
Treball final de grau

GRAU DE INFORMÀTICA

Facultat de Matemàtiques i Informàtica
Universitat de Barcelona

AUTOMATED MOUSE
BEHAVIOUR RECOGNITION

FOR NEUROSCIENCE
RESEARCH LABS

Autor: Sara Albarran Berlanga

Director: Dr. Eloi Puertas i Prats
Realitzat a: Departament de Matemàtiques

i Informàtica

Barcelona, 10 de juny de 2024

Abstract
Research studies in diverse fields, like neuroscience, usually employ experimentation

on mice. Recording them is one of the most common ways of monitoring their actions and
behaviours to certain stimuli. However, this videos later require professional analysis,
which is a tedious and time consuming task. Current computer vision methodologies
provide us with the necessary tools to build automated models that could perform this
laborious and repetitive task.

This project aimed to research and develop computer vision and machine learning
approaches enough to perform behaviour classification at frame level on laboratory mice
records. The primary objective was to develop a tool for researchers to analyze mouse
behavior, alleviating the repetitive and time-consuming manual analysis. Our focus was
to align our methodologies with real-world scenarios where data varies significantly.

By examining state-of-the-art sequence analysis techniques, we identified key challen-
ges and limitations in our data. This led to the development of tools such as frames-
per-second ratio regulation and automatic mouse position detection, which improved our
models’ ability to handle diverse video inputs.

Through extensive experimentation and benchmarking, we designed a robust pipeli-
ne for sequence classification, achieving precision and recall rates exceeding 90% across
various recording conditions. Our tool effectively adapts to different lighting, camera
placements, and orientations, enhancing its applicability in real-world settings.

Furthermore, we integrated these automated models with an intuitive User Interface,
providing researchers with easy access to this tool.

Acknowledgements
I would like to express my sincere gratitude to all to all of my supervisors and contri-

butors to this work for their exceptional assistance, dedication, and expertise in bringing
this project to fruition.

To Dr Eloi Puertas for giving me the opportunity of working in this project and guiding
me through the course of it.

To Dra Mercé Masana, Melike Kucukerden and Maryam Givehchi for letting me work
with them and provide me with the data, equipment and knowledge required for the
development of this project.

Lastly, to my friends and family who have been supporting me during this journey.

Contents

1 Introduction 1
1.1 Project context and motivation . 1
1.2 Objectives . 1
1.3 Document structure . 2

2 Related Works 3
2.1 Previous state of the project . 3

2.1.1 Context . 3
2.1.2 Methodologies . 4
2.1.3 Results and conclusions . 5

2.2 ResNet 50 . 7
2.2.1 Vanishing Gradients . 7
2.2.2 ResNet architecture . 7

2.3 Long Short-Term Memory (LSTM) . 8
2.3.1 Recurrent Neural Networks (RNN) . 8
2.3.2 LSTM architecture . 9
2.3.3 LSTM advantages and limitations . 10
2.3.4 Bidirectional LSTM (BI-LSTM) . 11
2.3.5 BI-LSTM advantages and limitations 11

2.4 Temporal Convolutional Networks (TCN) . 12
2.4.1 TCN architecture . 12
2.4.2 TCN advantages and limitations . 14

2.5 Transformers . 14
2.5.1 Attention mechanisms . 15
2.5.2 Transformers architecture . 16
2.5.3 Transformers advantages and limitations 18

3 The Data 19
3.1 Data study on video conditions . 20
3.2 Data study on labels . 21

4 Data preprocessing 23
4.1 Frames per second standardization . 23
4.2 Frame cropping . 25

i

ii CONTENTS

4.2.1 Automatic mouse position detection . 25
4.3 Frame normalization . 26
4.4 Data Augmentation . 27
4.5 Data Split . 28

5 Feature extraction 29

6 Sequence classification modules 31
6.1 LSTM . 32
6.2 BI-LSTM . 33
6.3 TCN . 33
6.4 Transformers . 33

7 Experiments 35
7.1 Evaluation methodology and metrics . 35

7.1.1 Binary accuracy . 35
7.1.2 Precision . 36
7.1.3 Recall . 36
7.1.4 Precision-Recall Curve (PRC) . 36
7.1.5 Confusion Matrix . 37

7.2 Adaptation of the previous approach . 37
7.3 Feature vector dimensionality . 40
7.4 Data normalization and augmentation . 41

7.4.1 Maximum value normalization . 42
7.4.2 Binary normalization . 43
7.4.3 Data augmentation . 44

7.5 Sequence classification module . 45
7.6 Final approach discussion . 47

8 Clinical Application 51

9 Conclusions 53

Bibliography 55

Chapter 1

Introduction

1.1 Project context and motivation

Experimentation on animals, particularly mice, is a common practice employed in var-
ious fields such as neurology, histology, psychology, genetics, and pharmacology. Most
scientific and preclinical studies develop their methodologies around these animals, test-
ing different drugs and stimuli to achieve desired outcomes. The most common method
of monitoring the animals’ reactions is by recording them in specific environments. In
most cases, the involvement of an expert is later required to properly analyze the videos
and draw conclusions from the experiments. However, this process is tedious, repetitive,
and time-consuming, preventing experts from focusing on other tasks.

Recent advances in computer vision and machine learning offer a solution to this is-
sue. By implementing automated models, the task of video analysis can be delegated
away from experts, freeing them from this labor-intensive process and allowing them to
focus on other critical duties. Research in this field has advanced significantly in recent
years. Currently, various studies have proposed machine learning-based techniques to
track behavior in videos across different domains. Examples include work on human
action recognition [28] and sentiment analysis [29]. There have been studies as well fo-
cused on practical animal behavior recognition [30], such as research on laboratory mouse
activity [31][32], where researchers classified mouse behaviors from video clips.

This project aims to apply state-of-the-art models to develop a tool that enables sci-
entists to analyze animal videos, at frame label, in an efficient and user-friendly manner.
More specifically, the projects builds itself around the real use case of mice videos uti-
lized by a neuroscience research group at the Hospital Clínic, Barcelona, lead by Dr Mercé
Masana.

1.2 Objectives

The global objective of this project is to develop a tool for neuroscience researchers that
automatically classifies mouse behaviors in videos at a frame level. For that we wanted
to conduct research on current sequence analysis and classification methodologies, so we

1

2 Introduction

could implement them. Also, this project follows up the previous work realized by Xavier
de Juan on his Master’s thesis "Automated Mouse Behavior Recognition using LSTM and TCN
Network". Given his works and results, we had the purpose of improving them under the
use case and data provided by the research team in Hospital Clínic. We wanted to develop
a pipeline that would adapt to their investigations and boost up models performance.
One of our goals was to develop models that would generalize effectively across different
recording conditions, making them adaptable to real-world applications.

To make the machine learning based pipeline accessible for laboratory researchers, we
wanted to implement it on an easy to manage user interface. To make it easy to use, we
wanted to deployed it as a Docker container, so it becomes easy to install and execute in
any computer with the required computing capacities.

1.3 Document structure

The following document collects and explains all the work undertaken on this auto-
mated mouse behavior recognition tool. Its content is organized as follows: Chapter 1
serves as the introduction. Chapter 2 reviews the previous work done on the project as
well as it explores the theoretical bases of the methodologies used. Chapter 3 presents
the data used. Chapter 4 and 5 explain the preprocessing techniques applied to the data.
Chapter 6 talks about the sequence processing architectures applied for video frame clas-
sification. Chapter 7 exposes the obtained benchmarking results among preprocessing
techniques and classification models. Chapter 8 discusses the implementation of the user
interface and its deployment using Docker. Finally, Chapter 9 presents a global conclusion
of the work done.

Chapter 2

Related works

On this section we will first explore the previous work completed on the project. We
will review the methodologies that were applied and analyse the extracted results and
conclusions. After that, we will dig in in the theoretic bases of the methodologies we will
apply and test for feature extraction and sequence classification, in Chapters 5 and 6.

2.1 Previous state of the project

2.1.1 Context

This project builds upon the previous work realized by Xavier del Juan on his Mas-
ter’s Final Thesis, "Automated Mouse Behavior Recognition using LSTM and TCN Networks"
(X.de Juan, 2022). On his project, he explores different Recurrent Neural Network based
architectures to perform behaviour classification at frame level on mice videos recorded
by a research team at the Hospistal Clínic of Barcelona, led by Dr. Mercé Masana from
the Deparment of Biomedicine and the Institute of Neurosciences, Faculty of Medicine and Health
Sciences, University of Barcelona. On his thesis, X. de Juan builds a first pipeline that serves
as a base for the current project.

X. de Juan counted with 17 videos, each of 11 minutes. Each video recorded a mouse
placed in an empty white box, as it can be appreciated on Image 2.1. They were all took on
the same conditions, having the same camera placement, lighting and frames per second
rate. The purpose of his work was to develop a machine learning based pipeline that,
given a video, was able to return a csv file with the mouse behaviour at each frame.

On his project, he distinguished up to 3 different behaviours: Grooming, Mid Rearing
and Wall Rearing. We consider the mouse to be grooming when it licks its fur, it grooms
with the fore-paws, or it scratches with any limb, as shown in 2.2A. On the other hand,
we consider a rearing occurs when the mouse puts its weight on its hind legs, raise its
forelimbs from the ground and extends its head upwards. In Xavier’s project, he differ-
entiated between Mid rearing and Wall rearing, the first one taking place in the middle
of the box, as seen in 2.2.B, and the second one being at one of the the box’s walls, as in
2.2.C. He also considered a neutral case, where the mouse was neither performing any

3

4 Related Works

Figure 2.1: Frame extracted from a video on X.de Juan’s thesis.

of the listed behaviours. The labels for each video were provided in CSVs created by the
researchers at the Hospital Clínic team.

Figure 2.2: Mouse Behaviours, extracted from X.de Juan’s thesis.

In addition to the videos and their corresponding labels, X. de Juan counted with data
extracted from the software program DeepLabCut. DeepLabCut provides a computer vision
package for animal pose estimation. Given a video, for each frame, the position of some
parts of the mouse are stored in a CSV file.

2.1.2 Methodologies

X. de Juan started his pipeline by preprocessing the given videos. For that, he cropped
each frame in a window of 160x160x3 pixels, being the last ones the RGB channels, with
the mouse centered, as we can appreciate in the images of Figure 2.2. To get the mouse
positioned in the center, X. de Juan used coordinates given by the DeepLabCut CSV files.
In these files, there were two specific columns that gave the X and Y position of the center
body of the mouse at each frame. That way, he used them as a reference point and cropped
each original frame around them. The idea behind this is to work with smaller and more
relevant data.

After the frame dimensionality reduction with cropping, he used a pretrained Con-
volutional Neural Network to express each video as a 1 channel feature vector. For that,

2.1 Previous state of the project 5

he explored 2 pretrained architectures: ResNet50 and InceptionResNetV2. Both models
were loaded with weights previously trained on Imagenet datasets. On the following sub-
sections they would be explained in more detail. The idea behind this is to, once again,
reduce data dimensionality. For instance, by processing a frame on ResNet50 we reduce
its dimensionality from R160x160x3 to R2048, making sure that only the most relevant in-
formation stays on the 1 channel vector. By doing this, we will later on achieve faster
calculations which would allow our Deep Learning models to converge into good results
faster during training. This will also avoid possible memory problems.

Once all the preprocessing was done, X. de Juan performed a random train-test split
among the videos and labels. 12 of them were used for training the models and 5 were
left unseeing during training. These 5 videos will be later used to compare models and
choose the best performing one.

He then defined what would be the Deep Learning architectures responsible of classi-
fying video frames. He opted for 2 sequence classification alternatives: Long-Short Term
Memory (LSTM) based Recurrent Neural Network and Temporal Convolutional Network
(TCN). Given a sequence of vectors, both models output a prediction for each element. To
do so, they consider the data on an element as well as the data on the previous elements
in the sequence. Because of this characteristic both architectures become a great alterna-
tive for video frame classification, since they take into account the temporal factor. Both
architectures will be better explained on the following subsections. What X. de Juan does
with them is, given a video and its 1 channel feature vectors, he splits them in sequences.
Then he passes these sequences through either the LSTM or the TCN architectures. As an
output he obtains the classification for each vector, that corresponds to one frame. In other
words, the sequential architectures will give us the classification for each frame of the in-
putted sequence. After passing all the sequences that conform a video, we will obtain the
classification of each frame in the video. This would be our desired output. Previously,
we mentioned that X. de Juan considered up to 3 different mouse behaviours, other than
the neutral mouse state. It is worth to mention that he developed 3 different classification
models, one specialized for each behaviour. Therefore, each model performed a binary
classification, where label 1 corresponded to the action and 0 to the mouse neutral state.

2.1.3 Results and conclusions

X. de Juan performed a benchmark of the following 4 architectures: ResNet50 + LSTM,
ResNet50 + TCN, InceptionResNetV2 + LSTM, InceptionResNetV2 + TCN. In other words,
he extracted feature vector of each frame with both of the pretrained Convolutional Neural
Networks. Having data processed in both ways, he tested fitting them into the 2 sequence
classification alternatives: LSTM and TCN. To define the LSTM and TCN networks archi-
tectures he performed an hyper-parameter tuning using the Grid Search technique. We
understand hyper-parameter tuning as the process of optimizing the the settings that con-
trol the training of a machine learning model to improve its performance. Unlike model
parameters (e.g. weights in a neural network), which are learned during training, hyper-
parameters are set prior to the training process and control how the model is trained. Grid
Search is a hyper-parameter tuning technique used in machine learning to find the best
combination of hyper-parameters for a given model. It defines a grid with all possible val-

6 Related Works

ues for each specified parameter. That, creates a matrix where all possible combinations
are represented. Then, the algorithm iterates over all of them. As a result we obtain the
combination that gave the best model’s performance. Some of the parameters that X. de
Juan included in his hyper-tuning are the number of TCN or LSTM layers, the sequences
length, the batch size, etc.

After finding the best parameters for all 4 models, he trained each one of them for
50 epochs. Once trained, X. de Juan benchmarked them by analysing their performance
on the 5 unseen videos, as we previously mentioned. On the following tables there are
displayed the metrics results for all 4 models on the 3 different behaviours. The analyzed
metrics, as appreciated on the tables, are: Binary Accuracy, Precision, Recall and PRC,
which stands for Precision-Recall Curve. For a better explanation of their meaning you
can check Chapter 7 where we discuss the meaning of all the metrics used for model
evaluation.

ResNet+LSTM 2 ResNet+TCN 3 Inception+LSTM Inception+TCN
Binary Accuracy 0.902 0.909 0.950 0.942

Precision 0.412 0.426 0.681 0.577
Recall 0.946 0.876 0.537 0.635
PRC 0.679 0.690 0.588 0.586

Table 2.1: Grooming results

ResNet+LSTM 2 ResNet+TCN 3 Inception+LSTM Inception+TCN
Binary Accuracy 0.897 0.902 0.887 0.912

Precision 0.518 0.535 0.415 0.592
Recall 0.797 0.748 0.104 0.596
PRC 0.702 0.691 0.201 0.602

Table 2.2: Mid Rearing results

ResNet+LSTM 2 ResNet+TCN 3 Inception+LSTM Inception+TCN
Binary Accuracy 0.918 0.914 0.840 0.888

Precision 0.671 0.667 0.433 0.569
Recall 0.785 0.737 0.570 0.739
PRC 0.792 0.770 0.411 0.716

Table 2.3: Wall Rearing results

After the analysis, X. de Juan concluded that ResNet LSTM seem to be the most suit-
able model. He stated that although both kind of networks, LSTM and TCN, showed
similar results, the LSTM one was chosen by its ability to minimise the number of false
positives, as appreciated by precision values.Regarding the pretrained models, the differ-
ence between results was also quite small favoring ResNet most of the times.

2.2 ResNet 50 7

2.2 ResNet 50

ResNet, which stands for Residual Network, is a kind of Convolutional Neural Net-
work (CNN) architecture first presented by Microsoft Research in 2015 on the paper "Deep
Residual Learning for Image Recognition" by K. He, X. Zhang et all [1]. ResNet architec-
tures are widely used in image classification, object detection, and segmentation tasks,
significantly improving accuracy in computer vision applications. They are applied in
many domains, like medical imaging, autonomous driving, and facial recognition due to
their ability to handle deep networks effectively. What differentiates ResNet from clas-
sical CNN, is their architecture features that addressed the vanishing gradient problem,
present in classical neural networks. On the following subsections we will explore what
the vanishing gradient problem is and how ResNet addresses it.

2.2.1 Vanishing Gradients

The Vanishing Gradient is a phenomena caused during models error backpropagation.
Backpropagation is the most common method used during model training. Its purpose
is to update the weights and biases of neurons in neural networks enough to make them
converge into good results. Converging into good results implicates minimizing the loss
function of the output. To do so, we calculate the gradient of the loss with respect the
output of the network. The algorithm then adjusts the output layer weights in regard this
gradient. This same procedure is applied iteratively to the previous layers, until reaching
the first one. We call this error propagation, where each layer regulated it’s weights regard
the gradient of the loss respect to that layer’s parameters. By repeating this process we
achieve the minimization of the error.

This methodology however presents a limitation, gradient can become extremely small
as it propagates from output layer to the earlier ones. This is what we call the Vanishing
Gradient problem. When this happens, adjusting parameters on the first layers becomes
very hard, consequently causing a major slow down of the model’s convergence into good
results. This problem is proportional to the deepness of our network. The more layers it
has, the more prone it is to develop vanishing gradients. Reason to this is the fact that
by measuring the gradient of the loss regard one layer, we are considering the impact
that layer has on the model’s output. It becomes obvious that last layers will be the more
relevant than the earlier ones. Therefore, the deeper our model becomes, the less impact
will the first neurons have on its output and the smaller the gradients will be, reaching
values very close to 0.

2.2.2 ResNet architecture

ResNet architectures confront this problem by adding what we call skip connections. A
skip connection, also known as residual connection, is a feature where the input of a layer
is added directly to the output of a deeper layer, bypassing one or more intermediate
layers. These intermediate layers could be convolutions, poolings, activations, etc. To
express this more formally, we can consider x as the input of a given layer in the network.
We define function F as the series of transformation x goes through the intermediate

8 Related Works

layers. In a classical CNN, the output after the intermediate layers would be F(x), instead
with a skip connection we would have that the output is F(x) + x. By doing this we
address vanishing gradients, since we are allowing gradients to flow more easily through
the network during backpropagation.

Figure 2.3: ResNet50 architecture’s schema, extracted from [6]

ResNet 50 builds itself around this methodology. On figure 2.3 we can find a graphic
representation of its architecture. It has up to 5 convolutional blocks, where the first one
is in charge of padding the input so it has an specific shape that can be later processed by
the following blocks. These following blocks follow a similar structure. They all start with
a skip connection block, where instead of adding to the output the identity function of the
input, as we have just explained, it performs a convolution to the input before adding it.
This block is then followed by a variable number of classical residual blocks, where we add
the identity of the input. In all cases the intermediate layers consist of to 3 convolutions
followed by pooling and normalization. We say the number of ’identity’ skip connections
is variable since it is different for each convolutional block, e.g the second block has only
1 identity connection, while the third has 3. ResNet50 takes it’s name from the number
of total layers it has, which is 50. Through Tensorflow we can access a pretrained version
of the architecture, with weights trained on ImageNet RGB images. As an output from
ResNet50 we obtain a feature vector in dimension R2048. On the following project we will
use it as a feature extractor for each video frame.

2.3 Long Short-Term Memory (LSTM)

2.3.1 Recurrent Neural Networks (RNN)

Long Short-Term Memory(LSTM) are a kind of Recurrent Neural Network(RNN).
What differentiates a RNN from a classical feed-forward neural network is the presence
of feedback connection. A feedback connection refers to the use of a hidden state from a
previous time step as an input to the current time step, as represented in Figure 2.4. This
mechanism allows the network to perform tasks that involve memory, since it allows the
flow of previous inputs. This feature enables RNN to process sequential data and cap-
ture dependencies between elements. For this reason, RNN are widely used in tasks that
involve temporal dependencies, such as video analysis.

RNN, however, present a major limitation when processing sequential data. They

2.3 Long Short-Term Memory (LSTM) 9

Figure 2.4: Simple RNN architecture, extracted from [10]

become ineffective when processing long sequences. Because of its mechanism, simple
RNN are only able to considerate dependencies between elements that are very close
from each other in the sequence. If the gap between 2 correlated elements is big enough,
RNN will become very ineffective.

2.3.2 LSTM architecture

Long Short-Term Memory emerged as a solution to RNN limitations. They were first
introduced by Sepp Hochreiter and Jürgen Schmidhuber on their paper Long Short-Term
Memory at 1997 [7]. LSTM consist of 1 memory unit made up of 4 fully connected feed-
forward neural networks, where each of them consist of one input and one output layer.
Three of them are responsible of selecting the information of previous time steps that
would be passed to the subsequent steps. They are called forget, input and output gates.
The fourth NN is the responsible of creating new information to be inserted in the unit’s
memory. It is called the candidate memory.

Figure 2.5: LSTM unit architecture, extracted from [8]

On Figure 2.5 we can see a graphical representation of an LSTM unit. As we can
appreciate, a unit takes 3 different inputs. Two of them come from the unit itself. On
the graphic we see them represented as the cell state, also called memory, Ct−1 and the

10 Related Works

hidden state Ht−1. Ct−1 is the vector responsible of maintaining the long-term memory.
Meanwhile, hidden state Ht−1 is the vector that contains short-term memory data. The
third input an LSTM receives is X, which is the new data received by the unit. Given
these 3 vectors the LSTM regulates, through the gates, the internal flow of information
and transforms the values of the cell state and the hidden state vectors so they can be
passed to the unit at the following time step, t + 1. Hidden state Ht−1 will be the output
of the LSTM unit at a certain time step t.

Knowing how information is passed, we can now understand the function each of the
4 internal neural networks have. We mentioned that we had up to 3 gates. The first to
be executed is the forget gate. Given the short-term memory vector, Ht−1, ad the input
vector X, the forget gate computes the relevance of long-short term memory elements.
This relevance is expressed through what we call a selector vector. This selector vector
would have the same shape as Ct−1 and all of its values would be inside the range [0,1].
An element with a value close to 0 means that its respective element in Ct−1 has no
longer relevance. That way, when Ct1 gets multiplied by the selector vector, only relevant
information will remain.

The second gate to work is the input gate, along with candidate memory network. They
are both in charge to add new information to long-term memory vector. Both networks
receive vectors Ht−1 and X as inputs. Candidate memory creates a candidate vector
with information candidate to be added to Ct−1. Input gate computes a selector vector
that would determinate which information of the candidate vector will have more or less
relevance. Its values would be in a range from 0 to 1. Both vectors will be multiplied, in a
way that elements with values closer to 0 on the selector vector will stay less relevant. The
result of the product will be added to vector Ct−1. This way, new information is added to
the long-term memory.

Last gate to operate is the output gate. As its names indicates, output gate is in charge
of generating the output of the LSTM unit, which is equivalent to the hidden state Ht. To
calculate it, output gate generates a selector vector after receiving Ct−1 and X as inputs.
The selector vector is then multiplied by a normalized cell state vector Ct−1. We normalize
Ct−1 so it’s values are in between the range [-1, 1], to do so we can use an activation
function like Tahn, as we can see in Figure 2.5. The result of the product will become the
output of the LSTM unit.

Through this mechanism, LSTM units are able to regulate the flow of information,
being capable of defining correlations between different elements in a sequence. Each
element of the sequence will be analysed at a certain instant of time t,. That way, the
previous sequence will be always considered, enabling us to take into account the time
factor of a video.

2.3.3 LSTM advantages and limitations

LSTM present some advantages regard RNN. Previously, we mentioned one: LSTM are
able to find dependencies between far distanced elements in a sequence, something that
RNN struggle doing. This is due to their mechanism of relevance regulation in long-term
memory, through selector vectors. Another major advantage LSTM present is the regu-
lation of the vanishing gradient problem. On section 2.2.1 we talked about the meaning,

2.3 Long Short-Term Memory (LSTM) 11

causes and implication of vanishing gradient. By they architecture, RNN have a bigger
tendency of having this issue. This would also limit the capacity RNN have on finding
element wise correlations. Meanwhile, we found out that through its control of the flow of
information on its gates, LSTM contrast vanishing gradients, as explained in [11], making
this problem much less probable.

However, LSTM present limitations as well. On 2016, Google Brain presented a study
[12] where it was found out than when training LSTM on data with log-term dependen-
cies, the models struggled to learn the task and generalize on new examples. This could be
explained by the fact that when deciding which information to keep or remove through
the forget gate, the gate would have access only to information from a few steps back,
through the Ht−1 vector. Another limitation presented by LSTM units it’s their comput-
ing time. Since information needs to be analyzed sequentially, LSTM architectures can be
much slower than other alternatives like Temporal Convolutional Networks or Transform-
ers.

2.3.4 Bidirectional LSTM (BI-LSTM)

Bidirectional LSTM, or BI-LSTM, were first presented at 2015 on the paper "Bidirectional
LSTM-CRF Models for Sequence Tagging" by Z. Huang, W. Xu and K. Yu [13]. They are
a variant of LSTM units. The main difference lies in the order in which the sequence
is analyzed. While understanding how LSTM works, we have seen that the inputted
sequence is processed forward. What this means is that given an element at position i,
not only the data at this position will be taken into account, but also the data in the i − 1
previous elements. This is possible due to the long short-term memory the LSTM unit
has, through its cell state and hidden states vectors.

On the other hand, BI-LSTM don’t only process sequence data in a forward way, but
also in a backward direction. This makes the model be able to capture past and future
context data and dependencies. The architecture consists of two LSTM layers, where one
will be responsible to process data in forward direction, and the other one will do it
backwards. Each layer maintains its own hidden states and memory cells, in other words,
they don’t share long short-term memory. They would process data simultaneously. To
combine both results, the hidden states, of both layers, at each time step will be combined.
One of them most common ways of doing this is by simply concatenating both hidden
states.

2.3.5 BI-LSTM advantages and limitations

The main advantage BI-LSTM present regarding LSTM, is that, by considering both
previous and following context, it can capture richer dependencies in the input sequence.
By doing this, the performance of classification improves. Specially in cases like ours,
behaviour analysis, where future frames can help determining previous ones that at first
could appear as ambiguous. However, BI-LSTM also present some cons regard LSTM.
Since instead of having one layer, it needs two, BI-LSTM have a higher computational
cost. They are often harder to interpret and can be seen as "black boxes". This becomes

12 Related Works

specially a problem on applications where interpretability becomes an important factor,
e.g medical diagnosis.

2.4 Temporal Convolutional Networks (TCN)

2.4.1 TCN architecture

Temporal Convolutional Networks or TCN are convolutional models capable of taking
into account temporal properties. They consist of dilated causal 1D convolutional layers,
where the input and output have the same length. They were first introduced as an
alternative to LSTM and RNN on sequence processing, by Colin Lea et all on their paper
"Temporal Convolutional Networks: A Unified Approach to Action Segmentation" at 2016 [16].

To understand how TCN works, we first need to understand what are dilated causal 1D
convolutional layers. To start with, we can define what 1D convolutional layers consist in.
1D convolutional layers take a 3 dimensional tensor as an input, where the first dimension
is the batch size and the second one is the length of the input sequence. Therefore, what
we are passing to the layer is a sequence of elements, elements that we will find in the
third dimension. It as well outputs a 3 dimensional tensor of the same sequence length.
Therefore, only the last and third dimension changes.

To process the input, one 1D convolutional layer looks at sub-series of consecutive
elements in the input. These sub-series have a given length n, which we will call the kernel
size. For instance, to obtain the output of one specific element, 1D layer takes the product
of the the n values around this element and a kernel vector of learned weights, which will
also have a length n. Then, to calculate the output of the following element in the input,
the kernel size sub-sequence would be shifted to the right as many times as the stride
determines. Usually the stride is 1. That way, we would be able to process all elements
i the sequence considering the other n values around them. One important characteristic
is that the kernel vector of learned weights won’t change among elements, it will always
remain the same.

In case our input has more than one channel on its last dimension, this exact same
process will be repeated for each individual channel, except the kernel vector will be
different for each of them. If the number of channels at the output is not the same as in
the input, we will combine the intermediate outputs to achieve the same number as in the
output. One common way to do this is by summing them up. Therefore, we call this type
of mechanism 1D convolution since the kernel window only moves along a single side,
which is the inputs length.

The second characteristic we said TCN layers had was causal convolutions. This char-
acteristic is what makes TCN able to consider time dependencies among elements. For a
convolutional layer to be causal means that the element i of the output will only depend
on the i − 1 previous elements and the same i element on the input. This way we ensure
that only previous state will be contemplated, making models capable of finding time
dependencies. Since the kernel size is static, we will need to pad as many zeros as needed
at the left of the input sequence. Therefore, by ensuring this characteristic we will be able
to find dependencies among elements following a time wise forward direction.

2.4 Temporal Convolutional Networks (TCN) 13

Dilation, which is the last characteristic, regulates the receptive field considered while
predicting one element’s output. We understand the receptive field as the set of entries of
the original input that affect a specific element of the output. As we have just seen, these
elements from the input will always be prior to the current output position. For instance,
given a kernel size of 3, when looking at the 5th element in the input sequence, its output
would depend on elements 3,4, and 5 of the input. As we can see in Figure 2.6 if we stack
multiple 1D layers we can wide the receptive field of one output element.

Figure 2.6: Stacked 1D causal layers, extracted from [17]

In fact, we can calculate the receptive field size r with the formula r = 1 + n ∗ (k − 1),
where n is the number of layers and k the kernel size. Given a fixed kernel size, the
amount layers required for a full coverage receptive field is linear to the length of the
input tensors. With long tensors, this would cause networks to be very deep. As seen
previously, this can lead to some struggles such as vanishing gradients. Models would
slow down its convergence in good results and it might even lead to memory problems.

A solution to this problem is dilation. By applying dilatation we can achieve a wide
coverage without having to have that many layers in our network. We understand dilation
as the distance between the elements of the input sequence that are used to compute one
element of the output. If dilation is 1, we would have that we take the adjacent elements
in the input to the output element placement. This was our case in Figure 2.6. A higher
dilation would give us a wider receptive field. In fact, we can calculate the length of our
receptive field given a dilatation d and a kernel size k as: 1 + d ∗ (k − 1).

However, if we had a fixed d, it will still be necessary to add numerous layers to achieve
a wide coverage. To solve that we can consider a variant d. The most common way to do
this is to increase it exponentially as we move through layers, as in Figure 2.7. We can then
consider a base b ∈ Z, which we will use to compute the dilation d at layer i as d = bi.

However, using this methodology can cause gaps. We understand gaps as those ele-
ments in the input that have not been considered when calculating the output. To avoid
this, we have to choose a kernel size k such that is bigger or equal to the dilation base b.
By knowing this we are able to calculate the minimum number of layers we would need to
achieve a full coverage. Therefore, by adding the right number of 1D dilates causal layers
we can create a TCN model that would be able to consider temporal dependencies among
elements in our sequences.

14 Related Works

Figure 2.7: Stacked 1D layers with exponential dilation, extracted from [17].
In grey, those elements added by the padding.

2.4.2 TCN advantages and limitations

TCN present some advantages regarding LSTM layers. As stated in Bai et all paper,
"An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Mod-
eling" [18], since they are fully convolutional models, they can be less resource expensive
than LSTM and can be easily parallelizable. Also, they don’t need to save memory vectors
as we saw in LSTM, so they have lower memory requirements. Because of this, TCN can
be faster to train and therefore converge faster into good results.

However, TCN also present some limitations. Different domains can have different
requirements on the amount of history the model needs in order to predict. Consequently,
transferring a model from a domain with minimal memory requirements (i.e., small k
and d) to one that necessitates much longer memory (i.e., significantly larger k and d) can
result in poor performance due to not having a sufficiently large receptive field. Another
limitation that might occur is that, despite the use of dilation, TCN might still struggle
with capturing non-local dependencies. Specially compared to some transformer-based
models, which are designed explicitly to handle long-range dependencies using attention
mechanisms.

2.5 Transformers

Transformers were first introduced in 2017 on Google Brain’s paper "Attention is all you
need" [19]. They emerged as a new neural network architecture that over-passed LSTM and
TCN performance in sequence processing. Originally, they were developed for Natural
Language Processing(NLP), but during the course of years they have also demonstrated
to achieve excellent results in domains like Computer Vision. What differentiates Trans-
former from LSTM or TCN is that their architecture is completely build from attention
mechanisms. On the following subsections we will first analyze what exactly is an atten-
tion mechanism. After that, we will dig in the Transformer architecture, its applications
and the advantages and limitations.

2.5 Transformers 15

2.5.1 Attention mechanisms

Attention mechanisms were first presented by Bahdanau D. et all in the paper "Neural
Machine Translation by Jointly Learning to Align and Translate" in 2014 [22]. The idea behind
it was to improve an encoder-decoder model performance on machine translation tasks.
To achieve this attention mechanisms allowed the decoder to only focus on what were
considered the most relevant elements in the data.

Attention mechanism took inspiration from human perception. Different studies in
the field of psychology and neuroscience [25, 26] define attention in human beings as a
complex cognitive function than allows us to selectively choose the information we want
to put a focus on. When receiving an stimuli from the external worlds, our brains don’t
process the whole information. Instead they learn to discard irrelevant data and only
focus on those parts that seem to be more useful.

In humans, we can distinguish between two types of attention, depending on its gener-
ation manner. The first one is called saliency-based attention. We say this kind of attention is
bottom-up unconscious, since it is driven by external stimuli. For instance, it is responsible
of making us more perceptible to hear loud voices when having a conversation. Although
it was not our intention, we ended up paying more attention to those stimuli because of
the task we were performing. The second attention type is what we call focus attention. We
refer to this as the top-down conscious attention, since it has a predetermined purpose
and relies on specific tasks. It enables us to focus on a certain object consciously and
actively, which will improve our performance on a task.

Focused attention is what most attention mechanism in deep learning have tried to
resemble. They aim to improve model performance by allowing the network to weigh
the importance of different input elements when performing a task like translation, video
classification and more complex sequences in natural language processing and computer
vision.

At the present time, there are many attention variants that adapt to specific tasks and
domains. Even though this, they follow a common schema. On this subsection we will
try to understand the basic components of an attention mechanism. For that, we will use
Figure 2.8 as a reference. In this schema we can see represented a self-attention mechanism,
which is the one used by transformers and shows us what the general architecture of the
mechanisms looks like.

Figure 2.8: Self-attention mechanism schema. Extracted from [27].

16 Related Works

Given an input X an attention mechanism will start by computing the attention dis-
tribution in its information. For that, attention mechanism first encodes X into a feature
vector k, called key. Key can be represented in different ways, depending on the task
(e.g. feature vectors representing an image sequence, embedded words, etc.). In Figure
2.8, k would correspond to the yellow matrix. It is usually necessary to introduce a task-
related representation vector q, which is refereed as the query. The query tends to be a
transformed version of the input. In our schema, we can see it represented in green.

Given the key vector k and the query vector q, the attention mechanism will compute
the correlation between them. It will do this through a score function f , obtaining as a
result what we call the energy scores e, such that: e = f (q, k). The energy scores represent
the importance of queries with respect to keys in deciding the model’s next output. In
the case of transformers, since they use self-attention mechanism, the score function is the
dot-product of k and q as represented on the schema.

Once we have the energy scores e we map them to attention weights α. We do this
through what we call the attention distribution function g, such that: α = g(e). The
attention distribution function can vary depending on the type of mechanism. In the case
of self-attention we use softmax function, which gives us a probability distribution, such
that α ∈ [0, 1].

After getting the attention weights we will it is often necessary to apply them into
a new data feature representation v, called value. Each element in v will correspond to
one element in k. In fact, in some mechanism both vectors are equal. Although in most
cases, as in self-attention, v will be a different representation of the input X. In fact, in
self-attention we have that x, qandv are all different representations of the same input X.
Once we have the values and attention weights, we combine them through a function ϕ

and obtain what we call the context vector c such that: c = ϕ(αi, vi). The most common
implementation of ϕ, also used in self-attention, is the weighted sum of v: c = ∑

len(v)
i=1 αivi.

Once c is calculated, this will be the output of our attention module, a transformation on
the input where only relevant information was preserved.

2.5.2 Transformers architecture

As mentioned previously, Transformers were first presented in the paper "Attention is
all you need" [22] as an alternative to RNN and TCN. They solely base their architecture in
self-attention, which leads to better quality predictions, are easily parallelizable and take
less time to process inputs.

Transformers follow an encoder-decoder architecture, as represented in Figure 2.9. The
encoder is responsible of mapping an input sequence (x1, x2, ..., xn) to a sequence of con-
tinuous representation z = (z1, z2, ..., zn). On the original paper, the encoder is composed
by a a stack of N = 6 identical layer. Each of them is composed by a multi-head self-
attention encoder and a simple position wise fully connected feed-forward network. In
both of them, we have a residual connection followed by a normalization layer. Something
to consider is that when receiving the input (x1, x2, ..., xn), this has been went through po-
sitional encoding. Positional encoding provides information about the position of each
element in the sequence, allowing the model to capture the order and structure of the
input data since the model itself lacks inherent sequential awareness.

2.5 Transformers 17

On the other hand, we have the decoder stack, which is as well composed by N = 6
identical layers. Each of them have the first 2 sub-layers as in the encoder, additionally
they add a third sub-layer which performs multi-head self-attention over the encoder
stack output on each corresponding layer. Each sub-layer has a skip connection followed
by a normalization layer. Additionally, the decoder can modify self-attention to prevent
positions from considering information from subsequent positions. This way, it get ensure
than an element i will only depend on the i − 1 previous elements, keeping the time
distribution.

Figure 2.9: Transformer architecture. At left, one encoder layer.
At right, one decoder layer. Extracted from [22].

We say transformer models have auto-regressive steps. This means that for each step
it consumes the previously generated symbols as additional input when generating the
next.

On the previous subsection we talked about self-attention, but did not mention multi-
head attention. Multi-head attention is a mechanism in transformer models where multi-
ple attention heads operate in parallel, each learning to focus on different parts of the input

18 Related Works

sequence. Instead of having a single set of attention weights, multi-head attention splits
the input into multiple subspaces and applies the attention mechanism independently to
each. The outputs from all heads are then concatenated and linearly transformed to pro-
duce the final result. This approach allows the model to capture various relationships
and patterns in the data more effectively than a single attention head could. By attending
to different parts of the input simultaneously, multi-head attention enhances the model’s
ability to understand complex dependencies and improves performance on tasks.

2.5.3 Transformers advantages and limitations

During transformers’ architecture explanation, we have been mentioning a few of
transformers advantages regarding other sequential processing models like LSTM and
TCN. Their self-attention mechanism allows them to capture long-range dependencies
and contextual relationships within the data more effectively than traditional models like
LSTM. Transformers also facilitate parallel processing of input sequences, speeding up
training and inference compared to sequential models. Additionally, their architecture
is highly flexible, allowing for easy adaptation and fine-tuning across a wide range of
applications and domains, which we saw was a limitation in TCN.

However, transformers also present a few disadvantages. They need a lot of compu-
tational power and memory, especially with longer sequences, making them expensive to
run. Transformers also can require a lot of of training data to achieve good performance
without leading to an early overfitting. While they are great at understanding long-range
relationships in data, they sometimes miss out on local details and may require extensive
hyperparameter tuning and regularization to prevent overfitting.

Chapter 3

The Data

As mentioned previously, this project collaborates with a neuroscience research group
at Hospital Clínic, which provided the dataset used. The project utilized the data previ-
ously used by X. de Juan in his Master’s thesis, as explained in Chapter 2. This dataset
consisted of 17 videos, each one being 11 minutes long. All videos featured a mouse
placed in an empty white box. All of them were recorded under the same conditions:
camera position, lighting, mouse color, etc. The frame rate for each video was 10 fps. For
now on, we would refer to them as videos from condition 1.

In addition to these initial videos, the research group provided us with seven more.
These new videos had different conditions compared to the older ones. Five of them were
recorded with the same camera placement and lighting. Although their duration varied,
they all had a frame rate of 30 fps. We will refer to them as videos from condition 2. The
other two videos, had identical recording settings between them, with a frame rate of 10
fps and a duration of 10 minutes each. These last group of records would be refereed as
videos from condition 3.

On Figure 3.1 we can see displayed 3 frames, one for each class of video. As it can
be appreciated, all 3 frames were taken under different recording settings. It is worth to
mention as well, that videos under conditions 2 had a different shape.

Frame extracted from
a video of condition 1

Frame extracted from a
video of condition 2

Frame extracted from
a video of condition 3

Figure 3.1: Frames extracted for each class of video

In addition to the videos, the research team provided us with the behaviour labels for
each frame. On chapter 2, we mentioned that on X. de Juan’s thesis, up to 3 behaviours
were considered. These were Grooming, Mid Rearing and Wall Rearing. We described

19

20 The Data

Grooming as the action that a mouse does while licking its fur, grooming with the fore-
paws or scratching with any limb. We also said that a rearing occurred when a mouse
puts its weight on its hind legs, raise its forelimbs from the ground and extends its head
upwards. On X. de Juan’s work, he differentiated between two types of rearing. One that
took place in the center of the box (Mid Rearing) and the other that was performed on
the box’s edges (Wall rearing). After discussing about it with the research team, it was
decided that for this project we would only consider a general Rearing behaviour. On
Figure 3.2 we can observe a representation for each of the considered behaviours, we have
also included what a neutral state look like.

Mouse on a neutral state Mouse Grooming Mouse Rearing

Figure 3.2: Mouse Behaviours

When talking about X. de Juan’s previous work, we mentioned that he also used data
extracted from DeepLabCut. DeepLabCut is a software with a computer vision package
for animal pose estimation. From this software, the researchers at the Hospital Clínic
team were able to extract, for each frame, the position of some parts of the mouse and
stored them in CSV files. In our case, we also had at our disposition the CSV files for
the old video set, the one used by Xavier. Unfortunately, that was not the case for the
newly provided videos. As a result, we discarded the old position files and developed our
own algorithm within the pipeline to automatically detect the mouse’s center position. In
Chapter 4, we will delve deeper into this process.

On the two following subsections, we will briefly explain a study that was performed
to understand better the insides of the provided data.

3.1 Data study on video conditions

While explaining the project’s data, we classified videos into 3 different categories,
depending on their recording conditions. We named them as videos in condition 1,2 or
3. A majority on a video condition would lead to a bad generalization of the models. We
have to keep in mind, that due to its final application in laboratories, the ideal case would
be to have models able to generalize to any camera conditions. Therefore, we want to
avoid a specialisation on the majority type of video. Because of this, we wanted to better
understand which was the proportion of each class inside the total number of frames that
we had in the whole dataset.

3.2 Data study on labels 21

To get an idea of how many frames we had for each condition class video, we plotted
a box plot on the total frame length for each class. On Figure 3.3 we can see displayed the
results for each condition type of video. We have to state that this box plots have been
taking after correcting all videos so they all share the same frames per second rate, 10fps.
On Chapter 3 we will explain this with more detail.

Figure 3.3: Box plots for each video condition class. Starting on the left, we first have the
box plot corresponding to condition 1, followed by condition 2. On the left, condition 3.

We as well calculated the total number of frames for each configuration, so we could
get an idea of the balance regard the total number of frames:

. Configuration 1 number of frames: 112200

. Configuration 2 number of frames: 20507

. Configuration 3 number of frames: 12000

From this, we can see clearly that Configuration 1 is the main configuration among all
frames. Its videos are the longest, having each of them 6600 frames. Not only that, but
since they are 17 out of the 24 videos we have, it becomes by far the most dominant among
the dataset. By its corresponding box plot, we can see that videos under Configuration 2
have different lengths, although they all have between 4000 and 4500 frames. They become
the second most dominant video type on the data set. Lastly, we have Configuration 3, that
although its videos having more frames individually than the ones under Configuration
2, since there are only 2 videos, become the least predominant kind. This study will be
considered later during the pipeline.

3.2 Data study on labels

After studying video configurations, we studied briefly behaviours. To start with, we
looked at how many frames in the total dataset corresponded to each of the considered
behaviours: Grooming and Rearing. On the following, we can find the number of frames
for each and the percentage they represented regarding the whole dataset:

. Grooming samples: Positive samples: 14886 (10.287%)

. Rearing samples: Positive samples: 29797 (20.5913%)

22 The Data

Total number of frames in the dataset: 144707

As we can see, neither Grooming or Rearing are dominant among the dataset. There-
fore, when training our models it would become important to set sample weights, to avoid
they only consider the most frequent class, that in both cases would be the neutral state,
with label 0.

We as well studied for how long each behaviour usually least. To consider it a be-
haviour sequence, we put the requirement that at least 5 consecutive frames should be
labeled as such. We calculated the mean length of each behaviour’s sequences, as well as
the maximum one. To understand better if most sequences lasted the same or there was a
considerable variance, we plotted the box plots at Figure 3.4.

Grooming Rearing
Mean Duration 102.5 frames 555 frames
Max Duration 22.4 frames 6 frames

Table 3.1: Sequences duration for both Grooming and Rearing

Figure 3.4: Box plots for each behaviour sequences lengths. At right, the one correspond-
ing to Grooming. At left, the Rearing one.

Based on the results, it is evident that Grooming sequences are significantly longer
than Rearing sequences. We can see by the box plot that most Grooming sequences take
between 50 and 150 frames. However we can also appreciate some outliers, where a few
sequences take more than 300 frames, being 555 frames the longest. On the other hand,
most Rearing sequences seem to least between 20 and a little bit less than 30 frames. On its
box plots we can appreciate many outliers. Most of them are between 30 and 100 frames.
This information would be used to choose suitable sequence lengths when splitting the
videos, as we would see on feature steps.

Chapter 4

Data preprocessing

On the following chapter we will explore the different methodologies and techniques
applied to preprocess our data. Some of them had a more experimental character and
eventually were discarded after model benchmarking. However, they would be briefly
explained on this chapter. On Chapter 7, the results of benchmarking would be analyzed
and conclusions regarding these preprocessing techniques would be drawn.

Our data preprocessing has its base on a frame extraction loop. Given the directory
with all our data, the videos with their corresponding CSV files, we iterate and process
each couple of them. The processing of the CSV remains quite simple. As previously
explained, all of them contain 2 or 3 columns with the behaviour labels. On old CSVs,
corresponding to the ones used by X. de Juan, we find 3 columns: one for Grooming and
2 for Rearing, since he considers mid and wall rearing. For that we unify the rearing
columns into a single one. We clean the CSVs, standardize the same column names for
each of them and make sure labels are expressed as 0 or 1.

In the case of videos, preprocessing becomes more complex. With the OpenCV library,
we iterate through each video by reading its frames separately. The idea is to process
the frames in a way we can treat them as images and save them individually, so later it
becomes easier to represent a video as a sequence of images. On the following sections
we will explore some of the techniques and methodologies applied to the frames while
reading them, before saving them as images. We will explore why they may become
beneficial to later stages of the pipeline and explain briefly how they were implemented.

4.1 Frames per second standardization

First thing we took into account when iterating through a video’s frames was to set a
standardized frames per second rate. As we mentioned on the previous chapter, videos
on our data set don’t have a consistent frames per second rate. While most of them have
a rate of 10fps, five videos, the ones under recording conditions 2, have 30fps. At first, we
didn’t take this into consideration, but after experimentation we realized it makes struggle
the models on generalizing. We understand the frames per second (fps) rate as a measure
of video quality. Essentially, what it represents is the quantity of photograms taken in a

23

24 Data preprocessing

time stamp of a second. We directly relate a higher fps rate with a higher video quality.
To understand why different frames per second ratios would cause a struggle on our

models, we can think about two identical videos, except that one would have a higher fps
rate. What we would find is that the sequence representing a behaviour, like for instance
Grooming, would take much more frames in the higher fps video rather than in the lower
one, eventhough in reality both actions had taken the same time. Since our classification
models only receive sequences of frames as inputs and they have no clue of the fps, they
would interpret that the behaviour in the video with higher fps has been longer in time
than the one on the low fps video. As we have seen on Chapter 3, behaviours tend to have
a unique length that sets them apart. For instance, Grooming actions take way longer
than Rearing. This information can become key when deciding which action is the mouse
performing. Therefore, it becomes important to maintain a constant frames per second
rate so the time factor can be properly considered by the models.

To achieve this, we have included on our data preprocessing pipeline an algorithm that
allows us to set a standard fps rate and adjust those videos which have a different one.
Since most of our videos in the dataset have a rate of 10 fps, we decided that to be the
standard. Also, because it is a low rate, it would also help us with memory consumption
when applying the pipeline in the clinical application for laboratory research.

The algorithm starts by checking the video fps rate, this can easily be done by the
OpenCV library. If it matches the default one, we simply iterate through each frame and
save it after the other procedures have been done. If it is not the case, we will iterate
each frame but only save certain ones, so the fps rate matches the standard one. To know
which frames to save and which to discard we will follow the algorithm proposed by the
pseudo-code in Algorithm one.

Algorithm 1 Frames per second standarization Algorithm

1: Input: A sequence of frames s with a fps rate f . A standard fps fstandard
2: function StandarizeFPS(s, f , fstandard)
3: if f = fstandard then
4: process and save each frame in s
5: else
6: Initialize z as the counter of last processed frame that follows fstandard rate
7: for frame in s at postion i do
8: calculate the correspondent frame in position j in a fstandard sequence
9: if position j > z then

10: process and save frame in s at position i
11: update z = j
12: else
13: skip frame in s at position i
14: delete from label’s CSV the row corresponding to frame in position i
15: end if
16: end for
17: Update label’s CSV so lines that correspond to discarded frames are delated
18: end if

4.2 Frame cropping 25

4.2 Frame cropping

At Chapter 2, we mentioned that on his work, X. de Juan cropped each frame in a
160x160x3 picture where the mouse was always positioned at the center. He did this
during video preprocessing, with the purpose of setting an standard frame size, saving
memory and only keeping relevant information. To do so, he used the CSV files provided
from DeepLabCut, where he had the coordinates of mouse’s center at each frame. For this
project, we have used the same strategy, the only difference is that we have no longer
used DeepLabCut’s data. Instead, we have developed our own automatic mouse position
detection algorithm, by applying computer vision techniques.

As we mentioned at Chapter 3, although we have the CSVs X. de Juan used for po-
sition extraction, we don’t have this data for the new provided videos. This motivated
us to develop the following automatic position detection algorithm. On application, this
also presented a major advantage. By doing this, we free professionals at the research
laboratory of having to previously process videos on DeepLabCut’s software. This saves
them time and makes the clinical application of the models free of other software’s de-
pendencies.

On the following subsection we will explore how the automatic mouse position detec-
tion algorithm works.

4.2.1 Automatic mouse position detection

The whole automatic mouse position detection algorithm has been build around the
computer vision tools provided by the library OpenCV. We can define the methodology
on the following steps:

1. First, we convert our RGB frame to gray scale.

2. We convert the gray scale frame to a binary image. To do so we set a threshold,
so any value higher or equal becomes 255 and, on the opposite, any value lower
to it becomes 0. We apply Otsu’s binarization method [15] to set the threshold
automatically. Through the histogram of the gray scale values on the frame, Otsu’s
method is able to determinate the most optimal threshold. By using this methodlogy,
we ensure that binarization is suitable for any lighting condition. We are sure that
after the procedure the figure of the mouse will still be visible, since all recorded
videos in the laboratory are done so there is a big contrast between the mouse and
the box where it is displayed.

3. Once the image is binary, we search for the box on the frame. In some cases, as in the
videos under condition 1, the box where the mouse is displayed occupies most of
the frame size. However, other times, as in videos under conditions 2, by the camera
placement, we have that box only represents a smaller percentage of the total frame.
This last situation often leads to have many different objects present on the edges
of the frame. This can led to mistakes when detecting the mouse’s position, since it
may detect an object instead. To avoid this situations, we first try to detect the box’s
shape and position. To do so, we would apply OpenCV library to detect those objects

26 Data preprocessing

that follow a rectangular shape. In all most every case, the box will correspond to
the biggest rectangular shaped object detected. We can then obtain its coordinates.
If the box represents most of the frame’s size, there won’t be any need of cropping
it. If that’s not the case, we would use the box coordinates to cut the frame around
it, so nothing can interfere when detecting mouse’s position.

4. Once the frame is centered on the box, through compute vision tools provided by
OpenCV, we look for contours inside it. This would give us the mouse’s silhouette.
Sometimes, other things can be detected as well, for example, the mouse’s faeces. To
ensure we are getting the mouse, we only consider the biggest detected object. We
also check that the detected silhouette is not situated very close to the frame’s edges,
since that would mean we are detecting an external object instead.

5. Having our mouse located, we create a bounding box around it. With the bounding
box vertices coordinates, we can calculate the center coordinate. This would give us
a grate approximation on where the mouse’s center is located. Therefore, we will
use this coordinates to crop the image around it.

4.3 Frame normalization

While processing frames, we also performed some value normalization. On X. d Juan’s
original project , originally frames were saved as RGB images after the cropping. On a
RGB image we have up to 3 channels(red, green and blue), were values can go from 0
to 255. Although we used this technique, we also created to alternatives data sets where
values were normalized.

For the first normalized data set, we reduced the values range to [0, 1], instead of
[0, 255]. To achieve this, we simply divided each frame by 255 which in all cases was the
maximum value the frame could reach. The idea of this procedure is to simplify later
calculations on machine learning models. By having a smaller value range, we speed up
calculation, which can help the models to converge faster into good results. On Chapter
7 we will explore the results on this dataset and see it it really supposed an improvement
regarding the standard RGB frames.

Another alternative we tried as well was working with binary images rather than RGB.
On the previous section, we saw that when finding the mouse position, we would first
convert frames to binary. To do so, we first passed the image to gray scale and then
applied Ostu’s threshold technique. What we have done then to generate a Binary dataset,
is a slight modification on the preprocessing code, where instead of applying the cropping
on the regular RGB frame, we applied it on the binary representation of the frame. We
would then save this binary cropped image, rather than the RGB one. To avoid noise, like
the one generated by the cables or faeces on the box, after cropping the binary frame, we
apply erosion. Erosion of a binary image is an operation that removes pixels on object
boundaries, shrinking the objects in the image. With that, we can make small objects
almost disappear. On Figure 4.1 we can see a the difference of one same frame expressed
in RGB values and in Binary.

4.4 Data Augmentation 27

RGB frame Binary frame

Figure 4.1: Comparison between a same frame, before and after applying binarization.

The main idea behind this modification of the original frame data set is to reduce
the variance on images produced by lighting and camera quality conditions. By doing
this, we ensure than every frame, no matter the conditions in which it was recorded, is
expressed with the exact same range of values. This might help models on generalization.
On Chapter 7 we would explore the results on both the RGB and the Binary datasets.

4.4 Data Augmentation

Finally, the last preprocessing technique we applied consisted on Data Augmentation.
Data augmentation is a technique used to increase the diversity and amount of data avail-
able for training machine learning models. It involves creating new training examples
by applying various transformations to the existing data, such as rotations, flips, transla-
tions, scaling, cropping, and adding noise. This helps improve the model’s generalization
ability, making it more robust to variations in real-world data.

To perform data augmentation we have made use of Keras’ ImageDataGenerator. Im-
ageDataGenerator is a utility within the Keras library, designed for real-time data aug-
mentation and preprocessing of images. By applying a range of transformations such
as rotations, shifts, flips, zooms, and brightness adjustments, ImageDataGenerator helps
create varied versions of existing images. In our case, we designed ours so given a video
it would process all its frames through the same random changes. The transformations
to be applied were brightness adjustment, zoom in or zoom out and aleatory horizontal
flipping. We did not wanted to include rotations since that could change the way the walls
of the box were orientated and, as far a we knew, they always tend to be parallel to the
frame edges.

Having our random ImageDataGenerator defined, we processed all the videos on our
dataset. We configured the script so transformations inside the same video would follow
the same configurations, but between videos were always different. By these we were able
to generate up to 24 new videos imitating different recording conditions. We included all
of them on our train set, so our data would be more varied.

28 Data preprocessing

4.5 Data Split

Once we had our data preprocessed and loaded, we proceeded to perform a split into
a train, a test and a validation set. To do so, we divided our videos into these 3 data sets.
We would like to note that we have adopted the following terminology:

1. Train set: data set used on training to adjusts model’s parameters

2. Test set: data set used on training on the Checkpoints to save model’s best perfor-
mance

3. Validation set : dataset never seen while training, with the purpose of performing
benchmarking between models

At first, we thought about creating a random distribution of the videos to generate the
splits. However, after experimenting with this idea, we realized it would give us a wrong
perception of the models’ abilities to generalize. Since in all sets had a majority of videos
recorded under conditions of type 1, as seen in Chapter 3, we found that models tended
to overfit these conditions, and the validation set metrics did not properly represent the
other video types. For that reason, in the end, we opted for a custom-made dataset split.
We then followed this strategy:

Videos recorded under conditions of type 3 had the fewest frames. In fact, we only
had 2 available videos of this kind. For this reason, we decided to put one of them in the
validation set and the other in the training set. With this, we wanted to judge our models’
ability to generalize to videos recorded under conditions not considered during training.
With this approach we wanted to reassemble a real use case, since in the laboratory video
always tend to be recorded under different camera placements and lighting conditions.

Videos recorded under conditions of type 2 were the second category with the fewest
frames. Since there were only 5 videos of this kind, we decided to save the shortest one
for validation, the second shortest for testing, and the rest for training. In other words, the
longest videos were in the training set. Lastly, videos recorded under conditions of type
1 were the most common, with up to 17 videos in the set. We saved one of them for the
validation set. For the rest, we performed a random 70-30 split for the training and test
sets. This meant that 70% of them went to training, while the other 30% went to the test
set.

With this approach we wanted to make the datasets as balanced as possible, making
sure that we would have an equal representation of all 3 conditions on the validation
metrics.

Chapter 5

Feature extraction

On chapter 2, we mentioned that X. de Juan processed frames through pretrained
Convolutional Neural Networks. That way he could be express each of them as feature
vectors. Later on, those feature vectors would be grouped in sequences and would serve
as input’s for the sequence classification models. The idea behind that was to keep only
relevant information of the frames in a more concise way, so it becomes easier and more
effective to generate the sequences. By processing frames through pretrained models we
are also making sure we are only keeping relevant data, since through the convolutions
and pooling system the pretrained models discard any irrelevant information on the image
and encode low-level features present in the video. On this project, we have followed the
same approach.

On his thesis, X. de Juan tested 2 pretrained models: ResNet50 and InceptionResNet
V2. After experimenting with both, he saw that ResNet50 gave the best classification
results. For that reason, we have chose to use ResNet50 as the feature extractor of this
project. We have used the pretrained architecture available on Tensorflow library, with the
weights trained on Imagenet datasets. ImageNet is a large-scale visual database designed
for use in visual object recognition software. It contains millions of labeled images across
thousands of object categories.

Figure 5.1: ResNet50 architecture’s schema, extracted from [6]

At Figure 5.1, we have a graphical representation of ResNet50’s architecture. As we
mentioned during Chapter 2, ResNet50 counts with different convolutional blocks. On X.

29

30 Feature extraction

de Juan’s thesis, he used all them, obtaining for each frame a feature vector representation
of 2048 elements. For the complexity and size of our processed frames, that number
of features seemed to be too big. In fact, it is quite probable that the majority of them
contained irrelevant data for the classification task. A smaller feature vector would ease
classification models training and would also reduce the quantity of memory required for
processing any video. For this reason, we decided to simplify the feature vectors. For
that, we analysed the architecture of ResNet50 and decided that instead of using the full
architecture, that was giving us vectors in dimension R2048, we were going to cut the
model to an earlier layer, where the extracted feature vector was in dimension R512.

To corroborate that by doing this we were not losing any information that was crucial to
determinate classification, we performed an experiment where the exact same architecture
was trained on the same conditions 2 times. The first time, the model was trained on
a dataset conformed by R2048 feature vectors and the second time the vectors were in
dimension R512. On Chapter 7 we will display and analyse the results.

Chapter 6

Sequence classification modules

In this chapter, we will explore the architectures we have developed and used for se-
quence classification. In Chapter 2, we discussed the strategy followed by X. de Juan,
where he performed video frame classification based on LSTM and TCN models. He built
up to two models, one for each approach, capable of taking into consideration tempo-
ral dependencies between elements. On video classification, capturing high-level tempo-
ral information becomes crucial. As we saw during our data exploration on Chapter 3,
behaviours tend to appear on relatively long sequences. Knowing data about previous
or even subsequent elements, can give crucial information when distinguishing between
classes.

On his work X. de Juan prepared the data to be analyzed by the sequence classification
architectures. As we have seen on the previous chapter, he represented a video as a
succession of feature vectors, where each of them encoded data from a frame. Since
videos tend to have a large number of frames, he divided them into feature vector sub-
sequences. This sub-sequences were the inputs for the classification models. Each of them
was processed by the models. After predicting each subgroup, he combined the results to
obtain the final total video classification at frame level.

For this project, we have adopted a similar approach as the one on X. de Juanâs on his
previous work. However, having the new data that Hospital Clínc gave us, we wanted
to extend his methodology and develop model’s that were capable to generalize different
recording conditions. For that we have experimented with sequence prediction architec-
tures built around four different approaches: LSTM layers, BI-LSTM layers, TCN layers,
and Transformers.

In the following sections, we will explore the nature of each of these models, how they
were adapted to our pipeline, and examine their main differences. Before this, although,
we will briefly talk about the tool that has been used enough to determinate most of the
architectures.

On Chapter 2 we mentioned that X. de Juan performed Grid Search enough to de-
terminate the models he used. Grid Search is a hyperparameter optimization technique
that systematically evaluates a specified range of hyperparameters for a machine learning
model. The goal is to identify the combination that gives the best performance. It involves
exhaustively searching through a manually specified subset of the hyperparameter space

31

32 Sequence classification modules

of the learning algorithm. On his work, X. de Juan specified hyperparameters such as the
number of LSTM or TCN layers, the size of the sub-sequences, etc.

To determinate our architectures, we decided to apply a similar approach. We devel-
oped as well a hyperparameter space where we could find specifications of our models,
such as the number of layers, the size of sequences and batches, etc. Each subspace was
adapted to its corresponding model and its requirements. We will explore this deeper
on the following sections. However, the main difference regarding X. de Juan approach
has been that instead of implementing Grid Search, we have applied Bayesian Optimization.
Bayesian Optimization is an alternative hyperparameter optimization technique. The main
difference regarding Grid Search is that instead of exhaustively evaluating each parame-
ter combination, it iterates through a fewer number of possibilities. Through probability
theory, it is available to determinate the combinations that most probably will improve the
performance, based on the results on previous iterations. This way we can ensure we will
converge into good results without having to search through all options, which can be a
costly and very time and resource consuming task.

To perform Bayesian Optimization and store its result we have used the tool Weights
and Biases. Weights and Biases is a machine learning platform that provides tools for
experiment tracking, model visualization, and hyperparameter tuning. It helps to keep
track of experiments and visualize performance metrics in real-time. Through this tool
we have been able to store all the tried hyperparameter combinations and the metrics
results they gave. We have also been able choose the ones that boost up any desired
metric. At the annex of this document you can find attached the tables with the parameter
combinations for each architecture that gave the best PRC (Precision-Recall Curve) with
their corresponding metrics. This results were used to define the final architectures of our
models.

6.1 LSTM

The first architecture we developed and tried is fully based on LSTM layers. We fol-
lowed X. de Juan’s proposed architecture. At Figure 6.1 we can see an schema of the LSTM
based model. On the schema we can appreciate the different layers of the model, as well as
some of the parameters that would be determined through Bayesian Optimization. First
we find the input of size (b, s, f), where b stands for the batch size, s for the sequence
length and f for the number of channels on the feature vectors (2048 or 512). Firstly, the
input goes through a Dropout layer that aims to avoid overfitting on the network. After
taht, it goes through the first LSTM layer. As we can see on the schema, it is said to be
a number N of LSTM layers. This is because the number of stacked LSTM layers is also
a parameter we would include on our hyperparameter tuning. We also included on the
hyperparameters the number of LSTM units each layer would have. Each time, we would
reduce to half the number of units, this would cause a reduction of third dimension. This
third dimension will be the one carrying out the probabilities in the output. To convert the
last LSTM layer output into probabilities we will apply to each element in the sequence a
Dense layer with sigmoid as the activation function. To be able to apply the Dense layer
to each element separetly we will use Keras’ TimeDistributed layer.

6.2 BI-LSTM 33

Figure 6.1: LSTM based classifier schema

6.2 BI-LSTM

After testing the LSTM based architecture we addapted it to become a Bidirectional
LSTM model. Essentially, the only remarcable changes were done on the LSTM layer
stack, where through Keras’ layer Bidirectional, we converted LSTM to BI-LSTM layers.
The rest of the architecture remained the same, as well as the parameters tested during
Bayesian Optimization.

6.3 TCN

Due to its advantages in computational requirements compared to LSTM layers, we
also decided to test a TCN-based architecture. This architecture closely resembled the one
developed for the LSTM-based model, with the only difference being the replacement of
the LSTM stack with a TCN stack. Since TCNs have a completely different architecture
from LSTM, we slightly changed the parameters on Bayesian Optimization. We removed
the number of units calculated for LSTM and introduced the number of filters and the
kernel size the convolutions on TCN will use. The rest of parameters remained the same,
included N that, in this case, would give us the number of TCN layers the architecture
will have.

6.4 Transformers

The transformer based classification model is the one that differs the most from the
other architectures. We defined our transformer classifier based on the work realized by
Pual Sayak on his article "Video Classification with Trasformers" [21]. On his article, Sayak
elaborates a transformer based architecture for video classification. We took it as a base
and adapted it to video classification at frame level.

34 Sequence classification modules

On Figure 6.2 we can see a graphic representation of our Transformer based classifier.
The model recives an input (b, s, f), where again b stands for the batch size, s for the
sequence length and f for the number of channels on the feature vectors (2048 or 512).
This inputs goes through a positional embedding. This becomes primordial since this
embedding will make our transformer block aware of temporal order. Once all elements
in the sub-sequences are embedded, they go through a Transformer Encoder block. To
define this block we will have to specify as a parameter number of heads we want in
our multi-head self-attention layers. The output of the transformer block goes through a
Dropout layer, so we reduce the possibilities of overfitting. Finally, to convert our features
into probabilities, we apply a Dense layer with sigmoid activation to each element through
the TimeDistributed layer. As an output, we obtain the probability for each element in the
sub-sequences to be one behaviour. It is worth to say, that due to transformers having a
grater number of parameters than a usual neural network, performing hyper-parameter
tuning was not possible, since it required too many memory and computing capacities.

Figure 6.2: Transformer based classifier schema

Chapter 7

Experiments

On the following chapter we will discuss about the results obtained on benchmarking
the different approaches presented during Chapters 4, 5 and 6. Before that we would first
like to clarify the methodologies we have followed enough to state if the performance of a
model is good. Therefore, the first section of this chapter will focus on explaining all the
implemented evaluation metrics. After that, we will evaluate the different variations on
the pipeline presented by previous chapters.

7.1 Evaluation methodology and metrics

As we stated on previous chapters, enough to compare models performances we have
made use of a validation set. This validation set is conformed by 3 videos, each one of
them representing a different video recording condition. One of the main objectives on
this project has been to develop models that would generalize among different recording
settings, so they could be applicable to real use cases in research laboratories. Therefore,
what would determinate the great performance of a model will be its ability to achieve
good results for each of the 3 recording conditions represented in the validation set.

Enough to measure the model performances, we have defined a set of evaluation met-
rics that would serve us as indicators. In the following subsections we will dig in the
meaning and interpretability of each of them.

7.1.1 Binary accuracy

In classification tasks, accuracy measures the percentage of predictions that were cor-
rect regarding the true labels. To obtain it we simply divide the number of correct predic-
tions by the total number, such like:

Attention =
#correctpredictions

#predictions
(7.1)

On binary classification, where labels are either 0 or 1, we have binary attention. Given
the prediction probabilities, binary attention considers any value equal or superior to a

35

36 Experiments

given threshold as 1, else the value will be evaluated as a 0. This threshold is usually set
at 0.5, but can vary depending on the preferences.

However, accuracy only results useful when the data has an equal distribution of
classes. If one class is significantly more frequent than the other, a model can achieve
high accuracy by simply predicting the majority class all the time, without actually learn-
ing to distinguish between the classes. For that reason, we will consider other metrics that
will give us a grater comprehension on the models performances. Although this, we will
maintain accuracy, as it provides a simple baseline and context for model performance

7.1.2 Precision

Precision focuses on the proportion of true positive predictions among all positive
predictions. It is calculated as the number of true predicted positives divided by the
number of positive predictions:

Precision =
TP

TP + FP
(7.2)

Where TP equals to True Positives and FP to False Positive.
We can interpret precision as the number of instances predicted as positive that are

actually positive. Its value will always be between 0 and 1. Being 0 the worse case, where
no true positives have been predicted, and 1 the best case, where the model has no false
positives.

On binary classification we can apply a threshold to precision, as we did with accuracy.
Given this threshold, precision would interpret as 1 those values in the prediction that are
greater or equal to it and as 0 those which are lower.

7.1.3 Recall

Recall evaluates the proportion of true positive predictions among all the ground true
positives. We calculate it as the following way:

Precision =
TP

TP + FN
(7.3)

Where TP equals to True Positives and FN to False Negativves.
We can interpret recall as the measure on how well the model identifies all positive

instances in the dataset. The minimum value its can reach is 0, meaning none true posi-
tives were predicted at all, and the maximum value is 1, meaning all real positives were
properly labelled by the model. We can apply a threshold in Recall as well.

7.1.4 Precision-Recall Curve (PRC)

The precision-recall trade-off refers to the inverse relationship between precision and
recall in classification models: as you increase precision by being more conservative in
predicting positives (reducing false positives), recall often decreases because more true
positives are missed, and vice versa. Balancing this trade-off is essential for optimizing

7.2 Adaptation of the previous approach 37

model performance, especially in applications where the costs of false positives and false
negatives differ significantly. Specially in cases where classes are very imbalanced, the
trade off between precision and recall measures the success of of a prediction.

The precision-recall curve (PRC) illustrates the trade-off between precision and recall
across various thresholds. A larger area under the curve signifies both high recall and high
precision, where high precision indicates a low false positive rate, and high recall indicates
a low false negative rate. Achieving high scores in both metrics demonstrates that the
classifier is accurately identifying relevant instances (high precision) and capturing the
majority of positive instances (high recall).

A system with high recall but low precision produces many results, though most of its
predicted labels are incorrect compared to the true labels. Conversely, a system with high
precision but low recall returns few results, but most of its predicted labels are correct. An
optimal system with both high precision and high recall will yield many correct results,
accurately labeling all instances. The precision-recall curve allows us to determinate if our
predictions are laying in any of this cases and therefore determine how good these models
are.

On this project we will also work with the Area Under the Precision-Recall curve(PRC-
AUC) metric. This metric summarizes the trade off between precision and recall across
different thresholds into a single value. A higher PRC-AUC indicates better model per-
formance.

7.1.5 Confusion Matrix

Given binary classification, a confusion matrix is nothing more than a matrix that con-
tains the true negatives(TN), false positives(FP), false negatives(FN) and true positives(TP)
of a prediction given its label. Each row in the matrix would represents the true and false
predictions for a class. By applying this matrix on a visual heat map, as we will see on
the following sections, we will get an easy to look graphic representation of how good or
not the predictions of a model is.

7.2 Adaptation of the previous approach

The first experiment we conducted aimed to replicate the best model obtained by X.
de Juan’s previous work. After experimentation, X. de Juan stated that the best method
for feature extraction was using the pretrained ResNet50 architecture, giving vectors of
dimension R2048. He also found that LSTM layer based classifier would suit the best our
objective. Here we applied the same approach and tested a LSTM based classifier on
sub-sequences of ResNet50’s feature vectors.

The idea behind recreating his model was to have a reference point where we could
develop other approaches around. One of the main objectives in this project is to improve
the previous work and adapt it to the new data. With this, what we wanted to do in
this experiment was to evaluate how would the previous best approach adapt to the new
conditions.

38 Experiments

X. de Juan defined his LSTM classifier architecture based on the results of Grid Search
based hyper-parameter tuning. Some of the parameters he tested during this process
were the number of LSTM layers or the units each layer would have. In our case, since
we counted with a different dataset and different computing conditions, we decided to
redo the hyper parameter tuning on our PC through Bayesian optimization. This way, we
would be able to adapt X. de Juan approach to the current conditions. On the annex of
this project you will be able to find the results after hyper-parameter tuning.

Once we defined our classifier based on the results of Bayesian optimization, we
trained a model for each behaviour during 50 epochs. On the following tables, Table 7.1
and Table 7.2, we have displayed the prediction metrics results for Grooming and Rearing
on the validation set. To compute them, we have set a neutral threshold at 0.5.

Condition 1 column represents the results for the video in the validation set recorded
under the most dominant recording setting, which corresponded to old videos. Conditions
2 column corresponds to the video on the second most dominant recording conditions.
Finally, Conditions 3 column corresponds to the video recorded under the camera setting
with less frames in the total dataset. If we remember from the data split, this last group
had no representation on the train set.

Condition 1 video Condition 2 video Condition 3 video
Binary Accuracy 0.933 0.971 0.972

Precision 0.868 0.0 0.929
Recall 0.79 0.0 0.559

PRC-AUC 0.901 0.744 0.807

Table 7.1: Grooming results on LSTM based architecture
with feature vectors ∈ R2048

Condition 1 video Condition 2 video Condition 3 video
Binary Accuracy 0.889 0.909 0.987

Precision 0.68 0.343 0.705
Recall 0.624 0.952 0.581

PRC-AUC 0.738 0.791 0.67

Table 7.2: Rearing results on LSTM based architecture
with feature vectors ∈ R2048

By looking at the results, we can see that Grooming’s model performance was specially
good at the video under recording condition 1. Since this video corresponds to the major-
ity type in both train and test set, it makes sense that such good results were achieved. We
can see that both Recall and Precision are quite similar, meaning we have a great balance
between false positives and false negatives.

However, results for conditions 2 and 3 are not as good As we remember, condition
2 has up to three videos on the training set. Even though this, it seems they were not
enough for the model to adapt to them. As we can see on the results, both precision
and recall are 0. This means that no positive frames were predicted with a probability

7.2 Adaptation of the previous approach 39

over 0.5. Although this, if we look at the PRC-AUC is quite high, being at 0.791. The
precision-recall curve in Figure 7.1 explains this. It seems that on very small thresholds,
the precision-recall trade off is quite high. Although that, such small thresholds cannot
be considered, since we need to find a value that is equally applicable to all recording
conditions. In fact, having such small values can be caused by a lack of generalization.
What is probably happening is that the model is overfitting on videos under recording
condition type 1.

If we look at the results of the video under condition 3, we can see that they were not
as bad as in condition 2. This could be explained by the fact that recording conditions
of type 3 are more similar to conditions of type 1. However, we still have a low recall,
meaning that most of the real positive frames are not being predicted. In fact, if we again
look at Figure 7.1, we can appreciate that the PRC only reaches high values on very low
thresholds, which again demonstrates us that the model is not genralizing enough.

Condition 1 video Condition 2 video Condition 3 video

Figure 7.1: Grooming Precission-Recall curve for each video in the dataset

Condition 1 video Condition 2 video Condition 3 video

Figure 7.2: Grooming confusion matrix for each video in the dataset (threshold set at 0.5)

In regard results for Rearing, we can see a similar pattern. Video under conditions 1
holds the most balanced Precision-Recall rates. Although in this case, they have lower val-
ues. This could be due to hyper-parameter tuning performed around grooming metrics.
Video under conditions 2 have a very low precision while having very high recall. We

40 Experiments

understand from this that the model has classified very few frames as positive, but from
those few almost all of the, where correct. Again this is very dis-balanced and shows us a
poor performance of the model on minority video settings. Finally, if we look at the video
in condition 3, results seem to be decent. Still all metrics remain very low.

Condition 1 video Condition 2 video Condition 3 video

Figure 7.3: Rearing Precission-Recall curve for each video in the dataset

Condition 1 video Condition 2 video Condition 3 video

Figure 7.4: Rearing confusion matrix for each video in the dataset (threshold set at 0.5)

What we can conclude from this first experiment is that even though the previous
approach gives good results for videos under conditions 1, it does not do well on adapting
to different recording settings. This gives us room for improvement.

7.3 Feature vector dimensionality

On Chapter 5 we talked about reducing feature vectors dimensionality. We proposed
using an earlier layer in ResNet 50 that would give us vectors in dimension R512, instead
of R2048. The principal advantages of doing this are memory requirements reduction. By
saving less data to represent each frame we avoid memory problems during training and,
specially, on real use case where researchers would be using the models on PC of variable
computing capacities. Not only that, but by having less data we would also speed up the
training and prediction speed of models. The only risk this approach presents is that, by

7.4 Data normalization and augmentation 41

reducing features this much, we end up loosing crucial information for the classification
task.

The second experiment we conducted had the purpose of demonstrating if reducing
data dimensionality was worthy or supposed a huge loss of information. For that, we
applied the same strategy as in experiment 1. We trained two LSTM based classifiers, one
for each behaviour, during 50 epochs. Since the data changed, we performed a new hyper-
parameter tuning through Bayesian Optimization, to determinate our models architecture
and fixed parameters. On the following tables, Table 7.3 and Table 7.4, we can find the
obtained results.

Condition 1 video Condition 2 video Condition 3 video
Binary Accuracy 0.932 0.981 0.944

Precision 0.911 0.909 0.0
Recall 0.736 0.357 0.0

PRC-AUC 0.902 0.789 0.202

Table 7.3: Grooming results on LSTM based architecture
with feature vectors ∈ R512

Condition 1 video Condition 2 video Condition 3 video
Binary Accuracy 0.889 0.976 0.5823

Precision 0.716 0.4 0.252
Recall 0.559 0.541 0.9

PRC-AUC 0.678 0.563 0.6

Table 7.4: Rearing results on LSTM based architecture
with feature vectors ∈ R512

If we compare the resulting metrics, there isn’t much differences between the patterns
we found on the previous experiment while using vectors of 2048 features. Again per-
formance on video under conditions 1 is good, in fact values between both experiments
are quite similar. But if we look at results for videos under conditions 2 and 3, once
again we see a poor performance. We either see very distinct precision and recall values,
very low metrics or even zeros. Therefore, we can state that changing the feature vectors
dimensionality from 2048 to 512 does not imply a worse performance.

Something to remark as well is that, while in the previous model training one epoch
took around 45 seconds, with this approach on average an epoch lasted only 4 seconds.
This made the training process much faster and less computational consuming. For these
reasons, we ended up choosing frame representation through 512 features rather than
2048.

7.4 Data normalization and augmentation

What we have seen through experiments 1 and 2 is that the LSTM based classifier
performs bad on data generalization. Instead, it only learns how to properly predict

42 Experiments

frames on videos under recording condition 1. The reason tho this is most probably the
quality and diversity of the data given while training. The amount of frames in both,
train and test sets, that belong to condition 1 is huge in respect with the other filming
settings. Therefore, it is normal that our models tend to specialize only in this kind
of videos. To avoid this situation we performed experiment 3, where we implemented
and benchmarked the different preprocessing techniques proposed during Chapter 4 to
standardize values along data so models would generalize them.

7.4.1 Maximum value normalization

The first approach we tested was the one proposed during data preprocessing, where
we said to reduce the range of values in each frame from [0,255] to [0,1]. The maximum
value a RGB image can reach is 255, however in some occasions reducing this range to a
smaller scale can give some benefits. A smaller range implies smaller calculations, which
means less computing complexity, specially on deep learning layers where dot products
of large values can result into very large quantities. Easier calculations can lead models to
converge into good results faster.

One common technique to reduce an RGB scale is simply dividing its values by 255.
This way, we ensure each value on the image will be between 0 and 1, while we pre-
serve the distribution. We first applied this technique to each frame before going through
ResNet50. However, once we tested the dataset on the classifier architecture it gave horri-
ble results. We associated this to the encoding ResNet50 did. Since ResNet50 is trained on
ImageNet datasets, which have images on the current RGB range, it is not used to handle
data with lower ranges.

We then tried to implement normalization after ResNet 50 encoding. What we did was
to normalize each feature vector by its maximum value before going through the LSTM
based classifier. After training each model for 50 epochs, we obtained the results on Table
7.5 and Table 7.6.

Condition 1 video Condition 2 video Condition 3 video
Binary Accuracy 0.931 0.971 0.944

Precision 0.919 0.0 0.0
Recall 0.722 0.0 0.0

PRC-AUC 0.885 0.487 0.189

Table 7.5: Grooming results on LSTM based architecture
with normalized feature vectors ∈ R512

As seen by the metrics, this technique did not work. All metrics remained having
the same pattern, they even got worse values. A reason to this might have been that
by reducing values to such a small range, during operations most of them may have
tended to 0, causing by that a loss of information. Therefore, we ended up discarding this
methodology.

7.4 Data normalization and augmentation 43

Condition 1 video Condition 2 video Condition 3 video
Binary Accuracy 0.892 0.98 0.75

Precision 0.813 0.3 0.347
Recall 0.468 0.04 0.749

PRC-AUC 0.7 0.123 0.643

Table 7.6: Rearing results on LSTM based architecture
with normalized feature vectors ∈ R512

7.4.2 Binary normalization

A second approach proposed during Chapter 3 was to convert images from RGB to
Binary. The intention behind this was to reduce the impact of lighting on frame variance
among different recording conditions. A binary image only has two possible values: 0
and 255. As seen during image preprocessing, we edit every frame so mice silhouettes
would be zeros and the background would be 255. With that we created an alternative
dataset that was later processed by ResNet50 to encode it into feature vectors. After that,
we followed the usual procedure of training for 50 epochs each model. On Table 7.7 and
Table 7.8 we can find the obtained metrics for the validation set.

Condition 1 video Condition 2 video Condition 3 video
Binary Accuracy 0.919 0.982 0.967

Precision 0.743 1.0 0.658
Recall 0.912 0.357 0.859

PRC-AUC 0.921 0.887 0.891

Table 7.7: Grooming results on LSTM based architecture
with binary feature vectors ∈ R512

Condition 1 video Condition 2 video Condition 3 video
Binary Accuracy 0.818 0.956 0.553

Precision 0.466 0.15 0.2445
Recall 0.588 0.284 0.94

PRC-AUC 0.582 0.14 0.752

Table 7.8: Rearing results on LSTM based architecture
with binary feature vectors ∈ R512

By the obtained results, we can observe that this approach has improved the perfor-
mance of Grooming on video under condition 3. However, results of Grooming on video
under conditions 2 remain equally bad. Results on Rearing are not better neither. From
this we extract the conclusion that regularizing color values caused by lightning conditions
is not enough. In fact, as we can appreciate in Figure 7.5, there are more factors involved
like the size of the mouse. Depending on the camera position, this would change. This ap-
proach then is not enough to reduce variance among data and boost up the generalization

44 Experiments

of models.

Figure 7.5: Comparission between cropped frames and original frames. On top a frame
from a video under condition 2. Bellow, a frame from a video of condition 1.

7.4.3 Data augmentation

Dragged by conclusions on last experiment, we opted for performing data augmenta-
tion on our data set. That way, we would have enough data to cover more camera position
and lighting states. As explained in Chapter 3, we implemented a Keras’ ImageData-
Generator that given a video, would randomly change the brightness, zoom range and
orientation of all of its frames. Applying this technique to all of our videos, we were able
to obtain 24 new videos under totally random settings. We added them to our train set
and trained our LSTM based classifiers for 50 epochs. Results on the validation set are
displayed on tables Table 7.9 and Table 7.10.

Condition 1 video Condition 2 video Condition 3 video
Binary Accuracy 0.957 0.983 0.971

Precision 0.882 0.912 0.913
Recall 0.908 0.464 0.537

PRC-AUC 0.96 0.889 0.695

Table 7.9: Grooming results on LSTM based architecture
with feature vectors ∈ R512 after data augmentation

As we can appreciate on the results, all conditions have achieved around a 90% pre-
cision on Grooming, which means almost no false positives were detected in non of the
video types. This supposes a major advance regarding our previous metrics. Recall is
neither bad, although it has room for improvement. Both videos, the one under recording
conditions 2 and the one on conditions 3, have recall values close to 50%. We can under-
stand this as at least half of the positive frames have been properly predicted. Rearing
results have also improved in regard our previous results on the LSTM based classifier.

7.5 Sequence classification module 45

Condition 1 video Condition 2 video Condition 3 video
Binary Accuracy 0.885 0.986 0.858

Precision 0.647 0.602 0.518
Recall 0.687 0.78 0.869

PRC-AUC 0.762 0.829 0.785

Table 7.10: Rearing results on LSTM based architecture
with binary feature vectors ∈ R512 after data augmentation

Precision and recall are quite similar among all conditions. Although values can be higher,
this supposes a major improvement. We can then state that data augmentation has en-
abled the model to generalize more among video recording conditions. Therefore, this
step would be included on our finale pipeline.

7.5 Sequence classification module

The last stage of our experiments consisted on testing which sequence processing ap-
proach suited best our problems. As explained during Chapter 6 we have developed up
to 4 different sequence classification architectures. The first of them was the LSTM based
one, which we have been seeing during previous experiments. The other three are based
in BI-LSTM, TCN and Transformers. The purpose of the following last experiment was to
determinate which of the 4 architectures would suit best our problem. We trained all of
them with our augmented dataset during 50 epochs per each behaviour, so we can equally
compare them.

We will not displayed LSTM results since they can be found on the previous sub
section, at tables Table 7.9 and Table 7.10. On the following tables Table 7.11 and Table 7.12
we can find the results obtained for the Bidirectional LSTM based classifier.

Condition 1 video Condition 2 video Condition 3 video
Binary Accuracy 0.953 0.995 0.948

Precision 0.92 1 0.689
Recall 0.842 0.848 0.144

PRC-AUC 0.944 0.941 0.47

Table 7.11: Grooming results on BI-LSTM based architecture
with feature vectors ∈ R512 after data augmentation

As we can observe on the tables, BI-LSTM has given outstanding results on Grooming
for videos under conditions 1 and 2. In fact, they very high precision values indicates us
only very few frames where predicted as false positives. Recall as well stands pretty high,
indicating us that all most every positive frame was properly labeled. However, we can
see by the recall that almost no frames where classified under condition 3. As for results
on Rearing, except for the video under condition 1, by the recall we can see that the model
only predicted few positive frames. We could think then that by its design, BI-LSTM works

46 Experiments

Condition 1 video Condition 2 video Condition 3 video
Binary Accuracy 0.917 0.986 0.895

Precision 0.841 0.824 0.783
Recall 0.651 0.19 0.421

PRC-AUC 0.812 0.479 0.663

Table 7.12: Rearing results on BI-LSTM based architecture
with binary feature vectors ∈ R512 after data augmentation

better for predicting long lasting actions like Grooming, rather than sporadic behaviours
like Rearings. Also, from the Grooming results we can state that BI-LSTM adapt very well
to the recording conditions seen while training, but don’t generalize to new ones.

Next architecture we evaluated was the TCN based one. On Table 7.13 and Table 7.14
we can find the results obtained for the TCN based classifier.

Condition 1 video Condition 2 video Condition 3 video
Binary Accuracy 0.941 0.995 0.962

Precision 0.832 0.942 0.671
Recall 0.937 0.875 0.582

PRC-AUC 0.91 0.955 0.683

Table 7.13: Grooming results on TCN based architecture
with feature vectors ∈ R512 after data augmentation

Condition 1 video Condition 2 video Condition 3 video
Binary Accuracy 0.902 0.99 0.962

Precision 0.702 0.895 0.69
Recall 0.673 0.459 0.686

PRC-AUC 0.754 0.743 0.78

Table 7.14: Rearing results on TCN based architecture
with binary feature vectors ∈ R512 after data augmentation

Results for TCN keep balanced precision and recall values, for both Rearings and
Groomings. Grooming results have surpassed all the previous approaches. Videos under
conditions 1 and 2 keep having very high metrics, as in the BI-LSTM classifier. Although
this, condition 3 now keeps a great balance between precision and recall, with quite high
values considering that is the minority recording condition. Results on Rearing are also
considerably good. Despite rearing being a harder action to detect, it keeps a great bal-
ance between false positives and false negatives. This demonstrates that the TCN based
architecture is capable of generalizing between different recording settings, making it a
very suitable option for real case uses.

Lastly, we tested the Transformer based architecture. Table 7.15 and Table 7.16 contain
the obtained results.

7.6 Final approach discussion 47

Condition 1 video Condition 2 video Condition 3 video
Binary Accuracy 0.94 0.995 0.958

Precision 0.885 0.97 0.882
Recall 0.779 0.857 0.297

PRC-AUC 0.902 0.939 0.691

Table 7.15: Grooming results on Transformer based architecture
with feature vectors ∈ R512 after data augmentation

Condition 1 video Condition 2 video Condition 3 video
Binary Accuracy 0.888 0.981 0.873

Precision 0.719 0.588 0.567
Recall 0.545 0.135 0.682

PRC-AUC 0.693 0.284 0.685

Table 7.16: Rearing results on Transformer based architecture
with feature vectors ∈ R512 after data augmentation

While results for Grooming on videos under conditions 1 and 2 are high and balanced,
it seems that the Transformer based model struggles on generalizing videos under condi-
tion 3. As it happened with Bi-LSTM layers, the recall on video 3 lets us know that very
few frames where predicted as true. Results on Rearing are neither good, specially on
the second video where the recall stands very low. What might cause this is the fact that
Transformers, due to their complexity, usually require bigger amounts of data and com-
puting power enough to converge into good results. Just the simple model we defined,
had three times more parameters than the previous described approaches. Therefore, it
becomes natural to think that more data and time should be putted to properly train the
model.

7.6 Final approach discussion

After the analysis of the conducted experiments, conclusion can be extracted about
what are the approaches that best suit our pipeline. First experiment aimed to see how
a reduction on feature vectors dimensionality would affect classification metrics. We saw
that in fact, reducing dimensionality from 2048 to 512 did not affect models performance.
Therefore, due to its benefits in memory and computing time, we state that using an earlier
stage of ResNet50, that gives us a smaller dimensionality, as the CNN extractor works
better than using its whole architecture. Therefore, our pipeline will use this pipeline
where encoding frames.

On the second conducted experiment, we wanted to see which data prepossessing
methodologies where worthy to implement. We ended up discarding value normalization
and binary images rather than RGB, due to they poor performance. On the other hand, we
saw that performing data augmentation on our train set improved our models capacities
in generalizing, which was a feature we wanted our architectures to have. For that reason,

48 Experiments

we decided to use a dataset extended with data augmentation for training
Lastly, we have conducted a benchmark through different state of the art approaches on

sequence processing. Although almost every approach surpassed the results obtained by
the previous methodology presented on X. de Juan’s thesis, there was one that achieved
almost all the objectives we had regarding the project. We wanted an architecture that
maintained a great balance between false positives and false negatives. The architecture
also needed to be capable of generalizing among video recording conditions, since we
wanted it to be applicable to a real research laboratory environment. Given these require-
ments, TCN based classifier seemed to be the most suitable.

On the following Figures we can find a graphic representation on how TCN classifier
has performed on the validation set. In orange, we have represented the ground true
labels, in blue, the predictions outputted by the classifier. We have as well attached the
extracted confusion matrix and PRC graphics, that allows us to better compare this final
pipeline with the initial one that aimed to recreate the previous state of the project. We
can see that now PRC graphics have higher and more stable curves. It is also worth to
say that the number of frames, if we compare the previous confusion matrix with the
new ones, has a slightly change. This is due to the way frames are subdivided in groups.
On the previous experiment we had sequences of 300 frames and with TCN we have
sequences of 600 frames. Since the number of frames per second is not always dividable
by the sequence, sometimes on the last subgroup we get the frames previously seen on the
previous subgroup, so the remaining ones can be fitted as well. This way of processing
it caused the new videos to have 300 frames more, they are duplicated frames on the 2
last sub sequences. Although this we can use the confusion matrix to compare how the
proportions of false positives and false negatives has changed regarding the beginning.

Figure 7.6: Grooming and Rearing predictions on video under conditions 1.

7.6 Final approach discussion 49

Figure 7.7: Grooming and Rearing predictions on video under conditions 2.

Figure 7.8: Grooming and Rearing predictions on video under conditions 3.

Condition 1 video Condition 2 video Condition 3 video

Figure 7.9: Grooming Precision-Recall curve for each video in the dataset

50 Experiments

Condition 1 video Condition 2 video Condition 3 video

Figure 7.10: Rearing Precision-Recall curve for each video in the dataset

Condition 1 video Condition 2 video Condition 3 video

Figure 7.11: Grooming confusion matrix for each video in the dataset (threshold set at 0.5)

Condition 1 video Condition 2 video Condition 3 video

Figure 7.12: Rearing confusion matrix for each video in the dataset (threshold set at 0.5)

Chapter 8

Clinical Application

At the begging of this project we mentioned that the main purpose of developing
this machine learning models was so they could be applied in real use cases, such as the
neuroscience laboratory in Hospital Clínic. For that, a user friendly interface was required.
A space where researcher could upload the videos and obtain, in an easy way, their labels.
For that, this project has also worked on the integration of models in a front-end web
page.

Originally, the project counted with a web page developed, with Python’s Streamlit
library, by the student Eli Barlow. He developed an interface than given a video and a CSV
with its labels, would write at each frame the corresponding action so while visualizing
the video one could know what action that was being taken. Not only that, but given
the mouse position at each frame, he would also perform a study of the total distance
traveled, as well as the speed increase or decrease during time. All these functions where
accessible from the tab presented in Figure 8.1. Additionally, in this project we have added
the option of filtering results by behaviours, as well as some adjustments on the way
stadistics were calculated and displayed in graphics. We have also added our automatic
position detection algorithm, so distance and speed calculations could be done without
DeepLabCut data.

Figure 8.1: Manual Mode on the User Interface.

51

52 Clinical Application

We have also created a new tab that only receives as an input videos. This tab connects
with the developed machine learning pipeline, where given a video it preprocess it as
we have seen during Chapter 4 and 5. After preprocessing, the data is passed to the
developed TCN classifiers, which will return the labels. This way, researchers can easily
get videos automatically labeled. Data studies in speed and distance are also displayed in
this tab.

Figure 8.2: Automatic Mode on the User Interface.

The whole User Interface was deployed on Docker, so it would be accessible and easy
to install in any PC that had the required computing power. By the way the docker image
is done, it automatically gets connected to GPUs, so machine learning models can run
more effectively. The docker image of the project can be found on the DockerHub: https:
//hub.docker.com/repository/docker/albarransara/mouse_behaviour/general

https://hub.docker.com/repository/docker/albarransara/mouse_behaviour/general
https://hub.docker.com/repository/docker/albarransara/mouse_behaviour/general

Chapter 9

Global conclusions

From the begging, we had the purpose of continuing with the work X. de Juan left
us with his Master’s thesis. Given his investigations and developments, we wanted to
expand them and bring them closer to real case applications. We wanted to create a tool
that would enable researchers at laboratories to easily analyse mice behaviours in videos
at frame level, freeing them of doing this repetitive and time consuming task. For that we
wanted to adapt our approaches as much as possible to real use cases, where data goes
through multiple variant factors.

Through the research and understanding of the current state of the art approaches for
sequence analysis, we have been able to identify the major challenges on this project.
We have taken rigorous studies on our data, enough to understand the limitations it
presented. We have seen how imbalanced our data was regarding labels and regarding
the conditions in which videos were taken. We have developed tools such as the frames
per second ratio regulation or the automatic mouse position detection that have enable
our models to treat and standardize different kinds of video inputs.

Through experimentation and benchmarking we have been able to develop a pipeline
that has enabled us to build sequence classification architectures capable of reaching great
performances, with precision and recall rates over 90%, on different recording settings. We
have been able to develop a tool that would adapt to different lighting, camera placement
and orientations, bringing the state of project closer to real world use cases.

Not only that, but also we have been capable of unifying this automated models with
an easy and intuitive User Interface that will enable researchers to access this technology
in a comfortable manner.

However, there is still remaining work on the project to be done. Here we will list
some ideas on what future steps can be considered:

1. Experimenting with multi-class models. On our current approach, we treat each be-
haviour separately through binary classification. Although this results comfortable
from a research point of view, in application is tedious to have one model for each
action. In a future, if new behaviours want to be considered, having a separate ar-
chitectures for each of them will be complex to implement. Doing this also requires
a post-processing algorithm that chooses between outputs. A bad performance of

53

54 Conclusions

this algorithm can easily lead on a degradation of the predictions quality.

2. Try other feature encoding architectures. On this project we haven’t explore any
alternatives to ResNet50. It could be nice to consider other pretrained convolutional
neural networks, as well as experimenting with architectures trained from scratch.
This could lead to an improvement of frame encoding, making it more orientated
to the classification task. Implementation of attention blocks could be considered to
boost up the encoding process.

3. Improve Rearing metrics. Although they are not bad, rearing metrics still have room
for improvement. It would be worthy to perform an exhaustive hyper-parameter
tuning focused on boosting up Rearing metrics.

4. Perform a more exhaustive training. Due to the time and computing capacities we
had, we were not able to train models for a larger number of epochs. It would
be worthy to train them for longer time until being sure of reaching a point of
overfitting.

5. Create a larger dataset applying data augmentation. Data augmentation boosted
up a lot the performance of our models. Even-though that, a larger set could be
considered so a more exhaustive training can be performed. Especially, in cases
like transformers, we have seen that a small data set can easily lead to overfitting.
Experimenting with more diversity and quantity of data could boost up some archi-
tectures.

6. Considering pretrained classifiers. There are some pretrained models like Times-
former, designed for sequence processing and classification tasks. It could be inter-
esting to experiment with them.

To finish with this document, we will attach an schema of the followed project planing.
The schema counts with 22 weeks, since it is considered that each week an amount of 20-25
hours was dedicted to the project on its different taks.

Bibliography

[1] He K., Zhang X., Ren S. et Sun J. (2016). Deep residual learning for image recogni-
tion. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(pp. 770-778). Las Vegas, NV, USA. https://arxiv.org/pdf/1512.03385

[2] Bangar S.(2022). ResNet Architecture Explained. Medium. https://medium.com/
@siddheshb008/resnet-architecture-explained-47309ea9283d

[3] Kundu N. (2023). Exploring ResNet50: An In-Depth Look at the Model Architecture
and Code Implementation. Medium.

[4] Scarff B. (2021). Understanding Backpropagation, A visual derivation of the equa-
tions that allow neural networks to learn. Medium. https://towardsdatascience.
com/understanding-backpropagation-abcc509ca9d0

[5] Wang CF. (2019) The Vanishing Gradient Problem. The Problem, Its Causes,
Its Significance, and Its Solutions. Medium. https://towardsdatascience.com/
the-vanishing-gradient-problem-69bf08b15484

[6] Shinde S., Kulkarni U., Mane D. and Sapkal A. (2021). Health Informatics: A Com-
putational Perspective in Health. Chapter 2.

[7] Hochreiter S., Schmidhuber J. (1997). Long Short-Term Memory. Neural Com-
putation, 9(8), 1735-1780. https://deeplearning.cs.cmu.edu/F23/document/
readings/LSTM.pdf

[8] Calzone O. (2022). An Intuitive Explanation of LSTM. Medium. https://medium.
com/@ottaviocalzone/an-intuitive-explanation-of-lstm-a035eb6ab42c

[9] Sugandhi A. (2024). What is Long Short-Term Memory (LSTM) - Com-
plete Guide. upGrad. https://www.knowledgehut.com/blog/web-development/
long-short-term-memory

[10] Talathi S et all. (2015). Improving performance of recurrent neural network with relu
non linearity.

[11] Weber N. (2017). Why LSTMs Stop Your Gradients From Vanishing: A
View from the Backwards Pass. https://weberna.github.io/blog/2017/11/15/
LSTM-Vanishing-Gradients.html

55

https://arxiv.org/pdf/1512.03385
https://medium.com/@siddheshb008/resnet-architecture-explained-47309ea9283d
https://medium.com/@siddheshb008/resnet-architecture-explained-47309ea9283d
https://towardsdatascience.com/understanding-backpropagation-abcc509ca9d0
https://towardsdatascience.com/understanding-backpropagation-abcc509ca9d0
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
https://deeplearning.cs.cmu.edu/F23/document/readings/LSTM.pdf
https://deeplearning.cs.cmu.edu/F23/document/readings/LSTM.pdf
https://medium.com/@ottaviocalzone/an-intuitive-explanation-of-lstm-a035eb6ab42c
https://medium.com/@ottaviocalzone/an-intuitive-explanation-of-lstm-a035eb6ab42c
https://www.knowledgehut.com/blog/web-development/long-short-term-memory
https://www.knowledgehut.com/blog/web-development/long-short-term-memory
https://weberna.github.io/blog/2017/11/15/LSTM-Vanishing-Gradients.html
https://weberna.github.io/blog/2017/11/15/LSTM-Vanishing-Gradients.html

56 BIBLIOGRAPHY

[12] Jozefowiez R., Vinyals O., Schuster M., Shazeer N., Wu Y. (2016). Exploring the
Limits of Language Modeling. Google Brain. https://arxiv.org/pdf/1602.02410

[13] Huang Z., Xu W., Yu K. (2015). Bidirectional LSTM-CRF Models for Sequence Tag-
ging. https://arxiv.org/pdf/1508.01991

[14] Anishnama. (2023). Understanding Bidirectional LSTM for Sequen-
tial Data Processing. Medium. https://medium.com/@anishnama20/
understanding-bidirectional-lstm-for-sequential-data-processing-b83d6283befc

[15] Otsu N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE
Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62-66. https:
//engineering.purdue.edu/kak/computervision/ECE661.08/OTSU_paper.pdf

[16] Lea C. Vidal R. Reiter A. Hager G.D. (2016). Temporal Convolutional Networks: A
Unified Approach to Action Segmentation. https://arxiv.org/pdf/1608.08242

[17] Lassig F. (2021). Temporal Convolutional Networks and Forecasting. Unit8. https:
//unit8.com/resources/temporal-convolutional-networks-and-forecasting/

[18] Bai. S, Holter JZ., Koltun V. (2018). An Empirical Evaluation of Generic Convolu-
tional and Recurrent Networks for Sequence Modeling. https://arxiv.org/pdf/
1803.01271

[19] Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A.N., Kaiser L.,
and Polosukhin I. (2017). Attention is all you need. Advances in Neural Information
Processing Systems. https://arxiv.org/pdf/1706.03762

[20] Giacaglia G. (2019). How Transformers Work. Medium. https://
towardsdatascience.com/transformers-141e32e69591

[21] Sayak P. (2023). Video Classification with Transformers. Keras documentation.
https://keras.io/examples/vision/video_transformers/

[22] Bahdanau D., Cho K. and Bengio Y. (2014). Neural machine translation by jointly
learning to align and translate. https://arxiv.org/abs/1409.0473

[23] Niu Z., Zhong G. and Yu H. (2021). A review on the attention mecha-
nism of deep learning. https://www.sciencedirect.com/science/article/pii/
S092523122100477X

[24] Cristina S. (2023). The Attention Mechanism from Scratch. https:
//machinelearningmastery.com/the-attention-mechanism-from-scratch/#:
~:text=The%20attention%20mechanism%20was%20introduced%20by%20Bahdanau%
20et%20al.,information%20provided%20by%20the%20input.

[25] Rensink R.A. (2000). The dynamic representation of scenes, Visual Cogni-
tion. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=
751e384c376dd2f6ccd50ef13db19dff13d22f3a

https://arxiv.org/pdf/1602.02410
https://arxiv.org/pdf/1508.01991
https://medium.com/@anishnama20/understanding-bidirectional-lstm-for-sequential-data-processing-b83d6283befc
https://medium.com/@anishnama20/understanding-bidirectional-lstm-for-sequential-data-processing-b83d6283befc
https://engineering.purdue.edu/kak/computervision/ECE661.08/OTSU_paper.pdf
https://engineering.purdue.edu/kak/computervision/ECE661.08/OTSU_paper.pdf
https://arxiv.org/pdf/1608.08242
https://unit8.com/resources/temporal-convolutional-networks-and-forecasting/
https://unit8.com/resources/temporal-convolutional-networks-and-forecasting/
https://arxiv.org/pdf/1803.01271
https://arxiv.org/pdf/1803.01271
https://arxiv.org/pdf/1706.03762
https://towardsdatascience.com/transformers-141e32e69591
https://towardsdatascience.com/transformers-141e32e69591
https://keras.io/examples/vision/video_transformers/
https://arxiv.org/abs/1409.0473
https://www.sciencedirect.com/science/article/pii/S092523122100477X
https://www.sciencedirect.com/science/article/pii/S092523122100477X
https://machinelearningmastery.com/the-attention-mechanism-from-scratch/#:~:text=The%20attention%20mechanism%20was%20introduced%20by%20Bahdanau%20et%20al.,information%20provided%20by%20the%20input.
https://machinelearningmastery.com/the-attention-mechanism-from-scratch/#:~:text=The%20attention%20mechanism%20was%20introduced%20by%20Bahdanau%20et%20al.,information%20provided%20by%20the%20input.
https://machinelearningmastery.com/the-attention-mechanism-from-scratch/#:~:text=The%20attention%20mechanism%20was%20introduced%20by%20Bahdanau%20et%20al.,information%20provided%20by%20the%20input.
https://machinelearningmastery.com/the-attention-mechanism-from-scratch/#:~:text=The%20attention%20mechanism%20was%20introduced%20by%20Bahdanau%20et%20al.,information%20provided%20by%20the%20input.
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=751e384c376dd2f6ccd50ef13db19dff13d22f3a
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=751e384c376dd2f6ccd50ef13db19dff13d22f3a

BIBLIOGRAPHY 57

[26] Corbetta M. and Shulman G.L. (2002). Control of goal-directed and stimulus-driven
attention in the brain. https://www.nature.com/articles/nrn755

[27] Wang Z., She Q. and Ward T.E. (2021). Generative Adversarial Networks in
Computer Vision: A Survey and Taxonomy. https://www.researchgate.net/
publication/349189619_Generative_Adversarial_Networks_in_Computer_
Vision_A_Survey_and_Taxonomy

[28] Yeung S., Russakovsky O., Jin N., Russakovsky M, Mori G. and Fei-Fei L. (2017).
Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos
https://arxiv.org/pdf/1507.05738

[29] Abdu S.A., Yousef A.H., Salem A. (2021). Multimodal Video Sentiment Analysis
Using Deep Learning Approaches, a Survey. https://www.sciencedirect.com/
science/article/pii/S1566253521001299

[30] Souza J.S., Bedin E., Hirokawa Higa G.T., Loebens N., Pistori H. (2024). Pig ag-
gression classification using CNN, Transformers and Recurrent Networks. https:
//arxiv.org/pdf/2403.08528

[31] Kopaczka M., Tillman D., Ernst L., Schock J., Tolba R. and Merhof D. (2019). As-
sessment of Laboratory Mouse Activity in Video Recordings Using Deep Learning
Methods. https://www.lfb.rwth-aachen.de/bibtexupload/pdf/KCZ19b.pdf

[32] van Dam E.A., Noldus L.P.J.J and van Gerven M.A.J. (2020). âDeep learning
improves automated rodent behavior recognition within a specific experimen-
tal setupâ. In: Journal of Neuroscience Methods 332, p. 108536. https://www.
sciencedirect.com/science/article/pii/S0165027019303930

https://www.nature.com/articles/nrn755
https://www.researchgate.net/publication/349189619_Generative_Adversarial_Networks_in_Computer_Vision_A_Survey_and_Taxonomy
https://www.researchgate.net/publication/349189619_Generative_Adversarial_Networks_in_Computer_Vision_A_Survey_and_Taxonomy
https://www.researchgate.net/publication/349189619_Generative_Adversarial_Networks_in_Computer_Vision_A_Survey_and_Taxonomy
https://arxiv.org/pdf/1507.05738
https://www.sciencedirect.com/science/article/pii/S1566253521001299
https://www.sciencedirect.com/science/article/pii/S1566253521001299
https://arxiv.org/pdf/2403.08528
https://arxiv.org/pdf/2403.08528
https://www.lfb.rwth-aachen.de/bibtexupload/pdf/KCZ19b.pdf
https://www.sciencedirect.com/science/article/pii/S0165027019303930
https://www.sciencedirect.com/science/article/pii/S0165027019303930

Annexed Documentation

W&B Bayesian Optimization results

. 2048 LSTM

. 512 LSTM

—-

. 512 BI-LSTM

. 512 TCN

	Introduction
	Project context and motivation
	Objectives
	Document structure

	Related Works
	Previous state of the project
	Context
	Methodologies
	Results and conclusions

	ResNet 50
	Vanishing Gradients
	ResNet architecture

	Long Short-Term Memory (LSTM)
	Recurrent Neural Networks (RNN)
	LSTM architecture
	LSTM advantages and limitations
	Bidirectional LSTM (BI-LSTM)
	BI-LSTM advantages and limitations

	Temporal Convolutional Networks (TCN)
	 TCN architecture
	 TCN advantages and limitations

	Transformers
	Attention mechanisms
	Transformers architecture
	Transformers advantages and limitations

	The Data
	Data study on video conditions
	Data study on labels

	Data preprocessing
	Frames per second standardization
	Frame cropping
	Automatic mouse position detection

	Frame normalization
	Data Augmentation
	Data Split

	Feature extraction
	Sequence classification modules
	LSTM
	BI-LSTM
	TCN
	Transformers

	Experiments
	Evaluation methodology and metrics
	Binary accuracy
	Precision
	Recall
	Precision-Recall Curve (PRC)
	Confusion Matrix

	Adaptation of the previous approach
	Feature vector dimensionality
	Data normalization and augmentation
	Maximum value normalization
	Binary normalization
	Data augmentation

	Sequence classification module
	Final approach discussion

	Clinical Application
	Conclusions
	Bibliography

