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Abstract  

Cancer, a complex disease, arises from accumulated somatic genomic and 

epigenomic changes within tumor cells, typically acquired during an individual’s 

lifetime. These alterations confer growth advantages, transforming normal cells 

into cancerous ones. Differences among tumors originated in the same tissue, 

have been demonstrated and characterized in diverse studies using large cohorts 

of patients, such as The International Cancer Genome Consortium (ICGC) or The 

Cancer Genome Atlas (TCGA). Furthermore, it is known that each tumor can be 

formed by many cell populations, each accumulating different somatic genetic 

mutations. This knowledge has put into question the traditional classification of 

tumors, and how they are treated. Advancements in genome technologies, such 

as next-generation sequencing, have played an important role in generating vast 

amounts of tumor datasets, allowing sophisticated and ambitious bioinformatic 

analyses. These technologies have been essential to comprehend tumor 

formation and progression, and their potential translation into the clinics.   

Using large-scale and public initiatives of cancer data, and through the 

combination of genomic and transcriptomic analysis, we have been involved in 

diverse cancer-related studies, primarily focused on the identification and 

interpretation somatic genomic events. Therefore, the general goal of the work 

described in this thesis is to expand the understanding of the genomic basis 

behind tumors, through the analysis of somatic events, like somatic processed 

pseudogenes and other previously unexplored genomic elements, i.e. 

micropeptides.  

First, in collaboration with Dr. Elias Campo from IDIBAPS, we participated in 

a longitudinal study of Chronic Lymphocytic Leukemia. In particular, we were 

focused on the analysis of somatic structural variants, to define and quantify their 

cell frequency and incorporate them in the study of the subclonal architecture of 
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CLL patients. Using diverse variant calling pipelines and experimental validations, 

we first identified SVs and observed an increase in them during tumor 

progression, particularly evident once the patients transformed into a more 

aggressive form known Richter’s syndrome. We then designed a strategy to 

calculate SV variant allele frequencies. This involved exploring coverage variability 

and read alignment within these mutated genomic regions. Based on this analysis, 

we could observe stable or decreased SV frequencies at diagnosis, contrasting 

with increase at Richter transformation.  

Another part of the thesis has been conducted in the context of the 

Pancancer Analysis of Whole Genomes initiative, where we studied the landscape 

of processed pseudogenes in 2585 cancer genomes and assessed their potential 

functional impact. PPs represent mRNA copies randomly integrated into the 

genome through retrotransposition. Prior to our study, these events were 

described as somatic in only a few tumor types. We established a protocol based 

on automatic rules applied to somatic structural variants and manual inspection 

of the genomes, to detect such somatic event. We found evidence for 433 

candidates somatic PPs across 251 tumor genomes, uncovering new cancer types 

not examined before. Additionally, as a first approximation to study their 

functional impact and using RNA-seq data exploration, we identified evidence of 

expression of 17 PPs across 6 tumor types. The reconstruction of the potential PP-

host gene fusion transcripts allowed us to predict that these insertions generally 

generate premature stop codons within the coding region of the host.  

Finally, we focused on the identification of novel micropepitdes, a recently 

discovered class of genetic elements. Micropeptides are small open reading 

frames of less than 300 nucleotides that can code for stable and functional small 

proteins. Among other observed functions, it has been shown that these small 

peptides can suppress cancer growth and have important roles in cancer. We used 

publicly available genomic and transcriptomic data to identify new micropeptides, 
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focusing on non-annotated DNA regions. First, in collaboration with Dra. Maria 

Abad from VHIO, we defined a catalog of more than 1.000.000 candidate 

micropeptide sequences in non-annotated regions. To do so, we performed de 

novo transcriptome assembly of 6 RNA-seq samples from pancreatic 

adenocarcinoma human tissues, merged the predicted transcripts and in-silico 

translated their sequences. Results were filtered to remove sequences 

overlapping with known coding sequences and depending on their expression 

values. The dataset was then used for analyzing pancreatic tumor samples with 

mass spectrometry analysis. Secondly, complementing this collaboration, we lead 

a different study focusing on the identification of new small ORFs within non-

annotated regions of the human genome. Based on evolutionary conservation 

features at DNA and protein level, we identified a set of 8.289 candidate smORFs 

within intergenic regions of the human genome. We then also analyzed their 

potential transcription on 135 normal samples from the GTEX project, including 

28 tissues. From this data, we could find expression evidence for 260 candidate 

smORFs in at least one normal sample. Lastly, with the aim of exploring the role 

of micropeptides in cancer we analyzed recurrence of somatic SNVs from the 

ICGC. However, to date, we have not identified any cancer driver mutations within 

these smORFs. We hope that extending this comparison to other collections of 

somatic variants related to cancer can identify candidate cancer smORFs  

Collectively, the presented thesis offers a comprehensive description of 

somatic genomic events in cancer focusing on structural variation and processed 

pseudogenes, as well as the evaluation of novel gene elements, providing a 

foundation for future investigations.  

  



   

 

xvi 

 

 

  



   

 

xvii 

 

Abbreviations 

  

A Adenine 

aa amino acid 

AML Acute Myeloid leukemia 

BAM Binary alignment map 

BKP Breakpoint 

Blastn nucleotide Basic local alignment search tool 

Blat Basic local alignment tool 

BOCA-UK Bone cancer - United Kingdom project 

BRCA Breast cancer 

BRCA-FR Breast cancer - France project 

BSC Barcelona Supercomputing Center 

BTCA-SG Biliary tract cancer - Singapore project 

C Cytosine 

CCF Cancer cell fraction 

cDNA complementary DNA 

CDS Coding sequence 

ChIP-seq ChIP-sequencing 

chr Chromosome 

CLL Chronic Lymphocytic Leukemia 

CLLE-ES Chronic Lymphocytic Leukemia - Spain project 

CML Chronic myelogenous leukemia 

CNA Copy number alteration 

CNIO Centre Nacional de Investigaciones Oncológicas 

CNV Copy number variant 

COAD Colorectal adenocarcinoma 

COSMIC Catalog of Somatic Mutations in Cancer 

cw cluster window 

dbSNP Single Nucleotide Polymorphism Database 

DKFZ German Cancer Research Center 

DLBCL Diffuse large B-cell lymphoma 

dn/ds substitution ratio 



   

 

xviii 

 

DNA Deoxyribonucleic Acid 

dORFs downstream ORFs 

ENCODE The Encyclopedia of DNA Elements 

ESAD Esophageal adenocarcinoma 

ESAD-UK Esophageal adenocarcinoma - United Kingdom project 

e-value expected value (blast analysis) 

FPKM Fragments Per Kilobase of transcript per Million mapped reads 

G Guanine 

GACA Gastric cancer 

GACA-CN Gastric cancer - China project 

GBM Glioblastoma multiforme 

gnomAD Genome Aggregation Consortium 

GO Gene Ontology 

GRIPs Gene retrocopy insertion polymorphisms 

GTEx Genotype-Tissue expression 

GTF General Feature Format 

GWAS Genome-wide association studies 

HapMap Haplotype Mapping 

HGP Human Genome Project 

HNSC Head and neck squamous cell carcinoma 

HPC High-performance computers 

ICGC-ARGO Acceleration Research in Genomic Oncology 

IGHV Immunoglobulin heavy variable 

IGV Integrative genome viewer 

Indels Insertions and deletions 

IQR Interquartile range 

ITH Intratumor heterogeneity 

JSON JavaScript Object Notation 

Kb Kilobase 

KS Kolmogorov-Smirnov 

L1 LINE-1 

LINC Liver cancer 

LINE Long interspersed elements 

LN Lymph node 



   

 

xix 

 

lncORFs Long non-coding ORFs 

LUAD Lung adenocarcinoma 

LUSC Lung squamous cell carcinoma 

LUSC-KR Lung squamous cell carcinoma - South Korea project 

LUSC-US Lung squamous cell carcinoma - United States project 

MAPQ  mapping quality 

Mb Mega base 

MS Mass spectrometry 

NCBI National Center for Biotechnology Information 

NCI National Cancer Institute 

NGS Next Generation Sequencing 

NHGRI National Human Genome Research Institute 

NIH National Institutes of Healt 

NSCLC non-small cell lung carcinoma 

ORF Open-reading frame 

OV Ovarian carcinoma 

OV-AU Ovarian carcinoma - Australian project 

PACA Pancreatic adenocarcinoma 

PACA-AU Pancreatic adenocarcinoma - Australian project 

PACA-CA Pancreatic adenocarcinoma - Canada project 

PAML Phylogenetic Analysis by Maximum Likelihood 

PB Peripheral blood 

PCAWG Pan-Cancer analysis of Whole Genomes 

PE Paired-end 

PP Processed pseudogene 

QQ-plot Quantile-quantile plot 

Q3 3rt quartile 

RBH Reciprocal Best Hit 

REST REpresentational State Transfer 

Ribo-seq Ribosome sequencing 

RNA Ribonucleic Acid 

RNA-seq RNA-sequencing 

RPFs Ribosome-protected RNA fragments 

RT Richter transformation 



   

 

xx 

 

SAM Sequence alignment map 

SBS Sequencing by Synthesis 

simw simulation windo 

SKCM Skin cutaneous melanoma 

smORF small open reading frame 

SMuFin Somatic Mutation Finder 

SNV Single Nucleotide Variant 

STAD Stomach adenocarcinoma 

SV Structural variant 

SvABA Structural variation analysis by assembly 

sw smoothing window 

T Thymine 

tblastn translated nucleotide blast 

TCGA The Cancer Genome Atlas 

TE Transposable element 

TMB Tumor mutational burden 

TPM Transcripts Per Million 

TraFiC Transposome Finder in Cancer 

tsv Tab-separated values 

UCSC Univerity of California Santa Cruz 

UNICORNs Unannotated intergenic constrained regions 

uORFs Upstream ORFs 

UTCA-FR Uterine Cancer - France project 

UTR Untranslated region 

VAF Variant Allele Frequency 

VCF Variant Caller Format 

VEP Variant Effect Predictor 

VHIO Vall Hebron Institute of Oncology 

WES Whole Exome Sequencing 

WGS Whole Genome Sequencing 

ws windows size 
 

  



   

 

xxi 

 

  



   

 

xxii 

 

  

  



   

 

xxiii 

 

Table of contents 

Acknowledgments ................................................................................................ iii 

Abstract .............................................................................................................. xiii 

Abbreviations .................................................................................................... xvii 

1. Strategy and thesis trajectory ....................................................................... 1 

2. Introduction .................................................................................................. 5 

2.1 The information storage system of humans: the genome .............................. 7 

2.1.1 History of genetics: from Darwin to the Human Genome Project ........... 9 

2.1.1.1 Women’s contribution to genetics ..................................................15 

2.1.2 The post-genomic era ............................................................................17 

2.2 DNA and RNA studies in the post-genomic era .............................................19 

2.2.1 Reading nucleotides: Next-Generation Sequencing technology ...........20 

2.2.2 Assembly process: reconstructing the sequence ...................................24 

2.2.3 Integrating sequencing data in biomedical sciences. Progression 

towards precision medicine. ...........................................................................26 

2.3 Cancer: a collection of complex diseases ......................................................30 

2.3.1 The hallmarks of cancer: decoding the complexity ...............................33 

2.3.2 Somatic variation in the human genome ...............................................37 

2.3.2.1 Types of somatic variants ................................................................39 

2.3.2.2 Variant calling analysis to describe the somatic variation landscape 

of tumors .....................................................................................................42 

2.3.2.3 Public databases and catalogs of genomic variants ........................45 

2.3.3 Driver and passenger mutations in cancer ............................................46 

2.3.3.1 Identification of cancer driver genes through bioinformatic 

approaches ..................................................................................................47 

2.3.4 Intratumor heterogeneity and clonal dynamics ....................................49 

2.3.4.1 High-throughput sequencing analysis to decipher cell populations

 .....................................................................................................................52 

2.3.5 Large-scale initiatives promoting cancer research.................................54 

2.3.6 Challenges in cancer research ................................................................56 



   

 

xxiv 

 

2.4 Processed pseudogenes: a by-product of L1 retrotransposition ..................57 

2.4.1 Somatic retrotransposition events in cancer .........................................64 

2.4.2 Using NGS data to identify somatic retrotransposition events .............67 

2.5 Translated small open reading frames: micropeptides ................................71 

2.5.1 Classification of small ORFs ....................................................................75 

2.5.2 Identification of micropeptides ..............................................................77 

2.5.2.1 Computational annotation through in-silico evolutionary 

approaches ..................................................................................................78 

2.5.2.2 Ribosome profiling to monitor translation .....................................83 

2.5.2.3 Mass spectrometry to directly detect peptides ..............................85 

2.5.3 Published databases to study micropeptides ........................................88 

3. Motivation and objectives ...............................................................................93 

4. Methods ..........................................................................................................99 

4.1. Analysis of somatic structural variants in CLL and their incorporation into 

subclonality studies .......................................................................................101 

4.1.1 Chronic lymphocytic leukemia longitudinal study cohort ....................102 

4.1.1.1 Disease course of one pilot CLL case .............................................103 

4.1.2 Whole genome sequencing and alignment .........................................104 

4.1.3 Somatic structural variants identification ............................................105 

4.1.3.1 Variant caller programs .................................................................105 

4.1.3.2 Variant validation through manual inspection of aligned 

sequencing reads.......................................................................................106 

4.1.3.3 Filtering, merging and consensus variant calling results ..............108 

4.1.3.4 Rescue of somatic structural variants from longitudinal samples 109 

4.1.4 Inferring structural variant allele frequencies to analyze intratumor 

heterogeneity ................................................................................................110 

4.1.4.1 Analysis of aligned tumor reads in an in-silico sample .................111 

4.1.4.2 Calculating the variant allele frequency for in-silico structural 

variants to define a strategy .....................................................................112 

4.1.4.3 Applying the designed strategy to CLL longitudinal samples ........114 



   

 

xxv 

 

4.1.4.4 Deducing cancer cell fraction of structural variants and clonal 

dynamics for one pilot CLL case ................................................................114 

4.2. Identification of somatic processed pseudogenes in cancer and 

evaluation of their functional impact............................................................117 

4.2.1 Genomic and transcriptomic cancer data ............................................118 

4.2.2 Somatic processed pseudogenes identification ...................................119 

4.2.2.1 Genomic data analysis...................................................................120 

4.2.2.1.1 Candidate PP selection through VCF files ..................................120 

4.2.2.1.2 Manual validation: inspection of tumor sequencing reads .......122 

4.2.2.2 Generation of an automatic protocol ...........................................125 

4.2.2.2.1 Pilot exploration of one candidate PP ........................................125 

4.2.2.2.2 Protocol development for the complete analysis ......................126 

4.2.2.2.3 Final PP searching strategy.........................................................129 

4.2.3 Expression evaluation of acquired PPs .................................................131 

4.3. Identification and characterization of novel candidate micropeptides 

using publicly available genomic and transcriptomic cancer data ...............133 

4.3.1 Transcriptomic data from pancreatic adenocarcinoma .......................134 

4.3.2 De novo transcriptome assembly ........................................................134 

4.3.3 Transcriptome combination of multiple samples analyzed .................136 

4.3.3.1 StringTie transcript merge mode ..................................................136 

4.3.3.2 In-house strategy to obtain a consensus set .................................137 

4.3.3.2.1 Merging step through transcript clustering ...............................137 

4.3.3.2.2 Definition of a consensus sequence and selection of 

representative transcripts .........................................................................138 

4.3.4 In-silico 3-frames translation of de novo consensus transcripts ..........139 

4.3.5 Local alignment search to remove overlap with annotated CDS .........141 

4.3.6 Candidate micropeptides selection based on expression for MS analysis

 .......................................................................................................................142 

4.3.7 Strategy and final parameters to build candidate micropeptides 

datasets .........................................................................................................143 

4.3.8 Collection of known and conserved intergenic human regions ...........145 



   

 

xxvi 

 

4.3.9 In-silico translation of intergenic constrained regions .........................146 

4.3.10 Searching for orthologs on Mus Musculus using Reciprocal Best Hit 

approach .......................................................................................................147 

4.3.11 Inference of purifying selection based on dn/ds ratio .......................150 

4.3.11.1 Expected dn/ds ratio on known protein coding genes ...............151 

4.3.11.2 Selection of candidate functional micropeptides .......................152 

4.3.12 Expression analysis of candidate functional micropeptides in normal 

tissues ............................................................................................................152 

4.3.13 Exploring somatic cancer SNVs within candidate micropeptides to 

assess their role in tumorigenesis .................................................................153 

4.3.13.1 Applying OncodriveCLUSTL to published small ORFs ..................155 

4.3.13.2 Evaluation of recurrent variants within novel candidate 

micropeptides ...........................................................................................157 

5. Results ...........................................................................................................159 

5.1. Analysis of somatic structural variants in CLL and their incorporation into 

subclonality studies .......................................................................................161 

5.1.1 Identification pipeline for somatic structural variants .........................162 

5.1.1.1 Evaluation of the structural variant identification pipeline ..........162 

5.1.1.1.1 Fine-tunning specific parameters used by DELLY2 .....................163 

5.1.1.1.2 Comparative analysis of somatic structural variant callers .......164 

5.1.2 Exploring intratumor heterogeneity from structural variant allele 

frequencies ....................................................................................................166 

5.1.2.1 Sequencing coverage variation in normal and tumor genomes ...166 

5.1.2.2 Identification of variant supporting reads in an in-silico sequenced 

sample .......................................................................................................170 

5.1.2.3 Variant allele frequency estimation of artificial structural variants

 ...................................................................................................................174 

5.1.3 Applying the define methodology to longitudinal CLL samples: case 63

 .......................................................................................................................177 

5.1.3.1 Somatic structural variant landscape ............................................177 

5.1.3.2 Frequency and evolution of structural variants during tumor 

progression ................................................................................................181 



   

 

xxvii 

 

5.2. Identification of somatic processed pseudogenes in cancer and 

evaluation of their functional impact............................................................185 

5.2.1 Analysis of a lung squamous cell carcinoma genome ..........................186 

5.2.1.1 Identification of somatic structural variants supporting PPs 

formation ..................................................................................................186 

5.2.1.2 Reconstruction of CNIH4 pilot processed pseudogene ................187 

5.2.2 Automatic search of PPs across all LUSC tumors based on diverse 

criteria combinations ....................................................................................192 

5.2.2.1 Dataset 1: evidence of one insertion point ...................................192 

5.2.2.2 Dataset 2: evidence of one insertion point and splicing events ...193 

5.2.2.3 Dataset 3: evidence of two insertion sites ....................................194 

5.2.2.4 Dataset 4: evidence of both insertion sites and splicing events 

within the source genes ............................................................................194 

5.2.3 Identification of somatic processed pseudogenes in all PCAWG tumor 

genomes ........................................................................................................197 

5.2.3.1 Manual validation of candidate PPs previously identified across 

PCAWG cohort ...........................................................................................199 

5.2.4 Evaluation of potential PP-host gene fusion transcripts ......................204 

5.3. Identification and characterization of novel candidate micropeptides 

using publicly available genomic and transcriptomic cancer data ...............207 

5.3.1 Predicting non-reference-based novel transcripts for pancreatic 

adenocarcinoma samples..............................................................................208 

5.3.1.1 Calibrating StringTie ......................................................................209 

5.3.2 Assessment of transcript clustering based on different criteria ..........211 

5.3.3 Small open-reading frames datasets: insights from two different criteria

 .......................................................................................................................213 

5.3.3.1 Dataset version 1: a more conservative set of small ORFs ...........216 

5.3.3.1.1 De novo transcript prediction allowing multi-mapped reads ....216 

5.3.3.1.2 Consensus set of predicted transcripts using StringTie algorithm

 ...................................................................................................................216 

5.3.3.1.3 In-silico translation of coding DNA .............................................218 



   

 

xxviii 

 

5.3.3.1.4 Filtering micropeptides based on their overlap with known CDS

 ...................................................................................................................219 

5.3.3.2 Dataset version 2: inclusion of non-canonical start codons and 

expression-based filtering for small ORFs .................................................220 

5.3.3.2.1 De novo transcript prediction based on unique mapped reads 221 

5.3.3.2.2 Consensus set of predicted transcripts applying an in-house 

merging strategy .......................................................................................221 

5.3.3.2.3 In-silico translation of coding DNA considering non-canonical 

start codons ...............................................................................................224 

5.3.3.2.4 Filtering micropeptides based on their expression and overlap 

with known CDS ........................................................................................225 

5.3.4 UNICORNs: highly evolutionary constraint intergenic regions ............229 

5.3.5 In-silico translated small ORFs located in intergenic regions ...............231 

5.3.6 Candidate ortholog sequences of translated intergenic small ORFs ...232 

5.3.7 Calculated dn/ds ratio on known protein-coding genes ......................235 

5.3.8 Catalog of candidate intergenic micropeptides from highly conserved 

regions ...........................................................................................................237 

5.3.9 Preliminary evidence of expressed candidate functional micropeptides

 .......................................................................................................................239 

5.3.10 Detection of significant clusters of somatic cancer mutations in 

published smORFs .........................................................................................242 

5.3.11 Low number of somatic SNVs acquired in intergenic novel candidate 

micropeptides ...............................................................................................246 

6. Discussion ......................................................................................................249 

7. General overview ..........................................................................................279 

8. Conclusions....................................................................................................285 

9. References .....................................................................................................291 

10. Annex ...........................................................................................................311 

10.1 Supplementary figures ..............................................................................313 

10.2 Supplementary tables ...............................................................................318 

10.3 Publications ...............................................................................................329 

 



   

 

xxix 

 

  



   

 

xxx 

 

  



   

 

1 

 

1. Strategy and thesis trajectory 

Before starting, I would like to describe the trajectory of the presented thesis 

to expose the bases of our decisions and the strategy we followed. The central 

concept of my thesis, shared between all the projects I have been working on, is 

studying somatic variations in cancer using large-scale datasets. These studies are 

the basis to better understand tumor formation and progression and later apply 

genomic oncology at the clinics. Under this wider objective, and for the sake of 

clarity, we have divided this thesis in three chapters, each covering a specific goal 

and strategy. As described below, the first one deals with our contribution in the 

field of somatic SVs identification and characterization in tumor, in particular 

within intratumor heterogeneity; the second covers our study of somatic 

processed pseudogenes in cancer and their potential functional impact; and the 

third one, divided in two different studies, describes our current and final project 

where we aim at finding and characterizing new micropeptides in the context of 

cancer.  

Our group was involved in diverse studies regarding the Pan-Cancer analysis 

of Whole Genomes (PCAWG) project since the beginning of this international 

collaboration. For this reason, we had the opportunity to work with all the data 

from PCAWG before its publication and explore somatic variation in more than 20 

tumor primary sites. Motivated by recent publications about retrotransposition 

and processed pseudogenes (PP) in cancer, we decided to explore these last 

somatic events using the PCAWG data. Starting from somatic structural variants 

previously identified by the consortium, I designed a strategy to identify somatic 

processed pseudogenes in diverse cancer types. Then I used aligned tumor and 

normal genome sequencing reads to manually validate the candidates we 

obtained. Finally, I explored if they could have any functional impact. To do so, I 

analyzed RNA-seq data from the same patients to look for fusion genes. This work 
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ended up in one of the main PCAWG articles, published in Nature Genetics in 2020 

(1). 

Before this work was published, we started a collaboration together with Dr. 

Elias Campo and Dr. Ferran Nadeu from the IDIBAPS. The project was focused on 

Chronic Lymphocytic Leukemia (CLL) and the study of intratumor heterogeneity 

(ITH) and progression of disease. Using longitudinal samples collected at different 

time points from around 20 patients, the main goal was to understand Richter’s 

transformation, an aggressive alteration of CLL with dismal prognosis. Considering 

the experience I gained with the previous project, my tasks within this 

collaboration were centered on the identification of structural variants and their 

classification, as to VAF. Firstly, I analyzed the results obtained from diverse 

variant callers to filter and merge them. I performed this validation by combining 

automatic and manual inspection. Therefore, we could end with an accurate set 

of structural variants for each sample used for later published analysis (2,3). 

Secondly, led by us and together with Romina Royo, we aimed to include 

structural variation into the characterization of subclones and the description of 

CLL intratumor heterogeneity. At that time, ITH was mainly studied using single 

nucleotide variants and all pipelines used for identifying subclonality 

systematically avoided structural variants. Using data from the CLL project, I 

explored how to calculate the frequency of structural variants by identifying 

sequencing reads covering each variant. Counting supporting reads was a 

challenge because of the coverage variation among each sequenced sample. Our 

strategy was based on including somatic structural variants within subclones 

previously identified using single nucleotide variants. But while doing this work, a 

computational method for inferring SVs cancer cell fraction was published. In fact, 

it was also one of the articles from PCAWG project (4). We expected to explore 

ITH including structural variants in diverse cancer types and using longitudinal 
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samples. This clearly limited our publication options to the point that we decided 

to prioritize another project.  

In parallel, in 2020, we collaborated with Dra. Maria Abad and Marion 

Martínez from the Vall d’Hebron Institute of Oncology (VHIO). The project was 

aimed at the identification of micropeptides in pancreatic adenocarcinoma using 

mass spectrometry (MS) analysis. In this project were also involved Dr. Hector 

Peinado and Dr. Javier Muñoz from the CNIO. In this collaboration, my task was 

to create a dataset of novel and non-annotated candidate micropeptides to be 

used for the interpretation of the Mass Spec results. I used RNA-seq data from the 

same cancer type to be tissue-specific, since transcription and translation are. By 

doing de novo transcriptome assembly of 6 patients, I obtained a set of transcripts 

including both known and novel ones. I performed an in-silico translation of the 

transcripts to obtained candidate micropeptides and I removed those overlapping 

with known protein-coding genes. The set of candidates has been used for MS 

analysis at CNIO. Nowadays, experimental validation of interesting results is done 

at VHIO to end with a publication. 

The knowledge we acquired regarding micropeptides, and the fact that they 

have not been studied at the genome-wide level in cancer, opened the possibility 

of searching and identifying these unexplored genetic elements in other cancer 

types. We could foresee options of publication working on this strategy, as the 

annotation of micropeptides in general is still highly imprecise and incomplete. 

For this reason, we decided to focus on the identification of micropeptides and to 

characterize their potential role in cancer. I mainly focused on micropeptides 

during my second half of the thesis. Since nearly all published micropeptides are 

identified within annotated genes, we decided to start the project through the 

identification of novel candidate micropeptides by exploring highly conserved 

intergenic regions across the entire human genome to later investigate their 

potential role in cancer based on somatic mutations acquired within them. 
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Although this was an ambitious project, we considered we had the tools to start 

with it. In this line, we looked for micropeptides within conserved regions 

previously identified in The Zoonomia Project (5). Based on the search of ortholog 

sequences, we defined a set of candidates human micropeptides. To add more 

supportive information on these candidate micropeptides, I explored expression 

levels of our set of conserved and translated regions by analyzing RNA-seq data 

from GTEX project (6). Finally, intending to explore the role of these novel 

candidate micropeptides in cancer disease and tumorigenesis, I tested and 

evaluated OncodriveCLUSTL (7), a driver discovery algorithm and explored all 

somatic SNVs from The International Cancer Genome Consortium. However, and 

despite the need for more analysis, we could not identify significant signals due 

to the low number of somatic mutations present within these candidate 

micropeptides. 

During my PhD trajectory I have also mentored other students. I provided 

guidance to Michelle Tomaselli for her final degree project. She tested the 

published algorithm SVClone for calculating structural variants cancer cell 

fraction. After this, I mentored her final master project focused on the analysis of 

single nucleotide variants in Endometrial Cancer using topological whole exome 

sequencing samples. This work was led by Dra. Rosaura Esteve-Puig and Dr. Xavier 

Matias-Guiu from IDIBELL. I worked on the last figures and analysis together with 

Romina Royo once Michelle finished her master project, as well as collaborated 

on writing part of the manuscript. Finally, I served as the tutor of Laia Ollé during 

her final degree project. She worked on the characterization of micropeptides 

candidates in pancreatic adenocarcinoma, in particular, through their annotation 

using ribosome profiling data from the public database sorfs.org. I reviewed their 

written projects and oral presentations before presenting it at the university.  
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2.1 The information storage system of 
humans: the genome 

Deoxyribonucleic Acid (DNA)(8) is the chemical name of the molecule 

carrying genetic instructions in all living organisms. DNA is their central 

information storage system, and it consists of a right-handed double helix formed 

by two strands that wind around one another. The DNA helix is anti-parallel, 

meaning the 5’ end of one strand is paired with the 3’ end of its complementary, 

and vice versa. Both strands are made of a sugar known as deoxyribose and 

phosphate backbone, which have bases sticking out from it. The strands are held 

together by hydrogen bonds between the bases; adenine (A) with thymine (T), 

and cytosine (C) with guanine (G). These nitrogen bases are also exposed and 

available for hydrogen bonding for other molecules that play vital roles in 

replication and expression. Structurally it is organized into chromosomes and 

functionally, into genes. Genes are the basic unit of heredity (9), containing the 

information for building one or more molecules that help the body work. Genes 

usually code for proteins, each of them with a particular characteristic or function. 

They are located on a chromosome and consist of nucleotides arranged in a linear 

manner. It is estimated that humans have about 20.000 genes (10). All the genetic 

material of an organism, including genes and other elements controlling the 

activity of genes is its genome, which in humans, plants and animal cells is housed 

in the nucleus of nearly all of its cells. 

Genetic information together with environmental factors characterize the 

observable traits of each individual organism, also known as phenotype. However, 

those characteristics do not come from DNA itself, but from the result of a specific 

flow of information named The Central Dogma of Molecular Biology. This 



   

 

8 

 

describes the transfer of information stored in genes as DNA, which is transcribed 

into ribonucleic acid (RNA), and translated into proteins (Fig 1). The concept was 

developed by Crick in 1958, and it states that information cannot be transferred 

from protein to either protein or nucleic acid (11). The transcription(12) of a 

subset of genes into RNA molecules also describes a cell’s identity and its 

biological activity. All these RNA molecules are collectively defined as the 

transcriptome, which can differ between cell types and time. The transcriptome 

is also essential for understanding development and disease. Although most of 

the observable trait's information comes from genes and individual proteins, it is 

now known that untranslated RNAs can actually be involved in the phenotype. 

Figure 1. Central dogma of molecular biology. 
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2.1.1 History of genetics: from Darwin to the Human Genome 

Project 

Based on the definition of the National Institute of General Medical Sciences 

(10), genetics is the scientific study of genes and inheritance in living organisms, 

and in particular of how certain qualities and traits are passed from parents to 

offspring as a result of changes in DNA sequence. 

In the 19th century, scientists started questioning why children resemble 

one parent more than others or why some species have similarities between them 

more closely than others. Scientists could observe similarities between the 

offspring of animals and plants, but they could not understand why this 

happened. These observations were the starting point of genetics. 

In particular, it was in 1858, when Charles Darwin received a manuscript 

from Alfred Russel Wallace exposing an evolution theory based on natural 

selection. This theory coincided with the ideas about the evolution of species 

Darwin was working on. One year later, Darwin presented and published together 

Wallace's work, “The origin of species,” which describes how new species arose 

via evolution and how natural selection uses natural variation to evolve new forms 

(13).  

A few years later, in 1865, Gregor Mendel presented his research on 

inheritance in pea plants in the scientific journal Verhandlungen des 

naturforschenden Vereines. Mendel tracked several phenotypes in peas across 

different generations, developing homozygous lines, observing the offspring of 

each kind of parent and analyzing the data statistically. This was the first empirical 

evidence that traits were passed down measurably from parent to offspring and 

the only approach utilized to understand genetic inheritance. Gregor Mendel 

could describe the unit of heredity as a particle that does not change. Together 

with Darwin’s work, his study suggested that all species might be related between 
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them, and because of inheriting different traits, they might drift apart through 

natural selection. At the same time, Haeckel predicted that the hereditary 

material was located in the nucleus (13).  

It was in 1869 when Swiss physiological chemist Friedrich Miescher tried to 

isolate and characterize the protein components of leukocytes. During his 

experiments, he came across a substance from the cell nuclei. It has chemical 

properties unlike any protein, including a much higher phosphorus content and 

resistance to proteolysis. With this, Miescher identified in 1871 what he called 

“nuclein” and demonstrated the material in the nucleus was what we now know 

as nucleic acid (14). However, during this century, research was usually performed 

in isolation, and genetics advanced slowly.  

In 1900, other scientists performing similar experiments to Mendel’s work 

arrived at the same conclusions and cited his work in their publications. 

Subsequent to the rediscovery, linkage, lethal genes, and maternal inheritance 

were described.  

By the early 20th century, powerful light microscopes allowed scientists to 

see into a cell’s nucleus. The observation of chromosomes combined with The 

Chromosomal Theory of Inheritance (Walter Sutton and Theodor Boveri, 1904), 

which defines the chromosome as the location of genes, linked them with trait 

inheritance. They could also observe that chromosomes occur in matched pairs in 

humans, one from the mother and one from the father. Chromosomal 

abnormalities such as duplications, deletions, translocations, or inversions were 

reported for the first time. 

Although Miescher determined the material in the nucleus was nucleic acid 

in the early 1870s, the community did not widely appreciate his discovery. In 

1910, Albrecht Kossel was awarded for his discovery of the five nucleotide bases: 

adenine, cytosine, guanine, thymine, and uracil (15). From the 1920s through the 
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1950s, other scientists continued to investigate the chemical nature of the 

molecule, and diverse experiments concluded that DNA was indeed the genetic 

material within the nucleus. The Russian biochemist Phoebus Levene proposed in 

1919 that nucleic acids were composed of a series of nucleotides, which were 

formed of one of four nitrogen-containing bases, a sugar molecule, and a 

phosphate group. This was Levene’s “polynucleotide” model. Therefore, he was 

the first to discover the order of the three major components of a single 

nucleotide: phosphate-sugar-base (14). In 1943, Oswald Avery together with Colin 

MacLeod and Maclyn McCarty, proved that DNA carries genetic information. 

Although at that time no one knew how it worked, they could demonstrate that 

hereditary units, genes (16), are composed of DNA, not protein or RNA. Some 

years later, Erwin Chargaff reached two major conclusions (Chargaff 1950). First, 

the composition of DNA varies among species, and the same nucleotides do not 

repeat in the same order. Second, almost all DNA maintains certain properties 

even within different organisms or tissue types. The amount of adenine is usually 

similar to the amount of thymine, and the amount of guanine approximates 

cytosine (14). This second conclusion explains that A is bound to T, and C is bound 

to G in the DNA structure.  

New advances in genetics were applied in medicine, leading to the beginning 

of modern human genetics in 1949. Moreover, the same year, the first textbook 

of human genetics was published, and the American Journal of Human Genetics 

was founded (17).  

At King’s College in London, by the early 1950s, chemists Rosalind Elsie 

Franklin and Maurice Wilkins worked with X-ray diffraction to study DNA. They 

beamed X-rays through the molecule and obtained a shadow picture of the DNA 

structure by how the X-rays bounced off the components. In January 1953, 

Wilkins showed the resulting picture, known as “Exposure 51”, to James Dewey 

Watson without Franklin's knowledge. Chargaff’s second conclusion together 
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with this X-ray crystallography work, were crucial to Watson and Crick’s proposal 

regarding DNA structure. In April 1953, Watson and Crick published their famous 

paper in Nature, proposing that the DNA molecule was composed of two chains 

of nucleotides paired to form a double helix. They also explained how the DNA 

molecule could replicate itself with high accuracy. For their work, Watson, Crick, 

and Wilkins were awarded the Nobel Prize in 1962. However, regardless of her 

contribution, Rosalind Franklin was not named a prize winner (16). 

After the discovery of the double-helix, the breaking of the genetic code was 

the second most important advance in molecular biology. In 1955, Severo Ochoa 

isolated RNA polymerase, the enzyme that transcribes molecules of DNA into 

RNA. Ochoa could then make the first synthetic RNA molecules which were 

essential for deciphering the genetic code. Interpreting the genetic language was 

the work of Marshall Nirenberg and his team at the National Institutes of Health. 

In late 1960, Nirenberg and Heinrich Matthaei observed that introducing RNA into 

a cell-free system resulted in synthesizing proteins, whereas adding DNA did not. 

After this achievement, they added E. Coli extract to 20 test tubes containing a 

mixture of all 20 amino acids. Each amino acid was radioactively tagged in one 

test tube. Then, they added synthetic RNA made of uracil to each test tube, finding 

unusual activity in the tube containing phenylalanine. The UUU triplet was the 

first codon deciphered. In 1964 Nirenberg and Philip Leder discovered how to 

determine the sequence of the nucleotides in each codon. Two years later, 

Nirenberg had deciphered the 64 RNA codons for all 20 amino acids. Together 

with Khorana and Robert Holley, Nirenberg won the Nobel Prize in 1968 “for their 

interpretation of the genetic code and its function in protein synthesis”(18–20). 

Also, in this period, Margarita Salas was working as a postdoctoral in Ochoa’s lab. 

Salas not only found that replication, transcription and translation read DNA in 

only one direction but also helped showing that UAA triplet represents a stop 

codon (21) and therefore the end point of translation. 
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Simultaneously, during 1959 and 1960 new methods for analyzing 

chromosomes such as cytogenetics and new biochemical assays using cultured 

cells revealed genetic causes behind many human diseases including cancer. 

Moreover, the fundaments of mammalian sex determination were defined. 

Individuals without a Y chromosome were shown to be female, whereas those 

with a Y chromosome were male. Culture cells became widely used to study 

monogenic human diseases (22).  

Also, in the mid-20th century, the Darwinian theory of evolution was 

confirmed. Scientists demonstrated experimentally that mutations could be 

induced. Therefore, understanding the role of variation together with 

environmental constraints allowed them to solidify the concept that natural 

selection was a major factor in evolution (13). Modern Evolutionary Synthesis 

linked Charles Darwin’s theory of evolution with Gregor Mendel’s studies 

regarding genetic inheritance and variation. The term was the result of combining 

Dobzhansky and Fisher's work. In 1968, Kimura proposed the neutral theory of 

molecular evolution, which contends that at the molecular level, evolutionary 

changes and polymorphisms are caused by random genetic drift (23). 

In the 1970s, Arber (24) discovered restriction enzymes, molecules that 

recognize and cut specific short sequences of DNA (25). At the same time, Smith 

isolated and characterized the first Type II restriction endonuclease (HindII) and 

determined the sequence of its cleavage site (26). Independent studies led to the 

discovery of reverse transcriptase in retroviruses by Baltimore and Temin, 

revolutionizing molecular biology (27). Moreover, in 1972, Berg assembled the 

first DNA molecules combining genes from different organisms (28). This 

technology, known as recombinant DNA, involves cutting DNA sequences using 

restriction enzymes and fusing the strands with DNA ligases. The development of 

recombinant DNA technology opened the way to genetic engineering, allowing 

researchers to give new abilities or eliminate traits to organisms.  
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In the late 20th century, the availability of reading nucleotides from the 

genome becomes the next break in genetics. DNA sequencing techniques were 

first described in 1977 by Sanger and Gilbert after Salas and her colleague Luis 

Blanco isolated the DNA polymerase enzyme from the bacterial virus phi29. This 

enzyme is involved in DNA replication copying each strand into identical DNA 

molecules. The method published by Sanger (1977) is based on random 

incorporation of chain-terminating inhibitors by DNA polymerase during in vitro 

DNA replication, and it has been widely used for 40 years (29). Three years after 

publishing Sanger sequencing, the first genome was sequenced by Sanger Group. 

In particular, it was the bacteriophage ΦX174 of E. coli. The enzyme isolated and 

patented by Salas and Blanco is also widely used in forensics, studies of ancient 

DNA and oncology. Three years after publishing Sanger sequencing, Wally Gilbert, 

Paul Berg and Fred Sanger shared the Nobel Prize for Chemistry, for pioneering 

DNA sequencing methods (15). Combining linkage analysis, fine mapping within 

large pedigrees and Sanger sequencing, diverse human genes linked to rare, 

monogenic and syndromic diseases were discovered (17). 

Thanks to the discovery of another polymerase enzyme (Taq) that can 

withstand high temperatures without denaturing, the PCR (polymerase chain 

reaction) technique was reported by Mullins (1983). Due to all these findings, in 

1986 (30), Hood, Smith and Hunkapiller launched the first automated DNA 

sequencer. Researchers worldwide came together in consortiums and 

collaborative groups, and the US Government together with the National 

Institutes of Health (NIH) established the Human Genome Project (HGP) (1990). 

The aim of the project was to sequence and map all the genes of our species, 

Homo Sapiens. The firsts drafts of the human genome sequence, both from the 

public HGP (31) and private Celera Genomics (32) were published in February 

2001. However, it was in 2003 when the Human Genome Project (33) was 
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completed covering 99 percent of the euchromatic portion of the genome and is 

accurate to 99.99 percent (34). 

2.1.1.1 Women’s contribution to genetics 

It is well known that women also contributed to genetics research during 

19th and 20th centuries. However, institutionalized sexism has prevented them 

from the recognition they deserve. Most of them are still not mentioned in 

reviews, articles or books summarizing the history of genetics. Despite significant 

progress, UNESCO reported on 2021 that only around 33% of the world’s 

researchers are women (35). 

Higher education was opened to women in the last three decades of the 19th 

century, allowing the entry of women into the scientific workforce. However, 

access to studentships, grants, fellowships, and established careers in universities 

was absent for them. As the field of genetics was not yet institutionalized, it was 

one of the earliest emerging disciplines to benefit from their contribution, 

specifically in Mendelian genetics and heredity. Despite this, the system restricted 

women to certain roles, even they gained a master's or doctoral degree. The job 

titles they held were “assistant”, “technician”, “stockkeeper” or unpaid working 

wife (36,37). 

Considering the importance of their work, to highlight and bring women that 

contributed to genetics to the fore, and although this section is not essential for 

the understanding of the presented thesis, a summary of scientific women who 

made important discoveries is provided here in alphabetical order (38–40).  

Barbara McClintock (1902 – 1992): Her studies in maize cytogenetics showed 

how traits were suppressed or expressed between generations. She also 

discovered transposable elements, DNA sequences that can change position 

within a genome. For this work, she received The Nobel Prize in Physiology or 
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Medicine in 1983, becoming the only woman who has received an unshared 

Nobel Prize in this field. 

Charlotte Auerbach (1899 – 1994): In collaboration with A. J. Clark, and J. M. 

Robson, demonstrated that mustard gas could induce mutations in Drosophila 

melanogaster. She was most known for discovering mutagenesis. 

Edith Rebecca Saunders (1865 – 1945): She was the first collaborator of the 

geneticist William Bateson, playing an active role in re-discovering Mendel's laws 

and the study of trait inheritance in plants. Together with Bateson defined terms 

like alleles, heterozygote, and homozygote. 

Elizabeth Blackburn (1948 –): She is most known for her work on telomeres 

and the co-discovery of telomerase. She was awarded the Nobel Prize in 

Physiology or Medicine (2009) for this discovery. 

Liane Russell nee Brauch (1923 – 2019): Producing many strains of mutated 

mice she could demonstrate that in mammals, the Y-chromosome determined 

the animal’s male gender.  

Margaret Oakley Dayhoff (1925 – 1983): Known as the founder of 

bioinformatics and one of the first scientists to combine mathematics, 

computation, and biochemistry. She created the one-letter code for amino acids 

and originated point accepted mutations. These are replacements of single amino 

acids in the primary structure of a protein. 

Margaret Wu: She developed a statistical tool known as Watterson estimator 

that approximates the level of genetic diversity in a population contributing to 

population genetics. 

Marie Maynard Daly (1921 – 2003): Her research was focused on the 

creation of proteins, as well as histones, proteins known to help package DNA into 
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chromosomes. Daly’s research contributed to research into the structure of DNA. 

She was the first Black woman to earn a doctorate in biochemistry in the U.S.  

Martha Cowles Chase (1927 – 2003): Together with Alfred Hershey, they 

published a paper showing DNA was the biochemical material that transmitted 

genetic information and therefore DNA was the genetic material of life. The 

Hershey-Chase experiment helped inspire Watson and Crick to solve the 3-D 

structure of DNA. Hershey was awarded the Nobel Prize for the discovery, but 

Chase was not included. 

Mary Frances Lyon (1925 – 2014): Working with mice she could demonstrate 

X-chromosome inactivation, a process by which one X-chromosome is not 

activated in some female mammals including humans.  

Nettie Maria Stevens (1861 – 1912): Using as an experimental model the 

yellow mealworm, she discovered that the combination of X and Y chromosomes 

determined the sex of an individual. Her work expanded the fields of modern 

genetics. 

Ruth Sager (1918 – 1997): She investigated how cancer cells grow, multiply 

and reduce their ability to maintain their chromosome structures. She theorized 

that a set of genes might be key to halting the growth of cancer and identified 

over 100 of them. These genes are now named tumor suppressor genes. 

2.1.2 The post-genomic era 

The publication of The Human Genome Project in 2003 transformed biology 

and accelerated advancements in the genetic field. HGP was the starting point of 

the post-genomic era.  

Deciphering almost the entire sequence of the human DNA allowed 

scientists to examine all genes, genetic variants and diseases, initiating the 

comprehensive discovery and cataloguing of many parts of the human genome. 
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Questions with implications for biology and medicine became approachable, and 

experiments that were inconceivable years ago the publication started to be 

routine. Establishing well-founded correlations between sequence variation and 

phenotypes enable understanding the architecture of common complex diseases 

such as diabetes, asthma or cancer as well as rare diseases or behavioral traits. All 

this knowledge evolves in the personalization of therapies, early detection of 

disease, ability to follow progression and treatment responses and stratification 

of disease and patients.   

The Human Genome Project inspired subsequent large-scale initiatives and 

big science projects integrating cross-disciplinary efforts towards human 

genomics and health. During the post-genomic era, advances in biomedical 

sciences and expansive research have lent great contributions to better 

understanding of the human condition and the causes and solutions for several 

genetic diseases. In addition to GenBank, other online repositories such as the 

University of California Santa Cruz (UCSC) (41) and Ensembl (42) were created to 

host genome data in 2002. Projects including Haplotype Mapping (HapMap) (43), 

1000 Genomes (44), The Genome 10K (45), or The Cancer Genome Atlas (TCGA) 

(46) illustrated these great efforts in genomics and the progress of knowledge 

(47–49).  

The community predicted that individual genome sequences will play a 

larger role in medical practice, and this has happened. In 2011 the first patient 

saved by DNA sequencing was reported, as his one in 1 billion genetic mutation 

of XIAP gene resulted to be treatable with cord transplant (47,48,50). 

The Human Genome Project not only opened avenues in biology and medicine 

but also in technology and computation. By 2000, the internet was reachable, 

bandwidth adequate to move genome data and processing power accessible 

(48). Although these developments were rapidly incorporated into biology, 
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advancements in bioinformatic tools to store, process, analyze and visualize 

sequencing data were essential. Therefore, bioinformatic experts and 

computational biologists emerged. Research groups focused on genomics and 

working with NGS start combining multidisciplinary experts and usually require 

sufficient computational infrastructures for data storage and analysis.

2.2 DNA and RNA studies in the post-genomic 
era 

Sanger sequencing, developed in the late 1970s by Frederick Sanger, allowed 

scientists to read the DNA sequence of genes accurately and was instrumental in 

several groundbreaking discoveries. However, Sanger sequencing had limitations, 

primarily in its cost and throughput, making it impractical for large-scale genomic 

studies. Following the interest generated by the HGP and, because of all the 

research opportunities sequencing DNA could provide, the development of new 

technologies rapidly evolved. Sanger sequencing needed to turn into a more 

automatic, rapid and affordable technology. Companies realized this field could 

be a successful business, so the market competition gave birth to an 

overabundance of technologies with progressively higher sequencing throughput 

at lower costs. Collectively, they were named as Next-Generation Sequencing 

(NGS) (47). NGS revolutionized the field of genetics by enabling high-throughput, 

cost-effective sequencing and making large-scale projects feasible. NGS has then 

become the cornerstone of modern genetic research, allowing scientists to 

explore complex genomic landscapes with unprecedent depth and speed, and 

affecting bioinformatic analysis. 
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2.2.1 Reading nucleotides: Next-Generation Sequencing 

technology 

Pyrosequencing was the first generation of NGS and measured the 

enzymatic luminometric signal generated by pyrophosphate release during DNA 

polymerization. 454 Life Sciences commercialized this technique and introduced 

in 2003 the first DNA sequencer. In a single 4-hour run, the system could produce 

around 400-500 bp-long reads with 99% accuracy and up to 25 million bp. The 

same year, a new approach known as Sequencing by Synthesis (SBS) was 

developed by Solexa and three years later, they launched their first commercial 

sequencer named Genome Analyzer. This sequencer had a higher throughput in 

a single run but reads were shorter. Nevertheless, they sequence both DNA 

strands of each fragment providing paired-end reads separated by a known 

distance and that enables more accurate read alignment. Solexa company was 

acquired by Illumina in 2007, and its SBS commercialized approach supports 

massively parallel sequencing and detect single bases as they are incorporated 

into growing DNA strands. Illumina HiSeq X Ten sequencer machine allowed in 

2014 large-scale whole genome sequencing (WGS) for $1000 per genome and has 

the capability to sequence tens of thousands of genomes per year. In 2015, the 

company was responsible for generating 90% of the world’s sequencing data and 

70% of the market for DNA sequencers. Nowadays it is still the best sequencing 

company of the market providing diverse platforms for different applications, all 

of them with high output (1,2-6000 Gb), high accuracy, low cost per base and 

diversity of library preparation configurations (47,51).  

The classical protocol (Fig 2) for all NGS technologies initiates randomly 

breaking DNA and creating fragment or mate-pair templates for single or paired-

end sequencing respectively. The protocol is followed by size selection and 

adapters ligation to the end of the fragments. After that, DNA amplification is 
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generally done. Fragments are PCR amplified only from one end (single-end read), 

or both (paired-end reads) (Fig 3). These firsts steps are known as library 

preparation. Templates are immobilized to a solid surface to allow thousands to 

billions of reactions to be performed simultaneously. During the sequencing step, 

nucleotides containing a fluorescent tag and a terminator that blocks 

incorporation of the next base, bind through natural complementary to the DNA 

template. The use of this reversible terminator nucleotide permits one nucleotide 

to be incorporated at a time and is one of the adaptations over Sanger 

sequencing. The fluorescent signal indicates which nucleotide has been added 

and the terminator is then separated to allow the next base to binding the 

template. This step is repeated for the length of the fragment end is being 

sequenced, typically resulting in read lengths between 100 – 400 bp. If paired-end 

is performed, reads are washed away after reading the forward DNA strand, and 

the process repeats for the reverse strand resulting in two sequenced ends per 

template (51–53).  

The NGS protocol can be either applied to sequence the entire genome 

(whole genome sequencing), only the known coding regions (3% of the whole 

genome), that means the exome (whole exome sequencing, WES), or specific 

regions (target sequencing). While WGS requires more time and higher costs, 

WES, which is cheaper, works under the assumption that alterations in proteins 

usually have a deleterious impact on genome regulation (54). Moreover, next-

generation sequencing allows reading not only DNA molecules but also RNA (RNA 

sequencing, RNA-seq). Sequencers from PacBio or Nanopore can detect 

nucleotide base modifications in RNA by monitoring reverse transcription in real 

time, whereas the Illumina approach, among others, sequences the 

complementary DNA (cDNA) obtained after converting RNA. NGS can also be used 

to sequence DNA regions where proteins such as transcription factors or 

chromatin-associated proteins are bound to regulate gene expression (ChIP-seq) 
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or RNA regions covered by ribosomes (Ribo-seq) to study actively translated 

mRNAs.  Although some steps may change between these techniques to, for 

example capture a specific molecule, in all cases generated NGS reads are usually 

outputted in FASTQ files combining the nucleotide base sequence and associated 

base quality scores.  

 

Figure 2. Classical protocol applied in all next-generation sequencing technologies. 
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Although sequencing methodologies have evolved rapidly to cover many 

applications and to be reasonable for diverse studies, there are still some 

challenges to be overcome. The quality and properties of the sample clearly 

influence the obtained results. However, the two most important challenges of 

NGS are the read length and the error rates.  

 

After sequencing, obtained reads range between 75 and 900 bp being the 

most used average length of 100 and 400 bp (55). While short read-lengths 

comprise of shorter overlapping ends complicating the determination of the 

preceding and following reads, longer reads simplify this assembly step and 

require less rounds of the overall process. The shorter the reads are, the more 

sequences may be similar in nucleotides resulting in ambiguity regarding their 

precise position and in the inability to resolve repetitive regions. Additionally, 

short reads are prone to miss larger variants such as insertions or deletions. 

Paired-end sequencing can help solve these issues by sequencing the same 

fragment from both ends and providing more positioning information than single-

end sequencing. In the other hand, library preparation and the sequencing 

process itself are associated with sequence errors. The most common type is 

substitution, where a nucleotide is replaced by another making the identification 

of variants more difficult. Errors can appear to be platform specific, and distinct 

sets of nucleotides such as GGT or GGC for Illumina technique, can be associated 

Figure 3. Scheme for paired-end sequencing. Both ends of a DNA fragment are sequenced, and 
distance between in nucleotides them is known. 
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with poor sequencing performance. Base misincorporations or rearrangements 

can also occur during the massive and simultaneous PCR amplification step. For 

this reason and in order to increase the fidelity of the template sequence, PCR-

free library preparation can be applied for short-read sequencing. Lastly, the error 

rate can also increase when the maximum read length of the platform is 

approached. Specially if NGS is used for clinical diagnostics or treatment decision 

making, variants should be validated by visual inspection of the aligned 

sequencing data or additional Sanger sequencing of the candidate regions 

(53,56,57). 

2.2.2 Assembly process: reconstructing the sequence 

Nucleotide reads generated by sequencers are usually far shorter than the 

size of the genomes investigated when applying NGS protocols. By overlapping 

these reads, the complete sequence can be deduced. This process is defined as 

assembly, and it was developed to resolve limitations of current technologies that 

are not able to sequence the whole genome on a single read. Depending on the 

sample and type of raw data, this process has diverse flavors including genome, 

transcriptome or metagenome assembly (47). Nevertheless, it usually starts by 

filtering low quality reads and correcting errors from library preparation or 

sequencing and continues computing a set of overlaps to find out the best 

arrangement. The assembly process produces files that enable visualization and 

interrogation of the sequence and are human-readable. The resulting files are 

known as sequence alignment map (SAM) file or its binary version (BAM) and have 

a smaller size than FASTQ files. 

Independently of the sample analyzed but according to the availability of the 

reference sequence or to the goal of the study, the assembly has two main 

approaches. Reference- based sequence assembly is used when the reference 

sequence from the same organism, or closely related species has been previously 
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obtained. In this case, the reference sequence serves as a guide for the 

reconstruction of reads. On the contrary, de novo sequence assembly does not 

involve using a reference sequence. Is a more complicated process and requires 

more computational resources (53,55). Short- single-read sequencing 

approaches, for example, make it impossible to assemble human genome 

sequences de novo because of its length and complexity. Therefore, sequencing 

reads are usually compared against a reference (50).  

Reference-based assemblies are usually performed for analyzing the human 

genome or transcriptome to reduce computational resources and avoid 

reconstruction issues. Despite, changes in the reference sequence may require 

revalidation of the assembly, explaining for example, why the community is 

mainly still using the GRCh37 human version instead of the latest one (GRCh38) 

(56). Moreover, it should be considered that 70% of the human reference 

sequence corresponds to a single individual and it does not represent global 

human genomic variation. Dependence on a single assembly creates reference 

biases, reducing the accuracy of genetic analyses. Even so this problem has not 

been resolved yet, The Human Pangenome Reference Consortium is working to 

create a more complete human reference genome representing global genomic 

diversity (58). Another major limitation is the complication when mapping short 

reads within repetitive or poorly characterized regions. As mentioned before, 

paired-end reads can partially solve this issue assuming one of the reads of the 

pair maps in a unique region (Fig 4).  

Once NGS data is generated, the challenge remains on comprehensively 

analyze and interpret the sequences, as well as in the large and powerful 

computing environments needed to process the data. Following read alignment 

to a reference genome or de novo assembly, data usually undergoes different 

quality control steps with bioinformatic programs. Quality control includes 

inspecting depth coverage of the sample, defined as the average number of reads 
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that align to, or “cover,” known reference bases (Sequencing Coverage for NGS 

Experiments, n.d.), base call quality scores, mapping quality, duplication rate and 

strand bias. After this, to convert sequences into meaningful biological results, 

diverse tools can be used depending on the goal of the project. As an example, in 

order to identify variants related to a genetic disease, the sequenced and the 

reference genome will be compared using variant calling algorithms capable of 

detecting nucleotide sequence differences. Later, these changes will be 

annotated and interpreted to understand their impact on the cell (McCombie et 

al., 2019). More information regarding analysis protocols applied in cancer 

genomics and transcriptomics is explained in the following section. 

 

Figure 4. Comparison of single-end and paired-end reads in NGS alignment. PE sequencing provides 
additional information on fragment length and read orientation. 

2.2.3 Integrating sequencing data in biomedical sciences. 

Progression towards precision medicine. 

NGS has been a changer in genetics. Before NGS, reading DNA was slow and 

expensive, limiting our understanding of the genome. Using next-generation 

sequencing, we are able to read DNA faster and at a lower cost. Therefore, we can 

study genes in more detail and discover new genetic elements, as well as finding 

changes that cause disease. NGS has opened up a whole new world of genetic 

knowledge and possibilities. 

In 2021, a total of 3.278 unique animals have had their nuclear genome 

sequenced, assembled and publicly available in the GenBank database (60,61). 
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The availability of complete genome reference sequences, together with faster, 

cheaper and accurate NGS technologies to produce large amounts of sequencing 

data, and bioinformatic tools to analyze them, have opened new horizons within 

genetics research and lead to planning higher level projects. Next-generation 

sequencing is used to study genomes of humans, animals, plants, microbes and 

viruses. The number of applications is nearly limitless including searches for new 

genes and their functions, discovery of diversities among individuals and disease-

related genes or locating common and rare variants that influence the risk of 

developing complex diseases, as well as variants acquired during lifetime in 

specific cell populations that can drive tumorigenesis. Specific techniques such as 

RNA-Seq provides direct cell- and tissue-specific gene expression features, 

quantification of transcripts, detection of splice variants and novel transcript 

isoforms and chimeric gene fusions. The evaluation of the transcriptome profiles 

is also valuable for understanding diseases (53,55,57,62). Integrating both DNA 

and RNA analysis provides further evidence of altered function of mutated genes, 

allowing for accurate definition of the basis of the disease. 

Several human diseases are associated with genetic variants that can be 

inherited from carrier parents (germline variants) or acquired during lifetime 

(somatic variants). Despite all genetic diseases that can be studied using NGS, the 

approach used for each can differ. Inherited rare diseases, which are those 

affecting a low number of individuals, are usually the result of single-gene 

mutations directly affecting a protein sequence. Therefore, target sequencing or 

whole-exome sequencing are sufficient to identify the precise exonic mutations 

causing the disease. Since whole-exome sequencing accounts for approximately 

2% of the entire human genome, many disease-causing variants can be 

discovered using this NGS approach. However, for interrogating non-coding 

regions of the genome or transcriptome, as well as for studying large variants that 

can even involve different chromosomes, whole-genome sequencing is needed 
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(53,55). WGS is the most comprehensive NGS approach, so is commonly applied 

to study genetics of complex diseases, which are caused by a combination of 

variants distributed in coding and non-coding regions, and environmental factors 

(63). This last approach is used more often in research than in the medical field. 

For example, for diagnosis and stratification of cancer patients, the NGS assay 

applied is typically targeted sequencing panels, which interrogates dozens or 

hundreds of interesting genes that are known to be related with the disease.  

Not only should the NGS assay differ depending on the disease, but also 

other features, such as the coverage at which the sample is sequenced. To detect 

most germline hetero- or homozygous variants, 30x coverage, meaning around 

30 reads aligned across each sequenced nucleotide, is enough. However, to 

identify rare somatic cancer variants, present in only a cell population and in low 

frequency, higher coverage is needed (64). 

DNA and RNA sequencing, as well as other omics data, are now mainstream 

and contribute not only to biology but also to medicine for diagnosis, prognosis, 

follow up and treatment decision. In both fields, research and patient care, 

multiple traditional molecular assays may have to be performed for studying 

multiple mutations and a large amount of tissue is needed. Using NGS, hundreds 

and thousands of genes, target regions, or whole genome, can be interrogated in 

one single test from small biopsy samples. NGS experiments link experimental 

design with data analysis, and they can be combined with other classical methods 

to have a greater insight into biological disease. Biomedical research projects have 

changed the way they are designed. Therefore, instead of focusing on just one or 

few variants, genes or proteins and using the function-to-genetic approach, they 

aim to explore many regions at once to provide a wider genome representation 

of variants (or genes) to later associate with disease. Moreover, due to its capacity 

to massively sequence regions or genomes faster and cheaper, NGS is an 
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important tool for precision medicine and offers new opportunities that can be 

applied in patient care (56,57,65).  

Precision medicine has revolutionized how we improve health and treat 

disease. Although nowadays, the “one-size-fits-all" classical approach is still how 

most medical treatments are designed, it is known that it is not effective in many 

cases. Treatments can be very successful for a group of patients, while for others 

not. On the contrary, precision medicine considers individual differences in 

people’s genes, microbiomes, environments, family history and lifestyle. (Fig 5) 

This information allows clinicians to make diagnostic and apply therapeutic 

strategies precisely for each individual patient (66). In order to apply precision 

medicine, biomedical research should be done to understand genetics and 

biology behind a disease.  

 

Figure 5. One-size-fits-all and precision medicine approaches. Contrary to the classical approach, in 
precision medicine differences between individuals are considered to make a diagnostic and apply 
therapeutic strategies. 
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2.3 Cancer: a collection of complex diseases 

Through cell division, human cells grow and multiply in the body to form new 

cells to replace those growing old or damaged. However, this orderly process can 

break down and abnormal or damaging cells grow and multiply uncontrolled. 

These cells may form tumors, lumps of tissue, which can be cancerous or not 

(benign) (67). Clinical differences between benign and malignant tumors were 

described by Gabriele Fallopius, who identified cancer cells to have irregular 

shape, multi-lobulation, adhesion to neighboring tissues and more blood vessels 

surrounding the lesion (68).  

In the late 1800s, three fundamental theories described the cause of cancer, 

proposing that was a product of chronic irritation, hypothesizing that was the 

result of displaced embryonal tissue or suggesting cancer was caused by 

infectious or pathogenic agents. Bernardino Ramazzini observed that nuns 

suffered from high rates of breast cancer, which was attributed to their celibate 

life. Harting and Hesse documented in 1879 that miners in the Black Forest 

regions in Germany died due to lung cancer. Other non-occupational agents as 

tobacco were associated with, in this case, nasal cancers, as well as viral infections 

due to sexual promiscuity were also correlated with risk of cervical cancer. 

Variations in the type of cancer found in different areas of the world were also 

observed, and people who migrated to other countries developed types of cancer 

common in their adopted countries, rather than their homelands (69).  

Alfred Armand Louis Marie Velpeau, after examining malignant and benign 

tumors under the microscope, wrote that cancer cells were merely a secondary 

product rather than the essential element in the disease, and that there must exist 

another intimate element which science would need to define the nature of 

cancer. He was anticipating the genetic bases of cancer. Following the view of 

Velpeau’s, Theodor Boveri first proposed a role for somatic mutations, those 
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acquired during lifetime, in cancer development. Boveri suggested that loss of key 

cellular attributes due to these mutations were important driver events in the 

formation and progression of cancer, and that inheritance of germline variants 

could play a role in disease susceptibility. It had taken 50 years of work for Boveri 

to validate Velpeau’s intuition, and another half century for the emergence of 

molecular biology and molecular genetics to confirm Boveri’s theory on the 

nature of cancer (68,70). Viewing tumor as a cellular rather than an organ 

problem led to confirm that cancer is a genetic disease involving dynamic changes 

that lead to malfunctioning of the cellular properties. 

Cancer is then defined as a collection of complex diseases. Is characterized 

by uncontrolled cellular growth and division of abnormal cells due to the 

accumulation of genetic and epigenetic changes and their subsequent natural 

Darwinian selection when conferring advantages for the tumor cell. It can be 

caused by genetic predisposition due to inherited mutations, also named 

germline, somatic variants acquired during lifetime due to environmental factors 

such as UV light or tobacco, genome instability, infections, chronic irritation, aging 

or the combination of various of the mentioned factors (67,71). Genetic changes 

usually tend to affect oncogenes, tumor suppressor genes and DNA repair genes. 

Whereas alterations in oncogenes cause the activation of them allowing the cell 

to grow and survive when they should not, variants in tumor suppressor genes 

cause the loss of their function and lead to malignancy. Inherited mutations 

inactivating one allele of a tumor suppressor increases the probability of 

developing a tumor. Efforts regarding the identification of potential therapeutic 

target genes have been mainly focused on oncogenes (70,72). As an example, the 

most common loss of proapoptotic regulator through genomic mutation involves 

the p53 tumor suppressor gene. The functional inactivation of this gene is seen in 

more than 50% of human cancers. Epigenetic modifications can also influence 

gene expression and contribute to cancer development. Moreover, interactions 
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within the tumor microenvironment which consists of surrounding normal cells, 

play an essential role in progression, survival of cancer cells, promote 

angiogenesis and modulate immune responses (73). 

There are more than 100 types of cancer, usually named depending on the 

organ or tissue where tumor arises, and also described by the type of cells that 

formed them. As an example, carcinomas, the most common type of cancer are 

formed by epithelial cells, those that cover inside and outside surfaces of the 

body, whereas sarcomas are developed in bone and soft tissues such as muscle 

or fat, leukemias begin in the bone marrow and lymphomas in lymphocytes (T and 

B cells) (67). Each cancer type has its own characteristics, progression, and 

treatment responses, and even within the same type of cancer there can be 

significant diversity between patients and at molecular level. These differences, 

that have been well described in large-scale studies, are defined as intertumor 

heterogeneity (Fig 6) (64). Understanding this heterogeneity allows for precise 

treatment approaches tailored to each patient’s specific tumor characteristics, 

increasing treatment efficacy and reducing adverse effects. 

  

Figure 6.  Intertumor heterogeneity, showing genetic and molecular differences across patients and 
tumors. 
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2.3.1 The hallmarks of cancer: decoding the complexity 

Cancer genomes are altered at multiple sites due to tumorigenesis, a 

multistep process by which normal cells undergo a series of genetic and 

epigenetic changes leading to the formation of a tumor. Mutations or alterations 

disrupt the normal regulatory mechanisms of cells, enabling a set of distinctive 

traits or characteristics that are commonly observed in most malignant tumors, 

collectively named as the hallmarks of cancer.  

Six essential alterations in cell physiology that dictate malignant growth were 

first described in 2000 by Hanahan and colleagues (73). These shared hallmarks 

of cancer (Fig 7) that are acquired during tumor development include: 

1) Self-sufficiency in growth signals: cancer cells acquire molecular strategies to 

achieve autonomy stimulating their own growth signals continuously and 

reducing their dependence from normal tissue microenvironment. Many 

oncogenes in the cancer catalog act by mimicking normal growth signaling, 

leading to unregulated cell division and therefore, tumor formation. 

2) Insensitivity to antigrowth signals: soluble growth and immobilized inhibitors 

present in the extracellular matrix or surfaces nearby cells operate as 

antiproliferative signals to maintain cellular quiescence and tissue 

homeostasis in normal tissues. However, cancer cells can evade these 

mechanisms, associated with the cell cycle clock, and bypass natural controls 

on cell division. 

3) Evading apoptosis: the apoptotic program is present in all cell types 

throughout the body, including a series of steps that cause programmed 

death of old and dysfunctional or unnecessary cells. Cancer cells become 

resistant to apoptosis allowing them to survive and accumulate even under 

unfavorable conditions. 
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4) Limitless replicative potential: independent of the cell-to-cell signaling 

pathways that limit multiplication, cells have a finite replicative potential. 

Therefore, once they progressed through a certain number of duplications 

they stop growing. This process is called senescence. Cancer cells can 

maintain their telomeres, protective caps on the ends of chromosomes, and 

consequently replicate unlimited and prevent cellular senescence.  

5) Sustained angiogenesis: via an “angiogenic switch”, tumors induce the 

formation of new blood vessels to ensure a dedicated blood, and 

consequently, oxygen and nutrients, supply. 

6) Tissue invasion and metastasis: during tumor development, primary tumor 

masses spawn pioneer cells that move out, invading nearby tissues and 

spreading to distant sites in the body. Tumors can succeed in these sites and 

found new colonies, forming secondary tumors named metastases.  

Later in 2011 and 2022, and due to the continuous study of tumor biology, 

four novel attributes (2 in 2011, and 2 in 2022) of cancer cells were proposed and 

added to the list of core hallmarks (Fig 7) (74,75). These new emerging hallmarks 

are: 

1) Reprogramming energy metabolism: uncontrolled cell proliferation also 

involves adjustments on the metabolism, shifting the energy production to 

fuel cell growth and division. Cancer cells reprogram their glucose metabolism 

through what is called the Warburg effect, limiting their energy metabolism 

mostly to glycolysis facilitating the biosynthesis of macromolecules and 

organelles required for assembling new cells.  

2) Evading immune destruction: although both the innate and adaptative 

cellular arms of the immune system are able to contribute to immune 

surveillance and tumor eradication, solid tumors managed to avoid detection 

and evade destruction by the immune system.  
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3) Unlocking phenotypic plasticity: during organization of cells into tissues, the 

end result of cellular differentiation is antiproliferative, being a barrier to 

continuing growing. Cancer cells unlock the restricted capability for 

phenotypic plasticity to escape from the terminal differentiation.  

4) Senescent cells: senescence not only shuts down the cell division cycle, but 

also evokes changes in cell morphology and metabolism, involving the release 

of proteins such as chemokines, cytokines, and proteases. Therefore, 

senescent cancer cells contribute to proliferative signaling, avoiding 

apoptosis, inducing angiogenesis, stimulating invasion and metastasis, and 

suppressing tumor immunity. A transitory state of senescence is well 

documented under therapy resistance, representing a form of inactivity of 

proliferating cancer cells, but more operative in other tumor stages of 

development, progression, and metastasis. 

  

Figure 7. Hallmarks of cancer and enabling capabilities of cancer. Figure from Hannah 
et al. 2022 (75). 
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The acquisition of these hallmarks of cancer is made possible by four 

enabling characteristics. The first two enabling characteristics were described in 

2000 and included genome instability and tumor-promoting inflammation. Cancer 

cells often increase the rates of mutation acquired in their genomes, including 

changes and the loss of function in a growing number of genes involved in sensing 

and repairing DNA damage, assuring correct chromosomal segregation in mitosis, 

and in general affecting to genomic “caretaker” systems. These genetic events 

can occur early in some tumor progression pathways and late in others. On the 

other hand, chronic inflammation can supply bioactive molecules to the tumor 

microenvironment, including growth factors, or enzymes that facilitate 

angiogenesis, invasion, and metastasis (73). The last two well described enabling 

characteristics consider epigenetic reprogramming, involving epigenetically 

regulation of gene expression that facilitates the acquisition of hallmark 

capabilities, and the presence of polymorphic microbiomes. Increasing evidence 

has shown that variability in the microbiomes between individuals can have an 

impact on cancer phenotypes. Some bacterial species stimulate proliferative 

signaling and modulate growth suppression by modifying tumor suppressor 

activity (75).  
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Understanding these hallmarks provides insights into the complex nature of 

cancer and guides research efforts in the development of targeted therapies and 

diagnostic approaches. In fact, targeted therapeutics can be categorized 

according to the effects on one or more hallmarks. Most of these therapies have 

been delivered directly to molecular targets involved in enabling particular 

capabilities. However, not because of inhibiting one key pathway the tumor may 

completely shut off a hallmark capability, and cells eventually adapt to the 

selective pressure resulting in relapse (74).  

2.3.2 Somatic variation in the human genome 

Everyone is born with a collection of genetic variants that define our 

genotype. This determines many aspects of our biology and our life, and together 

with environmental factors predispose us to different kinds of disease as well as 

prevent for others. These genetic variants are known as germline (Fig 8), and they 

are normally studied in the context of rare and complex diseases. 

Somatic variants (Fig 8) are genetic alterations that occur after conception 

and therefore are acquired in somatic cells but not in germ cells (76). Unlike 

germline variants, which are inherited from parents and present in every cell of 

an individual, somatic variants are only present in certain cells or tissues and are 

not passed on to offspring. These variants arise as spontaneous stochastic events 

during lifetime, because of specific factors, including exposure to carcinogens (UV 

light, pollution, chemical agents), chronic inflammation, lifestyle choices such as 

smoking, diet and physical activity, DNA replication errors or the impact of 

external stressors. Moreover, the risk of acquiring somatic mutations increases 

with diverse inherited variants. These acquired variants can lead to dysregulation 

of multiple essential cellular processes, including cell cycle control, DNA repair or 

apoptosis, and therefore are one of the main causes of cancer in combination with 

other genetic and epigenetic changes (72,77,78). 
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Figure 8. Variation in the human genome. Germline variants are those inherited from the parents, 
while somatic variants are acquired during lifetime. Whereas some germline variants can be 
protective, others can directly cause rare diseases, or increase the risk of developing a complex 
disease in combination with environmental factors. The majority of somatic variants acquired due to 
mutagenesis do not result into a disease (passenger variants), whereas others are the cause of 
cancer. 

 

In cancer, characteristic patterns of somatic mutations found in the genomes 

of the tumor are referred to as mutational signatures (54,79). These patterns 

result from particular mutational processes that can be caused by factors such as 

exposure to mutagens, defective DNA repair mechanisms or other cellular 

processes. As an example, signature 1 represents a clock-like mutational process 

(aging) and it is widely observed across all types of cancers. Each mutational 

signature is characterized by a distinct combination of mutation types and the 

specific nucleotide context in which these mutations occur. Their study provides 

insights into the biological processes driving cancer development and progression 

and helps to identify the causative processes and environmental exposures 

contributing to tumor formation.  
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Understanding the impact on cellular function of somatic variants itself, and 

of mutational signatures, enables cancer classification, patient prognosis, 

identification of therapeutic targets, prediction of response to certain treatments 

and consequently, advancing precision medicine approaches.  

2.3.2.1 Types of somatic variants  

Genomic alterations are classified according to the type of DNA change in 

single nucleotide variants (SNVs), small insertions and deletions (indels), copy 

number alterations (CNAs) and structural variants (SVs) (54). A brief description 

of them is provided below.  

- Single nucleotide variants (Fig 9) occur at a single nucleotide in the DNA 

sequence and involve its substitution with another at a specific position in the 

genome. SNVs are the most common types of genetic mutations, the smallest 

and the most easily detectable. Depending on their location in the genome, 

they can lead to alterations in the genetic code, impacting the function of 

genes and proteins, or may be benign with no detectable effect. Generally, 

can be classified as missense variants if the altered codon is translated into a 

different amino acid, stop gain or loss when they produce a new stop codon 

within the sequence or delete it, or synonymous in case the substitution does 

not implies a change in the translated amino acid. 
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- Small insertions and deletions (Fig 9) result from the insertion or deletion of 

one or more nucleotides in the DNA sequence, usually up to 50 bp. They can 

have significant consequences when appear genes, causing frameshift 

mutations, altering the reading frames, disrupting splice sites and introducing 

premature stop codons resulting into to the production of truncated or non-

functional proteins. 

  

Figure 9 Types of somatic variants. Up, representation of a single nucleotide 
variant. Down, visualization of a short insertion (below) and deletion 
(above). Small insertions and deletions are named as Indels. 
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- Copy number alterations refer to change (duplications or deletions) in the 

number of copies of a particular segment of DNA within the genome. CNVs 

(Copy Number Variants) can range in size from a few hundred base pairs to 

large segments of DNA containing multiple genes, as well as entire 

chromosomes. They can have significant effects on gene dosage and 

expression levels. Thus, they can alter gene function. 

- Structural variants (Fig 10) are the most complex type of genetic alterations 

and encompass DNA breaks and sequence reassembling elsewhere in the 

genome. Unlike SNVs and indels, structural variants can encompass much 

larger regions. Structural variants include large deletions and insertions, that 

can involve new DNA from exogenous sources like viruses, duplications, 

inversions and translations where more than one chromosome is involved. 

Different types of translocations can be also defined. Whereas there is no loss 

of genetic material in balanced translocation events, unbalanced 

translocations cause the loss of DNA. Moreover, two-way exchanges between 

non-homologous chromosomes are known as reciprocal translocations, 

whether a one-way transfer of a segment into a non-homologous 

chromosome is defined as nonreciprocal translocation. Generally, structural 

variants can have significant consequences on gene regulation, gene fusion 

and genomic stability, which is a hallmark of cancer. 
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2.3.2.2 Variant calling analysis to describe the somatic variation 

landscape of tumors  

Three different research approaches are required to assess the genetic 

profile of a disease depending on its type. To study the relationship between 

complex diseases and inherited germline variants, genome-wide association 

studies (GWAS) are used. These variants are used to be enriched in a subgroup of 

individuals that increase their risk of developing a phenotype or complex disease 

such as asthma, cardiovascular diseases or type 2 diabetes. A large number of 

patients showing the selected phenotype as well as a subset of control patients 

not presenting the phenotype are needed to compare their genetic variation 

landscape, mainly within their exons. On the other hand, rare diseases, health 

conditions with a very low prevalence in the population, can be studied using a 

more cost-effective whole-exome sequencing or even target sequencing to only 

identify pathogenic variants in coding regions of the genome, which are expected 

to occur at high penetrance. The number of patients evaluated is lower and 

mutations are not recurrently identified among all the cohort nor the entire 

genome but can occur in specific genes. Finally, the analysis of somatic variants, 

Figure 10. Types of somatic structural variation. 
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which is mainly related to cancer, is done through the comparison of an individual 

genome, evaluating those genomic positions where an alternate allele is 

supported by cancer cells and not present in normal and healthy cells. Thus, in 

order to identify recurrent variants across patients, a large number of sequenced 

normal and their matched tumor samples from diverse patients is needed. 

In the era of NGS, the general strategy to study cancer genomes and somatic 

mutations starts, as mentioned, by comparing normal and matched tumor DNA 

previously extracted and sequenced. Both sequences are aligned separately, and 

the BAM files obtained are the inputs for the variant calling, which is the main 

step for DNA alteration discovery.  

The massive amount of data generated by NGS required the development of 

algorithms based on statistical methods and computationally efficient. Variant 

caller algorithms are bioinformatic tools used to detect and identify genetic 

variants from high-throughput sequencing data. During the past years, many tools 

have been created for both germline and somatic variant detection, with the main 

difference being the usual need of a normal and matched tumor sequence to 

identify acquired genetic variants in an individual. These methods can also be 

grouped based on the variant type they are able to detect: SNVs, indels, CNVs and 

SVs. Whereas some tools are dedicated to one single class, others can detect 

different kinds of variants. However, the difficulty in finding each type is different, 

being SNVs the easiest and SVs the most complex ones. Mismatches between 

aligned reads and the reference genome allow to detect point mutations and 

short insertions and deletions. Structural variants are called based on split reads, 

part of a read maps to a different region or it appears as unmapped, and paired-

end read discrepancies regarding orientation, mapping chromosome and/or 

insert size. 
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Many factors can complicate variant calling steps, starting with technical 

determinants such as sequencing errors and alignment artifacts and followed by 

low frequency variants due to tumor heterogeneity or low purity of the sample. 

Each variant caller applies a specific criterion to call variants with a determined 

confidence, based on read depth, that is the number of unique reads in a 

reference nucleotide, base quality or variant frequency. Variant callers have their 

own strengths and limitations preventing the detection of false positive and false 

negative events (53). For this reason, researchers typically combine the results of 

diverse algorithms, applying a multi-variant calling approach to increase 

sensitivity and reduce the rate of false negatives (54,79) and occasionally 

reviewing the results through manual inspection. This approach has been 

implemented in many institutional pipelines and main large-scale cancer 

genomics projects. 

Variant caller algorithms play a fundamental role in genomic research and 

personalized medicine, enabling the identification of genetic variants associated 

with disease. Nevertheless, once variants are detected, their potential to activate 

oncogenesis, association with drug response or the disease evolution and 

outcome must be evaluated through annotation and functional analysis. Variant 

annotation is the process of assigning information to DNA variants and assessing 

their possible pathogenicity. This step is a crucial point and is a challenging bridge 

between machine and human-readable format (54). Although this interpretation 

can be used by researchers and clinicians to tune precision therapies, and despite 

numerous efforts to provide guidelines and best practices, its application to the 

clinics is still complex and problematic. Diverse algorithms including Variant Effect 

Predictor (VEP) (80), ANNOVAR (81) or PAVE 

(https://github.com/hartwigmedical/hmftools/tree/master/pave), have been 

also created to annotate genomic variants using information from diverse public 

databases and estimating the consequence and impact of each variant. 

https://github.com/hartwigmedical/hmftools/tree/master/pave
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2.3.2.3 Public databases and catalogs of genomic variants  

As the field of cancer genomics progresses, the intricate process of 

sequencing, alignment, and variant calling has illuminated the need for robust 

information technology infrastructures and sophisticated computational tools 

(78). These components are vital for transforming raw data into meaningful 

insights within the context of characterizing tumors in large-scale cohorts. 

Moreover, the imperative to biologically understand the results and disseminate 

findings has led to the development of public databases. These repositories 

facilitate the search and sharing of results and drive the advancement of cancer 

genomic research, underscoring their pivotal role in making such research not 

only possible but also deeply impactful. 

A wide range of databases collecting genomic variation have been 

developed, including all kinds of variant annotations, and cancer specific catalogs. 

Comprehensive databases of human genetic variation such as dbSNP (Single 

Nucleotide Polymorphism Database) (82) or gnomAD (Genome Aggregation 

Consortium) (83) can be used to annotate known germline variants and their 

population frequencies. This information also allows to filter false positive events 

identified as somatic. For functional annotation analysis, resources include 

information found in literature and curated annotations. As an example, ClinVar 

(84) is a widely used and freely available archive from the National Center for 

Biotechnology Information (NCBI) that provides information for interpretation 

and clinical significance genetic variants. Diverse tools for predicting the potential 

impact of a variant have also been created, including PolyPhen-2 (85), for amino 

acid substitutions or SIFT (86).  

Focused on somatic mutations and cancer, one of the most well-known 

databases is The Catalog of Somatic Mutations in Cancer (COSMIC), which 

includes almost 6 millions of coding mutations across 1.4 million cancer samples. 



   

 

46 

 

It also includes non-coding mutations, copy-number alterations, gene-fusions and 

mutational signatures (87). Moreover, a catalog of driver genes (the Cancer Gene 

Census) is also available to search or download. Although it is not a dedicated 

annotation database, The Cancer Genome Atlas (Weinstein et al., 2013a) also 

provides comprehensive genomic data for various cancer types, allowing to 

analyze and annotate genetic variation. Other databases and web portals such as 

IntoGen (89) are available to evaluate cancer driver genes previously identified in 

large-scale cohorts. 

2.3.3 Driver and passenger mutations in cancer 

The number of genetic mutations present in the DNA of a tumor sample is 

quantified in cancer genomics and is known as tumor mutational burden (TMB). 

It includes the total count of somatic mutations; those acquired during lifetime 

and therefore not present in all the cells of the body. TMB is typically expressed 

as the number of mutations per mega base (Mb) of DNA and it is often obtained 

using NGS techniques that allow the analysis of the tumor genomic profile. High 

mutational load, representing a large accumulation of mutations, is usually 

associated with environmental DNA damage and in clinical practice it can be 

related with a better prognosis and longer survival (64).   

The accumulation of specific combinations of genetic alterations or the 

presence of mutations in a defined set of target cells results in higher propensity 

for malignant progression. Therefore, not all somatic mutations promote cancer 

development (77). Two categories of somatic mutations were defined.  

Driver mutations directly or indirectly play significant roles in oncogenesis. 

They occur in genes (called cancer driver genes) that regulate key cellular 

processes, primarily enabling the previously mentioned hallmark capabilities 

(64,71). Driver mutations likely occur at different stages of tumor evolution.  

Diverse studies have revealed that normal cells frequently harbor one or more 
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cancer driver mutations, and that the landscape of drivers and their expansion 

greatly varies between tissues (<5% in colon cells carry drivers compared to >50% 

in endometrium) (90). Most genes act as drivers in one or two tumor types, and 

only around ten genes can drive more than 20 malignancies through mutations. 

Moreover, mutations can drive tumorigenesis only under specific selective 

constraints. On the other hand, passenger mutations are genetic alterations 

resulting from genomic instability but do not have an impact on tumor growth. 

The majority of somatic mutations found in cancer likely represent passenger 

variants and only a minority are drivers. Therefore, passenger variants can provide 

valuable information about the evolution of the tumor, can aid in understanding 

the complex genomic landscape of cancer, and can be used in research to identify 

specific mutational patterns. Because of this, they may also have implications in 

precision medicine and target therapies.  

2.3.3.1 Identification of cancer driver genes through 

bioinformatic approaches 

The identification of cancer driver genes is crucial in cancer genomics to 

advance our understanding of the biology behind tumor formation and 

progression, and to guide precision treatment and diagnosis approaches and 

develop effective therapies that target specific genes driving the tumor, to 

ultimately improve the patient’s quality of life.  The search for gene abnormalities 

that can lead to cancer development is one of the pillars of cancer research since 

the discovery of a point mutation in HRAS gene that causes the activation and 

transforming capacities in human bladder carcinoma (91). The improvement of 

DNA sequencing technologies and the advance in the annotation of the human 

genome enables us to reveal the landscape of somatic mutations in tumors. While 

only a few tens of cancer driver genes were characterized through biochemical 
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and molecular assays in the span of two or three decades, hundreds of cancer 

genes have been identified using cancer genomics in less than two decades. 

Since tumorigenesis follows a Darwinian evolution, spontaneous somatic 

mutations acquired in diverse cells are positively selected when conferring 

selective advantages for them. As a result, the patterns of mutations in specific 

genes, those driving tumorigenesis, deviate from their expectation under neutral 

mutagenesis. Following this assumption one common strategy to identify cancer 

driver genes involves the analysis of somatic mutations across large-scale cancer 

genomic datasets together with statistical methods to seek for genes mutated at 

abnormal high frequencies across the cohort.   

Driver discovery methods focus on one or more features of the mutational 

pattern of genes. Bioinformatic tools can be used to detect unexpected clustering 

of mutations in specific protein regions, to determine a bias towards the 

accumulation of variants with high functional impact or deviation in the frequency 

of trinucleotide changes (Fig 11). The obtained results allow to prioritize those 

genes that are more likely to have a role in cancer to explore them deeply (71,92). 

Mutational features may also reveal different tumorigenic mechanisms of the 

same driver gene across tumor types.  

 

Figure 11. Observed mutations in different tumor types and across TP53 cancer driver gene. 
Clustered and recurrent mutations have been identified within the gene by multiple algorithms. 
Image from www.intogen.org. 
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In 2020, the compendium of driver genes obtained through the analysis of 

cancer exosomes comprised between 500 and 600 mutational drivers. Although 

genes mutated at frequencies higher than 10% have already been discovered, it 

is predicted that the number of identified drivers will increase. New drivers could 

be derived from genes mutated at lower frequencies or in populations that have 

been biased against in tumor genome sequencing projects, as well as of 

conditions not profiled and new clinical samples including metastatic or relapse 

tumors. Integrative approaches incorporating multi-omics data, integrating large-

scale cancer genomic datasets and functional genomics information will allow to 

identify novel cancer driver genes. 

2.3.4 Intratumor heterogeneity and clonal dynamics 

Genomic differences among cancer patients diagnosed with the same tumor 

type have been demonstrated and characterized and are known as intertumor 

heterogeneity (Fig 12) (93). 

Furthermore, it is well known that tumors are formed by many cell 

populations (94–97), and each of these can accumulate different somatic genetic 

variants including passenger and driver mutations. This phenomenon is called 

intratumor heterogeneity and refers to the presence of genetic, phenotypic, 

morphological and functional diversity within the cells of a single tumor mass. 

 

Figure 12. Intratumor heterogeneity. Tumors formed by diverse cell populations including genetic 
and molecular differences. 
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 Clonal dynamics, also known as tumor evolution (Fig 13), can be depicted as 

a succession of clonal expansion rounds, where every round is driven by the 

acquisition of additional mutational events. Mutations are acquired stochastically 

because of proliferation and increased genomic instability. Then, as a Darwinian 

evolution process, these mutations are selected, and cell populations named 

clones are adapted resulting in ITH (90,98). The study of subclonality can reveal a 

tumor’s life history and the temporal order of the acquired somatic events. In the 

early phase of cancer evolution, founder mutations are acquired. This common 

ancestor or trunk of the evolutionary tree branches into subclones due to genetic 

instability and alterations in the tumor microenvironment, accumulating new 

mutations and leading the heterogeneity within the tumor tissue. Usually, 

mutations in driver genes are identified as founder mutations and consequently 

are present in all cells being clonal (64,97). Even though the Darwinian process 

can explain the history of tumors to some extent, the full spectrum of cancer 

evolutionary trajectories is not sufficiently encompassed. Non-Darwinian 

mechanisms have been also described and considered a form of evolution 

through one-hit catastrophic events that bring multiple genetic alterations at the 

same time. These macroevolutionary events can drive tumor initiation and 

progression (99).  

Figure 13. Tumor evolution during time. Cell populations at the beginning (left) grow and/or 
disappear during time and depending on the received treatment. Relapse is shown at the end 
(green cells). 
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Intratumor heterogeneity has significant challenges in clinical management and is 

likely the major cause of therapeutic resistance and tumor relapse. Clonal 

diversity can provide a more diverse material on which selection can work, 

allowing the tumor to therapeutic adaptation instead of extinction. The co-

existence of genetically distinct clones, that may interact between them also 

modulates progression and therapeutic responses (98). Although in theory, 

cancer therapy reduces genetic variation in cells, generally it only removes 

sensible clones, eliminating competition for growth and resulting in the expansion 

of subclones (98,100). The constantly changing environment of tumors underlies 

their ever-changing dynamics, where clones that were dominant reach a 

bottleneck and are depleted, whereas other minor subpopulations achieve a 

favorable position later and become dominant. ITH is also associated with the 

aggressiveness of the disease, as it has been demonstrated for example in 

prostate cancer (96). Based on several studies, we now expect that most tumors 

present a certain level of ITH. 

An example of the strong relationship between subclonality and therapeutic 

resistance can be found in chronic myelogenous leukemia (CML). Patients 

diagnosed with CML show notable response to a treatment known as imatinib 

mesylate, but a fraction of these patients relapse. Analysis of the tumor genome 

of these patients showed the presence of resistant cell subpopulations, which are 

selected by pressure once the treatment is given and leads to the expansion of 

therapy insensitive cells causing relapse (98). Moreover, it has also been seen that 

clonal evolution is more frequent in tumors receiving chemoimmunotherapy than 

treatment-naïve tumors, where the clonal architecture can be in equilibrium 

(100). 
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Understanding the complexity of intratumor heterogeneity is critical for 

effective therapeutic strategies and precision medicine approaches that directly 

target the diverse subclones within a tumor to achieve better patient outcomes. 

Especially in the early stages of a tumor, identifying resistant clones could avoid 

tumor relapse and improve cure rate.  

2.3.4.1 High-throughput sequencing analysis to decipher cell 

populations 

Intratumor heterogeneity is then another level of complexity when studying 

cancer. Analyzing genome sequencing data of bulk tumor samples and based on 

the cancer cell fraction (CCF) of a set of somatic mutations, the subclonal 

structure of tumors can be identified. Mutations with similar CCF will probably 

represent the same cell population. Thus, clustering mutations based on their CCF 

yields the subclonal architecture of a tumor sample. While mutations present in 

all cells will be defined as clonal and are supposed to be from the initiating tumor 

cell, mutations with a CCF lower than 1 and therefore present only in a subset of 

cells will be named subclonal and acquired during tumor progression. Cancer cell 

fraction could be estimated by adjusting variant allele frequencies (VAF) for local 

copy number variation and sample purity (101). 

The variant allele frequency of a set of somatic mutations can be directly 

estimated from NGS read counts. It is the result of dividing the number of reads 

supporting the variant allele by the total number of reads covering the genetic 

position or region. The value can be multiplied by 100 to get the VAF as a 

percentage. Since somatic mutations are mainly heterozygous, they are present 

only in one allele and consequently should be identified in half of the total number 

of reads covering their location. Therefore, if a somatic heterozygous mutation is 

clonal meaning it is present in all cells, its VAF will be around 0,5 or 50%. Lower 
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VAF values suggest the mutation is subclonal and a minor population of cells is 

carrying the genetic variant. 

Studying ITH implies new methodological challenges, especially if 

subclonality is studied with standard sequencing depths. Low frequency variants, 

i.e., subclonal mutations, are difficult to detect with high confidence when using 

around 30x coverage samples. Moreover, variant allele frequencies are normally 

calculated only for single nucleotide variants, but small insertions and deletions 

and large structural variants could also be used. However, calculating the 

frequency for these large variants is not as easy and becomes a challenge because 

of read count is not straight forward with SVs. 

Sequencing of a tumor sample only provides a static snapshot of its genetic 

landscape. The subclonality analysis of multiple tumor samples from the same 

cancer patient obtained from physically separate regions or different time points 

of the tumor development, allows not only a better and precise reconstruction of 

the cell populations but also their spatial distribution or their evolution during 

time (2,102,103). Comparing the VAF of a set of mutations representing a 

subclone and tracing them among longitudinal samples, researchers can evaluate 

how these cell populations change, expand or disappear from the tumor mass. 

The study of clonal dynamics together with clinical data can decipher, for 

example, whether a specific therapy results in relapse because of a specific 

resistant subclone. 

Diverse bioinformatic tools (104,105) have been designed to cluster mutant 

allele frequencies and reconstruct tumor evolution using NGS data of one or more 

samples from a patient.  
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2.3.5 Large-scale initiatives promoting cancer research 

As a response to the heterogeneous nature of cancer, advancements in 

technology and the collective effort to uncover the genetic landscape of cancer, 

large-scale studies have emerged during the last years.  

The development of high-throughput sequencing technologies, such as NGS, 

becomes an increasing number of generated data ready to explore and analyze. 

Alongside sequencing technologies, computational tools and algorithms to 

analyze and interpret the data rapidly evolve, allowing cancer community to 

process efficiently vast amounts of data. 

Moreover, due to the heterogeneity of cancer patients, and in order to later 

translate research into clinics applying precision medicine and focusing on the 

genetic makeup of each individual patient, large numbers of samples are needed. 

Therefore, the analysis of this data provides greater statistical power to detect 

rare genetic variation, significant associations and recurrent variants linked to 

cancer risk, prognosis and treatment response. Large-scale studies facilitate the 

identification of biomarkers and therapeutic targets specific to certain cancer 

subtypes that might not be evident in smaller studies. 

Collaborative efforts among researchers, institutions, and countries became 

essential to tackle the complex nature of cancer genetics. To promote cancer 

research, diverse initiatives led by big consortia have organized international and 

national projects collecting and sharing omics data. In this framework, the most 

important and well-known initiatives have been the International Cancer Genome 

Consortium (106) and The Cancer Genome Atlas (107), both of which aim to 

coordinate cancer research projects including tens of cancer types and being 

collaborative. 

Whereas the ICGC is a global initiative involving many countries (Fig 14), each 

leading the project and analysis of one cancer type, TCGA was launched by the 
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National Cancer Institute (NCI) and the National Human Genome Research 

Institute (NHGRI) and was based and coordinated within the United States. Spain 

could contribute in the ICGC providing Chronic Lymphocytic Leukemia samples 

and coordinating the project. Both initiatives aim to comprehensively characterize 

genomic variation in multiple cancer types including samples from around 20 and 

60 different primary sites respectively and facilitating cross-disciplinary research 

collaborations. At this time, sequencing data can be downloaded and used for 

research after an approved application, and results including genomic variation 

can also be explored through their websites and data portals. 

 

As an evolution of these large-scale projects mainly generating sequencing 

data from thousands of tumors, the ICGC launched a new worldwide initiative 

named the Pan-Cancer Analysis of Whole Genomes (PCAWG). In this new phase, 

researchers intend to jointly analyze more than 2.600 normal-tumor whole 

genome pairs across 38 cancer types. Data was harmonized, annotated and 

homogeneously analyzed to later compare results among patients and cancer 

Figure 14. ICGC cancer projects and corresponding countries. Image from ZHang P. et al, (2011). 
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types. Following the main goals of cancer genomics, PCAWG aims to deeper 

understand the molecular mechanisms behind tumor formation and evolution, 

including genetic patterns, driver mutations and key pathways that span various 

cancers. This study provides valuable insights on the identification of therapeutic 

targets, contributing to prevention, diagnosis and treatment through precision 

medicine and more effective cancer therapies. The PCAWG is the most 

comprehensive analysis of cancer whole genomes up to date, and required an 

infrastructure capable of performing large-scale analysis, enabling the storage of 

high amounts of data and their study using computational and data access tools.  

Recently, to strengthen cancer research and its translation into the clinics, a 

new effort from the ICGC has been defined. ICGC-ARGO (Acceleration Research in 

Genomic Oncology) aims to coordinate the integration of homogenic genomic 

analysis and phenotypic data on 200.000 cancer patients. This dataset will be used 

to decipher key clinical and biological questions. 

2.3.6 Challenges in cancer research 

Many years have passed since researchers started applying NGS data to 

cancer research. However, in the field of omics data, the utilization for next-

generation sequencing technology, the implementation of large-scale studies, 

and the translation of this research into the clinics, many challenges should still 

be faced.  

Storage, analysis and interpretation of large datasets can be managed thanks 

to cloud-based solutions and local high-performance computers (HPC) clusters as 

well as new bioinformatic tools. However, at a global level, data sharing and 

standardization of the data is usually an obstacle in terms of methodological and 

legal aspects. Combining data from different projects and platforms for meta-

analysis requires careful consideration of data harmonization, normalization and 

correction of batch effects to ensure valid comparisons. Moreover, the huge 
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number of tools, and the variety of for example variant caller algorithms that have 

discrepancies among the results, complicate the integration of the analysis. Other 

problematic procedures include the demanding characteristics of tumor samples, 

such as low purity, formalin-fixed paraffin-embedded archival material that could 

reduce sample quality, lack of matched-normal data. On the other hand, with the 

increasing availability of genomic data, keeping patient privacy and addressing 

ethical considerations related to data sharing and informed consent become a 

must. Although these ethical concerns are essential for research, they can also 

serve as hindrance since addressing them is neither immediate nor rapid, and 

their resolution can vary across countries. 

Lastly, the results obtained should be easily translated into clinical 

applications. Not only are sophisticated algorithms needed for accurate 

interpretation but also easy-to-use in clinical environments. 

While these challenges exist, the use of NGS and large-scale studies in cancer 

research holds great promise uncovering the complexity of the human genome 

and advancing precision medicine.

2.4 Processed pseudogenes: a by-product of 
L1 retrotransposition 

The human genome is comprised of repetitive sequences, some of which are 

thought to originate from viruses. These sequences have the capability to 

transpose within the genome, generating multiple copies. Their study has been 

crucial in understanding the evolutionary history of human genes. Mobile 

elements have played a role in shaping the genome by promoting genomic 

diversity and providing insights into ancient genetic events. Their transposition 

within the genome could result in the formation of new functional genes or the 

inhibition of coding sequences. Investigating their impact on the genetic 
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landscape has shed light on the mechanisms underlying genetic innovation and 

adaptation, offering valuable clues about human origins and evolutionary 

development (108,109). 

Mobile repetitive DNA, such as long interspersed elements (LINE) or Alu 

repeats, form a considerable proportion of the human genome. In particular, 

LINE-1 (L1) (Fig 15) composes about 17% of the entire human DNA content and 

20% of the mouse genome. Although most repeat elements in the human genome 

are inactive because of truncations, point mutations and rearrangements, it is 

estimated that between 50 to 120 L1 are currently active being the most 

functional autonomous retrotransposons in mammalian genomes. When 

transcribed and translated, functional LINEs encode two proteins that coordinate 

reverse transcription of their RNA template and integrate them back into the 

genome (110–112). This process, involving the insertion of a DNA sequence 

mediated by an RNA, is known as retrotransposition or “copy and paste“. In 

humans, this is carried out through the mentioned proteins encoded by LINE 

elements (LINE-1 ORF2 and ORF1) which function as reverse-transcriptase and 

endonuclease (113). This machinery allows LINE elements to propagate in the 

genome as parasitic units, usually at a distant site from the original element, 

shaping the human genome over evolutionary time. It is estimated that about 79% 

of human genes contain at least a segment of an L1 element within its 

transcription unit (114). 

 

Figure 15. A human L1 element is 6Kb in length and encodes two ORF flanked by 5' and 3' 
UTRs. 
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Pseudogenes are complete or partial copies of genes, usually unable to code 

for functional polypeptides (115).  Following the theory of neutral evolution by 

Kimura in 1968, over time, pseudogenes accumulate random mutations that can 

often cause disruption of the original reading frame. Therefore, these elements 

seem to be unconstrained by selection. It is known that mammalian genomes 

contain thousands of them (113) being the average density detected of 6.5 per 

mega base for the whole human genome. In fact, there is a strong correlation 

between the number of pseudogenes and the size of the chromosomes (116). 

Most frequent pseudogenes come from multigene families with large copy 

numbers. In general, housekeeping genes expressed in a wide range of tissue 

types are more likely to generate retrotransposed copies.  

Depending on the mechanisms they have been formed, pseudogenes are 

classified as non-processed or processed. Those of the first category are the result 

of segmental duplication of genes and subsequent loss of function by mutations. 

A small fraction of duplicated genes will remain functional, being a source for the 

formation of new gene functions and expression profiles and considered one of 

the main drivers of evolution and a source for functional variability. The second 

category, processed pseudogenes (PP), are formed through the 

retrotransposition of mature mRNAs using L1 machinery (Fig 16). LINE-1, a still 

active retrotransposon in humans, is able not only to mobilize its own transcripts 

(cis preference), but also other repetitive elements such as Alu, SINE-VNTR-Alu, 

and nonrepetitive sequences including mRNA from other genes (in trans). 

Therefore, processed pseudogenes are a by-product of LINE-mediated 

retrotransposition. PPs are found to be complementary DNA copies of mRNA 

transcripts randomly integrated into the genome (110,112,117). Considering the 

mechanism processed pseudogenes are formed, most of these sequences share 

the following characteristics. Since PP are the result of reverse transcription of an 

mRNA, they completely lack intron sequences and upstream promoters found in 
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their functional paralogous gene, and many of them have a poly-A sequence after 

the 3’ end. Usually, because they are mobilized and inserted into the genome 

using the LINE1 machinery, they are flanked by repeat elements of 7-17bp that 

were also present at the source region (110,113,115).  

 

  

Figure 16. Representation of processed pseudogene formation. A fragment of DNA (green) 
is transcribed, and the resulting mRNA is retrotranscribed and inserted randomly in the 
genome (pink). 
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The functional equivalent gene of many pseudogenes are likely expressed in 

the germline cell. Hence, mRNA transcripts of functional genes are easily 

accessible for being potentially retrotranscribed during the next replication cycle 

and, subsequently integrated into the genome through repair and ligation (115). 

In a genome-wide study in 2003, among 20.000 pseudogenes identified in the 

human genome, 28% were due to segmental duplication whereas 72% arose 

through retrotransposition (116).  

It is not clear if all human processed pseudogenes were formed recently in 

evolutionary time or many years ago. Even more, if these sequences have been 

highly mutated, they will not be detected as processed pseudogenes but 

completely different nucleotide sequences. In a review in 1985, the author 

claimed that all known pseudogenes arose after mammalian radiation, 

approximately 100 million years ago. In 2003, a comparative analysis between 

human PP and their orthologous region in the mouse genome was performed. 

Based on that, they could observe that pseudogenes align better to a different 

region in human than anywhere in the mouse genome. Therefore, the analyzed 

PPs were formed after the human-mouse split over 90 MY ago. The orthology 

criterion used in this study relies on the fact that retrotransposed mRNAs are 

randomly integrated, likely, far from their source gene. Actually, chromosomal 

localization studies revealed that PP and their functional genes are not syntenic, 

meaning they are not on the same chromosome. Additionally, it is known that 

their distribution does not correlate with the distribution of gene-rich regions 

within chromosomes. This statement argues against the idea that relaxed 

chromatin regions are more exposed to the integration of retrotransposed 

elements. It has been observed that PPs are more abundant near telomeres 

(115,116).  
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Processed pseudogenes are considered “dead on arrival” (112). Most PP 

acquire deleterious mutations to avoid them encoding functional polypeptides. 

Probably they are inactivated as soon as they are inserted due to missing 

promoters, frameshifts and truncation, and they cannot be transcribed by RNA 

polymerase II (115,116). Although genetic variants within them usually preclude 

their translation into a functional peptide equivalent to the active source gene, 

pseudogenes can affect genome function in diverse ways and influence evolution. 

First, their mobilization to another location can place the retrocopy in a novel 

regulatory context allowing the pseudogene to be transcribed and being an 

important source of material for new gene formation on evolution. In 2005, 

Harrison et al., identified about 4-6% of the known PPs expressed in the human 

genome (118). One remarkable example of new gene formation is the insertion 

of cyclophilin A (PPIA) into TRIM5 in the owl monkey genome. This gene fusion 

confers resistance to HIV-1 infection (113). Transcriptional consequences can 

include the expression of UTRs or introns of target genes, as well as the 

production of antisense transcripts. When they are inserted within a gene, they 

could cause its disruption resulting on an aberrant and nonfunctional transcript, 

or not allowing it to be expressed. Finally, PP can also change the stability of the 

source transcript and compete with it for micro-RNA binding because of sequence 

similarity(110). 

Germline L1s mobilization and processed pseudogenes formation have 

contributed considerably to the evolution of genes and genomes (111). If the 

event occurs in germ cells or during early embryonic development, it will be 

passed to the following generations and fixed in the population (112). Gene 

transcripts present as retrotransposed insertions in one or more individuals, but 

absent from the reference genome, are considered polymorphisms and are 

known as GRIPs (gene retrocopy insertion polymorphisms). Processed 

pseudogenes polymorphisms are present in many mammalian genomes including 
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mice, chimpanzees and humans and are an ongoing mechanism of mutation. In 

2013, Ewing et al., explored GRIPs using available data from the 1.000 Genomes 

Project. They could ascertain whether a particular polymorphic PP occurred more 

frequently in one population than others. For example, insertions of POLR2C, 

HSPE1 and SNRPC mRNAs appeared to be restricted in individuals with self-

reported African ancestry. Moreover, they could report 22 human, 201 mouse 

and 9 chimp GRIPs in introns or exons that could lead to novel gene fusions, 

modifying their function (113). Recently, in 2021, sideRETRO was published as a 

mapping-based algorithm to identify retrocopies of genes, or PP in whole genome 

and exome sequencing data. Using this algorithm, the authors analyzed five 

individuals with WGS and WES data from 1000 Genomes Project. In the WGS data 

they could identify 20 retrocopies, whereas in WES from the same individuals only 

6 candidates (117).  

Processed pseudogenes are not only retrotransposed in germline cells, but 

also occur in somatic tissues including neural progenitor cells, stem cells, early 

fetal development, induced pluripotent stem cells and tumors. Evidence of 

somatic retrotransposition during early development has been observed in 

Drosophila and in humans, contributing to a variety of human diseases such as 

cancers and neuronal disorders (111,113,119). Among these events, somatic 

processed pseudogenes are also included as a product of the capacity to act on 

mRNA that LINE elements have. As an example, Boer et al. described an exonized 

retrotransposed TMF1 gene inserted in the CYBB human gene, which knocked out 

the gene’s activity. The PP insertion was identified in a Dutch man diagnosed from 

chronic granulomatous disease, an X-linked disorder. The newly created 

processed pseudogene linked with the disease, occurred during early embryonic 

development of the patient’s mother and around 15% of her lymphocytes 

contained the insertion (120). As mentioned, somatic processed pseudogenes can 

occur in various cancers, so the estimation of de novo retrotransposition events 
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in normal and tumor cells is critical for understanding cancer formation and 

progression, as well as tumor heterogeneity (121). 

2.4.1 Somatic retrotransposition events in cancer  

In 1992, Miki et al. reported the first somatic retrotransposition event. In this 

case, they could observe an L1 insertion into the APC tumor suppressor gene of 

colorectal cancer (122). Before new L1 insertions were detected by next-

generation sequencing, increased retrotransposition in tumors was predicted due 

to cancer-associated hypomethylation and elevated transcription of L1s. Although 

retrotransposition occurs at significant rates in normal somatic cells, they are 

more easily detected once the cell clonally expands as a tumor. In that case, the 

insertion would appear as a tumor-only event erroneously. However, somatic 

individual mutational events appear randomly on the genome and are later 

subjected to selective forces. Therefore, insertions proliferate preferentially in 

tumors than normal tissues since cancer cells divide more rapidly (94,111,119). 

Each genome can have its own and unique active L1s, and they can vary 

between individuals in terms of activity having different “mutational power”. 

Consequently, retrotransposition occurs frequently in some tumors but differs 

greatly between cancer types, and individuals with the same cancer type. The 

disruption of mechanisms that usually suppress TE activity promote mutagenic 

retrotransposition in cancer. In 2012, by analyzing 43 WGS cancer samples Lee et 

al. identified 194 somatic insertions of transposable elements (TE). Authors 

developed a computational method (TE Analyzer or Tea) to detect the exact 

position and mechanism of TE insertions from paired-end WGS data. The 

evaluation of five different cancer types with Tea, reveals an average of TE 

insertions per tumor type ranging from 0 to 29. Colorectal tumors showed the 

highest frequency of somatic L1 insertions. In contrast, insertions were not 

identified in blood or brain cancer tissues (94).  
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Somatic mobilization of gene-derived transcripts has also been detected in 

cancer cells. Ewing et al. identified somatic processed pseudogenes by analyzing 

high depth sequences from The Cancer Genome Atlas. This study was the first 

comprehensive description of PP insertions in cancer. It included 85 pairs of tumor 

and normal genomes from acute myeloid leukemia (AML), breast cancer (BRCA), 

colorectal adenocarcinoma (COAD), glioblastoma multiforme (GBM), lung 

adenocarcinoma (LUAD), lung squamous carcinoma (LUSC) and ovarian 

carcinoma (OV). Comparing normal and tumor samples from each patient, three 

novel somatic processed pseudogene insertions were discovered in lung cancers 

(113). In a different study including 244 cancer patients, the percentage of 

somatic PP among all retrotransposition events was calculated. Of the total 

number of observed L1 somatic retrotransposition events about 2,3% cause 

mobilization of proximal exons or complete genes. Despite that, the range of 

genomic elements that can be targeted by transduction was known to be larger 

than just those near active L1 elements (111). The same year Cooke et al. 

published in greater detail the study of exclusively somatic PP insertions in cancer. 

Screening sequencing data from 660 cancer samples, they found 42 somatic PP in 

17 samples (2,6%). These samples include 14 primary cases and 3 cell lines 

sequences. As an example, they described the insertion of all five exons of the 

gene FOPNL, into the eleventh intron of SND1. The somatic insertion identified in 

a lung cancer included a portion of the 5’ UTR and the full sequence of the 3’ UTR. 

Similar to the mentioned previous studies, acquired PP were present mainly in 

lung and colorectal cancer. These results correlate with high rates of somatic 

retrotransposition of LINE elements in these tumor types (110). 
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Somatic retrotransposition events have been mostly detected in cancers of 

epithelial cell origin with a rapid capacity to proliferate. Although many PP 

insertions seem to be early events in tumor formation, some of them have been 

shown to appear later during progression and not in all sections of the same 

tumor (113,119).  Highly expressed transcripts are expected to be templates for 

somatic PP. In this way, the top expressed genes of a tumor tissue can be 

recurrently retrotransposed and inserted in a tumor genome (110,121). Many 

source genes seem to fall into similar functional categories. Gene ontology (GO) 

analysis of these genes includes terms like ribosomal function, metabolic 

processes, transcriptional regulation or signal transduction (113). Processed 

pseudogene insertions are more likely to occur in intergenic or heterochromatic 

regions than expected by chance. Also, in regions of the genome with a low exon 

density (111). Even so, insertions can also be located within annotated genes, and 

in that case tend to occur in genes frequently mutated in cancer including cancer 

drivers (94). 

The disruption of target genes by PP insertions can have a significant impact 

on tumorigenesis. Despite the mutagenic potential of PP, it remains unexplored 

the extent of contribution to tumor formation they have. The majority of somatic 

PP are likely to be passenger mutations, but a few have oncogenic consequences. 

For example, PP insertions within cancer driver genes or the amplification of 

oncogene copy number may contribute to cancer development. Moreover, 

insertions in untranslated regions (UTRs) or introns can also alter cell’s 

transcriptional activity, typically resulting in lower expression levels (110). The 

impact of retrotransposition events also depends on the orientation of the 

inserted sequence on the target gene, being antisense insertions less disruptive 

(94). Large scale studies across thousands of cancer genomes to identify somatic 

PP can help us to understand their impact on tumors.  
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2.4.2 Using NGS data to identify somatic retrotransposition 

events 

The identification of somatic retrotransposition events, including processed 

pseudogenes, can have important implications for human cancer health. Diverse 

projects started working on the discovery of PP using next-generation sequencing 

data (110,111,113). Normal and tumor samples from initiatives such as 1000 

Genomes, TCGA or the ICGC have been analyzed to identify both germline and 

somatic events. In this section we will focus only on the detection of somatic 

insertions.  

Considering the mechanism PP are formed, there are various determining 

hallmarks to describe this event. First, it is important to identify 5’ and 3’ junctions 

of the sequence insertion within the target region. Paired-end reads spanning the 

insertion can be misinterpreted as balanced translocations (111), hence other 

features should be considered. As PP are the result of mRNA reverse transcription, 

a few sequencing reads should also cover exon-exon junctions of the source gene 

showing the absence of introns. Finally, the presence of a poly-A tail, or repeat 

sequences flanking the inserted sequence can be observed (119). To consider the 

event as somatic, this mentioned hallmarks should be observed on tumor but not 

on their matched normal DNA (110).   

Massively parallel sequencing data, particularly WGS protocols, should help 

to explore the presence of somatic PP in cancer. However, sequence analysis 

pipelines usually lack sensitivity to detect rare insertions, especially if they occur 

late in tumor development (119). Heterozygosity and cellular and genetic 

heterogeneity of tumor samples can also result in lower frequency variants, 

adding a layer of complexity. On the other hand, when processed pseudogenes 

are flanked by repeat elements, their identification from short-read sequencing 

becomes a challenge. Nearly identical TE make difficult to differentiate the true 
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source or target regions (94). Therefore, and specific identification protocol 

together with manual inspection of the sequences and experimental validation of 

a significant number of candidates is needed to confirm their presence.  

In 2014 Tubio et al., developed a bioinformatic pipeline named TraFiC 

(Transposome Finder in Cancer) (111). Their pipeline is capable of detecting 

various classes of retrotranspositions focusing on transposable elements, and it is 

not exclusive for processed pseudogenes. From paired-end sequencing aligned 

data, TraFiC inspects diverse read-pairs to identify insertions. Then, the pipeline 

uses RepeatMasker (www.repeatmasker.org) to identify TE-like sequences among 

unmapped reads with an aligned mate. Anchored reads with mates belonging to 

the same TE type, sharing the orientation are clustered. Reciprocal clusters 

represent both ends of one candidate TE insertion. 

To specifically detect somatic processed pseudogenes in NGS data, Cooke et 

al., designed another bioinformatic method (110). The method was created to 

analyze targeted exome and genome-wide studies in cancer. In this case, paired-

end reads were aligned to the reference genome and transcriptome. These 

alignments allow them to identify reads across canonical splice sites and between 

a pseudogene and its insertion region. However, their method required at least 

three exons from a single gene represented in the tumor DNA.  To validate 

candidate somatic PP, they performed PCR on tumor and matched normal 

samples.  

As presented in this thesis, we studied somatic processed pseudogenes using 

2.589 tumor samples from the PCAWG dataset. After our results were published, 

other pipelines were created with similar porpoises. SideRETRO, for example, 

detects somatic and polymorphic insertions of retrocopies and processed 

pseudogenes retroCNVs (117). This method is a mapping-based algorithm that 

uses WGS or WES to identify the mentioned events, and provide their genomic 
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insertion sites, zygosity, genomic context and parental genes.  Comparable with 

the method developed by Cooke et al., sideRETRO requires aligned sequences, a 

reference genome and a reference transcriptome. Yet this pipeline was not able 

to identify insertions within highly repetitive genomic regions. 
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2.5 Translated small open reading frames: 
micropeptides 

Around 20.000 human genes are annotated as protein-coding genes, 

covering less than 2% of the human genome (123). However, large-scale analysis 

and computational advances have revealed that a larger portion of the genome is 

transcribed and, at times, translated. Among this portion of the genome, a 

considerable fraction of genes produces transcripts with mRNA-like features but 

apparently without coding potential. These transcripts are long non-coding RNAs 

(lncRNAs) and are longer than 200 nucleotides (124–126).  

The number of novel transcripts obtained from RNA-seq increased the 

attention paid to identifying the complete set of noncoding genes and protein-

coding ones. Ji et al., showed in 2015 that 40% of lncRNAs and pseudogenes 

expressed in human cells were translated and could potentially be functional 

proteins (127).  Not only within these ncRNAs, but also within 5’UTR or intergenic 

regions, a new class of genetic elements named small open reading frames 

(smORFs) has been discovered in the last years. These missing coding genes added 

complexity to the human genome annotation and proteome characterization. By 

definition, smORFs are sequences of less than 300 nucleotides and small proteins 

known as micropeptides can be directly translated from these short mRNAs. 

Micropeptides, which comprise a sequence of in-frame codons, may be of low 

abundance and can have tissue- and time-specific expression patterns. They differ 

from known bioactive small peptides as they are not the result of post-

translational cleavage and modification of large pre-proteins, but are translated 

from smORFs (128,129). These novel genetic elements have been misunderstood 

since classical ORF-finding algorithms set a threshold length of 300 nt or 100 

amino acids to detect them (125).   
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Analysis of smORFs coding sequences not only revealed that these genes had 

been discarded because of their short length, but also because of the classical 

assumptions and expectations about a canonical gene structure and sequence. 

The application of novel proteomic techniques has provided key findings 

regarding the use of non-AUG initiation codons in human translation, as well as in 

other eukaryotes and prokaryotes (128,130). In 2018, short and non-ATG-initiated 

open reading frames that express proteins were found in non-protein coding 

genes in mice (131). Diverse reports calculated that between 50 and 70% of 

smORFs detected do not initiate with canonical AUG start codon. Percentages 

differ depending on the experimental technique used for the study. The observed 

frequency of canonical AUG start codon occupancy by ribosome profiling is 

49,76% in humans and mice, followed by CUG (15, 44%), GUG (7,17%) and UUG 

(4,17%) (132). 

The identification of this hidden proteome opens the possibility to better 

understand human biology and disease. Although experimental validation of each 

peptide is needed to ultimately confirm their biological role, the function of 

several micropeptides have been characterized. It is known that they can act as 

regulators of larger protein complexes such as membrane-associated proteins 

(124), but also independently in different manners. The first functional encoded 

smORF in animals was described in 2007 by Galindo, M. I. et al. Their study was 

focused on the tarsal-less (tal) gene in Drosophila, which expresses a 1.5 kilobase 

(Kb) transcript previously classified as noncoding. Its classification was based on 

having no ORF longer than 100 aa and no known homologies. However, several 

candidate smORFs are present in the tal transcript and the peptides translated 

from ORFs of just 11 aa mediate the function of the gene, having an important 

role in development. Tarsal-less homologous genes were also identified in other 

species, defining a new noncanonical gene family in metazoans and of ancient 

origin (133). In 2008, 217 smORFs were identified using bioinformatics in 
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Escherichia coli, and 18 were found to be needed for bacterial growth (134). In 

humans, diverse studies have demonstrated that micropeptides are known to act 

as regulators of biological processes such as DNA repair, RNA decapping, calcium 

homeostasis, metabolism, stress signaling, myoblast fusion and cell death (125). 

An 84-aa-long conserved peptide named Protein myomixer that mediates 

myoblast fusion (135), or the SPAAR gene translated into a 90 aa micropeptide 

which regulates muscle regeneration (136) are two examples of these known 

functional micropeptides in humans. Linked to disease, Huang J et al. discovered 

in 2017 the HOXB-AS3 peptide translated from the human lncRNA HOXB-AS3. This 

micropeptide of 53-aa length suppresses colon cancer growth, and its loss is a 

critical oncogenic event in this tumor type (137). Micropeptides with a significant 

biological role are not only encoded by nuclear transcripts but also by the 

mitochondrial genome. Humanin is translated from a mitochondrial smORF and it 

is involved with programmed cell death (128). The functions of known 

micropeptides are very heterogeneous. A list of known functional micropeptides 

is provided in Table 1. 

All these independent functional studies, together with the realization that 

hundreds or thousands of smORFs are translated and conserved across 

metazoans, demonstrated the importance of exploring micropeptides to 

understand many aspects of biology and medicine clearly.  Understanding their 

origin, evolution and role is essential to clarify this underappreciated function of 

the genome. 
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Table 1. - Micropeptides identified in animals and their biological functions. Table extracted from 
(128).  

Micropeptide Conservation Function Size 
(AAs) 

References 

Polished rice 

(Pri) 

Insects Fly embryogenesis 11-32 (133,138) 

Toddler Vertebrates Promotes cell 
migration 

58 (139) 
 

AGD3 Mammals Involve in stem cell 
differentiation 

63 (140) 
 

Myoregulin 

(MLN) 

Mammals Calcium 
homeostasis 

46 (141,142) 
 

DWORF Lamprey Enhance muscle 
performance 

34 (143) 
 

Myomixer Vertebrates Involve in 
controlling muscle 
performance 

84 (144) 

MRI-2 Mammals DNA repairing 
process 

69 (145) 
 

NoBody 

(NBDY) 

Mammals MRNA recycling 68 (146) 

SPAAR Human and 

mouse 

Regulate muscle 
regeneration 

90 (136) 

Humanin Different 

species 

Involved in 
program cell death 

24 (147) 

MOTS-c 14 species Metabolic 
homeostasis 

16 (148) 

Minion Mammals Muscle formation 84 (135) 

HOXB-AS3 Primates Suppresses colon 
cancer growth 

53 (137) 
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2.5.1 Classification of small ORFs 

New ORFs, and in this case small ORFs, are usually classified according to 

their relatively localization in known transcripts (Fig 17). 

 

 

Considering gene structure, smORFs can be classified depending on whether 

they overlap with 5’ or 3’ UTRs, introns or exons of known transcripts, as well as 

with long non-coding RNAs or pseudogenes. They can be found in alternate CDS 

frames or starting from non-canonical codons (149). Small ORFs have been also 

identified among intergenic regions. However, there is no standard classification 

or labeling for small ORFs, and diverse classes are described depending on the 

study. Evidences of translation have been observed for all types of transcribed 

smORFs, with different translation efficiencies and chance of detection. Size, 

average rate of translation or the level of conservation differ among these classes 

(124).  

Open reading frames within intergenic regions seem to be the most 

numerous in fruit flies and mammals and are known to have a median size of 22 

codons according to a study done in 2017 (124). However, some studies 

considered that intergenic smORFs are randomly generated by our genomes, 

expecting not to be transcribed, nor functional. Therefore, the majority of the 

Figure 17. Classification of smORFs based on their location and considering known annotated 
genes (grey). 
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studies working on the identification of functional smORFs or micropeptides do 

not consider this class of smORFs to avoid inflating the estimates. 

It is known that a significant fraction of the translatome maps to 

untranslated regions and sequences previously considered to be noncoding (150). 

Consequently, the second most abundant class of ORFs are identified within the 

5’ untranslated regions of mRNAs encoding canonical proteins. Upstream ORFs 

(uORFs) have been reported in many organisms including yeast, flies, zebrafish 

and mice. They commonly regulate the translation of the downstream canonical 

ORFs in their transcript, and their presence often produces a repressive effect on 

transcription or translation of the main coding sequence. Translated uORFs have 

also been shown to form protein complexes with the protein encoded from the 

main CDS of the same mRNA. Its pure cis-regulatory role fits with their low 

translation levels and low sequence conservation (151).  

Long non-coding ORFs (lncORFs) are small ORFs found in putative lncRNAs, 

and the third most abundant class. Their size distribution is similar to that of 

intergenic ORF and uORFs, with a median of 23 codons.  Several RNAs previously 

classified as lncRNAs have been shown to encode and translate peptides with 

biomedically important functions, and to be highly conserved in evolution. 

Although their amino acid usage is similar to random sequences, ribosome 

footprints have been also detected in this smORFs class suggesting translation.  

Since in lncORFs there is no downstream ORF encoding a functional protein, it is 

difficult to imagine they have regulatory functions. However, it has been 

hypothesized that they protect translation of downstream elements (152).  

Lastly, smORFs found in exons of functionally monocistronic transcripts have 

a median size of 79 codons and seem to be translated as efficiently as canonical 

ORFs. Their amino acid composition resembles known protein coding genes and 
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differs significantly from randomized RNA sequences. Hundreds of them have 

been identified in humans. 

2.5.2 Identification of micropeptides  

Conventional gene annotation with ORF-finding algorithms has systematically 

discarded small ORFs as coding genes because of their level of uncertainty in 

terms of functionality, given their shorth length (128). Because they fall close to 

the transcriptional and translational noise of the cell, both in size and in 

expression levels, the validation and the functional characterization of 

micropeptides  have been challenging and limited, even at experimental level.  

Computational and experimental approaches have been developed and 

implemented to deduce coding potential, examine transcription and translation 

of novel regions and identify putative protein products generated from sequences 

previously annotated as noncoding, including also UTRs, introns and intergenic 

DNA. Computational methods allow researchers to determine all possible ORFs, 

but their results will probably include ORFs that are not translated or functional. 

In contrast, experimental techniques such as ribosome profiling (Ribo-seq), mass 

spectrometry (MS) or western blot and immuno-cytochemistry, can directly 

discover protein products. However, these methods, especially the last two, are 

not sensitive enough to detect low abundant micropeptides (125). In addition, to 

complicate things even more, the expression and function of micropeptides is 

tissue and time dependent.  Overall, tiny sizes, low abundances, rapid degradation 

and sample loss during preparation steps result in many technical challenges and 

difficulties to work with micropeptides. 

Applying both computational and experimental approaches appears to be 

the best strategy for the study and identification of micropeptides. Combinatorial 

methods can identify ORFs actively translated, non-canonical or species specific. 

However, experimental data is needed, and often additional samples for low 
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expressed transcripts (126). Transcription and/or translation are two criteria for 

assuming that smORFs are functional even if they are within coding or non-coding 

regions. Therefore, proteogenomics, that is the combination of peptidomics and 

massively parallel RNA-sequencing seems to be an interesting field to discover 

novel coding regions (125).  Advancements over the past few years in diverse 

technologies, allow scientists the discovery of a considerable set of putative 

coding smORFs. Below, a brief description of the computational and experimental 

methods most used in large-scale studies is given.  

2.5.2.1 Computational annotation through in-silico evolutionary 

approaches 

Several strategies have been used to systematically annotate small ORFs 

with coding potential (128). Based on in-silico translation of annotated transcript 

regions, a set of smORFs can be obtained. Transcripts should be converted into 

amino acids following the corresponding genetic code. Usually, ORF are identified 

using the most upstream canonical start codon (AUG) for each stop codon within 

the sequence.  The translation could be done starting from the first, second and 

third nucleotide (3 in-frame), and for both forward and reverse strand (6 in-frame) 

(153). Diverse studies also include non-canonical start codons as translation 

origins. After translating the selected transcripts, sequences of 100 aa or less, are 

defined as putative smORFs and therefore, candidate micropeptides. These 

computational methods can identify all possible ORFs, even sequences are low 

expressed or tissue specific, and without needing experimental data. However, 

the results may include ORFs that are not translated and do not correspond to 

micropeptides (126).   

In addition to experimental validation, which is explained below, 

conventional computational strategies have been invented and used to calculate 

the coding potential of small ORFs. These strategies evaluate codon content, 
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nucleotide composition, sequence homology, conservation between species, or 

secondary structure (125,126,128). As an example, Mackowiak et al., developed 

and implemented in 2015 a computational method to identify smORFs with high 

accuracy by using conservation features and codon and amino acid usage. Their 

identification started with in-silico translated sequences from an annotated 

transcriptome together with published lncRNA catalogs. They identify hundreds 

of previously unknown conserved smORFs in humans, mice, zebrafish, fruit fly and 

C. elegans (153).  

Among all the mentioned features, evolutionary conservation is a key sign 

that a genomic region is functional. In gene prediction, cross-species comparisons 

are a powerful technique since most genes are subject to evolutionary pressure 

to preserve their function and, therefore, their amino acid sequence. Therefore, 

the conservation of putative coding sequences indicates purifying selection and 

can be used to infer function through the identification of similar proteins 

sequences with known function. (124,125,154).  The term homology, used for 

proteins and genes encoding it, refers to two sequences that have a common 

ancestry. Two segments of DNA can share their ancestry because of speciation 

events (orthologs) or duplication (paralogs). Whereas orthologous genes 

generally conserved their main function, paralogs become different in sequence 

and function over time (155). Orthology-based searching among species, 

commonly based on sequence similarity, is performed to predict conserved 

biological functions to annotated novel genes, or in this case, micropeptides. 

Myoregulin, Phospholamban and Sarcolipin are some examples of micropeptides 

identified from homology-based characterization. This group of micropeptides 

share conserved peptide sequences and structure from flies to vertebrates, and 

they are involved in Ca2+ homeostasis (126,128).  
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True conservation and homology are difficult to establish considering the 

short length of smORFs.  Compared with canonical proteins, smORFs have lower 

quantitative conservation scores. Moreover, they have a higher probability of 

obtaining low conservation scores by chance (128,156). It is also important to 

ensure that sequence similarity is not because of short divergence time between 

the species (150). However, diverse studies have shown that smORFs are widely 

conserved on the sequence level in human and other species (124,126,129). 

Sequence conservation rarely occurs far beyond the ORF and the absence of 

insertions or deletions within their sequence implies conservation of the reading 

frame. 

 Functional micropeptides also display a characteristic depletion of non-

synonymous compared to synonymous mutations when compared to their 

orthologs (125,153). Generally, functional genes that are essential for cellular 

processes are subjected to selection pressures showing a reduction of non-

synonymous variants, trying to preserve their amino acid sequence and their 

function. Therefore, mutations that result in changes to the amino acid sequence, 

are often selected against, and discarded through purifying selection.  On the 

other hand, synonymous variants , which do not alter the peptide sequence,  are 

less constrained and may be more tolerated and fixed within the population. 

These different levels of selective pressure acting on synonymous and non-

synonymous substitutions in functional regions can be used as a signal for 

functionality. This  can be calculated using the substitution ratio (dN/dS), which is 

defined as the ratio of non-synonymous to synonymous substitutions. The 

substitution ratio is therefore a useful measure of the strength and mode of 

natural selection action on protein-coding genes. When there are strong 

structural constraints on a protein there is little or no accumulation of non-

synonymous changes. Therefore, the ratio for this sequence will approach zero. 

In contrast, if protein sequences are not under selection the ratio will be 
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approximately 1 (157–159). As an example, a program package for identifying 

smORFs with high-coding potential was developed in 2010. The analysis pipeline 

named sORF finder, is based not only on the hexamer composition of nucleotide 

sequences but also evaluates synonymous and non-synonymous substitution 

rates (160). Other computational identification methods are shown on Table 2. 

Although conservation is useful to functionally characterize new smORFs, it 

is not applicable for all. For example, evolutionary analyses are not able to infer 

protein-coding or regulatory potential for “young” de novo proteins (152,156). It 

is known that up to 1% protein-coding genes could be species-specific and of 

recent origin. This idea is controversial and depends on the ability of 

computational approaches to detect homologues. Whereas some studies 

conclude some functional micropeptides are conserved, others support that most 

translations do not show signs of constraint as coding sequences 

(123,124,128,156).  

Evolutionary conservation often suggests potential gene functionality. 

Nonetheless, the mere presence of a conserved and translated peptide does not 

inherently imply a critical or definitive biological function.  
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Prediction 
tool 

Description Website References 

PhastCons Identification of evolutionary 
conserved elements in a multiple 
alignment, given a phylogenetic 
tree.  
 

http://compge

n.cshl.edu/pha

st/ 

(161) 

 

PhyloCSF Determines whether a multi-
species nucleotide sequence 
alignment is likely to represent a 
protein-coding region. Examines 
the frequency of synonymous 
codon substitutions and 
conservative aa substitutions, and 
low frequencies of other missense 
and non-sense substitutions. 
 

http://compbi

o.mit.edu/ 

PhyloCSF 

(162) 

 

miPFinder Identifies and classifies potential 

microproteins, small single-

domain proteins that act by 

engaging their targets into protein 

complexes. It takes into account 

protein size, domain origination, 

known protein interactions and 

evolutionary origin. 

 

https:// 

github.com/Da

Straub/miPFin

der 

(163) 

 

MiPepid Machile-learning tool using 

logistic regression with 4-mer 

features. Predicts whether a 

sequence encodes a micropeptide 

based on its DNA sequence. 

 

https://github.

com/MindAI/

MiPepid 

(164) 

 

SORF Finder Program package for identifying 

smORFs with high-coding 

potential. Based on the hexamer 

nucleotide composition and the 

potential functional constraint at 

the aa level through evaluation of 

syn and non-syn substitution 

rates. 

 

http://evolver.

psc.riken. 

jp/ 

(160) 
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smORFunction Provides function prediction for 

smORFs by analyzing their 

correlated genes with known 

functional annotations. 

 

https://www.c

uilab.cn/smorf

unction/home 

(165) 

 

uPEPperoni For 5’UTR smORFs, based on 

conservation. 

http://upep‑sc

mb.biosci. 

uq.edu.au/ 

 

(166) 

 

Table 2. - Current computational methods for smORF identification. 

 

2.5.2.2 Ribosome profiling to monitor translation 

Ribosome profiling is a deep sequencing method of mRNA fragments 

attached to ribosomes that provides a genome-wide snapshot of active 

translation (126,130). Ribosomes are complex molecular machines that link 

amino acids in the exact order within a transcript to produce a protein product by 

translating it (125). Stalling ribosomes on mRNA and protecting the portion of 

mRNA from nuclease digestion, ribosome-protected RNA fragments (RPFs) can be 

converted into DNA libraries for reading their sequence. For each RPF a ~30 

nucleotide portion of mRNA is sequenced, producing a footprint fragment whose 

sequence can be mapped indicating its exact position on the reference genome 

and the mRNA it was translating. Ribosomes scan the coding sequences one 

codon at a time, showing a characteristic three-nucleotide periodicity of the 

translated region. Ribo-seq not only provides information about ribosome 

positions but also reports the amount of translation of a gene (130). Changes in 

protein expression that cannot be explained by transcript levels and translational 

regulation can be studied by combining ribosome footprint density and mRNA 

abundance measurements. Furthermore, since ribosome profiling requires only 

the nuclease footprint from ribosomes, it is less sensitive than RNA-seq to 

compromise RNA integrity of the sample (167).   
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Ribo-seq helped to extend the understanding of human genome translation 

and revealed thousands of open reading frames within noncoding and presumed 

untranslated regions (150,167). Mudge et al. recently published the first phase of 

an ongoing project. The aim of the consortium is to produce a standardized 

catalog of human Ribo-seq ORFs longer than 16 aa, to bring protein-level evidence 

into reference annotation databases. The presented catalog is the result of 

analyzing seven Ribo-seq ORFs datasets, however the consortium will incorporate 

a greater diversity of human cell types and tissues (156). 

However, there is still a technical debate on whether low signal levels 

represent productive translation or not. It is also known that strong association 

and ribosome occupancy does not always guarantee active translation of the 

region (124,126,128,130). Considering that actively translating ribosomes have a 

discrete movement along the mRNA in three nucleotide steps, methods such as 

the ORFscore have been developed to quantify the biased distribution of RPFs and 

reduce noise in conventional analysis (129). They applied ORFscore to long non-

coding RNAs and uncharacterized processed transcripts from Ensembl. By 

analyzing published ribosome foot printing data in HeLa cells, they could define 

135 translated smORF. 

Other algorithms and metrics have been created based on ribosome-

profiling characteristics. RiboTaper, for example, exploits the subcodon resolution 

of the obtained sequencing reads to reconstruct the full set of ORFs in coding and 

non-coding transcripts. Applying this algorithm, Calviello et al., could identify 504 

non-coding genes that harbor translated ORFs (130). Although some of the 

encoded ORF identified were shorter than 300nt, this study was not centered on 

micropeptides but in actively translated ORF. Researchers conclude that 

quantifying the presence of significant ribosome footprint reads in regions shorter 

than 20 amino acids becomes difficult. 
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It also needs to be considered that true coding potential and function at 

protein level is not certainly implied even though ribosome occupancy is 

observed. Translation can have regulatory consequences, for example modulating 

downstream ORF or peptides could be unstable.  

2.5.2.3 Mass spectrometry to directly detect peptides 

The gold standard in proteomics research is mass spectrometry, a powerful 

technique to directly detect and quantify proteins and peptides (125). This 

analytical tool measures the mass-to-charge ratio (m/z) of one or more molecules 

present in a sample (Fig 18). Using these measurements, the exact molecular 

weight of the sample components can also be calculated to identify unknown 

compounds, quantify known proteins and determine their structure and chemical 

properties (168,169) MS-based approaches help deciphering post-translational 

modifications and infer insights in biological functions and signaling pathways. 

Figure 18. Schematic representation of MS/MS experiments. 
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High-throughput analysis can be done using MS as this application can be 

automated. 

Usually, the protocol starts with the digestion of the complex mixture and 

consists in a combination of high-performance liquid chromatography (LS), used 

to separate the resulting peptides, followed by tandem mass spectrometry. This 

protocol, referred as shotgun proteomics, has been applied to identify and 

validate smORFs encoding micropeptides. However, since the detection of 

peptides depends on factors such as sequence length an abundance, novel 

micropeptides appear to be underrepresented when using shotgun proteomics 

and its detection using MS faces diverse challenges (125,128,129,170).  With the 

aim of identifying micropeptides, LC/MS/MS protocols should be modified (171). 

Detection is naturally biased towards the detection of more abundant 

proteins. The average tissue content of micropeptides is very low, and because of 

their instability are often subjected to rapid degradation or loss during sample 

preparation (125,128,154,171). This insufficient concentration in cells makes 

micropeptides detection difficult. Their identification can be likely benefit from an 

enrichment step during sample preparation. Therefore, the discovery protocol 

begins by enriching the proteome for low molecular weight peptides and small 

proteins. As an example, an study focused on improving the identification of 

encoded smORFs concluded that samples extracted in the lysis buffer detected 

most micropeptides, whereas acid extraction resulted in the fewest number 

(170). These efforts allowed them to identify 37 novel human micropeptides from 

non-annotated coding RefSeq regions in a lung cancer cell line. 

Since complex mixtures are difficult to fully analyze by MS, enzymatic 

digestion is performed obtaining a large number of peptide products. Trypsin is 

the proteolytic enzyme generally used, which cleaves peptides between arginine 

or lysine and the adjacent amino acids. Yet, the small size of micropeptides and 
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their tendency to contain fewer arginine and lysine residues, results in a low 

number of tryptic peptides generated. Encoded smORFs do not generate large 

enough signatures and have to be typically identified from a single peptide 

(125,154,170). To improve its detection, alternative proteases can be used in 

combination with trypsin (171).  

After obtaining m/z ratio from the mass spectrometer, the measurements 

have to be compared with a protein database to determine the sample 

compounds. Standard MS protocols generally utilize databases of known proteins 

and/or in-silico translated sequences using the canonical AUG start codon. 

However, micropeptides have been previously systematically missed by genome 

annotation because of their length and therefore, not included in these 

mentioned databases. Moreover, diverse studies have confirmed that non-

canonical start codons can also initiate translation (154).  To solve this problem, 

custom generated databases have been used to identify non-annotated proteins 

such as micropeptides. Protein sequence databases can be generated combining 

genomic and transcriptomic data, for example, by performing three-frame 

translation of the reference transcriptome, or RNA-seq data from a specific 

sample. Known proteins are then computationally excluded from the dataset. 

Proteogenomics, has enabled detection of missed gene products (128,170,171). 

Creating a custom database containing all short peptides that could be translated 

from the annotated transcriptome may result in a large set of peptides. Because 

of the inflated search space, this strategy suffers from reduced sensitivity and 

reliability. To avoid false positives peptide-spectral matches, expression level 

cutoffs, or cell- and condition-specific RNA-seq data should be curated for each 

experiment. By combining proteogenomics with RNA-seq experiments on K562 

cells and restrictive filters, Slavoff et al., confirmed the presence of 37 

micropeptides in this cell line (172). 
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MS proteomics offers direct evidence of encoded small ORFs, although the 

results can be biased depending on sequence composition. Numbers of identified 

micropeptides vary not only between organisms but also among cell lines and 

tested conditions. This information can also help reveal their biological 

significance. Data obtained from MS coupled with genomic, transcriptomic and 

translatomic data provides an alternative validation.  

2.5.3 Published databases to study micropeptides 

Diverse numbers of studies using computational, experimental or combining 

both approaches for the identification of mp have been published during the last 

8 years. Some of them provide public repositories and web tools to examine and 

download identified micropeptides.   

HaltORF was the first web-based searchable database that allows the 

exploration of the human transcriptome of out-of-frame alternative open reading 

frames with a start codon located in a strong Kozak context. Products of out-of-

frame alternative translation initiation result from distinct initiation codons 

located in different ORF in known human mRNA. Although they provide protein 

sequences of at least 24 amino acids long, it was not exclusively focused on 

smORFs (173). 

In 2016, sORFs.org (174) was published as a novel repository of smORFs 

identified using ribosome profiling. Experimental results from ribo-seq data are 

combined with conservation analysis and MS rescanning. In their latest version 

(175), authors provide smORFs identified in human, mice, fruit fly, zebrafish, rat 

and Caenorhabditis elegans. They include 78 ribo-seq datasets, 34 of them from 

human cell lines. Through their website (www.sorfs.org) you can, by default, 

quickly lookup for smORFs. A BioMart interface is also provided for advanced 

query and data exportation. For each smORFs, sorfs.org includes their genomic 

coordinates, the transcript and amino acid sequence, the annotation depending 
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on its location (5’ or 3’ UTR, lncRNA, pseudogene, intronic, exonic, intergenic) and 

the cell lines where it has been identified. Based on ribosome profiling data, 

metrics such as ORFscore are calculated to indicate true coding sequences. 

Conservation evidence are examined using PhyloCSF and sequence variation is 

annotated from dbSNP, ClinVar and Cosmic databases.  

Another smORF repository, specifically including small proteins identified in 

lncRNA was published in 2017. SmProt collects data from ribosome profiling and 

mass spectrometry experiments, known databases and literature mining. The first 

version of SmProt includes 255.010 small proteins from 8 species including 

human, and 291 cell lines or tissues (176). The new web server 

(http://bigdata.ibp.ac.cn/SmProt/) can be used for search, browser, download 

and submit information. Small ORFs are mapped to the genome and classified 

depending on their location on known transcripts. On their updated version, they 

improved the identification algorithm increasing its accuracy, predicted disease-

specific translation events and variants in smORFs and included small peptides 

with non-AUG translation initiation. By analyzing 6.419 new ribo-seq datasets 

they upgraded the number of small proteins to more than 3.6 million records.  

OpenProt was published and available in 2019 with the aim of offering a 

deeper and a more realistic and biologically relevant perspective of the proteome 

(177). Although it is not focused only on micropeptides, it includes all ORFs longer 

than 30 codons identified in transcripts, ncRNA and pseudogenes reported by 

Ensembl and RefSeq. OpenProt contains all possible ORFs within the mentioned 

sequences across 10 species. It also cumulates supporting evidence such as 

protein conservation, translation and expression. 
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Lately, and after starting our project in micropeptides, a repository of unique 

smORFs identified in human and mice was released to allow comparison from 

distinct original data sources. MetamORF (151) has been built collecting publicly 

available smORFs data, reprocessing, normalizing, homogenizing it and 

summarizing redundant information. However, MetamORF does not provide 

novel sequences. It gathers data from sORFs.org, OpenProt, SmProt, uORFdb, a 

comprehensive literature database on eukaryotic upstream open reading frames 

(178), TisDB, a website providing alterative translation initiation sites (179), and 

other RNA-seq and Ribo-seq or MS data repositories including RiboSeqDB, PITDB 

(180), TranslatomeDB (181) and RPFdb (182). MetamORF describes 664.771 

unique ORFs, including small ORFs, in the human genome, providing information 

to locate them on the genome. Also in 2021, nORFs.org was publicly available, 

containing 194.407 ORFs curated from OpenProt and sORFs.org. The length 

distribution of ORFs in nORFs.org falls mostly below 100 amino acids and all 

sequences have translation evidence from MS or ribosome profiling experiments 

(149). 

Small ORF have been usually identified within annotated coding and non-

coding regions but not in intergenic sequences, being generally unexplored. 

However, the last two repositories as well as the updated version of SmProt and 

sORFs.org start including encoded smORFs in non-annotated sequences. All these 

databases can be useful to benchmark new smORF-finding algorithms as well as 

to, for example, add more experimental evidence on an in-silico obtained set.  
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3. Motivation and objectives 
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The general goal of this thesis is to expand the understanding of the genomic 

basis of the biology of tumors through the study of the potential contribution of 

concrete processes and elements, such as somatic processed pseudogenes and 

micropeptides.  

The presented thesis can be divided into three main chapters covering 

different projects, and activity periods which resulted from the combination of 

prioritizing research opportunities, data availability and possibilities for 

publication. The chronology and the motivation behind the strategic plan of the 

presented thesis is explained in section 1: strategy and thesis trajectory.  

For the sake of clarity, this thesis is divided and organized at thematic and 

conceptual level, without considering chronology, resulting in the three following 

blocks:  

Chapter 1 - Analysis of somatic structural variants in CLL and their 

incorporation into subclonality studies. 

As part of a wide study to understand the genomic and molecular basis of 

Richter Transformation in some CLL tumors (lead by Dr. E Campo from IDIBAPS), 

our first aim and final contribution was centered in the general characterization 

of SVs within these tumors (together with Dr. Royo from the group). In addition, 

and in the same context, I also aimed at exploring and designing strategies to 

characterize the distribution of SVs across the different subclones in these 

tumors, which remains as an unsolved challenge within the community. In 

particular, we here aimed at:   

1) General characterization of SVs in CLL tumors (with Dr. Royo): 

identification and manual validation of somatic SVs through the analysis of short-

read whole genome sequencing data.  
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2) Define and generate strategies and methodologies to classify and assign 

specific somatic SVs to previously defined tumor subclones of CLL tumors.  

Chapter 2 - Identification of somatic processed pseudogenes in cancer and 

evaluation of their functional impact. 

In the context of the PanCancer Analysis of Whole Genomes project and, in 

particular, within a study of somatic retrotransposition events in cancer (lead by 

Dr. Tubio, Universidad de Santiago de Compostela) we had the opportunity to 

contribute with a study, also related to structural variation in cancer, but now 

focused on somatic retrotransposition events that generate processed 

pseudogenes across a wide range of tumor genomes.  Here, we aimed, not only 

to identify and characterize somatic PPs at genomic level but also to assess their 

functional impact on tumoral cells through the analysis of gene expression data.  

Our specific goals are: 

3) Develop and apply a methodology for the identification of somatic 

processed pseudogenes across multiple cancer types by using short-read tumor 

and normal genomic sequence data, 

4) By using both genomic and transcriptomic data, we aimed at evaluating 

the potential contribution of somatic PPs to tumors at functional level, both 

through the disruption of functional elements (genes) in the genome, as well as 

through their impact in gene expression as fusion transcripts.  
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Chapter 3 – Identification and characterization of novel candidate 

micropeptides using publicly available genomic and transcriptomic cancer data. 

Small open reading frames are a new class of genes, currently unexplored in 

cancer.  Our main goal within this part of the thesis is the identification and 

characterization of previously unknown micropeptides across the entire human 

genome and to investigate their potential role in cancer. We did this at two 

different levels: as part of a collaboration with the groups of Dra. Abad (VHIO) and 

Dr. Hector Peinado and Dr. Javier Muñoz (CNIO) that covered experimental, 

bioinformatic and mas-spectrometry identification and validation of Pancreatic 

Adenocarcinoma (PACA) associated micropeptides; and internally in the group 

with the aim of finding and annotating, at genome-wide level, all detectable 

unknown intergenic micropeptides and to inspect their potential role in a wide 

range of cancer types. The specific goals are:  

5) To define a new catalog of candidate micropeptide sequences for the 

mass-spectrometry searches, using transcriptomic data from pancreatic cancer 

samples.  

6) To identify new candidate intergenic smORF in the human genome using 

comparative genomics and evolutionary conservation features and properties at 

DNA and protein level, 

7) To evaluate these findings by assessing their expression levels in normal 

publicly available transcriptomes including diverse tissue types,   

8) To identify candidate cancer driver smORFs by searching for somatic single 

nucleotide variants detected in The International Cancer Genome Consortium. 

  



   

 

97 

 

  



   

 

98 

 

  



   

 

99 

 

4. Methods 
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4.1. Analysis of somatic structural variants in CLL and their 

incorporation into subclonality studies 

Chapter 1 

The first chapter of this thesis summarizes the work we did in collaboration 

with Dr. Elias Campo and Dr. Ferran Nadeu from IDIBAPS, and Dra. Romina Royo 

(BSC). As part of a larger study which included CLL longitudinal samples with the 

aim of understanding the biological basis and evolution of this cancer type, we 

worked on the characterization of somatic SVs. Moreover, we evaluated 

strategies to infer tumor subclonality based on these somatic variants, that are 

usually excluded from ITH studies. 
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4.1.1 Chronic lymphocytic leukemia longitudinal study cohort  

The genomic study of Richter transformation in chronic lymphocytic 

leukemia was approved by the Hospital Clinic of Barcelona Ethics Committee and 

lead by Dr. Elias Campo. This study includes a total of 19 chronic lymphocytic 

leukemia patients (9 female, 10 male) fulfilling the criteria of Richer 

transformation (RT). The complete change into this more aggressive cancer form 

was validated through pathological revision of all collected samples. Three out of 

19 cases developed RT before therapy, whereas in the remaining cases the 

aggressive transformation occurred after chemoimmunotherapy or after multiple 

lines of treatment. Almost all patients (17) transform into a diffuse large B-cell 

lymphoma-type, one developed a plasmablastic lymphoma transformation and 

one had a prolymphocytic leukemia transformation. Within this cohort, 15 tumors 

had unmutated IGHV (U-CLL) and 4 had mutated IGHV (M-CLL). 

For all except one case longitudinal samples (range 2-8 samples/case) were 

collected at different time points of the disease. Purity and tumor contamination 

were considered to discard samples. The complete dataset encompassing 

germline, CLL and RT samples was available for 12 patients, while 6 patients lacked 

germline material and 1 case had not the previous CLL sample but only the RT.  

This study cohort including 19 CLL patients was widely analyzed, described 

and published (3). The structural variants identification pipeline, including the 

merge of the results across variant callers and the rescue of SVs explained in this 

chapter was applied to all CLL patients (13) were both germline and tumor 

material was available. However, during all the work we have done on this project 

and particularly when analyzing SVs subclonality, we mainly explored case 63. 

Other cases including 365 and 1669 were also evaluated.  
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4.1.1.1 Disease course of one pilot CLL case  

From this longitudinal cohort, we mainly worked with one case. We used 

case 63 (male, unmutated IGHV patient) as a pilot to explore and define the 

strategy designed for quantifying variant allele frequencies of somatic structural 

variants (Fig 19).  

Tumor (4) and normal (1) WGS were available for case 63. Three different 

time points were explored (T1, T2 and T3), having two tumor samples from 

distinct tissues (peripheral blood – PB and lymph node – LN) for the first time 

point. Time points one (T1) and two (T2) corresponded to samples diagnosed as 

CLL, whereas the third time point (T3) was collected after Richter transformation. 

Regarding its type of transformation, case 63 had a diffuse large B-cell lymphoma-

type (RT-DLBCL), as most of the studied cases in this cohort. Its chronic 

lymphocytic leukemia tumor transformed into Richter after ∼ 10 years from 

diagnosis. 

 

Figure 19. CLL case 63 follow-up. Longitudinal samples collected in time points 1, 2 and 3 are 
represented as circles. Two samples from different tissues (LN and PB) are collected in T1. Sample in 
T3 corresponded to RT. Treatments are shown above the arrows indicating when and how the patient 
was treated. Samples are named based on the time point and tissue. 
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Cases within this CLL cohort were grouped based on the therapy received 

prior to RT. For case 63, its CLL tumor transformed into Richter after receiving 

diverse targeted therapies. Concerning its treatment course, tumor samples (2) 

corresponding to the first time point were collected before any treatment was 

given to the patient. Between the first and second time points, a combination of 

rituximab, fludarabine, cyclophosphamide and mitoxantrone (RFCM) was given to 

the patient. Two more different target therapies (rituximab in combination with 

bendamustine, and idelalisib together with rituximab) were used as treatments 

after the second time point and before Richter transformation (third time point). 

4.1.2 Whole genome sequencing and alignment 

Whole-genome sequencing (∼30x coverage and ∼126/151 bp paired-end 

reads) was performed for all patients including all the available tumor and normal 

samples. After sequencing, a collection of reads encoded with the 4-letter 

alphabet (C, G, T and A) referring to DNA nucleotides (cytosine, guanine, thymine 

and adenine) were stored in FASTQ files. Quality alignment scores for each 

nucleotide were also supplied in FASTQ files. 

Paired-end reads were mapped to the human reference genome (GRCh37) 

using BWA-MEM (v.0.7.15, https://github.com/lh3/bwa). After alignment, for 

each sequencing read its location on the human genome, mapping quality values 

and mate read information were outputted in SAM files. The obtained SAM files 

were converted into BAM and sorted using biobambam2 (v.2.0.65, 

https://gitlab.com/german.tischler /biobambam2). FastQC (v.0.11.5, 

www.bioinformatics.babraham.ac.uk/projects/fastqc) and Picard (v.2.10.2, 

https://broadinstitute.github.io/picard) were used to extract quality control 

metrics including the mean coverage for each sample.  
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4.1.3 Somatic structural variants identification 

Although somatic single nucleotide variants, short insertions and deletions 

and copy number variation were also identified for the tumor genomes within this 

cohort, the work presented in this thesis is only focused on somatic structural 

variants. Therefore, only the variant calling analysis of SVs is described below.  

A huge variety of variant callers have been designed by the community to 

identify or “call” variants through genomes. Each of these tools have been 

generated considering specific rules and criteria and therefore, variants detected 

can differ among them. For this reason, filtering the results from a set of callers 

and combining them can improve the identification of variants and remove false 

calls. A brief description of the tools used for analyzing somatic structural variants 

and the strategy designed for merging the results is explained in the following 

sections.  

4.1.3.1 Variant caller programs 

Somatic structural variants were not identified for the six patients lacking the 

germline sample but only for those 13 patients we could compare tumor versus 

normal genomes. In patients who underwent allogenic stem-cell transplant (case 

1523 and 4675) tumor versus patient’s germline and tumor versus donor’s 

germline variant calling were performed. For these patients, we only considered 

those variants that intersected between both analyses. Variant callers were run 

by Romina Royo from the INB Computational Node 2 group at Barcelona 

Supercomputing.  

Four different variant caller programs were used to extract somatic 

structural variants, including SMuFin (v.0.9.4), BRASS (v.6.0.5), SvABA (v.7.0.2) and 

DELLY2 (v.0.8.1).  
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- SMuFin (Somatic MUtation FINder) (183) is a reference-free method 

able to detect somatic variants including multiple types by 

comparing tumor samples with their matched normal samples.  

- BRASS (184) examines paired-end sequencing reads marked as 

unproperly paired to identify rearrangement breakpoints by 

clustering their mapped locations and performing an assembly. 

- SvABA (structural variation analysis by assembly) (185)also performs 

local assembly to create groups of sequence reads that deviate from 

the reference genome including unmapped or discordant reads and 

compares them to the reference to annotate SVs and indels. 

- DELLY2 (186) works as a prediction method based on read-depth, 

paired-end and split-read information to discover all kinds of 

structural variants (deletions, tandem duplications, inversions and 

translocations). Diverse optional parameters were modified when 

running DELLY2. We allowed 5% of tumor contamination in normal 

(-c 0’05) and at least 5% of alternate reads in the tumor sample (-a 

0’05). Moreover, the minimum size for deletions and insertions was 

15bp (-m 15) and 400bp (-m 400) for inversions, intrachromosomic 

translocations and duplications. 

4.1.3.2 Variant validation through manual inspection of aligned 

sequencing reads 

Results obtained from each variant caller algorithm were manually inspected 

to determine whether they were true somatic structural variants or not. Variant 

validation was also used to define the parameters and criteria strategy to merge 

SVs identified by multiple variant callers. 
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Before defining our merging strategy, we not only inspect sequencing reads 

of patients included in this Richter study (case 63, 365 and 1669) but also CLL 

patients (cases 16, 48, 64, 373 and 853) analyzed by Puente et al. in 2015. These 

five CLL cases were finally not included in this Richter’s research. From the set of 

published structural variants (187) identified in CLL samples, we manually 

inspected 35 SVs counting 15 experimentally validated. 

Variant validation was done based on aligned tumor and normal sequencing 

reads. To manually inspect the sequences, we used Samtools (v. 1.5) view mode. 

Using BAM files, we searched for two different supporting read categories 

including paired-end and split reads.  

Considering structural variants are formed by two breakend regions 

involving one (insertions, deletions, inversions, duplications or intrachromosomic 

translocations) or two chromosomes (interchromosomic translocations), 

supporting paired-end reads were those where each paired read was aligned 

within one breakend region. Moreover, the observed insert size between them 

differed from the expected (around 300bp) (Fig 20.A). On the other hand, split 

reads were broken, and some nucleotides aligned through one breakend whereas 

the remaining ones correspond to the second breakend location (Fig 20. B-C). If 

needed, reads observed across the variant region were realigned using web Blastn 

(nucleotide Basic local alignment search tool) 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) and the human reference genome 

(GRCh37).  
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For each manually validated structural variant, we counted the number of 

supporting PE (paired-end) and split reads. We then analyzed whether the variant 

was detected or not and if it was considered good or low quality by the variant 

callers. 

4.1.3.3 Filtering, merging and consensus variant calling results 

To end with a list of somatic structural variants for each tumor sample based 

on a multi-variant calling approach, the results obtained for the mentioned 

algorithms were filtered and merged. Through manual validation of identified 

structural variants we defined the final criteria to select consensus and 

conservative data set of variants describing the somatic landscape of tumor 

samples.  

First, structural variants shorter than 100bp were removed from this analysis 

and labeled as indels (small insertions and deletions). As the detection of the 

breakend position of SVs is less precise and algorithms are usually not able to 

Figure 20. Representation of tumor generated(up) and aligned (down) reads supporting a 
translocation. A) Paired-end read where each mate read is aligned in one chromosome. B 
and C) Reads generated at the breakend position are splitted after the alignment. 



   

 

109 

 

determine them with base pair resolution, we intersected variants considering a 

window of 300 bp around break points. However, we only kept for downstream 

analysis those SVs detected by at least two programs if a minimum of one 

algorithm called the variant with high quality (MAPQ ≥ 90 for BRASS, MAPQ = 60 

for SvABA and DELLY2). We use Integrative Genome Viewer (IGV) to visually 

inspect all structural variants.  

4.1.3.4 Rescue of somatic structural variants from longitudinal 

samples 

Based on the information obtained from longitudinal samples of the same 

patient, we rescue genomic alterations. Therefore, we could increase the number 

of detected somatic SVs.  

Those structural variants identified in one sample after the filtering and 

merging step, were automatically added in the additional time point(s) of the 

same patient if any of the variant callers detected the variant, independently of 

the filters.  

After all these steps, we ended with a list of conservative somatic structural 

variants for each tumor sample included in the Richter’s cohort. Somatic 

structural variants identified in case 63 were used to continue with our study of 

subclonality in Richter’s transformation. 
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4.1.4 Inferring structural variant allele frequencies to analyze 

intratumor heterogeneity 

The intratumor heterogeneity of a sample is characterized based on the 

variant allele frequency of somatic tumor mutations. Variants of similar 

frequencies are clustered together representing a specific cell population. 

Moreover, the analysis of samples collected at different time points allows us to 

reconstruct how these cell populations evolve during time and therefore, to 

observe clonal dynamics of the tumor. Variant allele frequency is calculated using 

aligned sequences and dividing the number of mutated reads by the total number 

of reads covering the mutated position. It is usually calculated for single 

nucleotide variants, or small insertions or deletions, but not for structural variants 

including large indels, inversions, duplications, intra- and interchromosomal 

rearrangements. This is due to the complexity of identifying all supporting reads 

aligned through the reference genome and the variability of the coverage within 

these large, mutated regions. For this reason, we first explored both supporting 

reads and coverage variability among diverse selected structural variants and on 

different CLL samples, including cases 63, and 365 from the Richter’s study to 

understand the nature of the region. Coverage distribution in healthy and tumor 

samples from CLL cases (29, 48 and 723) finally excluded for the publication, was 

also evaluated. 

Intending to design a strategy to calculate the variant allele frequency of 

somatic structural variants identified in Chronic Lymphocytic Leukemia patients, 

we started exploring somatic SV within an in-silico tumor sample. Then, we 

applied this strategy to SVs identified in the CLL cohort and we focused our 

analysis on case 63 using it as a pilot. 
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4.1.4.1 Analysis of aligned tumor reads in an in-silico sample 

As structural variants involve large genomic regions, reads covering the 

variant are usually challenging to align through the reference genome by the 

algorithms. Therefore, few supporting reads can be unmapped and not detectable 

on the BAM files. This loss of supporting reads directly influences the obtained 

variant allele frequency. 

So as to explore if all supporting reads are usually aligned and consequently, 

can be identified from the BAM file, we started analyzing somatic structural 

variants within an in-silico WGS sample (Fig 21.1). This artificial sequenced sample 

was created by Dr. Jordi Valls in the context of his PhD thesis and in our group. To 

generate a sample simulating a real genome sequence, human variants from the 

1000 Genomes Project ADD REF and the PanCancer project were inserted. All the 

artificial reads supporting each of these variants were known and searchable in 

both FASTQ and BAM files created for this in-silico sample.  

Manual inspection of in-silico SVs including a deletion (chr3:173048887-

chr3:173050455), and one inversion (chr20:53484361-chr20:53485620), both 

bigger than 1000 bp, and one interchromosomal translocation (chr21:18877844-

chrX:131913425) was done to determine if all supporting reads were aligned. To 

do this, we used Samtools (v.1.5) view mode to export and analyze aligned 

sequencing reads. If needed, reads were realigned using the BLAT (Basic local 

alignment tool) from the UCSC (https://genome.ucsc.edu/cgi-bin/hgBlat) and to 

the GRCh37 reference genome. 

We also explored mutated regions and a range of different window sizes 

(10bp, 50bp, 100bp and 150bp) from each breakend (Fig 21.2) of the structural 

variants to determine where supporting reads were aligned.  

https://genome.ucsc.edu/cgi-bin/hgBlat
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Figure 21. Schema showing the evaluation of in-silico structural variants. 1) A determined genomic 
region including the SV is analysed to search for aligned supporting reads.2) Different windows sizes 
are defined to identify the region where supporting reads are usually aligned. 

4.1.4.2 Calculating the variant allele frequency for in-silico 

structural variants to define a strategy 

All somatic SVs within the artificial in-silico sample were heterozygous, clonal 

and not within copy number variants, thus their expected variant allele frequency 

was around 0,5. That means half of the aligned reads should support the mutated 

allele, whereas half covered the non-mutated allele. For this reason, the in-silico 

sample was also used to define the strategy to calculate the variant allele 

frequency of structural variants. Results obtained were compared with the 

expected VAF (0,5) to adjust the strategy.  
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To calculate the variant allele frequency of each structural variant, we 

counted mutated reads and the total number of reads covering each position 

within a region of 100bp from each breakend position (up or downstream 

depending on the SV type) (Fig 22). Sequencing reads including mutated and non-

mutated were extracted from the BAM file using Samtools (v. 1.5). Mutated reads 

included paired-end where each mate aligned within a breakend and do not have 

the expected insert size (∼300bp) and split reads, defined as broken reads aligned 

through each breakend. Moreover, the number of mutated reads was corrected 

by adding one more read in all the base pair positions where part of a split read 

should be aligned, even if it does not directly appear on the BAM file. We then 

calculated the VAF of each breakend (two per SV), dividing the mean of mutated 

reads in 100bp by the mean of the total number of reads covering the same 

region.  

 

Figure 22. Schema of the strategy applied to calculate the variant allele frequency of a breakpoint 
based on aligned reads. 
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Following the described strategy, we analyzed the variant allele frequencies 

of a set of structural variants present in the in-silico sample. This includes 

deletions (n=45), intrachromosomal rearrangements (n=97) and inversions (n=20) 

longer than 1000bp. 

4.1.4.3 Applying the designed strategy to CLL longitudinal 

samples  

Following the strategy designed using the in-silico sample and mentioned on 

the previous section, we calculated the variant allele frequency for the somatic 

structural variants identified in CLL samples, including variants within the same 

chromosome larger than 1000bp and interchromosomal variants. For this 

analysis, to avoid an automatic misidentification of mutated reads, we removed 

those structural variants identified in a sample that clustered together or nearby 

(considering a windows size of 100 bp). 

As for the in-silico sample, for each structural variant we calculated two 

frequencies representing both breakends. We then compared the variant allele 

frequencies of breakends corresponding to the same variant to analyze whether 

they were similar or not and how to adjust them.  

4.1.4.4 Deducing cancer cell fraction of structural variants and 

clonal dynamics for one pilot CLL case 

To study intratumor heterogeneity and the evolution of different cell 

populations coexisting in one tumor sample, the variant allele frequency is 

translated into a cancer cell fraction. This value represents the fraction of tumor 

cells where the somatic variant is present. Similar CCF are clustered together to 

represent cell populations. For this reason, to continue exploring intratumor 

heterogeneity in CLL samples through somatic structural variants, the VAFs 

obtained from the pilot CLL case (63) were translated into cancer cell fractions. 
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Variant allele frequencies are converted into cancer cell fractions following 

the equation (188): 

CCF = VAF * 1/p * (p * Ntott + (1-p) * Ntotn), 

where p represents the purity of the tumor sample, meaning the fraction of 

tumor cells within the sample, and Ntot is the number of chromosome copies in 

tumor cells (Ntott) and in normal cells (Ntotn) at the mutation locus. Usually, Ntotn 

is 2 considering no copy number variation has occurred on normal cells. In those 

cases, a breakend was identified within a somatic copy number variant, the 

number of chromosome copies in tumor cells (Ntott) was calculated from the 

CNVs previously identified by variant callers and defined as the mean of total 

number of alleles in each position within the 150bp mutated region.  

We calculated the cancer cell fraction for each breakend identified in case 

63 separately to avoid variability due to CNVs affecting just one region of the SV. 

Finally, the CCF for somatic structural variants of this CLL case were obtained from 

the mean of the CCFs of each breakend. The values obtained were compared 

between longitudinal samples of the same patient (63) to observe the evolution 

of somatic structural variants during time. 

Results of chapter 1 starting in section 5.1 (page 161 ). 
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4.2. Identification of somatic processed pseudogenes in cancer 

and evaluation of their functional impact  

Chapter 2 

Within this chapter, and in the context of the Pan-Cancer analysis of Whole 

Genomes, we analyzed more than 2.000 tumors and their matched normal 

genomes to identify processed pseudogenes acquired somatically and explored 

their potential functional impact in tumors. This work was published in Nature 

Genetics in 2020, within a larger study of retrotransposition in cancer. 



   

 

118 

 

4.2.1 Genomic and transcriptomic cancer data 

In order to study the landscape of somatic processed pseudogenes in cancer 

genomes, we used the PCAWG international cohort. From a set of 40 different 

tumor types and subtypes, six were removed because of having less than 19 

donors. In total, we explored 2589 donors distributed on 34 tumor types and 

subtypes (Fig 23).  

 
Figure 23. Number of donors (y axis) in each PCAWG project, including 34 different tumor types for 
diverse countries. Bars colored in grey correspond to discarded sets of genomes. 

 
For the identification of somatic processed pseudogenes, we analyzed 

tumor-normal pairs. The normal sample for each donor was essential to identify 

somatic events, since they are only present in the tumor genome but not in its 

normal mate. Therefore, we downloaded for each tumor-normal pair, whole 

genome sequences formerly aligned using the GRCh37/hg19 refence genome. 

This data was downloaded in BAM format files. We also used the PCAWG catalog 

of somatic structural variation. This catalog was previously obtained by the 

consortium after applying the three official PCAWG variant calling pipelines 

(Sanger, Broad and DKFZ) and merged the results into VCF (Variant Caller Format) 

files.  
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After the identification of somatic PPs, we look for expression signals by 

interrogating tumor RNA-seq data available for 144 samples containing the event. 

RNA aligned reads in BAM files were downloaded from the PCAWG cohort.  

4.2.2 Somatic processed pseudogenes identification 

Due to the lack of standard protocols for the identification of somatic PPs, 

we first explored different bioinformatic strategies with one donor with the aim 

of generating an automatic protocol that could be extended to all PCAWG 

samples.  

We based our examination on recursive steps combining automatic searches 

for somatic structural variants through VCF files that could point to PPs, with 

manual inspection of the results by evaluating aligned tumor and normal reads 

from the same donor. Using this approach, we came up with a combination of 

some basic rules that provided candidate PPs. This set was then validated 

manually resulting in a more restrictive list of somatic PPs.  

Although the data analysis to identify somatic processed pseudogenes was 

the same in any case, one or multiple donors, the workflow varied in order to 

analyze 2589 donors automatically. Some statements were added, and the final 

criteria was defined once the results in pilot candidates were observed. A 

description of the genomic data analysis and the generation of the automatic 

protocol is given below.  
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4.2.2.1 Genomic data analysis 

4.2.2.1.1 Candidate PP selection through VCF files 

We adapted the protocol described by Cooke et al. (110) to identify 

somatically acquired processed pseudogenes. As PPs are the result of the reverse 

transcription and integration of an mRNA, the absence of introns and the 

presence of exonic sequences in unexpected locations were used as main 

characteristics to define an identification strategy. The combination of both 

features was necessary to avoid misclassification of somatic events, including 

translocations or deletions involving genes. Also, to prevent signals derived from 

mRNA contamination that can be found in DNA samples.  

Based on these criteria, we expected to see on the somatic structural 

variants VCF files, a) mutations joining an exon of this gene and any other part of 

the genome, the insertion, and b) point mutations denoting exon-exon junctions 

within the same gene, the candidate pseudogene. This is summarized in figure 24.  

  

Figure 24. Structural variants representing the main characteristics of PPs. A) Dotted lines indicate 
two SVs pointing to an insertion of a PP (pink) in chromosome 4 (yellow) resulting in the somatic 
fusion of a DNA within another genomic region. B) SV pointing t o a splicing event. Dotted line (SV) 
representing the deletion/splicing on an intron as a result of the reverse transcription of an mRNA. 
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Considering each structural variant is formed by two breakpoint positions, 

we annotate both genomic locations, +/- 100 bp because of unprecise given 

coordinates, using the RefSeq gene database (GRCh37/hg19) (Fig 25)  Structural 

variants where none of the immediate flanking breakpoints mapped on an exon 

were removed as they do not represent any of the mentioned PP features. 

This SVs annotation provided us with information to select candidate 

pseudogenes and to continue with the evaluation.  

 

Figure 25. Annotation of structural variants from a VCF file. Flanking positions of each breakend 
mapped to the reference genome in order to identify exon-exon breakends (left) on the same and 
exon-new loci breakend (right). In this example, MYC is the candidate pseudogene and appears 
inserted within intron 1 of FOXA1. 
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4.2.2.1.2 Manual validation: inspection of tumor sequencing 

reads 

The low reliability of automatic rules derives from the number of breaks not 

included in the official PCAWG VCF files because of their doubtful identification, 

as well as the number of false breakpoints obtained from these algorithms at the 

time we were using this data. Moreover, precise genomic coordinates for the 

structural variants are not consistently given since it is a challenge to define them. 

For this reason, candidate pseudogenes selected from the VCF file were 

confirmed with manual inspection of the tumor genome. BAM files including 

genome sequencing reads were visualized using Samtools (v.1.5).  

On top of the main features used (absence of introns and evidence of 

insertion into new loci), two reads-based conditions were evaluated on the tumor 

genome: i) paired-end reads and ii) split reads. A description of how these 

conditions were used is explained below. 

i) Paired-end reads. As explained before, the term is used when both 

ends of the DNA fragment are sequenced and distance between 

them (i.e. insert size) is known. In WGS data used for this study, the 

insert size was around 300 bp.  

PE reads where one end maps to an exon of the candidate 

pseudogene and its mate into the new integration loci support the 

insertion of the PP. PE reads mapping, each, a different exon of the 

candidate pseudogene with an insert size larger than expected, 

highlight splicing events on the source gene fig 26. We rely on the 

fact that these exons will be together in the tumor genome, as part 

of the same DNA fragment. However, they are aligned to the 

reference genome with larger distances than expected because 

intronic sequence separation. We could only identify these second 
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PE reads when the size of the introns in the source gene was large 

enough.  

ii) Split reads are sequences that break when mapping to the reference 

genome. That is when only some bases of the read map somewhere 

on the reference genome, whereas the remaining nucleotides are 

unmapped. Split reads add further evidence to SVs events and 

usually, when realigned provide the precise coordinates for each 

breakpoint. Therefore, both the insertion site within a new loci and 

exon-exon junctions of the PP can be observed accurately if the two 

halves of the split read align across the structural variant fig 26.  
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To evaluate both paired-end reads and split reads, aligned sequences from 

the tumor BAM file were obtained using Samtools. We mainly extracted reads 

aligned (+/-300bp) through the candidate insertion site as well as reads within the 

genomic coordinates of the source gene. Reads were then aligned to the 

reference genome (GRCh37/hg19) using UCSC Blat (189) (default parameters) to 

validate the insertion site, and to the reference RefSeq transcriptome using Blastn 

(190) (default parameters) to confirm splice junctions.   

Figure 26., Tumor sequencing reads supporting PP formation. A , B) Paired-end reads supporting the 
insertion site. One read aligned in the insertion loci and its mate within an exon of the source gene. C) 
Split read mapping the insertion point. D, E) Split reads mapping splice junctions of the same transcript 
(source gene). When these reads (read 2 D and read 1 E) are aligned to the reference genome, 
sequences are broken, as these exons are separated by an intron sequence in the reference genome. 
Distance between these PE is larger than the expected (insert size 300bp) as on the tumor sequence 
these pairs are closer than on the reference sequence. 



   

 

125 

 

Manual inspection of the tumor sequence verifies structural variants 

pointing to candidate processed pseudogenes formation are real. Moreover, this 

evaluation allows us to observe the presence of poly A tails, characteristic at the 

3’ end of the PP sequence.  

Finally, reads supporting the somatic variation were also evaluated in the 

matched normal genome, to confirm their absence and therefore define the 

event as somatic. 

4.2.2.2 Generation of an automatic protocol 

4.2.2.2.1 Pilot exploration of one candidate PP 

Before developing a protocol to identify somatic processed pseudogenes in 

all PCAWG cohort at once, one donor was explored to define and calibrate our 

strategy. We applied the genomic data analysis explained above, implementing 

both steps. This also allowed us to understand the characteristics of processed 

pseudogenes.  

From the PCAWG cohort, we randomly selected one sample (submitter 

donor id: 9af6ed4e-8cdc-4f49-84e9-ba1053b5b3ca) from 48 patients included on 

the lung squamous cell carcinoma (LUSC) subcohort. We decided to start with this 

group considering that other previous studies confirm the highest number of PPs 

somatically acquired on this tumor type-subtype (110).  

First, the somatic structural variant landscape of the patient was analyzed 

retaining those SVs with at least one breakpoint position (+/- 100bp) 

corresponding to an exon. Considering we expected to observe SVs supporting 

the insertion point and the absence of introns, CNIH4 was selected as the source 

gene producing a processed pseudogene in this tumor sample. We relied in CNIH4 

as a candidate PP since multiple structural variants involving exons from this gene 

were identified.  
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We decided to reconstruct CNIH4 PPs insertion using directly the positions 

provided by the structural variants identified and their corresponding location on 

the gene using the human RefSeq database (GRCh37/hg19). Next, we inspected 

its corresponding tumor BAM file to verify the automatic VCF-based predictions. 

We added the data obtained from tumor PE and split reads to the manual PP 

reconstruction.  

To further verify this processed pseudogene was acquired somatically, we 

looked for these reads on the normal pair genome.  

4.2.2.2.2 Protocol development for the complete analysis 

To scale up our search for somatic PPs to all 2589 PCAWG tumor-normal 

genome pairs, different workflows were tested. In this step of the study, we used 

the entire subcohort from lung squamous cell carcinoma (LUSC) encompassing 48 

donors. Our idea was to define a protocol as automatic as possible based on two 

types of somatic structural variants (exon-exon and exon-new loci). We selected 

candidate pseudogenes coupling this type of data, obtaining diverse datasets with 

different levels of sensitivity. We applied in-house scripts to obtain these datasets 

combining the following criteria: 

Criteria 1 – Evidence of insertion: at least one structural variant between an 

exon and any other region of the genome, representing one insertion site of the 

PP. The insertion locus could be an exon of another gene. 

Criteria 2 – Evidence of insertion: two structural variants joining the same 

source transcript and the same integration locus. It differs from criteria 1 since 

here we require evidence for both insertion sites. 

Criteria 3 – Evidence of splicing: at least one structural variant involving two 

exons of the source gene, likely indicating a minimum of one splicing event.  
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These criteria were combined to generate four different datasets: Dataset 1: 

criteria 1, Dataset 2: criteria 1 and 3, Dataset 3: criteria 2 and Dataset 4: criteria 2 

and 3. We count as a candidate pseudogene, each time a source transcript was 

detected inserted on a chromosome. Therefore, if the same source transcript was 

identified inserted in, for example, chromosomes 7 and 19, we considered them 

as two candidate pseudogenes. If the same transcript appeared on many SVs 

always inserted within the same chromosome, only one candidate pseudogene 

was counted. Figure 27 summarizes criteria and datasets generated.  

For each candidate set, we manually evaluated a subsample to determine 

the type and rate of false positives included and thus, the level of accuracy of each 

of the criteria used. We applied new specific rules while analyzing the results from 

this manual validation, until we defined the final identification criteria. 
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 Figure 2723. Visual representation of the criteria used to define candidate PPs and its 
combination to generate datasets with different levels of sensitivity. Criteria were defined 
based on the two types of SVs we expected to detect when a PP was acquired. 
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4.2.2.2.3 Final PP searching strategy 

From the previous analysis we could generate different collection of criteria 

that provides the diverse set of candidate somatic processed pseudogenes, as 

well as a validated collection. Results obtained for each criteria combination are 

explained in the Results section 5.2.2. Considering these observations, we ended 

up with the final PP searching strategy. Then, we applied it to the entire PCAWG 

cohort cited before, using its catalog of somatic structural variation. 

As PPs are the result of reverse transcription and integration of an mRNA, 

the identification of the presence of exonic sequences in unexpected locations 

within the tumor genome was used as the main criteria to define our final 

searching strategy. Structural variants supporting the insertion of a PP were 

defined to be flanking (+/- 100 bp) an exon sequence on one side (defined using 

the NCBI RefSeq gene coordinates; GRCh37/hg19) and any genomic region on the 

other. To avoid events such as intrachromosomic translocations or deletions 

involving other genes, structural variants affecting the same chromosome with a 

distance between both breakpoints lower than 100Kb were excluded. We 

considered insertions of the source gene less likely to occur near its location.  

Finally, we labeled as candidate PPs those integrations supported by both 

insertion points with a distance flaking these sites of less than 350bp. Moreover, 

to avoid nucleotide insertions, at least 50 bp of the same source gene exon, the 

candidate PP, must be inserted (Fig 28).  
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Candidate pseudogenes identified using the criteria mentioned above were 

evaluated through manual inspection of the tumor sequence. This resulted in a 

validated collection of somatic processed pseudogenes. We considered a 

candidate as validated, if PE or split reads covering both insertion sites (insertion 

loci - source gene, source gene – insertion loci) were identified on the tumor 

genome. Manual inspection allowed us to also identify sequencing reads 

supporting splice junction sites. However, evidence of splicing was not as 

determinant criteria since it could derive from mRNA contamination of genome 

samples.  

Although our identification strategy was based on the somatic structural 

variant landscape, manual inspection was also done for the normal sequence of 

the donor, to confirm the PP was acquired during tumor development.  

  

Figure28. Schema of the strategy applied to identify candidate processed pseudogenes. 

Two somatic structural variants (SV1 and SV2) must be identified on the VCF file 
representing both insertion points with a distance flanking these sites (pos1_i and pos2_i) 
shorter than 350bp. At least 50 bp of the same source exon must be inserted (green). 
Events affecting the same chromosome (intrachromosomic) must be inserted more than 
100Kb farder than the source gene coordinates. 
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4.2.3 Expression evaluation of acquired PPs 

Evidence of chimeric RNA processed pseudogene – receptor loci were 

required to distinguish expression of the PP from the transcription signals of 

native mRNAs derived from the source gene. To do so, we interrogated RNA-seq 

data, if available for the donor that have acquired the PP, involving retrocopies 

with part of the integration region.  

For each candidate PP, we extracted sequencing reads from the BAM file 

aligned to the source gene coordinates. We also selected reads aligned to the 

receptor gene or to the intergenic sequence (+/- 5Kb from the insertion site) and 

unmapped reads. All these selected reads were used as query to perform two 

independent Blastn analysis. On one side, reads were aligned against a database 

with all cDNA transcript forms described in RefSeq (NCBI) database corresponding 

to the retrotransposed mRNA sequence of the source gene. The second alignment 

was done against the complete reference DNA sequence of the receptor gene or 

the genomic region 5Kb upstream and downstream the integration site for those 

candidates inserted within an intergenic sequence (Fig 29).  

Positive expression of the candidates and/or the formation of fusion 

transcripts was confirmed with at least two paired-end reads. In each pair, one 

end must align to the cDNA sequence of the source gene, and its mate into the 

DNA sequence of the integration loci. Both with more than 98% identity. 

Identification of split reads across one insertion site was also considered as 

supporting evidence of expression.  

Expression signals were used to predict and manually reconstruct the 

resulting fusion PP-host gene transcript. Also, to infer the fusion gene coding 
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potential through in-silico translation starting from the initial codon (ATG) for 

each of the host gene mRNAs. 

Results of chapter 2 starting in section 5.2 (page 185 ). 

  

Figure 29. Evaluation of positive somatic processed pseudogene expression. RNA-seq reads were 
extracted from the source gene (query green) and integration region (query pink). All these 
sequencing reads were aligned (Blastn) against reference cDNA corresponding to the 
retrotransposed mRNA (database green) and reference DNA of the integration region (database 
pink). Aligned PE and split reads within dashed rectangles represent sequences supporting a fusion 
PP-host gene transcript confirming the expression of the somatic PP. 
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4.3. Identification and characterization of novel candidate 

micropeptides using publicly available genomic and 

transcriptomic cancer data  

Chapter 3  

Study 1: 

In this first study included in the third chapter of the present thesis, we 

describe the results obtained from our efforts in the context of the identification 

and characterization of new functional micropeptides in human and their 

application in mass spectrometry studies of cancer micropeptides. This work was 

in collaboration with Dra. Maria Abad and Marion Martínez from VHIO and Dr. 

Javier Muñoz, Dr. Hector Peinado and Pilar Ximénez de Embún from CNIO. 

Study 2: 

The knowledge acquired from this first study opened the possibility of 

searching for unexplored micropeptides and determine their relationship with 

tumorigenesis. Therefore, this second study is focused on the identification of 

novel candidate micropeptides located in intergenic regions, using comparative 

genomics and evolutionary conservation features at DNA and protein level. We 

search for evidence of expression in healthy tissues and evaluate their role in 

cancer by searching for clusters of mutations within them. 
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Study 1: Catalog of candidate micropeptides for 
MS/MS searches 

4.3.1 Transcriptomic data from pancreatic adenocarcinoma  

Transcription and translation are tissue-specific biological processes 

meaning different phenotypes are generated from the same genome sequence 

among tissues. Therefore, tissues are distinguished by gene expression patterns, 

resulting in distinct regulatory programs controlling the function of each specific 

tissue type. These processes can also vary between normal and tumor cells. Since 

the presented study is focused on the identification of micropeptides in 

pancreatic adenocarcinoma through mass spectrometry, we based our search of 

novel candidate small ORFs in the transcriptomic analysis of the same tumor type.  

We randomly selected six pancreatic adenocarcinoma adult patients (3 

female, 3 male) from The International Cancer Genome Consortium. All of them 

were provided by the Australian project PACA-AU. For each patient, we used BAM 

files of aligned RNA-seq samples (126 bp length, paired-end reads). Sequencing 

reads were previously aligned by the consortium with STAR (v.2.4.0i, 

https://github.com/alexdobin/STAR), using GRCh37 reference genome 

(https://github.com/ICGC-TCGA-PanCancer/pcawg3-rnaseq-align-star).  

4.3.2 De novo transcriptome assembly 

To end with a set of novel candidate micropeptides within non-annotated 

transcripts, de novo transcriptome assembly was done for the 6 pancreatic 

adenocarcinoma patients. The assembly of RNA-seq reads without a sequenced 

genome to guide can, in theory, reconstruct transcripts even from regions missing 

from the reference. 
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De novo transcriptome assembly was done using StringTie (v.1.3.6, 

https://ccb.jhu.edu/software/stringtie/), a computational method to assemble 

complex data sets into transcripts. Starting with aligned RNA-seq paired-end and 

spliced reads, StringTie groups them into clusters and creates a splice graph for 

each cluster. Later, the approach identifies transcripts from these clusters of 

reads and estimates their expression levels simultaneously (Fig 30).  

Since we aim to also obtain low-expressed transcripts, the minimum number 

of reads per bp coverage to consider for transcript assembly was 2’5 (default 

parameter). Moreover, to assemble short transcripts the minimum length allowed 

for the predicted sequences (-m parameter) was set to 50 bp. 

One more optional parameter was tested when running StringTie for the 6 

RNA-seq samples. A brief description of it is given below.  

· Maximum fraction of multiple-location-mapped reads that are allowed to 

be present at a given locus (-M). StringTie was tested with default parameter (1’0) 

and 0’1.  

 

We compare the results obtained after testing both options (default and 0’1) 

by manual inspection and we define the best approach to continue with the 

identification of novel transcripts. 

  

Figure 30. Schema showing StringTie identification of transcripts. A minimum coverage of 2,5 
reads and a minimum length of 50bp is needed to define the clustering RNA-seq aligned 
reads as a transcript. 
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After running StringTie, we obtained for each patient one GTF (General 

Feature Format) file containing all the identified transcripts, their genomic 

coordinates, strand and expression values in terms of coverage. Transcripts 

identified in chromosome Y in the three female patients were removed since are 

false positives due to previous alignment errors.  

4.3.3 Transcriptome combination of multiple samples analyzed 

A list of transcripts was obtained for each patient analyzed. However, a 

consensus set of sequences detected in diverse samples was needed to continue 

with the identification of novel candidate micropeptides in pancreatic 

adenocarcinoma. The merging step will allow us to remove false positives 

obtained from de novo assembly because of the inclusive search of low expressed 

and short regions.    

We explored two approaches to combine the results and get a 

representative set of expressed transcripts for pancreatic adenocarcinoma. We 

tested the merge StringTie function available for the program, as well as we 

defined our strategy to determine consensus transcripts.  

4.3.3.1 StringTie transcript merge mode 

StringTie provides a usage mode different from the assembly function to 

merge and assemble transcripts from diverse RNA-seq analysis and to obtain a 

non-redundant set of consensus and filtered sequences.  

To run the merge mode, we used as inputs the six GTF files obtained from 

de novo assembly performed across RNA-seq samples. Even different options can 

be modified on this function, StringTie merge was run with default parameters.   
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4.3.3.2 In-house strategy to obtain a consensus set 

The criteria used by StringTie merge to combine the results and afford a 

consensus set is not described in the documentation. Accordingly, we explored 

the results obtained from de novo assembly and searched for a merging strategy 

applying diverse criteria.  

Our protocol was divided into a merging step of the transcripts identified in 

RNA-seq, the definition of a consensus sequence including the clustered 

transcripts, and the subsequent selection of representative groups. 

4.3.3.2.1 Merging step through transcript clustering 

To merge transcripts and isoforms identified on different samples, we first 

explore diverse requirements to consider two transcripts as the same one. 

Therefore, we started exploring the overlap between their genomic coordinates. 

We examined a range of window sizes (0, 150, 250, 500, 750, 1000, 1500, 1750, 

2000bp) to define the best criteria for considering both start and end coordinates 

represent the same transcript in diverse samples. We later analyzed whether 

strand, and the number of exons were also necessary to consider for merging 

these sequences. Manual inspection of the clustered transcripts obtained 

depending on the applied requirement was done to define the strategy. An 

extended description of this decision-making process is explained in the results 

and discussion sections.  

Finally, we merged isoforms from different samples in case they shared both 

start and end coordinates within a window size of 500bp, regions overlapped 

between them, and had the same strand and number of exons (Fig 31). Merged 

isoforms were outputted in a tsv (Tab-separated values) format file. For each 

clustered group of isoforms, we recalculated their start and end coordinates as 

the average among all the samples where it was identified. 
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Figure 31. Schema summarizing the merging step. Transcripts detected in different samples are 
clustered if they share start and end coordinates (ws 500bp), and the number of exons and strand 
are the same. The consensus sequence obtained after considering clustered transcripts is shown in 
grey. 

4.3.3.2.2 Definition of a consensus sequence and selection of 

representative transcripts 

After the merging step, we aim to get a consensus sequence for each group 

of merged transcripts considering the variation among exon genomic coordinates 

detected in samples.  

To define the best approach, diverse measures were proposed and studied 

through exploring the sequences and the manner their exons overlapped. After 

this, start and end transcripts were calculated as the mean between all clustered 

transcripts. Exon coordinates were defined based on those more represented 

within samples, or randomly selected if all of them appear the same number of 

times (Fig 31). We automatically validated all the coordinates were continuous. 



   

 

139 

 

For some cases, manual inspection was needed to adjust and get the consensus 

sequence.  

Due to this recalculation of all genomic coordinates, we removed 

redundancy if two or more consensus sequences shared their start and end 

coordinates, strand, number and exon coordinates and were identified in the 

same patients. Consensus sequences sharing only their start and end coordinates, 

but not the strand, the number or the coordinates of their exons, were considered 

different isoforms of a transcript. 

Those merged isoforms identified in at least two different samples were 

selected to remove false positives from the analysis and were defined as 

representative for the pancreatic adenocarcinoma transcriptome. Single-exon 

isoforms must be present in all samples to be more restrictive because they are 

easily detected by StringTie. 

4.3.4 In-silico 3-frames translation of de novo consensus 

transcripts 

We continued the analysis of small ORFs identified in pancreatic 

adenocarcinoma patients translating consensus sequences to obtain a set of 

candidate short amino acid sequences.  

First, the DNA sequence (GRCh37) of each consensus transcript was 

downloaded from the REST (REpresentational State Transfer) API data interface 

of UCSC. This interface allowed us to get all nucleotide sequences from start to 

end bp coordinates through a command line and in a JSON (JavaScript Object 

Notation) format file. An in-house script was run based on the identified exon 

coordinates for each isoform to get only their coding sequence (CDS). Whenever 

the strand was not characterized by StringTie due to the lack of split reads across 

the region, the coding sequence in both forward and reverse was considered.  
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With the aim of obtaining a list of potential micropeptides, i.e. open reading 

frames with a maximum length of 100 aa, all the CDS were translated in-silico. We 

performed 3-frames translation for each CDS, meaning codons were defined 

starting from the first, second and third nucleotide of our candidate genomic 

sequences. We not only considered the canonical start codon (ATG) as the origin 

of translation but also the five most abundant non-canonical codons (CTG, GTG, 

TTG, ACG and ATT) (132). After an origin was found, translation was extended 

until the first stop codon (Fig 32). Sequences between 7 and 100 amino acids 

(both included) were characterized as candidate micropeptides identified in 

pancreatic adenocarcinoma transcriptomes.  

 

 

Additionally, to analyze the type of genomic region where we identified 

candidate micropeptides, we annotate their location in the reference genome. To 

do so, we downloaded from the Biomart data mining tool 

(https://grch37.ensembl.org/biomart/) the genetic coordinates of all the human 

annotated genes (GRCh37), including UTR regions, exon and introns and non-

coding regions. We then locate separately and through an in-house script the start 

and end positions of each candidate smORF, and therefore the translated 

candidate micropeptide. Each position was labeled as CDS Exon, No-CDS Exon, 

Intron, 3’ UTR, 5’ UTR or NA if it was identified within a non-annotated region. 

Since diverse isoforms can overlap between them on the reference genome, we 

Figure 32. In-silico translation of coding sequences. Micropeptides corresponded to sequences 
between 7 and 100 amino acids length. 
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prioritize the region categories in the mentioned order. As an example, if one 

genomic coordinate was present in the 3’ UTR of the isoform A, and within a 

coding exon of the isoform B, we labeled it as CDS Exon. 

4.3.5 Local alignment search to remove overlap with annotated 

CDS 

Because we aim to identify novel candidate micropeptides present in non-

annotated transcripts we filter out micropeptides translated from nucleotide 

sequences overlapping with annotated CDS.  

To do so, we first performed a local alignment search using Blastn (v. 2.6.0, 

https://blast.ncbi.nlm.nih.gov/). We intended to remove micropeptides located 

within known and annotated coding sequences, but not within UTRs, introns, non-

coding genes or intergenic regions. Therefore, we compared candidate smORFs 

nucleotide sequences (query) together with all the human coding sequences 

(database) from Ensembl (GRCh37). We applied default parameters except for the 

word-size. This value represents the minimum length to find and give a perfect 

sequence match. We selected a length of 7, since our query sequences 

corresponded to small ORFs (7-100 aa) and in order not to lose reliable hits. 

Moreover, to limit the search and provide a more efficient analysis, the maximum 

number of target sequences (-max-target-seqs) was limited to 2. 

Considering the results obtained from the local alignment, candidate 

smORFs were filtered and as consequence, candidate micropeptides. We defined 

as good local alignments those results from the Blastn with an e-value lower than 

0’001. Small ORFs were finally selected based on the percentage of sequence 

overlap (<30% or <60%) between their nucleotide sequence and an annotated 

CDS.  
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4.3.6 Candidate micropeptides selection based on expression 

for MS analysis 

Mass spectrometry was the analytical tool used in this study to measure and 

detect micropeptides in pancreatic adenocarcinoma samples. Mass 

spectrometers can identify peptides through the comparison of the mass-to-

charge ratio obtained for each molecule present in the sample with a peptide 

sequence database.  

For these proteogenomic searches, databases are constructed with peptide 

sequences inferred from genomic or transcriptomic evidence. Although this 

enlargement of sequences has potential to identify novel peptides, it raises 

concerns on reliable identification. A consequence of this inflation may result in 

an underestimated false discovery rate and a decrease in the sensitivity of 

identification because of the increased number of high-scoring random hits (191).  

To reduce the number of entries in our dataset and obtain better results 

from MS analysis, candidate micropeptides were selected based on the 

expression values of their host-transcript. Note that we consider as host-

transcript the entire transcript sequence identified by StringTie and not only the 

region defined as smORFs (nucleotide sequence) or micropeptide (amino acid 

sequence). The transcript sequence could include non-coding regions such as 

UTRs or introns that may appear covered by RNA-seq reads, whereas the smORFs 

corresponds to the potentially coding sequence and must be smaller than 100 

codons.  

Expression values were calculated for all the consensus host-transcripts 

previously obtained and in the 6 RNA-seq samples separately. We used StringTie 

(v. 1.3.6) applying the abundance optional parameter (-A). We used a maximum 

fraction of multiple-location-mapped reads allowed in a locus (-M) of 0’1. Given a 

list of transcripts coordinates (GTF file), this approach calculates expression in 
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coverage, FPKM (Fragments Per Kilobase of transcript per Million mapped reads) 

and TPM (Transcripts Per Million) values. One tabular file containing expression 

values for all host-transcripts was outputted for each patient. 

We then calculate the median expression value in TPM for each pancreatic 

adenocarcinoma sample. Finally, candidate micropeptides were selected if their 

host-transcript had an expression value (TPM) higher than the median in each of 

the 6 samples. 

4.3.7 Strategy and final parameters to build candidate 

micropeptides datasets 

Following the pipeline described, we constructed two independent datasets. 

Based on some lessons learned from the first dataset (dataset version 1 or DS1) 

creation which are explained in the results and discussion sections, as well as the 

need for including more smORFs, we redefined the parameters and steps for 

obtaining a second dataset (dataset version 2 or DS2). However, both are being 

used on the MS analysis since they are the result of combining restrictive and 

permissive steps and requirements. Moreover, the resulting amino acid 

sequences are only defined as candidates, and we probably be able to identify 

true micropeptide on both through MS. 

For each set of candidate micropeptides, host-transcript genomic 

coordinates, including chromosome, start, end and exons, coding start and end, 

nucleotide and amino acid sequence, start codon class (canonical or non-

canonical), expression values, and alignment results were annotated.  

A summary of the steps and parameters used for each dataset definition is 

described in Table 3 and Fig 33. 

Results of chapter 3 (study 1) starting in section 5.3.1 (page 208 ).
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Database 
name 

STEPS 

TRANSCRIPT 
PREDICTION 

SAMPLE COMBINATION 
FROM DNA TO AA 

SEQUENCE 
FILTER 

De-novo transcriptome 
assembly 

Merge and consensus of 
multiple samples 

In-silico translation 
Overlap with 

annotated CDS 
Expression of the 

host transcript  

DS1 Stringtie, -m 50, -M 1,0 Stringtie transcript merge mode ATG < 60 % Not used 

DS2 Stringtie, -m 50, -M 0,1 In-house strategy 
ATG and CTG, GTG, TTG, 
ACG, ATT < 30 % 

TPM > median 
expression 

Table 3 - Steps and parameters used for each dataset. 

 

 

 

 

Figure 33. Schema of the general strategy used to define both catalogs of smORFs. 
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Study 2: Identification of candidate highly 
conserved micropeptides in intergenic regions 

4.3.8 Collection of known and conserved intergenic human 

regions   

The majority of known and published small ORFs have been identified 

considering annotated regions, including protein coding genes, pseudogenes or 

noncoding RNAs. However, little is known regarding candidate smORFs in 

intergenic DNA since it is not supposed to be transcribed, neither translated. 

Therefore, internally in the group and as a second study in the context of 

micropeptides, we intended to explore genome-wide intergenic sequences to 

identify novel micropeptide candidates.  

We based our search on known and conserved intergenic regions from the 

Zoonomia Project (5). The project is an international collaborative effort focused 

on the discovery of the genomic basis of shared traits in mammals to understand 

remarkable phenotypes and the origins of disease. Through the comparison of 

diverse mammals, they provided genome assemblies for 131 species including 

humans. Moreover, the alignment of the genome of 240 species allowed to 

increase the power to detect sequence constraints at individual bases. 

Among other public data, they furnished a list of unannotated intergenic 

constrained regions (UNICORNs) defined as non-coding regions on the genome 

that lack annotation in ENCODE3 (192). UNICORNs show high evolutionary 

constraint (nucleotides with a PhyloP score > 2,270, FDR 5%), and therefore 

suggest function (Fig 34). We downloaded a bigBed format file containing genome 
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coordinates (GRCh38) for a list of 424.179 UNICORNs. This was our starting 

collection of known and conserved intergenic regions. 

 

4.3.9 In-silico translation of intergenic constrained regions 

Considering the genomic coordinates obtained from The Zoonomia Project, 

we downloaded from the REST API data interface of UCSC the DNA sequence 

(GRCh38) of each UNICORN.  

To identify potential candidate small ORFs within these intergenic regions, 

we performed a 6-ORF in-silico translation of each DNA sequence associated with 

a UNICORN (Fig 35). Since splicing had not been previously studied or identified 

in these sequences, and considering their high and similar conservation 

throughout, we directly translated the complete DNA of each UNICORN assuming 

they are intronless and their entire sequence is coding 

 

Figure 35. In-silico translation of UNICORNs. Nucleotide sequences are translated starting from the 
first, second and third nucleotide in forward and reverse (6-ORF). Only peptides between 10 and 100 
aa are selected. 

  

Figure 34. Genome browser view of Zoonomia UNICORNs (shown in green) identified in the human 
chromosome 20. PhyloP scores can be seen above UNICORNs in grey. 
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For the in-silico 6-ORF translation, codons were defined starting from the 

first, second and third nucleotide of the DNA sequence in forward and reverse 

strands. To encompass a wide range of candidates and account for the diverse 

codons that can initiate translation in humans, we considered not only the 

canonical start codon ATG but also all possible trinucleotide combinations. 

Translation was extended until the first stop codon was encountered, or until the 

end of the UNICORN sequence was reached. We retained amino acid sequences 

with lengths ranging from 10 to 100 aa. 

4.3.10 Searching for orthologs on Mus Musculus using 

Reciprocal Best Hit approach 

Once we obtained a list of in-silico short amino acid sequences from 

conserved intergenic regions, we went for more evidence to assume or suggest 

they could be translated into micropeptides in nature and have a functional role. 

Thus, we evaluate the obtained candidate micropeptides searching for 

orthology on Mus Musculus genome (GRCm39/mm39). Orthologs are genes in 

different species that have evolved through speciation events only, generally 

assuming they have similar biological functions in these species. We used the 

Reciprocal Best Hit (RBH) approach to define pairs of orthologs between human 

and mouse. RBH assume two sequences are orthologs when each in a different 

genome find each other as the best hit in the other genome (Fig 36). 
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Figure 36. Reciprocal Best Hit approach. 

With the aim of identifying pairs of orthologs, TBLASTN (version 2.6.0) was 

used in both directions to compare amino acid sequences with an entire genome. 

We applied default parameters except for the length of initial exact match (word 

size = 3). The soft masking option was also enabled and therefore repeat 

sequences were identified and masked for finding the initial matches.  

We first compared the human amino acid short sequences obtained from 

the in-silico translation of UNICORNs with the mouse reference genome 

(GRCm39/mm39) (TBLASTN1). We selected those alignments with an e-value 

(expected value) lower than 1e-05, showing a significant match, and an overlap 

between human and mouse sequences higher than 50%, meaning more than a 

half of the sequence matched with the sequence on the other species. Gaps 

among the sequence were not considered to calculate the overlap. 

After applying these filters to elect only good local alignments, we extracted 

from TBLASTN1 results the mouse amino acid sequences. These mouse short 

peptides were then considered as the query for the second TBLASTN (TBLASTN2) 

analysis and aligned through the human reference genome (hg38). 
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To determine an automatic criterion to consider alignments as the best 

reciprocal hit in both directions (human vs mouse and mouse vs human), and 

therefore define orthologs, we manually inspected the obtained results. 

Particularly we contrasted the peptide sequence and the genomic coordinates 

(chromosome, start and end) of the human candidate micropeptides (query for 

the TBLASTN1) to the human sequences resulting from the TBLASTN2. 

We define orthologs if the resulting alignment on the TBLASTN2 had an e-

value lower than 1e-05, and the aligned human amino acid sequence and their 

genomic coordinates were identical or overlap with the initial human candidate 

smORFs. We also checked whether mouse amino acid sequences were also 

identical or overlapped when comparing both TBLASTN analysis. Gaps within any 

sequence were not considered to evaluate the similarity between them. To 

remove duplicated genes in any species, only one-to-one (1:1) pairwise orthologs 

(Fig 37) were retained meaning that both genes in the pair have only one ortholog 

and therefore, one best hit in the other species. 

 

Figure 37. Representation of one-to-one and one-to-many orthologs. In 1:1 pairs, both genes have 
only one pair in the other species, whereas in 1:M, the gene of interest (Gene A) has more than one 
pair in the other species, which are paralogs between them (Gene B and Gene C) 
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4.3.11 Inference of purifying selection based on dn/ds ratio 

To end up with a list of candidates novel micropeptides and add more 

information indicating functionality, we calculated the ratio of non-synonymous 

to synonymous (dn/ds) variants on 1:1 ortholog sequences (Fig 38).  

 

Figure 38. The ratio of dn/ds variants is calculated for 1:1 ortholog sequences, considering only the 
coding regions aligned and obtained through tblastn. 

Usually non-synonymous changes, that is nucleotide variants resulting in a 

different amino acid, negatively alter the structure and function of a protein, and 

may be deleterious. Purifying selection acts to remove these deleterious 

mutations in genes that are essential for basic cellular functions, resulting in a 

higher rate of synonymous variants compared to non-synonymous substitutions. 

Accordingly, when there are structural constraints on a functional protein and it 

is under strong purifying selection to maintain their role across species, the dn/ds 

ratio is close to 0 when compared to its orthologs.  

To calculate the dn/ds ratio for each ortholog pair we used the Codeml 

function of the PAML (Phylogenetic Analysis by Maximum Likelihood) package (v 

4.9j). We enable the pairwise option (runmode = -2) to perform a comparison 

between two species, human and mouse, so a phylogenetic tree was not needed 

for the calculation. 
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4.3.11.1 Expected dn/ds ratio on known protein coding genes 

We expected to have a much higher rate of synonymous substitutions, which 

do not alter the protein sequence compared to non-synonymous on conserved 

genomic regions. Therefore, the dn/ds ratio should be close to 0.  

To define a dn/ds threshold to select candidate functional micropeptides, we 

analyse and calculate the dn/ds ratio of a set of known protein coding genes 

annotated in Gencode (version 38, GRCh38.p13).  

As we are evaluating micropeptides, short coding regions, and to ensure that 

the calculated dn/ds ratio on known protein coding genes was not affected by the 

size of the sequence, we first pick all the coding exons shorter than 1000 bp. From 

this subset we randomly selected a total of 300 short coding exons. Moreover, 

since we aim to explore candidate micropeptides that can have a role in cancer, 

our subset included 100 coding exons from known cancer genes based on a list 

provided by COSMIC database. 

We downloaded the nucleotide sequence of these 300 short coding exons 

from the REST API data interface of UCSC (GRCh38) and we translated to get its 

known amino acid sequence. Following the methodology explained above, we 

looked for 1:1 orthologs in mouse based on the RBH approach. Finally, we 

calculated the dn/ds ratio using PAML for all the human-mouse pairs of orthologs. 

We analyzed the obtained results and determined the expected dn/ds ratio. To 

avoid ratios closer to 0 due to low numbers of synymous variants, we also define 

a threshold value for the number of silent substitutions (ds) that have occurred in 

the coding exon. 

  



   

 

152 

 

4.3.11.2 Selection of candidate functional micropeptides  

The results (explained on section 5.3.7) obtained from the analysis of known 

protein coding genes, allowed us to define the expected dn/ds values for coding 

short regions and therefore to consider only candidate functional micropeptides.  

In order to accomplish this, we first downloaded human (GRCh38) and 

mouse (mm39) nucleotide sequences for all candidate micropeptides previously 

identified as 1:1 ortholog pairs. Thereafter, we calculate the dn/ds ratio running 

Codeml and as explained above. Note that this value was derived by comparing 

nucleotide variants between the human and mouse genomes, specifically within 

the previously aligned region. It is important to consider that the aligned 

sequence may be shorter than the in-silico translated candidate smORF. 

Considering the analysis done on known protein coding genes, candidate 

micropeptides were selected if they had a dn/ds ratio lower than 0,32 and a ds 

value higher than 0,1 to ensure variation within both sequences even their short 

length. 

This was our final set of candidates and novel micropeptides. 

4.3.12 Expression analysis of candidate functional 

micropeptides in normal tissues  

The list of candidates novel micropeptides we provided was based on 

nucleotide conservation among 240 species, and preservation of amino acids 

when compared to their mouse orthologs. However, conservation does not 

always and directly imply functionality of the peptide. For this reason, we continue 

the evaluation of smORFs in intergenic regions through the analysis of 

transcription data on normal samples. Signals of expression among the regions 

defined as candidates show the sequence is at least transcribed and could allow 

us to suggest if its function is tissue-specific or not.  
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Considering expression values are generally calculated for known and 

annotated transcripts, we downloaded raw data, and in particular aligned RNA-

seq data from the GTEX project (Genotype-Tissue Expression v8, dbGaP Study 

accession phs000424.v8.p2) (6), a resource database and associated tissue bank 

available for the scientific community to study genetic variation and gene 

expression in human tissues. We randomly selected 135 samples from a diverse 

range of 27 different tissues, with 5 samples per tissue. We ensured that samples 

from the same donor, even if obtained from different tissues, were excluded. 

Available algorithms designed to calculate expression values are usually 

restrictive in terms of minimum number of reads aligned through the region. 

Furthermore, they are generally built for inspecting larger genes. 

Hence, expression was evaluated by inspecting the number of aligned reads 

covering each candidate micropeptide, directly analyzing RNA-seq aligned bam 

files. Paired-end reads were extracted using Samtools (v.1.5) view mode.  

Obtained paired-end reads were filtered to discard multi-mapped sequences 

and low-quality alignment scores (mapping quality value = 255). Moreover, 

paired-end reads where one of them align to a known transcript including non-

coding RNAs were also excluded. 

We finally evaluate counts of paired-end reads to analyze potential 

expression signals through our candidate micropeptides. 

4.3.13 Exploring somatic cancer SNVs within candidate 

micropeptides to assess their role in tumorigenesis 

Abnormal clustering of mutations is complementary to other signals to 

detect driver cancer genes. Intending to explore the potential role of 

micropeptides in cancer disease and tumorigenesis, we therefore started 

analyzing the recurrence of somatic single nucleotide variants in smORFs.  
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We downloaded somatic SNVs from The International Cancer Genome 

Consortium (ICGC). We then excluded hypermutated samples, deemed when the 

mutation count was greater than 1,5 times the interquartile range length above 

the third quartile (> Q3 + 1,5IQR) in their respective tumor dataset. After filtering 

them out, we get genomic variants from 5.807 donors, including 68 ICGC projects, 

21 primary tumor types and 44.401.585 SNVs. However, only 12 different ICGC 

projects representing a set of donors sharing the same tumor type and collected 

from a specific country were selected for the analysis. Projects included and the 

number of SNVs identified in each are shown in figure 39. 

 

 
Figure 39. Number of somatic SNVs included in each ICGC project. 
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We used OncodriveCLUSTL (7), a driver discovery algorithm, to look for 

significant clustering signals of SNVs within smORFs (Fig 40) This computational 

method is based on a local background model, determined from the simulation 

of mutations accounting for the composition of tri-nucleotide context 

substitutions observed in the cohort under study. 

 

Figure 40. Identification of clustering signals of SNVs in micropeptide sequences. Figure adapted from 
Arnedo-Pac. et al, 2019 (7). 

4.3.13.1 Applying OncodriveCLUSTL to published small ORFs 

Before running OncodriveCLUSTL to explore our candidate micropeptides 

identified in intergenic regions, we tested the algorithm analyzing previously 

identified and published smORFs.  

Accordingly, we take as micropeptides all the small ORFs from the SmProt 

database (176). SmProt contains micropeptides identified using mass-

spectrometry or ribo-seq techniques and complies with other databases and 

literature sequences. We only selected mp identified in humans that do not share 

their amino acid sequence with other human micropeptides from the dataset. As 

micropeptides are short, it is probable to get the same translated sequence from 

diverse genomic regions.  

Mutational processes contribute distinct depending on the region type. 

Therefore, we separated exon and intron regions for each micropeptide, and we 

only looked for clustering signals within their coding exon regions. A total of 
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49.065 micropeptides published in SmProt and their respective exon coordinates 

were used for the first analysis of cancer driver smORFs. 

For each set of SNVs (classified depending on the ICGC project), we tested 

multiple parameter combinations for the smoothing window (sw), cluster window 

(cw) and simulation window (simw). We decided to elect and apply 6 parameter 

combinations for the 12 ICGC projects including 9 primary types. In all the analysis, 

default options for signature calculation and simulation mode were changed to 

region normalized and region restricted respectively. These options allowed to 

restrict the background model calculation to the given genomic regions. All the 

parameter combinations are specified in Table 4. OncodriveCLUSTL calculated a 

q-value for each smORFs indicating a significant (q-value < 0,01) signal of clustered 

mutations within it (Fig 41). 

ID SW CW SIMW 

51-51 51 51 31 

71-71 71 71 31 

91-91 91 91 31 

101-101 101 101 31 

101-91-101 101 91 101 

101-101-101 101 101 101 

Table 4. Parameters (sw, cw and simw) tested in OncodriveCLUSTL. ID refers to the name of the 
combination. 

  

Figure 4124. Schema summarizing OncodriveCLUSTL input and output files. Small ORFs and 
micropeptides with a q-value < 0,01 were considered potential drivers. 
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To choose the most adjusted combination for each set of variants, we 

calculated the Kolmogorov-Smirnov (KS) test (two-sided option). This statistic is 

used to decide if two sets of samples, in this case, the expected and the observed, 

have a similar probability distribution and therefore, the observed probability is 

not inflated. Only those p-values obtained from OncodriveCLUSTL higher than 

0,01 were used to calculate the KS statistic. The enrichment in cancer genes was 

also considered. To do so, smORFs identified within known cancer genes were 

defined and counted as cancer related. Finally, the qq-plot obtained from 

OncodriveCLUSTL was manually inspected for this selection step.  

To assume similar probabilities and low inflation, the KS value should be 

around 0, while the observed p-values were closer to the expected ones on the 

qq-plot. The enrichment should be higher, meaning we were identifying known-

cancer related genes as expected when analyzing cancer driver genes.  

Micropeptides with significant q-values (< 0,01) identified on the most 

adjusted combinations were evaluated for each ICGC project and could be 

considered potential drivers. 

4.3.13.2 Evaluation of recurrent variants within novel candidate 

micropeptides 

To evaluate the presence of somatic single variants acquired in diverse 

tumor types and within candidate novel micropeptides identified in intergenic 

regions, we first annotated them. To do so, we looked for somatic SNVs identified 

in the 12 ICGC selected projects and present within candidate novel 

micropeptides. 

Following the strategy tested with published smORFs, we run 

OncodriveCLUSTL to analyze clusters of variants within conserved intergenic 

regions defined as candidate micropeptides. Results of chapter 3 (study 2) starting in 

section 5.3.4 (page 229 ). 
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5. Results 
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5.1. Analysis of somatic structural variants in CLL and their 

incorporation into subclonality studies  

Chapter 1  
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5.1.1 Identification pipeline for somatic structural variants  

The accurate identification of somatic structural variants in cancer is 

essential for understanding the complex genomic landscape and the underlying 

mechanisms contributing to tumorigenesis. The necessity of implementing 

advanced computational algorithms arises from the inherent complexity and 

heterogeneity of cancer genomes, where SVs can play pivotal roles in driving 

oncogenic transformation. Through the combination of bioinformatic analysis and 

manual inspection of the sequencing data, we provide a detailed account of the 

identified SVs in Chronic Lymphocytic Leukemia. This will allow us to shed light on 

the potential implications of somatic SVs in these cancer types. Furthermore, we 

considered using diverse algorithms was a crucial strategy for several reasons 

such as the varying sensitivity and accuracy between variant callers that might 

result in missing mutations or fail to detect low frequency variants when using a 

single program.  

  

5.1.1.1 Evaluation of the structural variant identification 

pipeline  

There exists a wide variety of variant callers developed by the community for 

the identification of somatic structural variants. In our study of CLL tumor 

genomes, we employed four different algorithms for this purpose. Prior to our 

evaluation of the results produced by each algorithm, we tested various filtering 

options available within the variant callers. We then compared the detected 

variants across the different algorithms. Moreover, we conducted a manual 

inspection of previously obtained variants in tumors also included in this cohort, 

some of which were experimentally validated in published studies.  
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5.1.1.1.1 Fine-tunning specific parameters used by DELLY2  

As mentioned in the methodology, we allowed 5% tumor contamination in 

normal samples when running DELLY2 for the detection of SVs in CLL samples. 

This decision was taken considering we were working with a liquid tumor where 

both normal and tumor samples are collected usually from blood, where healthy 

and cancer cells coexist. Although samples were filtered before sequencing and 

purity was inspected, allowing a slight tolerance of tumor contamination enabled 

us detecting somatic variants that might otherwise be missed because of the 

presence of few tumors reads in the normal sample.   

For DELLY2 we also evaluated the optimal percentage of alternate reads in 

tumor samples to be observed to identify a variant. To do so, we compared the 

results obtained when running the algorithm setting this parameter to 0,05 (at 

least 5% of alternate reads in the tumor sample), 0,2 (default value; 20% of the 

tumor reads must be alternate to identify the variant) and 0,5 (50% of alternate 

tumor reads). As an example, we counted the number of structural variants 

identified on a CLL patient (case 16), by using 0,05 and 0,5 values. We could 

observe a decrease of 1963 translocations, 15 inversions, 65 duplications and 96 

deletions that were not detected when using 0,5. We considered using higher 

values such as 0,5 was unrealistic when analyzing tumor samples, as in light of 

sample heterogeneity and the difficulty of mapping structural variants, it is highly 

unlikely to find that number (50%) of sequenced reads confirming each of the 

acquired variants. Moreover, less stringent percentages allow us to detect more 

subclonal variants, since genome studies of CLL tumors had revealed the high 

subclonal heterogeneity of the tumors (193). 

  



   

 

164 

 

We then used variants identified and experimentally validated and published 

by Puente et al. (187)to check whether these large variants were detected by 

using 0,2 or 0,05 values. For a total of 35 SVs distributed across 5 tumor genomes, 

five were not detected with high quality when using default value (0,2). However, 

all except one were identified when a less stringent filter was used (0,05). Based 

on these results, we decided to continue using DELLY2 expecting at least 5% (0,05) 

of alternate reads in tumor to identify structural variants.  

5.1.1.1.2 Comparative analysis of somatic structural variant 

callers  

Integrating results from multiple algorithms increase confidence in identified 

variants. Before merging the results obtained through different variant callers 

(DELLY2, BRASS and SvABA), we compared their grade of concordance for 

structural variant detection. We also evaluated their performance based on 

published and validated structural variants.  

We started comparing the SVs detected by Brass and DELLY2 in cases 63, 365 

and 1669. At this point, we considered all SV types together and a windows size 

of just 50bp to define variants detected by different VCs as the same. We 

observed that around 30% of the SVs identified by BRASS were also obtained 

when using DELLY2. However, due to the large number of variants detected and 

provided by DELLY2 and including those considered as high or low quality by the 

algorithm itself, DELLY2 detected between 50 and thousands of SVs more than 

BRASS across different tumor genomes.   

We then compared results obtained for SvABA against DELLY2 and BRASS. As 

we already knew both SvABA and DELLY2 provided more low-quality variants than 

BRASS, we only considered variants defined as high quality by each algorithm. 

Around 4% of the total number of SVs identified in a tumor genome by any of 
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these three algorithms were detected by all variant callers, and 7,5% by at least 

two.   

We went back again to the selected 35 structural variants published in 

Puente et al. that were identified in CLL tumor genomes analyzed but not finally 

included in the present longitudinal study. For these SVs we checked for 

concordance between the results obtained for DELLY2, BRASS and SvABA using 

the specific mentioned parameters (see Methods section; 4.1.3.3). Manual 

inspection through the aligned sequencing reads was also done in 14 out of 35 

SVs. Variant callers (DELLY2, BRASS, SvABA) could clearly detect 33, 31 and 27 of 

these SVs respectively. Only one of these missing SVs was not identified even as a 

low-quality variant by DELLY2 and BRASS. The remaining missing SVs in DELLY2 

(1), BRASS (3) and SvABA (8) were identified but not considered high quality by 

the algorithm, meaning they could not achieve the minimum number of 

supporting reads and mapping quality values required. All the variants (14) that 

were inspected by tumor sequencing reads were validated, including the non-

identified SV by DELLY2 and BRASS in case 853. This structural variant was not 

detected due to supporting reads in the matched normal genome.  

Finally, we manually inspected 57 structural variants detected in any of the 

four tumor genomes from case 63. Structural variants identified by more than one 

VC, with high mapping qualities (>60 DELLY2, > 90 in BRASS and >60 in SvABA) 

were clearly detectable by paired-end and split reads. Those SVs identified by 

more than one VC, but with high mapping quality by just one algorithm tended to 

had a smaller number of supporting tumors reads. However, their presence could 

be confirmed.  

We did not include SmuFin in this evaluation since the algorithm was 

included later in the pipeline. Moreover, SmuFin did not add more new structural 
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variants to the final consensus collection but generally supported some of the 

already validated.  

This comparative analysis allowed us to define the structural variant 

identification pipeline (see methods 4.1.3.3 and 4.1.3.4), setting up specific 

parameters for DELLY2 and defining mapping quality thresholds for each VC. Also, 

to determine the number of algorithms we must support the variant after the 

merging step to include it in our conservative list of somatic SVs.  

5.1.2 Exploring intratumor heterogeneity from structural 

variant allele frequencies  

Single nucleotide variants, and short insertions and deletions were mainly 

used to characterize the intratumor heterogeneity. Based on the frequency of 

these alterations and their clusterization, cell populations of a tumor sample can 

be described. However, structural variants are usually not included in these 

studies since inferring their frequency from sequenced tumor genomes is 

challenging.   

5.1.2.1 Sequencing coverage variation in normal and tumor 

genomes  

Variant allele frequencies are generally measured as the ratio of tumor reads 

supporting the variant across the number of reads covering it. Therefore, taking 

into account that structural variants do not imply just one nucleotide position as 

SNVs, we first wondered how variable the sequencing coverage across any region 

of the genome was.   

To do so, we explored coverage distribution across four randomly selected 

genomic regions (4.000bp each) in five healthy samples (30x coverage). This first 

exploration supported the idea that the coverage of a sample was constantly and 
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significantly changing across the genome, even though no large variants were 

identified there. These changes were not correlated with complex genomic 

regions, such as repeat sequences, that can usually be challenging during the 

alignment process (Fig 42). We could also detect variation when comparing 

different sequencing samples, even though they are the same genomic region. 

These differences could be due to technical variability since not all of them were 

sequenced using the same platform, as well as to sequencing artifacts. Generally, 

comparing these five healthy samples we could determine more peaks of high 

coverage in case 29. Although this case was previously sequenced for the CLL-

ICGC project, it was not unique across these five samples.   
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Figure 42. Coverage distribution in five healthy genomes and across four randomly 
selected regions. 
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Focusing on case 29, we also inspected its coverage distribution in 4 new 

regions with no SVs identified but comparing normal and two tumor genomes 

(Supplementary figure 1). Differences were also seen between sequenced 

samples from the same case. In particular, we saw a significant increase in the 

coverage (> 1000x) of tumor sample 2 (S2) in chromosome 21. Repeat genomic 

sequences were located within this specific region but did not have the same 

effect in all sequenced samples.  

Lastly, we started estimating how to detect tumor reads supporting 

structural variants from a tumor WGS. This was the first preliminary exploration 

done in a few identified somatic SVs in cases 63 and 365. Tumor supporting reads 

were determined based on unexpected insert sizes, paired-ends joining different 

chromosomes, and split reads. We could start noticing that supporting reads were 

mainly aligned in a window around 300 bp from each breakpoint and in the up- 

or downstream nucleotides depending on the SV type. Coverage differences were 

also noticed in regions with SVs in both tumor and healthy samples (Fig 43).  

Figure 253. Coverage distribution observed across one breakpoint of a translocation identified in case 365. A 
representation of the translocation (chr14:22.860.033-chr8:128.899.362) is shown below the plot. A region of 
300 bp upstream the bkp2 (light grey discontinious box from 22.859.733 to 22.860.033) was analyzed. Number 
of reads is shown for the normal sample (blue), and for the tumor sample (pink and green). The observed total 
coverage (pink) is higher than the number of non-mutated reads (green) because of the presence of aligned 
reads supporting the structural variants. 
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5.1.2.2 Identification of variant supporting reads in an in-silico 

sequenced sample  

After examination of the coverage variability across genomic regions and 

tumor and normal genomes, we started estimating the strategy we needed to 

apply to calculate variant allele frequencies for structural variants. Although we 

first explored tumor reads aligned in few SVs identified in CLL cases, we thought 

that the most accurate approach to define this strategy was comparing observed 

and expected frequencies of diverse large variants. For this reason, we decided to 

examine an in-silico sequenced sample generated artificially where all structural 

variants were heterozygous. Moreover, this artificial sample was homogeneous 

and did not represent many cell populations but just one clone, so the expected 

variant allele frequency for all the somatic mutations inserted was 0,5. Finally, 

reads supporting each variant were known so based on their identifier we could 

directly look for them in the BAM file and evaluate their alignment. The 

observations and messages learned from this data allowed us to define the 

strategy to infer structural variant allele frequencies.  

Among 150 studied SVs identified in the in-silico tumor, we widely evaluate 

three somatic structural variants including one deletion, one inversion and one 

translocation involving two different chromosomes. Artificial sequencing reads 

(12, 36 and 39) supporting the deletion, inversion and translocation respectively 

were detected in the BAM file, and therefore correctly mapped against the human 

reference genome. As an example, 11 out of 12 paired-end reads supporting the 

deletion were completely mapped meaning both reads of the pair were aligned 

across at least one breakend of the deletion. For the remaining (1) supporting PE, 

only one read was identified aligned across a breakend whereas their matched 

read was mapped but not within the analyzed genomic region (±300bp) (Table 5). 

This variant was not only supported by mutated PE but also split reads. From these 
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12 PE, all except one had at least one read of the pair splitted beyond the variant. 

However only four of them had both half of the split read mapped in each 

breakend whereas only a region of the remaining reads was aligned.  

 BKP1 BKP2 

ID PE read (in-silico) ALIGNMENT ALIGNMENT 

chr3.b-_al1_5908595 85M15S 100M 

chr3.b-_al1_20603417 77M23S 95M5S 

chr3.b-_al1_25246355 58M42S 100M 

chr3.b-_al1_14110103  20S80M 

 100M 

chr3.b-_al1_28760847 100M 4S96M 

chr3.b-_al1_7235689 100M 8S92M 

chr3.b-_al1_14449787 100M 23S77M 

chr3.b-_al1_25382709 100M 32S68M 

chr3.b-_al1_19369799 100M 41S59M 

chr3.b-_al1_8788975 100M 45S55M 

chr3.b-_al1_13445961 
100M  

70M30S   

chr3.b-_al1_25415471 100M - 

 

Table. 5 - In-silico generated paired-end reads aligned across both breakends (BKP1 and BKP2) 
corresponding to a deletion. Each pair was aligned within a breakend except for PE chr3.b-
_al1_14110103 and chr3.b-_al1_13445961, where both pairs were identified within the same 
breakpoint. Read chr3.b-_al1_25415471 had its pair outside the analyzed genomic region. 

Regarding the insertion evaluated, this was supported by 36 split reads. We 

could detect all of them mapped over at least one of the breakends. Moreover, 

we calculated the fraction of split reads detectable depending on the nucleotide 

region inspected. When we looked for these split reads evaluating only the 

breakends positions (windows size ±1) 36% of these split reads were not detected. 

However, once we increased the inspected region up to 5 nucleotides, all of them 

were identified as aligned in the BAM file. Although at some point we proposed 

to calculate the VAF based on split reads and just looking into the breakpoint 
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position (one nucleotide), we did not identify split reads for all SVs, neither 

perfectly aligned across one precise genome nucleotide. 

Finally, also on these three SVs, we investigate the size of the genomic region 

over each breakend where mutated reads were aligned. We evaluated different 

sizes up (right side) and down (left side) of both breakend positions in a window 

of ±1000 nucleotides. We measured the number of reads (total coverage) in each 

nucleotide position within these genomic regions as well as the number of non-

altered reads, those not supporting the variant, and compared their values. For 

all three structural variants, we could observe difference values between both 

measures in a window of around 300 bp up and down the breakend genomic 

positions (Fig 44). We assumed that the discrepancy in the number of total and 

non-altered reads correlated with the number of aligned reads supporting the 

structural variant detected. In fact, when analyzing other in-silico and real 

structural variants, we could mainly identify tumor altered reads across this 

windows size.  

  

Figure 4426. In-silico generated tranlocation between chr21 1887784 and chrX 131913425 0 genomic 
coordinates. Total number of reads aligned (blue) and reads not supporting the variant (yellow) are 
represented in each plot, corresponding to one breakpoint or side of the variant. A range of 1000bp 
upstream (left) or downstream (right) the structural variant was analyzed. 
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Based on this observation, we estimated the variant allele frequency for both 

breakends of a variant and considering diverse window sizes. As an example, Table 

6 describes all genomic region analyzed for the in-silico selected translocation. For 

this artificial variant we expected a frequency of 0,5 as it was clonal and 

heterozygous. We estimated decreasing VAF values from 0,6 to 0,3 calculated on 

regions ranging between 10 and 300 bp nucleotides up or down each breakend. 

Therefore, results obtained on diverse window sizes suggested that the inspection 

of larger regions increase coverage variability and noise underestimating the 

observed frequency.  

BKP SIDE 
Windows size (bp) 

10 50 75 150 300 

BKP1 0,5553 0,4859 0,4295 0,3593 0,3171 

BKP2 0,6841 0,6219 0,5772 0,4552 0,3547 

mean 0,6197 0,5539 0,5034 0,4073 0,3359 
Table 6 - Variant allele frequency calculated in each breakend (BKP1 and BKP2) of an in-silico 
translocation considering different windows sizes. Mean value considering both breakends is 
calculated in the last row. 

Although expected frequencies (0,5) were obtained when analyzing smaller 

regions, we decided to adjust and define an intermediate size of 100bp up or 

downstream the breakends that matched with read length. Even the variability 

seen, we did not encounter nucleotide positions within this window size with 

outlier read counts compared to other positions on the same breakend, since all 

counts were between the confidence intervals. 
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5.1.2.3 Variant allele frequency estimation of artificial 

structural variants  

Based on studying coverage variability and the alignment of altered reads 

through 162 somatic structural variants generated in the in-silico tumor sample, 

we determined and proposed a strategy to calculate mutated allele frequencies 

for large variants. Details regarding the decisions taken to end up with this 

strategy are summarized below. From the results we got from the analysis of 

structural variants in in-silico samples, we mainly considered three assumptions:  

1) We could generally identify all mutated reads aligned across SVs in a 

windows of 300 bp correlating with the insert size of the sequence 

fragments, up or down the breakpoint depending on each variant and 

therefore we discarded the idea of looking for unmapped reads 

supporting the variant,  

2) Split reads partially unmapped could underestimate the count of 

mutated reads in few nucleotides, so the number of reads aligned in 

these positions should be corrected even the fragments were not 

directly identified in the BAM file and,  

3) Expanding the genomic region under analysis increases total coverage 

variability, introduces noise, and not many mutated reads were added 

when increasing the analyzed region.  We decided to adjust and define 

an intermediate size of 100 bp, which matched with read length.  

We theoretically reconstruct structural variants depending on the type 

(deletion, inversion, duplication or interchromosomal translocation) and based 

also on the observed coverage distribution, we define the breakend side (up or 

down the nucleotide position) where both total and mutated reads should be 

counted.  



   

 

175 

 

We then calculated the variant allele frequencies for both breakends of each 

in-silico generated SVs. The strategy we followed is described in the methods 

section (see 4.1.4.2). Variant allele frequencies calculated for each breakend of a 

structural variant were slightly different. Variation between VAF breakends was 

around 0,05 (median) for in-silico deletions, 0,056 and 0,13 in inversions and 

translocations. Larger differences were observed in translocations were in few 

variants, the frequency observed in each of their breakends was more than 0,4 

divergent (Supplementary Figure 2).  

Finally, we inferred variant allele frequencies for in-silico structural variants 

as the average between its breakends frequencies. Variant allele frequencies 

range from 0,097 to 0,5 even if the expected value was 0,5 for all of them (Fig 45). 

The median VAF observed when analyzing all in-silico deletions (n=45) was 0,322 

and 0,336 for intrachromosomal translocations (n=97). Frequencies calculated for 

inversions (n=20) seem more underestimated as the median observed was 0,252.  
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Figure 4527. Variant allele frequency calculated for each in-silico structural variant evaluated. VAFs 
are obtained as the average between bkp1 and bkp2 of each SV. Ticks in X axis correspond to 
variants. 
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Our strategy seemed to work on an in-silico sample where all structural 

variants were clonal and heterozygous. We could calculate VAF around 0,5, 

expecting variation as it has been observed for clonal single nucleotide variants. 

Although the generation of this artificial sample was performed considering 

typical sequencing and alignment issues, real tumor genomes are likely more 

complex. Furthermore, we could not test this strategy on known subclonal 

variants. 

5.1.3 Applying the define methodology to longitudinal CLL 

samples: case 63  

Although the entire CLL longitudinal cohort was studied, we mainly focused 

and described the analysis on case 63. Normal and tumor samples collected for 

this case had good purity and quality values. Moreover, we had longitudinal 

samples of three different time points including pretreatment, post treatment 

and Richter’s transformation. Therefore, it was an interesting case to use as pilot. 

5.1.3.1 Somatic structural variant landscape  

The strategy defined in the present study to identify somatic structural 

variants across CLL longitudinal samples (see methods 4.1.3.3 and 4.1.3.4) was 

applied to the entire cohort, which comprises 13 cases. Results were published by 

Nadeu et al. in 2022 together with an extensive characterization of the genomic, 

transcriptomic and epigenomic profile of chronic lymphocytic leukemia (3). In the 

presented work, case 63 was used as a pilot case to continue with the subclonality 

study. Structural variants were identified for all its tumor genomes 

(Supplementary Table 1).   
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 In the two samples collected at the first time point (T1-PB and T1-LN) four 

inversions were identified (See Fig 46, circos representation at T1). Samples T1-

PB and T1-LN corresponding to pretreatment and collected at the same time 

point, had the same somatic SVs even though they coincided to different 

topographic tumor sites including peripheral blood and lymph node respectively. 

Contrary to other leukemias (194,195), CLL cells are known to reciprocally 

recirculate between the PB and LN to favor their maintenance and proliferation 

through the crosstalk with nonneoplastic cells on the lymph nodes 

microenvironment, so genomic similarities between distant CLL cells are 

expected. Minimal spatial diversification seems to occur between PB and LN 

suggesting the genomic profile of CLL remains relatively stable in diverse 

topographic sites before treatment. Samples collected at T1 from CLL case 63 

confirmed this low genetic variability across different CLL cell locations. 

Seven SVs, including all the inversions detected in T1 were identified in the 

tumor genome corresponding to the second time point (T2), and 27 SVs along 

with the previous seven were identified in the last collected time point (T3) (See 

Fig 46, circos representation at T2). One of the somatic inversions was detected 

with high quality in T3 and then rescued in T2 even it was low supported by tumor 

reads. However, in T1 any tumor read was alighted through variant. In summary, 

we observed an increase of somatic mutations acquired during time and 

correlating with the progression of the tumor. The significant increase observed 

in T3(See Fig 46, circos representation at T3) correlated with the assumption that 

Richter transformation might result from the accumulation of novel genetic 

lesions that drive clinicopathologic shift and change the course of the disease. 

Richter transformation is known to be marked by a profound genomic instability 

(196–198). 
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Considering the 27 unique and identified structural variants, 8 of them 

involved breakends in intergenic regions whereas for the remaining SVs at least 

one break was located within a protein coding gene. Interestingly both inversions 

detected in chromosome 11 and in all tumor samples, involved the ATM cancer 

gene, which is not only a driver in chronic lymphocytic leukemia but also in DLBCL, 

the tumor type in which CLL is transformed when developing RT. The presence of 

DLBCL driver genes mutated at diagnosis and prior to treatment could suggest 

predisposition of this CLL tumor to develop Richter transformation.  

Two more inversions in chromosome 13 acquired in T2 and T3, as well as one 

deletion in chromosome 9 only detected in T3 involved DLBCL driver genes 

(FOXO1, BRCA2, CDKN2A, CDKN2B, MTAP and PTPRD)(Supplementary Table 1).   

(199–201). 
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Figure 46. Somatic structural variants identified in case 63. Above, three circular representations of the human genome indicating(inside)  the location of 
SVs detected in each tumor type. Lines in blue represent inversions, red are deletions, green are duplications and yellow translocations. Below, an schema 
of the patient follow-up of. 
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5.1.3.2 Frequency and evolution of structural variants during 

tumor progression  

Through manual inspection of the genomic regions affected by structural 

variants in both in-silico and tumor genomes, and curated detection of mutated 

reads across the aligned sequences, we suggested a strategy to infer the variant 

allele frequency for SVs. Therefore, we applied this strategy (see Methods 4.1.4.3) 

on 36 previously identified somatic structural variants in tumor genomes from 

pilot CLL case 63. Across all these variants, four were identically detected in all 

samples, three were found in tumor genomes collected after treatment (T2 and 

T3), and the remaining were only present in the last tumor sample (T3). Note that 

we did not infer the frequencies of six SVs including inversions and deletions, 

identified in samples T2 and T3 due to their short length (< 1000bp).  

Variant allele frequencies were calculated separately for both breakends of 

each structural variant. After that, we could see slight differences lower than 

0,446 (average 0,0962) (Supplementary Table 2, column Difference VAF) between 

frequencies calculated on each side of the structural variant. The clonal inversion 

acquired in chromosome 11 across 106.417.594 and 110.207.731, detected in all 

tumor genomes of this case, had the highest differences when comparing both 

breakend frequencies in all four longitudinal samples. Interestingly, this variant 

linked two genomic locations covered by repeat sequences, a LINE-1 together 

with an Alu. Structural variants such as SV_309, SV_85 and SV_86 identified within 

regions affected by different copy number alterations (one breakend (bkp) within 

a deletion and the other bkp in a duplication) tended to have higher differences. 

Contrary, breakpoints composing SVs identified within regions not affected by 

CNVs or equally affected, had similar VAFs. Therefore, differences between 

breakends of an SV could be due to a challenging and difficult genomic region for 

performing the sequencing alignment of a large variant. The number of SVs 
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evaluated was too low to characterize and confirm an enrichment of a specific 

group of SVs with higher differences across their breakends.  

Although we expected variant allele frequencies of around 0,5 for 

heterozygous and clonal variants, the frequencies (Supplementary Table 2, 

column Average VAF) obtained for the four inversions detected in all tumor 

genomes varied between 0,20 and 0,68. Moreover, their frequencies also 

changed over time. The presence of these inversions in all tumor samples 

collected at different time points suggested that these structural variants were 

clonal and present in all tumor cells expecting a VAF around 0,5.  However, 

inversions in chromosome X had VAFs of 0,3 suggesting subclonality on the first's 

samples (T1-PB, T1-LN) but increase up to 0,68 after the first treatment was given 

(T2 and T3).  

Finally, considering the VAF, the purity of each sample (0,977 T1-PB, 0,96 T1-

LN, 0,97 T2 and 0,952 T3) and copy number alterations previously detected in 

these tumor genomes, we calculated the cancer cell fraction of each breakend 

(Supplementary Table 2). We expected values around 1,0 for those clonal 

structural variants present in all tumor cells. Few structural variants identified in 

chromosome 4 and 11 in the T3 tumor sample were located in duplicated genomic 

regions where three copies of the DNA were detected. Large deletions (CNV = 1) 

were also identified in other genomic regions involving chromosomes 9, 11 and 

13. We obtained the cancer cell fraction of 36 structural variants present in one 

or more longitudinal tumor samples from case 63. Similar CCFs were obtained for 

SVs identified in both T1 samples corresponding to different tissues. The two 

inversions involving ATM gene in chromosome 11 appeared as clonal since they 

had a CCF of around 1,0, suggesting their presence in all tumor cells and in all 

samples (Supplementary Table 3). Contrary, the number of cells acquiring the two 

inversions on chromosome X had an increased in the cancer cell fraction during 

time and treatment exposure. Whereas on the first T1 samples these inversions 
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seem to appear only in half of the cells, after chemotherapy and Richter’s 

syndrome development, their CCF was around 1,3. Structural variants acquired 

once the patient developed Richter’s syndrome, had lower CCF and therefore 

they were supposed to be subclonal and just acquired by a group of cells.  

As for single nucleotide variants, VAF and CCF combined with longitudinal 

samples collected at different time points during the development of the disease, 

were used not only to reconstruct tumor heterogeneity but also the evolution of 

cell populations during time (Fig 47). 

Discussion of chapter 1 starting in section 6 (page 251). 

  

Figure 4728. Cancer cell fraction obtained for SV identified in case 63. Evolution is shown 
from T1 (LN above, PB below) to T3. Each dot-line represents one structural variant, and 
each CCF calculated in every sample. Variants are colored depending on the samples were 
identified; all tumor genomes (orange), those (T2 and T3) collected after the first treatment 
was given (pink) or only once the tumor transformed into DLBCL (blue). 
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5.2. Identification of somatic processed pseudogenes in cancer 

and evaluation of their functional impact 

Chapter 2
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5.2.1 Analysis of a lung squamous cell carcinoma genome 

As mentioned, somatic PPs are formed through retrotransposition and 

random integration within the genome, generating complex structural 

alterations. These variants are not uniformly and precisely detected by variant 

calling algorithms. Therefore, the identification of PPs from SVs is challenging and 

demands new strategies that can distinguish these events from other alterations 

captured in NGS data. 

 To start with the identification of somatic processed pseudogenes we first 

explored the structural variation landscape of one tumor genome from a patient 

diagnosed with lung squamous cell carcinoma. To ensure the presence of 

processed pseudogenes and to calibrate our protocol, we selected among those 

LUSC patients with more somatic structural variants detected, expecting a higher 

probability of identifying SVs supporting processed pseudogene formation. 

5.2.1.1 Identification of somatic structural variants supporting 

PPs formation 

The selected tumor genome was previously analyzed with the official 

PCAWG variant calling pipeline (202). This analysis allowed the detection of 515 

somatic SVs acquired on the tumor genome and therefore not present on its 

matched normal DNA.  

Among this set of 515 SVs, we then looked for mutations where at least one 

breakpoint position corresponds to an exon, suggesting the insertion point of a 

candidate processed pseudogene (see Methods section 4.2.2.1.1). A total of 164 

SVs fulfilled this requirement after removing 6 variants annotated within long-

noncoding RNA genes. This set of variants involved 97 different coding genes, and 

63,9% of them were affected by more than one structural variant. Genes including 

DAPL1, NTS, CNIH4 and TOP1MT not only had BKPs supporting an insertion point 
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but also variants between different exons of the source gene suggesting splicing 

events across their coding region, as expected when mRNA copies are 

retrotranscribed. 

5.2.1.2 Reconstruction of CNIH4 pilot processed pseudogene 

After the first genomic exploration of one LUSC tumor genome to select 

structural variant supporting PPs formation, we proceed with the reconstruction 

of one candidate PP observed. 

Among those source genes affected by more than one structural variant, 

CNIH4 had two breakpoints between an exon of the source gene and another 

gene (receptor gene), and two more BKPs joining two different exons of CNIH4. 

Evenmore, breakpoints supporting the insertion points were located in both the 

first and the last exons of the source transcript isoform. 

Using the genomic coordinates provided by the four breakpoints affecting 

this gene (Table 7) we reconstructed the candidate processed pseudogene. To do 

so, we looked for the exact location of each genomic position within all (6) 

transcript isoforms of CNIH4 and through manual exploration with the UCSC 

Genome Browser. We expected to reconstruct an intron-less sequence joining all 

the reference exons of at least one specific transcript and inserted within the 

receptor region. However, independently of the gene isoform we inspected, one 

or two different exons appeared to be deleted (Fig 48). As an example, CNIH4 

isoform 2 was reconstructed and inserted on chromosome 7 but its second exon 

was not present within the cDNA sequence (Fig 49). 
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Table 7. Breakpoints mapping CNIH4 candidate pseudogene. Four somatic structural variants were 
identified by variant callers affecting CNIH4. Two of them (SV_ID: 25 and 455) suggested two 
insertion points since they involved an exon of the source gene (CNIH4) and a new loci (chr 7). The 

remaining SVs (269 and 435) represented the absence of intron sequences. 

 

  

Figure 48. Breakpoints location considering six RefSeq Isoforms of CNIH4. Dashed lines 
represent each breakpoint (_1 and _2) corresponding to a somatic structural variant (shown 
in Table 7). Grey exons and introns are those that seemed to be deleted due to the presence of 
an SV joining two exons of the source gene. 
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Considering low precision on identifying the exact genomic position of a 

structural variant by variant calling algorithms, we next inspected the DNA 

sequence manually. In order to verify the automatic search based on the VCF 

predictions, we looked for supporting sequencing reads by analyzing the tumor 

BAM file corresponding to this LUSC patient. Tumor reads were first extracted 

from the source gene region and realigned to reference RNA sequences. This step 

allowed us to observe split reads mapping all splice junctions from exon one to 

exon five of the CNIH4 isoform 1, showing the absence of all introns and the 

presence of the full transcript, which is what we expect for processed 

pseudogenes. Moreover, split reads aligned across the first CNIH4 exon and 

chromosome 7, together with paired-end reads where one read mapped CNIH4, 

and its mate mapped the same receptor location confirmed the insertion of the 

cDNA. The fact that we observed this retrotranscribed mRNA inserted into the 

genome, allow us to confirm the formation of the processed pseudogene, and 

refuted RNA contamination in our genome sample (Fig 50 and Fig 51). Lastly, 

Figure 4929. Proposed reconstruction of a candidate pseudogene identified in one 
LUSC tumor based on detected somatic SVs. The source gene CNIH4 (isoform 2) is 
retrotranscribed and inserted within the second intron of VIPR2. Not only intron 
sequences are missing bu t also the intermediate exon 2. 
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reads aligned to the 3’ end of the source gene showed the presence of a poly-A 

tail, another feature of a processed pseudogene. 

To further verify that this processed pseudogene was acquired somatically, 

we looked for split reads and paired-end reads on the normal genome and as 

expected, no evidence was found, confirming that the cDNA sequence obtained 

from the reverse transcription of CNIH4 was inserted during tumor development.  

This first and detailed analysis of a particular processed pseudogene allowed 

us to later define and calibrate our protocol to identify PPs on all ICGC-PanCancer 

genomes.  
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Figure 50. DNA reads from tumor WGS. Paired-end reads (grey lines) and split reads (dotted blue 
lines) reveal all exon-exon junctions of CNIH4 isoform 1 together. Tumor aligned reads also support 
the PP insertion in chromosome 7. 

 

 

  

Figure 5130. Somatic PP on a LUSC genome. Reconstruction of CNIH4 pseudogene using 
WGS data. All five exons from transcript isoform 1 of the source gene are inserted within the 
second intron of VIPR2. It also includes part of the 5' UTR and the polyA tail. 
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5.2.2 Automatic search of PPs across all LUSC tumors based on 

diverse criteria combinations 

To define an automatic protocol based on the search of somatic structural 

variants, we considered three different criteria, and we combined them to get 

diverse datasets of candidate processed pseudogenes. Then, we manually inspect 

them to evaluate each criteria combination and redefine the final search strategy. 

In this step, we inspected 48 tumor genomes corresponding to the entire PCAWG 

subcohort of patients diagnosed with lung squamous cell carcinoma (203).  

5.2.2.1 Dataset 1: evidence of one insertion point 

Following the criteria described on the methods section, we obtained for the 

first dataset (dataset 1.A) a list of 1291 candidate pseudogenes including all 48 

LUSC patients (See Dataset 1.A on Table 8). For this dataset, only one structural 

variant suggesting the insertion of a PP was necessary to count for a candidate PP. 

A total of 827 candidates among this dataset were observed inserted within the 

same chromosome of the source gene and many of them, also near its genomic 

location.  As an example, we manually inspected few of these candidate PP 

including LPHN3. For this candidate, we could not identify split reads confirming 

splice junctions on the source gene were joined. Furthermore, the breakpoint 

representing its insertion involved an exon with a noncoding region of the same 

source gene suggesting a partially deletion of LPHN3 instead of the insertion of a 

processed pseudogene. To avoid mistaking PP by intrachromosomic 

translocations, evidence of PP insertion was only considered if the SV affects an 

exon and any other region of the genome, with a distance larger than 100Kb if it 

only involves one chromosome. 

We applied this new condition to the previously defined criteria and 

recalculated the number of candidates processed pseudogenes for this first 

dataset (dataset 1.B). The number of candidate PP decreased to 806 in this 
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dataset, but the same number of patients (48) still retained at least one processed 

pseudogene. However, identifying PPs based only on one insertion point was 

overly permissive, and therefore not exclusive enough to define their formation. 

This criterion includes in the search so many other genomic events acquired in 

the tumors such as translocations. 

5.2.2.2 Dataset 2: evidence of one insertion point and splicing 

events 

After analyzing the first dataset, we kept applying additional criteria as 

evidence for somatic PP, by including the analysis of splicing events within the 

insertions. To do so, we combine criteria 1 and 3 (see Methods 4.2.2.2.2) to select 

supporting structural variants. Moreover, considering the results obtained for 

dataset 1, intrachromosomic translocations suggesting the insertion of a cDNA 

were also filtered out if the distance between both genomic coordinates was 

shorter than 100Kb.  

For this second dataset (dataset 2) we obtained a list of 50 candidate PPs 

distributed across 21 out of 48 donors (See Dataset 2 on Table 8). We manually 

inspected 17 candidates and only 6 were confirmed as processed pseudogenes, 

including C6orf48, C12orf57, DYNLL1, NUFIP2, PLEKHA5 and RSL1D1 as the source 

genes. For the remaining 11 events, we could not find split reads between splices 

junctions of any of their transcript sequences. Therefore, the structural variants 

previously selected from the VCF suggested recombination between two exonic 

regions of the gene but could not confirm the presence of an intron less cDNA 

sequence. On the other hand, structural variants joining this same gene with any 

other genomic location suggested the recombination event was also translocated 

(See BTF3 example on Table 8). Moreover, we could not identify poly-A sequences 

together with the candidate PP within the tumor aligned sequences.  
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5.2.2.3 Dataset 3: evidence of two insertion sites 

The third dataset of candidates we explored (dataset 3) was based on the 

search of two different structural variants for each candidate PP indicating both 

insertion sites of the cDNA (criteria 2). To pair supporting SVs as the insertion sites 

of one candidate, both variants must be between an exon of the same source 

gene, and any other genomic location. Following this criterion, we counted 135 

candidate PP acquired in 39 different donors (See Dataset 3 on Table 8). Among 

these candidates, 75% of the events were insertions of only one exon of the 

source gene. Therefore, although both insertion sites were validated in most, we 

could not confirm these cases were due to retrotransposition or the translocation 

of a particular single exon gene (See PPT1 example on Table 8).  

Without considering one exon candidates, we selected 12 events and 

manually inspected them. Only three (CAPN2, CCDC47 and NOL7) out of 12 were 

confirmed as processed pseudogenes by looking at the tumor sequence. Split 

reads across splice junctions of the source genes were also found. 

5.2.2.4 Dataset 4: evidence of both insertion sites and splicing 

events within the source genes 

Combining the most conservative criteria we end up with a reliable set of 

candidates processed pseudogenes (dataset 4). These PP show both, evidence of 

insertion represented by two insertion sites (criteria 2) and evidence of splicing 

events between at least one exon-exon junction of the source gene (criteria 3). 

Since one splicing event was needed to select candidate PP, the minimum length 

considered for this dataset would cover at least two exon-long PP. This 

conservative dataset was represented by 26 candidate PP identified among 14 

LUSC patients (see Dataset 4 on Table 8). From this collection, we could not find 

supporting reads for only one candidate (CD177) since a high number of possible 

insertion sites due to repetitive sequence were observed on the tumor aligned 



   

 

195 

 

reads. Therefore, manual inspection could confirm 25 out of 26 events as true 

somatic processed pseudogenes.  
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Table 8. Dataset definition based on diverse criteria combinations. Summary and schema of 

the searching rules. Number of candidates identified in each dataset are shown, together 

with examples of false positive or doubtful results (column 4). 
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5.2.3 Identification of somatic processed pseudogenes in all 

PCAWG tumor genomes  

The results obtained after analyzing LUSC patients through diverse 

automatic searches combined with manual inspection of selected candidates 

were used to define the final identification strategy. As mentioned on the 

methods section, we applied a combination of re-defined criteria across the 

somatic structural variant catalog of all PCAWG patients to get a set of candidates 

processed pseudogenes. In general terms, this final criterion defined candidate 

PPs if they were supported by both insertion points. Later, we manually validated 

these candidates to identify somatic processed pseudogenes in a more 

conservative manner. 

The application of this final protocol (see Methods section 4.2.2.2.3) across 

2589 PCAWG tumor-normal sample, resulted in evidence for 433 somatic 

retrotranscription and integration events of coding mRNAs across 250 tumor 

genomes and 248 patients, ranging from complete mRNA copies of the source 

gene to fragments of different sizes, with 260 of them only consisting in one exon 

copy. Based on the genomic coordinates observed from their supporting somatic 

structural variants, 51% of candidate PPs appear to be inverted cDNA sequences 

compared to the strand of the host gene or insertion region. 

Candidate processed pseudogenes were identified in 28 out of 34 tumor 

type-subtypes that were studied and were not equally distributed across them. 

Notably, most of these candidates (74 of 433) were acquired in pancreatic 

adenocarcinoma (PACA) samples sequenced in Canada and Australia. Although 

we studied 240 tumor genomes corresponding to PACA, only 22 of them had 

acquired at least one candidate PP, being the donor PCSI_0231 the PACA tumor 

with the highest number, 47. Pancreatic adenocarcinoma was followed by lung 

squamous cell carcinoma (LUSC) (69 candidate PPs), head and neck squamous cell 
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carcinoma (HNSC) with 46 identified candidates, esophageal adenocarcinoma 

(ESAD) (45), breast cancer (BRCA) (33) and ovarian cancer (OV) (32). However, 

seeing the number of patients analyzed for each tumor type, LUSC, HNSC, ESAD 

and STAD show the highest frequency among patients (50%, 36%, 34%, 34% 

respectively) and within them, a higher rate of PP formation (Fig 52). 

 
Figure 5231. Percentage of donors with at least one somatic PP identified in its tumor genome 
across all PCAWG tumor projects. 

 

In most of the analyzed donors (188/248) we could only identify one 

candidate processed pseudogene. However, the top 5 patients with the highest 

number of acquired candidate PPs range between 10 and 47 somatic events. 

These patients were diagnosed with PACA (1 donor), LUSC (2) and HNSC (2).  

Whereas all 433 source genes producing somatic PPs were not significantly 

enriched in any cancer related function, we could identify up to 26 of them 

generating PPs in different samples, and across different tumors, including the 

Beta-2-Microglobulin (B2M) and the Myosin heavy chain 9 (MYH9), both 

described as cancer driver genes (www.intogen.org). Interestingly, the TRMT10C 

gene which codes for TRNA Methyltransferase, was found to generate up to six 

different PPs across six LUSC, HNSC and GACA (gastric cancer) genomes. 

  

http://www.intogen.org/
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As it was observed for germline and somatic PPs, the integration of somatic 

candidate PPs found across all tumor types, appears to be enriched in more 

accessible parts of the chromatin, like intronic regions, where we identified 49% 

of these cases. Insertions were allocated in all chromosomes in different 

proportions being chromosome 2, 3 and 1, the chromosomes with more 

candidate PP insertions and, chromosome Y the one with only one candidate 

event. Only 20% of the somatic candidate PPs identified were intrachromosomic 

insertions. 

5.2.3.1 Manual validation of candidate PPs previously identified 

across PCAWG cohort 

To finally get a conservative and validated set of somatic processed 

pseudogenes, we looked for tumor supporting reads analyzing the genomes of all 

433 candidates obtained after applying the final strategy explained in section 

4.2.2.2.2 and across all PCAWG tumor genomes. 

We could identify supporting reads for both insertion sites for 69  out of 433 

candidate pseudogenes. For 45 of them (Table 9), evidence of splicing was 

validated, this being the last set the most accurate collection of somatic processed 

pseudogenes. 

Validated processed pseudogenes (45 in total) were distributed across six 

tumor types including ovarian cancer (1 PP insertion), pancreatic adenocarcinoma 

(2), colon adenocarcinoma (4), esophageal adenocarcinoma (7), head and neck 

squamous cell carcinoma (7) and lung squamous cell carcinoma (25). Similarly, to 

the results obtained after evaluating candidate PPs, 40% of these somatic PPs 

were inserted within an annotated gene and only B2M was identified as the 

source gene in two different events. Five processed pseudogenes result from 

cancer genes including B2M, MAX and MYH11 that are tumor suppressor genes, 

and KTN1 which is an oncogene. Insertions were only identified in 17 different 
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chromosomes, chromosome 7 being the sequence with the highest number of 

insertions, followed by 2 and 3. Only two of these retrotransposed insertions were 

intrachromosomic.  
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PCAWG Donor ID Source Cancer Insertion  RNA 

Project  gene gene site Gene evaluation 

COAD-US 613aa3e8-a70b-45a9-9c08-0c2346c8bf00 C2orf69  Chr5:98157631-98157718  Non conclusive 

COAD-US 613aa3e8-a70b-45a9-9c08-0c2346c8bf00 HNRNPM  ChrX:99988609-99988620  Non conclusive 

COAD-US 613aa3e8-a70b-45a9-9c08-0c2346c8bf00 LDHB  Chr5:133665049-133664911 CDKL3 Non conclusive 

COAD-US 613aa3e8-a70b-45a9-9c08-0c2346c8bf00 PPP1CA  Chr6:82636007-82636017  Non conclusive 

ESAD-UK OCCAMS-AH-096 B2M TSG Chr2:65746571-65746585  No RNA-seq DATA 

ESAD-UK OCCAMS-AH-047 CLUAP1  Chr15:91625252-91625267  No RNA-seq DATA 

ESAD-UK OCCAMS-PS-012 DDX18  Chr2:70601348-70601364  No RNA-seq DATA 

ESAD-UK OCCAMS-AH-091 LRRC31  Chr2:165637601-165637674 COBLL1 No RNA-seq DATA 

ESAD-UK OCCAMS-ZZ-009 LYZ  Chr5:147527887-147527897  No RNA-seq DATA 

ESAD-UK OCCAMS-WG-019 RPS27L  Chr3:168507166-168507153 EGFEM1P No RNA-seq DATA 

ESAD-UK OCCAMS-RS-024 SH3KBP1  Chr11:12104723-12104737  No RNA-seq DATA 

HNSC-US 64bb5550-2735-4401-a0db-58ec1020a32d ALDH1A1  Chr3:188900757-188900716 TPRG1 Non conclusive 

HNSC-US 8c238d30-df8e-4e6b-98fc-21696269a294 ANAPC13  Chr8:89993268-89993312  Non conclusive 

HNSC-US d89b1fd6-bef4-4803-8ed3-3b442be600b6 GNPNAT1  Chr1:156009767-156009727 UBQLN4 Non conclusive 

HNSC-US 8c238d30-df8e-4e6b-98fc-21696269a294 KRT17  Chr11:127262292-127262335  Non conclusive 

HNSC-US fafd6f5b-1d76-4537-bd1c-e0bd7b4e2166 KTN1 oncogene Chr4:95176296-95176410 SMARCAD1 EXPRESSED 

HNSC-US 64bb5550-2735-4401-a0db-58ec1020a32d MAP3K4  Chr4:95176296-60042427  Non conclusive 

HNSC-US 8fc1f1be-d2d5-4b3a-9973-f4d964018beb NCAPH  Chr1:163628659-163628640  Non conclusive 

LUSC-US e6b72c24-1607-43b9-8b8a-7bf83eea5895 ATP6V0C  Chr7:128608087-128608087 TNPO3 Non conclusive 
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LUSC-US 1f6b2aca-7357-40d1-ba7a-99227d9900a2 B2M TSG Chr14:64088805-64088793 WDR89 EXPRESSED 

LUSC-US 9af6ed4e-8cdc-4f49-84e9-ba1053b5b3ca C1orf131  Chr2:45310258-45310311  Non conclusive 

LUSC-US 9af6ed4e-8cdc-4f49-84e9-ba1053b5b3ca CNIH4  Chr7:158934807-158934829 VIPR2 EXPRESSED 

LUSC-US 19f0cb8c-2e57-4310-967f-a9890f1605db COX5A  Chr3:132099251-132099231  Non conclusive 

LUSC-US 0398eae1-7216-4595-80a5-6b117d96e070 CYFIP2  Chr7:88489076-88488997 ZNF804B Non conclusive 

LUSC-US 9af6ed4e-8cdc-4f49-84e9-ba1053b5b3ca DAPL1  ChrX:84343761-84343733 APOOL EXPRESSED 

LUSC-US 6fd72426-f6c8-47ca-a500-d5d3600b9b15 EIF2S1  Chr7:109918576-109918576  Non conclusive 

LUSC-US b913d254-8307-4b8a-8313-d978e32bb38f EIF5B  Chr8:119911085-119911171  Non conclusive 

LUSC-US 422a46b2-a67c-4a7e-923f-9b651ced96f8 FAM210B  Chr12:27139136-27139146 TM7SF3 Non conclusive 

LUSC-US 0398eae1-7216-4595-80a5-6b117d96e070 FGGY  Chr22:36471006-36471063  Non conclusive 

LUSC-US e6b72c24-1607-43b9-8b8a-7bf83eea5895 GLRX5  Chr2:96832304-96832242  Non conclusive 

LUSC-US 0e2ee54a-51c9-4868-842d-a2a1c1cfb016 KRT5  Chr9:103617685-103617686  Non conclusive 

LUSC-US 9af6ed4e-8cdc-4f49-84e9-ba1053b5b3ca MAX TSG Chr3:185087525-185087489 MAP3K13 Non conclusive 

LUSC-US b5e2cbda-bbfa-4ef8-a9c4-cb978bef9b23 MED10  Chr8:131232562-131232444 ASAP1 EXPRESSED 

LUSC-US 6fd72426-f6c8-47ca-a500-d5d3600b9b15 MYH11 TSG Chr7:97399222-97399198  Non conclusive 

LUSC-US 1ee543d5-b8c0-4f79-8373-6bb6319f2ee2 MYL9  Chr4:2331210-2331241 ZFYVE28 Non conclusive 

LUSC-US 9af6ed4e-8cdc-4f49-84e9-ba1053b5b3ca NTS  Chr15:77767421-77767434 HMG20A EXPRESSED 

LUSC-US 9af6ed4e-8cdc-4f49-84e9-ba1053b5b3ca PSMA1  Chr16:1781321-1781328 MAPK8IP3 EXPRESSED 

LUSC-US 3666bc65-8e40-409e-9a1f-41583dd6d978 RTF1  Chr7:106287513-106287489  Non conclusive 

LUSC-US 9293e197-e38a-4e19-a7d0-1b45d1ad48bd SPATS2L  Chr2:136784525-136784508  Non conclusive 

LUSC-US b5e2cbda-bbfa-4ef8-a9c4-cb978bef9b23 SSBP1  Chr1:226325706-226325753  Non conclusive 
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LUSC-US 422a46b2-a67c-4a7e-923f-9b651ced96f8 TFDP2  Chr12:116966949-116966863  Non conclusive 

LUSC-US 9af6ed4e-8cdc-4f49-84e9-ba1053b5b3ca TOP1MT  Chr6:88791065-88791366  Non conclusive 

OV-AU AOCS-159 PFDN2  Chr6:146295348-146295371  Non conclusive 

PACA-CA PCSI_0231 PERP  Chr1:111835475-111835492 CHIA No RNA-seq DATA 

PACA-CA PCSI_0231 PHAX  Chr4:72593135-72593118  No RNA-seq DATA 

Table 9 - Validated somatic processed pseudogenes. For each somatic event, source gene generating the PP, its classification depending on the Cancer Gene 
Census database, and the genomic coordinates of the insertion site and their corresponding gene name are described. 
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5.2.4 Evaluation of potential PP-host gene fusion transcripts 

Almost half of the identified candidate processed pseudogenes were 

inserted within annotated genes. Although, the likelihood that a particular PP 

integrates into a region with transcriptional activity and in the right orientation is 

low, previous studies have shown a fraction of germline and somatic human PPs 

to be expressed. 

As a first approximation to study the potential functional impact of somatic 

PPs identified across all tumor types, we explored evidence for expression using 

RNA-seq data available for 144 samples containing 257 previously identified 

candidates (51% inserted in intergenic regions, 48% inserted within genes). 

From this analysis, we could identify read support (split and paired-end 

reads) for the expression of 17 PPs, across 14 different samples and 6 different 

tumor types (BRCA, HNSC, LUSC, OV, SKCM and STAD) (Table 9). 

Whereas three of these expressed PPs were located within intergenic 

regions, the majority (14) were inserted in different parts of genes, generating 

diverse forms of PP-host gene fusion transcripts with a variety of potential forms 

of functional interactions. An example is shown in Figure 53. Four of these PPs 

were inserted outside the coding region of the host gene, but the remaining ten 

directly affect the coding potential of genes, as we could infer from the RNA-seq 

data. Seven PPs out of 14 were inserted in the opposite reading direction 

compared to their host gene. 
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Figure 53. Chimeric DAPL1-APOOL transcript. DAPL1 (source gene) was found as a somatic PP 
inserted into exon nine of APOOL, on the tumor DNA sequence of a LUSC donor. The expression of 
the fusion transcript was confirmed with tumor RNA-seq from the same patient. The figure shows 
the split reads (black) mapping both transcripts together as a chimeric, and its sequences. 

Considering supporting reads and performing an in-silico translation of the 

sequence, the reconstruction of the potential PP-host gene fusion transcripts 

predicts that the major form of PP insertion would generate a premature stop 

codon within the coding region of the host transcript (Fig 54). This event could be 

generated either because of the presence of intronic sequences, or because the 

PP integrated in the opposite direction of the host gene.  

Alternatively, we cannot discard that these inverse PP integrations generate 

antisense transcripts (partial or complete, like for B2M) that could interact, in this 

case, with the transcript of the source gene. 

Discussion of chapter 2 starting in section 6 (page 254 ). 
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Figure 54. Host gene and processed pseudogene fusion transcripts including 17 somatic events. Circos represent the human reference genome with all 
chromosomes. Arcs with arrows within this circos correspond to a somatic PP, connecting the source gene (underlined and bold) with the corresponding integration 
site. All except 3 events are inserted within genes. For these 14 PPs, the predicted fusion transcript structure is shown in the outermost layer of the figure. Coding 
potential is shown below the fusion transcript representation. Start codon is indicated as ATG and termination as STOP. Dots represent uncertain termination. 
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5.3. Identification and characterization of novel candidate 

micropeptides using publicly available genomic and 

transcriptomic cancer data  

Chapter 3  
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Study 1: Catalog of candidate micropeptides for 
MS/MS searches 

5.3.1 Predicting non-reference-based novel transcripts for 

pancreatic adenocarcinoma samples 

The results of these sections are framed within one of our objectives related 

with the definition of a new catalog of candidate micropeptide sequences for 

mass-spectrometry searches and interpretations within a Pancreatic cancer 

study.  

Diverse datasets of small open reading frames have been obtained from 

computational and experimental approaches and are publicly available. 

Nevertheless, most of these sequences have been identified translating 

annotated and known human transcripts. Moreover, it is known that transcription 

and translation are tissue specific.  

To end with a more specific cancer-type dataset and to observe novel 

micropeptides within non-annotated transcripts, we performed de novo 

transcriptome assembly from six independent RNA-seq samples from pancreatic 

adenocarcinoma human tissue. Our approach to generate these micropeptide-

enriched transcriptomes is based on the use of StringTie, a software that 

generates transcript assemblies for different needs and scenarios. Stringtie 

predicts transcript’s start and stop coordinates based on sudden drops in 

coverage of the aligned reads. Since different optional parameters can be set up 

when running StringTie, we first tested the different possibilities for processing 

the data and selected the one with more indications of micropeptide enrichment.  
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5.3.1.1 Calibrating StringTie  

With the aim of finding the best set of parameters and threshold for StringTie 

according to our needs, we generated a testing scenario, where we experimented 

with different settings.  

To predict transcripts based on aligned read clusters, StringTie uses a default 

minimum size of 200 nucleotides length. However, since the aim of this project 

was to identify short open reading frames of less than 300 coding nt, we decided 

to test and modify this threshold.  

We performed a quick comparison on StringTie results after running the 

algorithm on one PACA sample. We run StringTie using default values for all 

parameters as well as modifying the minimum length allowed for the predicted 

transcripts to 50nt. As expected, we could observe an increase in the number of 

assembled transcripts of around 21.500 sequences. Although few of them were 

single exon transcripts covered by a low number of reads, StringTie could also 

identify short sequences and their splice junctions based on split read detection. 

At this point of the study, intending to cover most of the transcriptome to later 

translate it, we decided to continue all the following analysis and datasets creation 

using 50 nucleotides as the minimum length to predict de novo transcripts. 

Not only was the minimum transcript length evaluated to adjust the 

algorithm settings, but also the fraction of multiple-location-mapped reads 

allowed to be present in a locus (-m). Usually, high multi-mapping reads occur in 

RNA-seq samples due to transcript isoforms, repetitive elements or low 

complexity sequences such as poly-A tails. To address this issue when identifying 

novel transcripts based on read coverage, StringTie was tested and used 

considering two different values (default and 0,1) as the fraction of multi-mapped 

reads within the predicted transcript. 
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We compared the results obtained under both assemblies, and we could 

observe a decrease of around 5.000 predicted transcripts in the same tumor 

sample. Although the number of transcripts was lower when excluding multi-

mapped reads (-m = 0,1), not all the obtained transcripts in this analysis were 

identical to the previously identified with the default allowed fraction. When 

considering only unique reads, the coverage across the transcriptome was 

modified and consequently, read clustering and the prediction of start and stop 

transcript coordinates. For this reason, predicted transcripts were not all identical 

in both analyses.  

When identifying new transcripts from RNA-seq, there are reasons both to 

exclude and to retain multi-mapped reads. After careful inspection, we found that 

the results did not significantly favor one value over the other for the 

multimapping parameter (-m). Therefore, we chose to use both values to create 

two different sets of smORFs: the default (1,0), which allows the maximum 

fraction of multi-mapped reads, and 0,1, which considers only unique mapped 

sequences. The specific choice between these two values depends on the 

subsequent filtering steps employed to define the catalog of smORFs. The 

implications and reasons behind this choice will be further described and 

discussed in the following discussion section.  

Both sets of predicted transcripts were used to continue with the 

identification of novel smORFs in pancreatic adenocarcinoma tumor samples. 

Therefore, as described in the methodology section of this thesis, two datasets of 

small open-reading frames were obtained under different parameters applied not 

only when predicting transcripts but in all the steps. Results observed for each 

dataset are explained below in sections 5.3.3.1 and 5.3.3.2. 
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5.3.2 Assessment of transcript clustering based on different 

criteria 

After running StringTie across different RNA-seq, we combined the results to 

create a representative transcriptome for our pancreatic adenocarcinoma 

samples. To do this, we applied the StringTie transcript merge mode for the 

dataset version 1, but also established an in-house strategy to obtain a consensus 

set for dataset version 2. An examination of the results we observed after applying 

different criteria while generating the in-house strategy is described in this results 

section. 

To merge transcripts and isoforms identified on different samples, we 

explored the overlap between their genomic coordinates. In the first approach we 

only merge those isoforms with the exact same start and end (windows size 0). 

However, any predicted transcript was identified in all six samples under this 

criterion, only 3 were defined in 5 out of 6 samples and around 99% of the 

predicted transcript in each sample were considered unique. Because the 

identification of transcripts when running StringTie was based on drops in 

coverage of aligned reads, the prediction of exact same start and end coordinates 

across samples was extremely unlikely. Therefore, applying this criterion did not 

appear reasonable.  

We then tested a range of window sizes to consider start and end 

coordinates representing the same transcript even it was predicted in diverse 

samples. As expected, the number of transcripts predicted across samples that 

clustered among themselves increased as window sizes increased too. Moreover, 

the number of unique predicted transcripts decreased, observing a significant 

change when comparing results using a windows size of 250 and 500. In particular, 

92% of the predicted transcripts were not clustered if the criteria used was a 

windows size of 250bp, while for a window size of 500bp, 87% of them were 
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exclusively identified in one sample. Around 82 and 85% were considered unique 

across other windows sizes applied (from 750 to 2000bp), therefore this 

percentage appeared to be stabilized through window sizes higher than 500bp. 

StringTie was not only able to detect start and end coordinates but also 

define exons. Isoforms with different number of exons or different exon 

coordinates for a specific transcript were also detected even within one sample. 

Therefore, we decided that the number of exons should also be considered when 

merging results across samples. When comparing the results obtained after 

applying different windows sizes, we not only evaluate the number of shared and 

unique start-end transcript coordinates. We also count the number of clustered 

transcripts in each merge, that had the exact same start and end coordinates for 

all their exons. Since exons were predicted based on split-reads, their coordinates 

were more precise and reproducible across samples. As mentioned, the number 

of clustered transcripts was constantly increasing when using larger windows 

sizes. However, the number of clustered transcripts with exactly all same exon 

coordinates decreased with larger windows sizes revealing more clustered 

sequences did not probably represent the same transcript. The percentage of 

clustered transcripts sharing the same exon coordinates among all clustered 

transcripts was similar (around 39%) across merging results when the windows 

sizes were from 500 to 2000 (Fig 55). 

 

  

Figure 32. Percentage of clustered transcripts sharing the same exon coordinates among all 
clustered transcripts. Values calculated for each windows size (bp) used to merged predicted 
transcripts from different RNA-seq samples. 
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Considering the percentage of clustered transcripts after applying a range of 

window sizes, the number of clustered transcripts sharing the exact same exon 

coordinates across, and how these numbers increased, decreased or maintained 

similar, we decided to merge transcripts from different samples when their start 

and end coordinates were shared within 500bp. The clustered transcripts had to 

share the same number of exons and strand orientation. 

5.3.3 Small open-reading frames datasets: insights from two 

different criteria 

As previously mentioned, the aim of this presented study was to obtain a 

collection of candidate micropeptides, to use as a reference dataset for the mass 

spectrometry analysis performed on pancreatic adenocarcinoma exosomes. In 

this stage of the study, we generated two datasets following multiple steps and 

based on distinct parameters with the aim of capturing a comprehensive range of 

information while mitigating false positives. While dataset version 1 was slightly 

more conservative (Table 10), we tried to enlarge the collection of candidates on 

dataset version 2 (Table 11). However, it was imperative to consider the total 

number of candidates obtained in each dataset, as mass spectrometry analyses 

are constrained by dataset size limitations. 
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Dataset version 1 (DS1) 

Tumor 
sample 

STEPS 
PREDICT TRANSCRIPTS COMBINE SAMPLES GET PEPTIDE SEQUENCES FILTER 

De-novo transcriptome 
assembly 

Merge and consensus of 
multiple samples 

In-silico translation 
Overlap with 

annotated CDS 
 

PACA1 95.015 

25.207 merged predicted 
transcripts 

838.377  candidate 
micropeptides 

551.494 
candidate 

micropeptes 

 

PACA2 106.682  

PACA3 65.222  

PACA4 186.180  

PACA5 141.505  

PACA6 196.061  

Table 10. - Predicted transcripts and candidate sequences obtained in each step for database version 1 
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Dataset version 2 (DS2) 

Tumor 
sample 

STEPS 

PREDICT 
TRANSCRIPTS 

COMBINE SAMPLES 
GET PEPTIDE 
SEQUENCES 

FILTER 

 

De-novo 
transcriptome 

assembly 

Clustering 
transcripts from 
multiple samples 

Recalculate 
consensus 
sequence 

Select 
representative 

transcripts 

In-silico 
translation 

Overlap with 
annotated 

CDS 

Expression 
of the 

transcript 

 

 

 

PACA1 90.651 

589.475 clustered 
isoforms 

589.145 
consensus 
sequences 

27.849  
merged 

predicted 
transcripts 

6.366.662  
candidate 

micropeptides 

3.733.227  
candidate 

MP 

1.211.051  
candidate 

MP 

 

PACA2 100.963  

PACA3 61.758  

PACA4 176.703  

PACA5 136.574  

PACA6 182.098  

Table 11 - Predicted transcripts and candidate sequences obtained in each step for database version 1/2 
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5.3.3.1 Dataset version 1: a more conservative set of small 

ORFs 

We decided to start the identification of novel smORFs applying a more 

restrictive criterion. Following the methodology previously explained and the 

mentioned StringTie parameters, we first ran the algorithm for six pancreatic 

adenocarcinoma samples allowing a maximum fraction of multi-mapped reads of 

1’0.  

5.3.3.1.1 De novo transcript prediction allowing multi-mapped 

reads 

When allowing multi-mapped reads (-m 1’0) a total of 95.015, 106.682, 

65.222, 186.180, 141.505, 196.061 transcript isoforms were predicted for 

samples PACA1, PACA2, PACA3, PACA4, PACA5 and PACA6 respectively. An 

overview regarding the size of the transcripts, the number of exons, the number 

of reads covering each sequence, and their distribution across chromosomes is 

shown in Supplementary figure 3. Around 20.000 predicted transcripts in each of 

this samples overlapped with an Ensembl annotated transcript just by evaluating 

their start and end coordinates within a 100bp windows size.  

5.3.3.1.2 Consensus set of predicted transcripts using StringTie 

algorithm 

After using StringTie to predict all possible transcripts based on their 

sequencing coverage, we combine the results of these six samples to obtain a 

consensus set of sequences corresponding to the pancreatic adenocarcinoma 

transcriptome. For this dataset version 1, we combined the results of all the 

samples using StringTie transcript merge mode. After performing the merging 

step, we get a list of 25.207 predicted transcripts summarizing the pancreatic 

adenocarcinoma transcriptome of these six samples. Distribution across 
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chromosomes is shown in Figure 56. Around 10% of them were single-exon 

transcripts. Genomic coordinates resulting from the use of the StringTie merge 

mode were recalculated by the algorithm and do not precisely match those 

identified in each individual sample. Therefore, we were unable to explore the 

proportion of transcripts originating from each sample neither the degree of 

overlap between them, as StringTie does not provide this information on its 

merge output. Considering the recalculated genomic coordinates for these set of 

combined predicted transcripts, we used StringTie to get the number of reads 

covering each of them and in all tumor samples separately. Based on these, we 

observed that supporting reads were not identified for 182 merged predicted 

transcripts in PACA1, 112 in PACA2, 182 in PACA3, 151 in PACA4, 136 in PACA5 

and 108 in PACA6. The median TPM observed for merged predicted transcripts 

and in each sample range between and 1,9 (PACA1) and 8,7 (PACA2) (Fig 57). 

 

Figure 33. Number of merged transcripts predicted in each human chromosome. 
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We downloaded the DNA sequence of all the transcript isoforms and 

reconstructed their coding DNA based on the exon coordinates obtained from the 

StringTie merge mode. Later, to end with a set of amino acid sequences we 

performed an in-silico translation of the 25.207 predicted coding sequences. For 

this dataset version 1, only the ATG codon was used as a starting point for the 

translation.  

5.3.3.1.3 In-silico translation of coding DNA 

Through the 3-frames translation of coding DNA sequences we obtained a 

set of 838.377 candidate small ORFs that range between 7 and 100 amino acids 

lengths (median size 19 aa). Small ORFs were distributed across all human 

chromosomes, being 1, 2, 3, 11 and 5 the ones with the highest numbers of short 

aa sequences (79.508, 71.214, 61.505, 49.530, 45.566 respectively). In contrast, 

even though chromosome 19 was on the top 5 regarding the number of predicted 

transcripts as chromosomes 1,2,3 and 11, only 27.401 smORFs were translated 

within it (Fig 58). The predicted transcript MSTRG.14380.4 identified in 

chromosome 8 was the cDNA with the highest number of candidates smORFs: 

1.537 short amino acid sequences. Note that this predicted transcript was also 

the longest coding sequence obtained after the merging step, with 161.831 

nucleotides. 

Figure 34.Violin plot showing the distribution of TPM values obtained for each 
merged transcript and in each sample. Median values are shown within the plot. 
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5.3.3.1.4 Filtering micropeptides based on their overlap with 

known CDS 

Lastly, to end with a collection of candidates novel micropeptides we filtered 

out those overlapping with annotated coding sequences. Only the overlap with 

CDS was considered since we choose to also study smORFs located in 5’ or 3’ 

UTRs, introns or long non-coding RNAs. To do so, we performed a Blastn of all the 

smORF sequences against the human coding sequences. Only those results from 

Blastn with an e-value lower than 0’001 and an overlap lower than 60% between 

their sequence and an annotated CDS were kept.  

We end with a dataset of 551.494 candidate micropeptides, which represent 

our dataset version 1. In line with the results obtained in previous steps, 

chromosome 1, 2 and 3 had the highest number of candidates micropeptides (Fig 

58) and their median size was 19 amino acids. MSTRG.14380.4 was the predicted 

transcript with the highest number of candidates micropeptides (1.342). 

However, a median of 13 smORFs were identified in each of the predicted 

transcripts analyzed. An example showing the predicted transcript (MSTRG.12.1) 

all the smORFs translated and those that were selected after the filtering step is 

shown in Figure 59. 

Figure 35. Number of smORFs translated from each human chromosome. Bars in blue show the 
results after in-silico translation while those in pink correspond to smORFs obtained after filtering 
them. 
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5.3.3.2 Dataset version 2: inclusion of non-canonical start 

codons and expression-based filtering for small ORFs 

Once we finished the first dataset of small ORFs, we designed a second 

version with the aim of addressing specific limitations and enhancing our 

approach based on the insights gained from our initial version. One consideration 

was the need to adjust certain parameters within the StringTie algorithm. 

Moreover, we opted for an in-house merging strategy as we encountered 

uncertainty regarding the criteria used on the merge mode of StringTie. At this 

point of the study, motivated by the desire to capture a broader range of 

candidate smORFs, we also decided to expand the set of start codons to include 

non-canonical ones. However, this expansion was addressed through more 

stringent filters to effectively reduce the candidate collection. This ensures its 

Figure 36. Candidate small ORF identified in one predicted transcript. MSTRG.12.1 (transcript 
name), located in chr1:1098741-1105718 is shown above the figure in black. smORFs obtained 
after translation (blue square) and those that do not overlap with known CDS (pink square) are 

shown below. The transcript was identified in a highly intergenic region. 
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compatibility with mass spectrometry analyses, that results in higher numbers of 

false positives and less sensitivity when large datasets are used. 

5.3.3.2.1 De novo transcript prediction based on unique 

mapped reads 

We started again from the prediction of transcripts based on de-novo 

assembly and using StringTie algorithm, However, in this case, we did not allow 

multi-mapped reads (-m 0,1) and only unique mapped reads were considered to 

calculate the coverage of each transcript. The minimum size length to define a 

transcript was not changed (-M 50bp). After running StringTie, we get a total of 

90.651, 100.963, 61.758, 176.703, 136.574 and 182.098 predicted transcripts for 

pancreatic adenocarcinoma samples (from PACA1 to PACA6). A summarized 

description about the size of the transcripts, number of exons, reads covering 

each sequence, and distribution across chromosomes is shown in Supplementary 

figure 4.  

5.3.3.2.2 Consensus set of predicted transcripts applying an in-

house merging strategy 

When using StringTie merge mode, the decisions it made to define the 

combined transcriptome representing all samples were not known nor controlled. 

For this reason, we defined our merging strategy to end with a consensus set of 

transcripts including all samples analyzed. Decisions and the criteria considered 

to define our merging strategy are explained in Methods and Results section. To 

do so, first we clustered transcript isoforms based on their start and end 

coordinates, strand and number of exons. Considering the results obtained for 

the six PACA samples, we obtained 589.475 clustered isoforms, with 82% of them 

being single-exon transcripts. Once more, chromosomes most represented were 

2, 1 and 3 with 53.755, 50.212 and 41.018 clustered isoforms respectively. On this 

set of predicted transcripts, 492.732 were only predicted in one PACA sample, 
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and 4.719 in all of them. Since differences on the genomic coordinates were 

observed across clustered isoforms identified in different samples, we redefine 

transcript sequences applying different rules to obtain a consensus sequence. 

After recalculating their genomic coordinates, some isoforms appeared to be 

replicated and therefore, were deleted. Because of this, the number of consensus 

isoforms we obtained (589.145), was slightly lower than the number of clustered 

transcripts. Finally, isoforms were filtered regarding their prior identification in 

RNA-seq samples to end with a representative set of transcripts. The filter applied 

to single-exon transcripts was stricter than for the rest, given the small minimum 

prediction size (50bp) used in StringTie, which does not require split reads but 

only a cluster or reads aligned to a region. The combination of the six tumor 

samples allowed us to obtain 27.849 transcripts (Fig 60), where 4.691 were 

predicted in all pancreatic adenocarcinoma samples analyzed and 225 (0,81%) of 

them were single-exon transcripts. This was our transcriptome for the second 

dataset version.  

 

For all consensus and filtered transcripts, we analyzed their expression 

values in all pancreatic adenocarcinoma samples. To do so, we use a specific 

StringTie function that allows to get the abundance in coverage and TPM values. 

StringTie could not identify supporting RNA reads for 118 transcripts in PACA1 

sample, 17 in PACA2, 110 in PACA3, 53 in PACA4, 54 in PACA5 and 76 in PACA6. 

  

Figure 37. Distribution of merged transcripts (27.849) across all human chromosomes. 
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Expression values in TPM had different ranges depending on the tumor 

sample, where median values range between 1,6 (PACA1) and 10,13 (PACA2). We 

could also observe differences when compared the expression values observed in 

those predicted transcripts (4.387) identified in all RNA-seq samples (Fig 61). In 

particular, sample PACA1 had the lowest expression values for these transcripts 

(median TPM value 3,09). Not only the overall sample expression was different 

across them, but also when compared TPMs obtained for each particular 

predicted transcript. These differences can be seen in Figure 62, representing 

TPM values for a subset of 3.048 merged transcripts identified in all samples.  

 

Figure 38. Violin plot showing the distribution of TPM values across six RNA-seq samples. Only the 
expression values of those transcripts predicted in all samples are represented. 

 

Figure 39. Expression values in TPM observed for a subset (3.048) of merged transcripts predicted in 
all samples. For each sample (x axis) and transcript (y axis), TPMs are represented in a range of 
orange colors. 
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5.3.3.2.3 In-silico translation of coding DNA considering non-

canonical start codons 

To perform a 3-ORF in silico translation, DNA sequences were downloaded, 

and the coding sequences were reconstructed considering the exon-exon 

coordinates. From 27.849 transcripts we generated 28.040 coding sequences, 

since for isoforms with unknown strand their CDS was analyzed in both forward 

and reverse strands.  

Previous studies have shown that ATG is not the unique codon able to initiate 

translation in humans, but other three-nucleotide combinations too. Although it 

is known ATG is the most frequently found start codon, for this in-silico translation 

we also consider TTG, CTG, ATT, GTG and ACG. Sequences starting from any of 

these 6 codons, and with a length between 7 and 100 amino acids until the first 

were defined as candidate micropeptides. At this stage, we had a collection of 

6.366.662 small ORFs, which was over seven times larger than the set of candidate 

smORFs obtained through in-silico translation for version 1. Within this collection 

of candidates, 82,7% peptides start from a non-canonical start codon. A total of 

628.106 candidate micropeptides were identified in chromosome 1, followed by 

446.790 and 442.412 in chromosomes 2 and 3, being the top three chromosomes 

with highest numbers. Contrary, chromosome Y had the lowest number of 

micropeptides; 2.202 (Fig 63). Transcript isoform MID_6525_1 was the sequence 

with the highest number of candidate short ORFs, 10.063. It was identified in 

chromosome 3, from 52.578.244 to 52.719.743 genomic coordinates and formed 

by 32 exons, resulting in a coding sequence of 9.756 nucleotides. Note, that 

candidate micropeptides translated from a specific host-transcript could overlap 

between them. The predicted transcript covered different known protein coding 
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genes, including PBRM1, GNL3, SPCS1 or NEK4. This isoform was not observed in 

the previous version 1. 

We then analyzed the type of genomic regions where these candidate 

micropeptides were located, based on the genomic coordinates of all human 

annotated genes. From our set of candidate micropeptides, 32,8% were 

completely located within exons of protein-coding genes, 23,2% in 3’ UTR regions, 

18,7% in introns and 13% in exons of non-coding genes. Moreover, 4% had part 

of their sequence overlapping with a coding and around 5% of the candidates did 

not overlap with any annotated gene suggesting they were in intergenic DNA. 

According to gene type, 4.381 candidate micropeptides were found overlapping 

with polymorphic pseudogenes, 2.701 with immunoglobulins, and 1.339 with t-

cell receptor genes. 

5.3.3.2.4 Filtering micropeptides based on their expression and 

overlap with known CDS 

Considering the size of dataset version 2, we evaluated how to reduce the 

collection of candidates to get a compatible dataset to perform MS analysis. 

Compared to dataset version 1, we applied a combination of more stringent 

filters. Not only did their overlap with known annotated coding sequences but 

also the expression of the host transcript was taken into account.  

Figure 40. Number of smORFs across human chromosomes after in-silico translation (blue), only 
when those overlapping with know CDS were excluded (green) or also expression filter was applied 
(pink).  
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Nucleotide sequences of candidate micropeptides were aligned against all 

annotated ensembl CDS using Blastn. We considered as a good local alignment 

those results from blastn with an e-value lower than 0’001. The sequence of 

around 35% candidate micropeptides, overlap more than 90% with a known CDS 

from Ensembl, whereas 39% overlap more than 50%. Therefore, most of our 

candidate micropeptides share less than half of their sequence or nothing with a 

known coding sequence. To end with a smaller dataset containing mostly novel 

micropeptides in non-annotated coding regions, candidates overlapping more 

than 30% with any CDS were filtered out. A collection of 3.733.227 candidate 

micropeptides were obtained, reducing the dataset almost half of its previous 

size. An example of a predicted transcript (MID_5_1) located in chromosome X 

and the smORFs selected or excluded after applying this filter is shown in figure 

64. 

 

Figure 41. Example of a predicted transcript (MID_5_1) and translated sequences located in 
chromosome X. Small ORFs selected (green box) after excluding those (red box) that overlap with 
known CDS are shown. Only few smORFs translated from this transcript are represented.  
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Finally, we applied a second filter based on expression results that were 

previously obtained for the host-transcripts and annotated for each candidate 

micropeptides. We decided to sort out only those short amino acid sequences 

resulting from a transcript expressed in all six samples. Moreover, its levels of 

expression should be higher than the median value observed in each pancreatic 

adenocarcinoma sample. We then end with the final dataset version 2, which 

enclosed 1.211.051 candidate micropeptides. This dataset was also used as a 

reference on mass spectrometry analysis. 

The highest number of candidates micropeptides in dataset version 2 was 

identified in chromosome 1 (127.896), followed by chromosome 3 (99.650) and 

chromosome 2 (97.572) (Fig 63). Candidate micropeptides had a median size of 

19 amino acids that matched with the median size previously characterized for 

smORFs located in intergenic and non-coding regions as well as in UTRs, the three 

main classes identified in our datasets (Couso & Patraquim, 2017). Moreover, 84% 

of them started by a non-canonical start codon being CTG the most observed start 

(268.073 candidates). Almost all candidate micropeptides (97%) where translated 

from one single-exon of a predicted transcript, whereas the remaining covered 

between 2 and 4 exons. Note that these exons do not correspond to those already 

known from protein coding genes but from the transcripts predicted through de 

novo assembly. The predicted transcript MID_6525_1 still was the one with the 

highest number of candidates micropeptides identified (6.448). Although the 

majority of the candidates obtained in DS2 were located within protein coding 

genes (1.103.297), only 2,7% of them had part (less than 30%) of their sequence 

overlapping with a coding exon. Almost half (43,4%) of the candidates obtained in 

this dataset were located in 3’UTR regions and in contrast, only 1,2% in 5’UTRs. 

Finally, we observed a decrease in the percentage of candidate micropeptides 

located in intergenic regions, that represented 4% of this dataset. Although these 

candidates were not excluded because of overlapping with known CDS, they had 
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low expression values and were not represented in all PACA samples. Therefore, 

after reducing the dataset 1% of the intergenic smORFs previously translated 

were filtered out. 

Together, both datasets are a profitable catalog of candidate smORFs derived 

from mRNAs expressed in PACA samples and, enriched in non-annotated CDS 

regions to use for MS/MS analysis. 

Discussion of chapter 3 (study 1) starting in section 6 (page 263). 
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Study 2: Identification of candidate highly 
conserved micropeptides in intergenic regions 

5.3.4 UNICORNs: highly evolutionary constraint intergenic 

regions 

At the beginning of this second study focused on novel micropeptides, most 

known and published small ORFs were identified in annotated genes. Therefore, 

we aimed to evaluate less explored DNA sequences such as intergenic regions. 

We considered a potential approach to identify novel small ORFs was focusing our 

search on conservation features that could indicate functionality of a sequence. 

Formerly, the first analysis from The Zoonomia Project was published (5). The 

Zoonomia Project investigated the genomics of shared and specialized traits in 

eutherian mammals. By prioritizing making data available, quickly and without 

restriction, the project supported biological discovery, medical research and the 

conservation of biodiversity. Among all shared data available on their web page, 

conservation scores could be downloaded or inspected through specific tracks on 

the UCSC Genome Browser. These conservation scores were calculated using 

PyhloP from the Zoonomia whole-genome alignment (v2) of 240 species 

comprising representatives from more than 80% of mammalian families. The 

scores were used to identify sites and regions under purifying selection (3,1% in 

the human genome) including unannotated intergenic regions. UNICORNs were 

therefore defined as non-coding regions non-annotated in ENCODE3 showing 

high evolutionary constraints, that could suggest function.  

A total of 424.179 UNICORNs were downloaded in GRCh38, distributed 

across human chromosomes 1 to 22. Highly evolutionary constraint sequences in 

sexual chromosomes (X and Y) were not provided but excluded on the Zoonomia 

analysis. Although larger chromosomes tended to have higher numbers of 
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detected UNICORN, chromosomes 2, 4 and 5 were the top 3 (Fig 65). Therefore, 

the number of UNICORNs in each chromosome seemed to be correlated with the 

size of their intergenic DNA. UNICORNs range between 11 and 1.325 nucleotides 

length, with a mean size of 38 nt (Fig 66). 

 

Figure 43. Violin plot showing the range of sizes in nucleotides for all UNICORNs (n=424.189 
sequences). 

  

Figure 42. Sequence distribution across chromosomes. Number of UNICORNs (light yellow) and in-
silico translated sequences (dark yellow) in each human chromosome. 
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5.3.5 In-silico translated small ORFs located in intergenic 

regions 

In order to identify all possible short amino acid sequences located in highly 

conserved intergenic regions, we artificially translated all DNA sequences 

previously defined as UNICORNs by the Zoonomia Project. We did a strongly 

permissive translation to comprise a wide range of candidates. Nucleotide 

sequences were translated 6-ORF meaning we read them from the first, second 

and third nucleotide and in both forward and reverse strands.  

In-silico translation of 424.179 UNICORNs resulted in a list of 887.676 amino 

acid sequences with a length between 10 and 100 codons, considering the 

established threshold (100aa) used to define micropeptides. Their distribution 

across chromosomes is shown in figure 65. Almost all (91,39%) of these sequences 

were shorter than 30 aa and had a mean size of 17,63aa. Only 11 translated 

sequences reach the maximum size (100 aa). Translation started from the 

canonical ATG codon in 2,2% of the sequences, being the trinucleotide TTT the 

most recurrent start codon (5,2%) followed by AAA (4,75%) (Fig 67). Similar 

percentages were obtained for translated sequences ending with a stop codon 

(51,3%) or because of the UNICORN termination (48,7%). Also, when we counted 

sequences translated from forward (444.500) and reverse (443.175) strands or 

classified depending on the translation starting nucleotide (ORF1 304.291 aa 

sequences; ORF2 295.873; ORF3 287.511). 

Figure 44. Number of in-silico translated sequences depending on their start codon. 
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Considering the initial set of UNICORNs, 281.066 of them did not result in 

any translated sequence because of their size. All these UNICORNs were shorter 

than 32 nucleotides. Furthermore, shorter UNICORNs and particularly those with 

an approximate size of 35 nt resulted just into one translated sequence. In 

contrast, we could identify higher numbers of small peptides from larger 

conserved intergenic sequences. Although it was not the largest UNICORN, 78 

different amino acid sequences were translated from a region located in 

chromosome 2 between 155.728.521 and 155.729.733 genomic coordinates 

(1.121 nt length). Summarizing, the number of translated sequences per 

UNICORN was also correlated with their size in nucleotides. 

5.3.6 Candidate ortholog sequences of translated intergenic 

small ORFs 

As these 887.676 candidate small ORFs were short amino acid sequences 

artificially generated from conserved intergenic regions, more evidence was 

needed to assume or suggest this micropeptide sequences could have a functional 

role in humans.  

For this reason, we first evaluate the orthology between the in-silico 

translated human short amino acid sequences and mice genome. Orthology 

between human and mice sequences could suggest the protein sequence is 

relevant for the organism and likely functional. We used the Reciprocal Best Hit 

approach to define pairs of orthologs between both species. Therefore, two 

complementary tblastn analysis were performed comparing human short amino 

acid sequences against the reference mice DNA and short peptide sequences 

identified in mice versus the reference human DNA. 

From the first tblastn analysis 887.676 human short aa sequences were 

compared with mice genome. We obtained 1.104.502 local alignments from 
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283.608 different human smORFs candidates, 32% of our initial set. However, only 

61.585 alignments from 56.350 human intergenic smORFs passed the e-value (< 

1e-05) and coverage (>50%) filters defined to consider a good local alignment. We 

did not have translated sequences from 403.970 initial UNICORNs after applying 

this filter. Around 8% of the amino acid sequences had two or more matches with 

different regions of the mice genome and many (47,84%) sequences were 

completely aligned. At this point, sequences were distributed across 

chromosomes similarly to in previous steps. Human peptide sequences were 

aligned in all mice chromosomes (Fig 68). A total of 1.516 translated sequences 

were aligned within sexual chromosomes X and Y, and 37 of them in unplaced 

scaffolds including GL456233, GL456379, GL456382 and JH584296.  

The amino acid sequences (61.585) selected after the blast filtering step 

were used for the second tblastn analysis. In this case, we compared mice peptide 

sequences with the human reference genome. After TBLASTN2, 56.304 

sequences were aligned in at least one human genome region without 

considering any filter (58.316.612 alignments). We did not have results for 55 

mice peptide sequences.  

After this second alignment we define the set of orthologs. Following the 

definition of RBH, two sequences from different genome species are considered 

orthologs if align each other as the best hit in the other genome. In this project 

we only retained 1:1 orthologs, so peptide sequences that aligned in more than 

Figure 45. Number of human translated smORFs aligned across mice chromosomes after 
tblastn1 (green) and once ortholog sequences were defined (orange). 
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one human or mice genomic region were discarded. Therefore, we inspected the 

56.304 sequences aligned in TBLASTN2 and looked for their alignment in 

TBLASTN1. Combining an automatic search with manual inspection of alignments, 

we defined a set of 1:1 orthologs counting a list of 50.936 candidate smORFs 

translated from 18.658 different UNICORNs.  

Ortholog sequences were identified and distributed across human 

chromosomes similarly than in previous steps (Fig 69), and a comparable 

proportion of candidate smORFs was obtained from forward (25.435) and reverse 

(25.501) translation. Peptide sequences aligned in mouse Y chromosome, or in 

unplaced scaffolds did not pass the criteria used to select orthologs (Fig 68). 

Regarding the size in amino acids of these candidates, we calculated a mean value 

of 35,26 aa, that was higher compared to those 887.675 aa sequences obtained 

after performing the in-silico translation (mean=17,63) (Fig 70). These values 

suggested smaller peptides tended not to fulfill orthology selection criteria, nor 

had good alignment scores. However, upon examining each sequence’s size 

individually, the majority did not align fully, resulting in a shorter aligned region 

compared to the initial sequence. Consequently, the orthologous sequences had 

a smaller size relative to their initial translated sequence since we only evaluated 

orthology between the aligned regions but not the complete peptides obtained 

from in-silico translation.   

Figure 46. Number of candidate translated smORFs identified in each chromosome. Sequences 
after the first tblastn (dark blue), once orthology was defined (medium blue) and those selected 
considering the dn/ds ratio (dark blue) are shown. 
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Ortholog sequences were then used to calculate the ratio of non-

synonymous to synonymous variants between human and mice sequences.  

 

5.3.7 Calculated dn/ds ratio on known protein-coding genes 

In line with the definition of the dn/ds ratio, ortholog pairs with ratios close 

to 0 are typically under purifying selection and therefore, they are supposed to 

maintain their role across species. So as to select candidate functional 

micropeptides from our set of ortholog sequences (50.936) we first established a 

more precise threshold. Accordingly, we calculated the dn/ds ratio for 300 coding 

exons shorter than 1000bp to simulate small peptide sequences. 

Before doing this calculation, we identified their mouse orthologs pairs 

following the established methodology and criteria previously used for candidate 

smORFs. We in-silico translated the nucleotide sequences of 300 coding exons, 

performed reciprocal alignments comparing peptide and nucleotide sequences 

from human and mice, and selected 1:1 orthologs. We discarded 11 coding exons 

from the 300 randomly selected because of their short length (3 bp). After all, we 

ended with a list of 71 one-to-one ortholog pairs that range from 65 to 781 bp 

Figure 47. Violin plot corresponding to the range of peptide sizes (aa) of all smORFs selected in each 
step. Median is shown within the plot. 
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CDS length. After this selection of orthologs, the number of known coding 

sequences inspected decreased almost 4 times since 155 regions did not properly 

align to mouse genome (e-value < 1e-05 and sequences overlap > 50%), and 63 

did not satisfy the criteria to define them as 1:1 orthologs. Among these 71 

orthologs, 22 corresponded to coding exons from cancer genes.They were 

distributed across all human chromosomes except 13, 18, 20, 21 and Y, and had 

a median size of 137 coding bp (min 67, max 781). 

Finally, we used the Codeml function of the PAML package to calculate the 

dn/ds ratio for each ortholog pair. We could not measure this ratio for 12 pairs 

because of the presence of nucleotide gaps in human or mice sequences. The 

dn/ds ratios obtained for the remaining 59 coding exons range from 0,001 to 

0,8014 (mean=0,12) (Fig 71). Notably, three coding regions exhibited the highest 

dn/ds values and therefore not closer to 0, had a rate of synonymous substitutions 

per synonymous site (ds) equal to 0. Accordingly, these human sequences did not 

have synonymous substitutions when compared to their mouse ortholog. It is 

likely that we did not detect synonymous variation due to the short length of the 

analyzed regions, since it is rare and somewhat unlikely in real evolutionary cases 

of protein coding genes. 
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Figure 48. Calculated dn/ds ratio for 59 coding exons and their ortholog pairs in mouse. 

Based on the dn/ds ratio (non-normal) distribution of 59 coding exons, we 

established a threshold to detect outlier values as Q3 + 1,5*IQR that resulted in 

0,3179. Subsequently, we decided to use a dn/ds below 0,32 together with a ds 

value exceeding 0,1 to consider short peptide sequences as potentially functional 

micropeptides in nature. 

5.3.8 Catalog of candidate intergenic micropeptides from 

highly conserved regions 

The results obtained from known coding exons allowed us to define a dn/ds 

threshold to later select candidate micropeptides indicating functionality. We 

applied codeml to calculate the ratio of non-synonymous to synonymous variation 

in ortholog pairs, including 37.293 previously obtained sequences. Note that we 

could not calculate the ratio for 13.643 orthologs because of nucleotide gaps in 

human or mouse aligned sequences. We reject those short peptides that did not 

pass the dn/ds criteria and end up with a set of 8.289 candidate novel 

micropeptides located in 6.536 different highly conserved intergenic regions 
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(UNICORNs). As mentioned, not only the dn/ds ratio but also the ds value was 

considered to ensure variation within both sequences even their short length. 

The highest number of candidates (10%) was identified across chromosome 

2, corresponding also with the one with more UNICORN regions, and the second 

larger chromosome of the human genome (Fig 69). Chromosomes 5 and 1 were 

also in the top 3 encompassing 9% and 8% of the candidate micropeptides 

obtained. The majority (90%) of the candidates had between 20 and 40 amino 

acids length, with a mean size of 30,48 aa (Fig 70). The most observed start codon 

was TTT (6,32%) followed by AAA (5,99%) and AAT (4,46%) (Fig 72). Generally, 

percentages across starting trinucleotides were somewhat different compared to 

all sequences obtained after in-silico translation of UNICORNs. Although there 

was a direct correlation, and as an example, we end up with less candidates 

starting with ATT, TCT, TCA or CGT than expected. 

After all these steps, starting from the in-silico translation of highly 

conserved intergenic regions and ending with the selection of potentially 

functional short peptides based on their dn/ds ratio, we could provide a list of 

8.289 candidate novel intergenic micropeptides. We considered these regions to 

be a valuable set of sequences to continue exploring their role in humans and 

particularly, in cancer. 

Figure 49. Number of candidate smORFs for each trinucleotide start. 
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5.3.9 Preliminary evidence of expressed candidate functional 

micropeptides 

At this point of the study, the analysis previously performed allowed us to 

identify short peptide sequences under purifying selection and located in 

intergenic regions highly conserved between species. This information suggested 

functionality of the peptide, but more poofs were needed to confirm their 

presence in nature. For this reason, we decided to look for evidence of expression 

of candidate functional micropeptides in healthy tissues. 

We searched for aligned reads covering each candidate micropeptide 

(8.289) in 135 randomly selected samples comprising 27 different healthy tissues 

(5 samples per tissue). Next, paired-end reads were filtered out to avoid low-

quality and multi-mapped sequences. Also, PE reads where at least one pair 

overlapped with a known transcripts including non-coding RNAs were excluded. 

We decided to require at least 5 RNA-seq reads covering the candidate to consider 

it had signals of expression. Therefore, we could observe 249 candidate 

micropeptides showing signals of expression in a minimum of one RNA-seq 

sample, and 13 candidates in 10 samples or more including different tissue types. 

A total of 29 candidate micropeptides had signals of expression in 60% of the 

samples (3 out of 5 RNA-seq) for at least one healthy tissue (Table 12), with 

median coverage values observed across tissues that range from 3,8 to 32. The 

candidate micropeptide with highest median coverage was located in chr1: 

37.099.960-37.100.043 and signals of expression were only detected in healthy 

muscle samples. Interestingly, we noticed the candidate micropeptide identified 

in chr5: 93.615.953-93.616.054 had signals of expression in 103 different 

samples, including all tissue types (26) except muscle (Table 13). This was the 

candidate with evidence of expression in more samples. This intergenic conserved 

region is located 1700bp upstream a known lncRNA (FAM172A). Even though it 
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was close to a known gene, we did not detect mate reads of supporting PE within 

the lncRNA. These preliminary results suggested that the conserved smORF was 

not part of the known transcript but a different candidate gene. 
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Table 12 - Candidate micropeptides (chr_start_end), with signals of expression in at least 60%l 
RNA-seq samples (3 out of 5) of a healthy tissue. Median coverage considering the observed values 
across all samples where signals were detected is calculated and shown in the last column, colored 
from red (low coverage values) to blue (high coverage values). 

 

 

Table 13 – Number of reads (mean per tissue) covering candidate micropeptide located in chr5 
from 93615953 to 93616054. Colors ranging from lower (red) to higher (blue) values. 
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5.3.10 Detection of significant clusters of somatic cancer 

mutations in published smORFs 

Intending to explore the role of micropeptides in cancer disease and 

tumorigenesis, we analyzed clusters of somatic single nucleotide variants from 

the ICGC cancer genomes in small ORFs. So as to start evaluating the performance 

of a driver discovery algorithm (OncodriveCLUSTL) in small genes, and while 

working on the identification of intergenic and novel smORFs, we first analyze a 

published database (SmProt) of smORFs including 49.065 short peptides.  

We run OncodriveCLUSTL for each set of SNVs classified depending on the 

ICGC project using 6 different parameter combinations (see Methods, Table 4). 

We then selected the most adjusted combination for each ICGC set of variants 

based on the KS test and the enrichment in cancer genes, as authors of the 

algorithm suggested to us (Supplementary Table 4, Supplementary Fig 5). Also, 

manual inspection of the qq-plot obtained from OncodriveCLUSTL was done.  

Independently of the parameter combination, 6 ICGC projects were 

excluded due to low number of smORFs with clustering signals (< 20) or significant 

differences and inflation between the expected and observed p-values (BOCA-UK, 

BTCA-SG, GACA-CN, LUSC-US, OV-AU and UTCA-FR) (Fig 73). Therefore, these 

ICGC projects were excluded as we could not calculate their KS value.  
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Figure 50. QQ-plot obtained from OncodriveCLUSTL. Example of one ICGC project (BOCA-
UK)excluded due to low number of clustering signals (blue dots). The ID name for each small ORFs 
with detected clusters is shown at the right side. 

We could identify significant clusters (q-value < 0,01) in small ORFs for 4 

different ICGC projects including ESAD-UK, PACA-AU, PACA-CA and LUSC-KR (Fig 

74).  

 

Figure 51. QQ-plots obtained from OncodriveCLUSTL for ICGC projects with significant clusters. 
Expected and observed p-values are shown for all smORFs with clusters of mutations. SmORFs (dots) 
colored in red have significant p-values suggesting they are drivers. 
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In pancreatic adenocarcinoma projects (PACA-AU and PACA-CA) significance 

was only observed in two smORFs (smOrf_19623_KRAS and 

smOrf_21016_KRAS)(Table 14). Nevertheless, both smORFs overlapped with 

KRAS, a known cancer driver gene. Clusters of variants within these smORFs 

coincide with previously identified significant clusters in the IntOGene study 

(https://www.intogen.org/search). On the other hand, a higher number of 

significant clusters and therefore, smORFs were detected when we analyzed 

ESAD-UK (11 significant smORF) and LUSC-KR (9). For these two ICGC projects, 

significance was not only observed in smORFs overlapping with cancer genes such 

as KRAS or TP53, but also in lncRNAs annotated by the NONCODE database(204). 

Based on the Gencode v37 annotation, six smORFs were in intergenic regions. One 

small ORF (smOrf_24636) located in LINC00879 (Gencode v37 annotation) had 

significant clusters of mutations in ESAD tumors. Altered frequency of this lncRNA 

due to amplification was previously identified in LUSC tumors, suggesting it could 

be implicated with tumorigenesis (205). Differential expression between tumor 

and normal genomes were also observed in the GEPIA data portal 

(http://gepia.cancer-pku.cn) for other genes that contained driver-smORFs 

identified in our analysis. As an example, candidate smOrf_28297 was located 

within RP11-274B21.14, which is highly expressed in Acute Myeloid Leukemia 

tumors, and smORF_32101 that was located within ZNF716 a zinc finger protein 

also highly expressed in Testicular Germ cell tumors. 

Together, these results suggested that we could use OncodriveCLUSTL for 

driver identification of small ORFs. Although we did not have significant results for 

smaller sets of SNVs, we could characterize 13 different smORFs located in lncRNA 

or non-annotated regions as driver genes. 

https://www.intogen.org/search
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Table 14 -  Small ORFs from SmProt database with significant clustering signals (Q-value analytical). Results obtained from OncodriveCLUSTL, for 4 different 
sets of SNVs (ICGC project). smORF IDs can be translated into the ones used by SmProt database using Supplementary Table 5. Those smORF that overlap with 
a known cancer gene, are indicated with a “True” in the Cancer gene column. The location of each smORFs considering the NONCODE database and Gencode 
v37 is shown in the last  two columns. 
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5.3.11 Low number of somatic SNVs acquired in intergenic 

novel candidate micropeptides 

Based on the results found for published smORFs, we decided to search for 

recurrence of SNVs in our set of novel and intergenic candidate micropeptides 

(8.289). However, before running OncodriveCLUSTL we annotate all somatic SNVs 

from the same ICGC projects used in section 5.3.10.  

A total of 3.500 candidates were annotated. Disappointingly, we did not find 

signals of recurrence since the majority of these candidates (2.996) had only one 

somatic SNV identified acquired in one tumor genome. No more than 3 SNVs were 

detected in candidates intergenic micropeptides. 

Even large numbers of SNVs identified in tumor types such as esophageal 

adenocarcinoma (ESAD-UK), SNVs were not located within these short peptides. 

For this reason, OncodriveCLUSTL could not detect any cluster of variants when 

evaluating 8.289 novel candidate micropeptides. 

Discussion of chapter 3 (study 2) starting in section 6 (page 270). 
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6. Discussion 
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Analysis of somatic structural variants in CLL and their 

incorporation into subclonality studies - Chapter 1 

Chronic lymphocytic leukemia is the most prevalent leukemia in Western 

countries, and it is characterized by a highly variable clinical course. Due to its 

development over several years, it is an interesting cancer model to study 

subclonality and evolution during cancer progression, response to therapy or 

relapse (206,207). The present study was focused on Richter transformation (RT), 

one type of evolution of CLL tumors into a very aggressive large B cell lymphoma 

(DLBCL) conferring a dismal prognosis. Moreover, prior to this study the 

mechanisms driving RT were poorly known (196,198,208). As previously 

mentioned, the present longitudinal study of chronic lymphocytic leukemia was 

in collaboration with Dr. Ferran Nadeu and Dr. Elias Campo, and involves diverse 

groups focused on specific goals with the aim of understanding tumor evolution 

in Richter syndrome patients. Also, Dra. Romina Royo from BSC was strongly 

involved in this study, coordinating the analysis of variants. My role within the 

project was focused on structural variation and intratumor heterogeneity. 

Particularly, one of the challenges we wanted to address was to include large 

somatic variants to reconstruct the subclonal architecture of each tumor.  

To do so, we first evaluated the landscape of somatic variation within CLL 

tumors, including SNVs, indels and SVs. SNVs were used in the study to identify 

and characterize subclones and study their particular role in tumor formation and 

also in the RT. As of that time, there was no available protocol to assign somatic 

structural variants to subclones to be able to study the role of SVs in tumor 

evolution and RT. One of the main challenges rely on the calculation of the 

frequency at which the SVs are present in the sample, and therefore, to which 

subclone it belongs. While this is relatively easy for SNVs, the limited number of 
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mapped reads supporting SVs breaks makes the estimation of allele frequency 

very challenging.  

As mentioned, the identification of somatic structural variants was the first 

step to later continue with the analysis of intratumor heterogeneity and clonal 

dynamics in CLL. Many algorithms were published at the time we were working 

on this project to reconstruct tumor subclonality including CloneHD (209), 

PhyloWGS (105), DPClust (184) and SciClone (104). These algorithms and 

consequently most ITH studies are generally based only on SNVs, and occasionally 

on small insertions and deletions, as their variant allele frequencies can be better 

estimated from mapped reads. In this context, I participated actively in the 

definition of the somatic variation landscape and the subclones for the Nadeu et 

al, 2022 article. As general discussion on this part (please see the discussion of the 

main results of this study in Annex 10.3 and in the thesis of Dra. Romina Royo, UB 

2023), this study provides a transversal reconstruction of the generation and 

evolution of the tumor and the subclones, as well as evidence of the presence of 

RT cells already in early stages of the tumor, encouraging the exploration of early 

detection protocols for the clinic.  

SNVs and indels usually occur more frequently than structural variants within 

a tumor, so their abundance makes easier the subclonal reconstruction. 

Moreover, these variants were detected more accurately by variant callers, are 

less complex and affect only a few nucleotides so calculating their frequency was 

less challenging. Finally, subclonal reconstruction was even more affordable to 

obtained just by using coding mutations encompassing important driver events 

that could be clearly identified from whole-exome sequencing with high depth, 

which was a rapid, cheaper and comprehensive technology (207). 

Although CLL is not known to be a tumor type with high numbers of somatic 

structural variants, the availability of longitudinal samples was key to study 
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intratumor heterogeneity and consider their inclusion. Nevertheless, our 

approach was to reconstruct ITH using single nucleotide variants and indels, since 

they are more abundant, to later include SVs into those subclones evolving 

similarly. Considering that, we worked on a strategy to calculate structural variant 

allele frequencies and translate them into cancer cell fraction. These values will 

allow us to infer them into previously defined subclones.   

In the context of subclonality and SVs, variant allele frequencies are 

calculated based on the number of reads covering the mutation including 

mutated and non-mutated fragments. Since structural variants disrupt a large 

region of the DNA, often containing additional variants close to the breakpoints, 

their representation within the sequenced sample is not properly translated into 

the final reference-based alignment that we do for variant calling (i.e. the BAM 

files), as SVs supporting reads are difficult to align. This, results in a drop of the 

number of reads (i.e. coverage) around SVs breakpoints and a difficulty in 

calculating the VAF, as done with SNVs. Therefore, we needed to design and 

implement a different protocol for the calculation of the VAF for SVs. After 

considering several possibilities based on the calculation and normalization with 

genome-wide coverages of the samples, we explored the use of the mutated 

reads of the SV region, that is, those supporting the variant to infer its variant 

allele frequency (see results). In this context, it is important to highlight that no 

proper benchmarking set was available for subclonal SVs and to fully assess the 

reliability of our approach.  

We could apply the defined strategy and calculate variant allele frequencies 

and their corresponding cancer cell fraction for all structural variants identified in 

case 63. Longitudinal samples were crucial to track genetic alterations and explore 

the evolution of cell populations over time. Summarizing the results, we could 

calculate clonal CCF values for those inversions involving the ATM gene present in 

all collected samples at any time point, whereas we saw an increase in the 
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frequency of other SVs after the first chemoimmunotherapy was given to the 

patient. 

In any case, we initially considered to publish a methodology for assigning 

SVs to subclones, but then SVClone (210) was published together with the 

compendium of articles from The Pan-Cancer Analysis of Whole Genomes. This 

computational method was developed in fact, for inferring the cancer cell fraction 

of SV breakpoints from whole-genome sequencing data following a strategy 

similar to the proposed here. This is why we made the strategic decision of 

devoting the energy and time to other emerging projects described below.  

Because of the challenges we encountered for the determination of the VAF for 

SVs, the publication of a methodology and our focus on  other research 

opportunities, the rest of the CLL study was progressing at a different speed,  and 

we were not ready to include these results when the paper was submitted. 

 

Identification of somatic processed pseudogenes in cancer 

and evaluation of their functional impact – Chapter 2 

Cancer is a complex genetic disease, where the transformation of normal 

cells to malignant cells is generally driven by a combination of mutations acquired 

on the DNA sequence. Because of that, the study of these genomic events 

occurring somatically is essential to understand the basis behind tumor formation 

and progression. Somatic variation might also provide new clinical markers for a 

better diagnostic or to select precise treatments. Furthermore, identifying and 

characterizing these genomic events allow us reclassifying tumors depending on 

the genetic profile instead of the primary site. 

In addition to investigating the landscape of cancer somatic mutations, we 

extended our focus to include the exploration of somatic retrotransposition 
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events, particularly somatic processed pseudogenes. We considered the study of 

such retrotransposition events might harbor implications for human cancer 

health. Furthermore, our decision was taken based on previous research 

(94,110,113,119) in this area. Observations from other research groups that 

began to identify these somatic events in specific cancer samples prompted us to 

direct attention toward the potential significance of somatic retrotransposition 

events in a wider context. 

Among other large-scale projects intending to identify common patterns of 

mutations in cancer, the Pan-Cancer Analysis of Whole Genomes was a worldwide 

initiative collecting 2.600 genomes. PCAWG was coordinated by a series of 

working groups comprising more than 700 scientists. Our role specifically involved 

active participation in working group six, primary focus in the analysis of somatic 

structural variation. Participating in the PCAWG was a significant step in our 

research journey. 

The chance to extensively explore data provided by PCAWG was also a 

significant motivation for our research. With a comprehensive collection of tumor 

whole genomes surpassing those previously studied in the context of somatic 

retrotransposition, we initiated a search for somatic processed pseudogenes 

across all 34 tumor types provided by this international cancer initiative. 

Since standard protocols for the identification of somatic PPs were not 

published at the time we started our research, by exploring different 

bioinformatic strategies. Our analysis was based on the combination of automatic 

searchers for somatic structural variants that could support PPs integration, with 

manual inspection and validation using tumor and normal sequencing reads from 

the same tumor genome. 

Through the evaluation of the testing set of 48 LUSC tumor genomes by 

applying diverse criteria combinations, we came up with a conservative protocol 
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to identify candidate processed pseudogenes. Among the different filters 

included within our protocol, some were determinant to distinguish from 

potential false positives, as somatic PPs can be easily confused with the source 

gene at exon level. For example, the most accurate automatic detection occurred 

within the most restrictive dataset (4), when structural variants representing both 

insertion sites and one splice junction event were required. Within this dataset,  

only one out of 26 candidates could not be manually validated. We perceived 

these criteria too stringent to define candidates. Furthermore, if a splice junction 

event was additionally requested, we conducted our search with consideration of 

a conservative definition of PP, where fragments of one single exon were assumed 

not to be retrotransposed. The exclusion of single exon insertions as candidate 

pseudogenes was due to the challenging and potentially unfeasible distinction of 

their origin. 

Regarding the insertion site, we established a minimum nucleotide distance 

of 100Kb between the insertion site and the source gene responsible for 

producing the inserted cDNA. This measure aimed to prevent the inclusion of 

recombination events occurring within a chromosome. Likely, processed 

pseudogenes are not inserted close to their source gene location.  

Second, we did not expect genomic deletions within the insertion region but 

just a break where the cDNA was interpolated. For this reason, we defined a 

distance flanking insertion coordinates of less than 350bp. This threshold was 

determined based on an in-depth consideration of the insert size of our 

sequencing reads, and the inherent limitations of variant callers when identifying 

large structural variants using short paired-end reads. The value was carefully 

selected to account for the precise coordinate error typically associated with 

variant calling in such scenarios. The nature of these widely studied genomic 

elements together with the observations done through bioinformatic searches in 
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this set of tumor genomes were considered to continue developing the automatic 

searching protocol.  

Third, the inserted sequence must include at least 50bp from an exon of the 

same source gene. This criterion differed from the guidelines applied previous 

identification protocols. Cooke et al. considered the presence of putative 

pseudogenes if tumor DNA contained at least three exons from a single gene, with 

a minimum of two observed canonical splice junctions (110). When extremely 

short nucleotide regions are inserted into the genome, determining their origin 

and whether they are newly created through DNA replication or repair, or the 

consequence of transposition events becomes challenging and requires manual 

inspection. On the other hand, we anticipated that nucleotide sequences of 

sufficient length, uniquely aligning to a specific coding sequence would likely arise 

from the deletion of a coding fragment and its later insertion in the genome (“cut 

and paste”), or from a retrotransposition event (“copy and paste”). In either case, 

the result would be mistaken with processed pseudogenes. Additionally, no clear 

deletions within the source genes were identified across all somatic SVs detected 

on each tumor. Therefore, single-exon insertions were also considered candidate 

processed pseudogenes. 

Applying the final criteria to all the PCAWG tumor genomes (2589) we could 

identify 433 candidate processed pseudogenes. Compared to previous studies 

done in the context of somatic processed pseudogenes acquired in tumor 

genomes, we could identify the largest number of candidate events mainly 

because a less stringent criteria were used for the automatic search, sing-exon 

candidates were included, a higher number of tumor genomes were analyzed and 

for all of them whole-genome sequencing data was evaluate. In this line, we were 

able to identify candidates inserted within intergenic regions too.  
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Notedly, experimental validation of somatic processed pseudogenes was not 

possible in this project due to the lack of fresh material from the tumor samples 

analyzed. 

Even pancreatic tumor type was also included in the collection of samples 

analyzed by Cooke et al. they could not detect any processed pseudogene across 

11 genomes. Contrary to our candidate’s selection, genomes corresponding to 

pancreatic tumors (240 genomes) had the higher number of candidate somatic 

insertions. When candidates’ counts were normalized by the number of tumor 

genomes analyzed for each tumor type, we could observe a higher prevalence of 

candidate insertions in head and neck (20,45%) and esophageal adenocarcinomas 

(8,05 %), which were not included in Cooke et al. study. Lung squamous cell 

carcinoma and gastric adenocarcinoma had 29,16% % and 7,8% of candidates 

with at least one acquired PP, being consistent with findings from previous studies 

where they observed prevalences of 19% and 9% respectively (110). 

Although we increased the number of tumor genomes analyzed compared 

to previous studies (110), validated processed pseudogenes were mainly 

identified in the same tumor types including lung squamous cell carcinoma and 

colorectal adenocarcinoma. Processed pseudogenes were newly observed in 

head and neck squamous cell carcinoma, esophageal adenocarcinoma, ovarian, 

breast and pancreatic cancer, even some of these tumor types were included 

previously. 

Undoubtedly, in our hands lung squamous cell carcinoma was the tumor 

type that acquires the highest number of processed pseudogenes (29,16 of 

donors), as previously reported (110,113). Interestingly, results do not show 

acquired processed pseudogenes on lung adenocarcinoma (LUAD), a tumor type 

included on non-small cell lung carcinoma (NSCLC), as LUSC is. As the number of 

tumor genomes analyzed was similar for both types (40 for LUAD and 48 for 
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LUSC), we can discard the idea of not identifying PPs because of few genomes. 

We suggested that the formation of PPs might be specific to certain tumor types, 

probably depending more on the type of cell affected, than on the organ in which 

it grows.  

The fact that somatic PPs appear only on specific tumor types across a total 

of 34, suggests a specific mechanism behind the formation of this genomic event, 

which could explain why some tumors acquire PPs whereas others do not. 

Our observations suggest a correlation between the acquisition of somatic 

processed pseudogenes and somatic retrotransposition events, which primarily 

include solo-L1 insertions. As shown in the same PCAWG publication where these 

results were published (211), the highest frequencies of somatic PPs were 

identified in those tumor types (ESAD, HNSC, LUSC, COAD) that also exhibited 

significantly enrichment in somatic retrotransposition events. Compared to other 

tumor types and different classes of structural variants, these tumors had a higher 

fraction of mobile element insertions. This trend is consistent with the established 

association between the activity of L1 machinery and the formation of processed 

pseudogenes (212). Additionally, 71% of the insertion sites defined for the 45 

validated processed pseudogenes were within repeat elements, and half of them 

specifically within L1. 

Across all 433 candidate processed pseudogenes, we could count 393 

different source genes, where 31 of them appeared retrotransposed in more than 

2 tumor genomes. The protein coding gene TRMT10C was the most recurrent 

source gene detected in six different tumor genomes from LUSC, HNSC, GACA and 

LINC. Copy number variation, and in particular gains on this gene have been 

reported in LUSC (59% of the TCGA patients) and HNSC (41%) being the highest 

frequencies across 26 tumor types. However, we cannot directly link TRMT10C 

gains with the formation of this processed pseudogenes since the event is not 



   

 

260 

 

identified in the same tumor genomes. Any of these six candidates were manually 

validated. 

Among the candidate source genes, 32 were defined as cancer genes 

including tumor suppressor genes and oncogenes by the COSMIC database (87). 

Therefore, less than 9% of the candidate PPs arise from cancer genes. This 

proportion was also seen considering only validated PPs. Six cancer source genes 

(B2M, DEK, MYH11, MYH9, PML AND SRGAP3) were found in more than one 

candidate processed pseudogene counting 12 different events. Three candidates 

out of these 12 (B2M in one ESAD and one LUSC genome, and MYH11 acquired in 

other LUSC genome) could be validated through manual inspection (insertion site 

and splice junctions confirmed). 

The gene ontology enrichment analysis (https://geneontology.org/) 

performed on the 393 different candidate source genes and for cellular 

component GO terms showed an enrichment of 18,05 (FDR 8.70E-03) in the 

eukaryotic translation initiation factor 4F complex. This group of proteins found 

within cells work collaboratively in the initial stages of translation. Overexpression 

of eIF4F complex components has been observed in several cancers, contributing 

to increased translation of specific oncogenes. Again, we could not directly 

correlate this overexpression with PPs formation, and the fact these particular 

source genes are retrotransposed on tumors since we did not perform differential 

expression analysis on tumors to prove it. Moreover, we did not prove if 

enrichment analysis of random sets of genes also points out that particular GO 

term or if it was specific for this somatic event. Still, it has been shown that overall, 

genes acting as template for somatic PPs are among the top quartile of expressed 

genes for each specific tumor type (110). 

Focusing on the insertion site of the 433 candidates somatic PPs, half of them 

appeared to be in intergenic regions while the other half were found in 202 
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different known genes. Low insertion site recurrence was observed across the 433 

events. Only 6 genes appear as the insertion loci for more than one candidate PPs. 

Recurrence across the insertion sites (3%) where candidate PPs was lower than 

the observed regarding the source genes (7%), suggesting a relatively random 

pattern of insertion locations but likely not in the retrotransposition of the source 

genes. Nevertheless, integration of PPs tends to occur on open-active chromatin 

regions, as many events appeared inside other expressed genes, since there are 

fewer genes compared to intergenic regions in the human genome. 

More analyses using RNA-seq expression or epigenetic data of all tumor 

genomes acquiring somatic processed pseudogenes are needed to clearly 

understand the causes of retrotransposing specific genes into determined 

genome locations.  

To decipher the potentially functional impact of somatic PPs, we evaluated 

RNA expression of 257 PP events. For the majority of them we were not able to 

determine supporting RNA reads and therefore, we had inconclusive results. 

However, we could confirm the expression of 17 fusion PP-host gene or locus. 

Contrary to the results shown in Cooke et al. study, we confirmed the expression 

of three processed pseudogenes landing in intergenic regions. Moreover, and 

even the challenging RNA-seq alignment performed when repeat sequences are 

included, 4 out of 17 expressed fusion PP-host genes had L1 or other repeat 

elements within the insertion site. Expressed processed pseudogenes also include 

four events resulting from the retrocopy of cancer genes, such as CIITA, FEN1, 

KTN1 and B2M, which could point to a potential functional interaction and an 

impact in the biology of the tumor. 

Evidence of aberrant fusion transcripts encouraged us to predict the 

chimeric peptide sequence resulting from them. Sequencing RNA reads joining 

intron sequences of the host gene together with the source gene were found. 
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Accordingly, we assumed their translation even in their wild-type form does not 

codify for proteins. The majority of the aberrant fusion transcripts generate 

premature stop codons within the coding region of the host transcript, and 

particularly within their intron sequences. Translation of the processed 

pseudogene was only predicted for the WNK4-RND2 fusion transcript, since cDNA 

WNKK4 was inserted within an exon of the host gene. 

Finally, high variation across tumor genes of both source genes and insertion 

locus, showed a distinctive nature of these somatic events, with no recurrence 

across patients in terms of the affected genes or regions. This diversity limits their 

potential for practical and clinical applications such as identification of targets or 

biomarkers. Moreover, using somatic processed pseudogenes in precision 

medicine is highly improbable, as they lack the necessary uniformity. Although 

they might not be directly applicable in medicine, their study remains significant 

as they could either act as passenger mutations but also potentially confer 

functional advantages to the tumor cells.  

Together with an extensive identification of structural variants promoted by 

LINE-1 retrotransposition on PCAWG data, and following PCAWG rules for 

publishing, our work was published as one section of a broader study of 

retrotransposition in cancer (211). All the observations illustrate the relevant role 

of L1 in remodeling the landscape variation of cancer genomes and their potential 

implications for the formation and development of tumors. 
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Identification and characterization of novel candidate 

micropeptides using publicly available genomic and 

transcriptomic cancer data – Chapter 3 

Study 1: Catalog of candidate micropeptides for MS/MS 

searches 

Algorithms developed to find open-reading frames have generally discarded 

small ORFs as coding genes, mainly because of their short length and their level 

of uncertainty. But these small ORFs can be translated into micropeptides and 

have important functional roles. Although great efforts have been made to 

identify these new coding genes, they are still poorly studied compared to known 

annotated protein coding genes. The identification itself is already highly 

challenging, as some of the parameters that are characteristic of micropeptides 

come close to thresholds that are defined to eliminate noise within studies. For 

example, the short length, or the potential absence of introns within coding 

micropeptide DNA regions generate fewer number of supporting mapped reads 

for micropeptides. Another issue is the differentiation of micropeptides from real 

exons of longer known genes, as most of the micropeptides so far have been 

defined in annotated genes In this frame we worked in collaboration with 

researchers from VHIO and CNIO to understand the potential role of 

micropeptides in metastatic processes in pancreatic adenocarcinoma (PACA). The 

general goal of this part of the study was to identify and characterize 

micropeptide sequences in exosomes secreted by Pancreatic tumor cells, using a 

combination of experimental, mass spectrometry and bioinformatic approaches.  

In proteomic, mass spectrometry peptides are commonly identified by matching 

MS/MS observed spectra against a theoretical spectrum of all candidate peptides 

represented in a reference protein sequence dataset. The characteristics of this 
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dataset of candidate peptides are crucial to ensure a proper balance between 

having a high enrichment in micropeptides, without losing good candidates and 

without incorporating false positives. At the BSC we focused on the design and 

generation of this catalog. Our goal was to improve, adapt and change the 

standard and default datasets, i.e with known annotated proteins, that are 

typically used in proteomic MS/MS studies for one more specific towards 

micropeptide identification. This involved several challenges, mostly related to 

the identification and inclusion of unknown potentially functional expressed 

peptides, with expression patterns often close to transcriptional noise.  This is 

actually a new approach known as proteogenomics, where novel peptides are 

identified by searching MS/MS spectra against a customized protein sequence 

dataset generated from genomic and transcriptomic data (213). There are 

different strategies to generate customized protein sequence datasets, and the 

optimal choice really depends on the goals of the experiment and type of novel 

peptides the study seeks to identify. Taking this into account, we based our 

strategy on performing de novo transcriptome assembly of RNA-seq samples 

which will predict known and novel transcripts.   

As our work was focused on the metastatic processes in pancreatic 

adenocarcinoma and transcription and translation are tissue specific, 

transcriptome assembly was performed from 6 randomly selected ICGC samples 

corresponding to the same tumor type (PACA).  

For the generation of this catalog there was no standard methodology or 

unified strategy to perform de novo transcriptome assembly from RNA-seq 

samples. Instead, there were several software tools available that could be used 

with different and specific criteria closer to our needs.  In this study StringTie 

algorithm was used for both de novo assembly and quantification of the predicted 

transcripts. It uses a genome-guided transcriptome assembly approach along with 

concepts from de novo assembly. Based on published studies, this algorithm 
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exhibits good accuracy in reconstructing transcript structures, is compatible with 

paired-end RNA-seq libraries and it is more sensitive to genes with low expression 

levels than other algorithms (214,215). In terms of processing time, it only tokes 

around 20 minutes per sample when run it in the MareNosrtrum 4 

supercomputing, and subsequently it was not highly time consuming when 

launching many tests.  

Importantly, StringTie allowed us to fine-tune parameters that we 

considered optimal for the search of short ORFs. First, the minimum size length 

was significantly decreased, and transcripts were predicted starting at 50 

nucleotides length. Second, we could evaluate the inclusion or exclusion of multi-

mapped reads that are usually present in RNA-seq samples. Although including 

multi-mapped reads (-m 1,0) resulted in the prediction of around 6.000 more 

transcripts per sample, we did not have sufficient information to assess how many 

false positives we were also including. This is why we generated DS1 and DS2, with 

and without considering multimapping reads, respectively. Most of the efforts in 

this part went to tuning the different parameters for each one of the steps 

involved in the generation of the catalog, like for example finding the right 

expression thresholds, the right merging strategy to build the final candidate 

transcripts, which required specific modifications of the StringTie protocol, or to 

evaluate the gain of considering non-canonical start codons. Again, our goal was 

to enrich this dataset in micropeptides without taking much noise as false positive 

expression signals. 

Expression values vary across samples even when looking at the same 

predicted transcript, but this could be due to differences in cellular composition 

of samples, technical factors during sample processing or sequencing, time or 

developmental stages, and external environmental factors. 
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Generally, median TPM values in our datasets were not higher than 9, 

indicating, as expected, a prevalence of low expressed observed in all sample 

showed low levels of expression for most of the predicted transcripts. Note that 

as an example, expression levels (TPM) for housekeeping genes such as ACTB, 

GAPDH, UBC or ADA observed in the experiment E-MTAB-2706 provided by the 

Expression Atlas (216) across pancreatic adenocarcinoma cell lines were around 

4997, 3540, 1403,75 and 31,47 respectively. Moreover, the average TPM 

expression for the first two housekeeping genes (ACTB and GAPDH) was 2162,95 

and 1362,81 in our PACA samples.  As micropeptides are not really annotated 

across the genome, our approach needs to consider potential low-expressed and 

unknown genomic regions, as potential micropeptide genes. Other signals of the 

potential presence of false positives within our set is the comparison of canonical 

and non-canonical start codons found in other datasets. Despite this can be due 

to fragmentation of the candidate transcripts, and general estimates are also 

biased towards canonical ATG starting genes, it is also likely that a fraction of our 

transcripts, and final peptides is derived from transcriptional noise. 

Although necessary, we did not have the chance and time to perform a 

proper comparative evaluation of the level of overlap between the different 

approaches, or whether known expressed transcripts, eventually also known 

micropeptides, in pancreatic adenocarcinoma were actually enriched within our 

datasets. Performing these analyses is necessary to provide further support and 

to evaluate de novo and merging strategies applied here to define the PACA 

transcriptome. 

During the generation of this PACA transcriptome we also encountered 

computational limitations, when relaxing the thresholds and the dataset 

increased.  For example, the size of DS2, where non-canonical start codons were 

also considered, was computationally and algorithmically not compatible with the 

MS/MS analysis at the CNIO. Measures, like increasing the stringency in 
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expression helped us reduce the size of the dataset, although also enriched the 

catalog towards highly expressed regions, which is not optimal for micropeptide 

studies. 

An evaluation of the position of our candidate small ORFS across the types 

of annotated regions in the genome, we observed interesting results. A 

classification of the candidate sequences based on their location compared to 

annotated genes showed that the majority of candidate ORFs (1.103.297) were 

located within protein coding genes. Nevertheless, as a result of the Blast filtering 

step, only 2,7% of them had part (less than 30% in DS2) of their sequence 

overlapping with a coding exon whereas the remaining ones were within UTRs, or 

introns. Interestingly, the highest frequency (43,4%) of candidates was observed 

in 3’ UTR regions. While previous studies aiming to classify smORFs (124,150) 

depending on their location, clearly describe smORFs in 5’ UTRs, also called 

uORFs, downstream smORFs (dORFs) located in 3’UTRs have been less explored. 

Small ORFs have also been identified in 3’ UTRs by ribosome profiling and 

proteomics, but their frequency tends to be lower than the observed for uORFs. 

As an example, in a study performed on 2021 analyzing ORFs from OpenProt and 

sORFs.org, researchers identified 14,4% of novel ORFs overlapping 5’ UTRs and 

only 2,8% in 3’UTRs (149). A similar tendency was observed also in zebrafish 

embryos. Upstream small ORFs have been systematically characterized and their 

functions are well known. They act as cis-regulators of the translation of 

downstream canonical ORFs, and often repress their translation. Upstream ORFs 

are considered the main class of regulatory small ORFs, and it has been observed 

that regulation through them is conserved across vertebrates for dozens of genes. 

Moreover, in many cases their translation starts from non-AUG start codons. 

Contrary dORFs, those located in 3’UTRs and that appeared to be enriched in our 

datasets, have not been as much characterized. However, a study published in 

2020 reported dORFs enhance translation of their canonical ORFs in both human 
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cells and zebrafish embryos, indicating a novel and strong post-transcriptional 

regulatory mechanism (217). Also in dataset 2, around 22% and 21% of the 

candidates were located in introns or exons of non-coding genes, two smORFs 

classes that have also been well described in previous studies. In summary, 

although it is generally known that a significant fraction of the translated ORFs 

maps to untranslated regions and sequences previously considered noncoding we 

did not expect an enrichment in sequences located in 3’UTRs rather than in 5’ 

UTRs, introns or non-coding genes. We suggest this enrichment could be due to 

3’ UTRs are longer than 5’ UTR regions in protein coding genes so it is more likely 

to identify higher numbers of ORFs.  

A curated and systematic characterization of all the candidate micropeptides 

identified in both datasets, based on their classification, could seed light to better 

understand the results obtained. Expression analysis of each of these groups of 

candidates could also demonstrate if for example, UTR regions had generally 

higher expression levels compared to intronic regions or lncRNAs in our defined 

transcriptome. If this was the case, identifying more candidate sequences in 

3’UTRs could not only be because of their larger size (218) but also because their 

inclusion after all the filtering steps applied. Finally, we also considered that the 

fact we were stringent with single-exon predicted transcripts and expression 

abundance resulted in a lower detection of intergenic smORFs.  

As we foresee, our sets of in-silico translated sequences likely include high 

numbers of false positive micropeptides even though we ended up reducing both 

sets. Because of that, at any point of this study all micropeptides were just 

considered candidates. It is also important to consider the technical debate on 

whether low levels of expression used to predict transcripts, or the small number 

of samples evaluated had been sufficient to represent the pancreatic 

adenocarcinoma transcriptome. To better define and determine these 

transcripts, a larger cohort of patients is clearly needed.  
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The generation of this catalog was performed in collaboration with the group 

at the VHIO, where we regularly discussed with them the results of applying 

different types of filters, for example. Finally, both datasets of candidate 

micropeptides were used in MS/MS experiments of pancreatic tumor samples 

performed at the CNIO, yielding a total of 439 candidate micropeptides. 

Interestingly, 167 of these micropeptides were defined in our datasets. 

Many of these short peptides have been detected in previously annotated non-

protein coding regions of the human genome, including UTRs, lncRNAs or 

pseudogenes. Only 23 out of 439 micropeptides were selected based on their 

enriched expression in pancreatic adenocarcinoma compared to healthy 

pancreas, the consistency of their detection across databases and evidences of 

micropeptide functionality. Despite the PI moved to another location, which 

inevitably affected the normal progress of this activity, there are still plans to 

continue with this work. Marion Martínez and Dra. Maria Abad are still working 

on their functional characterization at VHIO. Finally, we are planning a more 

extensive description of all 439 identified micropeptides using other 

computational approaches such as PhyloCSF (162), to evaluate their conservation, 

IUPred3 (219) to identify disordered protein regions within them and the ELM 

prediction tool (220) to detect short linear motifs that can be protein interaction 

sites.   
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Study 2: Identification of candidate highly conserved 

micropeptides in intergenic regions 

Initiating our exploration of micropeptides in the first study, in which we 

provided a catalog of novel candidate micropeptides from transcripts expressed 

in PACA tumors, we realized the underexplored nature of micropeptides located 

in intergenic human genomic regions. In addition, identifying and characterizing 

smORFS within gene regions adds the challenge of demonstrating its independent 

role beyond the role of the surrounding genes. It is known that intergenic ORFs 

are the most numerous (96% of the smORFs) in human DNA, with a median size 

of 22 codons. However, many seem not to undergo transcription and to be 

randomly generated by our genomes rather than have a functional role (124,175). 

Identification and annotation of small ORFs is per se, challenging due to their 

short length compared to known genes and, because of prediction algorithms 

limitations (171). Furthermore, due to the high numbers of intergenic ORFs, and 

to avoid inflating the estimates of functional smORFs, these short intergenic 

peptides are less considered. As expected, micropeptide studies are usually 

focused on those more likely to be functional. Despite this, we attempted to 

evaluate these less explored DNA sequences considering they can be a promising 

source of potentially functional intergenic micropeptides. 

Due to the availability and quality of data, as a main strategy, we decided to 

start the search of micropeptide from the genome, by searching all small 

intergenic ORFs with different levels of functional evidence, instead of directly 

exploring the transcriptome as we did in the previous study.  These functional 

evidence were explored using evolutionary and comparative genomic approaches 

and tools. We also explored other types of functional support, like the known 

differences in nucleotide composition between functional (coding) and non-

functional sequences, previously used in multiple studies for the prediction of 
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genes in newly sequenced genomes (221). Unfortunately, the signals that we 

explored with Francisco Cámara (Roderic Guigó’s group at the CRG) were too 

noisy.  

Aiming to describe micropeptides with a role in tumorigenesis, we expected 

their function to be essential for controlling basic cell functions required to 

survive. It is known that cancer genes such as oncogenes and tumor suppressors 

are widely conserved through evolution (222). We then expect that functional 

micropeptides with important cell functions (e.g. cancer-related) will also be 

conserved across different species and taxonomical clades. This is 

why comparative analyses of genomes and transcriptomes from multiple species 

at varying evolutionary distances have been powerful to identify functional coding 

and non-coding sequences.  

So as to restrict our genome-wide search of intergenic micropepitdes, we 

targeted unannotated intergenic constrained regions (UNICORNs) previously 

identified through a 240 species alignment and published by The Zoonomia 

Project (5).  

UNICORN nucleotide sequences were in-silico translated assuming they 

were intronless and all their sequence was coding. In fact, it has been shown that 

new annotated coding genes located in regions previously defined as non-coding 

have significantly a smaller number of exons, and around 88% of them are single-

exon genes (123). Assuming intronless sequences was not so far from what we 

could somehow expect.     

On top of sequence conservation, we included other evolutionary measures, 

in this case, the ratio of synonymous versus non-synonymous substitution rates 

(dN/dS) that informs about the selective pressure linked to a coding region and 

suggests functionality. The reliability of this ratio, which is also used for the 

identification of positive selection in evolutionary processes, depends on the 
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number of substitutions identified between two species, which at the same time 

depends on the evolutionary distance of the two sequences and their length. This 

means that more recent and shorter micropeptides with low substitution counts 

might not generate reliable dN/dS ratios and could be classified as non-functional, 

or neutrally evolving. To find a balance between reliability of the coding 

alignments between two ortholog candidate micropeptides, needed for the 

dN/dS calculations, and enough evolutionary distance to ensure a minimum 

number of synonymous and non-synonymous substitutions (163,223), we used 

mice for this analysis. A preliminary evaluation of this strategy applied to known 

functional micropeptides including AGD3, Myoregulin, NBDY, SPAAR, Minion, 

Phospholamban and Sarcolipin, showed ratios associated with functionality, 

giving support to the potential benefits in using this tool.   

At the level of strategy, we encountered the typical challenges associated 

with short sequences, which affected all our steps, from the reliability of the 

alignments to demonstrating expression and the micropeptide using RNAseq 

data. Because we prioritize stringency and reliability of the sequences found (i.e. 

absence of false positives), rather than sensitivity, we applied strict thresholds to 

some of the steps that might have filtered out good micropeptides. For example, 

as mentioned, very recent micropeptides, despite providing aligments with good 

quality, often do not have enough substitutions when compared with other 

species to calculate dN/dS. Older micropeptides might, on the other hand, 

present problems defining reliable orthologs and aligning their sequences. In 

addition, the use of sequence conservation also implies that our study might 

identify the most conserved fragments of longer micropeptides, but not the entire 

micropeptide.   

We know from previously published studies (129,130,171), that 

micropeptides seem to be less conserved than protein-coding genes, so we 

expected many of them were not covered on our search. Moreover, it is also 
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important to bear in mind that the set of small functional proteins not only 

includes conserved regions but sequences that have recently emerged de novo 

from previously noncoding sequences. Due to their origin from randomly 

occurring ORFs, de novo proteins are also remarkably short. De novo originated 

proteins are known to be species specific, may not be present in the species gene 

annotations and show little or no signatures of purifying selection, which limits 

our search. In fact, recently emerged de novo genes show high evolutionary rates 

when compared with more conserved genes (150,224). For all these reasons, our 

search based on evolutionary conservation and purifying selection limited the 

identification of functional micropeptides.  

Finally, we also used expression as another measure that could indicate 

functionality. As micropeptides are short and appear to show low levels of 

expression (129), we could then also miss real micropeptides because the limited 

availability of good quality raw RNA-seq data and the limited sequencing 

coverage, which determines the number of final supporting reads. As an example 

of these limitations, paired-end reads supporting a few candidates showed us that 

our set of highly conserved smORFs included part of larger candidate transcripts, 

and therefore we could confirm that in some cases we were not defining the 

entire smORF but their conserved nucleotides. 

For most of the candidate micropeptides signals of expression were not 

strongly supported but just detected in one sample each. However, we determine 

evidence of expression in 103 samples including all tissues except muscle for one 

interesting candidate located in chromosome 5 between 93.615.953 and 

93.616.054 bp. The conserved region was around 1700 bp upstream a known 

lncRNA (FAM172A). Even it was close to a known gene, mate reads of the ones 

aligned across the candidate did not cover FAM172A in the samples analyzed. This 

data suggested that the conserved smORF was not part of the known transcript 

but a different candidate gene. As it has been observed for other regulatory 
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smORFs (150), the function of this candidate could be hypothetically linked with 

the regulation of the lncRNA. Moreover, signals of expression in FAM172A can be 

observed in the same tissue types in the GTEX portal, with the lowest expression 

values in muscle tissue samples and correlating with the observed signals of 

expression seen for our candidate smORF.  

It should be noted that smORFs shorter than the library size used when 

sequencing the sample will not be detected if reads are selected depending on 

their size before the alignment step. RNA-seq samples and other experimental 

analysis such as microarrays defined precisely to identify expression of short 

peptides, are needed to confirm these candidates are transcribed in cells. 

Evidence of expression not only confirms their presence in nature but also 

provides information about, for example, their tissue specificity or 

functionality.  Furthermore, proteomic data from MS/MS studies or Ribo-seq is 

needed to validate all these candidate micropeptides accurately. Absolutely, this 

catalog of novel candidate micropeptides in intergenic regions could be used to 

analyze raw publicly available MS/MS experiments. 

Lastly intending to explore the role of micropeptides in cancer disease and 

tumorigenesis, we analyzed the recurrence of somatic single nucleotide variants 

in smORFs. We started with a set of published micropeptides to test driver-

discovery algorithms that had not been directly developed for small ORFs. We 

aimed to identify driver smORFs based on the presence of significant clusters of 

mutations detected in the ICGC tumor genomes and using OncodriveCLUSTL, a 

driver-discovery algorithm (7). The number of SNVs was not sufficient for 6 ICGC 

projects, where OncodriveCLUSTL could not provide good results nor clusters of 

variants. For these tumor types, a potential approach to obtain better results in 

future analysis could be increasing the number of samples analyzed, and 

consequently of variants. Due to differences in mutation rates between tumors, 

to do so we should be concerned about the specific type and subtype when 
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searching for more data. At the end, our candidate intergenic smORFs regions did 

not show enough somatic SNVs from the ICGC tumors analyzed. Because of the 

low number of variants in these candidates, OncodriveCLUSTL was not able to 

identify clusters, and even less significant and recurrent variants within the 

candidates. Based on recurrent and clusters of mutations, we could not suggest a 

role in cancer for our candidate intergenic smORFs. 

We propose other experimental and computational approaches can be 

applied to evaluate their potential role in cancer, considering that more precise 

measurements are needed to identify functionality even low signal intensities. In 

terms of genomic data, gain- and loss-of-function mutations, or copy number 

alterations within these candidates could also seed light to understand their 

implication with cancer disease. Differential expression levels comparing tumor 

and normal tissues will also provide more insights into their function, as well as 

defined tissue specificity. Proteomic data including MS/MS and Ribosome 

profiling experiments will not only confirm their presence in humans but also 

allow us to understand in which cell types are translated, and their abundance.  

It is important to know that smORFs can have regulatory effects on 

neighboring genes (150), and not all are translated into micropeptides neither 

have their own function. Intergenic conserved regions, can also be regulatory 

elements regulating gene expression and be structural DNA features such as 

transcription factor binding sites, contribute to chromatin structure organization 

of maintain genomic stability (225,226). Thus, these small, conserved intergenic 

regions will not be transcribed and translated and therefore not considered 

micropeptides.    

In summary, the catalog of candidate micropeptide sequences we provided, 

a total of 8.289 sequences, is a valuable source of information to perform more 

analysis including experimental validation. Available algorithms developed to 
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detect smORFs such as MiPepid (164), sORF Finder (160) or PhyloCSF (162) can 

be applied on UNICORN regions or candidate smORFs identified to support our 

findings. Moreover, lastly, an increasing number of intergenic smORFs have been 

annotated and previously published databases such as sorfs.org (175) or 

nORFs.org (149) have been updated. Then, we considered it is also important to 

evaluate the overlap between these recently published smORFs and the 

candidates identified in our conservation study. As described in this discussion, 

many questions are still open in the present study, becoming an interesting 

research line to continue exploring even if it has been usually missed.  
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7. General overview 
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The presented thesis is a compilation of genomic studies done with the aim 

of understanding tumor genomes and the biology behind them. Using diverse 

classical and novel bioinformatic tools, together with manual inspection of the 

data to understand and question automatic searches, the focus has primarily been 

on evaluating two genomic elements: somatic processed pseudogenes and 

micropeptides.  

The landscape of cancer and biomedical research have been notably driven 

by the potential of next-generation sequencing, which has also changed the way 

we undertake biological questions leading to important scientic discoveries. 

Unlike classical genetic studies, a comprehensive evaluation of the human 

genome now serves as the foundation for more specific research questions. 

Genomic data, along with other omics data such as transcriptomics, proteomics 

and epigenomics, have unravel the complexity of tumors, deciphering germline 

and somatic alterations, gene expression alterations, and environmental changes 

affecting the way genes normally work. All this information, is essential to 

understand cancer disease. 

Large-scale initiatives and publicly available data, such as The Cancer 

Genome Atlas or The International Cancer Genome Consortium, have played a 

crucial role. These initiatives, collect extensive datasets fostering collaborative 

efforts and accelerating discoveries (88,227). Indeed, the present thesis could not 

have been done without all these cancer genomic and transcriptomic data 

available.  

Even this vast amount of publicly available data useful for cancer research, 

there are still many challenges to deal with. Variability across data has been one 

of these limitations. In one hand, technical information regarding how data was 

collected, quality, or a clear description of the methology used to produce the 

data is occasionally or partially missing. Therefore, it is not allways easy to select 
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which samples can be included in our specific study, or to understand why we are 

facing with particular results. Moreover, due to the wide range of available 

algorithms, to integrate and compare data, data harmonization is needed to 

ensure compatibility (54,228). If it is not already done, data should be reanalyzed 

considering the requirements of the research. 

Ensuring broad data sharing is nowadays essential. However, even the great 

initiatives and efforts done in this field, data is not allways easily accessible. 

Moreover, although data agreements are clearly needed, they can be time 

consuming and a bottleneck in the research. In this line, another challenge we 

usually encounter is the lack of publicly available clinical data, which is 

fundamental for translating genomic research findings into actionable insights. 

The combination of genomic discoveries together with clinical data promotes 

precision medicine, investing this knowledge in the hands of clinicians and health 

care systems to really benefit our society. Yet, the challenges persist also in this 

line, due to ethical management of sensitive patient data and integration of multi-

omic information into routine clinical practice. Nevertheless, efforts are being 

done to accelerate both, the use of clinical data in research, and the application 

and integration of biological individualized findings into precision medicine. As an 

example, Genomics England alongside UK National Healthcare System, analyzed 

WGS data from almost 14000 tumors, integrating genomic data with real-world 

treatment and outcome data within a secure research environment (229). 

While challenges and limitations must be considered in both research and 

its clinical applications, there is undeniable recognition of the important role that 

NGS and omics data play in advancing cancer studies and healthcare. 

Consequently, there is a need to address and overcome these limitations. Efforts 

should be directed towards comprehensive strategies that enable the extensive 

utilization of cancer data, facilitating the understanding of the imformation 

embedded within tumor cells. By working on these challenges, we can unlock the 
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potential of genomic insights, paving the way for transformative developments in 

both cancer research and precision medicine. 
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8. Conclusions 
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Chapter 1:   

1) Current short read-based sequencing analysis of somatic structural 

variants in cancer analysis, and structural variant heterogeneity limits the 

estimation of variant allele frequency to later classify them in tumor subclones.  

2) Given this limitation, manual inspection of coverage variability around 

somatic breakpoints, and the accurate identification of aligned supporting reads 

is required to reliably estimate and infer their cancer cell fraction to fully 

characterize intratumor heterogeneity.  

Chapter 2:   

3) We have been able to define a strategy combining automatic searches 

with manual inspection to identify somatic processed pseudogenes in cancer. The 

application of this strategy to the PCAWG cohort allowed us to identify somatic 

PPs across different tumor types.   

4) The distribution of somatic PPs within tumor genomes appeared to be 

enriched in protein coding genes, and particularly in intronic regions.  

5) We observed a heterogeneous distribution of somatic PPs across tumor 

types, which seems to be correlated with the level and activity of tumor somatic 

retrotransposition driven by LINE-1 elements.  

6) We could identify expressed somatic processed pseudogenes and 

reconstruct the resulting fusion transcripts. These PP-host gene fusions suggested 

that somatic PPs can have a functional impact on cell’s transcriptional activity.  
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Chapter 3:  

Study 1:   

7) The generation of a micropeptide customized catalog based on pancreatic 

adenocarcinoma expression of non-annotated coding regions, allowed us to 

identify micropeptides in exosomes secreated by the same tumor type through 

mass spectrometry.  

Study 2:   

8) The combination of evolutionary approaches, including nucleotide 

sequence identity and coding substitution ratio (dn/ds) across species, allowed us 

to define a set of initial candidates small ORFs located in human intergenic 

regions.   

9) An initial inspection of healthy transcriptomic samples enabled us to 

observe signals of expression within a few candidate intergenic smORFs. 

Compared to known protein coding genes, candidate smORFs exhibited low 

expression levels, presenting a challenge in their assessment using RNA-seq 

samples.  
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10. Annex 
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10.1 Supplementary figures  

Supplementary Figure 1. Coverage distribution across four genomic regions where SVs have not 
been identified. Each line correspond to a genomic sample from case 29. Blue represents normal 
genome, whereas pink and orange two different tumor samples. 
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Supplementary Figure 2. Variant allele frequencies calculated for each breakend (blue and orange). 
Results are shown for deletions, intrachromosomic translocations and inversions (x axis) from the 
in-silico genome. 
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Supplementary Figure 3. Summary including the size (nucleotides), number of exons, observed 
coverage and distribution across chromosomes of the transcripts predicted in each PACA sample. 
Database version 1 strategy. 
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Supplementary Figure 4. Summary including the size (nucleotides), number of exons, observed 
coverage and distribution across chromosomes of the transcripts predicted in each PACA sample. 
Database version 2 strategy. 
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Supplementary figure 5. KS value compared the enrichment in cancer genes, obtained for 6 
different ICGC cancer projects. Each dot represents one OncodriveCLUSTL test using an specific 
combination of parameters. Dots in red indicate the selected combination. 
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10.2 Supplementary tables  
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TIME POINT SV ID CHR POS STRAND CHR POS STRAND 
SV 
TYPE 

LOCATION 
(bkp1) 

LOCATION 
(bkp2) CLL DRIVERS DLBCL DRIVERS 

T1-PB SV_6 11 106417594 + 11 110207731 + INV intergenic intergenic ATM ATM 

T1-PB SV_7 11 108122764 - 11 116153393 - INV ATM intergenic ATM ATM 

T1-PB SV_11 X 147727409 + X 147738814 + INV AFF2 AFF2   

T1-PB SV_12 X 147731093 - X 147738794 - INV AFF2 AFF2   

T1-LN SV_9 11 106417594 + 11 110207731 + INV intergenic intergenic ATM ATM 

T1-LN SV_1O 11 108122764 - 11 116153393 - INV ATM intergenic ATM ATM 

T1-LN SV_18 X 147727409 + X 147738814 + INV AFF2 AFF2   

T1-LN SV_19 X 147731093 - X 147738787 - INV AFF2 AFF2   

T2 SV_21 11 106417594 + 11 110207731 + INV intergenic intergenic ATM ATM 

T2 SV_22 11 108122764 - 11 116153393 - INV ATM intergenic ATM ATM 

T2 SV_24676 13 26926979 - 13 47816848 - INV CDK8 intergenic  FOXO1 

T2 SV_26 13 47816186 - 13 47816851 - INV intergenic intergenic   

T2 SV_27 13 47816221 + 13 57245235 - DEL intergenic intergenic   

T2 SV_46 X 147727409 + X 147738814 + INV AFF2 AFF2   

T2 SV_47 X 147731093 - X 147738787 - INV AFF2 AFF2   
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TIME POINT SV ID CHR POS STRAND CHR POS STRAND 
SV 
TYPE 

LOCATION 
(bkp1) 

LOCATION 
(bkp2) CLL DRIVERS DLBCL DRIVERS 

T3 SV_16 2 137757587 + 2 137757897 - DEL THSD7B THSD7B   

T3 SV_29 4 136358882 - 4 140818871 - INV intergenic MAML3   

T3 SV_30 4 140808906 - 4 140856382 - INV MAML3 MAML3   

T3 SV_56 7 52263031 - 7 52263480 - INV intergenic intergenic   

T3 SV_66 9 8495226 + 9 31606757 - DEL PTPRD intergenic CDKN2A PTPRD,CDKN2A,CDKN2B 

T3 SV_308 9 131108130 + 11 118477716 - TRA SLC27A4 PHLDB1   

T3 SV_89 9 131209465 + 11 118814376 + TRA MIR1268A intergenic   

T3 SV_309 9 131222219 - 11 118861651 + TRA MIR1268A intergenic   

T3 SV_88 9 131231071 + 11 118477448 + TRA MIR1268A PHLDB1   

T3 SV_72 10 85468180 + 10 85468343 - DEL intergenic intergenic   

T3 SV_75 11 7897130 - 11 7898281 - INV LOC283299 LOC283299   

T3 SV_184 11 33731887 + 11 33738914 - DEL CD59 CD59   

T3 SV_79 11 63968132 - 11 63973300 + DUP STIP1 intergenic   

T3 SV_80 11 67352245 + 11 67353857 - DEL GSTP1 GSTP1  RAD9A 

T3 SV_82 11 106417594 + 11 110207731 + INV intergenic intergenic ATM ATM 

T3 SV_83 11 108122764 - 11 116153393 - INV ATM intergenic ATM ATM 

T3 SV_84 11 118576119 + 11 118867843 + INV intergenic intergenic   

T3 SV_85 11 118802233 - 11 118888669 + DUP intergenic RPS25   

T3 SV_86 11 118841362 - 11 118888405 - INV intergenic RPS25   
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TIME POINT SV ID CHR POS STRAND CHR POS STRAND 
SV 
TYPE 

LOCATION 
(bkp1) 

LOCATION 
(bkp2) CLL DRIVERS DLBCL DRIVERS 

T3 SV_187 11 118867609 - 11 118867870 - INV intergenic intergenic   

T3 SV_102 13 26926978 + 13 47816848 + INV CDK8 intergenic  FOXO1 

T3 SV_103 13 27116592 - 13 47841044 + DUP intergenic intergenic  FOXO1 

T3 SV_106 13 47816186 - 13 47816851 - INV intergenic intergenic   

T3 SV_107 13 47816221 + 13 57245235 - DEL intergenic intergenic   

T3 SV_108 13 48933458 + 13 48990742 - DEL RB1 RB1   

T3 SV_160 X 147727409 + X 147738814 + INV AFF2 AFF2   

T3 SV_161 X 147731093 - X 147738787 - INV AFF2 AFF2   

Supplementary Table 1. Somatic structural variants identified by variant callers and manually validated in CLL case 63. Known CLL and DLBCL driver genes are 
annotated if involved within the structural variant. 
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   BREAKPOINT 1 BREAKPOINT 2 AVERAGE DIFFERENCE (BKP) 

TIME POINT SV ID LENGTH REPEAT1 VAF1 CNA1 CCF1 REPEAT2 VAF2 CNA2 CCF2 VAF CCF VAF CCF 

T1-PB SV_6  3790138 LINE/L1 0,3120 2 0,5940 SINE/Alu 0,4961 2 1,0224 0,4041 0,8082 0,1842 0,4285 

T1-PB SV_7  8030630  0,3584 2 0,7386  0,3238 2 0,6673 0,3411 0,7029 0,0346 0,0714 

T1-PB SV_11 11406  0,2727 2 0,5583  0,3077 2 0,6299 0,2902 0,5941 0,0350 0,0716 

T1-PB SV_12 7702  0,2500 2 0,5118 SINE/MIR 0,3077 2 0,6299 0,2788 0,5708 0,0577 0,1181 

T1-LN SV_9 3790138 LINE/L1 0,3796 1,86 0,7354 SINE/Alu 0,6216 2 1,3036 0,5006 1,0195 0,2420 0,5682 

T1-LN SV_1O 8030630  0,4000 2 0,8389  0,4340 1,4133 0,6389 0,4170 0,7389 0,0340 0,2000 

T1-LN SV_18 11406  0,1806 2 0,3762  0,2284 2 0,4757 0,2045 0,4757 0,0478 0,0996 

T1-LN SV_19 7695  0,1500 2 0,3125 SINE/MIR 0,2941 2 0,6127 0,2221 0,4626 0,1441 0,3002 

T2 SV_21 3790138 LINE/L1 0,4424 2 0,9183 SINE/Alu 0,8884 2 1,8440 0,6654 1,3811 0,4460 0,9257 

T2 SV_22 8030630  0,3539 2 0,7346  0,3936 1,4133 0,5735 0,3738 0,6541 0,0397 0,1610 

T2 SV_24676 20889870 LINE/L1 0,0732 2 0,1519 SINE/Alu 0,0706 2 0,1466 0,0719 0,1492 0,0025 0,0052 

T2 SV_26 666  na na na  na na na na na na na 

T2 SV_27 9429015  0,1396 2 0,2897 LTR/ERVL 0,1709 2 0,3547 0,1552 0,3222 0,0313 0,0650 

T2 SV_46 11406  0,7293 2 1,5036  0,5983 2 1,2336 0,6638 1,3686 0,1310 0,2700 

T2 SV_47 7695  0,7295 2 1,5042 SINE/MIR 0,6187 2 1,2758 0,6741 1,3900 0,1108 0,2284 

T3 SV_16 311  na na na  na na na na na na na 

T3 SV_29 4459990 LINE/L1 0,1197 3 0,3796  0,0972 3 0,3085 0,1085 0,3441 0,0224 0,0711 

T3 SV_30 47477  0,0889 3 0,2819  0,2804 3 0,8895 0,1846 0,5857 0,1915 0,6076 

T3 SV_56 450  na na na  na na na na na na na 
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   BREAKPOINT 1 BREAKPOINT 2 AVERAGE DIFFERENCE (BKP) 

TIME POINT SV ID LENGTH REPEAT1 VAF1 CNA1 CCF1 REPEAT2 VAF2 CNA2 CCF2 VAF CCF VAF CCF 

T3 SV_66 23111532 LINE/L2 0,3093 2 0,6314  0,2985 2 0,6768 0,0215 0,6541 0,0107 0,0454 

T3 SV_308  SINE/Alu 0,1667 2 0,3525  0,1667 3 0,5287 0,1667 0,4406 0,0000 0,1762 

T3 SV_89  DNA/hAT-Charlie 0,3158 2 0,6678 SINE/Alu 0,4667 1 0,4935 0,3912 0,5680 0,1509 0,1744 

T3 SV_309  Simple repeat 0,1000 1 0,1057 Simple repeat 0,4000 3 1,2689 0,2500 0,6873 0,3000 1,1632 

T3 SV_88   0,4522 1 0,4781  0,3507 3 1,1124 0,4014 0,7953 0,1015 0,6342 

T3 SV_72 164  na na na  na na na na na na na 

T3 SV_75 1152 LINE/L1 0,0592 3 0,1877 LINE/L1 0,0617 3 0,1958 0,0605 0,1918 0,0025 0,0081 

T3 SV_184 7028  0,1304 3 0,4137  0,1693 3 0,5370 0,1498 0,4753 0,0389 0,1233 

T3 SV_79 5169  0,1667 3 0,5287  0,0588 3 0,1866 0,1127 0,3577 0,1078 0,3421 

T3 SV_80 1613  0,2543 3 0,8066  0,2295 3 0,7281 0,2419 0,7673 0,0247 0,0785 

T3 SV_82 3790138 LINE/L1 0,3855 2,88 1,1662 SINE/Alu 0,7948 2 1,6809 0,5901 1,4235 0,4093 0,5147 

T3 SV_83 8030630  0,4128 2 0,8731  0,4203 2,42 1,0715 0,4166 0,9723 0,0075 0,1984 

T3 SV_84 291725 LTR/Gypsy 0,3210 2 0,6789  0,3202 3 1,0158 0,3206 0,8473 0,0008 0,3369 

T3 SV_85 86437  0,4409 1 0,4662  0,1758 3 0,5577 0,3084 0,5120 0,2651 0,0915 

T3 SV_86 47044 LINE/L1 0,4444 1 0,4700  0,2830 3 0,8978 0,3637 0,6839 0,1614 0,4278 

T3 SV_187 262  na na na  na na na na na na na 

T3 SV_102 20889871  0,3636 2 0,7690 LINE/L1 0,3721 2 0,7869 0,3679 0,7780 0,0085 0,0179 

T3 SV_103 20724453  0,3056 2 0,6462 LTR/ERVL 0,2813 2 0,5948 0,2934 0,6205 0,0243 0,0514 

T3 SV_106 666  na na na  na na na na na na na 
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   BREAKPOINT 1 BREAKPOINT 2 AVERAGE DIFFERENCE (BKP) 

TIME POINT SV ID LENGTH REPEAT1 VAF1 CNA1 CCF1 REPEAT2 VAF2 CNA2 CCF2 VAF CCF VAF CCF 

T3 SV_107 9429015  0,3527 2 0,7460  0,2859 2 0,1000 0,3193 0,6753 0,0669 0,6460 

T3 SV_108 57285  0,5349 1 0,5656 LINE/L1 0,5395 1 0,2000 0,5372 0,5680 0,0046 0,3656 

T3 SV_160 11406  0,6769 2 1,4316  0,6818 2 0,3100 0,6794 1,4368 0,0049 1,1216 

T3 SV_161 7695  0,5966 2 1,2617 SINE/MIR 0,6158 2 0,3000 0,6062 1,2820 0,0192 0,9617 

Supplementary Table 2. Variant allele frequency and cancer cell fraction calculated for each breakpoint and structural variant (average) detected in CLL tumors 
from case 63. Difference between VAF and CCF calculated for each BKP of a SV are also shown in the last two columns. The frequency of those variants marked 
in light grey was not calculated because they were shorter than the threshold used. 
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T1-PB T1-LN T2 T3 Structural Variant Samples 

0,81 1,02 1,38 1,42 11:106417594_11:110207731 All 

0,70 0,74 0,65 0,97 11:108122764_11:116153393 All 

0,59 0,48 1,37 1,44 X:147727409_X:147738814 All 

0,57 0,46 1,39 1,28 X:147731093_X:147738794 All 

0,00 0,00 0,15 0,78 13:26926979_13:47816848 Chemoimmunotherapy 

0,00 0,00 0,32 0,68 13:47816221_13:57245235 Chemoimmunotherapy 

0,00 0,00 0,00 0,34 4:136358882_4:140818871 Richter 

0,00 0,00 0,00 0,59 4:140808906_4:140856382 Richter 

0,00 0,00 0,00 0,65 9:8495226_9:31606757 Richter 

0,00 0,00 0,00 0,44 9:131108130_11:118477716 Richter 

0,00 0,00 0,00 0,57 9:131209465_11:118814376 Richter 

0,00 0,00 0,00 0,69 9:131222219_11:118861651 Richter 

0,00 0,00 0,00 0,80 9:131231071_11:118477448 Richter 

0,00 0,00 0,00 0,19 11:7897130_11:7898281 Richter 

0,00 0,00 0,00 0,48 11:33731887_11:33738914 Richter 

0,00 0,00 0,00 0,36 11:63968132_11:63973300 Richter 

0,00 0,00 0,00 0,77 11:67352245_11:67353857 Richter 

0,00 0,00 0,00 0,85 11:118576119_11:118867843 Richter 

0,00 0,00 0,00 0,51 11:118802233_11:118888669 Richter 

0,00 0,00 0,00 0,68 11:118841362_11:118888405 Richter 

0,00 0,00 0,00 0,62 13:27116592_13:47841044 Richter 

0,00 0,00 0,00 0,57 13:48933458_13:48990742 Richter 

Supplementary Table 3 – Cancer cell fraction calculated for each somatic SV across all longitudinal 
and spatial CLL samples (case 63). Last column indicates if the SV was detected in all samples (All),  
in samples after chemoimmunotherapy (T2 and T3) (Chemoimmunotherapy) or only once the tumor 
transformed into DLBCL; T3 sample (Richter). 
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Supplementary Table 4. OncodriveCLUSTL tests done for each ICGC project based on different 
combinations of parameters.For each test, the number of clusters identified, the KS statistic and the 
enrichment in cancer genes are shown. Marked in green, the selected parameter combination for 
each ICGC project. Only those sets of variants with more than 20 clusters of variants were evaluated 
and are represented here. 
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Supplementary Table 5. Small ORF ID (first column) and their corresponding ID in the SmProt 
database, indicating also if they were included in the database because of being detected by Ribo-
seq experiments, or MS, as well as if they were previoulsy published (literature mining) or appeared 
in other databases. 
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10.3 Publications 

Pan-cancer analysis of whole genomes identifies driver 

rearrangements promoted by LINE-1 retrotransposition. 
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Detection of early seeding of Richter transformation in 

chronic lymphocytic leukemia 
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