
DOBLE GRAU DE MATEMÀTIQUES I
ENGINYERIA INFORMÀTICA

Treball final de grau

CONFORMAL PREDICTION AND
UNCERTAINTY

QUANTIFICATION IN
RECOMMENDER SYSTEMS

Autor: Roberto Alvarado Chamatrin

Director: Dr. Vitrià Marca, Jordi
Realitzat a: Departament de Matemàtiques i Informàtica

Barcelona, June 11, 2024

Abstract

This thesis investigates the lack of explainability in machine learning models, particu-
larly focusing on mitigating this issue by measuring model uncertainty and adjusting
outputs using conformal prediction. Conformal prediction provides a set of possible out-
comes, backed by statistical analysis, to ensure a high confidence level in the predictions.
The approach will be demonstrated across three domains: classification with the MNIST
dataset, regression for estimating California real estate prices, and recommender systems.
In recommender systems, the method will account for varying levels of uncertainty in user
preferences, ensuring broader recommendation sets for users with high uncertainty and
narrower sets for more predictable users.

Resum

Aquesta tesi investiga la manca d’explicabilitat en els models d’aprenentatge automàtic i se
centra especialment en mitigar aquest problema mesurant la incertesa del model i ajustant
la sortida del mateix utilitzant la predicció conformal. La predicció conformal proporciona
un conjunt de possibles resultats, recolzats per anàlisis estadístiques, garantint un alt
nivell de confiança en les prediccions. Aquest enfocament es demostrarà en tres dominis:
classificació amb el conjunt de dades MNIST, regressió per estimar els preus de cases a
Califòrnia i en sistemes de recomanació. En aquest últim, el mètode considera diferents
nivells d’incertesa en les preferències dels usuaris, assegurant conjunts de recomanacions
més amplis per als usuaris amb alta incertesa i conjunts més estrets per als usuaris més
predictibles.

i

Acknowledgements

During the elaboration of the thesis, I got help from several people to whom I dedicate
this section.

To Jordi Vitrià, my thesis supervisor, for proposing such an intriguing topic and always
being there to provide guidance during difficult times. His expertise in the field is evident,
and it has been a pleasure to attend his lectures and work alongside him.

To Paula Vilà, for the mutual support throughout these months of hard work and
challenges.

To the rest of my friends, for being there when I needed encouragement and for pro-
viding moments of laughter during this intense journey.

ii

Contents

1 Introduction 1

2 Scientific background 2

2.1 Machine learning basics . 2

2.2 Classification . 6

2.3 Regression . 9

2.4 Recommender systems . 10

3 Conformal prediction 12

3.1 Classification . 13

3.2 Regression . 14

3.3 Recommender systems . 15

4 Experimentation 17

4.1 Conformal prediction in classification: The MNIST dataset 17

4.2 Conformal prediction in regression: California Housing dataset 20

4.3 Conformal Prediction in Recommender Systems: MovieLens 22

5 Discussion 24

5.1 Future work . 24

6 Conclusions 25

iii

Introduction

1 Introduction

Artificial intelligence has undoubtedly reshaped the way we operate as a society. Tasks
that were previously performed by humans are now efficiently handled by computers.
More precisely, machine learning techniques enable computers to learn tasks by utilizing
input data and, often, the expected output, without requiring explicit instructions as
traditional algorithms do. Through this process, computers learn from the data to find a
mathematical model that best represents the underlying patterns, which can subsequently
be applied to automate the task.

This convenience comes with a cost, though. Machine learning models tend to behave
as “black boxes”: they receive input data and generate predictions without revealing the
decision-making process. Even the AI/ML engineers who develop these models may not
fully understand its internal functioning. This opacity raises serious challenges, especially
as models can be used in sensitive applications such as determining mortgage eligibility
or medical diagnosis.

For instance, a model that predicts whether someone should be granted a mortgage may
inadvertently perpetuate discrimination and inequality present in historical data, denying
mortgages based on race, gender or other unfair reasons[1]. This is known as a bias.
Similarly, medical diagnosis being performed by a model which lacks the explainability in
its decision-making process could incorrectly diagnose a patient as healthy when they are,
in fact, ill, potentially endangering their life.

This thesis will address the second issue we stated, caused by the lack of explainability
in machine learning models. The goal is to mitigate it by measuring the uncertainty of the
model and adjusting its output. Instead of providing point (single-value) predictions, the
model will provide a set of possible outcomes using a method called “conformal prediction”.
This set will be backed by statistical analysis, ensuring with high confidence (e.g., 90%),
that the true prediction lies within that set. The set size will vary depending on the
uncertainty of the model, being larger for predictions where the model is uncertain.

We will start exploring conformal prediction by addressing a classification problem us-
ing the MNIST dataset[2], and then jump into the regression problem aimed at estimating
real estate prices in California.

Finally, we will address recommender systems. While conformal prediction has pri-
marily been applied to classification and regression problems, recommender systems also
inherently involve uncertainty. For instance, when recommending content to a new user
on a streaming platform, the model’s uncertainty will be high due to the lack of data on
the user’s interests. In contrast, the uncertainty will be significantly lower for a user who
has watched hundreds of hours of content on the platform, as their personal interests are
pretty much well known.

To achieve it, we will first try to quantify the uncertainty of a recommender system,
then apply conformal prediction to ensure that the recommendation set is larger for users
with a high level of uncertainty and smaller for predictable users.

1

Scientific background

2 Scientific background

Before starting to implement the paradigm we have introduced and will describe compre-
hensively later, we will examine the machine learning concepts necessary for the develop-
ment of the thesis.

2.1 Machine learning basics

When solving a problem via machine learning, we look for a model that can accurately
represent the underlying process and make reliable predictions based on input data. This
involves leveraging relationships within the data that effectively solve the task at hand.
In other words, the model learns from the data to solve the problem, generalizing the
solution from the ground up and inferring the solution for new data.

Definition 2.1. A model is a mathematical representation that is trained on a dataset
to make predictions or decisions without having explicit instructions on how to perform
the task.

There are several ways to train a model. Some of the most used ones are:

• Supervised learning: the model is trained on a labeled dataset, meaning that each
training data point is paired with an output label. The objective is to learn a
mapping from inputs to outputs that can then be used to predict the labels for new,
unseen data.

• Unsupervised learning: the models trains on unlabeled data, trying to learn the
underlying structure or distribution in the data.

• Semi-supervised learning: a combination of the two above. As labeled data can be
difficult to obtain, only a subset of all the training data is labeled.

• Reinforcement learning: the entity that tries to achieve the goal is called an agent. It
learns to make decisions by performing actions in an environment, receiving rewards
or penalties on that action and seeking to maximize the reward over time.

In this thesis, the models we are working with are use supervised learning so we will
focus on it from now on.

In supervised learning, the model is fitted on labeled data. Each input data used for
training has its corresponding label, which is the correct output. Given a labeled dataset
{(xi, yi)}ni=1, f tries to accurately map the given inputs xi to yi.

For i = 1, . . . , n the vector xi is called the feature vector for the i-th sample and yi
is the label for the i-th sample.

As such, we can represent the entire dataset in a more compact way as (X, y):

X =

x1

x2

...

xn

 =

x11 x12 · · · x1m

x21 x22 · · · x2m
...

...
. . .

...

xn1 xn2 · · · xnm

 , y =

y1

y2
...

yn

2

2.1 Machine learning basics Scientific background

where X is the feature matrix and y is the label vector. Each row in X corresponds to a
data point or sample and the same row in y is its label.

For instance, the goal is to minimize the discrepancy between the true value yi and the
prediction f(xi) given by the model.

Definition 2.2. A parameter is a value in the model that modifies the output of the
function and is adjusted during the training process. We can represent the vector of
parameters of a function as w = (w1, . . . , wk) ∈ K, where K is a field that is usually Rk.
The letter w is used as parameters are also called weights. As they are initially unknown,
they can be initialized with random values.

Example 2.3. Imagine we are looking for a model that predicts house prices based on
their square meters. We can define a very simple linear regression model f : R → R where

f(x) = w1x+ w0.

x are the square meters and w = (w0, w1) are the parameters. w1 represents the slope of
the function and w0 is the bias.

A bias is any parameter independent of the input features. It’s called like that because
it shifts the predictions of the model regardless of the inputs. In this case, it represents the
fact that, even for the smaller houses, there is always a starting fixed price w0 (assuming
it’s greater than 0).

Definition 2.4. Given a labeled dataset (X, y), the loss function is a positive function
that measures the discrepancy between the true values y and the predictions f(X), for a
fixed vector of parameters w. We write it as L(y, f(X;w)) = L(y, fw(X)).

Example 2.5. A possible loss function is the Mean Squared Error:

MSE(y, fw(X)) :=
1

n

n∑
i=1

(yi − fw(xi))
2

i.e., the mean of the squared differences between each true value and the prediction. The
differences are squared so that the loss function is always positive, and the closer it is to
0, the better the model f for that set of data, as the errors are, on average, smaller. This
loss funtion is widely used in regression problems.

As the objective is to minimize the loss function by adjusting the parameters using the
training data, any machine learning problem is essentially an optimization problem, i.e.,
finding the minimum of the loss function.

Definition 2.6. An optimizer is an algorithm that updates the model parameters to
minimize the loss.

One of the most famous optimizers is Gradient Descent, which computes the gra-
dient of the loss function using the entire training dataset of n samples and adjusts the
parameters by subtracting the gradient times a factor. This algorithm is applied itera-
tively:

w(i+1) = w(i) − α · ∇L(y, fw(i)(X))

where (X, y) is fixed and is the entire dataset, i is the iteration index, w(i) = (w1, . . . , wk)
(i)

is the vector of parameters in that iteration, α is the learning rate and ∇L is the gradient
of the loss function. Each iteration is called a step.

3

2.1 Machine learning basics Scientific background

Definition 2.7. Given f : Rn → R differentiable at point p, the gradient ∇f : Rn → Rn

at point p is the vector of its partial derivatives at p:

∇f(p) :=

∂f
∂x1

(p)

∂f
∂x2

(p)
...

∂f
∂xn

(p)

From the definition, it follows that

∇L(y, fw(i)(X)) =

∂L
∂w1

(y, fw(i)(X))

∂L
∂w2

(y, fw(i)(X))
...

∂L
∂wk

(y, fw(i)(X))

Remark 2.8. As the definition says, in order to compute the gradient of the loss function,
it must be differentiable at that point. For instance, it must be chosen having this condition
in mind. MSE ∈ C∞, so it can be used without any issue.

Definition 2.9. A hyperparameter is a parameter that defines the behaviour of the
learning process and is set prior to training. As parameters are adjusted automatically
during the training, this definition is needed to distinguish those parameters from the ones
that are specified before the training begins.

Intuitively, the gradient points to the direction where the function grows steeper from
the given point. For instance, moving the opposite way decreases the value of the function.
This behaviour is informally described as “a ball rolling down the slope” (neglecting accel-
eration). α is a hyperparameter called learning rate, and it adjusts the size of the steps
taken towards the minimum of the loss function. Choosing an appropriate value is impor-
tant as it being too high can cause an oscillating behaviour that doesn’t converge, while
it being too low can make the convergence very slow and even get stuck in suboptimal
values.

Another problem is that, at each step, the entire dataset has to be evaluated in order
to get the output of that iteration. This can get computationally expensive. It’s worth
noting that the dataset can have a very high cardinality, each feature vector can be high-
dimensional and, in turn, the parameter vector, so using GD is often not feasible. For
this reason, an alternative called Stochastic Gradient Descent is used instead. The
dataset is shuffled randomly, and for each iteration, one of the n samples is chosen. This
is done until all the samples are used. One complete run on the entire dataset is called
epoch. After each epoch, the dataset is shuffled again and the process continues.

This alternative is much cheaper computationally. Not only that, but although it may
take more iterations to converge to a minimum, this approach introduces noise that can
help escape local minima and explore the parameter space more thoroughly, potentially
leading to better generalization and better final models. The algorithm is as follows:

w(i+1) = w(i) − α · ∇L(yi, fw(i)(xi))

4

2.1 Machine learning basics Scientific background

where (xi, yi) is a unique data point chosen randomly at the current epoch, i is the iteration
index, w(i) = (w1, . . . , wk)

(i) is the vector of parameters in that iteration, α is the learning
rate and ∇L is the gradient of the loss function.

In practice, a mixed technique called Mini-Batch Gradient Descent is used, which shuf-
fles the dataset and makes batches of size s. For each iteration, the gradient is computed
using the data points of one of the batches. When all the batches are used and the epoch
is completed, the dataset is re-shuffled and the process continues. Note:

• If s = 1, it’s the same as SGD and for every epoch n iterations can be done.

• If 1 < s < n, ⌈ns ⌉ iterations can be done for every epoch.

• If s = n, one epoch equals one iteration.

Another optimizer that will be used in this thesis is Adam (Adaptive Moment Esti-
mation). Without going into much detail, it has the advantage that it computes learning
rates for each parameter and it adds momentum, which helps accelerate the optimizer in
the relevant direction. This is done by maintaining an exponentially decaying average of
past gradients (first moment) and past squared gradients (second moment). It can also
be seen as “a ball rolling down the slope”, but this time with gravity acceleration as well.

The iterative process has to stop at one point. One or more of these conditions are
used for it:

• A certain number of epochs is reached.

• After a certain number of epochs, the difference between the current loss and the
previous one doesn’t reach a certain threshold called tolerance, meaning it isn’t very
significant. It can also be defined that this condition must not be met a consecutive
number of times. This number is called patience.

During training, a common issue is that the model learns the training data too well,
including its noise and outliers. This phenomenon is called overfitting and results in a
model that performs exceptionally well on the training data but poorly on new, unseen
data, not generalizing properly. It occurs when a model is too complex, having too many
parameters relative to the number of observations. The opposite of it is underfitting,
and happens when the model hasn’t been trained enough and doesn’t perform well on the
training data nor on new, unseen data.

In order to detect overfitting, when given a dataset (X, y), there is a portion of it
(typically from 10 to 30%) that isn’t used during training and is reserved to evaluate the
loss after every epoch on it as well. Such a subset is called test set1, and we will write
it as (X, y)test = (Xtest, ytest) ⊂ (X, y). The data used for training will be written as
(X, y)train = (Xtrain, ytrain) ⊂ (X, y). A plot of the loss function for the training and test
sets during overfitting looks like this:

1Actually, such a set is called validation set, while a test set is completely unseen during the training.
As no such set is used in this thesis, we will simply use the term “test set” for the validation one, as they
are sometimes used interchangeably.

5

2.2 Classification Scientific background

Figure 1: Plot of the loss function for training and test sets

To mitigate this, several techniques can be applied. The most straightforward one
is stopping the training when performance on test data starts to degrade, called early
stopping. Other techniques like regularization (lasso, ridge) can be used, which penalize
overly complex models by adding the complexity of the model to the loss function.

2.2 Classification

One of the problems that machine learning tries to solve is classification, which is a type of
supervised learning where the model learns to classify input data into one of the discrete
labels or categories defined.

Given a labeled dataset {(xi, yi)}ni=1, yi always falls into one of the K possible classes,
which are represented by an integer:

yi ∈ {0, . . . ,K − 1} ⊂ Z, ∀i = 1, . . . , n

There are various models that deal with classification, such as Logistic Regression or
Support Vector Machines. We focus on Neural Networks as that’s the one we will use
later, even though they are not exclusively used for classification.

Neural networks are inspired by the human brain. They consist of interconnected nodes
organized in layers. Nodes receive input data and pass it to the next neuron via an edge.

input
layer

hidden layers

output
layer

Figure 2: A neural network

6

2.2 Classification Scientific background

In each neural network, there is an input layer, which receives the input (a feature
vector), and an output layer, which returns the output. Optionally, there are hidden
layers that add complexity to the neural network. Each edge has a weight associated to
it, and each neuron has a bias. Each neuron that receives n inputs gets multiplied by the
weight on the edge. All the inputs are summed and the bias is also added.

With the concepts we defined for now, all the neurons have a linear behaviour. With
this lack of non-linearity, it can be proved that any such neural network, no matter the
number of hidden layers, can be combined into a single layer.

Definition 2.10. An activation function is a non-linear function f : R → R that trans-
forms the weighted sum of inputs to a neuron into an output signal. They are essential as
this non-linearity is what makes neural networks capable of learning complex patterns. It’s
called like that because it mimics the biological behaviour of an activated/non-activated
neuron, making its output relevant/non-relevant.

With the addition of the activation function, we can now formulate the output of a
neuron j in layer l as follows:

a
(l)
j = f(

n∑
i=1

w
(l−1)
ij a

(l−1)
i + b

(l)
j) (1)

where w
(l−1)
ij is the weight connecting each neuron i in layer l − 1 to neuron j in layer l,

a
(l−1)
i is the output of the neuron i in layer l− 1 and b

(l)
j is the bias for neuron j in layer l.

Theorem 2.11 (Universal Approximation Theorem). A neural network with at least one
hidden layer of a sufficient number of neurons and a non-linear activation function can
approximate any continuous function to an arbitrary level of accuracy.

This fundamental theorem reveals the great power of neural networks and why they
are widely used.

In neural networks, two key processes occur alternatingly:

• Forward propagation is the process by which input data is passed through the
network to produce an output. Refer to equation 1 for more information.

• Backpropagation updates the weights and biases in the neural network to mini-
mize the error in the predictions. This involves calculating the loss and its gradients
for each parameter, using the chain rule of calculus. The loss propagates backwards
through the network from the output layer to the input layer. This is used by the
optimizer of choice to update the parameters. Because of this process, differentia-
bility in neural networks is very important to be taken into account when choosing
an activation function.

The choice of the activation function has evolved over time. The sigmoid function

σ(x) =
1

1 + e−x

has been the most popular as it accurately resembles the activation behaviour, because
Im(σ) = (0, 1) ⊂ R and the images quickly jump from 0 to 1:

7

2.2 Classification Scientific background

−6 −4 −2 0 2 4 6

0.5

1

σ(x)

Figure 3: Plot of the sigmoid function

Moreover, it’s differentiable in R, so it behaves well when using gradient techniques to
update the parameters. Nowadays, though, it’s usually used only when the output has
to be between 0 and 1, e.g., in the output layer for binary classification problems. The
function “concentrates” in a very small range and for the rest of the domain, the slope is
very close to 0. This leads to the vanishing gradient problem, dealing with gradients very
close to 0, making the convergence very slow and the model perform poorly. Furthermore,
additional problems as the machine epsilon (ε) (the limit to the amount of decimals
that can be represented in a computer) can cause the gradient calculation to be imprecise.

For these reasons, in the decade of the 2010s, the Rectified Linear Unit (ReLU)[3]
was introduced proving that it’s a much better alternative:

ReLU(x) = max(0, x)

This function performs the activation of neurons without vanishing the gradient, and is
computationally efficient as the gradient is very easy to compute:

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

ReLU(x)

Figure 4: Plot of the ReLU function

The function isn’t differentiable at 0, but it’s as simple as defining the derivative at

8

2.3 Regression Scientific background

that point as 0:

ReLU′(x) =

{
0 if x ≤ 0

1 if x > 0

Another widely used activation function is the softmax function, often used as the
last activation function of a neural network used for classification. It’s used to normalize
the output and resemble a probability distribution over predicted output classes. Given
a vector z = (z1, . . . , zK) ∈ RK , where K ≥ 1, the softmax function σ : RK → (0, 1)K is
defined as

σ(z)i =
ezi∑K
j=1 e

zj

The resulting vector (σ(z)1, . . . , σ(z)K) resembles the probability of each class, even
though it’s not calibrated as we will see later.

As for loss functions, the one we will use for classification is cross-entropy:

Loss = −
n∑

i=1

yi log(pi)

where yi is the binary indicator (0 or 1) if class label i is the correct classification, pi
is the predicted probability of class i and n is the number of classes.

An important thing to note is that softmax is used to normalize the outputs instead of
a normal division of each output by the sum of them. The reason for this is that softmax
“behaves better” when computing the gradient, reducing the likelihood of a vanishing
gradient.

Let’s see a couple of quick definitions, as the neural networks that we are working with
in this thesis are of this type:

Definition 2.12. A dense neural network or fully connected network is an artifi-
cial neural network where each neuron in one layer is connected to every neuron in the
subsequent layer.

Definition 2.13. A feedforward neural network is a neural network where the in-
formation only moves forward: from the input nodes, through the hidden nodes and to
the output nodes. There are no cycles or loops in the network, meaning each layer only
receives inputs from the previous layer and sends outputs to the next layer.

2.3 Regression

Another typical problem in machine learning is regression, a type of supervised learning
technique used to predict continuous numerical values based on input features.

Given a labeled dataset {(xi, yi)}ni=1, yi ∈ R is the continuous numerical label to be
predicted.

Typical models that deal with regression are Linear Regression, Support Vector Re-
gression and Neural Networks. Let’s see the Gradient Boosting Regressor as it’s the one
we use later in this thesis.

Gradient Boosting Regressor (GBR) is an ensemble learning technique, meaning it
combines the predictions of several base estimators (typically decision trees) to improve

9

2.4 Recommender systems Scientific background

overall predictive performance. The base estimators are weak prediction models, i.e., mod-
els that make very few assumptions about the data. The “boosting” part of the algorithm
refers to the iterative process of training a sequence of models, each one correcting the
errors of its predecessor. In each stage a regression tree is fit on the negative gradient of
the given loss function. The optimizer used is, for instance, Gradient Descent.

The loss function is normally the Mean Squared Error, which we have already seen:

MSE(y, fw(X)) :=
1

n

n∑
i=1

(yi − fw(xi))
2.

Another common loss function is RMSE, which is simply

RMSE(y, fw(X)) :=
√

MSE(y, fw(X)).

2.4 Recommender systems

The problem of recommendation is another task that machine learning is dedicated to
solve. In the realm of information retrieval, recommenders alter the way by which users
find content. Rather than needing to actively look for it through manual search queries or
browsing, recommenders adopt a proactive approach, delivering personalized suggestions
for each user’s unique preferences and interests[4].

These models analyze vast amounts of user data, ranging from browsing history and
purchase behaviour to explicit preferences and ratings. By processing this info, recom-
mendation systems gain valuable insights, allowing them to curate recommendations that
are highly relevant and likely to resonate with each user.

We will focus on a type of models called Factorization Machines[5]. They are par-
ticularly useful for handling sparse datasets with high-dimensional feature spaces, often
encountered in tasks like recommendation systems, prediction, and ranking. They were in-
troduced by Steffen Rendle in 2010[6] and are known for their ability to model interactions
between variables effectively.

In recommendation, data is sparse because the availability of it, which is typically user-
item interactions or ratings, is scarce relative to the total number of possible interactions or
items. In real-world scenarios, there can be millions of users and the same vast magnitude
of items available for recommendation.

Furthermore, the distribution of user-item interactions often follows a long-tail pat-
tern, where a small number of popular items receive a large proportion of interactions,
while the majority of items receive relatively few interactions. This results in sparse data,
as many items have limited or no interaction history.

New users or items, which lack historical interaction data, contribute to data sparsity.
Recommendation systems face difficulties in making accurate predictions for these new
entities until sufficient data is available to model their preferences effectively This is known
as the Cold Start Problem[7].

The model structure of a factorization machine is as follows: the prediction f(x) for a
given input vector x ∈ Rn is given by:

f(x) = w0 +

n∑
i=1

wixi +

n∑
i=1

n∑
j=i+1

⟨vi,vj⟩xixj (2)

10

2.4 Recommender systems Scientific background

Where:

• w0 is the global bias.

• wi are the weights for each feature xi.

• vi is the latent vector associated with feature i.

• ⟨vi,vj⟩ represents the dot product of the latent vectors vi and vj , capturing the
interaction between features i and j.

Remark 2.14. Latent vectors or factor vectors are used to model the interactions
between pairs of features. The prediction function of an FM incorporates these factor
vectors to capture the pairwise interactions without explicitly computing interactions for
all possible pairs, which would be computationally prohibitive.

To evaluate the FM, Normalized Discounted Cumulative Gain (NDCG) will
be used. It’s a measure to evaluate the quality of rankings in information retrieval and
recommendation systems. It assesses how well the predicted rankings of items match the
actual, ideal rankings based on their relevance. It’s computed as follows.

Firstly, the Discounted Cumulative Gain (DCG) is computed, which accounts for the
position of the items in the ranked list:

DCGp :=

p∑
i=1

2reli − 1

log2(i+ 1)
(3)

where reli is the relevance score of the item at position i, and p represents the rank
position or the cutoff point in the ranked list. It specifies up to which position in the
ranked list the evaluation should be considered.

Secondly, Ideal DCG (IDCG) is computed. This is the DCG of the ideal ranking, where
the most relevant items are ranked at the top. It serves as a benchmark for normalization.

IDCGp :=

p∑
i=1

2rel∗i − 1

log2(i+ 1)
(4)

where rel∗i is the relevance score of the item at position i in the ideal ranking.

Lastly, Normalized DCG (NDCG) is obtained. This is the ratio of DCG to IDCG,
ensuring the score is between 0 and 1, where 1 indicates a perfect ranking. The formula
is:

NDCGp :=
DCGp

IDCGp
(5)

11

Conformal prediction

3 Conformal prediction

Black-box machine learning models are routinely used in high-risk settings like medical
diagnosis, which has potentially fatal consequences. Point predictions are normally gen-
erated, returning the most plausible output from the learned training data. Although
this method is sufficient in most cases, it can result in a significant loss of information
because it ignores the model’s potential uncertainty and variability. Thus, uncertainty
quantification is needed to distinguish between a certain prediction from an uncertain
one.

Conformal prediction[10] is a method capable of transforming any heuristic notion of
uncertainty of a model into a rigorous measure of it. This measure is then used to form
statistically rigorous sets/intervals for the predictions, being smaller for certain predictions
and larger when the model isn’t certain. This method is independent of the model chosen
and the data distribution, and has very little computational cost.

Figure 5: Prediction set examples on Imagenet. Three progressively more difficult exam-
ples of the class fox squirrel and the prediction sets generated by conformal prediction are
shown.

Suppose we have a model f and a set of labeled data (X, y), from which a subset
(Xtrain, ytrain) ⊂ (X, y) has been used to train. We take a moderate-sized (e.g., 100
samples) subset of data not seen during training which will be called calibration data:

Definition 3.1. Calibration data is a subset of n samples of the labeled dataset that
haven’t been used during training and will be used to conformalize the prediction of the
model.

(X, y)calib := {(x1, y1), . . . , (xn, yn)} ⊂ (X, y) \ (X, y)train

Intuitively, our goal is, for a new feature vector xn+1, to return a set or interval τ(xn+1)
such that we can affirm yn+1 ∈ τ(xn+1) with high probability:

P(yn+1 ∈ τ(xn+1)) ≥ 1− α

where P is the probability and α ∈ [0, 1] is called the error rate. The probability chosen
is called coverage. For example, for 90% coverage, we would choose α = 0.1.

To achieve this, the following procedure is followed:

1. Identify a heuristic notion of uncertainty for the chosen model.

2. Define a conformal score function based on the heuristic.

12

3.1 Classification Conformal prediction

Definition 3.2. Given (xi, yi) ∈ (X, y) (a feature vector and its label), the score
function is a positive function s that measures the uncertainty of the prediction,
knowing its actual label. We write it as s(x, y).

3. Compute q̂:

Definition 3.3. q̂ is defined as the (1 − α)-th quantile of the scores for the n
calibration samples (plus a finite sample correction):

q̂ := Quantile
(
s1, . . . , sn;

⌈(n+ 1)(1− α)⌉
n

)
where si = s(xi, yi) for i = 1, . . . , n.

4. Form prediction sets/intervals of the form

τ(xn+1)) := {y : s(xn+1, y) ≤ q̂}.

This was the general idea. Now, let’s see how it unfolds depending on the model we
are dealing with.

3.1 Classification

In classification, an alternative to point predictions is to return sets of predictions with
a high level of confidence. This can be achieved with conformal prediction, determining
the uncertainty of future predictions and adjust the size accordingly. This provides a
more transparent view of the model’s predictions, improving decision-making processes by
offering a range of plausible outcomes instead of a single prediction.

One of the most commonly used scores in classification is the softmax function applied
to neural networks, which simulates the probabilities of each class. However, the values it
returns are not real probabilities, as they are not calibrated. This means, softmax scores
do not accurately reflect the true likelihood of outcomes, and do not necessarily indicate
the certainty of the predictions.

To conformalize the softmax (σ) outputs, we must find a heuristic to measure the
model’s uncertainty using the calibration data. One possible option is taking the values
of the true class for every calibration data sample, treat 1 minus its softmax output as
the score s and compute q̂ accordingly. The problem with this approach is that, as only
the true class is considered, the prediction set sizes end up not being very adaptive. This
is not something we want as it wouldn’t provide much information about the uncertainty
of the model, even though the average set size is smaller.

Another option, which we will treat as the preferred one, is defining the score as the
sum of the values of the outputs, sorted from higher to lower and up to the true class,
included. Hence, higher scores (which will be closer to 1) mean that the model isn’t certain
and predicted other classes to be the correct ones before we actually reached the true class.
This score results in more adaptive sets as the outputs of the other classes are considered
as well, not only the true class. The formalization of this technique is as follows: given a
calibration dataset (X, y)calib with n samples,

s(x, y) =

k∑
j=1

f(x)πj(x) (6)

13

3.2 Regression Conformal prediction

where π(x) is a function dependent on the feature vector such that π−1 is the permutation
of Z = {1, 2, . . . ,K} and sorts the set Z by their softmax outputs, from higher to lower.
k is the index of the true class y in the set of sorted softmax outputs, and f is the model.
Note that k is dependent on y.

Example 3.4. Given a sample (xi, yi), if the true class has the second highest softmax
output, then π2(xi) = k and the summation is of two elements:

s((xi, yi)) = f(xi)π1(xi) + f(xi)k.

Given a new feature vector xn+1, its prediction set will be

τ(xn+1) = {π1(xn+1), . . . , πk(xn+1)}, where k = sup
k′∈1,...,K

k′ :
k′∑
j=1

f(xn+1)πj(xn+1)

+ 1

(7)

1 is added to the supremum so that the sum of the softmax outputs just exceeds q̂.

Figure 6: The left image shows the sorted softmax scores of a new input. The right image
shows the classes that will be in the prediction set following the rule above.

3.2 Regression

For regression models, a similar thing happens. Instead of getting a single value prediction
f(xi) ∈ R, what could be more valuable is to get a prediction interval f(xi) = (a, b) ⊂ R
with high confidence.

To achieve this, we are going to modify the regression model in order not to estimate
the value, but the quantiles. More precisely, we will define two models that depend on the
chosen value α: one, called fl(x), will estimate the α

2 –th quantile, and the other, called
fu(x), the (1− α

2)–th quantile. The letters l and u are chosen to represent each function
because fl will estimate the lower quantile and fu, the upper one (as normally α < 0.5).
Both functions are trained by optimizing their respective pinball loss, which is:

• Lα
2
(y, fl(x)) =

{
α
2 (y − fl(x)) if y ≥ fl(x)

(1− α
2)(fl(x)− y) if y < fl(x)

, for fl(x)

• L1−α
2
(y, fu(x)) =

{
(1− α

2)(y − fu(x)) if y ≥ fu(x)
α
2 (fu(x)− y) if y < fu(x)

, for fu(x)

14

3.3 Recommender systems Conformal prediction

The idea is that, e.g., for α = 0.1, we can take intervals from the lower estimated
quantile to the upper one. As they exclude the bottom and top α

2 = 0.05 of the values,
we end up with an error rate of 0.1 and 90% coverage. The problem is that, as the fitted
quantiles can be inaccurate, this coverage is only an estimation, so we have to conformalize
it.

To do it, we take the score defined as the distance between the actual value y and its
nearest quantile:

s(x, y) = max({fl(x)− y, y − fu(x)}). (8)

After computing the scores on the calibration set and setting q̂, we can form valid
predictions intervals by taking

τ(xn+1) = [fl(x)− q̂, fu(x) + q̂] (9)

for a new feature vector xn+1. Intuitively, τ grows (if q̂ > 0) or shrinks (if q̂ < 0) the
distance between the quantiles to achieve coverage.

Figure 7: Quantile estimations and its conformalized version, used to get prediction inter-
vals with guaranteed coverage.

3.3 Recommender systems

As we have seen, recommender systems are complex due to data sparsity. Users interact
with only a small subset of available items, resulting in vast matrices where most entries
are missing. This sparsity makes it difficult to accurately infer preferences since there is
limited direct information about user-item interactions.

Measuring the uncertainty of the model’s predictions could enhance the system’s effec-
tiveness. If a recommender system quantifies its confidence in a given recommendation,
it provides a measure of reliability, and the recommendation set adapts to its confidence
and gives a notion about how much trust can be placed in a recommendation. Users can
understand when a recommendation is robust and when it is based on limited information,
which can foster greater trust and satisfaction with the system. We will try to achieve
this using conformal prediction. Thus, addressing the inherent complexity of recommender
systems through uncertainty measurement not only improves prediction accuracy but also
enhances user engagement and trust.

We focus on explicit feedback recommendation systems, which, as the name says, have
explicit feedback from the user in user-item interactions. From said data, a Factorization

15

3.3 Recommender systems Conformal prediction

Machine can learn and predict the ratings of user-item interactions that haven’t happened.

When recommending to a user, the recommender takes the top n predicted ratings for
interactions that haven’t happened and shows them to the user. To find a measure of
uncertainty and apply conformal prediction, let’s think about a heuristic notion that can
somehow represent this.

Facing this problem, it reminds a bit of classification, as the output is a set predictions
and the output is sorted from higher to lower confidence score. For instance, let’s take
the conformal score as the sum of the rating up to the item with the highest true rating.
This way, if the first item of the prediction is the best rated one, the score consists only
of the addition of one rating. However, if several items are recommended until reaching
the optimal one, the ratings add up and the total score is greater.

Then, q̂ is computed and adaptive recommendation sets are formed, being larger if more
lower-rated predictions are needed to reach q̂, and smaller if less higher-rated predictions
suffice.

16

Experimentation

4 Experimentation

Let’s see the different models where we tried conformal prediction.

4.1 Conformal prediction in classification: The MNIST dataset

The MNIST (Modified National Institute of Standards and Technology)[2] dataset is a
collection of 28 × 28 pixel images of handwritten digits from 0 to 9. Each pixel value
ranges from 0 (black) to 255 (white), i.e., the classical 8-bit representation of grayscale
values. It consists of 60,000 images for training and 10,000 for testing, and it’s commonly
used for testing image classification models. It was introduced in 1998.

Let’s explore the data:

Figure 8: Some MNIST labeled samples

As we can see, the label above corresponds to that same digit. The chosen model to
solve the MNIST classification will have a softmax output, so an ideal model would be a
vector of 10 positions, with the value 1 in the index of the true digit and 0 for the rest. For
instance, the true labels must have the same format to compute the loss function against
the predicted softmax outputs. The first step we do is transform the labels of the training
data so they have this same format, called one-hot encoding:

17

4.1 Conformal prediction in classification: The MNIST dataset Experimentation

Figure 9: The same MNIST labeled samples as in Figure 8, but with one-hot encoding

This transformation is not needed for the test dataset because the prediction after
training will take the index of the highest softmax value, not the raw softmax outputs.

The neural network defined takes all the 28 × 28 = 784 pixels as the input, has two
hidden layers of 512 nodes each, and a 10-dimensional output of the softmax scores for
each class. Each node in the hidden layers has ReLU as the activation function.

x1

x2

x3

x4

x5

x784

...

a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
4

a
(1)
512

...

a
(2)
1

a
(2)
2

a
(2)
3

a
(2)
4

a
(2)
512

...

y1

y2

y10

...

input
layer

hidden layers

output
layer

Figure 10: Representation of the neural network

The loss function is the cross-entropy loss, and the optimizer is mini-batch gradient
descent with a batch size of 64. The learning rate is 10−1 and the optimization will stop

18

4.1 Conformal prediction in classification: The MNIST dataset Experimentation

after 5 epochs.

After the training, we end up with an accuracy (percentage of correctly predicted
classes) of 86.1% on the test set. Now, let’s apply conformal prediction to form prediction
sets with high confidence.

We start by choosing 100 samples not seen during training as calibration samples
(X, y)calib. We choose an error rate of α = 0.1. We compute the confidence scores
s1, . . . , s100 for each sample, where each si is the score seen in 6.

Then, we calculate q̂:

q̂ = Quantile
(
s1, . . . , s100;

⌈(100 + 1)(1− 0.1)⌉
100

)
= Quantile(s1, . . . , s100; 0.91).

In this case, we obtain q̂ = 0.9999999. Now, we take the rest of the samples not seen
during training (9900 samples) and form new prediction sets, following the equation 7:

Figure 11: Some prediction sets

As we see, the first column is the true class, while the second one corresponds to the
prediction set for that MNIST image. The set is ordered from higher to lower softmax
score.

Knowing this, the model without conformal prediction would have chosen the first
element of the list as the prediction. Thus, in this example, the model would have correctly
predicted all of the images except for the third one, as the true class is 5 while the class with
the highest softmax is 8. With conformal, we manage to include 5 inside the prediction
set, so all the predictions are correct. Moreover, the sets seem to be adaptive, indicating
more uncertainty with larger sets.

To further investigate this, an idea comes to mind. Let’s see the average set size for
correctly predicted classes versus incorrectly predicted ones, taking the first element of
the set as the point prediction. We obtain:

• 4.27 average set size when the prediction was correct.

• 6.91 average set size when the prediction was incorrect.

This reflects the adaptive behaviour of the prediction sets, as when the model is in fact
predicting correctly, the set size is smaller. When it’s uncertain, it’s larger.

Plotting the number of sets of each possible size and doing so for correct versus incorrect
point predictions, we see a clear shift of the histogram values to the right, indicating larger
set sizes for uncertain predictions:

19

4.2 Conformal prediction in regression: California Housing dataset Experimentation

Figure 12: Histograms of set sizes for correct and incorrect point predictions

4.2 Conformal prediction in regression: California Housing dataset

The California Housing dataset studies the median house value for California districts,
expressed in hundreds of thousands of dollars ($100,000), which will be our target variable.

This dataset was derived from the 1990 U.S. census, using one row per census block
group. A block group is the smallest geographical unit for which the U.S. Census Bureau
publishes sample data (a block group typically has a population of 600 to 3,000 people).

A household is a group of people residing within a home. Since the average number of
rooms and bedrooms in this dataset are provided per household, these columns may take
surprisingly large values for block groups with few households and many empty houses,
such as vacation resorts.

The input features used to estimate the prices are:

• Median income in the block group.

• Median house age in the block group.

• Average number of rooms per household.

• Average number of bedrooms per household.

• The block group population.

• Average number of household members.

• Latitude of the block group.

• Longitude of the block group.

As usual, 20% of the data is kept as test data. The model chosen to estimate the lower
and upper quantiles is Gradient Boosting Regressor (GBR)[8], as two separate models.
The loss function for both of them is the pinball loss, the optimizer is Gradient Descent
and the number of estimators is 200. The learning rate is 10−1.

This time, we have to choose the coverage we want before training, as the models
depend on the chosen α. We choose α = 0.1, seeking 90% coverage, so we will have

20

4.2 Conformal prediction in regression: California Housing dataset Experimentation

two models fl(x) and fu(x) that estimate the 0.05-th quantile and the 0.95-th quantile,
respectively.

An additional third model f(x) is trained, which is a Gradient Boosting Regressor as
well and predicts the mean of the price given a feature vector. We will obtain metrics
from it to get an idea of how GBR is performing.

After training the three models, we can plot the actual values against the predicted
ones for f(x):

Figure 13: Plot of the actual prices against the predicted ones

It’s difficult to represent the results in a clear way as the input data is 8-dimensional,
but the previous plot gives us a rough estimate of the performance. As we can see, as the
actual price gets bigger, the model tends to underestimate the price. The MSE for the
test set is 0.26. Moreover, there is an outlier for houses with a price of $500,000. It seems
that any house of that price or above gets assigned this hard limit, so let’s get rid of them
by pre-processing these outliers and rerun the model:

21

4.3 Conformal Prediction in Recommender Systems: MovieLens Experimentation

Figure 14: Plot of the actual prices against the predicted ones, getting rid of the outliers

That’s better. Also, the MSE decreased to 0.22. Taking the square root of this value
gives us an RMSE of 0.47. This means that, on average, the predictions deviate from the
actual values by $47,000.

We choose 100 samples not seen during training as calibration samples (X, y)calib.
We compute the confidence scores s1, . . . , s100 defined in equation 8 for each sample and
q̂ = Quantile(s1, . . . , s100; 0.91) = −0.008. That’s very close to 0, and it shows that the
models have correctly estimated the lower and upper quantiles for a 90% coverage. As q̂ is
negative, we can actually shrink the distance between the quantiles a little bit to achieve
the desired coverage. For instance, applying equation 9, we end up with these prediction
intervals:

τ(xn+1) = [fl(x) + 0.008, fu(x)− 0.008].

4.3 Conformal Prediction in Recommender Systems: MovieLens

The MovieLens dataset is a widely used collection of movie ratings and metadata, compiled
by the GroupLens Research Project at the University of Minnesota[9]. It’s primarily used
for research and experimentation in the field of recommender systems.

The dataset we use is MovieLens 1M: released in 2003, this version contained 1 million
ratings from 1 to 5, from 6,040 users on 3,706 movies. The ratings are made by users of the
MovieLens website, which was created to provide personalized movie recommendations to
users. By using the service, users rate movies they have watched, which helps the system
to recommend new movies they might like based on their preferences.

We use a Factorization Machine that learns from the already rated movies, using the

22

4.3 Conformal Prediction in Recommender Systems: MovieLens Experimentation

rating, the movie, the user and its occupation to predict rating for unseen movies following
the equation 2.

The model is trained using MSE as the loss function and Adam as the optimizer. The
number of epochs is 30 and the batch size is 2048.

With these conditions, the model yields an NDCG (see 5) of 0.896 for the top 5 recom-
mendations. The score defined in 3.3 is calculated for 100 calibration samples, modifying
the ratings to increase their distance exponentially. Otherwise, they are too similar to
notice significant difference between scores. For this reason, each rating r becomes 3r.

Then, q̂ is computed by choosing α = 0.2 (a lower alpha never outputs only 1 movie,
so a higher α is used to achieve this behaviour):

q̂ = Quantile
(
s1, . . . , s100;

⌈(100 + 1)(1− 0.2)⌉
100

)
= Quantile(s1, . . . , s100; 0.81).

Let’s see an example of the recommendations this new conformalized output makes:

Figure 15: We see three recommendation sets. Below each set, the scores of each movie are
shown, and its true labels. In the first set, the model is uncertain and outputs 4 movies,
and in fact the movie with the highest score only shows up in the 3rd position. In the next
one, the model is more certain and outputs 3 movies, while the true higher-rated movie is
3rd. Finally, in the last set, the model is very certain and only outputs 1 movie, and the
true higher-rated movie is first.

23

Discussion

5 Discussion

5.1 Future work

From now on, it would be beneficial to apply Convolutional Neural Networks (CNNs) to
the MNIST dataset. CNNs are more suitable for image classification tasks, and their use
should lead to higher accuracy. This approach could also provide additional insights from
the data, combined with a more detailed analysis of each class independently.

For the California housing dataset, additional work can be done to understand why
the model underestimates the prices of more expensive houses, and see if it gets fixed with
another model or more pre-processing has to be done.

Regarding the recommender system, the new techniques that have been considered
should be further formalized with precise mathematical definitions. Their effectiveness
can then be studied in greater depth to evaluate the proposed scoring and the quality of
the adaptive sets. Additionally, other loss functions should be tried as the ratings are not
calibrated, so the MSE isn’t the best option. Other options such as the Pearson correlation
coefficient may be more suitable.

Overall, a more in-depth analysis of the results is possible, ensuring that the cover-
age really holds by generating many prediction sets/intervals and verifying its statistical
properties.

24

Conclusions

6 Conclusions

In this thesis, we have successfully addressed the challenge of explainability in machine
learning models by focusing on the measurement and adjustment of uncertainty in their
outputs. Our primary objective was to mitigate the risks associated with the opaque nature
of machine learning predictions, particularly in sensitive applications such as medical
diagnosis and mortgage eligibility.

We began by exploring conformal prediction as a method to provide a statistically
backed set of possible outcomes instead of single-value predictions. This approach ensures
that the true prediction lies within the set with a high degree of confidence, effectively
communicating the uncertainty inherent in the model’s predictions.

Firstly, we applied conformal prediction to a classification problem using the MNIST
dataset. Through this application, we demonstrated the method’s capability to quan-
tify uncertainty and adjust the prediction sets accordingly. This step provided a solid
foundation for further exploration into regression problems.

We then extended our work to a regression problem, specifically estimating real estate
prices in California. By leveraging conformal prediction, we managed to produce predic-
tion intervals that dynamically adjusted in size based on the model’s uncertainty. This not
only enhanced the model’s transparency but also provided more reliable and interpretable
predictions for end-users.

Finally, we explored the application of conformal prediction in recommender systems,
an area that inherently involves significant uncertainty, especially with new users. We
successfully quantified the uncertainty of a recommender system and applied conformal
prediction to ensure that recommendation sets were appropriately sized according to the
user’s data availability. Larger sets were provided for users with high uncertainty, and
smaller, more precise sets were given to users with well-known preferences.

In conclusion, we have demonstrated that conformal prediction is a robust and versa-
tile tool for enhancing the explainability and reliability of machine learning models. By
providing a clear measure of uncertainty and conformalizing the outputs, we have taken
steps toward more transparent and trustworthy ML models.

25

References

[1] Scantamburlo, T.; Baumann, J.; Heitz, C.: On prediction-modelers and decision-
makers: why fairness requires more than a fair prediction model,
http://dx.doi.org/10.1007/s00146-024-01886-3, 2024.

[2] LeCun, Y.; Cortes, C.; Burges, C. J. C.: The MNIST database of handwritten digits,
http://yann.lecun.com/exdb/mnist, 1998.

[3] Nair, V.; Hinton, G. E.: Rectified Linear Units Improve Restricted Boltzmann Ma-
chines,
Proceedings of the 27th International Conference on Machine Learning (ICML-10),
807-814, 2010.

[4] Huang, C.; Yu, T.; Xie, K.; Zhang, S.; Yao, L.; McAuley, J.: Foundation Models for
Recommender Systems: A Survey and New Perspectives,
arXiv, 2024, arXiv:2402.11143.

[5] Loni, B.; Larson, M.; Hanjalic, A.: Factorization Machines for Data with Implicit
Feedback,
arXiv, 2018, arXiv:1812.08254.

[6] Rendle, S.: Factorization Machines,
Proceedings of the 2010 IEEE International Conference on Data Mining, 995-1000,
2010.

[7] Visnovsky, J.; Kassak, O.; Kompan, M.; Bielikova, M.: The Cold-start Problem:
Minimal Users’ Activity Estimation,
arXiv, 2021, arXiv:2106.00102.

[8] Friedman, J. H.: Greedy Function Approximation: A Gradient Boosting Machine,
Annals of Statistics, 29(5), 1189-1232, 2001.

[9] Harper, F. M.; Konstan, J. A.: The MovieLens Datasets: History and Context,
ACM Transactions on Interactive Intelligent Systems (TiiS), 5(4), Article 19, 19
pages, December 2015. DOI: http://dx.doi.org/10.1145/2827872

[10] Angelopoulos, A. N.; Bates, S.: A Gentle Introduction to Conformal Prediction and
Distribution-Free Uncertainty Quantification, 2022.

http://dx.doi.org/10.1145/2827872

	Introduction
	Scientific background
	Machine learning basics
	Classification
	Regression
	Recommender systems

	Conformal prediction
	Classification
	Regression
	Recommender systems

	Experimentation
	Conformal prediction in classification: The MNIST dataset
	Conformal prediction in regression: California Housing dataset
	Conformal Prediction in Recommender Systems: MovieLens

	Discussion
	Future work

	Conclusions

