert size 300bp) as on the tumor sequence
these pairs are closer than on the reference sequence.

To evaluate both paired-end reads and split reads, aligned sequences from
the tumor BAM file were obtained using Samtools. We mainly extracted reads
aligned (+/-300bp) through the candidate insertion site as well as reads within the
genomic coordinates of the source gene. Reads were then aligned to the
reference genome (GRCh37/hg19) using UCSC Blat (189) (default parameters) to
validate the insertion site, and to the reference RefSeq transcriptome using Blastn

(190) (default parameters) to confirm splice junctions.

124



Manual inspection of the tumor sequence verifies structural variants
pointing to candidate processed pseudogenes formation are real. Moreover, this
evaluation allows us to observe the presence of poly A tails, characteristic at the

3’ end of the PP sequence.

Finally, reads supporting the somatic variation were also evaluated in the
matched normal genome, to confirm their absence and therefore define the

event as somatic.

4.2.2.2 Generation of an automatic protocol

4.2.2.2.1 Pilot exploration of one candidate PP

Before developing a protocol to identify somatic processed pseudogenes in
all PCAWG cohort at once, one donor was explored to define and calibrate our
strategy. We applied the genomic data analysis explained above, implementing
both steps. This also allowed us to understand the characteristics of processed

pseudogenes.

From the PCAWG cohort, we randomly selected one sample (submitter
donor id: 9af6ed4e-8cdc-4f49-84e9-bal053b5b3ca) from 48 patients included on
the lung squamous cell carcinoma (LUSC) subcohort. We decided to start with this
group considering that other previous studies confirm the highest number of PPs

somatically acquired on this tumor type-subtype (110).

First, the somatic structural variant landscape of the patient was analyzed
retaining those SVs with at least one breakpoint position (+/- 100bp)
corresponding to an exon. Considering we expected to observe SVs supporting
the insertion point and the absence of introns, CN/H4 was selected as the source
gene producing a processed pseudogene in this tumor sample. We relied in CNIH4
as a candidate PP since multiple structural variants involving exons from this gene

were identified.
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We decided to reconstruct CNIH4 PPs insertion using directly the positions
provided by the structural variants identified and their corresponding location on
the gene using the human RefSeq database (GRCh37/hg19). Next, we inspected
its corresponding tumor BAM file to verify the automatic VCF-based predictions.
We added the data obtained from tumor PE and split reads to the manual PP

reconstruction.

To further verify this processed pseudogene was acquired somatically, we

looked for these reads on the normal pair genome.

4.2.2.2.2 Protocol development for the complete analysis

To scale up our search for somatic PPs to all 2589 PCAWG tumor-normal
genome pairs, different workflows were tested. In this step of the study, we used
the entire subcohort from lung squamous cell carcinoma (LUSC) encompassing 48
donors. Our idea was to define a protocol as automatic as possible based on two
types of somatic structural variants (exon-exon and exon-new loci). We selected
candidate pseudogenes coupling this type of data, obtaining diverse datasets with
different levels of sensitivity. We applied in-house scripts to obtain these datasets

combining the following criteria:

Criteria 1 — Evidence of insertion: at least one structural variant between an
exon and any other region of the genome, representing one insertion site of the

PP. The insertion locus could be an exon of another gene.

Criteria 2 — Evidence of insertion: two structural variants joining the same
source transcript and the same integration locus. It differs from criteria 1 since

here we require evidence for both insertion sites.

Criteria 3 — Evidence of splicing: at least one structural variant involving two

exons of the source gene, likely indicating a minimum of one splicing event.
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These criteria were combined to generate four different datasets: Dataset 1:
criteria 1, Dataset 2: criteria 1 and 3, Dataset 3: criteria 2 and Dataset 4: criteria 2
and 3. We count as a candidate pseudogene, each time a source transcript was
detected inserted on a chromosome. Therefore, if the same source transcript was
identified inserted in, for example, chromosomes 7 and 19, we considered them
as two candidate pseudogenes. If the same transcript appeared on many SVs
always inserted within the same chromosome, only one candidate pseudogene

was counted. Figure 27 summarizes criteria and datasets generated.

For each candidate set, we manually evaluated a subsample to determine
the type and rate of false positives included and thus, the level of accuracy of each
of the criteria used. We applied new specific rules while analyzing the results from

this manual validation, until we defined the final identification criteria.
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Figure 2723. Visual representation of the criteria used to define candidate PPs and its
combination to generate datasets with different levels of sensitivity. Criteria were defined
based on the two types of SVs we expected to detect when a PP was acquired.
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4.2.2.2.3 Final PP searching strategy

From the previous analysis we could generate different collection of criteria
that provides the diverse set of candidate somatic processed pseudogenes, as
well as a validated collection. Results obtained for each criteria combination are
explained in the Results section 5.2.2. Considering these observations, we ended
up with the final PP searching strategy. Then, we applied it to the entire PCAWG

cohort cited before, using its catalog of somatic structural variation.

As PPs are the result of reverse transcription and integration of an mRNA,
the identification of the presence of exonic sequences in unexpected locations
within the tumor genome was used as the main criteria to define our final
searching strategy. Structural variants supporting the insertion of a PP were
defined to be flanking (+/- 100 bp) an exon sequence on one side (defined using
the NCBI RefSeq gene coordinates; GRCh37/hg19) and any genomic region on the
other. To avoid events such as intrachromosomic translocations or deletions
involving other genes, structural variants affecting the same chromosome with a
distance between both breakpoints lower than 100Kb were excluded. We

considered insertions of the source gene less likely to occur near its location.

Finally, we labeled as candidate PPs those integrations supported by both
insertion points with a distance flaking these sites of less than 350bp. Moreover,
to avoid nucleotide insertions, at least 50 bp of the same source gene exon, the

candidate PP, must be inserted (Fig 28).
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Figure28. Schema of the strategy applied to identify candidate processed pseudogenes.
Two somatic structural variants (SV1 and SV2) must be identified on the VCF file
representing both insertion points with a distance flanking these sites (pos1_i and pos2 i)
shorter than 350bp. At least 50 bp of the same source exon must be inserted (green).
Events affecting the same chromosome (intrachromosomic) must be inserted more than
100Kb farder than the source gene coordinates.

Candidate pseudogenes identified using the criteria mentioned above were
evaluated through manual inspection of the tumor sequence. This resulted in a
validated collection of somatic processed pseudogenes. We considered a
candidate as validated, if PE or split reads covering both insertion sites (insertion
loci - source gene, source gene — insertion loci) were identified on the tumor
genome. Manual inspection allowed us to also identify sequencing reads
supporting splice junction sites. However, evidence of splicing was not as
determinant criteria since it could derive from mRNA contamination of genome

samples.

Although our identification strategy was based on the somatic structural
variant landscape, manual inspection was also done for the normal sequence of

the donor, to confirm the PP was acquired during tumor development.
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4.2.3 Expression evaluation of acquired PPs

Evidence of chimeric RNA processed pseudogene — receptor loci were
required to distinguish expression of the PP from the transcription signals of
native mRNAs derived from the source gene. To do so, we interrogated RNA-seq
data, if available for the donor that have acquired the PP, involving retrocopies

with part of the integration region.

For each candidate PP, we extracted sequencing reads from the BAM file
aligned to the source gene coordinates. We also selected reads aligned to the
receptor gene or to the intergenic sequence (+/- 5Kb from the insertion site) and
unmapped reads. All these selected reads were used as query to perform two
independent Blastn analysis. On one side, reads were aligned against a database
with all cDNA transcript forms described in RefSeq (NCBI) database corresponding
to the retrotransposed mRNA sequence of the source gene. The second alignment
was done against the complete reference DNA sequence of the receptor gene or
the genomic region 5Kb upstream and downstream the integration site for those

candidates inserted within an intergenic sequence (Fig 29).

Positive expression of the candidates and/or the formation of fusion
transcripts was confirmed with at least two paired-end reads. In each pair, one
end must align to the cDNA sequence of the source gene, and its mate into the
DNA sequence of the integration loci. Both with more than 98% identity.
Identification of split reads across one insertion site was also considered as

supporting evidence of expression.

Expression signals were used to predict and manually reconstruct the

resulting fusion PP-host gene transcript. Also, to infer the fusion gene coding
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potential through in-silico translation starting from the initial codon (ATG) for

each of the host gene mRNAs.

Processed pseudogene Integration region
sequence
SReadl >Read4
ATCGGGATCT TTTCGATATC
QUERY RS >Read5
(1um°r GGGACTCGAT CCGAGATAGC
RNA-seq) >Read3 ZRead
AAATCTCAGG GEACTRGCIA
/\ SLESTR /\
>SOURCE_GENE >RECEPTOR_GN >SOURCE_GENE >RECEPTOR_GN
NNNNNNNNNNNN NNNNNNNNNNNN NNNNNNNNNNNN NNNNNNNNNNNN
DATABASE  nnnnnnwnnnny NNNNNNNNNNNN NNNNNNNNNNNN NNNNNNNNNNNN
(reference NNNNNNNNNNNN NNNNNNNNNNNN NNNNNNNNNNNN NNNNNNNNNNNN
transcript NNNNNNNNNNNN NNNNNNNNNNNN NNNNNNNNNNNN NNNNNNNNNNNN
squsHced) NNNNNNNNNNNN NNNNNNNNNNNN NNNNNNNNNNNN NNNNNNNNNNNN
sequ 5 NNNNNNNNNNNN NNNNNNNNNNNN NNNNNNNNNNNN NNNNNNNNNNNN
NNNNNNNNNNNN NNNNNNNNNNNN NNNNNNNNNNNN NNNNNNNNNNNN
& s N |
BLASTN — e e —
alignment — — —— o
results — == == 1split reads —— o

paired-end reads
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chimeric RNA
Figure 29. Evaluation of positive somatic processed pseudogene expression. RNA-seq reads were
extracted from the source gene (query green) and integration region (query pink). All these
sequencing reads were aligned (Blastn) against reference cDNA corresponding to the
retrotransposed mRNA (database green) and reference DNA of the integration region (database
pink). Aligned PE and split reads within dashed rectangles represent sequences supporting a fusion
PP-host gene transcript confirming the expression of the somatic PP.

Results of chapter 2 starting in section 5.2 (page 185 ).
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4.3. Identification and characterization of novel candidate
micropeptides using publicly available genomic and

transcriptomic cancer data

Chapter 3

Study 1:

In this first study included in the third chapter of the present thesis, we
describe the results obtained from our efforts in the context of the identification
and characterization of new functional micropeptides in human and their
application in mass spectrometry studies of cancer micropeptides. This work was
in collaboration with Dra. Maria Abad and Marion Martinez from VHIO and Dr.

Javier Mufioz, Dr. Hector Peinado and Pilar Ximénez de Embun from CNIO.

Study 2:

The knowledge acquired from this first study opened the possibility of
searching for unexplored micropeptides and determine their relationship with
tumorigenesis. Therefore, this second study is focused on the identification of
novel candidate micropeptides located in intergenic regions, using comparative
genomics and evolutionary conservation features at DNA and protein level. We
search for evidence of expression in healthy tissues and evaluate their role in

cancer by searching for clusters of mutations within them.
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Study 1: Catalog of candidate micropeptides for
MS/MS searches

4.3.1 Transcriptomic data from pancreatic adenocarcinoma

Transcription and translation are tissue-specific biological processes
meaning different phenotypes are generated from the same genome sequence
among tissues. Therefore, tissues are distinguished by gene expression patterns,
resulting in distinct regulatory programs controlling the function of each specific
tissue type. These processes can also vary between normal and tumor cells. Since
the presented study is focused on the identification of micropeptides in
pancreatic adenocarcinoma through mass spectrometry, we based our search of

novel candidate small ORFs in the transcriptomic analysis of the same tumor type.

We randomly selected six pancreatic adenocarcinoma adult patients (3
female, 3 male) from The International Cancer Genome Consortium. All of them
were provided by the Australian project PACA-AU. For each patient, we used BAM
files of aligned RNA-seq samples (126 bp length, paired-end reads). Sequencing
reads were previously aligned by the consortium with STAR (v.2.4.0i,
https://github.com/alexdobin/STAR), using GRCh37 reference genome

(https://github.com/ICGC-TCGA-PanCancer/pcawg3-rnaseg-align-star).

4.3.2 De novo transcriptome assembly

To end with a set of novel candidate micropeptides within non-annotated
transcripts, de novo transcriptome assembly was done for the 6 pancreatic
adenocarcinoma patients. The assembly of RNA-seq reads without a sequenced
genome to guide can, in theory, reconstruct transcripts even from regions missing

from the reference.
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De novo transcriptome assembly was done using StringTie (v.1.3.6,
https://cch.jhu.edu/software/stringtie/), a computational method to assemble
complex data sets into transcripts. Starting with aligned RNA-seq paired-end and
spliced reads, StringTie groups them into clusters and creates a splice graph for
each cluster. Later, the approach identifies transcripts from these clusters of

reads and estimates their expression levels simultaneously (Fig 30).

Since we aim to also obtain low-expressed transcripts, the minimum number
of reads per bp coverage to consider for transcript assembly was 2’5 (default
parameter). Moreover, to assemble short transcripts the minimum length allowed

for the predicted sequences (-m parameter) was set to 50 bp.

One more optional parameter was tested when running StringTie for the 6

RNA-seq samples. A brief description of it is given below.

- Maximum fraction of multiple-location-mapped reads that are allowed to

be present at a given locus (-M). StringTie was tested with default parameter (1'0)

and 0'1.
REFERENCE
L] L}
I |
Min coverage: '— _READS
2 5 reads I —
(B
\ \
Min length:
50 bp

Figure 30. Schema showing StringTie identification of transcripts. A minimum coverage of 2,5
reads and a minimum length of 50bp is needed to define the clustering RNA-seq aligned
reads as a transcript.

We compare the results obtained after testing both options (default and 0’1)
by manual inspection and we define the best approach to continue with the

identification of novel transcripts.
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After running StringTie, we obtained for each patient one GTF (General
Feature Format) file containing all the identified transcripts, their genomic
coordinates, strand and expression values in terms of coverage. Transcripts
identified in chromosome Y in the three female patients were removed since are

false positives due to previous alignment errors.

4.3.3 Transcriptome combination of multiple samples analyzed

A list of transcripts was obtained for each patient analyzed. However, a
consensus set of sequences detected in diverse samples was needed to continue
with the identification of novel candidate micropeptides in pancreatic
adenocarcinoma. The merging step will allow us to remove false positives
obtained from de novo assembly because of the inclusive search of low expressed

and short regions.

We explored two approaches to combine the results and get a
representative set of expressed transcripts for pancreatic adenocarcinoma. We
tested the merge StringTie function available for the program, as well as we

defined our strategy to determine consensus transcripts.

4.3.3.1 StringTie transcript merge mode

StringTie provides a usage mode different from the assembly function to
merge and assemble transcripts from diverse RNA-seq analysis and to obtain a

non-redundant set of consensus and filtered sequences.

To run the merge mode, we used as inputs the six GTF files obtained from
de novo assembly performed across RNA-seq samples. Even different options can

be modified on this function, StringTie merge was run with default parameters.
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4.3.3.2 In-house strategy to obtain a consensus set

The criteria used by StringTie merge to combine the results and afford a
consensus set is not described in the documentation. Accordingly, we explored
the results obtained from de novo assembly and searched for a merging strategy

applying diverse criteria.

Our protocol was divided into a merging step of the transcripts identified in
RNA-seq, the definition of a consensus sequence including the clustered

transcripts, and the subsequent selection of representative groups.

4.3.3.2.1 Merging step through transcript clustering

To merge transcripts and isoforms identified on different samples, we first
explore diverse requirements to consider two transcripts as the same one.
Therefore, we started exploring the overlap between their genomic coordinates.
We examined a range of window sizes (0, 150, 250, 500, 750, 1000, 1500, 1750,
2000bp) to define the best criteria for considering both start and end coordinates
represent the same transcript in diverse samples. We later analyzed whether
strand, and the number of exons were also necessary to consider for merging
these sequences. Manual inspection of the clustered transcripts obtained
depending on the applied requirement was done to define the strategy. An
extended description of this decision-making process is explained in the results

and discussion sections.

Finally, we merged isoforms from different samples in case they shared both
start and end coordinates within a window size of 500bp, regions overlapped
between them, and had the same strand and number of exons (Fig 31). Merged
isoforms were outputted in a tsv (Tab-separated values) format file. For each
clustered group of isoforms, we recalculated their start and end coordinates as

the average among all the samples where it was identified.
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Figure 31. Schema summarizing the merging step. Transcripts detected in different samples are
clustered if they share start and end coordinates (ws 500bp), and the number of exons and strand
are the same. The consensus sequence obtained after considering clustered transcripts is shown in
grey.

4.3.3.2.2 Definition of a consensus sequence and selection of

representative transcripts

After the merging step, we aim to get a consensus sequence for each group
of merged transcripts considering the variation among exon genomic coordinates

detected in samples.

To define the best approach, diverse measures were proposed and studied
through exploring the sequences and the manner their exons overlapped. After
this, start and end transcripts were calculated as the mean between all clustered
transcripts. Exon coordinates were defined based on those more represented
within samples, or randomly selected if all of them appear the same number of

times (Fig 31). We automatically validated all the coordinates were continuous.
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For some cases, manual inspection was needed to adjust and get the consensus

sequence.

Due to this recalculation of all genomic coordinates, we removed
redundancy if two or more consensus sequences shared their start and end
coordinates, strand, number and exon coordinates and were identified in the
same patients. Consensus sequences sharing only their start and end coordinates,
but not the strand, the number or the coordinates of their exons, were considered

different isoforms of a transcript.

Those merged isoforms identified in at least two different samples were
selected to remove false positives from the analysis and were defined as
representative for the pancreatic adenocarcinoma transcriptome. Single-exon
isoforms must be present in all samples to be more restrictive because they are

easily detected by StringTie.

4.3.4 In-silico 3-frames translation of de novo consensus

transcripts

We continued the analysis of small ORFs identified in pancreatic
adenocarcinoma patients translating consensus sequences to obtain a set of

candidate short amino acid sequences.

First, the DNA sequence (GRCh37) of each consensus transcript was
downloaded from the REST (REpresentational State Transfer) API data interface
of UCSC. This interface allowed us to get all nucleotide sequences from start to
end bp coordinates through a command line and in a JSON (JavaScript Object
Notation) format file. An in-house script was run based on the identified exon
coordinates for each isoform to get only their coding sequence (CDS). Whenever
the strand was not characterized by StringTie due to the lack of split reads across

the region, the coding sequence in both forward and reverse was considered.
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With the aim of obtaining a list of potential micropeptides, i.e. open reading
frames with a maximum length of 100 aa, all the CDS were translated in-silico. We
performed 3-frames translation for each CDS, meaning codons were defined
starting from the first, second and third nucleotide of our candidate genomic
sequences. We not only considered the canonical start codon (ATG) as the origin
of translation but also the five most abundant non-canonical codons (CTG, GTG,
TTG, ACG and ATT) (132). After an origin was found, translation was extended
until the first stop codon (Fig 32). Sequences between 7 and 100 amino acids
(both included) were characterized as candidate micropeptides identified in

pancreatic adenocarcinoma transcriptomes.

* * * * START

— END

cDS

MICROPEPTIDES
I

Figure 32. In-silico translation of coding sequences. Micropeptides corresponded to sequences
between 7 and 100 amino acids length.

Additionally, to analyze the type of genomic region where we identified
candidate micropeptides, we annotate their location in the reference genome. To
do so, we downloaded from the Biomart data mining tool
(https://grch37.ensembl.org/biomart/) the genetic coordinates of all the human
annotated genes (GRCh37), including UTR regions, exon and introns and non-
coding regions. We then locate separately and through an in-house script the start
and end positions of each candidate smORF, and therefore the translated
candidate micropeptide. Each position was labeled as CDS Exon, No-CDS Exon,
Intron, 3" UTR, 5" UTR or NA if it was identified within a non-annotated region.

Since diverse isoforms can overlap between them on the reference genome, we
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prioritize the region categories in the mentioned order. As an example, if one
genomic coordinate was present in the 3" UTR of the isoform A, and within a

coding exon of the isoform B, we labeled it as CDS Exon.

4.3.5 Local alignment search to remove overlap with annotated

CDS

Because we aim to identify novel candidate micropeptides present in non-
annotated transcripts we filter out micropeptides translated from nucleotide

seqguences overlapping with annotated CDS.

To do so, we first performed a local alignment search using Blastn (v. 2.6.0,
https://blast.ncbi.nlm.nih.gov/). We intended to remove micropeptides located
within known and annotated coding sequences, but not within UTRs, introns, non-
coding genes or intergenic regions. Therefore, we compared candidate smORFs
nucleotide sequences (query) together with all the human coding sequences
(database) from Ensembl (GRCh37). We applied default parameters except for the
word-size. This value represents the minimum length to find and give a perfect
sequence match. We selected a length of 7, since our query sequences
corresponded to small ORFs (7-100 aa) and in order not to lose reliable hits.
Moreover, to limit the search and provide a more efficient analysis, the maximum

number of target sequences (-max-target-seqs) was limited to 2.

Considering the results obtained from the local alighment, candidate
smORFs were filtered and as consequence, candidate micropeptides. We defined
as good local alignments those results from the Blastn with an e-value lower than
0’001. Small ORFs were finally selected based on the percentage of sequence
overlap (<30% or <60%) between their nucleotide sequence and an annotated

CDs.
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4.3.6 Candidate micropeptides selection based on expression

for MS analysis

Mass spectrometry was the analytical tool used in this study to measure and
detect micropeptides in pancreatic adenocarcinoma samples. Mass
spectrometers can identify peptides through the comparison of the mass-to-
charge ratio obtained for each molecule present in the sample with a peptide

sequence database.

For these proteogenomic searches, databases are constructed with peptide
sequences inferred from genomic or transcriptomic evidence. Although this
enlargement of sequences has potential to identify novel peptides, it raises
concerns on reliable identification. A consequence of this inflation may result in
an underestimated false discovery rate and a decrease in the sensitivity of

identification because of the increased number of high-scoring random hits (191).

To reduce the number of entries in our dataset and obtain better results
from MS analysis, candidate micropeptides were selected based on the
expression values of their host-transcript. Note that we consider as host-
transcript the entire transcript sequence identified by StringTie and not only the
region defined as smORFs (nucleotide sequence) or micropeptide (amino acid
sequence). The transcript sequence could include non-coding regions such as
UTRs or introns that may appear covered by RNA-seq reads, whereas the smORFs
corresponds to the potentially coding sequence and must be smaller than 100

codons.

Expression values were calculated for all the consensus host-transcripts
previously obtained and in the 6 RNA-seq samples separately. We used StringTie
(v. 1.3.6) applying the abundance optional parameter (-A). We used a maximum
fraction of multiple-location-mapped reads allowed in a locus (-M) of 0’1. Given a
list of transcripts coordinates (GTF file), this approach calculates expression in
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coverage, FPKM (Fragments Per Kilobase of transcript per Million mapped reads)
and TPM (Transcripts Per Million) values. One tabular file containing expression

values for all host-transcripts was outputted for each patient.

We then calculate the median expression value in TPM for each pancreatic
adenocarcinoma sample. Finally, candidate micropeptides were selected if their
host-transcript had an expression value (TPM) higher than the median in each of

the 6 samples.

4.3.7 Strategy and final parameters to build candidate

micropeptides datasets

Following the pipeline described, we constructed two independent datasets.
Based on some lessons learned from the first dataset (dataset version 1 or DS1)
creation which are explained in the results and discussion sections, as well as the
need for including more smORFs, we redefined the parameters and steps for
obtaining a second dataset (dataset version 2 or DS2). However, both are being
used on the MS analysis since they are the result of combining restrictive and
permissive steps and requirements. Moreover, the resulting amino acid
sequences are only defined as candidates, and we probably be able to identify

true micropeptide on both through MS.

For each set of candidate micropeptides, host-transcript genomic
coordinates, including chromosome, start, end and exons, coding start and end,
nucleotide and amino acid sequence, start codon class (canonical or non-

canonical), expression values, and alignment results were annotated.

A summary of the steps and parameters used for each dataset definition is

described in Table 3 and Fig 33.

Results of chapter 3 (study 1) starting in section 5.3.1 (page 208 ).
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TRANSCRIPT FROM DNA TO AA
Database
PREDICTION SAMPLE COMBINATION SEQUENCE
name
De-novo transcriptome Merge and consensus of - . Overlap with Expression of the
. In-silico translation .
assembly multiple samples annotated CDS host transcript
DS1 Stringtie, -m 50, -M 1,0 Stringtie transcript merge mode  ATG <60 % Not used
ATG and CTG, GTG, TTG, TPM > median
DS2 Stringtie, -m 50, -M 0,1 In-house strategy ACG, ATT <30% expression
Table 3 - Steps and parameters used for each dataset.
3-ORF
Assembly Merge Get DNA seq Get CDS translation
StringTie hg19 and ﬁ"ering
RNA-SEQ SAMPLES SET OF TRANSCRIPTS REFERENCE REFERENCE CANDIDATE
DNA SEQ DNA SEQ SET OF
6 samples EOR ALL FoRiALL SMORFS
PACA from TRANSCRIPTS CODING SEQUENCES
PCAWG

Pair-end reads (100bp)

Figure 33. Schema of the general strategy used to define both catalogs of smORFs.
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Study 2: Identification of candidate highly
conserved micropeptides in intergenic regions

4.3.8 Collection of known and conserved intergenic human
regions

The majority of known and published small ORFs have been identified
considering annotated regions, including protein coding genes, pseudogenes or
noncoding RNAs. However, little is known regarding candidate smORFs in
intergenic DNA since it is not supposed to be transcribed, neither translated.
Therefore, internally in the group and as a second study in the context of
micropeptides, we intended to explore genome-wide intergenic sequences to

identify novel micropeptide candidates.

We based our search on known and conserved intergenic regions from the
Zoonomia Project (5). The project is an international collaborative effort focused
on the discovery of the genomic basis of shared traits in mammals to understand
remarkable phenotypes and the origins of disease. Through the comparison of
diverse mammals, they provided genome assemblies for 131 species including
humans. Moreover, the alignment of the genome of 240 species allowed to

increase the power to detect sequence constraints at individual bases.

Among other public data, they furnished a list of unannotated intergenic
constrained regions (UNICORNs) defined as non-coding regions on the genome
that lack annotation in ENCODE3 (192). UNICORNs show high evolutionary
constraint (nucleotides with a PhyloP score > 2,270, FDR 5%), and therefore

suggest function (Fig 34). We downloaded a bigBed format file containing genome
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coordinates (GRCh38) for a list of 424.179 UNICORNSs. This was our starting

collection of known and conserved intergenic regions.

mo._t4pi

oo s

Figure 34. Genome browser view of Zoonomia UNICORNSs (shown in green) identified in the human
chromosome 20. PhyloP scores can be seen above UNICORNSs in grey.

4.3.9 In-silico translation of intergenic constrained regions

Considering the genomic coordinates obtained from The Zoonomia Project,
we downloaded from the REST API data interface of UCSC the DNA sequence
(GRCh38) of each UNICORN.

To identify potential candidate small ORFs within these intergenic regions,
we performed a 6-ORF in-silico translation of each DNA sequence associated with
a UNICORN (Fig 35). Since splicing had not been previously studied or identified
in these sequences, and considering their high and similar conservation
throughout, we directly translated the complete DNA of each UNICORN assuming

they are intronless and their entire sequence is coding

CGTAATGCAAGATGCCGAATCGCT UNCORN

6-0RF —_ l —

TRANSLATION
e w 10-100 aa
w . micropeptides

Figure 35. In-silico translation of UNICORNSs. Nucleotide sequences are translated starting from the
first, second and third nucleotide in forward and reverse (6-ORF). Only peptides between 10 and 100
aa are selected.
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For the in-silico 6-ORF translation, codons were defined starting from the
first, second and third nucleotide of the DNA sequence in forward and reverse
strands. To encompass a wide range of candidates and account for the diverse
codons that can initiate translation in humans, we considered not only the
canonical start codon ATG but also all possible trinucleotide combinations.
Translation was extended until the first stop codon was encountered, or until the
end of the UNICORN sequence was reached. We retained amino acid sequences

with lengths ranging from 10 to 100 aa.

4.3.10 Searching for orthologs on Mus Musculus using

Reciprocal Best Hit approach

Once we obtained a list of in-silico short amino acid sequences from
conserved intergenic regions, we went for more evidence to assume or suggest

they could be translated into micropeptides in nature and have a functional role.

Thus, we evaluate the obtained candidate micropeptides searching for
orthology on Mus Musculus genome (GRCm39/mm39). Orthologs are genes in
different species that have evolved through speciation events only, generally
assuming they have similar biological functions in these species. We used the
Reciprocal Best Hit (RBH) approach to define pairs of orthologs between human
and mouse. RBH assume two sequences are orthologs when each in a different

genome find each other as the best hit in the other genome (Fig 36).
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TBLASTN (1)

query database
Vs
LKRAMKNQS TCGCCATGCAT LKRAMKNQS
PROTEIN SEQUENCES BEST ALIGNMENT
Start here MP CANDIDATES DNA SEQUENCE PROTEIN SEQUENCE
LKRAMKNQS
Human peptide database query
Vs
LKRAMKNQS <—— TCGCCATGCAT LKRAMKNQS
BEST ALIGNMENT BEST ALIGNMENT

PROTEIN SEQUENCE DNA SEQUENCE PROTEIN SEQUENCE
;

TBLASTN (2)

Reciprocal

Figure 36. Reciprocal Best Hit approach.

With the aim of identifying pairs of orthologs, TBLASTN (version 2.6.0) was
used in both directions to compare amino acid sequences with an entire genome.
We applied default parameters except for the length of initial exact match (word
size = 3). The soft masking option was also enabled and therefore repeat

sequences were identified and masked for finding the initial matches.

We first compared the human amino acid short sequences obtained from
the in-silico translation of UNICORNs with the mouse reference genome
(GRCmM39/mm39) (TBLASTN1). We selected those alignments with an e-value
(expected value) lower than 1e-05, showing a significant match, and an overlap
between human and mouse sequences higher than 50%, meaning more than a
half of the sequence matched with the sequence on the other species. Gaps

among the sequence were not considered to calculate the overlap.

After applying these filters to elect only good local alignments, we extracted
from TBLASTN1 results the mouse amino acid sequences. These mouse short
peptides were then considered as the query for the second TBLASTN (TBLASTN2)

analysis and aligned through the human reference genome (hg38).
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To determine an automatic criterion to consider alignments as the best
reciprocal hit in both directions (human vs mouse and mouse vs human), and
therefore define orthologs, we manually inspected the obtained results.
Particularly we contrasted the peptide sequence and the genomic coordinates
(chromosome, start and end) of the human candidate micropeptides (query for

the TBLASTN1) to the human sequences resulting from the TBLASTN2.

We define orthologs if the resulting alignment on the TBLASTN2 had an e-
value lower than 1e-05, and the aligned human amino acid sequence and their
genomic coordinates were identical or overlap with the initial human candidate
smORFs. We also checked whether mouse amino acid sequences were also
identical or overlapped when comparing both TBLASTN analysis. Gaps within any
sequence were not considered to evaluate the similarity between them. To
remove duplicated genes in any species, only one-to-one (1:1) pairwise orthologs
(Fig 37) were retained meaning that both genes in the pair have only one ortholog

and therefore, one best hit in the other species.

Speciation

S
@
& Gene duplication

\ Paralogs

ORTHOLOGY 1:1 "M

Figure 37. Representation of one-to-one and one-to-many orthologs. In 1:1 pairs, both genes have
only one pair in the other species, whereas in 1:M, the gene of interest (Gene A) has more than one
pair in the other species, which are paralogs between them (Gene B and Gene C)
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4.3.11 Inference of purifying selection based on dn/ds ratio

To end up with a list of candidates novel micropeptides and add more
information indicating functionality, we calculated the ratio of non-synonymous

to synonymous (dn/ds) variants on 1:1 ortholog sequences (Fig 38).

MP CODING SEQUENCE TCGCCATGAATATGCCAATGACTACAG HUMAN
initial

TBLASTN (1) RESULT ATGCATACGCCAATGAATACAG

TBLASTN (2) RESULT GCATACGCGAATGAATACAG HUMAN

GCATATGCGCATGAGCACAG

used to calculate the dn/ds ratio

Figure 38. The ratio of dn/ds variants is calculated for 1:1 ortholog sequences, considering only the
coding regions aligned and obtained through tblastn.

Usually non-synonymous changes, that is nucleotide variants resulting in a
different amino acid, negatively alter the structure and function of a protein, and
may be deleterious. Purifying selection acts to remove these deleterious
mutations in genes that are essential for basic cellular functions, resulting in a
higher rate of synonymous variants compared to non-synonymous substitutions.
Accordingly, when there are structural constraints on a functional protein and it
is under strong purifying selection to maintain their role across species, the dn/ds

ratio is close to 0 when compared to its orthologs.

To calculate the dn/ds ratio for each ortholog pair we used the Codeml
function of the PAML (Phylogenetic Analysis by Maximum Likelihood) package (v
4.9j). We enable the pairwise option (runmode = -2) to perform a comparison
between two species, human and mouse, so a phylogenetic tree was not needed

for the calculation.
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4.3.11.1 Expected dn/ds ratio on known protein coding genes

We expected to have a much higher rate of synonymous substitutions, which
do not alter the protein sequence compared to non-synonymous on conserved

genomic regions. Therefore, the dn/ds ratio should be close to 0.

To define a dn/ds threshold to select candidate functional micropeptides, we
analyse and calculate the dn/ds ratio of a set of known protein coding genes

annotated in Gencode (version 38, GRCh38.p13).

As we are evaluating micropeptides, short coding regions, and to ensure that
the calculated dn/ds ratio on known protein coding genes was not affected by the
size of the sequence, we first pick all the coding exons shorter than 1000 bp. From
this subset we randomly selected a total of 300 short coding exons. Moreover,
since we aim to explore candidate micropeptides that can have a role in cancer,
our subset included 100 coding exons from known cancer genes based on a list

provided by COSMIC database.

We downloaded the nucleotide sequence of these 300 short coding exons
from the REST API data interface of UCSC (GRCh38) and we translated to get its
known amino acid sequence. Following the methodology explained above, we
looked for 1:1 orthologs in mouse based on the RBH approach. Finally, we
calculated the dn/ds ratio using PAML for all the human-mouse pairs of orthologs.
We analyzed the obtained results and determined the expected dn/ds ratio. To
avoid ratios closer to 0 due to low numbers of synymous variants, we also define
a threshold value for the number of silent substitutions (ds) that have occurred in

the coding exon.
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4.3.11.2 Selection of candidate functional micropeptides

The results (explained on section 5.3.7) obtained from the analysis of known
protein coding genes, allowed us to define the expected dn/ds values for coding

short regions and therefore to consider only candidate functional micropeptides.

In order to accomplish this, we first downloaded human (GRCh38) and
mouse (mm39) nucleotide sequences for all candidate micropeptides previously
identified as 1:1 ortholog pairs. Thereafter, we calculate the dn/ds ratio running
Codeml and as explained above. Note that this value was derived by comparing
nucleotide variants between the human and mouse genomes, specifically within
the previously aligned region. It is important to consider that the aligned

sequence may be shorter than the in-silico translated candidate smORF.

Considering the analysis done on known protein coding genes, candidate
micropeptides were selected if they had a dn/ds ratio lower than 0,32 and a ds
value higher than 0,1 to ensure variation within both sequences even their short

length.

This was our final set of candidates and novel micropeptides.

4.3.12 Expression analysis of candidate functional

micropeptides in normal tissues

The list of candidates novel micropeptides we provided was based on
nucleotide conservation among 240 species, and preservation of amino acids
when compared to their mouse orthologs. However, conservation does not
always and directly imply functionality of the peptide. For this reason, we continue
the evaluation of smORFs in intergenic regions through the analysis of
transcription data on normal samples. Signals of expression among the regions
defined as candidates show the sequence is at least transcribed and could allow

us to suggest if its function is tissue-specific or not.
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Considering expression values are generally calculated for known and
annotated transcripts, we downloaded raw data, and in particular aligned RNA-
seq data from the GTEX project (Genotype-Tissue Expression v8, dbGaP Study
accession phs000424.v8.p2) (6), a resource database and associated tissue bank
available for the scientific community to study genetic variation and gene
expression in human tissues. We randomly selected 135 samples from a diverse
range of 27 different tissues, with 5 samples per tissue. We ensured that samples

from the same donor, even if obtained from different tissues, were excluded.

Available algorithms designed to calculate expression values are usually
restrictive in terms of minimum number of reads aligned through the region.

Furthermore, they are generally built for inspecting larger genes.

Hence, expression was evaluated by inspecting the number of aligned reads
covering each candidate micropeptide, directly analyzing RNA-seq aligned bam

files. Paired-end reads were extracted using Samtools (v.1.5) view mode.

Obtained paired-end reads were filtered to discard multi-mapped sequences
and low-quality alignment scores (mapping quality value = 255). Moreover,
paired-end reads where one of them align to a known transcript including non-

coding RNAs were also excluded.

We finally evaluate counts of paired-end reads to analyze potential

expression signals through our candidate micropeptides.

4.3.13 Exploring somatic cancer SNVs within candidate

micropeptides to assess their role in tumorigenesis

Abnormal clustering of mutations is complementary to other signals to
detect driver cancer genes. Intending to explore the potential role of
micropeptides in cancer disease and tumorigenesis, we therefore started

analyzing the recurrence of somatic single nucleotide variants in smORFs.
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We downloaded somatic SNVs from The International Cancer Genome
Consortium (ICGC). We then excluded hypermutated samples, deemed when the
mutation count was greater than 1,5 times the interquartile range length above
the third quartile (> Q3 + 1,5IQR) in their respective tumor dataset. After filtering
them out, we get genomic variants from 5.807 donors, including 68 ICGC projects,
21 primary tumor types and 44.401.585 SNVs. However, only 12 different ICGC
projects representing a set of donors sharing the same tumor type and collected
from a specific country were selected for the analysis. Projects included and the

number of SNVs identified in each are shown in figure 39.
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Figure 39. Number of somatic SNVs included in each ICGC project.
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We used OncodriveCLUSTL (7), a driver discovery algorithm, to look for
significant clustering signals of SNVs within smORFs (Fig 40) This computational
method is based on a local background model, determined from the simulation
of mutations accounting for the composition of tri-nucleotide context

substitutions observed in the cohort under study.

I

micropeptide

Figure 40. Identification of clustering signals of SNVs in micropeptide sequences. Figure adapted from
Arnedo-Pac. et al, 2019 (7).

4.3.13.1 Applying OncodriveCLUSTL to published small ORFs

Before running OncodriveCLUSTL to explore our candidate micropeptides
identified in intergenic regions, we tested the algorithm analyzing previously

identified and published smORFs.

Accordingly, we take as micropeptides all the small ORFs from the SmProt
database (176). SmProt contains micropeptides identified using mass-
spectrometry or ribo-seq techniques and complies with other databases and
literature sequences. We only selected mp identified in humans that do not share
their amino acid sequence with other human micropeptides from the dataset. As
micropeptides are short, it is probable to get the same translated sequence from

diverse genomic regions.

Mutational processes contribute distinct depending on the region type.
Therefore, we separated exon and intron regions for each micropeptide, and we

only looked for clustering signals within their coding exon regions. A total of

155



49.065 micropeptides published in SmProt and their respective exon coordinates

were used for the first analysis of cancer driver smORFs.

For each set of SNVs (classified depending on the ICGC project), we tested
multiple parameter combinations for the smoothing window (sw), cluster window
(cw) and simulation window (simw). We decided to elect and apply 6 parameter
combinations for the 12 ICGC projects including 9 primary types. In all the analysis,
default options for signature calculation and simulation mode were changed to
region normalized and region restricted respectively. These options allowed to
restrict the background model calculation to the given genomic regions. All the
parameter combinations are specified in Table 4. OncodriveCLUSTL calculated a
g-value for each smORFs indicating a significant (g-value < 0,01) signal of clustered

mutations within it (Fig 41).

ID SwW CcW SIMW
51-51 51 51 31
71-71 71 71 31
91-91 91 91 31
101-101 101 101 31
101-91-101 101 91 101
101-101-101 101 101 101

Table 4. Parameters (sw, cw and simw) tested in OncodriveCLUSTL. ID refers to the name of the
combination.

INPUT FILES OUTPUT FILES
ATGCCGAATCGC  CHRSTART-END _ — : ;
e b
SINGLE NUCLEOTIDE  \\cpopepTIDES ELEMENTS FILE  cLUSTERS FILE QQ-PLOT

VARIANTS
. Q-VALUE < 0.01

Figure 4124. Schema summarizing OncodriveCLUSTL input and output files. Small ORFs and
micropeptides with a g-value < 0,01 were considered potential drivers.
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To choose the most adjusted combination for each set of variants, we
calculated the Kolmogorov-Smirnov (KS) test (two-sided option). This statistic is
used to decide if two sets of samples, in this case, the expected and the observed,
have a similar probability distribution and therefore, the observed probability is
not inflated. Only those p-values obtained from OncodriveCLUSTL higher than
0,01 were used to calculate the KS statistic. The enrichment in cancer genes was
also considered. To do so, smORFs identified within known cancer genes were
defined and counted as cancer related. Finally, the gg-plot obtained from

OncodriveCLUSTL was manually inspected for this selection step.

To assume similar probabilities and low inflation, the KS value should be
around 0, while the observed p-values were closer to the expected ones on the
gg-plot. The enrichment should be higher, meaning we were identifying known-

cancer related genes as expected when analyzing cancer driver genes.

Micropeptides with significant g-values (< 0,01) identified on the most
adjusted combinations were evaluated for each ICGC project and could be

considered potential drivers.

4.3.13.2 Evaluation of recurrent variants within novel candidate
micropeptides

To evaluate the presence of somatic single variants acquired in diverse
tumor types and within candidate novel micropeptides identified in intergenic
regions, we first annotated them. To do so, we looked for somatic SNVs identified

in the 12 ICGC selected projects and present within candidate novel

micropeptides.

Following the strategy tested with published smORFs, we run
OncodriveCLUSTL to analyze clusters of variants within conserved intergenic
regions defined as candidate micropeptides. Results of chapter 3 (study 2) starting in
section 5.3.4 (page 229 ).
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5. Results
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5.1. Analysis of somatic structural variants in CLL and their

incorporation into subclonality studies

Chapter 1
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5.1.1 Identification pipeline for somatic structural variants

The accurate identification of somatic structural variants in cancer is
essential for understanding the complex genomic landscape and the underlying
mechanisms contributing to tumorigenesis. The necessity of implementing
advanced computational algorithms arises from the inherent complexity and
heterogeneity of cancer genomes, where SVs can play pivotal roles in driving
oncogenic transformation. Through the combination of bioinformatic analysis and
manual inspection of the sequencing data, we provide a detailed account of the
identified SVs in Chronic Lymphocytic Leukemia. This will allow us to shed light on
the potential implications of somatic SVs in these cancer types. Furthermore, we
considered using diverse algorithms was a crucial strategy for several reasons
such as the varying sensitivity and accuracy between variant callers that might
result in missing mutations or fail to detect low frequency variants when using a

single program.

5.1.1.1 Evaluation of the structural variant identification

pipeline

There exists a wide variety of variant callers developed by the community for
the identification of somatic structural variants. In our study of CLL tumor
genomes, we employed four different algorithms for this purpose. Prior to our
evaluation of the results produced by each algorithm, we tested various filtering
options available within the variant callers. We then compared the detected
variants across the different algorithms. Moreover, we conducted a manual
inspection of previously obtained variants in tumors also included in this cohort,

some of which were experimentally validated in published studies.
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5.1.1.1.1 Fine-tunning specific parameters used by DELLY2

As mentioned in the methodology, we allowed 5% tumor contamination in
normal samples when running DELLY2 for the detection of SVs in CLL samples.
This decision was taken considering we were working with a liquid tumor where
both normal and tumor samples are collected usually from blood, where healthy
and cancer cells coexist. Although samples were filtered before sequencing and
purity was inspected, allowing a slight tolerance of tumor contamination enabled
us detecting somatic variants that might otherwise be missed because of the

presence of few tumors reads in the normal sample.

For DELLY2 we also evaluated the optimal percentage of alternate reads in
tumor samples to be observed to identify a variant. To do so, we compared the
results obtained when running the algorithm setting this parameter to 0,05 (at
least 5% of alternate reads in the tumor sample), 0,2 (default value; 20% of the
tumor reads must be alternate to identify the variant) and 0,5 (50% of alternate
tumor reads). As an example, we counted the number of structural variants
identified on a CLL patient (case 16), by using 0,05 and 0,5 values. We could
observe a decrease of 1963 translocations, 15 inversions, 65 duplications and 96
deletions that were not detected when using 0,5. We considered using higher
values such as 0,5 was unrealistic when analyzing tumor samples, as in light of
sample heterogeneity and the difficulty of mapping structural variants, it is highly
unlikely to find that number (50%) of sequenced reads confirming each of the
acquired variants. Moreover, less stringent percentages allow us to detect more
subclonal variants, since genome studies of CLL tumors had revealed the high

subclonal heterogeneity of the tumors (193).
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We then used variants identified and experimentally validated and published
by Puente et al. (187)to check whether these large variants were detected by
using 0,2 or 0,05 values. For a total of 35 SVs distributed across 5 tumor genomes,
five were not detected with high quality when using default value (0,2). However,
all except one were identified when a less stringent filter was used (0,05). Based
on these results, we decided to continue using DELLY2 expecting at least 5% (0,05)

of alternate reads in tumor to identify structural variants.

5.1.1.1.2 Comparative analysis of somatic structural variant

callers

Integrating results from multiple algorithms increase confidence in identified
variants. Before merging the results obtained through different variant callers
(DELLY2, BRASS and SvABA), we compared their grade of concordance for
structural variant detection. We also evaluated their performance based on

published and validated structural variants.

We started comparing the SVs detected by Brass and DELLY2 in cases 63, 365
and 1669. At this point, we considered all SV types together and a windows size
of just 50bp to define variants detected by different VCs as the same. We
observed that around 30% of the SVs identified by BRASS were also obtained
when using DELLY2. However, due to the large number of variants detected and
provided by DELLY2 and including those considered as high or low quality by the
algorithm itself, DELLY2 detected between 50 and thousands of SVs more than

BRASS across different tumor genomes.

We then compared results obtained for SVABA against DELLY2 and BRASS. As
we already knew both SVABA and DELLY2 provided more low-quality variants than
BRASS, we only considered variants defined as high quality by each algorithm.

Around 4% of the total number of SVs identified in a tumor genome by any of
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these three algorithms were detected by all variant callers, and 7,5% by at least

two.

We went back again to the selected 35 structural variants published in
Puente et al. that were identified in CLL tumor genomes analyzed but not finally
included in the present longitudinal study. For these SVs we checked for
concordance between the results obtained for DELLY2, BRASS and SvABA using
the specific mentioned parameters (see Methods section; 4.1.3.3). Manual
inspection through the aligned sequencing reads was also done in 14 out of 35
SVs. Variant callers (DELLY2, BRASS, SVABA) could clearly detect 33, 31 and 27 of
these SVs respectively. Only one of these missing SVs was not identified even as a
low-quality variant by DELLY2 and BRASS. The remaining missing SVs in DELLY2
(1), BRASS (3) and SvABA (8) were identified but not considered high quality by
the algorithm, meaning they could not achieve the minimum number of
supporting reads and mapping quality values required. All the variants (14) that
were inspected by tumor sequencing reads were validated, including the non-
identified SV by DELLY2 and BRASS in case 853. This structural variant was not

detected due to supporting reads in the matched normal genome.

Finally, we manually inspected 57 structural variants detected in any of the
four tumor genomes from case 63. Structural variants identified by more than one
VC, with high mapping qualities (>60 DELLY2, > 90 in BRASS and >60 in SVABA)
were clearly detectable by paired-end and split reads. Those SVs identified by
more than one VC, but with high mapping quality by just one algorithm tended to
had a smaller number of supporting tumors reads. However, their presence could

be confirmed.

We did not include SmuFin in this evaluation since the algorithm was

included later in the pipeline. Moreover, SmuFin did not add more new structural
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variants to the final consensus collection but generally supported some of the

already validated.

This comparative analysis allowed us to define the structural variant
identification pipeline (see methods 4.1.3.3 and 4.1.3.4), setting up specific
parameters for DELLY2 and defining mapping quality thresholds for each VC. Also,
to determine the number of algorithms we must support the variant after the

merging step to include it in our conservative list of somatic SVs.

5.1.2 Exploring intratumor heterogeneity from structural

variant allele frequencies

Single nucleotide variants, and short insertions and deletions were mainly
used to characterize the intratumor heterogeneity. Based on the frequency of
these alterations and their clusterization, cell populations of a tumor sample can
be described. However, structural variants are usually not included in these
studies since inferring their frequency from sequenced tumor genomes is

challenging.

5.1.2.1 Sequencing coverage variation in normal and tumor

genomes

Variant allele frequencies are generally measured as the ratio of tumor reads
supporting the variant across the number of reads covering it. Therefore, taking
into account that structural variants do not imply just one nucleotide position as
SNVs, we first wondered how variable the sequencing coverage across any region

of the genome was.

To do so, we explored coverage distribution across four randomly selected
genomic regions (4.000bp each) in five healthy samples (30x coverage). This first

exploration supported the idea that the coverage of a sample was constantly and
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significantly changing across the genome, even though no large variants were
identified there. These changes were not correlated with complex genomic
regions, such as repeat sequences, that can usually be challenging during the
alignment process (Fig 42). We could also detect variation when comparing
different sequencing samples, even though they are the same genomic region.
These differences could be due to technical variability since not all of them were
sequenced using the same platform, as well as to sequencing artifacts. Generally,
comparing these five healthy samples we could determine more peaks of high
coverage in case 29. Although this case was previously sequenced for the CLL-

ICGC project, it was not unique across these five samples.
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Figure 42. Coverage distribution in five healthy genomes and across four randomly
selected regions.
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Focusing on case 29, we also inspected its coverage distribution in 4 new
regions with no SVs identified but comparing normal and two tumor genomes
(Supplementary figure 1). Differences were also seen between sequenced
samples from the same case. In particular, we saw a significant increase in the
coverage (> 1000x) of tumor sample 2 (S2) in chromosome 21. Repeat genomic
sequences were located within this specific region but did not have the same

effect in all sequenced samples.

Lastly, we started estimating how to detect tumor reads supporting
structural variants from a tumor WGS. This was the first preliminary exploration
done in a few identified somatic SVs in cases 63 and 365. Tumor supporting reads
were determined based on unexpected insert sizes, paired-ends joining different
chromosomes, and split reads. We could start noticing that supporting reads were
mainly aligned in a window around 300 bp from each breakpoint and in the up-
or downstream nucleotides depending on the SV type. Coverage differences were

also noticed in regions with SVs in both tumor and healthy samples (Fig 43).
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Figure 253. Coverage distribution observed across one breakpoint of a translocation identified in case 365. A
representation of the translocation (chr14:22.860.033-chr8:128.899.362) is shown below the plot. A region of
300 bp upstream the bkp2 (light grey discontinious box from 22.859.733 to 22.860.033) was analyzed. Number
of reads is shown for the normal sample (blue), and for the tumor sample (pink and green). The observed total
coverage (pink) is higher than the number of non-mutated reads (green) because of the presence of aligned
reads supporting the structural variants.
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5.1.2.2 Identification of variant supporting reads in an in-silico

sequenced sample

After examination of the coverage variability across genomic regions and
tumor and normal genomes, we started estimating the strategy we needed to
apply to calculate variant allele frequencies for structural variants. Although we
first explored tumor reads aligned in few SVs identified in CLL cases, we thought
that the most accurate approach to define this strategy was comparing observed
and expected frequencies of diverse large variants. For this reason, we decided to
examine an in-silico sequenced sample generated artificially where all structural
variants were heterozygous. Moreover, this artificial sample was homogeneous
and did not represent many cell populations but just one clone, so the expected
variant allele frequency for all the somatic mutations inserted was 0,5. Finally,
reads supporting each variant were known so based on their identifier we could
directly look for them in the BAM file and evaluate their alignhment. The
observations and messages learned from this data allowed us to define the

strategy to infer structural variant allele frequencies.

Among 150 studied SVs identified in the in-silico tumor, we widely evaluate
three somatic structural variants including one deletion, one inversion and one
translocation involving two different chromosomes. Artificial sequencing reads
(12, 36 and 39) supporting the deletion, inversion and translocation respectively
were detected in the BAM file, and therefore correctly mapped against the human
reference genome. As an example, 11 out of 12 paired-end reads supporting the
deletion were completely mapped meaning both reads of the pair were aligned
across at least one breakend of the deletion. For the remaining (1) supporting PE,
only one read was identified aligned across a breakend whereas their matched
read was mapped but not within the analyzed genomic region (+300bp) (Table 5).

This variant was not only supported by mutated PE but also split reads. From these
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12 PE, all except one had at least one read of the pair splitted beyond the variant.
However only four of them had both half of the split read mapped in each

breakend whereas only a region of the remaining reads was aligned.

BKP1 BKP2
1D PE read (in-silico) ALIGNMENT ALIGNMENT
chr3.b-_all_5908595 85M15S 100M
chr3.b-_all_20603417 77M23S 95M5S
chr3.b-_all_25246355 58M42S 100M
chr3.b-_all 14110103 20580M

100M
chr3.b-_all_28760847 100M 4596M
chr3.b-_all_7235689 100M 8592M
chr3.b-_all_14449787 100M 23577M
chr3.b-_all_25382709 100M 32568M
chr3.b-_al1_19369799 100M 41S59M
chr3.b-_all_8788975 100M 45555M
chr3.b-_all_ 13445961 100M
70M30S
chr3.b-_all 25415471 100M

Table. 5 - In-silico generated paired-end reads aligned across both breakends (BKP1 and BKP2)
corresponding to a deletion. Each pair was aligned within a breakend except for PE chr3.b-
_al1_14110103 and chr3.b-_all_13445961, where both pairs were identified within the same
breakpoint. Read chr3.b-_all 25415471 had its pair outside the analyzed genomic region.

Regarding the insertion evaluated, this was supported by 36 split reads. We
could detect all of them mapped over at least one of the breakends. Moreover,
we calculated the fraction of split reads detectable depending on the nucleotide
region inspected. When we looked for these split reads evaluating only the
breakends positions (windows size 1) 36% of these split reads were not detected.
However, once we increased the inspected region up to 5 nucleotides, all of them
were identified as aligned in the BAM file. Although at some point we proposed

to calculate the VAF based on split reads and just looking into the breakpoint
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position (one nucleotide), we did not identify split reads for all SVs, neither

perfectly aligned across one precise genome nucleotide.

Finally, also on these three SVs, we investigate the size of the genomic region
over each breakend where mutated reads were aligned. We evaluated different
sizes up (right side) and down (left side) of both breakend positions in a window
of 1000 nucleotides. We measured the number of reads (total coverage) in each
nucleotide position within these genomic regions as well as the number of non-
altered reads, those not supporting the variant, and compared their values. For
all three structural variants, we could observe difference values between both
measures in a window of around 300 bp up and down the breakend genomic
positions (Fig 44). We assumed that the discrepancy in the number of total and
non-altered reads correlated with the number of aligned reads supporting the
structural variant detected. In fact, when analyzing other in-silico and real
structural variants, we could mainly identify tumor altered reads across this

windows size.

Breakpoint 1 (upstream)
ASOAP010

40 Y
i Mi |
tr LR W
30 v AL \
v X .

Number of reads

20

18876844 — 18877844 chrX

]
chr21 131913425 F—. 131914425

40
Coverage type

Total coverage 301\t

n it
Non-altered coverage 20 i

|
20 %0 209750
Breakpoint2 (downstream)

Figure 4426. In-silico generated tranlocation between chr21 1887784 and chrX 131913425 0 genomic
coordinates. Total number of reads aligned (blue) and reads not supporting the variant (yellow) are
represented in each plot, corresponding to one breakpoint or side of the variant. A range of 1000bp
upstream (left) or downstream (right) the structural variant was analyzed.
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Based on this observation, we estimated the variant allele frequency for both
breakends of a variant and considering diverse window sizes. As an example, Table
6 describes all genomic region analyzed for the in-silico selected translocation. For
this artificial variant we expected a frequency of 0,5 as it was clonal and
heterozygous. We estimated decreasing VAF values from 0,6 to 0,3 calculated on
regions ranging between 10 and 300 bp nucleotides up or down each breakend.
Therefore, results obtained on diverse window sizes suggested that the inspection
of larger regions increase coverage variability and noise underestimating the

observed frequency.

Windows size (bp)
BKP SIDE
10 50 75 150 300
BKP1 0,5553 0,4859 0,4295 0,3593 0,3171
BKP2 0,6841 0,6219 0,5772 0,4552 0,3547
mean 0,6197 0,5539 0,5034 0,4073 0,3359

Table 6 - Variant allele frequency calculated in each breakend (BKP1 and BKP2) of an in-silico
translocation considering different windows sizes. Mean value considering both breakends is
calculated in the last row.

Although expected frequencies (0,5) were obtained when analyzing smaller
regions, we decided to adjust and define an intermediate size of 100bp up or
downstream the breakends that matched with read length. Even the variability
seen, we did not encounter nucleotide positions within this window size with
outlier read counts compared to other positions on the same breakend, since all

counts were between the confidence intervals.
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5.1.2.3 Variant allele frequency estimation of artificial

structural variants

Based on studying coverage variability and the alignment of altered reads

through 162 somatic structural variants generated in the in-silico tumor sample,

we determined and proposed a strategy to calculate mutated allele frequencies

for large variants. Details regarding the decisions taken to end up with this

strategy are summarized below. From the results we got from the analysis of

structural variants in in-silico samples, we mainly considered three assumptions:

1)

We could generally identify all mutated reads aligned across SVs in a
windows of 300 bp correlating with the insert size of the sequence
fragments, up or down the breakpoint depending on each variant and
therefore we discarded the idea of looking for unmapped reads

supporting the variant,

Split reads partially unmapped could underestimate the count of
mutated reads in few nucleotides, so the number of reads aligned in
these positions should be corrected even the fragments were not

directly identified in the BAM file and,

Expanding the genomic region under analysis increases total coverage
variability, introduces noise, and not many mutated reads were added
when increasing the analyzed region. We decided to adjust and define

an intermediate size of 100 bp, which matched with read length.

We theoretically reconstruct structural variants depending on the type

(deletion, inversion, duplication or interchromosomal translocation) and based

also on the observed coverage distribution, we define the breakend side (up or

down the nucleotide position) where both total and mutated reads should be

counted.
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We then calculated the variant allele frequencies for both breakends of each
in-silico generated SVs. The strategy we followed is described in the methods
section (see 4.1.4.2). Variant allele frequencies calculated for each breakend of a
structural variant were slightly different. Variation between VAF breakends was
around 0,05 (median) for in-silico deletions, 0,056 and 0,13 in inversions and
translocations. Larger differences were observed in translocations were in few
variants, the frequency observed in each of their breakends was more than 0,4

divergent (Supplementary Figure 2).

Finally, we inferred variant allele frequencies for in-silico structural variants
as the average between its breakends frequencies. Variant allele frequencies
range from 0,097 to 0,5 even if the expected value was 0,5 for all of them (Fig 45).
The median VAF observed when analyzing all in-silico deletions (n=45) was 0,322
and 0,336 for intrachromosomal translocations (n=97). Frequencies calculated for

inversions (n=20) seem more underestimated as the median observed was 0,252.
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Our strategy seemed to work on an in-silico sample where all structural
variants were clonal and heterozygous. We could calculate VAF around 0,5,
expecting variation as it has been observed for clonal single nucleotide variants.
Although the generation of this artificial sample was performed considering
typical sequencing and alignment issues, real tumor genomes are likely more
complex. Furthermore, we could not test this strategy on known subclonal

variants.

5.1.3 Applying the define methodology to longitudinal CLL

samples: case 63

Although the entire CLL longitudinal cohort was studied, we mainly focused
and described the analysis on case 63. Normal and tumor samples collected for
this case had good purity and quality values. Moreover, we had longitudinal
samples of three different time points including pretreatment, post treatment

and Richter’s transformation. Therefore, it was an interesting case to use as pilot.

5.1.3.1 Somatic structural variant landscape

The strategy defined in the present study to identify somatic structural
variants across CLL longitudinal samples (see methods 4.1.3.3 and 4.1.3.4) was
applied to the entire cohort, which comprises 13 cases. Results were published by
Nadeu et al. in 2022 together with an extensive characterization of the genomic,
transcriptomic and epigenomic profile of chronic lymphocytic leukemia (3). In the
presented work, case 63 was used as a pilot case to continue with the subclonality
study. Structural variants were identified for all its tumor genomes

(Supplementary Table 1).
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In the two samples collected at the first time point (T1-PB and T1-LN) four
inversions were identified (See Fig 46, circos representation at T1). Samples T1-
PB and T1-LN corresponding to pretreatment and collected at the same time
point, had the same somatic SVs even though they coincided to different
topographic tumor sites including peripheral blood and lymph node respectively.
Contrary to other leukemias (194,195), CLL cells are known to reciprocally
recirculate between the PB and LN to favor their maintenance and proliferation
through the crosstalk with nonneoplastic cells on the Ilymph nodes
microenvironment, so genomic similarities between distant CLL cells are
expected. Minimal spatial diversification seems to occur between PB and LN
suggesting the genomic profile of CLL remains relatively stable in diverse
topographic sites before treatment. Samples collected at T1 from CLL case 63

confirmed this low genetic variability across different CLL cell locations.

Seven SVs, including all the inversions detected in T1 were identified in the
tumor genome corresponding to the second time point (T2), and 27 SVs along
with the previous seven were identified in the last collected time point (T3) (See
Fig 46, circos representation at T2). One of the somatic inversions was detected
with high quality in T3 and then rescued in T2 even it was low supported by tumor
reads. However, in T1 any tumor read was alighted through variant. In summary,
we observed an increase of somatic mutations acquired during time and
correlating with the progression of the tumor. The significant increase observed
in T3(See Fig 46, circos representation at T3) correlated with the assumption that
Richter transformation might result from the accumulation of novel genetic
lesions that drive clinicopathologic shift and change the course of the disease.
Richter transformation is known to be marked by a profound genomic instability

(196-198).
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Considering the 27 unique and identified structural variants, 8 of them
involved breakends in intergenic regions whereas for the remaining SVs at least
one break was located within a protein coding gene. Interestingly both inversions
detected in chromosome 11 and in all tumor samples, involved the ATM cancer
gene, which is not only a driver in chronic lymphocytic leukemia but also in DLBCL,
the tumor type in which CLL is transformed when developing RT. The presence of
DLBCL driver genes mutated at diagnosis and prior to treatment could suggest

predisposition of this CLL tumor to develop Richter transformation.

Two more inversions in chromosome 13 acquired in T2 and T3, as well as one
deletion in chromosome 9 only detected in T3 involved DLBCL driver genes
(FOXO1, BRCA2, CDKN2A, CDKN2B, MTAP and PTPRD)(Supplementary Table 1).
(199-201).
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Figure 46. Somatic structural variants identified in case 63. Above, three circular representations of the human genome indicating(inside) the location of

SVs detected in each tumor type. Lines in blue represent inversions, red are deletions, green are duplications and yellow translocations. Below, an schema

of the patient follow-up of.
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5.1.3.2 Frequency and evolution of structural variants during

tumor progression

Through manual inspection of the genomic regions affected by structural
variants in both in-silico and tumor genomes, and curated detection of mutated
reads across the aligned sequences, we suggested a strategy to infer the variant
allele frequency for SVs. Therefore, we applied this strategy (see Methods 4.1.4.3)
on 36 previously identified somatic structural variants in tumor genomes from
pilot CLL case 63. Across all these variants, four were identically detected in all
samples, three were found in tumor genomes collected after treatment (T2 and
T3), and the remaining were only present in the last tumor sample (T3). Note that
we did not infer the frequencies of six SVs including inversions and deletions,

identified in samples T2 and T3 due to their short length (< 1000bp).

Variant allele frequencies were calculated separately for both breakends of
each structural variant. After that, we could see slight differences lower than
0,446 (average 0,0962) (Supplementary Table 2, column Difference VAF) between
frequencies calculated on each side of the structural variant. The clonal inversion
acquired in chromosome 11 across 106.417.594 and 110.207.731, detected in all
tumor genomes of this case, had the highest differences when comparing both
breakend frequencies in all four longitudinal samples. Interestingly, this variant
linked two genomic locations covered by repeat sequences, a LINE-1 together
with an Alu. Structural variants such as SV_309, SV_85 and SV_86 identified within
regions affected by different copy number alterations (one breakend (bkp) within
a deletion and the other bkp in a duplication) tended to have higher differences.
Contrary, breakpoints composing SVs identified within regions not affected by
CNVs or equally affected, had similar VAFs. Therefore, differences between
breakends of an SV could be due to a challenging and difficult genomic region for

performing the sequencing alignment of a large variant. The number of SVs
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evaluated was too low to characterize and confirm an enrichment of a specific

group of SVs with higher differences across their breakends.

Although we expected variant allele frequencies of around 0,5 for
heterozygous and clonal variants, the frequencies (Supplementary Table 2,
column Average VAF) obtained for the four inversions detected in all tumor
genomes varied between 0,20 and 0,68. Moreover, their frequencies also
changed over time. The presence of these inversions in all tumor samples
collected at different time points suggested that these structural variants were
clonal and present in all tumor cells expecting a VAF around 0,5. However,
inversions in chromosome X had VAFs of 0,3 suggesting subclonality on the first's
samples (T1-PB, T1-LN) but increase up to 0,68 after the first treatment was given
(T2 and T3).

Finally, considering the VAF, the purity of each sample (0,977 T1-PB, 0,96 T1-
LN, 0,97 T2 and 0,952 T3) and copy number alterations previously detected in
these tumor genomes, we calculated the cancer cell fraction of each breakend
(Supplementary Table 2). We expected values around 1,0 for those clonal
structural variants present in all tumor cells. Few structural variants identified in
chromosome 4 and 11 in the T3 tumor sample were located in duplicated genomic
regions where three copies of the DNA were detected. Large deletions (CNV = 1)
were also identified in other genomic regions involving chromosomes 9, 11 and
13. We obtained the cancer cell fraction of 36 structural variants present in one
or more longitudinal tumor samples from case 63. Similar CCFs were obtained for
SVs identified in both T1 samples corresponding to different tissues. The two
inversions involving ATM gene in chromosome 11 appeared as clonal since they
had a CCF of around 1,0, suggesting their presence in all tumor cells and in all
samples (Supplementary Table 3). Contrary, the number of cells acquiring the two
inversions on chromosome X had an increased in the cancer cell fraction during

time and treatment exposure. Whereas on the first T1 samples these inversions
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seem to appear only in half of the cells, after chemotherapy and Richter’s
syndrome development, their CCF was around 1,3. Structural variants acquired
once the patient developed Richter’s syndrome, had lower CCF and therefore

they were supposed to be subclonal and just acquired by a group of cells.

As for single nucleotide variants, VAF and CCF combined with longitudinal
samples collected at different time points during the development of the disease,
were used not only to reconstruct tumor heterogeneity but also the evolution of

cell populations during time (Fig 47).

1,5 - —
11
051
w 0 T - T -
Q T1-LN T2 T3
(@]
1,5
1]
0,5] -
ol eee—— |
T1-PB T2 T3
Sample
Present in all samples @ Afterfirst treatment Richter’s transformation
(DLBCL)

Figure 4728. Cancer cell fraction obtained for SV identified in case 63. Evolution is shown
from T1 (LN above, PB below) to T3. Each dot-line represents one structural variant, and
each CCF calculated in every sample. Variants are colored depending on the samples were
identified; all tumor genomes (orange), those (T2 and T3) collected after the first treatment
was given (pink) or only once the tumor transformed into DLBCL (blue).

Discussion of chapter 1 starting in section 6 (page 251).
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5.2. Identification of somatic processed pseudogenes in cancer

and evaluation of their functional impact

Chapter 2
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5.2.1 Analysis of a lung squamous cell carcinoma genome

As mentioned, somatic PPs are formed through retrotransposition and
random integration within the genome, generating complex structural
alterations. These variants are not uniformly and precisely detected by variant
calling algorithms. Therefore, the identification of PPs from SVs is challenging and
demands new strategies that can distinguish these events from other alterations

captured in NGS data.

To start with the identification of somatic processed pseudogenes we first
explored the structural variation landscape of one tumor genome from a patient
diagnosed with lung squamous cell carcinoma. To ensure the presence of
processed pseudogenes and to calibrate our protocol, we selected among those
LUSC patients with more somatic structural variants detected, expecting a higher

probability of identifying SVs supporting processed pseudogene formation.

5.2.1.1 Identification of somatic structural variants supporting

PPs formation

The selected tumor genome was previously analyzed with the official
PCAWG variant calling pipeline (202). This analysis allowed the detection of 515
somatic SVs acquired on the tumor genome and therefore not present on its

matched normal DNA.

Among this set of 515 SVs, we then looked for mutations where at least one
breakpoint position corresponds to an exon, suggesting the insertion point of a
candidate processed pseudogene (see Methods section 4.2.2.1.1). A total of 164
SVs fulfilled this requirement after removing 6 variants annotated within long-
noncoding RNA genes. This set of variants involved 97 different coding genes, and
63,9% of them were affected by more than one structural variant. Genes including

DAPL1, NTS, CNIH4 and TOPIMT not only had BKPs supporting an insertion point
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but also variants between different exons of the source gene suggesting splicing
events across their coding region, as expected when mMRNA copies are

retrotranscribed.

5.2.1.2 Reconstruction of CNIH4 pilot processed pseudogene

After the first genomic exploration of one LUSC tumor genome to select
structural variant supporting PPs formation, we proceed with the reconstruction

of one candidate PP observed.

Among those source genes affected by more than one structural variant,
CNIH4 had two breakpoints between an exon of the source gene and another
gene (receptor gene), and two more BKPs joining two different exons of CNIH4.
Evenmore, breakpoints supporting the insertion points were located in both the

first and the last exons of the source transcript isoform.

Using the genomic coordinates provided by the four breakpoints affecting
this gene (Table 7) we reconstructed the candidate processed pseudogene. To do
so, we looked for the exact location of each genomic position within all (6)
transcript isoforms of CNIH4 and through manual exploration with the UCSC
Genome Browser. We expected to reconstruct an intron-less sequence joining all
the reference exons of at least one specific transcript and inserted within the
receptor region. However, independently of the gene isoform we inspected, one
or two different exons appeared to be deleted (Fig 48). As an example, CNIH4
isoform 2 was reconstructed and inserted on chromosome 7 but its second exon

was not present within the cDNA sequence (Fig 49).
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SV_ID CHR POS DIST GEN EXON SV_ID CHR POS DIST  GEN EXON
251 1 224544530 22 CNIH4 YES 252 7 158934807 - = NO
269_1 1 224544660 0 CNIH4 YES 269_2 1 224553578 3 CNIH4 YES
435_1 1 224553694 G § CNIH4 YES 435_2 1 224563495 2 CNIH4 YES
455_1 1 224563738 0 CNIH4 YES 455_2 7 158934829 = = NO

Table 7. Breakpoints mapping CNIH4 candidate pseudogene. Four somatic structural variants were
identified by variant callers affecting CNIH4. Two of them (SV_ID: 25 and 455) suggested two
insertion points since they involved an exon of the source gene (CNIH4) and a new loci (chr 7). The
remaining SVs (269 and 435) represented the absence of intron sequences.
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Figure 48. Breakpoints location considering six RefSeq Isoforms of CNIH4. Dashed lines
represent each breakpoint (_1 and _2) corresponding to a somatic structural variant (shown
in Table 7). Grey exons and introns are those that seemed to be deleted due to the presence of
an SV joining two exons of the source gene.
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Figure 4929. Proposed reconstruction of a candidate pseudogene identified in one
LUSC tumor based on detected somatic SVs. The source gene CNIH4 (isoform 2) is
retrotranscribed and inserted within the second intron of VIPR2. Not only intron
sequences are missing bu t also the intermediate exon 2.

Considering low precision on identifying the exact genomic position of a
structural variant by variant calling algorithms, we next inspected the DNA
sequence manually. In order to verify the automatic search based on the VCF
predictions, we looked for supporting sequencing reads by analyzing the tumor
BAM file corresponding to this LUSC patient. Tumor reads were first extracted
from the source gene region and realigned to reference RNA sequences. This step
allowed us to observe split reads mapping all splice junctions from exon one to
exon five of the CNIH4 isoform 1, showing the absence of all introns and the
presence of the full transcript, which is what we expect for processed
pseudogenes. Moreover, split reads aligned across the first CNIH4 exon and
chromosome 7, together with paired-end reads where one read mapped CNIH4,
and its mate mapped the same receptor location confirmed the insertion of the
cDNA. The fact that we observed this retrotranscribed mRNA inserted into the
genome, allow us to confirm the formation of the processed pseudogene, and

refuted RNA contamination in our genome sample (Fig 50 and Fig 51). Lastly,
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reads aligned to the 3’ end of the source gene showed the presence of a poly-A

tail, another feature of a processed pseudogene.

To further verify that this processed pseudogene was acquired somatically,
we looked for split reads and paired-end reads on the normal genome and as
expected, no evidence was found, confirming that the cDNA sequence obtained

from the reverse transcription of CNIH4 was inserted during tumor development.

This first and detailed analysis of a particular processed pseudogene allowed
us to later define and calibrate our protocol to identify PPs on all ICGC-PanCancer

genomes.
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Figure 50. DNA reads from tumor WGS. Paired-end reads (grey lines) and split reads (dotted blue
lines) reveal all exon-exon junctions of CNIH4 isoform 1 together. Tumor aligned reads also support
the PP insertion in chromosome 7.
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Figure 5130. Somatic PP on a LUSC genome. Reconstruction of CNIH4 pseudogene using
WGS data. All five exons from transcript isoform 1 of the source gene are inserted within the
second intron of VIPR2. It also includes part of the 5' UTR and the polyA tail.
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5.2.2 Automatic search of PPs across all LUSC tumors based on

diverse criteria combinations

To define an automatic protocol based on the search of somatic structural
variants, we considered three different criteria, and we combined them to get
diverse datasets of candidate processed pseudogenes. Then, we manually inspect
them to evaluate each criteria combination and redefine the final search strategy.
In this step, we inspected 48 tumor genomes corresponding to the entire PCAWG

subcohort of patients diagnosed with lung squamous cell carcinoma (203).

5.2.2.1 Dataset 1: evidence of one insertion point

Following the criteria described on the methods section, we obtained for the
first dataset (dataset 1.A) a list of 1291 candidate pseudogenes including all 48
LUSC patients (See Dataset 1.A on Table 8). For this dataset, only one structural
variant suggesting the insertion of a PP was necessary to count for a candidate PP.
A total of 827 candidates among this dataset were observed inserted within the
same chromosome of the source gene and many of them, also near its genomic
location. As an example, we manually inspected few of these candidate PP
including LPHN3. For this candidate, we could not identify split reads confirming
splice junctions on the source gene were joined. Furthermore, the breakpoint
representing its insertion involved an exon with a noncoding region of the same
source gene suggesting a partially deletion of LPHN3 instead of the insertion of a
processed pseudogene. To avoid mistaking PP by intrachromosomic
translocations, evidence of PP insertion was only considered if the SV affects an
exon and any other region of the genome, with a distance larger than 100Kb if it

only involves one chromosome.

We applied this new condition to the previously defined criteria and
recalculated the number of candidates processed pseudogenes for this first
dataset (dataset 1.B). The number of candidate PP decreased to 806 in this
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dataset, but the same number of patients (48) still retained at least one processed
pseudogene. However, identifying PPs based only on one insertion point was
overly permissive, and therefore not exclusive enough to define their formation.
This criterion includes in the search so many other genomic events acquired in

the tumors such as translocations.

5.2.2.2 Dataset 2: evidence of one insertion point and splicing

events

After analyzing the first dataset, we kept applying additional criteria as
evidence for somatic PP, by including the analysis of splicing events within the
insertions. To do so, we combine criteria 1 and 3 (see Methods 4.2.2.2.2) to select
supporting structural variants. Moreover, considering the results obtained for
dataset 1, intrachromosomic translocations suggesting the insertion of a cDNA
were also filtered out if the distance between both genomic coordinates was

shorter than 100Kb.

For this second dataset (dataset 2) we obtained a list of 50 candidate PPs
distributed across 21 out of 48 donors (See Dataset 2 on Table 8). We manually
inspected 17 candidates and only 6 were confirmed as processed pseudogenes,
including C6orf48, C120rf57, DYNLL1, NUFIP2, PLEKHAS and RSL1D1 as the source
genes. For the remaining 11 events, we could not find split reads between splices
junctions of any of their transcript sequences. Therefore, the structural variants
previously selected from the VCF suggested recombination between two exonic
regions of the gene but could not confirm the presence of an intron less cDNA
sequence. On the other hand, structural variants joining this same gene with any
other genomic location suggested the recombination event was also translocated
(See BTF3 example on Table 8). Moreover, we could not identify poly-A sequences

together with the candidate PP within the tumor aligned sequences.
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5.2.2.3 Dataset 3: evidence of two insertion sites

The third dataset of candidates we explored (dataset 3) was based on the
search of two different structural variants for each candidate PP indicating both
insertion sites of the cDNA (criteria 2). To pair supporting SVs as the insertion sites
of one candidate, both variants must be between an exon of the same source
gene, and any other genomic location. Following this criterion, we counted 135
candidate PP acquired in 39 different donors (See Dataset 3 on Table 8). Among
these candidates, 75% of the events were insertions of only one exon of the
source gene. Therefore, although both insertion sites were validated in most, we
could not confirm these cases were due to retrotransposition or the translocation

of a particular single exon gene (See PPT1 example on Table 8).

Without considering one exon candidates, we selected 12 events and
manually inspected them. Only three (CAPN2, CCDC47 and NOL7) out of 12 were
confirmed as processed pseudogenes by looking at the tumor sequence. Split

reads across splice junctions of the source genes were also found.

5.2.2.4 Dataset 4: evidence of both insertion sites and splicing

events within the source genes

Combining the most conservative criteria we end up with a reliable set of
candidates processed pseudogenes (dataset 4). These PP show both, evidence of
insertion represented by two insertion sites (criteria 2) and evidence of splicing
events between at least one exon-exon junction of the source gene (criteria 3).
Since one splicing event was needed to select candidate PP, the minimum length
considered for this dataset would cover at least two exon-long PP. This
conservative dataset was represented by 26 candidate PP identified among 14
LUSC patients (see Dataset 4 on Table 8). From this collection, we could not find
supporting reads for only one candidate (CD177) since a high number of possible

insertion sites due to repetitive sequence were observed on the tumor aligned
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reads. Therefore, manual inspection could confirm 25 out of 26 events as true

somatic processed pseudogenes.
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DATASET CRITERIA CANDIDATES FALSE POSITIVES

Dataset 1A One structural variant 1291 Structural variant between an exon of
CRITERIA 1 suggesting one insertion candidate LPHN3 (suggested source gene) and a
point. s non-coding region of the same gene
48 LUSC s
s
tumor —
genomes
Dataset 1B One structural variant 806
CRITERIA 1 suggesting one insertion candidates
point. 48 LUSC
tumor
genomes

*If the variant is
intrachromosomic, distance
between the exon and the
insertion region must be larger

than 100Kb.
Dataset 2 Structural variants 50 Reads supporting splicing events
CRITERIA 1 + supporting one insertion candidate were not identified, and SVs
CRITERIA 3 point and at least one sin21 suggested recombinarion between
splicing event. LusC two not contiguous exonic regions.
” tumor
genomes 8Py B2,
+ [
- ! ) |
Dataset 3 Two structural variants 135 Only one exon of PPT](source
CRITERIA 2 supporting both insertion candidate gene) was inserted.
sites of a candidate PP. sin 39
Lusc BKP1 P2y
- tumor ! H
genomes =
e
i PeTI i
Dataset 4 Two structural variants 26
CRITERIA 2 representing both insertion candidate
+ CRITERIA 3 sites and one SV supporting sinl4
one exon-exon junction. Lusc

= wE tumor
genomes
+

BB [ona] o

Table 8. Dataset definition based on diverse criteria combinations. Summary and schema of
the searching rules. Number of candidates identified in each dataset are shown, together
with examples of false positive or doubtful results (column 4).
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5.2.3 Identification of somatic processed pseudogenes in all

PCAWG tumor genomes

The results obtained after analyzing LUSC patients through diverse
automatic searches combined with manual inspection of selected candidates
were used to define the final identification strategy. As mentioned on the
methods section, we applied a combination of re-defined criteria across the
somatic structural variant catalog of all PCAWG patients to get a set of candidates
processed pseudogenes. In general terms, this final criterion defined candidate
PPs if they were supported by both insertion points. Later, we manually validated
these candidates to identify somatic processed pseudogenes in a more

conservative manner.

The application of this final protocol (see Methods section 4.2.2.2.3) across
2589 PCAWG tumor-normal sample, resulted in evidence for 433 somatic
retrotranscription and integration events of coding mRNAs across 250 tumor
genomes and 248 patients, ranging from complete mRNA copies of the source
gene to fragments of different sizes, with 260 of them only consisting in one exon
copy. Based on the genomic coordinates observed from their supporting somatic
structural variants, 51% of candidate PPs appear to be inverted cDNA sequences

compared to the strand of the host gene or insertion region.

Candidate processed pseudogenes were identified in 28 out of 34 tumor
type-subtypes that were studied and were not equally distributed across them.
Notably, most of these candidates (74 of 433) were acquired in pancreatic
adenocarcinoma (PACA) samples sequenced in Canada and Australia. Although
we studied 240 tumor genomes corresponding to PACA, only 22 of them had
acquired at least one candidate PP, being the donor PCSI_0231 the PACA tumor
with the highest number, 47. Pancreatic adenocarcinoma was followed by lung

squamous cell carcinoma (LUSC) (69 candidate PPs), head and neck squamous cell
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carcinoma (HNSC) with 46 identified candidates, esophageal adenocarcinoma
(ESAD) (45), breast cancer (BRCA) (33) and ovarian cancer (OV) (32). However,
seeing the number of patients analyzed for each tumor type, LUSC, HNSC, ESAD
and STAD show the highest frequency among patients (50%, 36%, 34%, 34%

respectively) and within them, a higher rate of PP formation (Fig 52).
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Figure 5231. Percentage of donors with at least one somatic PP identified in its tumor genome
across all PCAWG tumor projects.

In most of the analyzed donors (188/248) we could only identify one
candidate processed pseudogene. However, the top 5 patients with the highest
number of acquired candidate PPs range between 10 and 47 somatic events.

These patients were diagnosed with PACA (1 donor), LUSC (2) and HNSC (2).

Whereas all 433 source genes producing somatic PPs were not significantly
enriched in any cancer related function, we could identify up to 26 of them
generating PPs in different samples, and across different tumors, including the
Beta-2-Microglobulin (B2M) and the Myosin heavy chain 9 (MYH9), both
described as cancer driver genes (www.intogen.org). Interestingly, the TRMT10C
gene which codes for TRNA Methyltransferase, was found to generate up to six

different PPs across six LUSC, HNSC and GACA (gastric cancer) genomes.
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As it was observed for germline and somatic PPs, the integration of somatic
candidate PPs found across all tumor types, appears to be enriched in more
accessible parts of the chromatin, like intronic regions, where we identified 49%
of these cases. Insertions were allocated in all chromosomes in different
proportions being chromosome 2, 3 and 1, the chromosomes with more
candidate PP insertions and, chromosome Y the one with only one candidate
event. Only 20% of the somatic candidate PPs identified were intrachromosomic

insertions.

5.2.3.1 Manual validation of candidate PPs previously identified
across PCAWG cohort

To finally get a conservative and validated set of somatic processed
pseudogenes, we looked for tumor supporting reads analyzing the genomes of all
433 candidates obtained after applying the final strategy explained in section

4.2.2.2.2 and across all PCAWG tumor genomes.

We could identify supporting reads for both insertion sites for 69 out of 433
candidate pseudogenes. For 45 of them (Table 9), evidence of splicing was
validated, this being the last set the most accurate collection of somatic processed

pseudogenes.

Validated processed pseudogenes (45 in total) were distributed across six
tumor types including ovarian cancer (1 PP insertion), pancreatic adenocarcinoma
(2), colon adenocarcinoma (4), esophageal adenocarcinoma (7), head and neck
squamous cell carcinoma (7) and lung squamous cell carcinoma (25). Similarly, to
the results obtained after evaluating candidate PPs, 40% of these somatic PPs
were inserted within an annotated gene and only B2M was identified as the
source gene in two different events. Five processed pseudogenes result from
cancer genes including B2M, MAX and MYH11 that are tumor suppressor genes,

and KTN1 which is an oncogene. Insertions were only identified in 17 different
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chromosomes, chromosome 7 being the sequence with the highest number of
insertions, followed by 2 and 3. Only two of these retrotransposed insertions were

intrachromosomic.
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PCAWG Donor ID Source Cancer Insertion RNA

Project gene gene site Gene evaluation
COAD-US 613aa3e8-a70b-45a9-9c08-0c2346c8bf00 C2orf69 Chr5:98157631-98157718 Non conclusive
COAD-US 613aa3e8-a70b-45a9-9c08-0c2346c8bf00 HNRNPM Chrx:99988609-99988620 Non conclusive
COAD-US 613aa3e8-a70b-45a9-9c08-0c2346c8bf00 LDHB Chr5:133665049-133664911 CDKL3 Non conclusive
COAD-US 613aa3e8-a70b-45a9-9c08-0c2346c8bf00 PPP1CA Chr6:82636007-82636017 Non conclusive
ESAD-UK  OCCAMS-AH-096 B2M TSG Chr2:65746571-65746585 No RNA-seq DATA
ESAD-UK  OCCAMS-AH-047 CLUAP1 Chr15:91625252-91625267 No RNA-seq DATA
ESAD-UK  OCCAMS-PS-012 DDX18 Chr2:70601348-70601364 No RNA-seq DATA
ESAD-UK  OCCAMS-AH-091 LRRC31 Chr2:165637601-165637674 COBLL1 No RNA-seq DATA
ESAD-UK  OCCAMS-ZZ-009 LYz Chr5:147527887-147527897 No RNA-seq DATA
ESAD-UK  OCCAMS-WG-019 RPS27L Chr3:168507166-168507153 EGFEM1P No RNA-seq DATA
ESAD-UK  OCCAMS-RS-024 SH3KBP1 Chr11:12104723-12104737 No RNA-seq DATA
HNSC-US  64bb5550-2735-4401-a0db-58ec1020a32d ALDH1A1 Chr3:188900757-188900716 TPRG1 Non conclusive
HNSC-US  8c238d30-df8e-4e6b-98fc-21696269a294 ANAPCI13 Chr8:89993268-89993312 Non conclusive
HNSC-US  d89b1fd6-bef4-4803-8ed3-3b442be600b6 GNPNAT1 Chr1:156009767-156009727 UBQLN4 Non conclusive
HNSC-US  8c238d30-df8e-4e6b-98fc-21696269a294 KRT17 Chr11:127262292-127262335 Non conclusive
HNSC-US  fafd6f5b-1d76-4537-bd1c-eObd7b4e2166 KTN1 oncogene | Chr4:95176296-95176410 SMARCAD1 | EXPRESSED
HNSC-US  64bb5550-2735-4401-a0db-58ec1020a32d MAP3K4 Chr4:95176296-60042427 Non conclusive
HNSC-US  8fc1flbe-d2d5-4b3a-9973-f4d964018beb NCAPH Chr1:163628659-163628640 Non conclusive
LUSC-US  e6b72c24-1607-43b9-8b8a-7bf83eea5895 ATP6VOC Chr7:128608087-128608087 TNPO3 Non conclusive
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LUSC-US
LUSC-US
LUSC-US
LUSC-US
LUSC-US

1f6b2aca-7357-40d1-ba7a-99227d9900a2
9afbedde-8cdc-4f49-84€9-bal053b5b3ca
9afbed4de-8cdc-4f49-84e9-bal053b5b3ca
19f0cb8c-2e57-4310-967f-a9890f1605db
0398eael-7216-4595-80a5-6b117d96e070
9afbed4e-8cdc-4f49-84e9-bal053b5b3ca
6fd72426-f6c8-47ca-a500-d5d3600b9b15
b913d254-8307-4b8a-8313-d978e32bb38f
422a46b2-a67c-4a7e-923f-9b651ced96f8
0398eael-7216-4595-80a5-6b117d96e070
e6b72c24-1607-43b9-8b8a-7bf83eea5895
Oe2ee54a-51¢9-4868-842d-a2alclcfb016
9afbed4e-8cdc-4f49-84e9-bal053b5b3ca
b5e2cbda-bbfa-4ef8-a9c4-cb978befob23
6fd72426-f6c8-47ca-a500-d5d3600b9b15
lee543d5-b8c0-4f79-8373-6bb6319f2ee2
9afbed4de-8cdc-4f49-84e9-bal053b5b3ca
9afbed4de-8cdc-4f49-84e9-bal053b5b3ca
3666bc65-8e40-409e-9a1f-41583dd6d978
9293e197-e38a-4e19-a7d0-1b45d1ad48bd
b5e2cbhda-bbfa-4ef8-a9c4-ch978befob23

B2M
Clorf131
CNIH4
COX5A
CYFIP2
DAPL1
EIF2S1
EIF5B
FAM210B
FGGY
GLRX5
KRT5
MAX
MED10
MYH11
MYL9
NTS
PSMA1
RTF1
SPATS2L
SSBP1

TSG

TSG

TSG
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Chr14:64088805-64088793
Chr2:45310258-45310311
Chr7:158934807-158934829
Chr3:132099251-132099231
Chr7:88489076-88488997
ChrX:84343761-84343733
Chr7:109918576-109918576
Chr8:119911085-119911171
Chr12:27139136-27139146
Chr22:36471006-36471063
Chr2:96832304-96832242
Chr9:103617685-103617686
Chr3:185087525-185087489
Chr8:131232562-131232444
Chr7:97399222-97399198
Chr4:2331210-2331241
Chr15:77767421-77767434
Chr16:1781321-1781328
Chr7:106287513-106287489
Chr2:136784525-136784508
Chr1:226325706-226325753

WDR89

VIPR2

ZNF8048B

APOOL

TM7SF3

MAP3K13
ASAP1

ZFYVE28
HMG20A
MAPKS8IP3

EXPRESSED

Non conclusive
EXPRESSED

Non conclusive
Non conclusive
EXPRESSED

Non conclusive
Non conclusive
Non conclusive
Non conclusive
Non conclusive
Non conclusive
Non conclusive
EXPRESSED

Non conclusive
Non conclusive
EXPRESSED

EXPRESSED

Non conclusive
Non conclusive

Non conclusive




LUSC-US  422a46b2-a67c-4a7e-923f-9b651ced96f8 TFDP2 Chr12:116966949-116966863 Non conclusive
LUSC-US  9afbedde-8cdc-4f49-84e9-bal053b5b3ca TOPIMT Chr6:88791065-88791366 Non conclusive
OV-AU AOCS-159 PFDN2 Chr6:146295348-146295371 Non conclusive
PACA-CA  PCSI_0231 PERP Chr1:111835475-111835492 CHIA No RNA-seq DATA
PACA-CA  PCSI_0231 PHAX Chr4:72593135-72593118 No RNA-seq DATA

Table 9 - Validated somatic processed pseudogenes. For each somatic event, source gene generating the PP, its classification depending on the Cancer Gene
Census database, and the genomic coordinates of the insertion site and their corresponding gene name are described.
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5.2.4 Evaluation of potential PP-host gene fusion transcripts

Almost half of the identified candidate processed pseudogenes were
inserted within annotated genes. Although, the likelihood that a particular PP
integrates into a region with transcriptional activity and in the right orientation is
low, previous studies have shown a fraction of germline and somatic human PPs

to be expressed.

As a first approximation to study the potential functional impact of somatic
PPs identified across all tumor types, we explored evidence for expression using
RNA-seq data available for 144 samples containing 257 previously identified

candidates (51% inserted in intergenic regions, 48% inserted within genes).

From this analysis, we could identify read support (split and paired-end
reads) for the expression of 17 PPs, across 14 different samples and 6 different

tumor types (BRCA, HNSC, LUSC, OV, SKCM and STAD) (Table 9).

Whereas three of these expressed PPs were located within intergenic
regions, the majority (14) were inserted in different parts of genes, generating
diverse forms of PP-host gene fusion transcripts with a variety of potential forms
of functional interactions. An example is shown in Figure 53. Four of these PPs
were inserted outside the coding region of the host gene, but the remaining ten
directly affect the coding potential of genes, as we could infer from the RNA-seq
data. Seven PPs out of 14 were inserted in the opposite reading direction

compared to their host gene.
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RNA-sequencing
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Figure 53. Chimeric DAPL1-APOOL transcript. DAPL1 (source gene) was found as a somatic PP
inserted into exon nine of APOOL, on the tumor DNA sequence of a LUSC donor. The expression of
the fusion transcript was confirmed with tumor RNA-seq from the same patient. The figure shows
the split reads (black) mapping both transcripts together as a chimeric, and its sequences.

Considering supporting reads and performing an in-silico translation of the
sequence, the reconstruction of the potential PP-host gene fusion transcripts
predicts that the major form of PP insertion would generate a premature stop
codon within the coding region of the host transcript (Fig 54). This event could be
generated either because of the presence of intronic sequences, or because the

PP integrated in the opposite direction of the host gene.

Alternatively, we cannot discard that these inverse PP integrations generate
antisense transcripts (partial or complete, like for B2M) that could interact, in this

case, with the transcript of the source gene.

Discussion of chapter 2 starting in section 6 (page 254 ).
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ADAR_- FAM189B fusion transcript

-_- SHC1 - TOP2A fusion transcript
o oo _ | =
APOOL - DAPL1 fusion transcript ADAR At 5100
i N D8O - FAM134B fusion transcript
el=e El APOOL 9 SHC1

~
aro wion

WNK4 - RND2 fusion transcript \

SMARCAD1 - KTN1 fusion transcript
TVP23A - CIITA fusion transcript

\ \ / 25 -
-- TVP23A - g

4
wG s100

SMARCAD1

MAPKB8IP3 - PSMA1 fusion transcript

FF = MAPKSIP3

| ASAP1 - MED10 fusion transcript

_ ASAPT -T-'“-

10

HMG20A - NTS fusion ranseript  HAG20A

£

WDR89

\ DMRT1 DMRT1- UTP20 fusion transcript
'WDR8S - B2M fusion transcript ) -....-_-
NFRKB
—_— "‘“-_ """ NFRKB - FEN1 fusion transcript o

Figure 54. Host gene and processed pseudogene fusion transcripts including 17 somatic events. Circos represent the human reference genome with all
chromosomes. Arcs with arrows within this circos correspond to a somatic PP, connecting the source gene (underlined and bold) with the corresponding integration
site. All except 3 events are inserted within genes. For these 14 PPs, the predicted fusion transcript structure is shown in the outermost layer of the figure. Coding
potential is shown below the fusion transcript representation. Start codon is indicated as ATG and termination as STOP. Dots represent uncertain termination
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5.3. Identification and characterization of novel candidate
micropeptides using publicly available genomic and

transcriptomic cancer data

Chapter 3
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Study 1: Catalog of candidate micropeptides for
MS/MS searches

5.3.1 Predicting non-reference-based novel transcripts for

pancreatic adenocarcinoma samples

The results of these sections are framed within one of our objectives related
with the definition of a new catalog of candidate micropeptide sequences for
mass-spectrometry searches and interpretations within a Pancreatic cancer

study.

Diverse datasets of small open reading frames have been obtained from
computational and experimental approaches and are publicly available.
Nevertheless, most of these sequences have been identified translating
annotated and known human transcripts. Moreover, it is known that transcription

and translation are tissue specific.

To end with a more specific cancer-type dataset and to observe novel
micropeptides within non-annotated transcripts, we performed de novo
transcriptome assembly from six independent RNA-seq samples from pancreatic
adenocarcinoma human tissue. Our approach to generate these micropeptide-
enriched transcriptomes is based on the use of StringTie, a software that
generates transcript assemblies for different needs and scenarios. Stringtie
predicts transcript’s start and stop coordinates based on sudden drops in
coverage of the aligned reads. Since different optional parameters can be set up
when running StringTie, we first tested the different possibilities for processing

the data and selected the one with more indications of micropeptide enrichment.
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5.3.1.1 Calibrating StringTie

With the aim of finding the best set of parameters and threshold for StringTie
according to our needs, we generated a testing scenario, where we experimented

with different settings.

To predict transcripts based on aligned read clusters, StringTie uses a default
minimum size of 200 nucleotides length. However, since the aim of this project
was to identify short open reading frames of less than 300 coding nt, we decided

to test and modify this threshold.

We performed a quick comparison on StringTie results after running the
algorithm on one PACA sample. We run StringTie using default values for all
parameters as well as modifying the minimum length allowed for the predicted
transcripts to 50nt. As expected, we could observe an increase in the number of
assembled transcripts of around 21.500 sequences. Although few of them were
single exon transcripts covered by a low number of reads, StringTie could also
identify short sequences and their splice junctions based on split read detection.
At this point of the study, intending to cover most of the transcriptome to later
translate it, we decided to continue all the following analysis and datasets creation

using 50 nucleotides as the minimum length to predict de novo transcripts.

Not only was the minimum transcript length evaluated to adjust the
algorithm settings, but also the fraction of multiple-location-mapped reads
allowed to be present in a locus (-m). Usually, high multi-mapping reads occur in
RNA-seq samples due to transcript isoforms, repetitive elements or low
complexity sequences such as poly-A tails. To address this issue when identifying
novel transcripts based on read coverage, StringTie was tested and used
considering two different values (default and 0,1) as the fraction of multi-mapped

reads within the predicted transcript.
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We compared the results obtained under both assemblies, and we could
observe a decrease of around 5.000 predicted transcripts in the same tumor
sample. Although the number of transcripts was lower when excluding multi-
mapped reads (-m = 0,1), not all the obtained transcripts in this analysis were
identical to the previously identified with the default allowed fraction. When
considering only unique reads, the coverage across the transcriptome was
modified and consequently, read clustering and the prediction of start and stop
transcript coordinates. For this reason, predicted transcripts were not all identical

in both analyses.

When identifying new transcripts from RNA-seq, there are reasons both to
exclude and to retain multi-mapped reads. After careful inspection, we found that
the results did not significantly favor one value over the other for the
multimapping parameter (-m). Therefore, we chose to use both values to create
two different sets of smORFs: the default (1,0), which allows the maximum
fraction of multi-mapped reads, and 0,1, which considers only unique mapped
sequences. The specific choice between these two values depends on the
subsequent filtering steps employed to define the catalog of smORFs. The
implications and reasons behind this choice will be further described and

discussed in the following discussion section.

Both sets of predicted transcripts were used to continue with the
identification of novel smORFs in pancreatic adenocarcinoma tumor samples.
Therefore, as described in the methodology section of this thesis, two datasets of
small open-reading frames were obtained under different parameters applied not
only when predicting transcripts but in all the steps. Results observed for each

dataset are explained below in sections 5.3.3.1 and 5.3.3.2.
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5.3.2 Assessment of transcript clustering based on different

criteria

After running StringTie across different RNA-seq, we combined the results to
create a representative transcriptome for our pancreatic adenocarcinoma
samples. To do this, we applied the StringTie transcript merge mode for the
dataset version 1, but also established an in-house strategy to obtain a consensus
set for dataset version 2. An examination of the results we observed after applying
different criteria while generating the in-house strategy is described in this results

section.

To merge transcripts and isoforms identified on different samples, we
explored the overlap between their genomic coordinates. In the first approach we
only merge those isoforms with the exact same start and end (windows size 0).
However, any predicted transcript was identified in all six samples under this
criterion, only 3 were defined in 5 out of 6 samples and around 99% of the
predicted transcript in each sample were considered unique. Because the
identification of transcripts when running StringTie was based on drops in
coverage of aligned reads, the prediction of exact same start and end coordinates
across samples was extremely unlikely. Therefore, applying this criterion did not

appear reasonable.

We then tested a range of window sizes to consider start and end
coordinates representing the same transcript even it was predicted in diverse
samples. As expected, the number of transcripts predicted across samples that
clustered among themselves increased as window sizes increased too. Moreover,
the number of unique predicted transcripts decreased, observing a significant
change when comparing results using a windows size of 250 and 500. In particular,
92% of the predicted transcripts were not clustered if the criteria used was a

windows size of 250bp, while for a window size of 500bp, 87% of them were
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exclusively identified in one sample. Around 82 and 85% were considered unique
across other windows sizes applied (from 750 to 2000bp), therefore this

percentage appeared to be stabilized through window sizes higher than 500bp.

StringTie was not only able to detect start and end coordinates but also
define exons. Isoforms with different number of exons or different exon
coordinates for a specific transcript were also detected even within one sample.
Therefore, we decided that the number of exons should also be considered when
merging results across samples. When comparing the results obtained after
applying different windows sizes, we not only evaluate the number of shared and
unigue start-end transcript coordinates. We also count the number of clustered
transcripts in each merge, that had the exact same start and end coordinates for
all their exons. Since exons were predicted based on split-reads, their coordinates
were more precise and reproducible across samples. As mentioned, the number
of clustered transcripts was constantly increasing when using larger windows
sizes. However, the number of clustered transcripts with exactly all same exon
coordinates decreased with larger windows sizes revealing more clustered
sequences did not probably represent the same transcript. The percentage of
clustered transcripts sharing the same exon coordinates among all clustered
transcripts was similar (around 39%) across merging results when the windows

sizes were from 500 to 2000 (Fig 55).
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Figure 32. Percentage of clustered transcripts sharing the same exon coordinates among all
clustered transcripts. Values calculated for each windows size (bp) used to merged predicted
transcripts from different RNA-seq samples.
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Considering the percentage of clustered transcripts after applying a range of
window sizes, the number of clustered transcripts sharing the exact same exon
coordinates across, and how these numbers increased, decreased or maintained
similar, we decided to merge transcripts from different samples when their start
and end coordinates were shared within 500bp. The clustered transcripts had to

share the same number of exons and strand orientation.

5.3.3 Small open-reading frames datasets: insights from two

different criteria

As previously mentioned, the aim of this presented study was to obtain a
collection of candidate micropeptides, to use as a reference dataset for the mass
spectrometry analysis performed on pancreatic adenocarcinoma exosomes. In
this stage of the study, we generated two datasets following multiple steps and
based on distinct parameters with the aim of capturing a comprehensive range of
information while mitigating false positives. While dataset version 1 was slightly
more conservative (Table 10), we tried to enlarge the collection of candidates on
dataset version 2 (Table 11). However, it was imperative to consider the total
number of candidates obtained in each dataset, as mass spectrometry analyses

are constrained by dataset size limitations.
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Dataset version 1 (DS1)

STEPS
Tumor | PREDICT TRANSCRIPTS COMBINE SAMPLES GET PEPTIDE SEQUENCES FILTER
sample | e novo transcriptome  Merge and consensus of - . Overlap with
) In-silico translation
assembly multiple samples annotated CDS

PACAl 95.015
PACA2 106.682

. . 551.494
PACA3 65.222  25.207 merged predicted 838.377 candidate candidate
PACA4 186.180 transcripts micropeptides micropeptes
PACAS 141.505
PACA6 196.061

Table 10. - Predicted transcripts and candidate sequences obtained in each step for database version 1
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Dataset version 2 (DS2)

STEPS

PREDICT GET PEPTIDE
: TRANSCRIPTS COMBINE SAMPLES SEQUENCES FILTER
umor
sample
De-novo Clustering Recalculate Select L . .
. . . In-silico Overlap with Expression
transcriptome transcripts from consensus representative .
assembl multiple samples sequence transcripts translation annotated of the
4 P P 9 P CDS transcript
PACA1 90.651
PACA2 100.963 27.849
PACA3 61.758 589.475 clustered >89.145 merged 6'366.3'662 3'73?."227 1'211.'051
isoforms consensus redicted candidate candidate candidate
PACA4 176.703 sequences P . micropeptides MP MP
transcripts
PACAS 136.574
PACA6 182.098

Table 11 - Predicted transcripts and candidate sequences obtained in each step for database version 1/2
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5.3.3.1 Dataset version 1: a more conservative set of small

ORFs

We decided to start the identification of novel smORFs applying a more
restrictive criterion. Following the methodology previously explained and the
mentioned StringTie parameters, we first ran the algorithm for six pancreatic
adenocarcinoma samples allowing a maximum fraction of multi-mapped reads of

1'0.
5.3.3.1.1 De novo transcript prediction allowing multi-mapped

reads

When allowing multi-mapped reads (-m 1°'0) a total of 95.015, 106.682,
65.222, 186.180, 141.505, 196.061 transcript isoforms were predicted for
samples PACA1, PACA2, PACA3, PACA4, PACA5 and PACA6 respectively. An
overview regarding the size of the transcripts, the number of exons, the number
of reads covering each sequence, and their distribution across chromosomes is
shown in Supplementary figure 3. Around 20.000 predicted transcripts in each of
this samples overlapped with an Ensembl annotated transcript just by evaluating

their start and end coordinates within a 100bp windows size.

5.3.3.1.2 Consensus set of predicted transcripts using StringTie

algorithm

After using StringTie to predict all possible transcripts based on their
sequencing coverage, we combine the results of these six samples to obtain a
consensus set of sequences corresponding to the pancreatic adenocarcinoma
transcriptome. For this dataset version 1, we combined the results of all the
samples using StringTie transcript merge mode. After performing the merging
step, we get a list of 25.207 predicted transcripts summarizing the pancreatic

adenocarcinoma transcriptome of these six samples. Distribution across
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chromosomes is shown in Figure 56. Around 10% of them were single-exon
transcripts. Genomic coordinates resulting from the use of the StringTie merge
mode were recalculated by the algorithm and do not precisely match those
identified in each individual sample. Therefore, we were unable to explore the
proportion of transcripts originating from each sample neither the degree of
overlap between them, as StringTie does not provide this information on its
merge output. Considering the recalculated genomic coordinates for these set of
combined predicted transcripts, we used StringTie to get the number of reads
covering each of them and in all tumor samples separately. Based on these, we
observed that supporting reads were not identified for 182 merged predicted
transcripts in PACAL, 112 in PACA2, 182 in PACA3, 151 in PACA4, 136 in PACAS
and 108 in PACA6. The median TPM observed for merged predicted transcripts
and in each sample range between and 1,9 (PACA1) and 8,7 (PACA2) (Fig 57).

Number of merged transcripts

. - - - - - . T . ’ T 3 " ¥ T ¥ ' T - -
3 4 5 6 7 8 9 10 11 12 13 14 5 16 17 18 9 20 21 2 X Y

Chromosome

Figure 33. Number of merged transcripts predicted in each human chromosome.
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TPM values

3

196 8,74 617 5,60 i?.SD 582

Sample Name

Sample W PACAI PACA2 PACA3 PACA4 B PACAS B PACAS

Figure 34.Violin plot showing the distribution of TPM values obtained for each
merged transcript and in each sample. Median values are shown within the plot.

We downloaded the DNA sequence of all the transcript isoforms and
reconstructed their coding DNA based on the exon coordinates obtained from the
StringTie merge mode. Later, to end with a set of amino acid sequences we
performed an in-silico translation of the 25.207 predicted coding sequences. For
this dataset version 1, only the ATG codon was used as a starting point for the

translation.

5.3.3.1.3 In-silico translation of coding DNA

Through the 3-frames translation of coding DNA sequences we obtained a
set of 838.377 candidate small ORFs that range between 7 and 100 amino acids
lengths (median size 19 aa). Small ORFs were distributed across all human
chromosomes, being 1, 2, 3, 11 and 5 the ones with the highest numbers of short
aa sequences (79.508, 71.214, 61.505, 49.530, 45.566 respectively). In contrast,
even though chromosome 19 was on the top 5 regarding the number of predicted
transcripts as chromosomes 1,2,3 and 11, only 27.401 smORFs were translated
within it (Fig 58). The predicted transcript MSTRG.14380.4 identified in
chromosome 8 was the cDNA with the highest number of candidates smORFs:
1.537 short amino acid sequences. Note that this predicted transcript was also
the longest coding sequence obtained after the merging step, with 161.831

nucleotides.
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Figure 35. Number of smORFs translated from each human chromosome. Bars in blue show the
results after in-silico translation while those in pink correspond to smORFs obtained after filtering
them.

5.3.3.1.4 Filtering micropeptides based on their overlap with
known CDS

Lastly, to end with a collection of candidates novel micropeptides we filtered
out those overlapping with annotated coding sequences. Only the overlap with
CDS was considered since we choose to also study smORFs located in 5 or 3’
UTRs, introns or long non-coding RNAs. To do so, we performed a Blastn of all the
smORF sequences against the human coding sequences. Only those results from
Blastn with an e-value lower than 0’001 and an overlap lower than 60% between

their sequence and an annotated CDS were kept.

We end with a dataset of 551.494 candidate micropeptides, which represent
our dataset version 1. In line with the results obtained in previous steps,
chromosome 1, 2 and 3 had the highest number of candidates micropeptides (Fig
58) and their median size was 19 amino acids. MSTRG.14380.4 was the predicted
transcript with the highest number of candidates micropeptides (1.342).
However, a median of 13 smORFs were identified in each of the predicted
transcripts analyzed. An example showing the predicted transcript (MSTRG.12.1)
all the smORFs translated and those that were selected after the filtering step is

shown in Figure 59.
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Figure 36. Candidate small ORF identified in one predicted transcript. MSTRG.12.1 (transcript
name), located in chr1:1098741-1105718 is shown above the figure in black. smORFs obtained
after translation (blue square) and those that do not overlap with known CDS (pink square) are
shown below. The transcript was identified in a highly intergenic region.

5.3.3.2 Dataset version 2: inclusion of non-canonical start

codons and expression-based filtering for small ORFs

Once we finished the first dataset of small ORFs, we designed a second
version with the aim of addressing specific limitations and enhancing our
approach based on the insights gained from our initial version. One consideration
was the need to adjust certain parameters within the StringTie algorithm.
Moreover, we opted for an in-house merging strategy as we encountered
uncertainty regarding the criteria used on the merge mode of StringTie. At this
point of the study, motivated by the desire to capture a broader range of
candidate smORFs, we also decided to expand the set of start codons to include
non-canonical ones. However, this expansion was addressed through more

stringent filters to effectively reduce the candidate collection. This ensures its
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compatibility with mass spectrometry analyses, that results in higher numbers of

false positives and less sensitivity when large datasets are used.

5.3.3.2.1 De novo transcript prediction based on unique

mapped reads

We started again from the prediction of transcripts based on de-novo
assembly and using StringTie algorithm, However, in this case, we did not allow
multi-mapped reads (-m 0,1) and only unique mapped reads were considered to
calculate the coverage of each transcript. The minimum size length to define a
transcript was not changed (-M 50bp). After running StringTie, we get a total of
90.651, 100.963, 61.758, 176.703, 136.574 and 182.098 predicted transcripts for
pancreatic adenocarcinoma samples (from PACA1l to PACA6). A summarized
description about the size of the transcripts, number of exons, reads covering
each sequence, and distribution across chromosomes is shown in Supplementary

figure 4.

5.3.3.2.2 Consensus set of predicted transcripts applying an in-

house merging strategy

When using StringTie merge mode, the decisions it made to define the
combined transcriptome representing all samples were not known nor controlled.
For this reason, we defined our merging strategy to end with a consensus set of
transcripts including all samples analyzed. Decisions and the criteria considered
to define our merging strategy are explained in Methods and Results section. To
do so, first we clustered transcript isoforms based on their start and end
coordinates, strand and number of exons. Considering the results obtained for
the six PACA samples, we obtained 589.475 clustered isoforms, with 82% of them
being single-exon transcripts. Once more, chromosomes most represented were
2, 1and 3 with 53.755,50.212 and 41.018 clustered isoforms respectively. On this
set of predicted transcripts, 492.732 were only predicted in one PACA sample,
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and 4.719 in all of them. Since differences on the genomic coordinates were
observed across clustered isoforms identified in different samples, we redefine
transcript sequences applying different rules to obtain a consensus sequence.
After recalculating their genomic coordinates, some isoforms appeared to be
replicated and therefore, were deleted. Because of this, the number of consensus
isoforms we obtained (589.145), was slightly lower than the number of clustered
transcripts. Finally, isoforms were filtered regarding their prior identification in
RNA-seq samples to end with a representative set of transcripts. The filter applied
to single-exon transcripts was stricter than for the rest, given the small minimum
prediction size (50bp) used in StringTie, which does not require split reads but
only a cluster or reads aligned to a region. The combination of the six tumor
samples allowed us to obtain 27.849 transcripts (Fig 60), where 4.691 were
predicted in all pancreatic adenocarcinoma samples analyzed and 225 (0,81%) of
them were single-exon transcripts. This was our transcriptome for the second

dataset version.
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Figure 37. Distribution of merged transcripts (27.849) across all human chromosomes.

For all consensus and filtered transcripts, we analyzed their expression
values in all pancreatic adenocarcinoma samples. To do so, we use a specific
StringTie function that allows to get the abundance in coverage and TPM values.
StringTie could not identify supporting RNA reads for 118 transcripts in PACA1
sample, 17 in PACA2, 110 in PACA3, 53 in PACA4, 54 in PACAS and 76 in PACAG.
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Expression values in TPM had different ranges depending on the tumor
sample, where median values range between 1,6 (PACA1) and 10,13 (PACA2). We
could also observe differences when compared the expression values observed in
those predicted transcripts (4.387) identified in all RNA-seq samples (Fig 61). In
particular, sample PACA1 had the lowest expression values for these transcripts
(median TPM value 3,09). Not only the overall sample expression was different
across them, but also when compared TPMs obtained for each particular
predicted transcript. These differences can be seen in Figure 62, representing

TPM values for a subset of 3.048 merged transcripts identified in all samples.
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Figure 38. Violin plot showing the distribution of TPM values across six RNA-seq samples. Only the
expression values of those transcripts predicted in all samples are represented.

Merged transcripts

PACA1 PACA2 PACA3 PACA4 PACAS PACA6

Figure 39. Expression values in TPM observed for a subset (3.048) of merged transcripts predicted in
all samples. For each sample (x axis) and transcript (y axis), TPMs are represented in a range of
orange colors.
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5.3.3.2.3 In-silico translation of coding DNA considering non-

canonical start codons

To perform a 3-ORF in silico translation, DNA sequences were downloaded,
and the coding sequences were reconstructed considering the exon-exon
coordinates. From 27.849 transcripts we generated 28.040 coding sequences,
since for isoforms with unknown strand their CDS was analyzed in both forward

and reverse strands.

Previous studies have shown that ATG is not the unique codon able to initiate
translation in humans, but other three-nucleotide combinations too. Although it
is known ATG is the most frequently found start codon, for this in-silico translation
we also consider TTG, CTG, ATT, GTG and ACG. Sequences starting from any of
these 6 codons, and with a length between 7 and 100 amino acids until the first
were defined as candidate micropeptides. At this stage, we had a collection of
6.366.662 small ORFs, which was over seven times larger than the set of candidate
smORFs obtained through in-silico translation for version 1. Within this collection
of candidates, 82,7% peptides start from a non-canonical start codon. A total of
628.106 candidate micropeptides were identified in chromosome 1, followed by
446.790 and 442.412 in chromosomes 2 and 3, being the top three chromosomes
with highest numbers. Contrary, chromosome Y had the lowest number of
micropeptides; 2.202 (Fig 63). Transcript isoform MID_6525 1 was the sequence
with the highest number of candidate short ORFs, 10.063. It was identified in
chromosome 3, from 52.578.244 t0 52.719.743 genomic coordinates and formed
by 32 exons, resulting in a coding sequence of 9.756 nucleotides. Note, that
candidate micropeptides translated from a specific host-transcript could overlap

between them. The predicted transcript covered different known protein coding
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genes, including PBRM1, GNL3, SPCS1 or NEK4. This isoform was not observed in

the previous version 1.
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Figure 40. Number of smORFs across human chromosomes after in-silico translation (blue), only
when those overlapping with know CDS were excluded (green) or also expression filter was applied
(pink).

We then analyzed the type of genomic regions where these candidate
micropeptides were located, based on the genomic coordinates of all human
annotated genes. From our set of candidate micropeptides, 32,8% were
completely located within exons of protein-coding genes, 23,2% in 3’ UTR regions,
18,7% in introns and 13% in exons of non-coding genes. Moreover, 4% had part
of their sequence overlapping with a coding and around 5% of the candidates did
not overlap with any annotated gene suggesting they were in intergenic DNA.
According to gene type, 4.381 candidate micropeptides were found overlapping
with polymorphic pseudogenes, 2.701 with immunoglobulins, and 1.339 with t-

cell receptor genes.

5.3.3.2.4 Filtering micropeptides based on their expression and

overlap with known CDS

Considering the size of dataset version 2, we evaluated how to reduce the
collection of candidates to get a compatible dataset to perform MS analysis.
Compared to dataset version 1, we applied a combination of more stringent
filters. Not only did their overlap with known annotated coding sequences but

also the expression of the host transcript was taken into account.
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Nucleotide sequences of candidate micropeptides were aligned against all
annotated ensembl CDS using Blastn. We considered as a good local alignment
those results from blastn with an e-value lower than 0’001. The sequence of
around 35% candidate micropeptides, overlap more than 90% with a known CDS
from Ensembl, whereas 39% overlap more than 50%. Therefore, most of our
candidate micropeptides share less than half of their sequence or nothing with a
known coding sequence. To end with a smaller dataset containing mostly novel
micropeptides in non-annotated coding regions, candidates overlapping more
than 30% with any CDS were filtered out. A collection of 3.733.227 candidate
micropeptides were obtained, reducing the dataset almost half of its previous
size. An example of a predicted transcript (MID_5_1) located in chromosome X
and the smORFs selected or excluded after applying this filter is shown in figure

64.

chrX-100261575-100307096 reverse strand

Scale [ ) e—— T
ehrX: | 100,270,000 100.275,000] 100,280,000 100,285,000 100,200,000 100,205,000/ 100,300.000] 100,305 000|
PREDICTED blal on 21 quees (mp_10, mp_11, ...}
Reference Assembly Altemate Haplotype Sequence Alignments
TRANSCRIPT Your Sequence from Blat Search

MiD_5_t I+t NS CHSUR TN

T TATA|

mp_1381
mp_1262 |I
mp_1384 |
mp_1382
SELECTED m1zs8 |
mp_1255 I
mp_1252
mp_1235 1
mp_1231 |
mp_1458 1
mp_1215 |
mp_1452 |
mp_13a4 |
mp_1339 |
mp_1303 1

T TT65 T
mp_1164 s mmwemm—————|
mp_ 1163 |
mp_1162 |
mp_1161 |
mp_1160 [
mp_1153 Feed
mp_1158

mp_1157
EXCLUDED mp_ 1158 I
mp_1155 =
mp_1154 |
mp_1153 —~
mp_1152
mp_1151
mp_1150
mp_1149
mp_1148

UGSCGﬂ‘@S |Fs'§9<x GenBank, CCDS, Rfam, IRNAs & Cc:munlrdl:vs Genomics)
]

t L

TRMT28
TRMT28

Ucsc GENES

TRM

(R

TRMT28

Figure 41. Example of a predicted transcript (MID_5 1) and translated sequences located in
chromosome X. Small ORFs selected (green box) after excluding those (red box) that overlap with
known CDS are shown. Only few smORFs translated from this transcript are represented.
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Finally, we applied a second filter based on expression results that were
previously obtained for the host-transcripts and annotated for each candidate
micropeptides. We decided to sort out only those short amino acid sequences
resulting from a transcript expressed in all six samples. Moreover, its levels of
expression should be higher than the median value observed in each pancreatic
adenocarcinoma sample. We then end with the final dataset version 2, which
enclosed 1.211.051 candidate micropeptides. This dataset was also used as a

reference on mass spectrometry analysis.

The highest number of candidates micropeptides in dataset version 2 was
identified in chromosome 1 (127.896), followed by chromosome 3 (99.650) and
chromosome 2 (97.572) (Fig 63). Candidate micropeptides had a median size of
19 amino acids that matched with the median size previously characterized for
smORFs located in intergenic and non-coding regions as well as in UTRs, the three
main classes identified in our datasets (Couso & Patraquim, 2017). Moreover, 84%
of them started by a non-canonical start codon being CTG the most observed start
(268.073 candidates). Almost all candidate micropeptides (97%) where translated
from one single-exon of a predicted transcript, whereas the remaining covered
between 2 and 4 exons. Note that these exons do not correspond to those already
known from protein coding genes but from the transcripts predicted through de
novo assembly. The predicted transcript MID_6525_1 still was the one with the
highest number of candidates micropeptides identified (6.448). Although the
majority of the candidates obtained in DS2 were located within protein coding
genes (1.103.297), only 2,7% of them had part (less than 30%) of their sequence
overlapping with a coding exon. Almost half (43,4%) of the candidates obtained in
this dataset were located in 3’UTR regions and in contrast, only 1,2% in 5’UTRs.
Finally, we observed a decrease in the percentage of candidate micropeptides
located in intergenic regions, that represented 4% of this dataset. Although these

candidates were not excluded because of overlapping with known CDS, they had
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low expression values and were not represented in all PACA samples. Therefore,
after reducing the dataset 1% of the intergenic smORFs previously translated

were filtered out.

Together, both datasets are a profitable catalog of candidate smORFs derived
from mRNAs expressed in PACA samples and, enriched in non-annotated CDS

regions to use for MS/MS analysis.

Discussion of chapter 3 (study 1) starting in section 6 (page 263).
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Study 2: Identification of candidate highly
conserved micropeptides in intergenic regions

5.3.4 UNICORNSs: highly evolutionary constraint intergenic
regions

At the beginning of this second study focused on novel micropeptides, most
known and published small ORFs were identified in annotated genes. Therefore,
we aimed to evaluate less explored DNA sequences such as intergenic regions.
We considered a potential approach to identify novel small ORFs was focusing our
search on conservation features that could indicate functionality of a sequence.
Formerly, the first analysis from The Zoonomia Project was published (5). The
Zoonomia Project investigated the genomics of shared and specialized traits in
eutherian mammals. By prioritizing making data available, quickly and without
restriction, the project supported biological discovery, medical research and the
conservation of biodiversity. Among all shared data available on their web page,
conservation scores could be downloaded or inspected through specific tracks on
the UCSC Genome Browser. These conservation scores were calculated using
PyhloP from the Zoonomia whole-genome alignment (v2) of 240 species
comprising representatives from more than 80% of mammalian families. The
scores were used to identify sites and regions under purifying selection (3,1% in
the human genome) including unannotated intergenic regions. UNICORNs were
therefore defined as non-coding regions non-annotated in ENCODE3 showing

high evolutionary constraints, that could suggest function.

A total of 424.179 UNICORNs were downloaded in GRCh38, distributed
across human chromosomes 1 to 22. Highly evolutionary constraint sequences in
sexual chromosomes (X and Y) were not provided but excluded on the Zoonomia

analysis. Although larger chromosomes tended to have higher numbers of
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detected UNICORN, chromosomes 2, 4 and 5 were the top 3 (Fig 65). Therefore,
the number of UNICORNSs in each chromosome seemed to be correlated with the
size of their intergenic DNA. UNICORNSs range between 11 and 1.325 nucleotides

length, with a mean size of 38 nt (Fig 66).
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Figure 42. Sequence distribution across chromosomes. Number of UNICORNS (light yellow) and in-
silico translated sequences (dark yellow) in each human chromosome.
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Figure 43. Violin plot showing the range of sizes in nucleotides for all UNICORNs (n=424.189
sequences).
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5.3.5 In-silico translated small ORFs located in intergenic

regions

In order to identify all possible short amino acid sequences located in highly
conserved intergenic regions, we artificially translated all DNA sequences
previously defined as UNICORNs by the Zoonomia Project. We did a strongly
permissive translation to comprise a wide range of candidates. Nucleotide
sequences were translated 6-ORF meaning we read them from the first, second

and third nucleotide and in both forward and reverse strands.

In-silico translation of 424.179 UNICORNSs resulted in a list of 887.676 amino
acid sequences with a length between 10 and 100 codons, considering the
established threshold (100aa) used to define micropeptides. Their distribution
across chromosomes is shown in figure 65. Almost all (91,39%) of these sequences
were shorter than 30 aa and had a mean size of 17,63aa. Only 11 translated
sequences reach the maximum size (100 aa). Translation started from the
canonical ATG codon in 2,2% of the sequences, being the trinucleotide TTT the
most recurrent start codon (5,2%) followed by AAA (4,75%) (Fig 67). Similar
percentages were obtained for translated sequences ending with a stop codon
(51,3%) or because of the UNICORN termination (48,7%). Also, when we counted
sequences translated from forward (444.500) and reverse (443.175) strands or
classified depending on the translation starting nucleotide (ORF1 304.291 aa
sequences; ORF2 295.873; ORF3 287.511).
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Count

20k

Start codon
Figure 44. Number of in-silico translated sequences depending on their start codon.
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Considering the initial set of UNICORNSs, 281.066 of them did not result in
any translated sequence because of their size. All these UNICORNs were shorter
than 32 nucleotides. Furthermore, shorter UNICORNs and particularly those with
an approximate size of 35 nt resulted just into one translated sequence. In
contrast, we could identify higher numbers of small peptides from larger
conserved intergenic sequences. Although it was not the largest UNICORN, 78
different amino acid sequences were translated from a region located in
chromosome 2 between 155.728.521 and 155.729.733 genomic coordinates
(1.121 nt length). Summarizing, the number of translated sequences per

UNICORN was also correlated with their size in nucleotides.

5.3.6 Candidate ortholog sequences of translated intergenic

small ORFs

As these 887.676 candidate small ORFs were short amino acid sequences
artificially generated from conserved intergenic regions, more evidence was
needed to assume or suggest this micropeptide sequences could have a functional

role in humans.

For this reason, we first evaluate the orthology between the in-silico
translated human short amino acid sequences and mice genome. Orthology
between human and mice sequences could suggest the protein sequence is
relevant for the organism and likely functional. We used the Reciprocal Best Hit
approach to define pairs of orthologs between both species. Therefore, two
complementary tblastn analysis were performed comparing human short amino
acid sequences against the reference mice DNA and short peptide sequences

identified in mice versus the reference human DNA.

From the first tblastn analysis 887.676 human short aa sequences were

compared with mice genome. We obtained 1.104.502 local alignments from
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283.608 different human smORFs candidates, 32% of our initial set. However, only
61.585 alignments from 56.350 human intergenic smORFs passed the e-value (<
1e-05) and coverage (>50%) filters defined to consider a good local alignment. We
did not have translated sequences from 403.970 initial UNICORNs after applying
this filter. Around 8% of the amino acid sequences had two or more matches with
different regions of the mice genome and many (47,84%) sequences were
completely aligned. At this point, sequences were distributed across
chromosomes similarly to in previous steps. Human peptide sequences were
aligned in all mice chromosomes (Fig 68). A total of 1.516 translated sequences
were aligned within sexual chromosomes X and Y, and 37 of them in unplaced

scaffolds including GL456233, GL456379, GL456382 and JH584296.
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Figure 45. Number of human translated smORFs aligned across mice chromosomes after
tblastn1 (green) and once ortholog sequences were defined (orange).

The amino acid sequences (61.585) selected after the blast filtering step
were used for the second tblastn analysis. In this case, we compared mice peptide
sequences with the human reference genome. After TBLASTN2, 56.304
sequences were aligned in at least one human genome region without
considering any filter (58.316.612 alignments). We did not have results for 55

mice peptide sequences.

After this second alignment we define the set of orthologs. Following the
definition of RBH, two sequences from different genome species are considered
orthologs if align each other as the best hit in the other genome. In this project

we only retained 1:1 orthologs, so peptide sequences that aligned in more than
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one human or mice genomic region were discarded. Therefore, we inspected the
56.304 sequences aligned in TBLASTN2 and looked for their alignment in
TBLASTN1. Combining an automatic search with manual inspection of alignments,
we defined a set of 1:1 orthologs counting a list of 50.936 candidate smORFs
translated from 18.658 different UNICORNS.

Ortholog sequences were identified and distributed across human
chromosomes similarly than in previous steps (Fig 69), and a comparable
proportion of candidate smORFs was obtained from forward (25.435) and reverse
(25.501) translation. Peptide sequences aligned in mouse Y chromosome, or in
unplaced scaffolds did not pass the criteria used to select orthologs (Fig 68).
Regarding the size in amino acids of these candidates, we calculated a mean value
of 35,26 aa, that was higher compared to those 887.675 aa sequences obtained
after performing the in-silico translation (mean=17,63) (Fig 70). These values
suggested smaller peptides tended not to fulfill orthology selection criteria, nor
had good alignment scores. However, upon examining each sequence’s size
individually, the majority did not align fully, resulting in a shorter aligned region
compared to the initial sequence. Consequently, the orthologous sequences had
a smaller size relative to their initial translated sequence since we only evaluated
orthology between the aligned regions but not the complete peptides obtained

from in-silico translation.
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Figure 46. Number of candidate translated smORFs identified in each chromosome. Sequences
after the first tblastn (dark blue), once orthology was defined (medium blue) and those selected
considering the dn/ds ratio (dark blue) are shown.
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Ortholog sequences were then used to calculate the ratio of non-

synonymous to synonymous variants between human and mice sequences.
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Figure 47. Violin plot corresponding to the range of peptide sizes (aa) of all smORFs selected in each
step. Median is shown within the plot.

5.3.7 Calculated dn/ds ratio on known protein-coding genes

In line with the definition of the dn/ds ratio, ortholog pairs with ratios close
to 0 are typically under purifying selection and therefore, they are supposed to
maintain their role across species. So as to select candidate functional
micropeptides from our set of ortholog sequences (50.936) we first established a
more precise threshold. Accordingly, we calculated the dn/ds ratio for 300 coding

exons shorter than 1000bp to simulate small peptide sequences.

Before doing this calculation, we identified their mouse orthologs pairs
following the established methodology and criteria previously used for candidate
smORFs. We in-silico translated the nucleotide sequences of 300 coding exons,
performed reciprocal alignments comparing peptide and nucleotide sequences
from human and mice, and selected 1:1 orthologs. We discarded 11 coding exons
from the 300 randomly selected because of their short length (3 bp). After all, we
ended with a list of 71 one-to-one ortholog pairs that range from 65 to 781 bp
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CDS length. After this selection of orthologs, the number of known coding
sequences inspected decreased almost 4 times since 155 regions did not properly
align to mouse genome (e-value < 1e-05 and sequences overlap > 50%), and 63
did not satisfy the criteria to define them as 1:1 orthologs. Among these 71
orthologs, 22 corresponded to coding exons from cancer genes.They were
distributed across all human chromosomes except 13, 18, 20, 21 and Y, and had

a median size of 137 coding bp (min 67, max 781).

Finally, we used the Codeml function of the PAML package to calculate the
dn/ds ratio for each ortholog pair. We could not measure this ratio for 12 pairs
because of the presence of nucleotide gaps in human or mice sequences. The
dn/ds ratios obtained for the remaining 59 coding exons range from 0,001 to
0,8014 (mean=0,12) (Fig 71). Notably, three coding regions exhibited the highest
dn/ds values and therefore not closer to 0, had a rate of synonymous substitutions
per synonymous site (ds) equal to 0. Accordingly, these human sequences did not
have synonymous substitutions when compared to their mouse ortholog. It is
likely that we did not detect synonymous variation due to the short length of the
analyzed regions, since it is rare and somewhat unlikely in real evolutionary cases

of protein coding genes.
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Figure 48. Calculated dn/ds ratio for 59 coding exons and their ortholog pairs in mouse.

Based on the dn/ds ratio (non-normal) distribution of 59 coding exons, we
established a threshold to detect outlier values as Q3 + 1,5*IQR that resulted in
0,3179. Subsequently, we decided to use a dn/ds below 0,32 together with a ds
value exceeding 0,1 to consider short peptide sequences as potentially functional

micropeptides in nature.

5.3.8 Catalog of candidate intergenic micropeptides from

highly conserved regions

The results obtained from known coding exons allowed us to define a dn/ds
threshold to later select candidate micropeptides indicating functionality. We
applied codeml to calculate the ratio of non-synonymous to synonymous variation
in ortholog pairs, including 37.293 previously obtained sequences. Note that we
could not calculate the ratio for 13.643 orthologs because of nucleotide gaps in
human or mouse aligned sequences. We reject those short peptides that did not
pass the dn/ds criteria and end up with a set of 8.289 candidate novel

micropeptides located in 6.536 different highly conserved intergenic regions

237



(UNICORNSs). As mentioned, not only the dn/ds ratio but also the ds value was

considered to ensure variation within both sequences even their short length.

The highest number of candidates (10%) was identified across chromosome
2, corresponding also with the one with more UNICORN regions, and the second
larger chromosome of the human genome (Fig 69). Chromosomes 5 and 1 were
also in the top 3 encompassing 9% and 8% of the candidate micropeptides
obtained. The majority (90%) of the candidates had between 20 and 40 amino
acids length, with a mean size of 30,48 aa (Fig 70). The most observed start codon
was TTT (6,32%) followed by AAA (5,99%) and AAT (4,46%) (Fig 72). Generally,
percentages across starting trinucleotides were somewhat different compared to
all sequences obtained after in-silico translation of UNICORNs. Although there
was a direct correlation, and as an example, we end up with less candidates

starting with ATT, TCT, TCA or CGT than expected.

After all these steps, starting from the in-silico translation of highly
conserved intergenic regions and ending with the selection of potentially
functional short peptides based on their dn/ds ratio, we could provide a list of
8.289 candidate novel intergenic micropeptides. We considered these regions to
be a valuable set of sequences to continue exploring their role in humans and

particularly, in cancer.
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Figure 49. Number of candidate smORFs for each trinucleotide start.
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5.3.9 Preliminary evidence of expressed candidate functional
micropeptides

At this point of the study, the analysis previously performed allowed us to
identify short peptide sequences under purifying selection and located in
intergenic regions highly conserved between species. This information suggested
functionality of the peptide, but more poofs were needed to confirm their
presence in nature. For this reason, we decided to look for evidence of expression

of candidate functional micropeptides in healthy tissues.

We searched for aligned reads covering each candidate micropeptide
(8.289) in 135 randomly selected samples comprising 27 different healthy tissues
(5 samples per tissue). Next, paired-end reads were filtered out to avoid low-
quality and multi-mapped sequences. Also, PE reads where at least one pair
overlapped with a known transcripts including non-coding RNAs were excluded.
We decided to require at least 5 RNA-seq reads covering the candidate to consider
it had signals of expression. Therefore, we could observe 249 candidate
micropeptides showing signals of expression in a minimum of one RNA-seq
sample, and 13 candidates in 10 samples or more including different tissue types.
A total of 29 candidate micropeptides had signals of expression in 60% of the
samples (3 out of 5 RNA-seq) for at least one healthy tissue (Table 12), with
median coverage values observed across tissues that range from 3,8 to 32. The
candidate micropeptide with highest median coverage was located in chrl:
37.099.960-37.100.043 and signals of expression were only detected in healthy
muscle samples. Interestingly, we noticed the candidate micropeptide identified
in chr5: 93.615.953-93.616.054 had signals of expression in 103 different
samples, including all tissue types (26) except muscle (Table 13). This was the
candidate with evidence of expression in more samples. This intergenic conserved

region is located 1700bp upstream a known IncRNA (FAM172A). Even though it
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was close to a known gene, we did not detect mate reads of supporting PE within
the IncRNA. These preliminary results suggested that the conserved smORF was

not part of the known transcript but a different candidate gene.
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Candidate micropeptide Complete tissues Median coverage

chr14_46837398_46837472 1 Brain 9
chr14_60600471_60600557 1 Pituitary 8,2
chr14_76096277_76096354 3 Brain, Nerve, Pituitary _
chr5_64614555_64614653 8 Adrenal Gland, Blood Vessel, Brain, Esophagus, 9,7

Pituitary, Prostate, Salivary Gland, Stomach
chr5_51839816_51839917 1 Ovary 12,6
chr5_93615953_93616054 26 Adipose tissue, Adrenal Gland, Bladder, Blood Vessel, 184

Brain, Breast, Cervix Uteri, Colon, Esophagus, Heart, Kidney,
Liver, Lung, Nerve, Ovary, Pancreas, Pituitary, Prostate, Salivary Gland,
Skin, Small Intestine, Spleen, Stomach, Thyroid, Uterus, Vagina

chr13_96087557_96087655 1 Pituitary sa |

chr8_10862241_10862342 1 Brain 114
chr8_10862239_10862343 1 Brain 114
chr13_53078789_53078884 1 salivary Gland 14
chr13_53078850_53078927 1 Salivary Gland 14
chr2_206936805_206936885 2 Pituitary 7
chré_155829957_155830046 1 Thyroid 9
chr6_155830067_155830168 1 Thyroid

chr5_127035507_127035587 1 Small intestine

chr10_92682836_92682967 2 Pancreas, Thyroid

chr11l_65808271_65808354 5 Lung, Ovary, Pituitary, Prostate, Thyroid

chrl_119017757_119017822 2 Breast, Prostate

chrl_118875161_118875268 1 Muscle

chr1_48049010_48049105 1 Kidney

chrl_37099960_37100043 1 Muscle

chr9_116036606_116036713 1 skin

chrd_84527263_84527343 3 Lung, Slivary Gland, Thyroid

chr7_24173168_24173239 1 Kidney

chr7_26652489_26652614 1 Spleen

chr10_123188358_ 123188456 1 Pituitary

chr10_123188430_123188537 1 Spleen

chr4_181739529_181739597 1 Adrenal Gland

chr1l 115167714 115167806 1 Brain

Table 12 - Candidate micropeptides (chr_start_end), with signals of expression in at least 60%!
RNA-seq samples (3 out of 5) of a healthy tissue. Median coverage considering the observed values
across all samples where signals were detected is calculated and shown in the last column, colored
from red (low coverage values) to blue (high coverage values).

Table 13 — Number of reads (mean per tissue) covering candidate micropeptide located in chr5
from 93615953 to 93616054. Colors ranging from lower (red) to higher (blue) values.
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5.3.10 Detection of significant clusters of somatic cancer

mutations in published smORFs

Intending to explore the role of micropeptides in cancer disease and
tumorigenesis, we analyzed clusters of somatic single nucleotide variants from
the ICGC cancer genomes in small ORFs. So as to start evaluating the performance
of a driver discovery algorithm (OncodriveCLUSTL) in small genes, and while
working on the identification of intergenic and novel smORFs, we first analyze a

published database (SmProt) of smORFs including 49.065 short peptides.

We run OncodriveCLUSTL for each set of SNVs classified depending on the
ICGC project using 6 different parameter combinations (see Methods, Table 4).
We then selected the most adjusted combination for each ICGC set of variants
based on the KS test and the enrichment in cancer genes, as authors of the
algorithm suggested to us (Supplementary Table 4, Supplementary Fig 5). Also,

manual inspection of the qg-plot obtained from OncodriveCLUSTL was done.

Independently of the parameter combination, 6 ICGC projects were
excluded due to low number of smORFs with clustering signals (< 20) or significant
differences and inflation between the expected and observed p-values (BOCA-UK,
BTCA-SG, GACA-CN, LUSC-US, OV-AU and UTCA-FR) (Fig 73). Therefore, these

ICGC projects were excluded as we could not calculate their KS value.
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Figure 50. QQ-plot obtained from OncodriveCLUSTL. Example of one ICGC project (BOCA-
UK)excluded due to low number of clustering signals (blue dots). The ID name for each small ORFs
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We could identify significant clusters (g-value < 0,01) in small ORFs for 4
different ICGC projects including ESAD-UK, PACA-AU, PACA-CA and LUSC-KR (Fig

74).
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Figure 51. QQ-plots obtained from OncodriveCLUSTL for ICGC projects with significant clusters.
Expected and observed p-values are shown for all smORFs with clusters of mutations. SmORFs (dots)
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In pancreatic adenocarcinoma projects (PACA-AU and PACA-CA) significance
was only observed in  two smORFs (smOrf 19623 KRAS and
smOrf_21016_KRAS)(Table 14). Nevertheless, both smORFs overlapped with
KRAS, a known cancer driver gene. Clusters of variants within these smORFs
coincide with previously identified significant clusters in the IntOGene study
(https://www.intogen.org/search). On the other hand, a higher number of
significant clusters and therefore, smORFs were detected when we analyzed
ESAD-UK (11 significant smORF) and LUSC-KR (9). For these two ICGC projects,
significance was not only observed in smORFs overlapping with cancer genes such
as KRAS or TP53, but also in IncRNAs annotated by the NONCODE database(204).
Based on the Gencode v37 annotation, six smORFs were in intergenic regions. One
small ORF (smOrf 24636) located in LINCOO879 (Gencode v37 annotation) had
significant clusters of mutations in ESAD tumors. Altered frequency of this INcRNA
due to amplification was previously identified in LUSC tumors, suggesting it could
be implicated with tumorigenesis (205). Differential expression between tumor
and normal genomes were also observed in the GEPIA data portal
(http://gepia.cancer-pku.cn) for other genes that contained driver-smORFs
identified in our analysis. As an example, candidate smOrf_28297 was located
within RP11-274B21.14, which is highly expressed in Acute Myeloid Leukemia
tumors, and smORF_32101 that was located within ZNF716 a zinc finger protein

also highly expressed in Testicular Germ cell tumors.

Together, these results suggested that we could use OncodriveCLUSTL for
driver identification of small ORFs. Although we did not have significant results for
smaller sets of SNVs, we could characterize 13 different smORFs located in IncRNA

or non-annotated regions as driver genes.
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https://www.intogen.org/search

plrijGei( smORF ;::::er Chromosome Start End Strand  Length Mutations g:ls; s;?g Clusters ;;‘;?rl;; ean\;ﬁ:lll;:l ;;I;Lucil aQna\;;]uuceal N:;:la(t:)gsDeE Gencode v37
smOrf_24636 False 3 04857157 94893419 + 36263 264 195 49 0,001 0,04912 2,22E-19  1,85E-16 TCONS_[2_0001984 LINC00879
smOrf_28297 False 7 128173707 128231906 + 58200 57 18 8 0,001 0,04912 3,54E-13  148E-10 TCONS_[2_0002619.RP11-274821.14
smOrf_6018 True 17 7572929 7574008 - 162 6 6 1 0,001 0,04912 2,60E-09  7,25E-07 TP53
smOrf_19623 True 12 25362729 25398318 - 228 16 16 1 0,001 0,04912 155E-08 2,58E-06 KRAS
smOrf_21016 True 12 25388140 25398318 - 132 16 16 1 0,001 0,04912 155E-08 258E-06 KRAS

ESAD-UK |smOrf_44005 False 5 304314 344021 + 39708 62 23 8 0,001 0,04912 2,05E-08  2,85E-06 AHRR
smOrf_46135 True 17 7577598 7578425 - 66 35 35 1 0,001 0,04912 4,92E-06 0,0006 TP53
smOrf_36958 False 2 133066882 133077808 + 10927 25 6 2 0,001 0,04912 5,90E-06 0,0006 TCONS_I2 00015491
smOrf_22067 False 7 57530634 57530756 + 123 4 4 3 0,001 0,04912 3,16E-05 0,0028 ZNF716
smOrf_42179 False 7 128173707 128231906 + 58200 57 18 8 0,001 0,04912 3,37E-05 0,0028 TCONS_I2 0002619 RP11-274B21.14
smOrf_32101 False 9 38437830 38458403 + 20574 29 5 2 0,001 0,04912 4,63E-05 0.0035 TCONS_[2_00028727

PACALAL smOrf_19623 True 12 25362729 25398318 - 228 165 165 1 0,001 00375 1,11E-03 4,16E-03 KRAS
smOrf_21016 True 12 25388140 25398318 - 132 165 165 1 0,001 00375 111E-03  4,16E-03 KRAS

PACA-CA smOrf_19623 True 12 25362729 25398318 - 228 176 176 1 0,001 00313 111E-03 5,22E-03 KRAS
smOrf_21016 True 12 25388140 25398318 - 132 176 176 1 0,001 00313 1,11E-03  5,22E-03 KRAS
smOrf_43215 False 10 38945013 38965111 - 20099 64 42 11 0,001 00089 2,39E-09 2,99E-07 TCONS_[2_00004142
smOrf_35962 False 9 67293593 67332582 + 38990 91 58 17 0,001 00089 1,08E-08 6,38E-07 TCONS_I2 00028767
smOrf_34454 False 9 68422201 68429113 - 6913 43 33 10 0,001 00089 153E-08 6,38E-07 TCONS_I2_00029344
smOrf_24181 False 1 143719823 143744288 - 24466 89 68 16 0,001 00089 345E-08 1,08E-06 TCONS_I2_0000265 RP6-206117.1

LUSC-KR |smOrf_30964 False 2 114299778 114326239 + 26462 38 18 6 0,001 00089 124E-06 3,10E-05 TCONS_ /2 0001391 PGM5P4-AS1
smOrf_38621 False 9 68433538 68438627 - 5090 34 31 5 0,001 00089 6,37E-06 0,0001 TCONS_I2_00029349
smOrf_29903 False 17 18330505 18379019 + 48515 55 36 11 0,001 00089 3,77E-05 0,0007 RP1-37N7.4
smOrf_54382 False 10 102035218 102042693 - 7476 18 15 5 0,001 00089 0,0002 0,0024 BLOC1S2
smOrf 21297 False 9 68430257 68438623 - 8367 45 42 7 0,001 0,0089  0,0002 0,0029 TCONS_I2_0002935 LOC642236

Table 14 - Small ORFs from SmProt database with significant clustering signals (Q-value analytical). Results obtained from OncodriveCLUSTL, for 4 different
sets of SNVs (ICGC project). smORF IDs can be translated into the ones used by SmProt database using Supplementary Table 5. Those smORF that overlap with
a known cancer gene, are indicated with a “True” in the Cancer gene column. The location of each smORFs considering the NONCODE database and Gencode
v37is shown in the last two columns.
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5.3.11 Low number of somatic SNVs acquired in intergenic

novel candidate micropeptides

Based on the results found for published smORFs, we decided to search for
recurrence of SNVs in our set of novel and intergenic candidate micropeptides
(8.289). However, before running OncodriveCLUSTL we annotate all somatic SNVs

from the same ICGC projects used in section 5.3.10.

A total of 3.500 candidates were annotated. Disappointingly, we did not find
signals of recurrence since the majority of these candidates (2.996) had only one
somatic SNV identified acquired in one tumor genome. No more than 3 SNVs were

detected in candidates intergenic micropeptides.

Even large numbers of SNVs identified in tumor types such as esophageal
adenocarcinoma (ESAD-UK), SNVs were not located within these short peptides.
For this reason, OncodriveCLUSTL could not detect any cluster of variants when

evaluating 8.289 novel candidate micropeptides.

Discussion of chapter 3 (study 2) starting in section 6 (page 270).
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6. Discussion

249



250



Analysis of somatic structural variants in CLL and their

incorporation into subclonality studies - Chapter 1

Chronic lymphocytic leukemia is the most prevalent leukemia in Western
countries, and it is characterized by a highly variable clinical course. Due to its
development over several years, it is an interesting cancer model to study
subclonality and evolution during cancer progression, response to therapy or
relapse (206,207). The present study was focused on Richter transformation (RT),
one type of evolution of CLL tumors into a very aggressive large B cell lymphoma
(DLBCL) conferring a dismal prognosis. Moreover, prior to this study the
mechanisms driving RT were poorly known (196,198,208). As previously
mentioned, the present longitudinal study of chronic lymphocytic leukemia was
in collaboration with Dr. Ferran Nadeu and Dr. Elias Campo, and involves diverse
groups focused on specific goals with the aim of understanding tumor evolution
in Richter syndrome patients. Also, Dra. Romina Royo from BSC was strongly
involved in this study, coordinating the analysis of variants. My role within the
project was focused on structural variation and intratumor heterogeneity.
Particularly, one of the challenges we wanted to address was to include large

somatic variants to reconstruct the subclonal architecture of each tumor.

To do so, we first evaluated the landscape of somatic variation within CLL
tumors, including SNVs, indels and SVs. SNVs were used in the study to identify
and characterize subclones and study their particular role in tumor formation and
also in the RT. As of that time, there was no available protocol to assign somatic
structural variants to subclones to be able to study the role of SVs in tumor
evolution and RT. One of the main challenges rely on the calculation of the
frequency at which the SVs are present in the sample, and therefore, to which

subclone it belongs. While this is relatively easy for SNVs, the limited number of
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mapped reads supporting SVs breaks makes the estimation of allele frequency

very challenging.

As mentioned, the identification of somatic structural variants was the first
step to later continue with the analysis of intratumor heterogeneity and clonal
dynamics in CLL. Many algorithms were published at the time we were working
on this project to reconstruct tumor subclonality including CloneHD (209),
PhyloWGS (105), DPClust (184) and SciClone (104). These algorithms and
consequently most ITH studies are generally based only on SNVs, and occasionally
on small insertions and deletions, as their variant allele frequencies can be better
estimated from mapped reads. In this context, | participated actively in the
definition of the somatic variation landscape and the subclones for the Nadeu et
al, 2022 article. As general discussion on this part (please see the discussion of the
main results of this study in Annex 10.3 and in the thesis of Dra. Romina Royo, UB
2023), this study provides a transversal reconstruction of the generation and
evolution of the tumor and the subclones, as well as evidence of the presence of
RT cells already in early stages of the tumor, encouraging the exploration of early

detection protocols for the clinic.

SNVs and indels usually occur more frequently than structural variants within
a tumor, so their abundance makes easier the subclonal reconstruction.
Moreover, these variants were detected more accurately by variant callers, are
less complex and affect only a few nucleotides so calculating their frequency was
less challenging. Finally, subclonal reconstruction was even more affordable to
obtained just by using coding mutations encompassing important driver events
that could be clearly identified from whole-exome sequencing with high depth,

which was a rapid, cheaper and comprehensive technology (207).

Although CLL is not known to be a tumor type with high numbers of somatic

structural variants, the availability of longitudinal samples was key to study
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intratumor heterogeneity and consider their inclusion. Nevertheless, our
approach was to reconstruct ITH using single nucleotide variants and indels, since
they are more abundant, to later include SVs into those subclones evolving
similarly. Considering that, we worked on a strategy to calculate structural variant
allele frequencies and translate them into cancer cell fraction. These values will

allow us to infer them into previously defined subclones.

In the context of subclonality and SVs, variant allele frequencies are
calculated based on the number of reads covering the mutation including
mutated and non-mutated fragments. Since structural variants disrupt a large
region of the DNA, often containing additional variants close to the breakpoints,
their representation within the sequenced sample is not properly translated into
the final reference-based alignment that we do for variant calling (i.e. the BAM
files), as SVs supporting reads are difficult to align. This, results in a drop of the
number of reads (i.e. coverage) around SVs breakpoints and a difficulty in
calculating the VAF, as done with SNVs. Therefore, we needed to design and
implement a different protocol for the calculation of the VAF for SVs. After
considering several possibilities based on the calculation and normalization with
genome-wide coverages of the samples, we explored the use of the mutated
reads of the SV region, that is, those supporting the variant to infer its variant
allele frequency (see results). In this context, it is important to highlight that no
proper benchmarking set was available for subclonal SVs and to fully assess the

reliability of our approach.

We could apply the defined strategy and calculate variant allele frequencies
and their corresponding cancer cell fraction for all structural variants identified in
case 63. Longitudinal samples were crucial to track genetic alterations and explore
the evolution of cell populations over time. Summarizing the results, we could
calculate clonal CCF values for those inversions involving the ATM gene present in

all collected samples at any time point, whereas we saw an increase in the
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frequency of other SVs after the first chemoimmunotherapy was given to the

patient.

In any case, we initially considered to publish a methodology for assigning
SVs to subclones, but then SVClone (210) was published together with the
compendium of articles from The Pan-Cancer Analysis of Whole Genomes. This
computational method was developed in fact, for inferring the cancer cell fraction
of SV breakpoints from whole-genome sequencing data following a strategy
similar to the proposed here. This is why we made the strategic decision of
devoting the energy and time to other emerging projects described below.
Because of the challenges we encountered for the determination of the VAF for
SVs, the publication of a methodology and our focus on other research
opportunities, the rest of the CLL study was progressing at a different speed, and

we were not ready to include these results when the paper was submitted.

Identification of somatic processed pseudogenes in cancer

and evaluation of their functional impact — Chapter 2

Cancer is a complex genetic disease, where the transformation of normal
cells to malignant cells is generally driven by a combination of mutations acquired
on the DNA sequence. Because of that, the study of these genomic events
occurring somatically is essential to understand the basis behind tumor formation
and progression. Somatic variation might also provide new clinical markers for a
better diagnostic or to select precise treatments. Furthermore, identifying and
characterizing these genomic events allow us reclassifying tumors depending on

the genetic profile instead of the primary site.

In addition to investigating the landscape of cancer somatic mutations, we

extended our focus to include the exploration of somatic retrotransposition
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events, particularly somatic processed pseudogenes. We considered the study of
such retrotransposition events might harbor implications for human cancer
health. Furthermore, our decision was taken based on previous research
(94,110,113,119) in this area. Observations from other research groups that
began to identify these somatic events in specific cancer samples prompted us to
direct attention toward the potential significance of somatic retrotransposition

events in a wider context.

Among other large-scale projects intending to identify common patterns of
mutations in cancer, the Pan-Cancer Analysis of Whole Genomes was a worldwide
initiative collecting 2.600 genomes. PCAWG was coordinated by a series of
working groups comprising more than 700 scientists. Our role specifically involved
active participation in working group six, primary focus in the analysis of somatic
structural variation. Participating in the PCAWG was a significant step in our

research journey.

The chance to extensively explore data provided by PCAWG was also a
significant motivation for our research. With a comprehensive collection of tumor
whole genomes surpassing those previously studied in the context of somatic
retrotransposition, we initiated a search for somatic processed pseudogenes

across all 34 tumor types provided by this international cancer initiative.

Since standard protocols for the identification of somatic PPs were not
published at the time we started our research, by exploring different
bioinformatic strategies. Our analysis was based on the combination of automatic
searchers for somatic structural variants that could support PPs integration, with
manual inspection and validation using tumor and normal sequencing reads from

the same tumor genome.

Through the evaluation of the testing set of 48 LUSC tumor genomes by

applying diverse criteria combinations, we came up with a conservative protocol
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to identify candidate processed pseudogenes. Among the different filters
included within our protocol, some were determinant to distinguish from
potential false positives, as somatic PPs can be easily confused with the source
gene at exon level. For example, the most accurate automatic detection occurred
within the most restrictive dataset (4), when structural variants representing both
insertion sites and one splice junction event were required. Within this dataset,
only one out of 26 candidates could not be manually validated. We perceived
these criteria too stringent to define candidates. Furthermore, if a splice junction
event was additionally requested, we conducted our search with consideration of
a conservative definition of PP, where fragments of one single exon were assumed
not to be retrotransposed. The exclusion of single exon insertions as candidate
pseudogenes was due to the challenging and potentially unfeasible distinction of

their origin.

Regarding the insertion site, we established a minimum nucleotide distance
of 100Kb between the insertion site and the source gene responsible for
producing the inserted cDNA. This measure aimed to prevent the inclusion of
recombination events occurring within a chromosome. Likely, processed

pseudogenes are not inserted close to their source gene location.

Second, we did not expect genomic deletions within the insertion region but
just a break where the cDNA was interpolated. For this reason, we defined a
distance flanking insertion coordinates of less than 350bp. This threshold was
determined based on an in-depth consideration of the insert size of our
sequencing reads, and the inherent limitations of variant callers when identifying
large structural variants using short paired-end reads. The value was carefully
selected to account for the precise coordinate error typically associated with
variant calling in such scenarios. The nature of these widely studied genomic

elements together with the observations done through bioinformatic searches in
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this set of tumor genomes were considered to continue developing the automatic

searching protocol.

Third, the inserted sequence must include at least 50bp from an exon of the
same source gene. This criterion differed from the guidelines applied previous
identification protocols. Cooke et al. considered the presence of putative
pseudogenes if tumor DNA contained at least three exons from a single gene, with
a minimum of two observed canonical splice junctions (110). When extremely
short nucleotide regions are inserted into the genome, determining their origin
and whether they are newly created through DNA replication or repair, or the
consequence of transposition events becomes challenging and requires manual
inspection. On the other hand, we anticipated that nucleotide sequences of
sufficient length, uniquely aligning to a specific coding sequence would likely arise
from the deletion of a coding fragment and its later insertion in the genome (“cut
and paste”), or from a retrotransposition event (“copy and paste”). In either case,
the result would be mistaken with processed pseudogenes. Additionally, no clear
deletions within the source genes were identified across all somatic SVs detected
on each tumor. Therefore, single-exon insertions were also considered candidate

processed pseudogenes.

Applying the final criteria to all the PCAWG tumor genomes (2589) we could
identify 433 candidate processed pseudogenes. Compared to previous studies
done in the context of somatic processed pseudogenes acquired in tumor
genomes, we could identify the largest number of candidate events mainly
because a less stringent criteria were used for the automatic search, sing-exon
candidates were included, a higher number of tumor genomes were analyzed and
for all of them whole-genome sequencing data was evaluate. In this line, we were

able to identify candidates inserted within intergenic regions too.
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Notedly, experimental validation of somatic processed pseudogenes was not
possible in this project due to the lack of fresh material from the tumor samples

analyzed.

Even pancreatic tumor type was also included in the collection of samples
analyzed by Cooke et al. they could not detect any processed pseudogene across
11 genomes. Contrary to our candidate’s selection, genomes corresponding to
pancreatic tumors (240 genomes) had the higher number of candidate somatic
insertions. When candidates’ counts were normalized by the number of tumor
genomes analyzed for each tumor type, we could observe a higher prevalence of
candidate insertions in head and neck (20,45%) and esophageal adenocarcinomas
(8,05 %), which were not included in Cooke et al. study. Lung squamous cell
carcinoma and gastric adenocarcinoma had 29,16% % and 7,8% of candidates
with at least one acquired PP, being consistent with findings from previous studies

where they observed prevalences of 19% and 9% respectively (110).

Although we increased the number of tumor genomes analyzed compared
to previous studies (110), validated processed pseudogenes were mainly
identified in the same tumor types including lung squamous cell carcinoma and
colorectal adenocarcinoma. Processed pseudogenes were newly observed in
head and neck squamous cell carcinoma, esophageal adenocarcinoma, ovarian,
breast and pancreatic cancer, even some of these tumor types were included

previously.

Undoubtedly, in our hands lung squamous cell carcinoma was the tumor
type that acquires the highest number of processed pseudogenes (29,16 of
donors), as previously reported (110,113). Interestingly, results do not show
acquired processed pseudogenes on lung adenocarcinoma (LUAD), a tumor type
included on non-small cell lung carcinoma (NSCLC), as LUSC is. As the number of

tumor genomes analyzed was similar for both types (40 for LUAD and 48 for
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LUSC), we can discard the idea of not identifying PPs because of few genomes.
We suggested that the formation of PPs might be specific to certain tumor types,
probably depending more on the type of cell affected, than on the organ in which

it grows.

The fact that somatic PPs appear only on specific tumor types across a total
of 34, suggests a specific mechanism behind the formation of this genomic event,

which could explain why some tumors acquire PPs whereas others do not.

Our observations suggest a correlation between the acquisition of somatic
processed pseudogenes and somatic retrotransposition events, which primarily
include solo-L1 insertions. As shown in the same PCAWG publication where these
results were published (211), the highest frequencies of somatic PPs were
identified in those tumor types (ESAD, HNSC, LUSC, COAD) that also exhibited
significantly enrichment in somatic retrotransposition events. Compared to other
tumor types and different classes of structural variants, these tumors had a higher
fraction of mobile element insertions. This trend is consistent with the established
association between the activity of L1 machinery and the formation of processed
pseudogenes (212). Additionally, 71% of the insertion sites defined for the 45
validated processed pseudogenes were within repeat elements, and half of them

specifically within L1.

Across all 433 candidate processed pseudogenes, we could count 393
different source genes, where 31 of them appeared retrotransposed in more than
2 tumor genomes. The protein coding gene TRMT10C was the most recurrent
source gene detected in six different tumor genomes from LUSC, HNSC, GACA and
LINC. Copy number variation, and in particular gains on this gene have been
reported in LUSC (59% of the TCGA patients) and HNSC (41%) being the highest
frequencies across 26 tumor types. However, we cannot directly link TRMT10C

gains with the formation of this processed pseudogenes since the event is not
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identified in the same tumor genomes. Any of these six candidates were manually

validated.

Among the candidate source genes, 32 were defined as cancer genes
including tumor suppressor genes and oncogenes by the COSMIC database (87).
Therefore, less than 9% of the candidate PPs arise from cancer genes. This
proportion was also seen considering only validated PPs. Six cancer source genes
(B2M, DEK, MYH11, MYH9, PML AND SRGAP3) were found in more than one
candidate processed pseudogene counting 12 different events. Three candidates
out of these 12 (B2M in one ESAD and one LUSC genome, and MYH11 acquired in
other LUSC genome) could be validated through manual inspection (insertion site

and splice junctions confirmed).

The gene ontology enrichment analysis (https://geneontology.org/)
performed on the 393 different candidate source genes and for cellular
component GO terms showed an enrichment of 18,05 (FDR 8.70E-03) in the
eukaryotic translation initiation factor 4F complex. This group of proteins found
within cells work collaboratively in the initial stages of translation. Overexpression
of elF4F complex components has been observed in several cancers, contributing
to increased translation of specific oncogenes. Again, we could not directly
correlate this overexpression with PPs formation, and the fact these particular
source genes are retrotransposed on tumors since we did not perform differential
expression analysis on tumors to prove it. Moreover, we did not prove if
enrichment analysis of random sets of genes also points out that particular GO
term or if it was specific for this somatic event. Still, it has been shown that overall,
genes acting as template for somatic PPs are among the top quartile of expressed

genes for each specific tumor type (110).

Focusing on the insertion site of the 433 candidates somatic PPs, half of them

appeared to be in intergenic regions while the other half were found in 202
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different known genes. Low insertion site recurrence was observed across the 433
events. Only 6 genes appear as the insertion loci for more than one candidate PPs.
Recurrence across the insertion sites (3%) where candidate PPs was lower than
the observed regarding the source genes (7%), suggesting a relatively random
pattern of insertion locations but likely not in the retrotransposition of the source
genes. Nevertheless, integration of PPs tends to occur on open-active chromatin
regions, as many events appeared inside other expressed genes, since there are

fewer genes compared to intergenic regions in the human genome.

More analyses using RNA-seq expression or epigenetic data of all tumor
genomes acquiring somatic processed pseudogenes are needed to clearly
understand the causes of retrotransposing specific genes into determined

genome locations.

To decipher the potentially functional impact of somatic PPs, we evaluated
RNA expression of 257 PP events. For the majority of them we were not able to
determine supporting RNA reads and therefore, we had inconclusive results.
However, we could confirm the expression of 17 fusion PP-host gene or locus.
Contrary to the results shown in Cooke et al. study, we confirmed the expression
of three processed pseudogenes landing in intergenic regions. Moreover, and
even the challenging RNA-seq alignment performed when repeat sequences are
included, 4 out of 17 expressed fusion PP-host genes had L1 or other repeat
elements within the insertion site. Expressed processed pseudogenes also include
four events resulting from the retrocopy of cancer genes, such as CIITA, FENI,
KTN1 and B2M, which could point to a potential functional interaction and an

impact in the biology of the tumor.

Evidence of aberrant fusion transcripts encouraged us to predict the
chimeric peptide sequence resulting from them. Sequencing RNA reads joining

intron sequences of the host gene together with the source gene were found.
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Accordingly, we assumed their translation even in their wild-type form does not
codify for proteins. The majority of the aberrant fusion transcripts generate
premature stop codons within the coding region of the host transcript, and
particularly within their intron sequences. Translation of the processed
pseudogene was only predicted for the WNK4-RND2 fusion transcript, since cDNA

WNKK4 was inserted within an exon of the host gene.

Finally, high variation across tumor genes of both source genes and insertion
locus, showed a distinctive nature of these somatic events, with no recurrence
across patients in terms of the affected genes or regions. This diversity limits their
potential for practical and clinical applications such as identification of targets or
biomarkers. Moreover, using somatic processed pseudogenes in precision
medicine is highly improbable, as they lack the necessary uniformity. Although
they might not be directly applicable in medicine, their study remains significant
as they could either act as passenger mutations but also potentially confer

functional advantages to the tumor cells.

Together with an extensive identification of structural variants promoted by
LINE-1 retrotransposition on PCAWG data, and following PCAWG rules for
publishing, our work was published as one section of a broader study of
retrotransposition in cancer (211). All the observations illustrate the relevant role
of L1 in remodeling the landscape variation of cancer genomes and their potential

implications for the formation and development of tumors.
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Identification and characterization of novel candidate
micropeptides using publicly available genomic and

transcriptomic cancer data — Chapter 3

Study 1: Catalog of candidate micropeptides for MS/MS

searches

Algorithms developed to find open-reading frames have generally discarded
small ORFs as coding genes, mainly because of their short length and their level
of uncertainty. But these small ORFs can be translated into micropeptides and
have important functional roles. Although great efforts have been made to
identify these new coding genes, they are still poorly studied compared to known
annotated protein coding genes. The identification itself is already highly
challenging, as some of the parameters that are characteristic of micropeptides
come close to thresholds that are defined to eliminate noise within studies. For
example, the short length, or the potential absence of introns within coding
micropeptide DNA regions generate fewer number of supporting mapped reads
for micropeptides. Another issue is the differentiation of micropeptides from real
exons of longer known genes, as most of the micropeptides so far have been
defined in annotated genes In this frame we worked in collaboration with
researchers from VHIO and CNIO to understand the potential role of
micropeptides in metastatic processes in pancreatic adenocarcinoma (PACA). The
general goal of this part of the study was to identify and characterize
micropeptide sequences in exosomes secreted by Pancreatic tumor cells, using a
combination of experimental, mass spectrometry and bioinformatic approaches.
In proteomic, mass spectrometry peptides are commonly identified by matching
MS/MS observed spectra against a theoretical spectrum of all candidate peptides

represented in a reference protein sequence dataset. The characteristics of this
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dataset of candidate peptides are crucial to ensure a proper balance between
having a high enrichment in micropeptides, without losing good candidates and
without incorporating false positives. At the BSC we focused on the design and
generation of this catalog. Our goal was to improve, adapt and change the
standard and default datasets, i.e with known annotated proteins, that are
typically used in proteomic MS/MS studies for one more specific towards
micropeptide identification. This involved several challenges, mostly related to
the identification and inclusion of unknown potentially functional expressed
peptides, with expression patterns often close to transcriptional noise. This is
actually a new approach known as proteogenomics, where novel peptides are
identified by searching MS/MS spectra against a customized protein sequence
dataset generated from genomic and transcriptomic data (213). There are
different strategies to generate customized protein sequence datasets, and the
optimal choice really depends on the goals of the experiment and type of novel
peptides the study seeks to identify. Taking this into account, we based our
strategy on performing de novo transcriptome assembly of RNA-seq samples

which will predict known and novel transcripts.

As our work was focused on the metastatic processes in pancreatic
adenocarcinoma and transcription and translation are tissue specific,
transcriptome assembly was performed from 6 randomly selected ICGC samples

corresponding to the same tumor type (PACA).

For the generation of this catalog there was no standard methodology or
unified strategy to perform de novo transcriptome assembly from RNA-seq
samples. Instead, there were several software tools available that could be used
with different and specific criteria closer to our needs. In this study StringTie
algorithm was used for both de novo assembly and quantification of the predicted
transcripts. It uses a genome-guided transcriptome assembly approach along with

concepts from de novo assembly. Based on published studies, this algorithm
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exhibits good accuracy in reconstructing transcript structures, is compatible with
paired-end RNA-seq libraries and it is more sensitive to genes with low expression
levels than other algorithms (214,215). In terms of processing time, it only tokes
around 20 minutes per sample when run it in the MareNosrtrum 4
supercomputing, and subsequently it was not highly time consuming when

launching many tests.

Importantly, StringTie allowed us to fine-tune parameters that we
considered optimal for the search of short ORFs. First, the minimum size length
was significantly decreased, and transcripts were predicted starting at 50
nucleotides length. Second, we could evaluate the inclusion or exclusion of multi-
mapped reads that are usually present in RNA-seq samples. Although including
multi-mapped reads (-m 1,0) resulted in the prediction of around 6.000 more
transcripts per sample, we did not have sufficient information to assess how many
false positives we were also including. This is why we generated DS1 and DS2, with
and without considering multimapping reads, respectively. Most of the efforts in
this part went to tuning the different parameters for each one of the steps
involved in the generation of the catalog, like for example finding the right
expression thresholds, the right merging strategy to build the final candidate
transcripts, which required specific modifications of the StringTie protocol, or to
evaluate the gain of considering non-canonical start codons. Again, our goal was
to enrich this dataset in micropeptides without taking much noise as false positive

expression signals.

Expression values vary across samples even when looking at the same
predicted transcript, but this could be due to differences in cellular composition
of samples, technical factors during sample processing or sequencing, time or

developmental stages, and external environmental factors.
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Generally, median TPM values in our datasets were not higher than 9,
indicating, as expected, a prevalence of low expressed observed in all sample
showed low levels of expression for most of the predicted transcripts. Note that
as an example, expression levels (TPM) for housekeeping genes such as ACTB,
GAPDH, UBC or ADA observed in the experiment E-MTAB-2706 provided by the
Expression Atlas (216) across pancreatic adenocarcinoma cell lines were around
4997, 3540, 1403,75 and 31,47 respectively. Moreover, the average TPM
expression for the first two housekeeping genes (ACTB and GAPDH) was 2162,95
and 1362,81 in our PACA samples. As micropeptides are not really annotated
across the genome, our approach needs to consider potential low-expressed and
unknown genomic regions, as potential micropeptide genes. Other signals of the
potential presence of false positives within our set is the comparison of canonical
and non-canonical start codons found in other datasets. Despite this can be due
to fragmentation of the candidate transcripts, and general estimates are also
biased towards canonical ATG starting genes, it is also likely that a fraction of our

transcripts, and final peptides is derived from transcriptional noise.

Although necessary, we did not have the chance and time to perform a
proper comparative evaluation of the level of overlap between the different
approaches, or whether known expressed transcripts, eventually also known
micropeptides, in pancreatic adenocarcinoma were actually enriched within our
datasets. Performing these analyses is necessary to provide further support and
to evaluate de novo and merging strategies applied here to define the PACA

transcriptome.

During the generation of this PACA transcriptome we also encountered
computational limitations, when relaxing the thresholds and the dataset
increased. For example, the size of DS2, where non-canonical start codons were
also considered, was computationally and algorithmically not compatible with the

MS/MS analysis at the CNIO. Measures, like increasing the stringency in
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expression helped us reduce the size of the dataset, although also enriched the
catalog towards highly expressed regions, which is not optimal for micropeptide

studies.

An evaluation of the position of our candidate small ORFS across the types
of annotated regions in the genome, we observed interesting results. A
classification of the candidate sequences based on their location compared to
annotated genes showed that the majority of candidate ORFs (1.103.297) were
located within protein coding genes. Nevertheless, as a result of the Blast filtering
step, only 2,7% of them had part (less than 30% in DS2) of their sequence
overlapping with a coding exon whereas the remaining ones were within UTRs, or
introns. Interestingly, the highest frequency (43,4%) of candidates was observed
in 3" UTR regions. While previous studies aiming to classify smORFs (124,150)
depending on their location, clearly describe smORFs in 5° UTRs, also called
UORFs, downstream smORFs (dORFs) located in 3’UTRs have been less explored.
Small ORFs have also been identified in 3 UTRs by ribosome profiling and
proteomics, but their frequency tends to be lower than the observed for uORFs.
As an example, in a study performed on 2021 analyzing ORFs from OpenProt and
sORFs.org, researchers identified 14,4% of novel ORFs overlapping 5" UTRs and
only 2,8% in 3’UTRs (149). A similar tendency was observed also in zebrafish
embryos. Upstream small ORFs have been systematically characterized and their
functions are well known. They act as cis-regulators of the translation of
downstream canonical ORFs, and often repress their translation. Upstream ORFs
are considered the main class of regulatory small ORFs, and it has been observed
that regulation through them is conserved across vertebrates for dozens of genes.
Moreover, in many cases their translation starts from non-AUG start codons.
Contrary dORFs, those located in 3’UTRs and that appeared to be enriched in our
datasets, have not been as much characterized. However, a study published in

2020 reported dORFs enhance translation of their canonical ORFs in both human
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cells and zebrafish embryos, indicating a novel and strong post-transcriptional
regulatory mechanism (217). Also in dataset 2, around 22% and 21% of the
candidates were located in introns or exons of non-coding genes, two smORFs
classes that have also been well described in previous studies. In summary,
although it is generally known that a significant fraction of the translated ORFs
maps to untranslated regions and sequences previously considered noncoding we
did not expect an enrichment in sequences located in 3'UTRs rather than in 5
UTRs, introns or non-coding genes. We suggest this enrichment could be due to
3" UTRs are longer than 5" UTR regions in protein coding genes so it is more likely

to identify higher numbers of ORFs.

A curated and systematic characterization of all the candidate micropeptides
identified in both datasets, based on their classification, could seed light to better
understand the results obtained. Expression analysis of each of these groups of
candidates could also demonstrate if for example, UTR regions had generally
higher expression levels compared to intronic regions or IncRNAs in our defined
transcriptome. If this was the case, identifying more candidate sequences in
3’UTRs could not only be because of their larger size (218) but also because their
inclusion after all the filtering steps applied. Finally, we also considered that the
fact we were stringent with single-exon predicted transcripts and expression

abundance resulted in a lower detection of intergenic smORFs.

As we foresee, our sets of in-silico translated sequences likely include high
numbers of false positive micropeptides even though we ended up reducing both
sets. Because of that, at any point of this study all micropeptides were just
considered candidates. It is also important to consider the technical debate on
whether low levels of expression used to predict transcripts, or the small number
of samples evaluated had been sufficient to represent the pancreatic
adenocarcinoma transcriptome. To better define and determine these

transcripts, a larger cohort of patients is clearly needed.
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The generation of this catalog was performed in collaboration with the group
at the VHIO, where we regularly discussed with them the results of applying
different types of filters, for example. Finally, both datasets of candidate
micropeptides were used in MS/MS experiments of pancreatic tumor samples

performed at the CNIO, yielding a total of 439 candidate micropeptides.

Interestingly, 167 of these micropeptides were defined in our datasets.
Many of these short peptides have been detected in previously annotated non-
protein coding regions of the human genome, including UTRs, IncRNAs or
pseudogenes. Only 23 out of 439 micropeptides were selected based on their
enriched expression in pancreatic adenocarcinoma compared to healthy
pancreas, the consistency of their detection across databases and evidences of
micropeptide functionality. Despite the Pl moved to another location, which
inevitably affected the normal progress of this activity, there are still plans to
continue with this work. Marion Martinez and Dra. Maria Abad are still working
on their functional characterization at VHIO. Finally, we are planning a more
extensive description of all 439 identified micropeptides using other
computational approaches such as PhyloCSF (162), to evaluate their conservation,
IUPred3 (219) to identify disordered protein regions within them and the ELM
prediction tool (220) to detect short linear motifs that can be protein interaction

sites.
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Study 2: Identification of candidate highly conserved
micropeptides in intergenic regions

Initiating our exploration of micropeptides in the first study, in which we
provided a catalog of novel candidate micropeptides from transcripts expressed
in PACA tumors, we realized the underexplored nature of micropeptides located
in intergenic human genomic regions. In addition, identifying and characterizing
smORFS within gene regions adds the challenge of demonstrating its independent
role beyond the role of the surrounding genes. It is known that intergenic ORFs
are the most numerous (96% of the smORFs) in human DNA, with a median size
of 22 codons. However, many seem not to undergo transcription and to be

randomly generated by our genomes rather than have a functional role (124,175).

Identification and annotation of small ORFs is per se, challenging due to their
short length compared to known genes and, because of prediction algorithms
limitations (171). Furthermore, due to the high numbers of intergenic ORFs, and
to avoid inflating the estimates of functional smORFs, these short intergenic
peptides are less considered. As expected, micropeptide studies are usually
focused on those more likely to be functional. Despite this, we attempted to
evaluate these less explored DNA sequences considering they can be a promising

source of potentially functional intergenic micropeptides.

Due to the availability and quality of data, as a main strategy, we decided to
start the search of micropeptide from the genome, by searching all small
intergenic ORFs with different levels of functional evidence, instead of directly
exploring the transcriptome as we did in the previous study. These functional
evidence were explored using evolutionary and comparative genomic approaches
and tools. We also explored other types of functional support, like the known
differences in nucleotide composition between functional (coding) and non-

functional sequences, previously used in multiple studies for the prediction of
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genes in newly sequenced genomes (221). Unfortunately, the signals that we
explored with Francisco Cdmara (Roderic Guigd’s group at the CRG) were too

noisy.

Aiming to describe micropeptides with a role in tumorigenesis, we expected
their function to be essential for controlling basic cell functions required to
survive. It is known that cancer genes such as oncogenes and tumor suppressors
are widely conserved through evolution (222). We then expect that functional
micropeptides with important cell functions (e.g. cancer-related) will also be
conserved across different species and taxonomical clades. This s
why comparative analyses of genomes and transcriptomes from multiple species
at varying evolutionary distances have been powerful to identify functional coding

and non-coding sequences.

So as to restrict our genome-wide search of intergenic micropepitdes, we
targeted unannotated intergenic constrained regions (UNICORNs) previously
identified through a 240 species alignment and published by The Zoonomia
Project (5).

UNICORN nucleotide sequences were in-silico translated assuming they
were intronless and all their sequence was coding. In fact, it has been shown that
new annotated coding genes located in regions previously defined as non-coding
have significantly a smaller number of exons, and around 88% of them are single-
exon genes (123). Assuming intronless sequences was not so far from what we

could somehow expect.

On top of sequence conservation, we included other evolutionary measures,
in this case, the ratio of synonymous versus non-synonymous substitution rates
(dN/dS) that informs about the selective pressure linked to a coding region and
suggests functionality. The reliability of this ratio, which is also used for the

identification of positive selection in evolutionary processes, depends on the
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number of substitutions identified between two species, which at the same time
depends on the evolutionary distance of the two sequences and their length. This
means that more recent and shorter micropeptides with low substitution counts
might not generate reliable dN/dS ratios and could be classified as non-functional,
or neutrally evolving. To find a balance between reliability of the coding
alignments between two ortholog candidate micropeptides, needed for the
dN/dS calculations, and enough evolutionary distance to ensure a minimum
number of synonymous and non-synonymous substitutions (163,223), we used
mice for this analysis. A preliminary evaluation of this strategy applied to known
functional micropeptides including AGD3, Myoregulin, NBDY, SPAAR, Minion,
Phospholamban and Sarcolipin, showed ratios associated with functionality,

giving support to the potential benefits in using this tool.

At the level of strategy, we encountered the typical challenges associated
with short sequences, which affected all our steps, from the reliability of the
alignments to demonstrating expression and the micropeptide using RNAseq
data. Because we prioritize stringency and reliability of the sequences found (i.e.
absence of false positives), rather than sensitivity, we applied strict thresholds to
some of the steps that might have filtered out good micropeptides. For example,
as mentioned, very recent micropeptides, despite providing aligments with good
quality, often do not have enough substitutions when compared with other
species to calculate dN/dS. Older micropeptides might, on the other hand,
present problems defining reliable orthologs and aligning their sequences. In
addition, the use of sequence conservation also implies that our study might
identify the most conserved fragments of longer micropeptides, but not the entire

micropeptide.

We know from previously published studies (129,130,171), that
micropeptides seem to be less conserved than protein-coding genes, so we

expected many of them were not covered on our search. Moreover, it is also
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important to bear in mind that the set of small functional proteins not only
includes conserved regions but sequences that have recently emerged de novo
from previously noncoding sequences. Due to their origin from randomly
occurring ORFs, de novo proteins are also remarkably short. De novo originated
proteins are known to be species specific, may not be present in the species gene
annotations and show little or no signatures of purifying selection, which limits
our search. In fact, recently emerged de novo genes show high evolutionary rates
when compared with more conserved genes (150,224). For all these reasons, our
search based on evolutionary conservation and purifying selection limited the

identification of functional micropeptides.

Finally, we also used expression as another measure that could indicate
functionality. As micropeptides are short and appear to show low levels of
expression (129), we could then also miss real micropeptides because the limited
availability of good quality raw RNA-seq data and the limited sequencing
coverage, which determines the number of final supporting reads. As an example
of these limitations, paired-end reads supporting a few candidates showed us that
our set of highly conserved smORFs included part of larger candidate transcripts,
and therefore we could confirm that in some cases we were not defining the

entire smORF but their conserved nucleotides.

For most of the candidate micropeptides signals of expression were not
strongly supported but just detected in one sample each. However, we determine
evidence of expression in 103 samples including all tissues except muscle for one
interesting candidate located in chromosome 5 between 93.615.953 and
93.616.054 bp. The conserved region was around 1700 bp upstream a known
IncRNA (FAM172A). Even it was close to a known gene, mate reads of the ones
aligned across the candidate did not cover FAM172A in the samples analyzed. This
data suggested that the conserved smORF was not part of the known transcript

but a different candidate gene. As it has been observed for other regulatory
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smORFs (150), the function of this candidate could be hypothetically linked with
the regulation of the INncRNA. Moreover, signals of expression in FAM172A can be
observed in the same tissue types in the GTEX portal, with the lowest expression
values in muscle tissue samples and correlating with the observed signals of

expression seen for our candidate smORF.

It should be noted that smORFs shorter than the library size used when
sequencing the sample will not be detected if reads are selected depending on
their size before the alignment step. RNA-seq samples and other experimental
analysis such as microarrays defined precisely to identify expression of short
peptides, are needed to confirm these candidates are transcribed in cells.
Evidence of expression not only confirms their presence in nature but also
provides information about, for example, their tissue specificity or
functionality. Furthermore, proteomic data from MS/MS studies or Ribo-seq is
needed to validate all these candidate micropeptides accurately. Absolutely, this
catalog of novel candidate micropeptides in intergenic regions could be used to

analyze raw publicly available MS/MS experiments.

Lastly intending to explore the role of micropeptides in cancer disease and
tumorigenesis, we analyzed the recurrence of somatic single nucleotide variants
in smORFs. We started with a set of published micropeptides to test driver-
discovery algorithms that had not been directly developed for small ORFs. We
aimed to identify driver smORFs based on the presence of significant clusters of
mutations detected in the ICGC tumor genomes and using OncodriveCLUSTL, a
driver-discovery algorithm (7). The number of SNVs was not sufficient for 6 ICGC
projects, where OncodriveCLUSTL could not provide good results nor clusters of
variants. For these tumor types, a potential approach to obtain better results in
future analysis could be increasing the number of samples analyzed, and
consequently of variants. Due to differences in mutation rates between tumors,

to do so we should be concerned about the specific type and subtype when
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searching for more data. At the end, our candidate intergenic smORFs regions did
not show enough somatic SNVs from the ICGC tumors analyzed. Because of the
low number of variants in these candidates, OncodriveCLUSTL was not able to
identify clusters, and even less significant and recurrent variants within the
candidates. Based on recurrent and clusters of mutations, we could not suggest a

role in cancer for our candidate intergenic smORFs.

We propose other experimental and computational approaches can be
applied to evaluate their potential role in cancer, considering that more precise
measurements are needed to identify functionality even low signal intensities. In
terms of genomic data, gain- and loss-of-function mutations, or copy number
alterations within these candidates could also seed light to understand their
implication with cancer disease. Differential expression levels comparing tumor
and normal tissues will also provide more insights into their function, as well as
defined tissue specificity. Proteomic data including MS/MS and Ribosome
profiling experiments will not only confirm their presence in humans but also

allow us to understand in which cell types are translated, and their abundance.

It is important to know that smORFs can have regulatory effects on
neighboring genes (150), and not all are translated into micropeptides neither
have their own function. Intergenic conserved regions, can also be regulatory
elements regulating gene expression and be structural DNA features such as
transcription factor binding sites, contribute to chromatin structure organization
of maintain genomic stability (225,226). Thus, these small, conserved intergenic
regions will not be transcribed and translated and therefore not considered

micropeptides.

In summary, the catalog of candidate micropeptide sequences we provided,
a total of 8.289 sequences, is a valuable source of information to perform more

analysis including experimental validation. Available algorithms developed to
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detect smORFs such as MiPepid (164), sORF Finder (160) or PhyloCSF (162) can
be applied on UNICORN regions or candidate smORFs identified to support our
findings. Moreover, lastly, an increasing number of intergenic smORFs have been
annotated and previously published databases such as sorfs.org (175) or
nORFs.org (149) have been updated. Then, we considered it is also important to
evaluate the overlap between these recently published smORFs and the
candidates identified in our conservation study. As described in this discussion,
many questions are still open in the present study, becoming an interesting

research line to continue exploring even if it has been usually missed.
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7. General overview
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The presented thesis is a compilation of genomic studies done with the aim
of understanding tumor genomes and the biology behind them. Using diverse
classical and novel bioinformatic tools, together with manual inspection of the
data to understand and question automatic searches, the focus has primarily been
on evaluating two genomic elements: somatic processed pseudogenes and

micropeptides.

The landscape of cancer and biomedical research have been notably driven
by the potential of next-generation sequencing, which has also changed the way
we undertake biological questions leading to important scientic discoveries.
Unlike classical genetic studies, a comprehensive evaluation of the human
genome now serves as the foundation for more specific research questions.
Genomic data, along with other omics data such as transcriptomics, proteomics
and epigenomics, have unravel the complexity of tumors, deciphering germline
and somatic alterations, gene expression alterations, and environmental changes
affecting the way genes normally work. All this information, is essential to

understand cancer disease.

Large-scale initiatives and publicly available data, such as The Cancer
Genome Atlas or The International Cancer Genome Consortium, have played a
crucial role. These initiatives, collect extensive datasets fostering collaborative
efforts and accelerating discoveries (88,227). Indeed, the present thesis could not
have been done without all these cancer genomic and transcriptomic data

available.

Even this vast amount of publicly available data useful for cancer research,
there are still many challenges to deal with. Variability across data has been one
of these limitations. In one hand, technical information regarding how data was
collected, quality, or a clear description of the methology used to produce the

data is occasionally or partially missing. Therefore, it is not allways easy to select
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which samples can be included in our specific study, or to understand why we are
facing with particular results. Moreover, due to the wide range of available
algorithms, to integrate and compare data, data harmonization is needed to
ensure compatibility (54,228). If it is not already done, data should be reanalyzed

considering the requirements of the research.

Ensuring broad data sharing is nowadays essential. However, even the great
initiatives and efforts done in this field, data is not allways easily accessible.
Moreover, although data agreements are clearly needed, they can be time
consuming and a bottleneck in the research. In this line, another challenge we
usually encounter is the lack of publicly available clinical data, which is
fundamental for translating genomic research findings into actionable insights.
The combination of genomic discoveries together with clinical data promotes
precision medicine, investing this knowledge in the hands of clinicians and health
care systems to really benefit our society. Yet, the challenges persist also in this
line, due to ethical management of sensitive patient data and integration of multi-
omic information into routine clinical practice. Nevertheless, efforts are being
done to accelerate both, the use of clinical data in research, and the application
and integration of biological individualized findings into precision medicine. As an
example, Genomics England alongside UK National Healthcare System, analyzed
WGS data from almost 14000 tumors, integrating genomic data with real-world

treatment and outcome data within a secure research environment (229).

While challenges and limitations must be considered in both research and
its clinical applications, there is undeniable recognition of the important role that
NGS and omics data play in advancing cancer studies and healthcare.
Consequently, there is a need to address and overcome these limitations. Efforts
should be directed towards comprehensive strategies that enable the extensive
utilization of cancer data, facilitating the understanding of the imformation

embedded within tumor cells. By working on these challenges, we can unlock the
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potential of genomic insights, paving the way for transformative developments in

both cancer research and precision medicine.
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8. Conclusions
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Chapter 1:

1) Current short read-based sequencing analysis of somatic structural
variants in cancer analysis, and structural variant heterogeneity limits the

estimation of variant allele frequency to later classify them in tumor subclones.

2) Given this limitation, manual inspection of coverage variability around
somatic breakpoints, and the accurate identification of aligned supporting reads
is required to reliably estimate and infer their cancer cell fraction to fully

characterize intratumor heterogeneity.
Chapter 2:

3) We have been able to define a strategy combining automatic searches
with manual inspection to identify somatic processed pseudogenes in cancer. The
application of this strategy to the PCAWG cohort allowed us to identify somatic

PPs across different tumor types.

4) The distribution of somatic PPs within tumor genomes appeared to be

enriched in protein coding genes, and particularly in intronic regions.

5) We observed a heterogeneous distribution of somatic PPs across tumor
types, which seems to be correlated with the level and activity of tumor somatic

retrotransposition driven by LINE-1 elements.

6) We could identify expressed somatic processed pseudogenes and
reconstruct the resulting fusion transcripts. These PP-host gene fusions suggested

that somatic PPs can have a functional impact on cell’s transcriptional activity.
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Chapter 3:
Study 1:

7) The generation of a micropeptide customized catalog based on pancreatic
adenocarcinoma expression of non-annotated coding regions, allowed us to
identify micropeptides in exosomes secreated by the same tumor type through

mass spectrometry.
Study 2:

8) The combination of evolutionary approaches, including nucleotide
sequence identity and coding substitution ratio (dn/ds) across species, allowed us
to define a set of initial candidates small ORFs located in human intergenic

regions.

9) An initial inspection of healthy transcriptomic samples enabled us to
observe signals of expression within a few candidate intergenic smORFs.
Compared to known protein coding genes, candidate smORFs exhibited low
expression levels, presenting a challenge in their assessment using RNA-seq

samples.
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Supplementary Figure 1. Coverage distribution across four genomic regions where SVs have not
been identified. Each line correspond to a genomic sample from case 29. Blue represents normal
genome, whereas pink and orange two different tumor samples.
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Supplementary figure 5. KS value compared the enrichment in cancer genes, obtained for 6

different ICGC cancer projects. Each dot represents one OncodriveCLUSTL test using an specific

combination of parameters. Dots in red indicate the selected combination.
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10.2 Supplementary tables

318



sV

LOCATION

LOCATION

TIME POINT SVID CHR POS STRAND CHR POS STRAND TYPE (bkp1) (bkp2) CLL DRIVERS DLBCL DRIVERS
T1-PB SV_6 11 106417594 + 11 110207731 + INV  intergenic intergenic ATM ATM
T1-PB SV_7 11 108122764 - 11 116153393 - INV ATM intergenic ATM ATM
T1-PB Sv_11 X 147727409 + X 147738814 + INV AFF2 AFF2
T1-PB Sv_12 X 147731093 - X 147738794 - INV AFF2 AFF2
T1-LN SV_9 11 106417594 + 11 110207731 + INV  intergenic intergenic ATM ATM
T1-LN SV_10 11 108122764 - 11 116153393 - INV ATM intergenic ATM ATM
T1-LN Sv_18 X 147727409 + X 147738814 + INV AFF2 AFF2
T1-LN SV_19 X 147731093 - X 147738787 - INV AFF2 AFF2

T2 SV_21 11 106417594 + 11 110207731 + INV  intergenic intergenic ATM ATM
T2 SV_22 11 108122764 - 11 116153393 - INV ATM intergenic ATM ATM
T2 SV_24676 13 26926979 - 13 47816848 - INV CDK8 intergenic FOX01
T2 SV_26 13 47816186 - 13 47816851 - INV  intergenic intergenic
T2 SvV_27 13 47816221 + 13 57245235 - DEL intergenic intergenic
T2 SV_46 X 147727409 + X 147738814 + INV AFF2 AFF2
T2 Sv_47 X 147731093 - X 147738787 - INV AFF2 AFF2
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Y LOCATION  LOCATION
TIME POINT SVID CHR POS STRAND CHR POS STRAND TYPE (bkpl) (bkp2) CLL DRIVERS  DLBCL DRIVERS
T3 SV_16 2 137757587 + 2 137757897 - DEL THSD7B THSD7B
T3 SV_29 4 136358882 - 4 140818871 - INV intergenic MAML3
T3 SV_30 4 140808906 - 4 140856382 - INV MAML3 MAML3
T3 SV_56 7 52263031 - 7 52263480 - INV intergenic intergenic
T3 SV_66 9 8495226 + 9 31606757 - DEL PTPRD intergenic CDKN2A  PTPRD,CDKN2A,CDKN2B
T3 SV_308 9 131108130 + 11 118477716 - TRA SLC27A4 PHLDB1
T3 SV_89 9 131209465 + 11 118814376 + TRA MIR1268A intergenic
T3 SV_309 9 131222219 - 11 118861651 + TRA MIR1268A intergenic
T3 Sv_88 9 131231071 + 11 118477448 + TRA MIR1268A PHLDB1
T3 SV_72 10 85468180 + 10 85468343 - DEL intergenic intergenic
T3 SV_75 11 7897130 - 11 7898281 - INV LOC283299 LOC283299
T3 SV_184 11 33731887 + 11 33738914 - DEL CD59 CD59
T3 SV_79 11 63968132 - 11 63973300 + DUP STIP1 intergenic
T3 SV_80 11 67352245 + 11 67353857 - DEL GSTP1 GSTP1 RAD9A
T3 SV_82 11 106417594 + 11 110207731 + INV intergenic intergenic ATM ATM
T3 SvV_83 11 108122764 - 11 116153393 - INV ATM intergenic ATM ATM
T3 SV_84 11 118576119 + 11 118867843 + INV intergenic intergenic
T3 SV_85 11 118802233 - 11 118888669 + DUP intergenic RPS25
T3 SV_86 11 118841362 - 11 118888405 - INV intergenic RPS25
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Y LOCATION  LOCATION
TIME POINT SV ID CHR POS STRAND CHR POS STRAND TYPE (bkpl) (bkp2) CLL DRIVERS  DLBCL DRIVERS
T3 Sv_187 11 118867609 - 11 118867870 - INV intergenic intergenic
T3 SV_102 13 26926978 + 13 47816848 + INV CDK8 intergenic FOX01
T3 SV_103 13 27116592 - 13 47841044 + DUP intergenic intergenic FOXO1
T3 SV_106 13 47816186 - 13 47816851 - INV intergenic intergenic
T3 SvV_107 13 47816221 + 13 57245235 - DEL intergenic intergenic
T3 Sv_108 13 48933458 + 13 48990742 - DEL RB1 RB1
T3 SV_160 X 147727409 + X 147738814 + INV AFF2 AFF2
T3 Sv_1e61 X 147731093 - X 147738787 - INV AFF2 AFF2

Supplementary Table 1. Somatic structural variants identified by variant callers and manually validated in CLL case 63. Known CLL and DLBCL driver genes are
annotated if involved within the structural variant.
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BREAKPOINT 1 BREAKPOINT 2 AVERAGE DIFFERENCE (BKP)

TIMEPOINT SVID LENGTH REPEAT1 VAF1 CNA1 CCF1 REPEAT2 VAF2 CNA2 CCF2 VAF CCF VAF CCF

T1-PB SV_6 3790138 LINE/L1 0,3120 2 0,5940 | SINE/Alu 0,4961 2 1,0224 | 0,4041 0,8082 [0,1842 0,4285
T1-PB Sv_7 8030630 0,3584 2 0,7386 0,3238 2 0,6673 | 0,3411 0,7029 | 0,0346 0,0714
T1-PB Sv_11 11406 0,2727 2 0,5583 0,3077 2 0,6299 | 0,2902 0,5941 | 0,0350 0,0716
T1-PB SvV_12 7702 0,2500 2 0,5118 | SINE/MIR 0,3077 2 0,6299 |0,2788 0,5708 | 0,0577 0,1181
T1-LN SV_9 3790138 LINE/L1 0,3796 1,86  0,7354 | SINE/Alu 0,6216 2 1,3036 | 0,5006 11,0195 |0,2420 0,5682
T1-LN Sv_10 8030630 0,4000 2 0,8389 0,4340 1,4133 10,6389 |0,4170 0,7389 |0,0340 0,2000
T1-LN Sv_18 11406 0,1806 2 0,3762 0,2284 2 0,4757 |0,2045 0,4757 | 0,0478  0,0996
T1-LN SV_19 7695 0,1500 2 0,3125 | SINE/MIR 0,2941 2 0,6127 | 0,2221 0,4626 |0,1441  0,3002
T2 Sv_21 3790138 LINE/L1 0,4424 2 0,9183 | SINE/Alu 0,8884 2 1,8440 | 0,6654 11,3811 | 0,4460 0,9257
T2 Sv_22 8030630 0,3539 2 0,7346 0,3936 11,4133 0,5735 | 0,3738 0,6541 | 0,0397 0,1610
T2 SV_24676 20889870 | LINE/L1 0,0732 2 0,1519 | SINE/Alu 0,0706 2 0,1466 | 0,0719 0,1492 | 0,0025 0,0052
T2 Sv_27 9429015 0,1396 2 0,2897 | LTR/ERVL 0,1709 2 0,3547 | 0,1552 10,3222 | 0,0313  0,0650
T2 SV_46 11406 0,7293 2 1,5036 0,5983 2 1,2336 | 0,6638 11,3686 |0,1310 0,2700
T2 SV_47 7695 0,7295 2 1,5042 | SINE/MIR 0,6187 2 1,2758 | 0,6741 11,3900 | 0,1108 0,2284
T3 SV_29 4459990 LINE/L1 0,1197 3 0,3796 0,0972 3 0,3085 | 0,1085 0,3441 |0,0224 0,0711
T3 SV_30 47477 0,0889 3 0,2819 0,2804 3 0,8895 | 0,1846 0,5857 |0,1915 0,6076
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BREAKPOINT 1 BREAKPOINT 2 AVERAGE DIFFERENCE (BKP)

TIMEPOINT SVID LENGTH REPEAT1 VAF1 CNA1 CCF1 REPEAT2 VAF2 CNA2 CCF2 VAF CCF VAF CCF

T3 SV_66 23111532 | LINE/L2 0,3093 2 0,6314 0,2985 2 0,6768 | 0,0215 0,6541 | 0,0107 0,0454
T3 SV_308 SINE/Alu 0,1667 2 0,3525 0,1667 3 0,5287 | 0,1667 0,4406 | 0,0000 0,1762
T3 SV_89 DNA/hAT-Charlie 0,3158 2 0,6678 | SINE/Alu 0,4667 1 0,4935 | 0,3912 0,5680 | 0,1509 0,1744
T3 SV_309 Simple repeat 0,1000 1 0,1057 | Simple repeat  0,4000 3 1,2689 | 0,2500 0,6873 | 0,3000 1,1632
T3 Sv_88 0,4522 1 0,4781 0,3507 3 1,1124 | 0,4014 0,7953 | 0,1015 0,6342
T3 SV_75 1152 LINE/L1 0,0592 3 0,1877 | LINE/L1 0,0617 3 0,1958 | 0,0605 0,1918 | 0,0025 0,0081
T3 Sv_184 7028 0,1304 3 0,4137 0,1693 3 0,5370 | 0,1498 10,4753 | 0,0389 0,1233
T3 SV_79 5169 0,1667 3 0,5287 0,0588 3 0,1866 |0,1127 0,3577 | 0,1078  0,3421
T3 SV_80 1613 0,2543 3 0,8066 0,2295 3 0,7281 |0,2419 10,7673 | 0,0247  0,0785
T3 SV_82 3790138 LINE/L1 0,3855 2,88 11,1662 | SINE/Alu 0,7948 2 1,6809 | 0,5901 11,4235 [0,4093 0,5147
T3 Sv_83 8030630 0,4128 2 0,8731 0,4203 2,42 1,0715 | 0,4166 0,9723 | 0,0075  0,1984
T3 Sv_84 291725 LTR/Gypsy 0,3210 2 0,6789 0,3202 3 1,0158 | 0,3206 0,8473 | 0,0008 0,3369
T3 Sv_85 86437 0,4409 1 0,4662 0,1758 3 0,5577 |0,3084 0,5120 | 0,2651  0,0915
T3 SV_86 47044 LINE/L1 0,4444 1 0,4700 0,2830 3 0,8978 | 0,3637 0,6839 | 0,1614  0,4278
T3 Sv_102 20889871 0,3636 2 0,7690 | LINE/L1 0,3721 2 0,7869 |0,3679 0,7780 | 0,0085 0,0179
T3 Sv_103 20724453 0,3056 2 0,6462 | LTR/ERVL 0,2813 2 0,5948 |0,2934 0,6205 | 0,0243 0,0514
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BREAKPOINT 1 BREAKPOINT 2 AVERAGE DIFFERENCE (BKP)
TIMEPOINT SVID LENGTH REPEAT1 VAF1 CNA1 CCF1 REPEAT2 VAF2 CNA2 CCF2 VAF CCF VAF CCF
T3 SvV_107 9429015 0,3527 2 0,7460 0,2859 2 0,1000 | 0,3193 0,6753 | 0,0669  0,6460
T3 SvV_108 57285 0,5349 1 0,5656 | LINE/L1 0,5395 1 0,2000 | 0,5372 0,5680 | 0,0046  0,3656
T3 SV_160 11406 0,6769 2 1,4316 0,6818 2 0,3100 | 0,6794 11,4368 | 0,0049 11,1216
T3 Sv_161 7695 0,5966 2 1,2617 | SINE/MIR 0,6158 2 0,3000 |0,6062 11,2820 |0,0192 0,9617

Supplementary Table 2. Variant allele frequency and cancer cell fraction calculated for each breakpoint and structural variant (average) detected in CLL tumors
from case 63. Difference between VAF and CCF calculated for each BKP of a SV are also shown in the last two columns. The frequency of those variants marked
in light grey was not calculated because they were shorter than the threshold used.

324



T1-PB T1-LN T2 T3 Structural Variant Samples
0,81 1,02 1,38 1,42 11:106417594_11:110207731 All

0,70 0,74 0,65 0,97 11:108122764_11:116153393 All

0,59 0,48 1,37 1,44 X:147727409_X:147738814 All

0,57 0,46 1,39 1,28 X:147731093_X:147738794 All

0,00 0,00 0,15 0,78 13:26926979_13:47816848 Chemoimmunotherapy
0,00 0,00 0,32 0,68 13:47816221_13:57245235 Chemoimmunotherapy
0,00 0,00 0,00 0,34 4:136358882_4:140818871 Richter
0,00 0,00 0,00 0,59 4:140808906_4:140856382 Richter
0,00 0,00 0,00 0,65 9:8495226_9:31606757 Richter
0,00 0,00 0,00 0,44 9:131108130_11:118477716  Richter
0,00 0,00 0,00 0,57 9:131209465_11:118814376  Richter
0,00 0,00 0,00 0,69 9:131222219_11:118861651  Richter
0,00 0,00 0,00 0,80 9:131231071_11:118477448  Richter
0,00 0,00 0,00 0,19 11:7897130_11:7898281 Richter
0,00 0,00 0,00 0,48 11:33731887_11:33738914 Richter
0,00 0,00 0,00 0,36 11:63968132_11:63973300 Richter
0,00 0,00 0,00 0,77 11:67352245_11:67353857 Richter
0,00 0,00 0,00 0,85 11:118576119_11:118867843 Richter
0,00 0,00 0,00 0,51 11:118802233_11:118888669 Richter
0,00 0,00 0,00 0,68 11:118841362_11:118888405 Richter
0,00 0,00 0,00 0,62 13:27116592_13:47841044 Richter
0,00 0,00 0,00 0,57 13:48933458_13:48990742 Richter

Supplementary Table 3 — Cancer cell fraction calculated for each somatic SV across all longitudinal
and spatial CLL samples (case 63). Last column indicates if the SV was detected in all samples (All),
in samples after chemoimmunotherapy (T2 and T3) (Chemoimmunotherapy) or only once the tumor
transformed into DLBCL; T3 sample (Richter).
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ICGC PROJECT SNVs _|Parameters _ Clusters Elements P-values > 0,01 KS statistic__KS p-value CG enrichment
51-51 21 19 19 0,4428 6,52E-04 0,577
71-71 23 21 21 0,3912  2,09t-03 0,596

91-91 27 25 25 0,307 1,37e-02 0,
RCA TR A6 101-101 28 26 26 0,2951  1,68E-02 0,792
101-91-101 28 26 24 0,2877  2,98E-02 0,6
101-101-101 28 26 26 0,3381  3,73E-03 0,618
51-51 25 23 21 0,3984 1,61E-03 4,41
71-711 26 25 23 0,4311  2,12E-04 4,18
91-91 26 26 24 0,3189  1,14E-02 4,38
384,029 101-101 27 27 25 0,3053  1,45E-02 4,37
101-91-101 27 27 20 0,277  7,55E-02 4,05
101-101-101 27 27 24 0,3668  2,11E-03 4,01
51-51 1.046 583 565 0,1975  8,80E-20 2,093
71-71 1217 690 670 0,1771  7,45E-19 1,83
91-91 1346 776 755 0,1657 1,37E-18 1,251
Al Ao 101-101 1418 835 816 0,1762  1,26E-22 1,63
101-91-101 1429 835 796 0,1953  4,54E-27 2,922
101-101-101 1418 835 792 0,1942  124E-26 3,004
51-51 67 64 59 0,3764 5,10E-08 7,087
71-71 78 71 66 0,3287 7,50E-07 7,111
966,241 91-91 82 75 72 0,3068 1,63E-06 6,676
101-101 82 75 73 0,3258 2,13-07 6,694]
101-91-101 82 75 64 0,3255 1,54E-06 6,992
101-101-101 82 75 68 0,351 5,40E-08 7,031
51-51 97 84 80 0,1755  1,26E-02 6,043
71-71 110 94 89 0,1454  4,17€-02 5,919
91-91 127 104 100 0,1647  7,72E-03 5,565
1234194 101-101 132 108 104 0,1615  7,75€-03 5,392
101-91-101 134 108 97 0,2143  2,18E-04 5,608
101-101-101 132 108 100 0,2001 _ 5,52E-04 5,836}
51-51 231 112 89 0,501  3,45€-21 0,24
71-71 237 115 94 0,4409  3,69E-17 0,261
91-91 245 123 103 0,3868 2,20E-14 0,151

1.144.634

101-101 249 125 107 0,3566 1,10E-12 0,337
101-91-101 247 125 88 0,3381 1,77€-09 0,222
101-101-101 240 125 91 0,3525  1,28E-10 0,337

Supplementary Table 4. OncodriveCLUSTL tests done for each ICGC project based on different
combinations of parameters.For each test, the number of clusters identified, the KS statistic and the
enrichment in cancer genes are shown. Marked in green, the selected parameter combination for
each ICGC project. Only those sets of variants with more than 20 clusters of variants were evaluated

and are represented here.
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smORF Ribo-seq Literature Mining MS Datab
smOrf_24636 |. SPROHSA006339
smOrf_28297 |. SPROHSA009881
SPROHSA175114,
SPROHSA176941,
SPROHSA178278,
smOrf_6018 |SPROHSA180088,
SPROHSA180602,
SPROHSA183712,
SPROHSA018303 SPROHSA018303
smOrf_19623 |. SPROHSA013707
smOrf_21016 |. SPROHSA013708
smOrf_44005 |. SPROHSA028972
smOrf_46135 |. SPROHSA018304
smOrf_36958 |. SPROHSA005007
smOrf_22067 |. SPROHSA009188
smOrf_42179 |. SPROHSA009880
smOrf_32101 |. SPROHSA011377
smOrf_19623 |. SPROHSA013707
smOrf_21016 |. SPROHSA013708
smOrf_19623 |. SPROHSA013707
smOrf_21016 |. SPROHSA013708
smOrf_43215 |. SPROHSA012045
smOrf_35962 |. SPROHSA011384
smOrf_34454 |. SPROHSA011390
smOrf_24181 |. SPROHSA003433
smOrf_30964 |. SPROHSA005004
smOrf_38621 |. SPROHSA011391
smOrf_29903 |. SPROHSA019697 . .
smOrf_54382 |. . . SPROHSA141874
smOrf 21297 |. SPROHSA011394

Supplementary Table 5. Small ORF ID (first column) and their corresponding ID in the SmProt
database, indicating also if they were included in the database because of being detected by Ribo-
seq experiments, or MS, as well as if they were previoulsy published (literature mining) or appeared
in other databases.
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10.3 Publications

Pan-cancer analysis of whole genomes identifies driver
rearrangements promoted by LINE-1 retrotransposition.
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About half of all Here, to ct
analyzed the patterns and retr p It(un in 2,954 cancer genomes from 38 histological cancer sub-
types within the framework of the Pan-Cam:er Analysis of Whole Genomes (PCAWG) project. We identified 19,166 somatically
acquired retrotransposition events, which affected 35% of samples and spanned a range of event types. Long interspersed
nuclear el (LINE-1; L1 h fter) insertions emerged as the first most frequent type of somatic structural variation in
esophageal adenocarcinoma, and the second most frequent in head-and-neck and colorectal cancers. Aberrant L1 integra-
tions can delete megabase-scale regions of a ct which i Ieads to the | of tumor-suppressor genes,
and can induce complex translocations and large-scale duplicati S can also initiate breakage-

have of r

ize their role in oncogenesis, we

tion of oncogenes. These observatlons illuminate a relevant role of 22 L1

the cancer with p

nt of human tumors.

fuslon-bndge cycles, Ieadmg to lllgh -level amplifi

human genome, representing 17% of the entire DNA content'~.

Usinga combination of cellular enzymes and self-encoded pro-
teins with endonuclease and reverse transcriptase activity, L1 ele-
ments copy and insert themselves at new genomic sites, in a process
called retrotransposition. Most of the approximately 500,000 L1 cop-
ies in the human reference genome are truncated, inactive elements
that are unable to retrotranspose. A small subset of them, around
100-150 L1 loci, remain active in the average human genome, act-
ing as source elements, a small number of which consists of highly
active copies termed hot-L1s**. These L1 source elements are usu-
ally transcriptionally repressed, but epigenetic changes that occur in
tumors may promote their expression and allow them to retrotrans-
pose*”. Somatic L1 retrotransposition usually introduces a new
copy of the 3" end of the L1 sequence, and can also mobilize unique
DNA sequences located immediately downstream of the source ele-
ment, in a process called 3’ transduction™”. L1 retrotransposons

| 1 retrotransposons are widespread repetitive elements in the

for the develop

can also promote the somatic tr: bilization of Alu el

SINE-VNTR-Alu (SVA) elements and processed pseudogenes,
which are copies of mRNAs that have been reverse transcribed into
DNA and inserted into the genome with the machinery of active
L1 elements'*-"%,

Approximately 50% of human tumors contain somatic ret-
rotranspositions of L1 elements™ . Previous analyses indicate that
although a fraction of somatically acquired L1 insertions in cancer
may influence gene function, the majority of retrotransposon inte-
grations in a single tumor represent passenger mutations with little
or no effect on cancer development ™, Nonetheless, L1 elements are
capable of promoting other types of genomic structural alterations
in the germline and somatically, in addition to canonical L1 inser-
tion events'“"; the effect of these alterations remains largely unex-
plored in the context of human cancer'**.

To further understand the roles of retrotransposons in cancer,
we developed strategies to analyze the patterns and mechanisms of

A fulllist of authors and affiliations appears at the end of the paper.
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somatic retrotransposition in 2,954 cancer genomes from 38his-
tological cancer subtypes within the framework of the PCAWG
project™, many of which had not been evaluated for retrotransposi-
tion. On the basis of the robustness of the retrotransposition calls,
we retained 296 tumors that were preliminarily excluded by the
PCAWG Consortium* (see Methods). Our analyses identify pat-
terns and mutational mechanisms of structural variation in human
cancers that are mediated by L1 retrotransposition. We found that
the aberrant integration of L1 retrotransposons hasa relevant role in
remodeling the architecture of the cancer genome in some human
tumors, mainly by promoting megabase-scale deletions that, occa-
sionally, g genomic ¢ es that may p can-
cer development through the removal of tumor-suppressor genes,
such as CDKN24, or trigger the amplification of oncogenes, such
as CCND1.

Results

The landscape of somatic retrotransposition in a large cancer
whole-genome dataset. We ran our bioinformatic pipelines
(Methods and Supplementary Note) to explore somatic retrotrans-
position on whole-genome sequencing data from 2,954 tumors and

between retrotransposition and driver mutations in cancer-related
genes. This analysis revealed an increased L1 retrotransposition rate
in tumors with TP53 mutations (Mann- Whimey U-test, P<0.05;
Supplementary Fig. 6), and supports previous analyses that have
suggested that TP53 functions to restrain mobile elements™*. We
also observe a widespread correlation between LI retrotransposi-
tion and other types of structural variation (Spearman’s p=0.44,
P<0.01; Supplementary Fig. 7), a finding that is most likely a
consequence of a confounding effect of TP53-mutated genotypes
(Supplementary Fig. 6).

We identified 43% (7,979 out of 18,636) somatic retrotranspo-
sitions of L1 inserted within gene regions including promoters, of
which 66 events hit cancer-associated genes. The analysis of expres-
sion levels in samples with available transcriptome data, revealed
four genes—including the ABL oncogene—with L1
tions in the proxumty of promoter regions that showed significant

compared with the ion in the ining sam-

ples of the same tumor type (Student’s t-test, g <0.10; Supplementary

Fig.8a-c). Thestructural analysis of RNA-sequencing data identified

instances in which portions of a somatic retrotransposition within

a gene exonize, a process that sometimes involves cancer-associated
1

their matched normal pairs, across 38 cancer types ( Y
Fig. 1 and Supplementary Table 1). The analysis retrieved a total of
19,166 somatically acquired retrotranspositions that were classified
into six categories (Fig. 1a and Supplementary Table 2). Comprising
98% (18,739 out of 19,166) of the events, L1 integrations (14,967
solo-L1, 3,669 L1-transductions, and 103 L1-mediated rearrange-
ments, which mainly comprised deletions) overwhelmingly domi-
nate the landscape of somatic retrotransposition in the PCAWG
dataset (Fig. lab). By contrast, elements of the lineages Alu
(Supplementary Fig. 2) and SVA (comprising 130 and 23 somatic
copies, respectively) and processed pseudogenes, with 274 events,
represent minor categories.

The core pipeline, TraFiC-mem (Supplementary Fig. 3)—which
was used to explore somatic retrotransposition in PCAWG—was

lidated b 1 lecule whol sequencing data analy-
sis of one cancer cell line with high retrotransposition rate and
its matched normal sample, confirming the somatic acquisition
of 295 out of 308 retrotransposition events (false discovery rate
<5%, Supplementary Fig. 4a,b). To further evaluate TraFiC-mem,
we reanalyzed a mock cancer genome into which we had previ-
ously” seeded somatic retrotransposition events at different levels of
tumor clonality, and then simulated sequencing reads to the average
level of coverage of the PCAWG dataset. The results confirmed a
high precision (>99%) of TraFiC-mem, and a recall ranging from
90 to 94% for tumor clonalities from 25 to 100%, respectively
(Supplementary Fig. 4c-e).

We observed marked variation in the retrotransposition rate
across PCAWG tumor types (Fig. 1¢ and Supplementary Table 3).
Overall, 35% (1,046 out of 2,954) of all cancer genomes have at
least one retrotransposition event. However, esophageal adenocar-
cinoma, head-and-neck squamous carcinoma, lung squamous car-
cinoma and colorectal adenocarcinoma are significantly enriched
in somatic retrotranspositions (Mann-Whitney U-test, P <0.05;
Fig. 1¢,d and Supplementary Fig. 5). These four tumor types alone
account for 70% (13,373 out of 19,166) of all somatic events in
the PCAWG dataset, although they represent just 9% (266 out of
2,954) of the samples. This is particularly noticeable in esophageal
adenocarcinoma, in which 27% (27 out of 99) of the samples show
more than 100 separate somatic retrotranspositions (Fig. 1¢), mak-
ing L1 insertions the most frequent type of structural variation in
esophageal adenocarcinoma (Fig. le). Furthermore, retrotranspo-
sitions are the second-most frequent type of structural variants in
head-and-neck squamous and colorectal adenocarcinomas (Fig. 1 ¢).
To gain insights into the genetic causes that make some cancers more
prone to retrotransposition than others, we looked for associations
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genes (Supp y Fig. 8d). In addition, we found evidence of
aberrant fusion transcripts arising from the inclusion of processed
pseudogenes in the target host gene and expression of processed

d landing ini ic regions (Supp y Fig. 8e).

P 8

Di ing the g ic features that infl the landscape of
L1 retrotranspositions in cancer. The genome-wide analysis of
the distribution of somatic L1 insertions across the cancer genome
revealed considerable variation in the rate of L1 retrotransposition
(Fig. 2a and Supplementary Table 4). To understand the reasons
behind such variation, we studied the association of L1 event rates
with various genomic features. We first investigated whether the dis-
tribution of somatic L1s across the cancer genome could be deter-
mined by the occurrence of L1-endonuclease target-site motifs. We
used a statistical approach based on negative binomial regression
to deconvolute the influence of multiple overlapping genomic vari-
ables*’; this analysis showed that close matches to the motif have
a 244-fold increased L1 rate, compared wilh non-matched motifs
(Fig. 2b and Suppl y Fig. 9a). ting for this effect,
we found a strong association wnh DNA replication time; the
latest-replicating quarter of the genome was 8.9-fold enriched in
L1 events (95% confidence interval, 8.25-9.71) compared with the
earliest-replicating quarter (Fig. 2b,c and Supplementary Fig. 9b).
Recent work™ has shown that L1 retrotransposition has a strong
cell-cycle bias, and preferentially occurs during S phase. Our results
are in agreement with these findings and suggest that L1 retrotrans-
position peaks in the later stages of nuclear DNA synthesis.

Next, we examined L1 rates in open chromatin measured using
DNase hypersensitivity and, conversely, in closed heterochromatic
regions by analyzing K9-trimethylated histone H3 (H3K9me3)".
When adjusting for the confounding effects of L1 motif content and
replication time*, we found that somatic L1 events are enriched in
open chromatin (1.27-fold in the top DNase hypersensitivity bin;
95% confidence interval, 1.14-1.41; Fig. 2b) and depleted in hetero-
chromatin (1.72-fold, 95% confidence interval, 1.57-1.99; Fig. 2b).
This finding differs from previous analyses, which have suggested
that L1 insertions favored heterochomatin—a discrepancy that we
believe to be due to the confounding effect between heterochromatin
and late-replicating DNA regions, which was not addressed in previ-
ous analyses. We also found a negative association of L1 rate with
features of active transcription of chromatin, characterized by fewer
L1 events at active p (1.63-fold; Suppl y Fig. 9¢), a
slight but significant reduction in L1 rates in highly expressed genes
(1.25-fold lower; 95% confidence interval, 1.16-1.34; Fig. 2b) and a
further depletion at H3K36me3 (1.90-fold reduction in the highest
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circos plot showing a head-and-neck tumor (Head-SCC) with high retrotransposition rate (638 somatic events). Right, a single pancreatic adenocarcinoma
sample harboring around 26% (70 out of 274) of all pvocessed pseudogenes identified in the PCAWG cohort. Chromosome ideograms are shown around
the outer ring with i d as arcs; colors match the type of rearrangement. ¢, For 31 PCAWG cancer types with sample
size of n>15, data show the proportion of tumor samples with >100 (red), 10 -100 (orange) 1-10 (yellow) and 0 (gray) somatic retrotranspositions. The
number of samples analyzed for each tumor type is shown in p; or depletion for each tumor type together with
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rear

tertile; 95% confidence interval, 1.59-2.29; Fig. 2b), a mark of
actively transcribed regions deposited in the body and at the 3’ end
of active genes™. Further details on these associations are shown in
Supplementary Fig. 9c-e and described in the Supplementary Note.

that are responsible for most of the genomic variation generated
by retrotransposition in the PCAWG dataset™*' (Supplementary
Table 5). To our knowledge, 52 of these loci represent previously
unreported source elements in human cancer’’. We analyzed the
relative contribution of individual source elements to retrotranspo-
sition burden across cancer types, and found that retrotransposition
is g d d by five hot-L1 source elements that alone

The contribution of L1 source elements to the pan-cancer ret-
rotransposition burden. We used somatically mobilized L1 3’

transduction events to trace L1 activity to specific source elements’.
This strategy revealed 124 germline L1 loci in the human genome

308

3

gwe rise to half of all somatic transductions (Fig. 3a). This analy-
sis revealed a dichotomous pattern of hot-L1 activity, with source
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elements that we have termed Strombolian and Plinian, given their
similarity to these two types of volcanoes (Fig. 3b). Strombolian
source elements are relatively indolent and produce small numbers

being a germline L1 locus at 22q12.1, which accounted for 15 trans-
ductions (Supplementary Table 5).

G i deleti "

of retr itions in individual tumor samples, although they

d by somatic L1 retrotransposition.

P
are often active and contribute substantially to overall retrotrans-
position in the PCAWG dataset. By contrast, Plinian elements are
rarely active across tumors, but in these isolated cases, their activity
is fulminant, causing large numbers of retrotranspositions.

At the individual tumor level, although we observed that the
number of active source elements in a single cancer genome varied
from 1 to 22, typically only 1 to 3 loci were operative (Fig. 3c). There
is a correlation between somatic retrotranspositions and the num-
ber of active germline L1 source elements among PCAWG samples
(Fig. 3d); this is likely one of the factors that explains why esopha-
geal adenocarcinoma, lung and head-and-neck squamous carci-
noma account for higher retrotransposition rates—in these three
tumor types we also observed higher numbers of active germline
L1 loci (Fig. 3¢). Occasionally, somatic L1 integrations that retain
their full length may also act as a source for subsequent somatic ret-
rotransposition events*, and may reach high activity rates, leading
them to dominate retrotransposition in a given tumor. For example,
in a remarkable head-and-neck tumor sample, SA197656, we iden-
tified one somatic L1 integration at 4p16.1 that then triggered 18
transductions from its new site, with the next most active element
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In cancer genomes with high somatic L1 activity rates, we observed
that some L1 retrotransposition events followed a distinctive pat-
tern that consisted of a single cluster of reads, associated with
copy-number loss, for which the mates unequivocally identified one
extreme of a somatic L1 integration with, apparently, no local, recip-
rocal cluster that supported the other extreme of the L1 insertion
(Fig. 4a). Analysis of the associated copy-number changes identified
the missing L1 reciprocal cluster at the far end of the copy-number
loss, indicating that this pattern represents a deletion that occurred
in conjunction with the integration of an L1 retrotransposon
(Fig. 4b; see the Supplementary Note for additional information on
how to interpret the paired-end mapping data from this and other
figures). These rearr alled L1-mediated deletions—
have been observed to occur somatically with engineered L1s in
cultured human cells'*"” and naturally in the brain', and are most
likely the consequence of an aberrant mechanism of L1 integration.

We developed specific algorithms to systematically identify
L1-mediated deletions, and applied these methodsacrossall PCAWG
tumors. We identified 90 somatic events that matched the patterns
described above, causing deletions of different size, which ranged
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Fig. 3] The dynamics of L1 source-element activity in human cancer. a, The t

otal number of transductions identified for each cancer type is shown as a

blue-colored scale. The sample size for each tumor type is shown in parentheses. Contribution of each source element is defined as the proportion of the
total number of transductions from each cancer type that is explained by each source locus. Only the top ten contributing source elements are shown,
while the remaining are grouped into the category ‘Other’. b, Two extreme patterns of hot-L1 activity, Strombolian (blue) and Plinian (red), were identified.

Dots show the number of transductions promoted by each source element in
peaks of somatic activity) in particular samples. ¢, Number of active germline
activity. A source element is considered to be active in a given sample if it pro

of active source elements for each tumor type together with the level of signifi

a given tumor sample. Arrows highlight violent eruptions (that is, strong

L1 source elements per sample, across cancer types with source element
motes at least one transduction. The enrichment or depletion of the number
icance (zero-inflated negative binomial regression) is shown. *P < 0.05,

**P<0.01. The number of samples analyzed for each tumor type is shown in parentheses. d, Correlation between the number of somatic L1insertions and
the number of active germline L1source elements in PCAWG samples. Each dot represents a tumor sample and colors match cancer types. Sample sizes

(n), together with Spearman’s p and P values are shown above the panel.

in size from around 0.5kb to 53.4 Mb (Fig. 4c and Supplementary
Table 6). The reconstruction of the sequence at the breakpoint
junctions m each case supports the presence of an L1-element—
or L1- e and its comp denyl

tract, mdlcatlve of passage through an RNA intermediate. No tar-
get site duplication was found, which is also the typical pattern for
L1-mediated deletions'”. One potential mechanism for these events
is that a molecule of L1 cDNA pairs with a distant 3’ overhang from
a pre-existing double-strand DNA break generated upstream of the
initial integration site, and the DNA region between the break and
the original target site is subsequently removed by aberrant repair'’
(Fig. 4d). Indeed, in 75% (47 out of 63) of L1-mediated deletions
with a 5'-end breakpoint characterized to base-pair resolution, the
analysis of the sequences at the junction revealed short (1-5bp long,
with median at 3bp) microhomologies between the pre-integration
site and the 5" L1 sequence i d right there (Suppl y
Table 6). Furthermore, we found 14% (9 out of 63) instances in

oly

310

which short insertions (1-33bp long, with median at 9bp) are
found at the 5’-breakpoint junction of the insertion. Both slgnatures
are consi with a hy ! d-joining mechanism*’,
or other type of microhomology- mediated repalr. for the 5"-end
attachment of the L1 cDNA to a 3’ overhang from a pre-existing
double-strand DNA break located upstream. L1-mediated deletions
in which microhomologies or insertions are not found may follow
alternative models'”=",

To confirm that these rearrangements are mediated by the inte-
gration of a single intervening retrotransposition event, we expl
the PCAWG dataset for somatic L1-mediated deletions in which the
L1 sequences at both breakpoints of the deletion could unequivo-
cally be assigned to the same L1 insertion. These include small
deletions and associated L1 insertions that were shorter than the
library size, allowing sequencing read pairs to overlay the entire
structure. For example, in a lung tumor sample, SA313800, we iden-
tified a deletion involving a 1-kb region of 19q12 with hallmarks of
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the mates unequivocally identified one extreme of a somatic L1 integration. Paired-end reads are colored by the chromosome on which their mates can
be found. Different colors for different reads from the same cluster indicate that mates are mapping a repetitive element. b, Analysis of the associated
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¢, Model of L1-mediated deletion. The integration of an L1 mRNA starts with L1-endonuclease cleavage promoting a 3’ overhang for reverse transcription.
The cDNA (-) strand invades a second 3’ overhang from a pre-existing double-strand break of the initial integration site. d, Distribution of the
sizes of 90 L1-mediated deletions identified in the PCAWG dataset. e, In lung squamous carcinoma sample SA313800, a 34-bp truncated L1 insertion
promotes a 11-kb deletion on chromosome 19. Because the L1 insertion was so short, we also identified discordant read pairs that span the L1 event and
support the deletion. f, In esophageal adenocarcinoma sample SA528932, the integration on chromosome 3 of a 413-bp orphan L1 transduction from
chromosome 7 causes a 2.5-kb deletion, which is supported by two clusters of discordant read pairs for which the mates map onto the transduced region
of chromosome 7.

being generated by an L1 element (Fig. 4¢). In this rearrangement, element and a second that spanned the L1 event and supported the
we found two different types of discordant read pairs at the dele-  deletion. Another type of L1-mediated deletion that could unequiv-
tion breakpoints: one cluster that supported the insertion of an L1  ocally be assigned to a single L1 insertion event is represented
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from
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negative cluster (green reads) supports a small region tr.

genes. In esophageal tumor sample SA528932, the somatic integration on chromosome 9 of a partnered transduction from chromosome 7, promotes
a 5.3-Mb deletion that involves the loss of one copy of the tumor-suppressor gene CDKN2A. We observed a positive cluster of reads for which the

mates map onto the 5’ extreme of an L1, and a negative cluster that contains split reads that match a poly(A) region and for which the mates map onto

a region that is transduced from chromosome 7 (light blue). d, In a second esophageal adenocarcinoma sample, SA528899, the integration of an L1
retrotransposon generates an 8.6-Mb deletion that involves the same tumor-suppressor gene, CDKN2A. The sequencing data reveal two clusters—positive

and negative—for which the mates support the L1 event.

by those deletions generated by the integration of orphan L1 trans-
ductions. These transductions represent fragments of unique DNA
sequence located downstream of an active Ll locus, which are
ized without the ¢ ion L1 (refs. **). For example, in
one esophageal tumor sample, SA528932, we found a deletion of
2.5kb on chromosome 3 mediated by the orphan transduction of
a sequence downstream of an L1 locus on chromosome 7 (Fig. 4f).

312

Owing to the unavailability of PCAWG DNA specimens, we
performed a validation of 16 additional somatic L1-mediated dele-
tions that were identified by TraFiC-mem in two head-and-neck
cancer cell lines with high retrotransposition rates, NCI-H2009
and NCI-H2087". We carried out two independent validation
approaches, including PCR followed by single-molecule sequenc-
ing of amplicons, and Illumina whole-genome sequencing

NATURE GENETICS | VOL 52| MARCH 2020 | 306-319 | www.nature.com/naturegenetics

337



NATURE GENETICS ARTICLES

’ ,  SAS28606 (Esc-AdencCA)
Transiocation (5p,2)
3
g - 47.0Mb deketon
2 e
g 1 g 4 Ut ! o
- H
0 Certromere loss H
!
i

50 . 100 chr. 1 (Mb)

15,268,000 15,268,400 63202800 '+, 63,203.200 22,899,400

22,899,900

Coverage

— | Cluster supports - ——
— 14— inverted L1 —— e g Clusters support Y ———

‘chr. 14 ransduction

—— P = ;
Eg H .
L] ' $ o
4] :
23 H H Cluster t
a 4 H rs SUpPo! H
: L1 bridge : ‘ranslocation (5q,1p) ¥
< momro B . :
it [ L i
3 H
& § T
NCI-H2087 (cancer cel line) €
. L1-mediated translocation model
£}
g2 Pre-existing
§ Chr. 1 DSB8
g . 4
: 3 oo T
Z chr.8 3 3
3" overhang
L1 mRNA L1 cDNA
- v
g
2
38
g H cfv. 6 ransduction
8% Custer
ae

T
- < cuser o g
' wiowors 3 TTTTIITITESTITITITITE
e 2 h
am—_ —TE—
& L1-transduction bridge

Fig. 6 | Somatic L1 p ions in human cancers. a, In esophageal adenocarcinoma sample SA528896, two separate L1 events
mediate interchromosomal rearrangements. In the first, an L1 transduction from a source element on chromosome 14q23.1 bridged an unbalanced
translocation from chromosome 1p to 5q. A second somatic retrotransposition event bridged from chromosome Sp to an unknown part of the genome,

Translocation

Predicted

a479-Mbi itial copy ber loss on chr 5 that removes the centromere. b, In a cancer cell line, NCI-H2087, we found an
interchromosomal translocation, between chromosomes 8 and 1, mediated by a region transduced from chromosome 6, which acts as a bridge and joins
both chromosomes. We observed two read clusters, positive and negative, that demarcate the b ies of the rear for which the mates
support the transduction event. In addition, two reciprocal clusters span the insertion breakpoi the transl ion between
8and 1. ¢, Amodel for b ize L1-medi d I

d intercl | rear u cleavage a3’ overhang in the
negative strand, retrotranscription starts and the cDNA (-) strand invades a second 3’ overhang from a pre-existing double-strand break on a different

o leading to transl ion.

NATURE GENETICS | VOL 52 | MARCH 2020 | 306-319 | www.nature.com/naturegenetics 313

338



ARTICLES NATURE GENETICS

using mate-pair libraries with long insert size (3kb and 10kb).
The results confirmed the somatic status of the rearrangements
and a single L1-derived retrotransposition as the cause of the
associated copy-number loss (Supplementary Figs. 10-12 and
Supplementary Table 7).

Analysis of L1 3'-extreme insertion breakpoint sequences from
L1-mediated deletions found in the PCAWG dataset revealed that
82% (74 out of 90) of the L1 events that cnused deletions prefer-

second esophageal tumor sample, SA528899, an L1 element inte-
grated into chromosome 9 promoted an 8.6-Mb clonal deletion
that encompasses the 9p22.1-9p21.1 region that removes one copy
of the same tumor-suppressor gene, CDKN2A (Fig. 5d). Thus,
L1-mediated deletions have clear oncogenic potential.

L1 retro(ransposition generates other types of structural varia-
tmn m human tumors. Somatic retrotransposition can also be

entially inserted into sequences that L1-end lease
consensus cleavage sites (for example, 5-TTTT/A-3" and related
sequences ) (Supplementary Table 6). This confirms that the L1
machinery, through a target-primed reverse-transcription mecha-
nism, is responsible for the integration of most of the L1 events that
cause neighboring DNA loss*. Notably, in 16% (14 out of 90) of
the events endonucleotidic cleavage occurred at the phosphodi-
ester bond between a T and G instead of between the standard T
and A site. In addition, we observed 8% (7 out of 90) instances in
which the endonuclease motif was not found and the i d ele-

Ived in mediating or repairing more complex structural vari-
ants. In one esophageal tumor sample, SA528896, two separate
L1-mediated structural variants were present within a complex clus-
ter of rearrangements (Fig. 6a). In the first, an L1 transduction from
a source element on chromosome 14q23.1 bridged an unbalanced
translocation from chromosome 1p to 5q. A second somatic ret-
rotransposition event bridged from chromosome 5p to an unknown
part of the genome, completing a large interstitial copy-number loss
on chromosome 5 that involves the centromere. This case suggests

ment was truncated at both the 5" and 3 ends, suggesting that a
small fraction of L1-associated deletions are the consequence of an
L1-endonuclease-independent insertion mechanism'*". Whatever
mechanism of L1 integration is effective in each case, taken together,
these data indicate that the somatic integration of L1 elements
induces the associated deletions.
Megab ize Ll-mediated del cause loss of tumor-
snppnessor genes. Most L1-mediated deletions ranged from a
few hundred to thousands of base pairs, although occasionally
megabase-long regions of a chromosome were deleted (Fig. 4c and
Supplementary Table 6). For example, in esophageal tumor sample
SA528901, we found a 45.5-Mb interstitial deletion that involved
the p31.3-p13.3 regions of chromosome 1 (Fig. 5a), in which both
breakpoints of the rearrangement showed the hallmarks of a dele-
tion mediated by integration of an L1 element. Here, the L1 ele-
ment is 5’ truncated, which generated a small L1 insertion, allowing
a fraction of the sequencing read pairs to span both breakpoints of
the rearrangement. This unequivocally supports the model that the
observed copy-number change is indeed a deletion mediated by ret-
rotransposition of an L1 element. Similarly, in a lung tumor sam-
ple, SA313800, we found an interstitial L1-mediated deletion that
induced the loss of 51.1 Mb from chromosome X, which included
the centromere (Fig. 5b).

L1-mediated deletions were, on occasion, driver events and
caused the loss of tumor-suppressor genes. In esophageal tumor
sample SA528932, the integration of an L1 transduction from chro-
mosome 7p12.3 to the short arm of chromosome 9 caused a 5.3-Mb
clonal deletion that involved the 9p21.3-9p21.2 region. This led
to the loss of one copy of a key tumor-suppressor gene, CDKN2A
(Fig. 5¢), which is deleted in many cancer types including esopha-
geal tumors***. Notably, the sequencing data revealed a somatic
transduction that arose from this L1 element at its new insertion
site, demonstrating that L1 events that promule deletions can be
C for ret y Fig. 13). In a

P

P PP

that retrotr transcripts and their reverse-transcriptase
machinery can mediate breakage and repair of complex dsDNA
breaks, spanning two chromosomes.

To explore this further, we identified single-L1 clusters with
no reciprocal cluster in the cancer cell lines that were sequenced
by using mate pairs with 3kb and 10kb inserts. Such events may
correspond to hidden genomlc translocations leading to the lmk-
age of two different ch in which L1 retrotransp
is involved. One of the samples, NCI-H2087, showed translocation
breakpoints at 1g31.1 and 8q24.12, both of which had the hall-
marks of L1-mediated deletions, for which the mate-pair sequenc-
ing data identified an orphan L1 transduction from chromosome
6p24 that bridged both chromosomes (Fig. 6b). The configura-
tion has also been confirmed by using long-read single-molecule
sequencing (Supplememary ng 11). This interchromosomal
rearrang is likely mediated by the aberrant operation of
Ll-integration mechanism, in which the L1-transduced ¢cDNA
is wrongly paired with a second 3’ overhang from a pre-existing
double-strand break generated in a second chromosome”
(Fig. 6¢).

We also found evidence that L1 integrations can cause dupli-
cations of large genomic regions in human cancer. In esophageal
tumor sample SA528848 (Fig. 7a), we identified two indepen-
dent read clusters that support the integration of a small L1 event,
coupled with a coverage drop at both breakpoints. Copy-number
analysis revealed that the two L1 clusters demarcate the boundaries
ofa 22.6-Mb duplication that involves the 6q14.3-q21 region, sug-
gesting that the L1 insertion could be the cause of such rearrange-
ment by bridging sister chromatids during or after DNA repllcauon
(Fig. 7b). The analysis of the rear data at the breakp
identified read pairs that traverse the length of the L1 insertion
breakpoints, and the L1-endonuclease motif is the L1 3" insertion
breakpoint, both confirming a single L1 event as the cause of a tan-
dem duplication (Fig. 7a). Notably, this duplication increases the
copy number of the cyclin C gene, CCNC, which is dysregulated in
some tumors .

Fig. 7| Somatic L1 p of

we found a 22.6-Mb tandem duplication on the long arm of chromosome 6. The analysis of the

ale regions in human cancers. a, In esophageal adenocarcinoma sample SA528848,

data at the d of the rear

breakpoints reveals two clusters of discordant read pairs for which the mates support the involvement of an L1 event. Because the L1 element was shorter
than the library size, we also found two reciprocal clusters that aligned 22.6 Mb apart on the genome and in opposite orientation, spanning the insertion
breakpoints and confirming the tandem duplication. An L1-endonuclease 5'-TTT/A-3' degenerate motif was found. b, Large direct tandem duplications
can be generated if the cDNA (-) strand invades a second 3’ overhang from a pre-existing double-strand break that occurred on a sister chromatid, and
downstream to the initial integration site locus. ¢, In lung tumor sample SA313800, a small L1 insertion causes a 79.6-Mb duplication of the 14q arm
through the induction of a fold-back inversion rearrangement. The analysis of the sequencing data at the breakpoint revealed two clusters of discordant
read pairs (multi-colored reads) with the same orientation, aligning close together (5.5kb apart) and demarcating a copy-number change for which the
sequencing density is much greater on the right half of the rearrangement than the left. Both clusters of multi-colored reads support the integration of an

1. d, L1-mediated fold-back inversion model.
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L1 d rearrang ge-fusion-bridge
cycles that trigger oncogene amplification. L1 retrotranspositions
can also induce genomic instability by triggering breakage-fusion-
bridge cycles. This form of genetic instability starts with end-to-end

fusion of broken sister chromatids, and lead to a dicentric chromo-
some that forms an anaphase bridge during mitosis. Classically, the
end-to-end chromosome fusions are thought to arise from telomere
attrition™"". We found, however, that somatic retrotransposition
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Fig. 8 | Somatic integration of L1 can trigger breakage-fusion-bridge cycles that lead to adenocarcinoma
sample SA528848, a single cluster of discordant reads (multi-colored reads) together with an L1-endonuclease cleavage site motif 5’-TTT/A-3' supports
the integration of an L1event that demarcates a 53-Mb telomeric (that is, including the telomere) deletion, from a region of massive amplification that
involves CCND1. Around 14 Mb upstream of the breakpoint of the deletion, we observed the presence of two clusters of read pairs (brown reads) that
align close together and in the same orientation, which demarcate a change in copy number; this is a distinctive pattern of a fold-back inversion“*", a
rearrangement typically found to be associated with breakage-fusion-bridge (BFB) repair. In this fold-back inversion, the coverage shows much greater
density on the right half of the rear than the left, i that the abnormal chromosome is folded back on itself leading to duplicated
genomic sequences in a head-to-head (inverted) orientation. The patterns described here suggest two independent breakage-fusion-bridge cycles,
marked with (1) and (2). The copy-number plot shows the consensus total copy numbers (gold band) and the minor allele copy numbers (gray band).

b, Models for the patterns described in a. The fold-back inversion model involves two breakage-fusion-bridge cycles, one induced by L1-mediated
fold-back inversion (see Fig. 7d), and a second induced by standard breakage-fusion-bridge repair. The interchromosomal rearrangement model involves
an interc| | rear by an L1, followed by one extra cycle of breakage-fusion-bridge repair. ¢, In lung cancer sample SA503541,
the i of an L1ret is d with a 50-Mb loss on 11q that includes the telomere, and activates breakage-fusion-bridge repair,
which leads to the amplification of CCND1.

a In

can induce the first inverted rearrangement that generates
end-to-end fusion of sister chromatids. In lung tumor sample
SA313800 (Fig. 7¢), we found a small L1 event inserted on chromo-
some 14q that demarcates a copy-number change that involves a
79.6-Mb amplification of the 14q arm. Analysis of the sequencing
data at the breakpoint revealed two discordant read clusters with
the same orientation, which are 5.5kb apart and support the inte-
gration of an L1. Both discordant clusters demarcate an increment

of the sequencing coverage, for which the density is much greater in
the right cluster. The only genomic structure that can explain this
pattern is a fold-back inversion in which the two sister chromatids
are bridged by an L1 retrot ition in head-to-head (inverted)
orientation (Fig. 7d).

In the example described above (Fig. 7¢,d), no further breaks
occurred, and the L1 retrotransposition generated an isochromo-
some (14q). In addition, we found examples in which the fusion of
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two chromatids by an L1 bridge induced further cycles of break-
age-fusion-bridge repair. In esophageal tumor sample SA528848,
we identified a cluster of reads on the long arm of chromosome 11

and/or the amplification of oncogenes, representing another mech-
anism by which cancer clones acquire new mutations that help them
to survive and grow. We expect that structural variants induced by

that had the typical hallmarks of an Ll-mediated rearrang
(Fig. 8a). Copy-number data analysis showed that this L1 inser-
tion point demarcated a 53-Mb deletion, which involved the loss
of the telomeric region, from a region of massive amplification on
chromosome 11. The amplified region on chromosome 11 contains
the CCND1 oncogene, which is amplified in many human cancers’.
The other end of this amplification was bound by a conventional
fold-back inversion rearrangement (Fig. 8a), which is indicative of
breakage-fusion-bridge repai
These patterns suggest the followmg sequence of events. During
or soon after S phase, a somatic L1 retrotransposition bridges across
sister chromatids in inverted orientation, breaking off the telomeric
ends of 11q, which are then lost to the clone during the

somatic retrot position in human cancer are more frequent than
we could unambiguously characterize here, given the constraints on
the fragment sizes of paired-end sequencing libraries. Long-read
sequencing technologies should be able to provide a more com-
prehensive picture of how frequent such events are. Relatively few
germline L1 loci in a given tumor, typically one to three copies,
are responsible for such marked structural remodeling. Given the
role that these L1 copies may have in some cancer types, this work
underscores the importance of characterizing cancer genomes for
patterns of L1 retrotransposition.

Online content
Any hod: dditional references, Nature Research report-

q
cell division (fold-back inversion model, Fig. 8b). The chromatids
bridged by the L1 insertion now produce a dicentric chromosome.
During mitosis, the two centromeres are pulled to opposite poles
of the dividing cell, creating an anaphase bridge, which is resolved
by further dsDNA breakage. This induces a second cycle of break-
age—fusion-bridge repair, albeit not one mediated by L1 retrotrans-
position. These cycles lead to rapid- ﬁre amplification of the CCND1

ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of
author contributions and competing interests; and statements of
data and code availability are available at https://doi.org/10.1038/
541588-019-0562-0.

oncogene. Alternatively, an rear

diated by L1 retr ition (intercl 1 rearrange-
ment model, Fig. 8b) followed by two cycles of breakage-fusion-
bridge repair could generate similar copy-number patterns with
telomere loss and amplification of CCND1.

Our data show that L1-mediated retrotransposition is an alter-
native mechanism of creating the first dicentric chromosome that
induces subseq rounds of ch | breakage and repair.
If this occurs near an oncogene, the resulting amplification can
provide a powerful selective advantage to the clone. We searched
the PCAWG dataset for other rearrangements that included
copy-number amplifications from telomeric deletions that were
mediated by L1 integration. We found four more such events across
three cancer samples (Supplementary Fig. 14). In a lung tumor
sample, SA503541, we found almost identical rearrangements to
the one described above (Fig. 8¢). In this case, a somatic L1 event
also generated telomere loss that induced a second cycle of break-
age—fusion-bridge repair. The megabase-size amplification of chro-
mosomal regions also targeted the CCND1 oncogene, in which the
boundaries were demarcated by the L1 insertion breakpoint and a
fold-back inversion, which indicates breakage-fusion-bridge repair.
The independent occurrence of these patterns, which involve the
amplification of CCND1, in two different tumor samples (SA528848
and SA503541) d ional mechanism mediated by
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transformation in chronic lymphocytic leukemia
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Richter transformation (RT) is a paradigmati lution of chronic lymphocytic leukemia (CLL) into a very aggressive large B

cell Iymphoma conferringa dismal prognosis. The mechanisms d'lvlng RT remaln Iargely mlmown We charaderlzed the whole
and transcrip bined with single-cell DNA/RNA: and fi

of 19 cases of CLL developing RT. S(udymg 54 Iongﬂudmal samples covering up to 19 years of disease course, we uncovered
minute carrying and il ic features of RT tells already at CLL diagnosis, whl:h
were dormant for up to 19 years before transformation. We also |dent|ﬁed new driver al ed a new

(SBS-RT), r ized an phosphorylation (OXPHOS)"#"-B cell receptor (BCR)'**-signaling transcriptional
axis in RT and showed that OXPHOS inhibition reduces the proliferation of RT cells. These findings demonstrate the early seed-

ing of subclones driving advanced stages of cancer evolution and potential therapeutic targets for RT.

initiation™, suggesting selection of pre-existing subclones'".

relapse due to the stepwise acquisition and/or selection
of fitter subclones™. The understanding of tumor evolu-
tion is hampered by the analysis of bulk tumor cell populations at
low resolution and at single or limited time points of the disease

( :Ional evolution' drives cancer initiation, progression and

Nonetheless, the genomic/epigenomic mechanisms driving RT after
CIT"""" or targeted agents'* " are not well known. The aims of the
present study were to reconstruct the evolutionary history of RT and
to reveal the molecular processes underlying this transformation.

course in most studies'. A better knowledge of this process might
translate into anticipation-based treatment strategies’. RT in CLL
represents a paradigmatic model of cancer evolution occurring
rarely in treatment-naive patients with CLL but found in 4-20%
of patients after chemoimmunotherapy (CIT) and targeted thera-
pies’. RT sometimes occurs within the first months after treatment

Results

Genomic characterization of RT. We sequenced 53 whole genomes
and 1 whole exome of synchronous or longitudinal samples of 19
patients (up to six time points per patient) in whom CLL trans-
formed into diffuse large B cell lymphoma (RT-DLBCL; n=17),
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plasmablastic lymphoma (RT-PBL; n=1) or prolymphocytic leu-
kemia (RT-PLL; n=1). Nontumor samples were available in 12
patients. RT occurred simultaneously with CLL at diagnosis (n=3)
or after up to 19 years following different lines of treatment with
CIT (n=6) and targeted therapies (n=10; BCR inhibitors, ibruti-
nib n=6; duvelisib n =2; idelalisib n=1; and BCL2 inhibitor, vene-
toclax n=1). All instances of RT were clonally related to CLL, 15
tumors had unmutated IGHV (U-CLL) and 4 had mutated IGHV
(M-CLL). Whole-genome sequencing (WGS) data were inte-
grated with bulk epigenetic and transcriptomic analyses as well as
single-cell DNA and RNA sequencing (Fig. 1a, Extended Data Fig. 1
and Supplementary Tables 1 and 2).

The WGS and epigenome of CLL and RT revealed a concor-
dant increased complexity from CLL diagnosis to relapse and RT
(Fig. 1b, Extended Data Fig. 2a and Supplementary Tables 3-8). The
RT genomes carried a median of 1.8 mutations per megabase, 18
copy number alterations (CNAs) and 37 structural variants (SVs)
that contrasted with 1.1 mutations per megabase, 4 CNAs and 5 SVs
observed at CLL diagnosis. No major differences were seen among
RT occurring after different therapies (Fig. 1b and Extended Data
Fig. 2b). We discovered new driver genes and mechanisms in RT,
expanding previous observations~**-** (Fig. lc, Extended Data
Fig. 2c-e, Suppl y Fig. 1 and Suppl y Tables 9and 10).
The main alterations involved cell-cycle regulators (17 of 19, 89%),
chromatin modifiers (79%), MYC (74%), nuclear factor (NF)-xB
(74%) and NOTCH (32%) pathways. These aberrations were simul-
taneously present in most cases but alterations in MYC and NOTCH
pathways only co-occurred in 2 of 19 cases (Fig. 1c). Aberrations
in genes such as TP53, NOTCH1, BIRC3, EGR2 and NFKBIE were
usually present and clonally dominant after the first CLL sample,
whereas others were only detected at RT or during the disease
course (for example CDKN2A/B, CDKN1A/B, ARIDIA, CREBBP,
TRAF3 and TNFAIP3) (Fig. 1¢). New alterations included deletions
of CDKN1A and CDKN1B in five cases of RT associated with down-
regulation of their expression, one immunoglobulin (IG)-CDK6
translocation and one CCND2 mutation already present at CLL
diagnosis, and CCND3-IG and MYCN-IG translocations acquired
at RT in two different cases (Fig. 1d.e, Extended Data Fig. 3a,b and
Supplementary Table 11). Most chromatin remodelers were affected
by deletions with reduced gene expression. New alterations in this
group were deletions of ARID4B and truncations of CREBBP* and
SMARCA4 (ref. ) by translocations and chromoplexy (Fig. 1f and
Extended Data Fig. 3c-e). We also identified recurrent IRF4 alter-
ations in RT, which have been linked to increased MYC levels in
CLL". BTK/PLCG2 or BCL2 mutations were not detected in any RT
after treatment with BCR or BCL2 inhibitors, respectively. Notably,
the two cases of M-CLL developing RT after targeted therapies car-
ried the IGLV3-21%"° mutation, which triggers cell-autonomous
BCR signaling” (Fig. 1¢).

In addition to the high frequency of CNAs previously identi-
fied in RT'"", we observed a high number of complex structural
alterations (Fig. 1¢). Chromothripsis was found in eight RT tumors
targeting CDKN2A/B and the new CDKNIB in five and one cases,
respectively, and MYC, MGA, SPEN, TNFAIP3 and chromatin
remodeling genes in additional cases (Fig. 1g and Extended Data
Fig. 3f-j).

Altogether, our analyses expand the catalog of driver genes, path-
ways and mechanisms involved in RT and recognize a similar distri-
bution of these alterations in RT after different therapies, suggesting
that treatment-specific pressure is not a major determinant of the
driver genomic landscape of these tumors.

New 1 in RT. To und: d the increased
mutational burden of RT, we explored the mutational processes
re-shaping the genome of CLL and RT. An unsupervised analy-
sis showed that the mutational profile of RT was notably different
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from M-CLL and U-CLL before therapy (ICGC-CLL cohort,
n=147)"" or at post-treatment relapse (independent cohort of 27
CLL post-treatment samples) (Fig. 2a). We identified 11 mutational
signatures distributed genome-wide and 2 in clustered mutations
(Extended Data Fig. 4 and Supplementary Tables 12-14). Among
the former, we extracted a new signature characterized by (T>A)A
and, to a lesser extent, (T>C/G)A mutations not recognized previ-
ously in any cancer type, including CLL and DLBCL*-". We named
this single-base substitution signature, SBS-RT (Fig. 2b). SBS-RT
was present in the RT sample of 7 of 18 patients, 1 of 6 after CIT
and 6 of 10 after multiple therapies, including targeted agents and
detected in all subtypes of transformation (RT-DLBCL, RT-PBL and
RT-PLL) (Fig. 2c and Supplementary Table 15). It was also pres-
ent in CLL samples before RT in patients 12 and 3,299 but was not
identified in the reanalysis of our ICGC-CLL or post-treatment CLL
cohorts. None of the patients in these two additional cohorts had
evidence of RT (median follow-up 9.8 years, range 0.2-30.4) (Fig.
2¢, Extended Data Fig. 5a and Supplementary Table 15). Further
characterization of this new signature showed (1) a modest corre-
lation between SBS-RT and total number of mutations (R=0.79,
P=0.11); (2) SBS-RT mutations present in all different chromatin
states and early/late replicating regions although with a moderate
enrichment in heterochromatin/late replication; and (3) lack of rep-
lication and transcriptional strand bias (Extended Data Fig. 5b-f
and Supplementary Table 16).

Among the ining ten ures, five were pre-
viously identified in (,LL and DLBCL (SBS1 and SBS5 (clock-like),
SBS8 (unknown etiology), SBS9 (attributed to polymerase eta) and
SBS18 (possibly damage by reactive oxygen species)); three had been
only found in DLBCL (SBS2 and SBS13 (APOBEC enzymes) and
SBS17b (unknown)); and two have been recently described related
to treatments with melphalan™ or ganciclovir'’, which were named
here as SBS-melphalan and SBS-ganciclovir, respectively (Fig. 2b,c
and Extended Data Fig. 4). SBS-melphalan was found in three RT
cases, two had received melphalan as a conditioning of their allo-
genic stem-cell transplant 1.9 and 4.2 years before RT, respectively.
SBS-ganciclovir was found in the RT sample of one patient that had
received valganciclovir (prodrug of ganciclovir) due to cytomega-
lovirus reactivation (Fig. 2¢,d and Extended Data Fig. 1a). Notably,
all cases with the new SBS-RT at time of RT had been treated with
the alkylating agents bend ine (n=5) or chl bucil (n=2)
during their CLL history at a median of 2.9 years (range 0.7 to
6.8) before RT. Contrarily, RT cases lacking the SBS-RT had never
received these drugs (Fig. 2¢,d and Extended Data Fig. 1a).

To time the activity of each mutational process, we reconstructed
the phylogenetic tree for the 11 patients with multiple synchronous
(n=2) or longitudinal (n=9) samples and germline available and
measured the contribution of each signature to the mutational pro-
file of each subclone. The major subclone at time of transformation
was named ‘RT subclone’ (Supplementary Table 17). As expected,
clock-like mutational signatures were present all along the phy-
logeny (constantly acquired), whereas SBS9 was found only in the
trunk of the two M-CLL tumors (patients 365 and 19; early events).
DLBCL-related signatures, SBS-ganciclovir, SBS-melphalan and
SBS-RT were found in single RT subclones in six cases while two
cases carried two simultaneous subclones with SBS-RT (patients
12 and 19) (Fig. 2¢). SBS-RT represented 28.6% of the mutations
acquired in RT (mean 679, range 499-1,167) and it was occa-
sionally associated with coding mutations in driver genes (EP300
and CIITA) (Fig. 2f, Extended Data Fig. 5g and Supplementary
Table 16). By applying a high-coverage, unique molecular identi-
fier (UMI)-based next-generation sequencing (NGS) approach
in longitudinal samples of patients 12, 19 and 63 (Supplementary
Table 18), we observed that mutations of the RT subclones found
in the main peaks of the SBS-RT were mainly identified in samples
collected after bendamustine or chlorambucil therapy, whereas
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confidence; NA, not available. h, Distribution of the CCF of the single-nuclectide variants (SNVs) assigned to the RT subdone based on WGS and stratified
according to the main peaks of the SBS-RT. i, Relative contribution of mutational processes in regions of kataegis in CLL and RT (left). Two cases acquiring
mutations in the immunoglobulin genes at time of RT (right). j, Clonal evolution along the disease course in patient 12 inferred from WGS. Abbreviations
for treatment regimens are detailed in Extended Data Fig. 1a. Each subclone is depicted by a different color and number and its CCF is proportional to its
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mutations not associated with SBS-RT were detected earlier dur-
ing the disease course (Fig. 2g and Extended Data Fig. 5h). These
results suggest a causal link between the exposure to these drugs
and SBS-RT. The finding of SBS-melphalan, SBS-ganciclovir and
SBS-RT in RT argues in favor of a single-cell expansion model for
RT; a single cell that can carry the footprints of cancer therapies
(Fig. 2h). Contrarily, the lack of SBS-RT in the 27 post-treatment
CLL samples (7 patients treated with bendamustine or chlorambu-

carried CDKN2A/B and TP53 (p.G245D) alterations, whereas
the main CLL subclones driving the relapse after therapy at T4
and T5 harbored a different TP53 mutation (p.[195T; subclones 3
and 4). The WGS predicted the presence of all these subclones at
CLL diagnosis (T1). Using scDNA-seq we identified two small pop-
ulations accounting for 0.1% of cells carrying the TP53 p.1195T and
p-G245D mutations, respectively, at T1, which were also detected
at relapse 7.2 years later (T3). The subclone carrying TP53 p.1195T

cil) suggests that CLL relapse might be driven by the si:
expansion of different subclones, hindering the detection of SBS-RT
through bulk sequencing’**

RT subclones also acquired kataegis, mainly within the immuno-
globulin loci, attributed to activation-induced cytidine deaminase
(AID) activity (SBS84 and SBS85)* (Fig. 2i and Extended Data
Fig. 4). Thesekataegis led to the acquisition of mutations in the rear-
ranged V(D)J gene in five RT cases (one after CIT and four targeted
therapies) (Fig. 2i, Extended Data Fig. 5i,j and Supplementary Table
19). This canonical AID activity in RT is concordant with the acqui-
sition of SBS9 mutations in two RT samples (4,686 (CIT) and 3,495
(targeted therapies)) and SVs mediated by aberrant class-switch
recombination or somatic hypermutation in six RT (one before
therapy, two CIT and three new agents), which targeted MYC,
MYCN, TRAF3 and CCND3 (Fig. 1 ¢ and Supplementary Table 2).

SBS-RT mutations were found in CLL samples before the trans-
formation in patient 3,299 although it was only present in the RT
subclone (Fig. 2¢,e). SBS-RT was also found in two different sub-
clones in case 12 and 19. We speculated that these secondary sub-
clones with SBS-RT (named ‘RT-like’ subclones) could correspond
to the single-cell expansion of a ‘transformed’ cell that could have
been missed by the routine analysis (Fig. 2¢). The reanalysis of flow
cytometry data available for case 12 detected two cell populations
at time point (T) 4 differing in size and surface markers (likely CLL
and RT-like subclones), whereas at T5 we detected an additional
population of large cells (RT subclone, 0.2% cells) that expanded
at T6, substituting the previous large cell population (RT-like sub-
clone) (Fig. 2j and Extended Data Fig. 5k-m). WGS analysis showed
that the RT-like and RT subclones diverged from a cell carrying a
deletion of CDKN2A/B and truncation of CREBBP, each acquiring
more than 2,100 specific mutations (Fig. 2¢,).

Altogether, these findings show that RT may arise simultaneously
from different subclones and that such subclones can be detectable
time before their final expansion and clinical manifestation. The
identification of mutations in RT associated with early-in-time CLL
therapies demonstrates that RT emerges from the clonal expansion
of a single cell previously exposed to these therapies.

Dormant seeds of RT at CLL diagnosis. The WGS-based subclonal
phylogeny of the nine patients with fully characterized longitudinal
samples predicted that the RT subclone was present at low cancer cell
fraction (CCF) in the preceding CLL samples in five (56%) patients
and only detected at time of transformation in the remaining four
(44%) (Fig. 3a). Indeed, the RT subclone was detected at time of
CLL diagnosis in three of five patients, remained stable at a min-
ute size (<1%) for 6-19 years of natural and treatment-influenced
CLL course and expanded at the moment of clinical manifestations
(patients 12, 19 and 63) (Fig. 3a). In the other two patients, the RT
subclone was also detected in the first CLL sample analyzed but rap-
idly expanded driving the RT 0.6 and 3.5 years later in patients 3,034
and 3,299 (RT-PLL), respectively (Fig. 3a and Extended Data Fig. 6).

We next performed single-cell DNA sequencing (scDNA-seq)
of 32 genes in 16 longitudinal samples of 4 patients (12, 19, 365
and 3,299) to validate these evolutionary histories of RT (202,210
cells passing filters, mean of 12,638 cells per sample; Fig. la,
Supplementary Fig. 2 and Supplementary Table 20). Focusing on
patient 19 with a time lapse of 14.4 years from diagnosis to RT
(Fig. 3b), the RT subclone (subclone 5) at transformation (T6)
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d to domi the second relapse after 3.7 years at T4 and
TS but was substituted by the subclone carrying TP53 p.G245D at
T6 in the RT 14.4 years after diagnosis. All these subclones car-
ried the SF3B1 and NOTCH1 mutations of the initial CLL subclone
(Fig. 3¢ and Supplementary Table 20). The scDNA-seq of the three
additional cases also corroborated the phylogenies and most of the
dynamics inferred from WGS (Extended Data Fig. 6a). These results
suggest that CLL evolution to RT is charactenzed by an early driver
diversification probably g d before diag; with
the early immunogenetic and DNA methylation dlvemﬁcanon pre-
viously reported in CLL" " and that RT may emerge by a selection
of pre-existing subclones carrying potent driver mutations rather
than a de novo acquisition of leading clones.

As we identified five cases of RT carrying specific mutations in
the lmmunoglobuhn genes hy WGS (Fig. 2i), we analyzed whether
these immunog] bel were already present at
CLL diagnosis using high- coverage NGS in patients 12 and 3,495
(Supplementary Table 21). Focusing on patient 3,495, for which
the lack of germline material precluded our phylogenetic analyses,
the RT occurring after treatment with ibrutinib harbored two new
V(D)] mutations generating an unproductive IGH gene. NGS iden-
tified 0.002% sequences carrying the same two mutations at CLL
diagnosis 1.72 years before (Fig. 3d). We also observed the expan-
sion of additional unproductive subclones accounting for 11.8%
of all sequences at time of RT, suggesting that BCR-independent
subclones may have a proliferative advantage under therapy with
BCR inhibitors (Fig. 3d). Similar results were found in patient 12
in which the V(D)] sequence of RT carrying a new mutation was
already identified at CLL diagnosis 19.5 years before at DNA and
RNA level (Fig. 3e). As the i ic features rep a
faithful imprint of the B cell of ongm, the early identification of
the same immunogenetic subclone provides further evidence for an
early seeding of RT.

We finally tracked RT subclones during the disease course using
single-cell RNA sequencing (scRNA-seq) of 19 longitudinal samples
of five patients (24,800 tumor cells passing filters, mean of 1,305
cells per sample; Fig. 1a and Supplementary Table 22). As expected,
RT and CLL cells had remarkably different gene expression profiles
(Fig. 3f and Extended Data Fig. 7a-d). The transcriptome of CLL
cells was dominated by three main clusters identified across patients
and characterized by different expression of CXCR4, CD27 and
MIR155HG, respectively, which may represent the recirculation of
CLL cells between peripheral blood and lymph nodes**** (Fig. 3f,g
and Extended Data Fig. 7a-d). Contrarily, RT intraclonal heteroge-
neity was mainly related to distinct proliferative capacities with a
cluster of cells showing high MKI67 and PCNA expression as well
as high S and G2M cell-cycle phase scores. The remaining RT clus-
ters were characterized by the expression of different marker genes
among patients, including CCND2, MIR155HG and TP53INP1 (Fig.
3f-h and Extended Data Fig. 7a-d). When considering each time
point separately, we detected RT cells in all CLL samples before
transformation in patient 12, 19, 63 and 3,299 but not in patient 365
(Fig. 3i and Extended Data Fig. 7a-i). The presence and dynamics
ofthese RT subclones according to their transcriptomic profile reca-
pitulated the findings obtained by WGS, scDNA-seq and immuno-
globulin analyses in all five patients, suggesting that they captured
the same cells. Indeed, using scRNA-seq we could identify the CNAs
involved in simple and complex structural alterations found at time

w.nature.com/naturemedicine
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Fig. 3] Early seeding of RT. a, Evolution of the RT subclone along the disease course based on WGS. Time lapse between the first and last sample analyzed
(bottom). RT time points are marked in a rose color. Summary of the three patterns observed (right). b, Fish plot showing the clonal evolution along the
course of the disease in patient 19 inferred from WGS analysis. Each subclone is depicted by a different color and number and its CCF is proportional to its
height at each time point (vertical lines). Phylogeny of the subclones and main driver events (right). ¢, Mutation tree reconstructed by scDNA-seq for case
19 together with the fraction of cells carrying each specific combination of mutations in each time point. The total number of cells per sample is shown at
the bottom. The number of cells assigned to each subclone is shown in Supplementary Table 20. d, Schematic representation of the clinical course and
samples analyzed for patient 3,495 together with the size of the IGH subclones identified using high-coverage NGS analyses. Abbreviations for treatment
regimens are detailed in Extended Data Fig. 1a. e, Clinical course and IGH subclones identified by DNA- and RNA-based NGS in patient 12. f, Uniform
Manifold and Projection (UMAP) plot for case 12 based on the scRNA-seq data of all time points colored by annotation. g, Expression of key marker genes
in each cluster identified in case 12. h, Distribution of cell-cycle phase scores for each cluster based on scRNA-seq in case 12. i, UMAP visualization split by
time point in case 12 with the fraction of RT cells annotated. ‘'n’, number of cells. j, Chromosomal alterations detected by WGS in chromosomes 1,11 and 14
in CLLand RT samples of patient 12 (top). Copy number profile of RT cells detected at the different time points according to scRNA-seq. Only a subset of
RT cells from time point 6 (time of diagnosis of RT) was included for illustrative purposes (bottom).

of RT by WGS already in the dormant RT cells at CLL diagnosis
and subsequent time points before their final expansion (Fig. 3j and
Extended Data Fig. 8). These findings suggest an early acquisition
of SVs, including chromothripsis and transcriptomic identity in RT.
To validate our observations, we reanalyzed the longitudinal
scRNA-seq dataset from Penter et al.” consisting of nine patients
with CLL, one of which developed RT. In this case, we identi-
fied RT cells in the CLL sample collected 1.6 years before the RT
(Extended Data Fig. 7j). Overall, our integrative analyses uncovered
a widespread early seeding of RT cells up to 19 years before their
ion and clinical i

ation,

P

OXPHOS"s"*-BCR'*~ transcriptional axis of RT. To understand

regulation, we integrated genome-wide profiles of DNA methyla-
tion, chromatin activation (H3K27ac) and chromatin accessibility
(ATAC-seq) with bulk RNA-seq and scRNA-seq of multiple lon-
gitudinal samples of six patients treated with BCR inhibitors (Fig.
1a). The DNA methylome of RT mainly reflected the naive and
memory-like B cell derivation of their CLL counterpart, whereas
chromatin activation and accessibility were remarkably differ-
ent upon transformation (Fig. 4a). We identified 150 regions with
increased H3K27ac and 426 regions that gained accessibility in RT
(Fig. 4b, Extended Data Fig. 9a and Supplementary Tables 7 and 8).
These de novo active regions were enriched in transcription fac-
tor (TF) families different from those known to modulate the epig-
enome of CLL". Among them, 24 were enriched and upregulated

the transcriptomic evolution from CLL to RT and its

PIE
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in RT (Suppl y Table 7). The top TF was TEAD4, which
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the main gene sets modulated in RT based on bulk RNA-seq. NES, normalized enrichment score; ROS, reactive oxygen species. h, Gene set enrichment plot
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RT and CLL cells are highlighted (left). Ridge plots show the OXPHOS and BCR score across clusters (right). j, OXPHOS and BCR signaling scores of CLL
and RT cells of patient 12 across time points by scRNA-seq. k, Distribution of OXPHOS and BCR signaling scores at a single-cell leve! across different time
points of nine cases included in the study of Penter et al. . Center line indicates median; box limits indicate upper and lower quartiles; whiskers indicate
15 xinterquartile range; points indicate outliers. B, peripheral blood; M, bone marrow. *Sample collected under treatment with ibrutinib.
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activates genes involved in oxidative phosphorylation (OXPHOS)
through the mTOR pathway' and co-operates with MYCN*.
Additional TFs were related to MYC (MAZ), proliferation/cell cycle
(E2F family) or IRF family, among others (Fig. 4c). Notably, high
IRF4 levels seem to attenuate BCR signaling in CLL", whereas they
are necessary to induce MYC target genes, OXPHOS and glycolysis
in activated healthy B cells*.

The RNA-seq analysis, excluding cases 19 and 3,299 (RT-PLL)
due to their intermediate transcriptomic profile, identified 2,248
differemially expressed genes (DEGs) between RT and CLL (1,439

lated and 809 di gulated) (Fig. 4a.d.e, Extended Data
Flg 10a and Supplementary Tables 11 and 23). A remarkable frac-
tion of upregulated/downregulated genes overlapped with regions
with the respective increase/decrease of H3K27ac (20%) and
chromatin accessibility (16%) at RT (Fig. 4d and Extended Data
Fig. 9b). Contrarily, only 4% of the DEGs overlapped with any of the
2,341 differentially methylated CpGs (DMCs) between RT and CLL,
emphasizing the limited effect of DNA methylation on gene regu-
lation". Most DMCs were hypomethylated at RT (2,112 of 2,341;
90%), found in open sea and intergenic regions and correlated
with the proliferative history of the cells measured by the epiCMIT
score" (1,681; 72%), which increased during CLL evolution and at
RT (Fig. 4d.f, Extendcd Data Fig. 9c g and Supplementary Table 6).

Genes upregulated in RT i path that seem indepen-
dent of BCR signaling such as Wnt (WNT5A and others)™, Toll-like
NATURE MEDICINE | VOL 28 | AUGUST 2022 | 1662-1671 ure com/naturemed

receptors (TLR9 among others)™' and a number of cyclin-dependent
kinases. Downregulated genes included, among others, CXCR4,
HLA-A/B and chromatin remodelers also targeted by genetic altera-
tions in some cases (Fig. 4d and Extended Data Fig. 10b,c). Gene
sets modulated by gene expression in RT were in harmony with the
identified chromatin-based changes and included upregulation of
E2F targets, G2M checkpoints, MYC targets, MTORCI signaling,
OXPHOS, mitochondrial translation, glycolysis, reactive oxygen
species and DNA repair pathways, among others. In addition, RT
showed d dulation of BCRsignaling (Fig. 4g.h, Extended Data
Fig. 10d and Supplementary Table 11). The OXPHOS"*-BCR*"
pattern observed by bulk RNA-seq in RT was further refined using
scRNA-seq: two of five tumors had OXPHOS"#*-BCR"" (12 and 63,
although the latter showed some intercluster variability), the two
M-CLL carrying IGLV3-21%* had RT with BCR expression similar
to CLL and were OXPHOS"#-BCR™! (365) or OXPHOS® -
BCR™™! (19) and the RT-PLL (3,299) was OXPHOS"*-BCR"~
(Fig. 4i, Extended Data Fig. 10e-j and Supplementary Table 23).
In addition, the scRNA-seq analysis showed that the OXPHOS/
BCR profiles of RT were already identified in the early dormant
RT cells, suggesting that they might represent an intrinsic charac-
teristic of RT cells rather than being modulated by BCR inhibitors
(Fig. 4j and Extended Data Fig. 10g-j). To expand these observa-
tions, we measured the expression of OXPHOS and BCR pathways
in the scRNA-seq dataset from Penter et al.”. Case CLL9, which
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developed RT in the absence of any therapy, showed a remarkably
higher OXPHOS and slightly lower BCR expression at time of RT
compared to CLL (Fig. 4k and Extended Data Fig. 10k,]).

Overall, the epigenome and transcriptome of RT converge
to an OXPHOS"#-BCR"* axis reminiscent of that observed in
the de novo DLBCL subtype characterized by high OXPHOS
(DLBCL-OXPHOS) and insensitive to BCR inhibition™ ™. This axis
might explain the selection and rapid expansion of small RT sub-
clones under therapy with BCR inhibitors.

OXPHOS and BCR activity in RT. We next validated experimen-
tally the OXPHOS and BCR activity of RT in samples of patients
12, 19 and 63. Respirometry assays confirmed that OXPHOS"#
RT cells (patients 12 and 63) had a 3.5-fold higher oxygen consump-
tion at routine respiration and fivefold higher electron transfer sys-
tem capacity (ETC) compared to CLL. In addition, OXPHO S
RT (patient 19) showed a routine oxygen consumption similar to
CLL, although also had a relatively higher ETC than its CLL coun-
terpart (Fig 5a, Suppl y Fig. 3a-d and Suppl y Table
24). BCR signali 2 d by Ca** mobilization upon BCR stim-
ulation with IgM showed that BCR™ RT cells (patients 12 and 63)
had a lower Ca** flux compared to CLL, which contrasted with the
higher flux observed in the BCR™™ RT cells of patient 19, concor-
dant with its IGLV3-21%' mutation” (Fig. 5b, Supplementary Fig.
4a,b and Supplementary Table 25).

To determine the biological effect of OXPHOS"#" in RT, we per-
formed in vitro proliferation assays using IACS-010759 (100 nM),
an OXPHOS inhibitor that targets mitochondrial complex I
(Supplementary Figs. 3e and 4c and Supplementary Table 25).
OXPHOS"" RT (patients 12 and 63) had a higher proliferation at
72h compared to OXPHOS™™ RT (patients 19) and all of them were
higher than their respective CLL. OXPHOS inhibition resulted in a
marked decrease in proliferation in OXPHOS"s RT (mean 49.1%),
which contrasted with that observed in OXPHOS™™* RT (2.2%
decrease) and CLL (23.2% decrease) (Fig. 5c and Supplementary
Fig. 4d). Overall, these results confirm the role of OXPHOS"#" phe-
notype in high proliferation of RT and suggest its potential thera-
peutic value in RT as proposed for other neoplasms™~".

Discussion

The genome of RT is characterized by a compendium of driver
alterations in cell cycle, MYC, NOTCH and NF-kB pathways, fre-
quently targeted in single catastrophic events and by the footprints
of early-in-time, treatment-related, mutational processes, includ-
ing the new SBS-RT potentially associated with bendamustine and
chlorambucil exposure. A very early diversification of CLL leads to
emergence of RT cells with fully assembled genomic, immunoge-
netic and transcriptomic profiles already at CLL diagnosis up to 19
years before the clonal explosion associated with the clinical trans-
formation. RT cells have a notable shift in chromatin configuration
and transcriptional program that converges into activation of the
OXPHOS pathway and downregulation of BCR signaling, the latter
potentially compensated by activating Toll-like, MYC and MAPK
pathways' """, The rapid expansion of RT subclones under treat-
ment with BCR inhibitors is consistent with its low BCR signaling,
except when carrying the IGLV3-21%"" and further supported by
the increased number of subclones carrying unproductive immu-
noglobulin genes and the develop of RT with pl bl
differentiation, a cell type independent of BCR signaling”. Finally,
we also uncovered that OXPHOS inhibition reduced the pro-
liferation of RT cells i in vitro, a finding worth exploring in future
therapeutic strategies™"

In conclusion, our comprehensive characterization of CLL
evolution toward RT has revealed new genomic drivers and epig-
enomic reconfiguration with very early emergence of subclones
driving late stages of cancer evolution, which may set the basis for
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developing single-cell-based predictive strategies. Furthermore,
this study also identifies new RT-specific therapeutic targets and
suggests that early intervention to eradicate dormant RT subclones
may prevent the future development of this lethal complication
of CLL.
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Methods
Consent and sample processing. Written informed consent was obtained
from all patients. The study was approved by the Hospital Clinic of Barcelona
Ethics Committee. Tumor DNA was extracted from tumor cells purified from
fresh/cryopreser ved mononudear cells, frozen lymph nodes or formalin-fixed
panaffin-embedded (FFPE) tissue (n= 1, CLL sample of patient 1,669). Germline
DNA was obtained from the non-tumoral purified cell fraction in 12 cases. In
two patients (1,523 and 4,675) who had received allogeneic stem-cell transplant
before RT, germline DNA of the donor was also collected. All extractions were
performed using appropriate QIAGEN kits (QIAamp DNA Blood Maxi kit, cat.
no. 51194 QIAamp DNA Mini kit, cat. no. 51304; and AllPrep DNA/RNA FFPE
kit, cat. no. 80234). Tumor RNA was obtained from tumor cells purified from
fresh/cryopreserved mononudlear cells with TRIzol reagent (Invitrogen, cat. no.
15596026).

A specific flow cytometry analysis was conducted on peripheral blood samples
of patient 12, which were stained with the Lymphocyte Screening Tube according
to EuroFlow protocols (hitps://www.curoflow.org/protocols). At least 100, 000
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blob/master/extensions/Cancer/somatic MutationDetector.py) was used to identify
somatic indels called by Platypus. Indels were left-aligned and normalized using
beftools”. Indels with MMQ < 60, MQ < 60 and MAPQ <60 for Mutect2, Platypus
and SABA, respectively, were mnoved ()nly mdels |de|mﬁed by atleast two
algorithms were retained. was p d using snpEff/
snpSift (v.4.3t)” and GRCh37.p13. Rd’scq asa reference. This approach showed
293% specificity and 88% sensitivity when benchmarked against the mutations
found at a VAF >10% in our previous high-coverage NGS study ™.

Tumor-only SNVs and indel calling. Tumor-only variant calling was restricted
to coding regions of 243 genes described as drivers in CLL and other B cell
lymphomas (Supplementary Table 10). Mini-BAM files were obtained using

Picard tools and variant calling was performed using Mutect2 (GATK v.4.0.4.0)",
VarScan2 (v.2.4.3), VarDictlava (v.1.4)", LoFreq (v.2.1.3.1)", outLyzer (v.1.0)”"

and freebayes (v.1.1.0, https://github.com/freebayes/frecbayes). Variants were
normalized using beftools (.1.9)"" and annotated using snpEff/snpSift (v4.3t) %,
Only non-synonymous variants that were identified as PASS by >2 algorithms were
d. Variants reported in 1000 Genomes Project, ExAC or gnomAD with

cells were acquired in a FACSCanto IT i Analysis wa

the Infinicyt 2.0 software. The sequential gating analysis was as follows:
identification in a FSC-W versus FSC-H plot; leukocyte identification in SSC-A
versus CD45 (V500-C) plot and FSC-A versus SSC-A; lymphocytes identified as
SSC-A low and CD5 high and back-gated n FSC-A versus SSC-A to exclude
monocytes; in the lymphocyte gate, T cells were identified as CD3" cells in SSC-A
versus CD3 (APC) followed by sequentially distinguishing TCRy5" T cells,

CD4 T cellsand CD8 T cells; after excluding T cells, B cells were selected ina
SSC-A versus CD19 (PE-Cy7), followed by inspection of CD19 (PECy7) versus
CD20 (PacB), CD5 (PerCPCy5.5) versus CD20 (PacB) and CD20 (PacB) versus
CD38 (APC-H?7) plots to evaluate the expression of these B cell markers and the
assignation of k and A expression in a plot of IgK (PE) versus Igl. (FITC); after
excluding B cells, natural killer cells were identified in a SSC-A versus CD56 (PE)
plot followed by SSC-A versus CD38 (APC-H7) plot.

WGS and WES. Library prep and sples available were
subjected to WGS cxccpl {the FFPE CLL which was ana)yud by whole-exome
sequencing (WES). WGS libraries were performed using the Kapa Library
Preparation kit (Roche, cat. no. 07961901001), TruSeq DNA PCR-Free kit
(Illumina, cat. no. 20015963) or TruSeq DNA Nano protocol (Illumina, cat. no.
20015965) and sequenced on a HiSeq 2000/4000/X Ten (2 X 126bp or 2x |5| bp)
or NovaSeq 6000 (2x 151 bp) i (Illumina). WES was p

the SureSelect Human All Exon V5 (Agilent Technologies, cat. no. 51906209 md
G9611B) coupled with a KAPA Hyper Prep kit (Roche, cat. no. 07962363001)

for the DNA pre-capture library. Sequencing was performed on a HiSeq 2000
(2101 bp). We also included WGS of three published CLL/germline pairs
(patients 12, 19 and 63)” (Supplementary Table 1).

General considerations. Overall, 12 patients had a complete dataset (germline, CLL
and RT samples), 6 patients lacked germline DNA and 1 patient had only the RT
sample (case 4,676). We conducted tumor versus normal analyses in cases with

a complete dataset. For the six patients lacking the germline sample, we used the
CLL samples as ‘normal’ to identify SNV acquired at RT for mutational signature
analyses. In addition, tumor-only analyses were conducted in these CLL and RT
samples, as well as in the patient with only a RT sample available, to identify driver
gene mutations and genome-wide CNAs (Supplementary Table 1).

Read mapping and quality control. Reads were mapped to the human reference
genome (GRCh37) using the BWA-MEM algorithm (1.0.7.15)"". BAM files were
generated and optical/PCR duplicates flagged using biobambam2 (v.2.0.65, https://
gitlab.com/german.tischler/biobambam2). FastQC (v.0.11.5, wwwbioinformatics
babraham ac.uk/projects/fastqc) and Picard (v2.10.2, https:/ /broad github,

apopulation frequency >1% or reported as germline in our ICGC database of 506
WES/WGS* were considered as polymorphisms.

Tumor versus normal CNA calling. CNAs were called using Battenberg
(cgpBattenberg, v3.2.2)" and ASCAT (ascmNgs vA.10)" CNAs within any of the

loci were not consid ‘We used the tumor purities obtained
by Battenberg in downstream analyses. The median tumor cell content was 91.5%
(Supplementary Table 1).

Tumor-only CNA calling. CNAs were extracted using CNVkit (v0.9.3)"", CNAs
<500kb, with an sbsolute log, copy ratio (log,CR) <0.3 or located within any of the
immunoglobulin loci were removed. CNAs were dlassified as gains if log,CR > 0.3,
deletions if log,CR < —0.3, high-copy gains if log.CR > 1.1 and homozygous
deletions if log.CR < —1.1. The log.CR cutoff was set to 0.15 for two samples

with low tumor cell content (102-01-01'TD and 4690-03-01BD). To avoid a high
segmentation of the CNA profile, CNAs belonging to the same class were merged if
they were separated by <1 Mb and had an absolute log CR difference <0.25.

Array-based CNA calling in FFPE. CNAs were examined in the FFPE CLL sample
using the Oncoscan CNV FFPE Assay kit (Thermo Fisher Scientific, cat. no.
902695) and analyzed using Nexus 9.0 software (Biodiscovery).

Tumor versus normal SV calling. SVs were extracted using SMuFin
BRASS (v.6.05)", SVABA (v7.0.2)" and DELLY2 (v.0.8.1)". SVs ide:
intersected considering a window of 300 bp around break points. We kept for
downstream analyses the SV identified by at least two programs if at least one

of the algorithms called the alteration with high quality (MAPQ >90 for BRASS,
MAPQ=60 for SYABA and DELLY2). In addition, IgCaller (v.1.2)* was used to
call $Vs within any of the immunoglobulin loci. Al SV were visually inspected
using IGV*. SVs were categorized into simple or complex events. Chromothripsis'*
was defined as >7 oscillating changes between two or three copy number states

or the presence of >7 SV break points occurring in a single chromosome and
supported by additional criteria”*". Chromoplexy was determined by the presence
of >3 chained chromosomal rearrangements, where chains were identified using a
window of 50 kb***. Cycles of templated insertions were defined as copy number
gains in >3 chromosomes linked by SVs”". Breakage-fusion bridge cycles were
defined as patterns of focal copy number increases and fold-back inversions,
together with telomeric deletions. Chains of rearrangements having >2 SVs and
not fulfilling any of the previous criteria were classified as ‘other complex events.
Chromothripsis and ‘other complex events’ were subcategorized according to the
number of ch involved. The longitudinal nature of our dataset allowed

io/picard) were used to extract quality control metrics. Mean coverage was 33x and
119x for WGS and WES, respectively (Supplementary Table 1).

gene
were dmractmzed using lg&ller (v12)". The rearmnged sequcn:es obtained
were reviewed on the Integrative Genomics Viewer (IGV; v.2.9.2)"" and annotated
using IMGT/V-QUEST (https:/ /www.imgtorg/IMGT_vquest) and ARResT/
AssignSubsets (http/batinfspirc.org/arrest/assignsubsets).

Tumor versus normal SNVs and indel calling SNV were called using Sidrén®,
CaVEMan (cgpCaVEManWrapper, v.1.12.0)*, Mutect2 (Genome Analysis Toolkit
(GATK) v.4.0.2.0)" and MuSE (v.1.0 rc) and normalized using beftools (v.1.8)".
Variants detected by CaVEMan with more than half of the mutant reads clipped
(CLPM>0) and with supporting reads with a median alignment score (ASMD)
<90, <120 or <140 for sequencing read lengths of 100, 125 or 150 bp, respectively,
were excluded. Variants called by Mutect2 with MMQ <60 were eliminated.
Mutations detected by at least two algorithms were considered. Short insertions/
ddlctions (indeks) were called by SMuFin (v:09.4)”, Pinddl (cgpPindel, v2.23)",
SVABA (v.7.0.2)"", Mutect2 (GATK v.4.0.2.0)"" and Platypus (v.0.8.1)". The
somaticMutationDetector.py script (https://github.com/andyrimmer/ Platypus/

us to refine the obtained classification based on the presence of the involved
alterations in cach time point analyzed.

Patients who underwent allogenic stem-cell transplant. In these patients, we conducted
tumor versus patient’s germline and tumor versus donor’s germline variant calling in
parallel. Only the intersection of variants identified was considered.

Rescue of all based on longitudinal infe . SNV called in one sample
were aulomaucally added to the samples of addmmal time point(s) if at least one
high-quality read with the mutation was found in the BAM file (alleleCounter
v.4.0.0, parameters: min_map_qual =35; and min_base_qual = 20). Similarly, indels
and SV detected in one sample were added in the additional time point(s) if any of
the algorithms detected the alteration, regardless of its filters.

WGS-based subclonal reconstruction. A Markov chain Monte Carlo sampler

for a Dirichlet process mixture model was used to infer putative subclones,

to assign mutations to subdones and to estimate the subclone frequencies in
cach sample from the SNV read counts, copy number states and tumor purities
(Supplementary Table 17)™*. Clusters with <100 mutations were excluded.
The phylogenetic relationships between subdlones were identified following the
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‘pigeonhole principle, which was relaxed using a case- sp:uﬁc ‘tolerated error’™
Clusters not assigned to the reconstructed phyloges ree were excluded. Flsh
plots were generated using the TimeScape R package (v.1.6.0). The CCF of indels
was calculated integrating read counts, CNAs and tumor purity”. Driver indels
subjected to validation by scDNA-seq and/or relevant to the tumor phylogeny
were manually assigned to subclones. Similarly, driver CNAs relevant to the
phylogeny were manually assigned. Seven SNV found in TP53/ATM overlapping
with CNAs were manually assigned to the most likely subclone as they were not
automatically assigned by the Dirichlet process and were subjected to scDNA-seq
(Supplementary Table 9).

=

We studied I signatures acti id,
and in localized regions (inter-mutation distance <1Kb)"**%, We integrated the
mutations identified in this CLL/RT cohort together with those of 147 CLL
treatment-naive samples (ICGC-CLL)™ and 27 new CLL collected at relapse
post-treatment (mean coverage 31.5x; Supplementary Table 15). The WGS of
these two additional cohorts was (re-)analyzed using our current bioinformatic
pipeline (Suppl y Table 12). Mutational signatures were analyzed for SNVs
or single-base substitutions (SBSs) according to their 5’ and ¥’ flanking bases
following three steps™:

1. Extraction: de novo signature extraction was performed using a hierarchi-
cal Dirichlet process (HDP, v0.1.5: hitps:/github com/nicolaroberts/hdp),
Analyzer (v.0.0.7)", (SigP v.1.0.8)"
and sighit (+:2.0.0; https:/github.com/kgori/sight). HDP was run with four
independent posterior sampling chains, followed by 20,000 burn-in iterations
and the collection of 200 posterior samples off cach chain with 200 iterations
between each. SigProfiler was run with 1,000 iterations and a maximum of
ten extracted signatures. Similary, sigfit was run to extract five signatures
with 10,000 burn-in iterations and 20,000 sampling iterations.

2 Assignment cach extracted signature was assigned to a given COSMIC sig-
nature (v.3.2)" if their msn\c sumjmly was >0.85. Otherwise, the cxl.racltd
signature was d posed into ‘n” COSMIC si; using an exp
maximization (EM) algorithm’". The EM algorithm was first run using the
COSMIC signatures identified in the previous step. If their cosine similarity
was <085, we ran the EM algorithm, including allsignatures reported in
COSMIC and by Kucab et al.” (55 related te i

(Posied_Promoter, H3K27me3_Repressed), enhancer/promoter (Active_Promoter,
Strong_Enhancerl, Weak_Promoter, Weak_Enhancer, Strong_Enhancer) and
transcription (Transcription_Transition, Weak_Transcription, Transcription_
Elongation). We also mapped the activity of mutanonal  processes in early/late
replication regions of the genome ys of carly/late repli

as those regions of >1 kb with absolute replication timing >0.5 (ref. “). AlISNVs
of the CLL and RT subclones were classified in any of the four chromatin states
and early/late replication regions before fitting mutational signatures. A cutoff

0f 0.005 was used to remove the less-contributing signature during the fitting

step. We also generated replication and transcriptional strand bias profiles of the
RT-specific mutations using the MutationalPatterns R package*. The replication
strand was annotated based on the left/right replication direction of the timing
transition regions’". The transcriptional strand was annotated using the TxDb.
Hsapiens.UCSC.hgl 9. knownGene R package (v.3.2.2). Finally, katacgis was defined
asa genomic region having six or more mutations with an average inter-mutation
distance <1kb.

High-coverage, UMI-based gene mutation analysis. Data generation. A
high-coverage, UMI-based NGS was performed to track 77 mutations identified by
WGS (Supplementary Table 18). Molecular-barcoded and target-enriched libraries
were prepared using a Custom CleanPlex UMI NGS Panel (Paragon Genomics)
and CleanPlex Unique Dual-Indexed PCR Primers for Illumina (Paragon
Genomics, cat. no. 716011 and 716013). Libraries were sequenced on a MiSeq and/
or NextSeq 2000 instrument (2 X 150bp, lumina).

Data analysis. Raw reads were trimmed using cutadapt (https://cutadapt

readthedocs io; v.1.15 with parameters: -g CCTACACGACGCTCTTCCGATCT

-a AGATCGGAAGAGCACACGTCTGAA -A AGATCGGAAGAGCGTCGTGTA

GG -G TTCAGACGTGTGCTCTTCCGATCT -¢ 0.1 -0 9 -m 20 -n 2).

Trimmed FASTQ reads were converted to unmapped BAM using Picard’s

FastqToSam tool (v.2.10.2). UMI information was extracted and stored as

a tag using fgbio ExtractUmisFromBam (http://fulcrumgenomics.github

o 'tghml v.1.3.0 with paumelﬂs ~read structure=16M+T 16M+T, -
dex-tags=ZA ZB). Template read was converted

to FASl‘Q with Picard’s SamToFastq. Template reads were mapped against

the Inmnn reference genome (GRCh37) and reads were merged with the

mental agents). Three exceptions were made: (1) we combined two HDP
signatures that together constituted COSMIC signature SBS5 to avoid split-
ting of signatures (Extended Data Fig. 4a); (2) APOBEC signatures (SBS2 and
SBS13) were favored to be assigned to one of the signatures extracted by HDP
and Signature Analyzer although it was not the best EM solution probably be-
cause they were only found in one sample, which impaireda clean extraction
of the signatures (Extended Data Fig. 41); and (3) one signature extracted by
HDP and SignatureAnalyzer was directly assigned to the mutational signature
associated with ganciclovir treatment* (cosine similarity 0.987 and 0.993,
respectively) (Extended Data Fig. 4). The new SBS-RT extracted by HDP was
considered for downstream analyses as it had less background noise than

the one extracted by SignatureAnalyzer, favoring a higher specificity during
the fitting step. Similarly, the SBS-ganciclovir extracted by HDP was used in
downstream analyses (Extended Data Fig. 4). We ako performed a detailed
review to remove si f being originated due to sequencing
artifacts (Supplcmcmnry Table 13).

3. Fitting: we used a fitting approach (MutationalPatterns, v.3.0.1) to measure
the contribution of each mutational signature in cach sample. Based on (1)
the de novo identification of the therapy-related SBS-ganciclovir and (2)
that two patients received melphalan before RT, the mutational signature
associated with melphalan therapy* was also included in this step. To avoid
the so-calledinter-sample bleeding efect, we itemtively removed the

signature if its 1 de d the cosine similarity
belmen the original and reconstructed 96-profile <0.01 (ref. ). SBS1 and
SBSS were added if addition improved the cosine similarity”. Similarly, SBS9
was added in CLL/RT samples classified as M-CLL if addition improved the
cosine similarity. We also ran mSigAct (v2.LL; https:/github. cony/stevero
zen/mSigAct) to confirm the p of SBS-melphalan (Sup-
plementary Table 15). To assess the contribution of cach sugnamlc to cach
subclone we followed the same fitting strategy but (1) considered only the
signatures that were present in the corresponding sample and (2) removed
the final step of adding SBS9 in M-CLL to avoid its addition in multiple
subclones with low evidence.

Genomic locations and strand bias. We assessed the contribution of SBS-RT to
coding SNVs in RT subclones (also indluding cases in which the CLL sample was
used as a ‘germline’) by calculating the probability that a given mutation was caused
by SBS-RT. To perform this calculation, we considered the present in the
subclone/sample and their signature profile”. The reference epigenomes of CLL*
were used to explore the contribution of the mutational processes in different
regulatory regions. We simplified the described chromatin states in four

UM using Picards . Finally, reads were
grouped by UMI and a consensus was caled using fgbio GroupReadsByUni

were -strategy —cdxts—l p=10)
CallMolecul. i fiiread

3), ivdy. A
‘minimum of three reads was required to cmalc a UMI based final read. Final reads
were converted back to FASTQ using Picard's SamToFastq and mapped against the
reference genome using BWA-MEM (v0.7.15)". Mean coverage was determined
using Picard’s Collect TargetedPcrMetrics (parameters: CLIP_OVERLAPPING__
READS = true, MINIMUM_MAPPING_QUALITY = 15 MINIMUM_BASE_
QUALITY = 15). Read counts were collected at all targeted genomic positions
for all samples using beftools mpileup (v.1.8, parameters: -B -Q 13-q 10 -d
100,000 -a FORMAT/DPFORMAT/AD,FORMAT/ADEFORMAT/ADR -O v)"",
Allele positions lacking mutations by WGS were used to model the background
sequencing noise, which was unified according to the trinucleotide context of each
possible mutation. Mutations of interest were annotated as high confidence when
their frequency was above the background noise with a probability of 95%.

High-coves lobulin gene ch DNA-based. The
LymphoTrack IGHV Leader Somatic Hypermutation Assay Panel, MiSeq
(Invivoscribe Technologies, cat. no. 71210069) was performed in samples of

two patients (Supplementary Table 21). Libraries were sequenced on a MiSeq
instrument (2 301 b, llumina). Clonotypes were defined as IGHV-IGHD-IGH]
gene rearrangements with the same IGHV gene and IGH CDR3 amino acid
sequence within a sample. Clonotypes with different nucleotide substitutions
within the FR1-CDRI-FR2-CDR2-FR3 sequence of the rearranged IGHV gene
were defined as subclones. Raw FASTQ files were trimmed using Trimmomatic
(0.36)" to keep only high-quality reads and bases (parameters were LEADING:30
TRAILING:30 SLIDINGWINDOW:4:30 MINLEN:100). Trimmed, paired-end
FASTQ files were analyzed using the LymphoTrack Software, MiSeq (v2.3.1,
Invivoscribe Technologies, cat. no. 75000009), which combines forward and

reverse reads to generate full-length sequences. Identical full-length sequences

were grouped and reported together with their cumulative frequency. The reported
full-length sequences were annotated using IMGT/HighV-QUEST (v.1.8.3; htps://
www.imgtorg/HighV-QUEST). Finally, we (1) selected the sequences that belonged
to the dominant productive clonotype; (2) kept only sequences with complete
V-region (missing bases and indels within the V-region were not allowed); and (3)
merged sequences that shared the exact V-region nudeotide sequence.

RNA-based. For patient 12, cryopreserved samples collected at four different
time points were thawed and malignant cells were enriched using the The
Eas)-Scp Human B Cell Enrichment kit II without CD43 depletion (Stemcell

1 cat. no. 17923). Next, 1-2 million tumor cells were used to perform

heterochromatin (H3K9me3_Repressed, Heterochromatin Low_Signal), polycomb
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were lysed and the RNA was reverse transcribed to complementary DNA with
UMIs before amplification of the V(D)] region using BCR-specific multiplex
PCR. Following sequencing, reads were aligned using STARsolo (v.2.7.9a; https://
github.convalexdobin/STAR/blob/ master/docs/STARsolo.md) to the hg38

uman genome. IGV"’ was used to review and quantify the mutation of interest
(chr14:106714886C>T).

DNA methylation. Data generation and processing DNA methylation data of 39
samples was generated using EPIC BeadChips (Illumina). These samples induded
different healthy B cell subpopulations (naive B cells (NBCs), n=2; germinal
center B cells (GCs), n1=1; memory B cells (MBCs), 1 =3; tonsillar plasma cells
(tPCs), n=1); CLL samples without evidence of RT (=12) and longitudinal CLL/
RT samples (n =20) (Supplementary Table 6). R and core Bioconductor packages,
including minfi (v.1.34.0)", were used to integrate znd normalize DNA melhylauou
data”". We removed non-CpG probes, CpGs e g single

regions changing in RT for each case individually, we selected the regions that
presented substantial epigenetic changes as compared to the normal counterpart
and to the previous CLL (absolute log,FC> 1). The ATAC-seq RT-specific
signature encompassed differential regions common in two or more cases of RT,
whereas the H3K27ac RT-specific signature indluded differential regions common
in three or more cases. Potential protein-coding target genes were assigned to each
of the RT-specific regions using two strategies. To identify close target genes, we
took the overlap with the regions of genes of interest adding 2 kb upstream of their
transcription start site. To identify distant target genes, we used Hi-C data from
the GM12878 cell line and selected all genes located within the same topologically
associated domain as the region of interest. We only considered DEGs identified by
bulk RNA-seq (Supplementary Tables 7 and 8).

Tmmtnpmm factor analysis. Enrichment for TF-binding sites was analyzed in
accessible regions within the RT-specific active chromatin regions.

“pGs with individ hylation previously reported
in B cells, CpGs in sex chromosomes and Cpﬂs with a detection P value >0.01 in
>10% of the samples. The data were normalized using the SWAN algorithm and
CpGs were annotated using the IluminaHumanMethylationEPICanno.ilm10b4.
hgl9 package (v0.6). Tumor cell content of each sample was inferred from DNA
methylation* and samples with a tumor cell content <60% were excluded. After
all fikering criteria, we retained 33 samples (NBCs, n=2; GCs, n=1; MBCs,
n=3;tPCs, n=1; CLL controls, n=12; CLL/RT samples, n=14 (six patients);
Supplementary Table 6).

Differential analyses, CLL epitypes and epiCMIT. We compared the DNA
methylation status of each CpG to the mean of such CpGs in NBCs to calculate
the number of hyper- and hypomethylation changes per CLL/RT sample. Changes
in cach sample were defined based on a minimum difference of 0.25 methylation.
To perform a differential analysis between CLL and RT, we compared the
DNA methylation of each CpG in each CLL sample (first available time point
us(d) versus their respective RT sample. Differentially methylated CpGs were

das those showing a mini difference of 0.25 in at least four of the
five longitudinal cases of RT versus CLL analyzed (Supplementary Table 6). The
epigenctic subtypes (epitypes) and epiCMIT score for each CLL and RT sample
were calculated”.

ChIP-seq of H3K27ac and ATAC-seq. Data generation. ChIP-seq of H3K27ac and
ATAC-seq data were generated as described in http://wiw blueprint-epigenome.
cu/index.cfm?p=7BF8A4B6-FAFE-861A-2AD57 A08D63D0B58 (antibody anti
H3K27ac, Diagenode, cat. no. C15410196/pAb-196-050, lot A1723-0041D;
Supplementary Tables 7 and 8). Libraries were sequenced on Illumina machines
aiming at 60 million reads/sample (Supplementary Tables 7 and 8).

Read mapping and initial data processing. FASTQ files were aligned to the reference
genome (GRCh38) using BWA-ALN (v0.7.7, parameter: -q 5)°, duplicated

reads were marked using Picard tools (v.2.8.1) and low-quality and duplicated
reads were removed using SAMtools (v.1.3.1, parameters: -b-F 4-q 5 -b-F
1,024)". PhantomPeakQualTools (v.1.1.0) were used to generate wiggle plots

and for extracting the predominant insert-size. Peaks were called using MACS2
(v.2.1.1.20160309, parameters for H3K27ac: -g hs -q 0.05 -keep-dupall -nomodel
-extsize insert-size; parameters for ATAC-seq; -g hs -q 0.05-keep-dupall -f

BAM -nomodel ~shift =96 —extsize 200; no input control)”. Peaks with g values
<1x 10" were included for downstream analyses. For each mark separately, a

set of consensus peaks, induding regions within chromosomes 1-22 and present
in published healthy B cells* and CLL samples was generated by merging the
locations of the separate peaks per individual sample. For ChIP-seq, the numbers
of reads per sample per consensus peak were calculated using the genomecov
function (bedtools, v.2.25.0). For ATAC-seq, the number of Tn5 transposase
insertions per sample per consensus peak was calculated by first determining the
estimated insertion sites (shifting the start of the first mate 4bp downstream)
before using the genomecov function. Variance stabilizing transformation (VST)
values were calculated for all consensus peaks using DESeq2 (v.1.28.1)"", which
were then corrected for the consensus SPOT score (the percentage of reads that fall
within the consensus peaks) using the ComBat function (sva R package, v.3.36.0).
To that purpose, the cell condition (tumor and different healthy B cell subtypes)
was assigned to each sample and samples were dustered in 20 bins of 5% according
to their consensus SPOT score. The bins on the extremes, which contained fewer
than five samples, were joined with their neighboring bins to ensure that each bin
contained five samples or more. PCA was generated using the corrected VST values
of peaks that were present in more than one sample.

Detection of differential epigenetic regions and RT-specific changes. We first
determined the regions with stable epigenetic profiles in the healthy B cell
counterparts (NBCs and MBCs) by applying a threshold of s.d. <0.8 with respect
to the mean value. For all these NBC/MBC stable regions, we then calculated the
log,FCbetween the mean of VST-corrected healthy B cell values and cach of the
tumor samples. Due to the data distribution variability, we applied slightly different
thresholds of log,FC for each case (Supplementary Tables 7 and 8). To identify

Accessible peaks were determined as regions with presence of ATAC peaks in

two or more RT cases. Enrichment analysis of known TF-binding motifs was
performed using the AME tool (MEME suite) considering the non-redundant
Homo sapiens 2020 Jaspar database and applying one-tailed Wilcoxon rank-sum
tests with the maximum score of the sequence, a 0.01 FDR cutoff and a background
formed by reference GRCh38 sequences extracted from the consensus ATAC-seq
peaks (91,671 regions). We then established the occupancy of these motifs in RT
and CLL by calculating the percentage of the target RT-specific active regions and
of the regions with increased H3K27ac in CLL, respectively, which contained these
motifs. Finally, we selected TFs presentingan occupancy difference between RT
and CLL> 10% and overexpressed in RT (bulk RNA-seq, log,FC> 0, adjusted P
value <0.01).

Bulk RNA-seq. Data generation. Bulk RNA-seq data of six patients with paired CLL
and RT samples were analyzed. Libraries were prepared using the TruSeq Stranded
mRNA Library Prep kit (Illumina, cat. no. 20020595) or the Stranded mRNA
Library Prep, Ligation kit (Illumina, cat. no. 20040534) and sequenced on a HiSeq
4000 (2x76bp, lllumina) or NextSeq 2000 (2x 100bp, lllumina). All samples hada
tumor purity >92% as assessed by flow cytometry (Supplementary Table 11).

Data analysis. Ribosomal RNA reads were filter out using SortMeRNA (v4.32)"".
Non-ribosomal reads were trimmed using Trimmomatic (v.0.38)"". Gene-level
counts (GRCh38.p13, Ensembl release 100) were calculated using kallisto
(v.0.46.1)" and tximport (v.1.14.2). A paired DEA was conducted using DESeq2
(v.1.26.0)". Adjusted P value <0.01 and absolute log,(fold change) > 1 were used
toidentify DEGs. Gene set enrichment analysis (GSEA) was conducted using a
pre-ranked gene list ordered by —log,,(P) X (sign of fold change) using the ‘GSEA’
function (dlusterProfiler R package, v.3.14.3). W focused on C2 (curated) and

allmark gene sets from the Molecular Signatures Database (v.7.4) with a minimal
size of 10 and maximal size of 250. Gene ontology (GO) GSEA was conducted
using the pre-ranked gene list as input of the gseGO’ function (dlusterProfiler)
focusing on biological processes. Redundancy in the output list of GO terms was
removed using the ‘simplify” function (cutoff of 0.35).

Single-cell DNA-seq. Data generation. scDNA-seq was performed for 16 amples
of 4 patients using the Tapestri Platform (Mission Bio, cat. no. 191335) and a
commercial 32-gene panel (Tapestri single-cell DNA CLL panel, Mission Bio, cat.
no. MB53-0011_J01). Cryopreserved cells were thawed on 5ml of fetal bovine
serum (FBS; Fisher Scientific, cat. no. 10082147) and incubated at 37°C for 5min.
‘Then, cells were washed twice with 1 ml phosphate buffered saline (PBS; Thermo
Fisher, cat. no. 20012-019) with 4% bovine serum albumin (BSA; Miltenyi Biotec,
cat. no. 130-091-376) and centrifuged at 400g for 4 min. Cell concentration and
viability were verified by counting with a TC20T Automated Cell Counter (Bio-Rad
Laboratories, cat. no. 1450102). After a final centrifugation step, supernatant was
removed and cells were resuspended in an appropriate volume of Mission Bio cell
buffer to obtain a final cell density of 3,000-4,000 cells l-*. Encapsulation, lysis and
barcoding of cells were performed following the exact manufacturer's instructions.
Afterwards, PCR products were digested and cleaned up with AMPure XP Reagent
(Beckman Coulter, cat. no. 100-265-900), followed by quantification of PCR
products using a High-Sensitivity dsDNA 1x Qubsit kit (Qubit, Invitrogen, cat.

no, Q32851). Final library preparation consisted of a Target Library PCR with the
V2 Index Primer for ten cycles and a library cleanup with AMPure XP Reagent
(Beckman Coulter). Quality control and final quantification were performed on

an Agilent Bioanalyzer High Sensitivity chip (Agilent Technologies, cat. no. 5067~
4626). Libraries were sequenced on a NovaSeq 6000 instrument (Ilumina) aiming
for 1,300 reads per cell (Supplementary Table 20).

Data analysis. FASTQ files were analyzed through the Tapestri Pipeline (v.1,
Mission Bio), which trims adaptor sequences, aligns reads to the human genome
(hgl9) using BWA aligner, performs barcode correction, assigns sequence reads
to cell barcodes and performs genotype calling using GATK (v.3.7). Loom files
generated were analyzed using the Tapestri Insights (v.2.2, Mission Bio). For each
patient (considering all time points together), genotypes with quality <30, read
depth <10 or allele frequency <20% were marked as missing. Similarly, for each
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patient, variants genotyped in <50% of the cells or mutated in <1% of the cells
were removed. Cells with <50% of genotypes present were removed. Mutations
identified in bulk WGS analysis were used as a whitelist. A list of variants not
identified in COSMIC and present at low frequency (1-10% of cells) in all samples
analyzed by scDNA-seq was used to remove potential artifacts. The analysis was
restricted to coding and splice-site mutations. Genotypes of the selected mutations
were exported from Tapestri Insights and used as input of 00SCITE (https://github.
com/cbg-ethz/infSCITE) ™. Genotypes were encoded as zero for wild-type, one for
heterozygous mutation, two for homozygous mutation and three for missing data.
0oSCITE was used to find the mutation tree that best fitted the genotypes observed
and to assign cells into subclones. coSCITE was run usinga global sequencing
error rate (false-positive rate) of 1%, an estimated rate of non-mutated sites called
as homozygous mutations of 0% and a patient-specific estimated rate of the allele
dropout rate (false-negative rate). For each patient, the estimated rate of missed
heterozygous mutations (dropout of the mutated allele) and the estimated rate of
heterozygous mutations called as homozygous mutations (dropout of the normal
allele) were calculated from germline single-nudleotide polymorphisms reported in
gnomAD with a population frequency >1% and called as mutated in at least 75%
of cells with a VAF per read count between 47% and 53% according to Tapestri
Insights. Patient-specific allele dropout rates were calculated for all patients except
for patient 365, which did not have any heterozygous polymorphisms fulfilling

the previous criteria. In this case, we used an allele dropout rate of 0.07, which is
within the range measured in the other cases. We ran coSCITE with and without
considering NOTCHI mutations and manually curated the result of patient 3,299
carrying an RPS15 mutation due to the high allele dropout rate observed in these
genes (Supplementary Fig. 2). We ran coSCITE for each patient combining all
time points and obtained time-point-specific subclone sizes by counting the cells
assigned to each subdlone in each sample'*. Only cells uniquely assigned to one
subclone were considered. Cells genotyped as wild-type for all selected mutations
were considered as non-tumoral cells and were removed.

Single-cell RNA-seq. Data g ScRNA-seq was p don
samples of five patients mmg three dnﬁcrem approadlcs

1. Smart-seq2: full-length scRNA-seq libraries were prepared for samples
of patient 63 using the Smart-seq2 protocol " with minor modifications.
Single cells were sorted into 96-well plates containing the lysis buffer (0.2%
Triton-100, 1 Upl! RN:nsc inhibitor; Apphed Biosystems, cat. no. N8080119).
Reverse ing Sup 11 (Thermo Fisher
Scientific, cat. no. 18064014) in the prrcsmcc of 1M oligo-dT30VN (IDT,
cat. no. 22859789), 1 UM template-switching oligonucleotides (QIAGEN, cat.
no. PER-YCO0075516) and 1 M betaine (Merck, cat. no. W422312-5KG-K).
<DNA was amplified using the KAPA Hifi Hotstart ReadyMix (Kapa Biosys-
tems, cat. no. 7958935001) and IS PCR pnmer (IDT, cat. no. 228597989), with
25 cycles of amplif Following purification with A Ampure XP
beads (Beckmann Coulter), product size distribution and quantity were as-
sessed on a Bioanalyzer using a High Sensitivity DNA kit (Agilent Technolo-
gies). A total of 140pg of the amplified cDNA was fragmented using Nextera
XT (Illumina, cat. no. FC-131-1096) and amplified with Nextera XT indexes
(Illumina, cat. no. 20027215). Products of each well of the 96-well plate were
pooled and purified twice with Ampure XP beads (Beck
Coulter). Pooled sequencing was performed on a HiSeq 4000 (2x75bp, Il-
lumina) to an average depth of 0.5 million reads per cell.

2 Cell hashing experiment and 10x Genomics: For each patient (12, 19, 365
and 3,299, experiment BCLLATLAS_10), samples obtained at different time
points of the discase were labeled following a cell hashing protocol . For
each sample, 1-2 million cells were resuspended in 100 of cell stain-
ing buffer (BioLegend, cat. no. 420201) and incubated for 10 min at 4°C
with 5 pl of Human TruStain FeX Fc Blocking reagent (BioLegend, cat. no.
422302). Next, a specific TotalSeq-A antibody-oligo conjugate (BioLegend,
TotalSeq- A anti-human Hashtag 1-8, cat. no. 394601, 394603, 394605,
394607, 394609, 394611, 394613 and 394615) was added and incubated on
ice for 30 min. Cells were then washed three times with cold PBS-0.05% BSA
and centrifuged for 5min at 500g at 4°C. Finally, cells were resuspended in
an appropriate volume of 1 PBS-0.05% BSA to obtain a final cell it

antibody-oligonucleotide-derived cDNA (<180 bp), as described in the
above-mentioned protocol. 10x cDNA sequencing libraries were prepared
following 10x Genomics Single Cell 3 v.3.1 mRNA kit protocol, whereas
HTO cDNAs were indexed by PCR as follows: 5l of purified hashtag oligo-
nudleotide cDNA were mixed with 2.5l of 10 pM Hlumina TruSeq D70X_s
primer (IDT) carrying a different i7 index for each sample, 2.5 pl of SI primer
(10x Genomics, cat. no. 2000095), 50 pl of 2x KAPA Hifi Hotstart ReadyMix
(Kapa Bi cat. no. ) and 40pl of nuclease-free water.
HTO libraries were purified with 1.2x SPRI bead selection. Size distribution
and concentrations of cDNA and HTO libraries were verified on an Agilent
Bioanalyzer High Sensitivity chip (Agilent Technologies, cat. no. 5067-4626).
Finally, HTO and DNA libraries wee sequenced on a NovaSeq 6000 (Il-
Iunm\a) to obtain approximately 25,000 reads per cell.

3. Non-cell hashing experiment and 10x Genomics. Samples with a low number
of cells in the previous experiment (samples of patient 365 and a subset
of samples of patients 12 and 19) were analyzed using a non-cell hashing
experiment (BCLLATLAS_29). Frozen samples were thawed and 1 ml of
37°C pre-warmed Hibemate-E (Thermo Fisher Scientific, cat. no. A1247601)
supplemented with 10% FBS (Thermo Fisher Scientific, cat. no 10082147) was
added drop-wise with gently swirling of the sample. After 1min of incuba-
tion at room temperature, 2,000 of pre-warmed medium was added as
mentioned before. Samples were again kept at room temperature for 1 min
and 5,000pl pre-warmed medium was gently added. This step was conducted
twice. Afterwards, samples were centrifuged at 500¢ for Smin. Supcmahnl
was removed and pellets were ded in 500 4l 1x PBS !
with 0.05% BSA and stained with 4,6-diamidino-2- phenyhndole (DAPI)
(Thermo Fisher Scientific, cat. no. D1306) at 1M final concentration.
DAPI-negative live individual cells were sorted with a BD FACSAria Fusion
Flow cytometer (BD Biosciences) in 1 PBS supplemented with 0.05% BSA.
After FACS, cells were partitioned into Gel Bead In Emulsions by using the
Chromium Controller system (10x Genomics, cat. no. 1000204) aiming at a
Target Cell Recovery of 5,000 total cells. Sequencing libraries were prepared
using the v.3.1 single-cell 3" mRNA kit (10x Genomics). After GEM-RT
cleanup, cDNAs were amplfied during 14 cycles. cONA quality control and

d on an Agilent Bioanalyzer High Sensitivity

chip (Agilent Technolog;es) Libraries were indexed by PCR using the Chro-
miumi7 Sample Index Plate (10x Genomics, cat. no. 220103). Size distribution
and concentration were verified on an Agilent Bioanalyzer High Sensitiv-
ity chip (Agilent Technologics, cat. no. 5067-4626). Finally; librarics were
sequenced on a NovaSeq 6000 sequencer aiming for 40,000 reads per cell.

Read alignment. Raw reads were aligned to the GRCh38 human genome with Cell
Ranger (v.4.00), with the ‘chemistry’ parameter set to ‘SC3Pv3’ and the ‘expect-cells’
parameter set to 20,000 and 5,000 for cell-hashed and non-hashed libraries,
respectively. The remaining parameters for cell-hashed libraries were specified as
described in the ‘Feature Barcode Analysis’ pipeline of Cell Ranger. For Smart-seq2
librarics, alignment and quantification was performed using zZUMIs (v.9.4¢) "

Demultiplexing of hash d matrices were imported into
R(v4.0.4) with thc Read 10X’ function from Seurat (v4.0.3)"*. HTO counts were
normalized with a centered log-ratio transformation applied across features. Each
cell barcode was assigned to a specific time point of the disease with the function
‘HTODemux’ (positive.quantile =0.99) of Seurat. Barcodes that were positive for
two or more time points were labeled as doublets and discarded. Likewise, cell
barcodes negative for all time points were exchuded. Finally, Scrublet (v0.2.1)'* was
run to aid in the detection of doublets.

Quality control, normalization and dimensionality reduction. Cells that possessed
<900 UMIs, <250 expressed genes or a mitochondrial expression >22.5% were
considered as poor quality and removed. Similarly, genes expressed in three

or fewer cells were filtered out. Following data normalization and correction
(Seurat and NormalizeData), we performed PCA (Seurat, RunPCA) using the
scaled expression (Seurat and ScaleData) of the top 2,000 hghly variable genes

tion of 500-1,000 cellspl-!, suitable for 10x Genomics scRNA-seq. An equal
volume of hashed cell suspension from each of the conditions was mixed

and filtered with a 40-pum strainer (pluriSelect, cat. no. 43-10040-70). Cell
concentration was verified by counting with a TC20 Automated Cell Counter
(Bio-Rad Laboratories, cat. no. 1450102). Cells were partitioned into Gel
Bead In Emulsions with a Target Cell Recovery of 10,000 total cells. Sequenc-
inglibraries were prepared using the Chromium Next GEM Single Cell 3'
GEM, Library & Gel Bead kit v.3.1 (10x Genomics, cat. no. 1000121) with
some adaptations for cell hashing, as indicated in TotalSeq-A Antibodies and
Cell Hashing with 10x Single Cell 3" Reagent kit v.3.1 Protocol by Bmlb
gend. Briefly, 11l of 0.2uM HTO primer (IDT, Hashtag Oligonucl

(Seurat: Fi atures, selection.method = VST). For Smart-seq2 data, we
filtered out cells with <150,000 counts, <550 expressed genes or mitochondrial
expression >18%. Cells with more than 700,000 counts or 3,750 detected genes
were exduded. Similarly, genes expressed in three or fewer cells were filtered

out. To separate neoplastic cells from the microenvironment, we corrected the

top 30 prin ipal companents (PCS) for sample-specifc variation using Harmony
(v.1.0)" din the ample) function
(seumWnppm package, v.0.3.0). Subsequently, these 30 corrected PCs were used
to embed cells i ina UMAP (Seurat, RunUMAP) and in a 20-ncarest nmghbols
graph (Seurat, FindNei, ) for and clustering,

Fo]lovn ng Louvain dusming (Seurat, FindClusters, resolution=0.1), we focused
ourd analyses only on tumor B cells (CD79A) due to the low number of

GTGACTGGAGTTCAGACGTGTGC TG phnsphomthmatc bond) was
added to the cDNA amplification reaction to amplify the hashtag oligonu-
deotides together with the full-length cDNAs. An SPRI selection deanup
was performed to separate messenger RNA-derived cDNA (>300bp) from
NATURE MEDICINE |
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microenvironment cells.

Dealing with confounders. We observed batch effects between 10x Genomics
experiments. To avoid batch effects within samples of the same patient, we focused
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on the BCLLATLAS_10 experiment for patients 12, 19 and 3,299. levclsely, aswe
did not obtain a clear signal- ion in the HTO d il of case
365, we analyzed the cells obtained with B(‘LLATLAS 29 We also found some

cell neighborhoods that harbored a high p

Calcium flux analysis. Cryopreserved cells were resuspended on RPMI-1640
‘medium with 10% FBS, 1% Glutamax and 5% penicillin (10,000 TU ml
streptomycin (10mgml™) (Thermo Fisher, cat. no. $8731) at 10° cells ml~'. After
6h of incubation at 37°C and 5% OO, cells were centrifuged and resuspended

and alow number of detected genes. In such cases, we were more sznngem with
the thresholds or fetched and eliminated these dusters with FindClusters. We also
excluded some clusters of doublets that expressed markers of microenvironment
cells (erythroblasts, T cells or natural killer cells). Finally, for patient 3,299 in which
one sample was obtained from peripheral blood (PB), whereas the others were
obtained from bone marrow (BM), we focused solely on the BM samples to avoid
misinterpretations. For patient 365, the CLL and RT time points were sampled
from PB and lymph nodes, respectively. As the same RT sample profiled with bulk
RNA-seq clustered with other RT samples from PB, we analyzed them jointly.
After all the fiktering, we recomputed the highly variable genes and PCAs. To avoid
overcorrection, we used the top 20 PCs as input to RunUMAP and FindNeighbors,
without rerunning Harmony.

Clustering and annotation. Louvain clustering was performed with the FindClusters
function, adjusting the resolution parameter for each patient independently.

To annotate each cluster, we ran a ‘one-versus-all' DEA for each dluster (Seurat,
FindAllMarkers, Wilcoxon rank-sum test), keeping only upregulated genes with
alog,FC>0.3 and a Bonferroni-adjusted P value <0.001. If markers were specific
to a subset of the cluster, we further stratified it with the FindSubCluster function.
On the contrary, if two clusters possessed similar markers, we merged them. The
CellCycleScoring function was used to identify clusters of cycling cells.

DEA and GSEA. We conducted a DEA between RT and CLL clusters of each
patient independently, merging cells from all time points (Scurat, FindMarkers,
logfc.threshold =0, onlypos=FALSE, Wilcoxon rank-sum test). To find
finer-grained gene changes, only ive clusters were
dered. Genes with a djusted P value <0.05 were dered as

on RPMI-1640 with 4 M Indo-1 AM (Thermo Fisher, cat. no. 11223) and 0.08%
Pluronic F-127 (Thermo Fisher, cat. no. P3000MP) for 30min at 37°C and 5%
CO,. Cells were subsequently labeled for 20 min at room temperature with surface
marker antibodies CD19 (Super Bright 600; Invitrogen, cat. no. 63-0198-42)
and CD5 (PE-Cy5; BD Biosciences, cat. no. 555354) for the identification of
tumoral cells (CD197CD5°). Next, cells were resuspended on RPMI-1640 befare
flow cytometry acquisition. Basal calcium was measured during I min before

lation, then cells were incubated during 2 min at 37 °C with or without
10pgml™’ anti-human F(ab’)2 IgM (Soullm-n Biotech, cat. no. 2022-01) and
33mM H.0, (Sigma-Aldrich, cat. no. H1009). Finally, 2 uM 4-hydroxytamoxifen
(4-OHT) (Sigma-Aldrich, cat. no. H6278) was added to all conditions before
continue recording for up to 8 min. Intracellular Ca** release was measured on
LSRFortessa (BD Biosciences) using BD FACSDiva software (v8) by exciting
with ultraviolet laser (355 nm) and appropriate filters: Indo-1 violet (450/50nm)
and Indo-1 blue (530/30 nm). Bound (Indo-1 violet) and unbound (Indo-1 blue)
ratiometric was calculated with FlowJo software (v.10). Gating analysis was as
follows: cell identification in FSC-A versus SSC-A plot, singlet identification in
FSC-A versus FCS-H plot, tumoral cells (CD19°CD5*) in CD19 (Super Bright 600)
versus CD5 (PE-Cy5) plot and Ca* release in time versus Indo-1 violet/Indo-1
blue plot using a kinetics tool. Optimized dilutions for the antibodies were 1:3 for
CD19 and 1:10 for CD5.

Cell growth assays. Cryopreserved cells were resuspended on PBS at a
concentration of 107 cellsml~' and labeled with 0.5uM CFSE Cell Tracer
(Thermo Fisher, cat. no. C34554) for 10 min. Cells were centrifuged and
resuspended on enriched RPMI-1640 medium with 1% Glutamax, 15% FBS,
1x insuli selenium (Merk, cat. no. 13146), 10mM HEPES (Fisher

significant. The resukting list of genes (sorted by decreasing log.FC) was used as
input to the gseGO' function of dusterProfiler (v.3.18.1, parameters: ont=BP}
OrgDB=org Hs.cg.db, keylType="SYMBOL minGSSize = 10, maxGSSize= 250,
seed=TRUE). We then removed redundancy in the output list of GO terms with
the ‘simplify’ function (cutoff of 0.75) and filtered out GO terms with an adjusted
P value <0.05. To convert the expression of specific GO terms of interest intoa
cell-specific score, we utilized the AddModuleScore function from Seurat.

CNA inference from scRNA-seq data. For each patient separately, we ran inferCNV
(v.1.11.1) integrating all samples together. We used CLL cells as reference

because (1) we aimed to identify CNAs acquired at RT and (2) CLL had flat

copy number profiles in virtually all chromosomes according to WGS. CLL cells
were downsampled to the number of RT cells. We initialized an lnfuv:nv ob]ecl
((‘xcatcln[crmv()b,ucl) using the raw exp counts and the g g file
https//databroadinstitute.org/Trinity/ CTAT/cnv/gencode_v: en_ ;xmmmplc\c
txt. CNAs were predicted (infercny, run, HMM = FALSE, denoise=FALSE) setting
the cutoff parameter to 1 and 0.1 for Smart-seq2 and 10x data, respectively. We
customized the plotting with the plot_cnv function.

Analysis of an external scRNA-seq dataset. We downloaded the expression matrices
and metadata of the dataset from Penter et al.** with the GEOquery (v.2.62.2)
(Gene Expression Omnibus identifier GSE165087), created a single Seurat object
with all cells from all samples and filtered poor-quality cells as specified in the
original publication’. Dimensionality reduction, DEA, GSEA and gene signature
scoring were performed as described above.

Cellular respiration. Cryopreserved cells were resuspended on RPMI-1640
(Gibeo, cat. no. 21875034) with 10% FBS (Gibco, cat. no. 10270-106) and 1%
Glutamax (Gibco, cat. no. 35050-061) at a concentration of 3 million cellsml-'.
After 1h of incubation at 37°C, cellular respiration was performed using
O.k-resp (Oroboros I Two millliters omn suspcnsmn
were added in each respirometer chamber. Cellular respit

Scientific, cat. no. szw), 50uM 2-mercaptoethanol (Gibco, cat. no. 21985-

023), 1% Non-Essential Amino Acids (Gibco, cat. no. 11140-050), 1 mM sodium
pyruvate (Gibco, cat. no. 11360-070) and 50 pgml~’ gentamicin (Gibco, cat. no.
15710-064) at a ion of 10° cells ml~" suppl d with0.2pM CpG
DNA TLRY ligand (ODN2006-TL9; InvivoGen, cat. no. TLRL-2006) and 15ngml-!
recombinant human IL-15 (R&D Systems, cat. no. 247-1LB-025)*“. When
indicated, cells were treated for 72h with 100 nM 1ACS-010759. Cells were labeled
for 20 min at room temperature with surface marker antibodies CD19 (Super
Bright 600), CDS (PE-CyS) and annexin V (Lie Technologies, cat. no. A35122)
before acquisition in a LSRFortessa (BD Biosciences) using the BD FACSDiva
software (v:8) and analyzed using FlowJo (v.10). Gating analysis for divided cells
was as follows: cell identification in FSC-A versus SSC-A plot, singlet identification
in FSC-A versus FCS-H plot, alive cells in annexin V (PacB) versus SSC-A plot,
tumoral cells (CD19°CD5*) in CD19 (Super Bright 600) versus CD5 (PE-Cy5)
plotand proliferating cells in the CFSE hi. imized dilutions for the
almbodlcs were 1:3 for CD19, 1:10 for CD5 and 1:3 for annexin V.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

Sequencing data are available from the European Genome-phenome Archive
(http://www.ebi.acuk/ega/) under accession no. EGAS00001006327. scRNA-seq
expression matrices, Seurat objects and corresponding metadata are available at
Zenodo (https://doi.org/10.5281/zenod0.6631966).

Code availability
Ruiakd b

used for ional signature, bulk RNA-seq, H3K27ac
and ATAC-seq analyses can be found at https://github.com/ferrannadeu/
Richter Transformation. R markdown notebooks to reproduce the scRNA-seq
analyses can be accessed at hitps://github. com/massonix/richter_transformation.

at 37°C at a stirrer speed of 750 rp.m. Respiratory control was smd:ed by
sequential d ion of routine respi (oxygen

living cells resuspended on RPMI-1640 with 10% FBS and 1% clunam),
oligomycin-inhibited leak respiration (2 plml-", Sigma-Aldrich, cat. no. 04876,
CAS, 1404-19-9), uncoupler-stimulated ETC measured by the sequential titration
of the ionophore carbonyl cyanide m-chlorophenyl hydrazone (Sigma-Ak
at. no. €2759, CAS, 555-60-2) and residual oxygen consumption after inhibition
of the electron transfer system by the addition into the chamber of rotenone
(0.5M, Sigma-Aldrich, cat. no. R8875, CAS, 83-79-4) and antimycin A 2.5 pM,
Sigma-Aldrich, cat. no. A8674, CAS, 1397-94-0). Data acquisition and real-time
analysis were performed using the software DatLab 7.4 (Oroboros

Code to lize DNA methylation data can be found at https:/github.com/
Duran-FerrerM/DNAmeth_arrays. Code to calculate the tumor cell content, CLL
epitypes and epiCMIT from DNA methylation data can be found at https://github.
com/Duran-FerrerM/Pan-B-cell-methylome.
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