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Abstract

The aim of this thesis is to study some expansions of the Nilpotent minimum logic (denoted
by NML), focusing on their lattices of axiomatic and finitary extensions and, additionally,
exploring the structural completeness of these logics, alongside their variants (active struc-
tural completeness, passive structural completeness, . . . ).

The project includes research about the rational Nilpotent minimum logic (designated by
RNML), which is obtained by adding rational constants to the language of NML. More-
over, we also study the ∆-core fuzzy logic obtained by expanding the language of NML with
the Baaz Delta connective and examine the impact of the incorporation of rational constants
to the language of this logic (which is equivalent to the addition of the Baaz Delta connective
to RNML).

The thesis culminates with the corresponding analysis of an extension of the later logic
which is obtained by introducing bookkeeping axioms for the ∆ operator, motivated by the
aim for the algebra of constants to form a subalgebra.

In the project, through comparative analysis, the differences and similarities between the
lattices of axiomatic and finitary extensions among the previously mentioned expansions are
evaluated, as well as how the structural completeness results obtained may vary from one
logic to another.

Resumen

El objetivo de esta tesis es estudiar algunas expansiones de la lógica del Nilpotente mı́nimo
(denotada por NML), centrándonos en sus ret́ıculos de extensiones axiomáticas y finitas y,
además, explorando la completitud estructural de estas lógicas, junto con sus variantes (com-
pletitud estructural activa, completitud estructural pasiva, . . . ).

El proyecto abarca la lógica racional del Nilpotente mı́nimo (designada por RNML), que se
obtiene añadiendo constantes racionales al lenguaje de NML. También se estudia la lógica
fuzzy ∆-core obtenida mediante la expansión del lenguaje de NML con el operador Delta
de Baaz, y se examina el impacto de la incorporación de constantes racionales al lenguaje de
esta lógica (lo que equivale a añadir el operador Delta de Baaz a RNML).

La tesis culmina con el correspondiente análisis de una extensión de la última lógica pre-
sentada, resultante de la introducción de bookkeeping axioms para el operador ∆, motivada
por el objetivo de que el álgebra de constantes forme una subálgebra.

En el proyecto, a través de un análisis comparativo, se evalúan las diferencias y similitudes en-
tre los ret́ıculos de extensiones axiomáticas y finitas de las distintas expansiones mencionadas
anteriormente, aśı como la forma en que vaŕıan los resultados de completitud estructural de
una lógica a otra.
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Resum

L’objectiu d’aquesta tesi és estudiar algunes expansions de la lògica del Nilpotent mı́nim
(denotada per NML), centrant-nos en els seus reticles d’extensions axiomàtiques i finites
i, a més, explorant la completitud estructural d’aquestes lògiques, juntament amb les seves
variants (completitud estructural activa, completitud estructural passiva, . . . ).

El projecte abasta la lògica racional del Nilpotent mı́nim (designada per RNML), que s’obté
afegint constants racionals al llenguatge de NML. També s’estudia la lògica fuzzy ∆-core
obtinguda mitjançant l’expansió del llenguatge de NML amb l’operador Delta de Baaz, i
s’examina l’impacte de la incorporació de constants racionals al llenguatge d’aquesta lògica
(el que equival a afegir l’operador Delta de Baaz a RNML).

La tesi culmina amb l’anàlisi corresponent d’una extensió de l’última lògica presentada, que
resulta de la introducció de bookkeeping axioms per a l’operador ∆, motivada per l’objectiu
que l’àlgebra de constants formi una subàlgebra.

En el projecte, mitjançant una anàlisi comparativa, s’avaluen les diferències i similituds entre
els reticles d’extensions axiomàtiques i finites de les diferents expansions esmentades anteri-
orment, aix́ı com la manera com varien els resultats de completitud estructural d’una lògica
a una altra.

2020 Mathematics Subject Classification. 03B52, 03G25, 08B15, 08C15
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Introduction

The Nilpotent minimum logic (NML for short) was introduced by Esteva and Godo in [12].
This logic is obtained from the Monoidal t-norm logic, in particular, it is the axiomatic exten-
sion that consists on adding the involutive condition ¬¬φ → φ and the nilpotent minimum
condition (ψ ∗φ→ ⊥)∨ (ψ∧φ→ ψ ∗φ). That is, a Hilbert calculus of NML in the language
{∧, ∗,→,⊥} is given by the axioms:

A1) (φ→ ψ) → ((ψ → χ) → (φ→ χ))

A2) (φ ∗ ψ) → φ

A3) (φ ∗ ψ) → (ψ ∗ φ)

A4) (φ ∧ ψ) → φ

A5) (φ ∧ ψ) → (ψ ∧ φ)

A6) (φ ∗ (φ→ ψ)) → (φ ∧ ψ)

A7a) (φ→ (ψ → χ)) → ((φ ∗ ψ) → χ)

A7b) ((φ ∗ ψ) → χ) → (φ→ (ψ → χ))

A8) ((φ→ ψ) → χ) → (((ψ → φ) → χ) → χ)

A9) ⊥ → φ

A10) ¬¬φ→ φ

A11) (ψ ∗ φ→ ⊥) ∨ (ψ ∧ φ→ ψ ∗ φ)

and Modus Ponens as the only inference rule. The connectives ¬,∨ that appear in the axioms
and are not in the language are defined as ¬φ := φ→ ⊥ and φ∨ψ := ((φ→ ψ) → ψ)∧((ψ →
φ) → φ).

The axiomatic extensions of NML are axiomatized and characterized in [15]. Moreover,
the lattice of finitary extensions of the Nilpotent minimum logic is studied in [16], in addition
to the structural completeness of the logic and its axiomatic extensions.
Our goal in this thesis is to delve into some expansions of the Nilpotent minimum logic and,
as has been done for NML, investigate their lattices of axiomatic and finitary extensions
alongside the structural completeness of the logics and some of their extensions.

We recall that a logic is taken to be a consequence relation among a set of formulas in a
particular propositional language. The notion of a logic being structurally complete (often
denoted by SC) indicates that every proper extension has to contain new logical axioms (as
opposed to only containing new rules of inference). In fact, structural completeness can be
interpreted as some kind of maximality condition among logics with the same theorems.

A rule Γ ▷ φ is said to be derivable in a logic ⊢ when Γ ⊢ φ (that is, when it is in ⊢).
On the other hand, a rule Γ ▷ φ is admissible in a logic ⊢ when its addition doesn’t produce
new theorems. In other words, whenever for every substitution σ on the set of formulas,

if ∅ ⊢ σ(γ) for all γ ∈ Γ, then ∅ ⊢ σ(φ).

Thus, it is clear that every derivable rule in a logic will also be admissible and we can obtain
an analogous definition of SC: a logic is structurally complete when all admissible rules are
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also derivable. Furthermore, a logic whose extensions are all strcturally complete is called
hereditarily structurally complete (HSC, for short).
Moreover, a rule Γ ▷ φ is said to be passive (passive ⊢ − admissible) in a logic ⊢ if for every
substitution σ the set σ(Γ) is not contained in Th(⊢), this means that Γ is not unifiable.
Thus, such rule is admissible but can’t be applied to theorems. We say that a logic is active
structurally complete (denoted ASC) when all admissible rules are either derivable or passive
and, on the other hand, we say it is passive structurally complete (PSC, for short) if every
passive rule is derivable in the logic.

We will study such properties for some expansions of NML and its extensions. In order
to do that, we will take an algebraic approach, by means of the algebraization of logics ex-
plained in [5], we will use some characterizations and results about the algebraic counterpart
of structural completeness and its variants. Some of these key theorems and propositions are
proven in [11] and [3].
In fact, the algebraization of logics in [5] enables us to establish a dual isomorphism between
the lattice of finitary extensions of a logic and the lattice of subquasivarieties of its equivalent
algebraic semantics. This can be restricted to another dual isomorphism between the lattice
of axiomatic extensions of a logic and the lattice of subvarieties of its equivalent semantics.
Thus, concerning the lattices of axiomatic and finitary extensions of the expansions of NML,
we will also be able to study them from an algebraic perspective.

In particular, throughout this thesis, we will focus on some specific expansions. The pa-
per is structured as follows:
In Section 1, we present some basic notions and results about the concept of logic, its alge-
braization and structural completeness. Moreover, we introduce the logics MTL and NML.
We exhibit some results concerning filters on MTL-algebras, the characterization of axiomatic
and finitary extensions of NML, and its structural completeness. Additionally, we discuss
the introduction of constants and connectives into the language: rational constants and the
Delta Baaz connective. In the latter case, we define (∆)-core fuzzy logics and provide some
results regarding them.

In Section 2, as has been done in [18] with  Lukasiewicz logic, product logic, and Gödel-
Dummett logic, we will analyze the expansion of the Nilpotent minimum logic with rational
constants. When constants with suitable axioms are added to a logic, we enhance its expres-
siveness: given a formula φ and a constant c, assignments sending c → φ to the top element
will be the ones that evaluate φ in the upset of the value of c. This logic will be referred
to as rational Nilpotent minimum logic (RNML, for short) and will be algebraized by the
variety of rational NM-algebras.
Just like in [18, Section 7], we begin studying the lattice of extensions of RNML: Theo-
rem 2.4 specifies the structure of the lattice of subvarieties of RNM (the class of rational
NM-algebras), thereby providing a total description of the lattice of axiomatic extensions of
RNML, presented in Corollary 2.6. This previous lattice will be an uncountable chain, while
the lattice of finitary extensions will contain both uncountable chains and antichains.

To finalize the section, we study structural completeness in RNNML, similarly to how
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it has been done in [18, Section 8] for the case of the rational Gödel logic: in Theorem 2.7
a characterization of passive structural completeness is presented for extensions of RNML,
while the other variants of structural completeness (SC, ASC, HSC) turn out to be equiva-
lent, as stated in Theorem 2.9. Finally, Theorem 2.10 provides bases for the admissible rules
on all the axiomatic extensions of RNML.

Section 3 is dedicated to the study of the ∆-core fuzzy logic NML∆ corresponding to NML,
and to observe how the delta connective influences the lattices of extensions and the struc-
tural completeness results.
We begin by analyzing the lattice of axiomatic extensions and observe that it is analogous to
the one obtained for NML (as seen in Proposition 3.14 and Theorem 3.15) because NM∆-
chains have similar properties to NM-chains. Later in the project, we move on to inspecting
the lattice of finitary extensions. To study this, we use results about discriminator varieties
(Theorem 3.5) and present critical algebras along with some of their properties. A charac-
terization of these algebras is provided in Corollary 3.24, and in Corollary 3.28 we present
an axiomatization of the quasivarieties generated by a single critical algebra. Since NM∆ is
a locally finite variety, every quasivariety will be generated by its critical algebras (as stated
in Theorem 3.21) thus, from Lemma 3.29 and the previous results, we are able to provide
more information about the lattice of finitary extensions of NML∆.

Lastly, we move on to structural completeness. In Proposition 3.35, we identify the least
elements of the lattice of subquasivarieties of NM∆ (the class of NM∆-algebras) and, based
on this, we prove that NML∆ is not structurally complete (Theorem 3.36). Moreover, there
is no nontrivial axiomatic extension that is SC.
To conclude the section, in Theorem 3.39, we demonstrate that NML∆ is hereditarily al-
most structurally complete and present, for any axiomatic extension, an axiomatization of
all (passive) admissible quasiequations in Corollary 3.40.

In Section 4 we focus on the expansion of NML∆ with rational constants, or equivalently, the
∆-core fuzzy logic corresponding to RNML (denoted by RNML∆). As we did in Section
2, we study the lattice of axiomatic extensions of the logic: from Theorem 4.8 and Corollary
4.7, we obtain information about the lattice of subvarieties of RNM∆ (the class of rational
NM∆-algebras), which is then translated into information about the lattice of axiomatic ex-
tensions in Corollary 4.12.
Then, we proceed to study structural completeness in the logic: in Theorem 4.14 we prove
structural completeness holds for some particular axiomatic extensions.

Lastly, motivated by the aim for the algebra of constants to form a subalgebra, we delve
into the logic obtained from RNML∆ by adding axioms that ensure the rational constants
interact appropriately with the ∆ connective.
It is seen in Corollary 4.19 that this logic has no proper consistent axiomatic extensions and,
as stated in Theorem 4.20, it is also structurally complete.

Finally, Section 5 is devoted to give a conclusion about the project, summarizing the main
similarities and differences observed among the lattices of axiomatic and finitary extensions,
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as well as the structural completeness results proven for the different expansions.

Acknowledgements: I would like to thank my thesis director, Joan Gispert, for his guid-
ance, insightful feedback and advice throughout this entire process.
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1 Preliminaries

1.1 Logic, varieties and quasivarieties

In order to be able to introduce some notions about structural completeness, its variants and
the admissibility of rules we first recall some concepts from propositional logic. We will also
talk about varieties, quasivarieties and algebraic counterparts.

Definition 1.1. Given an algebraic language L (i.e. a set of logical connectives with ascribed
arities), we denote by FmL the set of formulas in L over a denumerable set of variables. When
L is clear from the context we can just write Fm instead of FmL.

Then, a logic ⊢ is a consequence relation on the set of formulas Fm of a given language
L which, moreover, is substitution-invariant: for every substitution σ on Fm and every
Γ ∪ {φ} ⊆ Fm

if Γ ⊢ φ, then σ[Γ] ⊢ σ(φ).

Remark 1.2. It will always be assumed that the logics ⊢ considered are finitary, that is, for
every Γ ∪ {φ} ⊆ Fm

if Γ ⊢ φ, then ∆ ⊢ φ for some finite ∆ ⊆ Γ.

Definition 1.3. Given two logics ⊢ and ⊢′ such that the language of ⊢′ extends the one of
⊢, we say that ⊢′ is an expansion of ⊢ if, for every set of formulas Γ ∪ {φ} in the language
of ⊢,

Γ ⊢ φ implies Γ ⊢′ φ.

Furthermore, an expansion is said to be conservative when Γ ⊢ φ if and only if Γ ⊢′ φ.

Definition 1.4. Given two logics ⊢ and ⊢′ in the same language we say that ⊢′ is an exten-
sion of ⊢ when Γ ⊢′ φ for every Γ ∪ {φ} ⊆ Fm such that Γ ⊢ φ.
In particular, an extension can be seen as an expansion in the same language.

Moreover, an extension ⊢′ of ⊢ is said to be axiomatic when there is a set Σ ⊆ Fm closed
under substitutions such that, for all Γ ∪ {φ} ⊆ Fm,

Γ ⊢′ φ if and only if Γ ∪ Σ ⊢ φ.

Definition 1.5. A formula φ is said to be a theorem of ⊢ if ∅ ⊢ φ. Then, the set of theorems
of some logic ⊢ is denoted by Th(⊢) = {φ ∈ Fm : ∅ ⊢ φ}.

Definition 1.6. A rule is an expression of the form Γ ▷ φ for some finite set of formulas
Γ ∪ {φ} ⊆ Fm.
When Γ = {γ1, . . . , γn} we sometimes write γ1, . . . , γn ▷ φ instead of Γ ▷ φ.

Definition 1.7. A basis or an axiomatization of a logic ⊢ is a pair (A,R) where A ⊆ Th(⊢)
and R ⊆ ⊢ are such that ⊢ is the smallest consequence relation containing R ∪ {⟨∅, α⟩ : α ∈
A}.
This means that Γ ⊢ φ iff there is a proof (also called derivation) from A ∪ Γ of φ by means
of the rules from R.
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Given a basis (A,R) of some logic ⊢, it is interesting to know whether a formula φ is in
Th(⊢), in other words, whether there is a proof of φ from A by applying rules of R. Moreover,
it can be analyzed the size of such proofs. Proofs of theorems can be shortened by adding
new rules and such extension of R can be done in two ways:

1. by adding derivable rules;

2. by adding admissible but non-derivable rules;

where:

Definition 1.8. A rule Γ ▷ φ is derivable in a logic ⊢ when Γ ⊢ φ (that is, when it is in ⊢).

Definition 1.9. A rule Γ ▷ φ is admissible in a logic ⊢ when its addition doesn’t produce
new theorems. In other words, whenever for every substitution σ on Fm,

if ∅ ⊢ σ(γ) for all γ ∈ Γ, then ∅ ⊢ σ(φ).

Remark 1.10. Every rule that is derivable in ⊢ is also admissible in ⊢.

Definition 1.11. A logic ⊢ is said to be structurally complete (SC for short) if all admissible
rules are also derivable. That is, if every proper extension has to contain some new logical
axiom in its basis instead of just new rules of inference.
Moreover, logics whose extensions are all structurally complete are called hereditarily struc-
turally complete (also denoted by HSC).

Furthermore, every logic admits a structurally complete extension:

Proposition 1.12. [3, Proposition 1.4] Every logic ⊢ has a unique structurally complete
extension ⊢+ with the same theorems. In fact, a rule is derivable in ⊢+ precisely when it is
admissible in ⊢.

Hence, structurally complete logics are the maximal elements of the classes of logics having
the same theorems.

Definition 1.13. The logic ⊢+ presented in the previous proposition is called structural
completion of ⊢.

Definition 1.14. Moreover, since the derivable rules of ⊢+ coincide with the admissible ones
in ⊢, a set R of rules is called a base for the admissible rules on ⊢ if, by adding R to ⊢, we
obtain an axiomatization of ⊢+.

In fact, structural completeness can be split in two halves:

Definition 1.15. A rule Γ ▷ φ is passive if for every substitution σ the set σ(Γ) is not
contained in Th(⊢), this means that Γ is not unifiable. Thus, such rule is admissible but
can’t be used in the proof of any theorem of the logic.

Definition 1.16. On the other hand, a rule Γ ▷ φ is active if there exists a substitution σ
such that ∅ ⊢ σ(γ) for all γ ∈ Γ.
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Definition 1.17. A logic ⊢ is said to be active structurally complete (ASC, for short) if
every active rule that is admissible in ⊢ is also derivable in the logic.
This type of logics are also called almost structurally complete and satisfy that the only ad-
missible non-derivable rules are passive, thus, theorems can’t be shortened by using method 2.
presented before.

Definition 1.18. Accordingly, a logic ⊢ is said to be passive structurally complete (PSC, for
short) if every passive rule in the logic is also derivable in ⊢.

Actually, structural completeness can also be studied from an algebraic point of view. In
order to present some results on the matter we will first delve into the algebraization of logics
(see [5]):

Definition 1.19. Given K a class of algebras of the same type:

I(K) = {A : A ∼= B for some B ∈ K}
S(K) = {A : A ⊆ B for some B ∈ K}
H(K) = {A : B ↠ A for some B ∈ K}

P(K) = {A : A =
∏

i∈I Ai for some ∅ ̸= {Ai : i ∈ I} ⊆ K}
PU (K) = {A : A =

∏I
F Ai for some ∅ ̸= {Ai : i ∈ I} ⊆ K and some ultrafilter F on I}

Throughout this project, the relations between the previous class operators are assumed
to be known by the reader.

Definition 1.20. A class of algebras of the same type K is a variety whenever H(K) ⊆ K,
S(K) ⊆ K and P(K) ⊆ K.

Moreover, since the arbitrary intersection of varieties is a variety, we can define a new
operator V (named variety generated by) such that, for every class of algebras K of type τ ,

V(K) =
⋂

{V : V is a variety of type τ and K ⊆ V}.

Thus, V(K) is the least variety containing K.

Theorem 1.21. [7, Theorem 11.9] A class K is a variety iff it is an equational class.

Definition 1.22. A class of algebras of the same type K is a quasivariety whenever it con-
tains the trivial algebra, I(K) ⊆ K, S(K) ⊆ K, P(K) ⊆ K and PU (K) ⊆ K.

Analogously to the case of varieties, the arbitrary intersection of quasivarieties is a quasiva-
riety. Thus, we can define a new operator Q (named quasivariety generated by) such that,
for every class of algebras K of type τ ,

Q(K) =
⋂

{Q : Q is a quasivariety of type τ and K ⊆ Q}.

Therefore, Q(K) is the least quasivariety containing K.

Theorem 1.23. [7, Theorem 2.25] A class K is a quasivariety iff it is a quasiequational
class.
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Definition 1.24. A logic ⊢ is algebraizable by a quasivariety K if there are a finite set of
equations τ(x) and a finite set of formulas ∆(x, y) in the same language such that, for every
set of formulas Γ ∪ {φ}:

Γ ⊢ φ if and only if
⋃
{τ(γ) : γ ∈ Γ} ⊨K τ(φ),

x ≈ y ⊨⊨K
⋃
{τ(δ) : δ ∈ ∆(x, y)},

where ⊨K is the equational consequence relative to K. That is, for any set of tuples of formu-
las {⟨φi, ψi⟩ : i ∈ I} ∪ {⟨φ,ψ⟩} in the language of K we have {φi ≈ ψi}i∈I ⊨K φ ≈ ψ if and
only if, for each A ∈ K and every assignment vA in A, it holds A ⊨ (φ ≈ ψ)[vA] whenever
A ⊨ (φi ≈ ψi)[vA] is satisfied for every i ∈ I.

In this case, K is uniquely determined (see [5, Theorem 2.15]) and it is called the equiv-
alent algebraic semantics of ⊢.

Given a logic algebraized by a quasivariety K by means of finite sets of equations and
formulas (τ and ∆, respectively) the lattice of extensions of ⊢ is dually isomorphic to LQ(K),
that is, the lattice of subquasivarieties of K (see [14, Corollary 3.40]).

The dual isomorphism is given by the map that sends an extension ⊢′ of the logic to the
quasivariety axiomatized by the quasiequations∧

τ(γ1) ∧ · · · ∧
∧

τ(γn) ⇒ ε ≈ δ,

where γ1, . . . , γn ⊢′ φ and ε ≈ δ ∈ τ(φ).

On the other hand, the inverse of the dual isomorphism sends a quasivariety S ∈ LQ(K)
to the logic axiomatized by the rules

∆(φ1, ψ1) ∪ · · · ∪ ∆(φn, ψn) ▷ δ,

where S ⊨ (φ1 ≈ ψ1 ∧ · · · ∧ φn ≈ ψn) ⇒ φ ≈ ψ and δ ∈ ∆(φ,ψ).

In fact, this isomorphism can be restricted to a dual isomorphism between the lattice of
axiomatic extensions and LV(K), that is, the lattice of subvarieties of K.
Thus, the lattice of (axiomatic) extensions of a logic can be studied in terms of LQ(K) (re-
spectively LV(K)).

Therefore, we obtain corresponding notions of structural completeness for classes of alge-
braic structures:

Definition 1.25. Let K be a quasivariety:

• It holds that K is structurally complete if, for every quasivariety K′,

K′ ⊂ K⇒ V(K′) ⊂ V(K)

• We obtain that K is hereditarily structurally complete if, for every quasivarieties K1,K2,

K1 ⊂ K2 ⊆ K⇒ V(K1) ⊂ V(K2)
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And we obtain the analogous result to Proposition 1.12 for quasivarieties, in which FK(ω)
denotes the denumerably free algebra of K:

Proposition 1.26. [3, Theorem 2.3] Let K be a quasivariety. There is a unique subquasiva-
riety S of K such that S is structurally complete and V(S) = V(K). In fact, S = Q(FK(ω)).

Definition 1.27. The quasivariety Q(FK(ω)) presented in the previous proposition is called
the structural completion of K.

Thus, just as structural completeness is a maximal condition in logic, when applied to
quasivarieties, it implies a kind of minimality.

Before introducing the next result we recall that a quasivariety is said to be primitive when
all its subquasivarieties are relative subvarieties:

Definition 1.28. Given a quasivariety K, a class V ⊆ K is said to be a relative subvariety
of K if it is axiomatized by equations relative to K.
The lattice of relative subvarieties of K is usually denoted by LV(K). Notice that, when K is
a variety, LV(K) is the lattice of subvarieties of K.

Now, we present the following theorem that gives a purely algebraic characterization of
structural completeness and its variants and is based in Proposition 1.26, [3, Proposition 2.4]
and [11, Theorem 3.1 and Corollary 3.2]:

Theorem 1.29. [18, Theorem 3.2] If a logic ⊢ is algebraized by a quasivariety K, then:

1. ⊢ is SC if and only if K is generated as a quasivariety by FK(ω);

2. ⊢ is HSC if and only if K is primitive;

3. ⊢ is PSC if and only if every positive existential sentence is either true in all nontrivial
members of K or false in all of them;

4. ⊢ is ASC if and only if A×FK(ω) ∈ Q(FK(ω)) for every relatively subdirectly irreducible
algebra A ∈ K; if there is a constant symbol in the language, then we can replace
“A× FK(ω) ∈ Q(FK(ω))” by “A× FK(0) ∈ Q(FK(ω))” in this statement.

Where, given a quasivariety K, an algebra A is said to be relatively subdirectly irreducible
in K if the congruence IdA is completely meet-irreducible in ConKA (for ConKA the set of
K-congruences of A, that is, the congruences θ of A such that A/θ ∈ K).

Finally, we use the isomorphism between the lattice of finitary extensions of a logic and
LQ(K) (being K the equivalent algebraic semantics) in the following result. The theorem
presents the effects that passive structural completeness has on the lattice of extensions of
an algebraizable logic:

Theorem 1.30. [25, Theorem 4.3 and Remark 5.13] Let ⊢ be a logic algebraized by a qua-
sivariety K. If ⊢ is PSC, then every member of LQ(K) has the JEP. Moreover, for every
extension ⊢′ of ⊢ there exists an algebra A such that, for every Γ ∪ {φ} ⊆ Fm,

Γ ⊢′ φ if and only if τ[Γ] ⊨A τ(φ).
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Where τ is the set of equations witnessing the algebraization of ⊢.

Recall that a quasivariety K has the joint embedding property (JEP) when every two
nontrivial members of K can be embedded into a common element of K. This happens iff K
is generated as a quasivariety by a single algebra (see [19, Proposition 2.1.19]).

1.2 The logic MTL and some ways to expand its language

In this subsection we will present the Monoidal t-norm logic (denoted by MTL) and we will
study different ways to expand its language.

This logic was introduced by Esteva and Godo in [12] and constitutes a strengthening of
the Monoidal logic (introduced by Höhle in [21]) and also a weakening of Basic logic (which
was presented firstly by Hájek in [20]) since it is obtained by replacing the divisibility axiom
by the weaker axiom (φ ∗ (φ → ψ)) → (φ ∧ ψ). That is, a Hilbert calculus of MTL in the
language {∧, ∗,→,⊥} is given by the axioms:

A1) (φ→ ψ) → ((ψ → χ) → (φ→ χ))

A2) (φ ∗ ψ) → φ

A3) (φ ∗ ψ) → (ψ ∗ φ)

A4) (φ ∧ ψ) → φ

A5) (φ ∧ ψ) → (ψ ∧ φ)

A6) (φ ∗ (φ→ ψ)) → (φ ∧ ψ)

A7a) (φ→ (ψ → χ)) → ((φ ∗ ψ) → χ)

A7b) ((φ ∗ ψ) → χ) → (φ→ (ψ → χ))

A8) ((φ→ ψ) → χ) → (((ψ → φ) → χ) → χ)

A9) ⊥ → φ

and Modus Ponens as the only inference rule.

The Monoidal t-norm logic satisfies the following Local Deduction Theorem and substitu-
tion rule:

Proposition 1.31. [9, Proposition 2.1] For each set of formulas Γ ∪ {φ,ψ, χ}, it holds:

(LDT ) Γ, φ ⊢MTL ψ iff there is n ∈ N such that Γ ⊢MTL φ
n → ψ

(Subst.) φ↔ ψ ⊢MTL χ(φ) ↔ χ(ψ)

Where φn is used as a shorthand for φ ∗ n. . . ∗ φ.

And, from this, we can introduce a specific class of logics:

Definition 1.32. We say that a finitary logic L in a countable language is a core fuzzy logic
if

• L expands MTL,

10



• L satisfies (Subst.),

• L satisfies (LDT).

Moreover, the logic MTL is algebraizable, in fact, so will be every finitary extension of
the logic. The class of all MTL-algebras will be its equivalent algebraic semantics, which is
called MTL and constitutes a variety (see [12, Proposition 2]):

Definition 1.33. An MTL-algebra is a structure ⟨S, ∗,→∗,∧,∨, 0, 1⟩ such that the following
conditions hold:

• ⟨S, ∗, 1⟩ is a commutative monoid.

• ⟨S,∧,∨, 0, 1⟩ is a lattice with 0 and 1 as its smallest and greatest elements, respectively.

• For all a, b, c ∈ S,
a ≤ b→∗ c iff a ∗ b ≤ c,

where ≤ is the order given by the lattice structure.

• S satisfies the pre-linearity equation (x→ y) ∨ (y → x) ≈ 1.

The order relation we consider in this definition is clearly compatible with ∗, this follows
from the first two points. Moreover, the infimum and supremum of any two elements of S
always exists.

Definition 1.34. An MTL-algebra whose order relation is total is called a linearly ordered
MTL-algebra or, equivalently, an MTL-chain.

Proposition 1.35. [12, Proposition 3] Every MTL-algebra is a subdirect product of linearly
ordered MTL-algebras.

In fact, the logic MTL has strong completeness with respect to the class of MTL-chains
([12, Theorem 1]).

Moreover, we can introduce a class of linearly ordered MTL-algebras constituted by what
we call standard MTL-algebras. In order to do that, we recall the definition of t-norm and
left-continuous t-norm.

Definition 1.36. A t-norm is a binary operation ◦̂ on the real interval [0, 1] which is commu-
tative, associative, has 1 as a neutral element and is weakly decreasing (for any a, b, c ∈ [0, 1],
if a ≤ b then a ◦̂ c ≤ b ◦̂ c).
A t-norm is left-continuous if whenever we consider two increasing sequences ⟨an : n ∈
N⟩, ⟨bn : n ∈ N⟩ of reals in the interval [0, 1] such that sup{an : n ∈ N} = a and
sup{bn : n ∈ N} = b, then

sup{an ◦̂ bn : n ∈ N} = a ◦̂ b.

We know, as it has been stated in [12, page 272], that the following property holds:

Proposition 1.37. A t-norm is left-continuous if and only if it admits an associated R-
implication.

11



And, in this case, the R-implication is defined, for any a, b ∈ [0, 1], as follows:

a⇒ b := sup{c ∈ [0, 1] : a ◦̂ c ≤ b}.

Therefore, we can use this result to study the relation that exists between left-continuous t-
norms and MTL-algebras. On one hand, every left-continuous t-norm defines an MTL-chain:

Definition 1.38. Given a left-continuous t-norm ◦̂, if we consider the algebra [0,1]◦̂ =
⟨[0, 1], ◦̂,⇒,≤, 0, 1⟩ (where the order is the usual order on the reals) then, it is clear that we
have a linearly ordered MTL-algebra. MTL-algebras of this form are called standard.

On the other hand, every countable MTL-chain is embeddable into a standard MTL-
algebra (see [22, Theorem 3.2]). Thus, the logic MTL is complete with respect to evaluations
into standard MTL-algebras (as it is proved in [22, Theorem 3.3]).

We can now move on to the study of filters and prime filters of MTL-algebras and its conse-
quences:

Definition 1.39. Let A be an MTL-algebra, a non-empty set F ⊆ A is said to be a filter of
A if:

• It is upward closed: for any a ∈ F , if a ≤ b, then b ∈ F .

• It is closed under multiplication: for any a, b ∈ F , a ∗ b ∈ F .

Moreover, a filter F of A is said to be prime when, for all a, b ∈ A, if a ∨ b ∈ F holds then,
either a ∈ F or b ∈ F .

When the set of filters of A, Fi(A), is ordered under the inclusion relation, it becomes
a lattice. Furthermore, the following result states that the lattices Fi(A) and Con(A) are
isomorphic:

Theorem 1.40. [20, Lemma 2.3.14] Let A be an MTL-algebra. Then, the map θ( ) :
Fi(A) → Con(A), defined by the rule

θ( )(F ) = θF := {⟨a, b⟩ ∈ A×A : a→ b, b→ a ∈ F},

is a lattice isomorphism. Furthermore, the following conditions are equivalent for a filter F
of A:

1. F is prime;

2. A/θF is a chain;

3. A/θF is finitely subdirectly irreducible.

Henceforth, we will write A/F as a shorthand for A/θF .

In fact, by adapting the result presented in [24, Lemma 2.3], we obtain a lemma that
states the existence of prime filters on MTL-algebras:
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Lemma 1.41. Let A be an MTL-algebra, and let I ⊆ A\{1} be such that a∨c ∈ I, whenever
a, c ∈ I. Then, there is a prime filter F of A disjoint from I.

Now, we move on to studying how we can expand the language of MTL with the Baaz
Delta connective (which will be denoted by ∆). We will also introduce the class of core fuzzy
logics, its ∆-expansions and some properties of these types of logics.

Definition 1.42. Given a core fuzzy logic L, the logic L∆ is the expansion of L obtained
by enriching the language with the unary connective ∆ and adding to its axiomatization the
following rules and axioms:

(∆1) ∆φ ∨ ¬∆φ

(∆2) ∆(φ ∨ ψ) → (∆φ ∨ ∆ψ)

(∆3) ∆φ→ φ

(∆4) ∆φ→ ∆∆φ

(∆5) ∆(φ→ ψ) → (∆φ→ ∆ψ) (Necessitation rule)
φ

∆φ

Definition 1.43. Given a core fuzzy logic, an L∆-algebra is a structure A satisfying that it is
an L-algebra expanded by the operation ∆. Moreover, A ⊨ α ≈ 1 for each α ∈ {∆1, . . . ,∆5},
and A ⊨ ∆(1) ≈ 1.

We have already seen that, given any core fuzzy logic L, the Local Deduction Theorem
is satisfied. However, the logic L∆ will enjoy a different form of Deduction Theorem:

Theorem 1.44. (∆-Deduction Theorem) [10, Theorem 2.2.1] Let L be a core fuzzy logic.
Then, for any set of formulas Γ ∪ {φ,ψ} of L∆, the following equivalence holds:

(DT∆) Γ, φ ⊢L∆
ψ iff Γ ⊢L∆

∆φ→ ψ.

Now, we can introduce a particular class of logics:

Definition 1.45. We say that a finitary logic L in a countable language is a ∆-core fuzzy
logic if

• L expands MTL∆,

• L satisfies (Subst.),

• L satisfies (DT∆).

The following result, in particular, lets us know which expansions of MTL∆ are ∆-core
fuzzy logics:

Proposition 1.46. [9, Proposition 2.11] Let L be an expansion of MTL (respectively of
MTL∆) satisfying (Subst.). Then, L is a (∆-)core fuzzy logic if and only if it is an axiomatic
expansion of MTL (MTL∆).
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Moreover, from the axioms of ∆, we easily obtain:

Proposition 1.47. Let L∆ be a ∆-core fuzzy logic and B an L∆-chain. Then, ∆Bx = 1B if
x = 1B and ∆Bx = 0B otherwise.

Remark 1.48. In the previous case, the operator ∆ will give us a notion of full truth and,
furthermore, the ordering of truth values will be internalized in L∆ since ∆(x → y) = 1 iff
x ≤ y.

Given a ∆-core fuzzy logic L∆, the standard L∆-algebras will be the standard L-algebras
expanded by the operation ∆ defined as

∆(x) =

{
1 if x = 1;
0 otherwise

(1.1)

due to Proposition 1.47, since they are linearly ordered.

Finally, we present some propositions collecting basic properties of (∆-)core fuzzy logics:

Proposition 1.49. [9, Proposition 2.14] Let L be a (∆−)core fuzzy logic.

• L is algebraizable with the same translations as MTL.

• The class of L-algebras is the equivalent algebraic semantics of L and it is a variety.

• Every L-algebra is representable as a subdirect product of L-chains.

• Subdirectly irreducible L-algebras are L-chains.

• For every set of formulas Γ ∪ {φ}, Γ ⊢L φ if and only if Γ ⊨{L-chains} φ.

Proposition 1.50. [10, page 37] Given a core fuzzy logic L, the logic L∆ is strong (respec-
tively, finite strong) standard complete if and only if L is strong (respectively, finite strong)
standard complete.

Proposition 1.51. [9, Proposition 2.15] For every core fuzzy logic L, L∆ is a conservative
expansion of L. That is, for any set of formulas Γ ∪ {φ} in the language of L, if Γ ⊢L∆

φ
then Γ ⊢L φ.

Where, for each core fuzzy logic L, the logic L∆ is its corresponding ∆-core fuzzy logic.

Finally, let L be an arbitrary extension of MTL such that, for some t-norm ∗, V([0,1]∗)
algebraizes L and [0, 1]∩Q is the universe of a subalgebra of [0,1]∗ (which we will denote by
[0,1]∗ ∩Q). We can consider the expansion of L obtained by adding to the language a set of
rational constants:

C = {cq : q ∈ [0, 1] ∩ Q},

where Q denotes the set of rational numbers.
During the project we will focus on the case where L is a particular logic, hence, ∗ is a specific
t-norm (under this circumstances we will omit the subscript of the standard algebra).
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Definition 1.52. We call bookkeeping axioms of [0,1]∗ the axioms in the language of [0,1]∗
expanded with the constants in C that are of the form:

cp∗cq ↔ cp ∗ [0,1] q, cp →cq ↔ cp → [0,1] q, c0 ↔ 0, c1 ↔ 1,

for all p, q ∈ [0, 1] ∩ Q.

We can also express them as equations of the form: cp∗cq ≈ cp ∗ [0,1] q, cp →cq ≈ cp → [0,1] q,
c0 ≈ 0, c1 ≈ 1, where will denote by B([0,1]∗) the set constituted by these equations, for
all p, q ∈ [0, 1] ∩ Q.

We remark that we do not include bookkeeping axioms for ¬, ∧ and ∨ since ¬ can be
expressed in terms of → and 0 and ∧,∨ correspond to the minimum and the maximum re-
spectively.

Then, the rational L logic (also denoted by RL) is the one obtained by adding to the axiom-
atization of L the bookkeeping axioms of [0,1]∗.

We proceed to define its equivalent algebraic semantics:

Definition 1.53. An algebra A in the language of MTL-algebras expanded with the constants
in C is said to be a rational L-algebra if the MTL-reduct of A is an L-algebra and A validates
the bookkeeping axioms B([0,1]∗).

We denote by RL the variety of rational L-algebras: If L is a variety, that is, an equational
class (let’s say L = Mod(Σ) for Σ some set of equations), we are considering RL to be
Mod(Σ ∪ B([0,1]∗)) thus, it will also be a variety.

Definition 1.54. The canonical rational L-algebra can be obtained by expanding the standard
L-algebra [0,1]∗ with the natural interpretation of the constants in C (interpreting cq as the

rational q, for every q ∈ [0, 1] ∩ Q). We will denote this algebra by [0,1]Q∗ and its subalgebra

with universe [0, 1] ∩ Q by [0,1]Q∗ ∩Q.

For readability’s sake we will usually omit the superscript Q from here onwards.

Remark 1.55. We notice that Theorem 1.40 will also apply to rational L-algebras since L
is an extension of MTL (L-algebras will be, in particular, MTL-algebras) and the addition
of constants to a given algebra does not change its congruences and filters.

From the viewpoint of logic, the variety RL algebraizes the rational L logic, that is, for
every set of formulas Γ ∪ {φ}:

Γ ⊢RL φ if and only if τ[Γ] ⊨RL τ(φ)

where τ := {x ≈ 1}.
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1.3 The Nilpotent Minimum Logic

Now that we have presented the logic MTL and some important results about it, we can
continue by studying one of its extensions:

The Nilpotent minimum logic (denoted by NML), is the logic obtained from the Monoidal
t-norm logic by adding the involutive condition ¬¬φ → φ (where ¬φ := φ → ⊥) and the
nilpotent minimum condition (ψ ∗ φ→ ⊥) ∨ (ψ ∧ φ→ φ ∗ ψ).

Since NML is an axiomatic extension of MTL, all the formulas presented in [12, Proposi-
tion 1] are also provable in NML. Thus:

Proposition 1.56. For each set of formulas Γ ∪ {φ,ψ}, it holds:

(LDT ) Γ, φ ⊢NML ψ iff there is n ∈ N such that Γ ⊢NML φ
n → ψ.

Furthermore, in the Nilpotent minimum logic it is clear that x3 ≡ x2. Therefore, we can
modify the previous proposition and obtain a Deduction Theorem for NML:

Theorem 1.57. For each set of formulas Γ ∪ {φ,ψ}, it holds:

(DT ) Γ, φ ⊢NML ψ iff Γ ⊢NML φ
2 → ψ.

The logic will be algebraized by the class of all NM-algebras:

Definition 1.58. A nilpotent minimum algebra (NM-algebra) is a bounded residuated lattice
A= ⟨A; ∗,→,∧,∨,¬, 0, 1⟩ where ∧, ∨ are the meet and join respectively, ⟨∗,→⟩ is a residuated
pair, ¬ is the negation associated to → (for any a ∈ A, ¬a := a → 0) and 0,1 are the lower
and upper bound respectively.
Furthermore, nilpotent minimum algebras satisfy the following equations:

• Pre-linearity: (x→ y) ∨ (y → x) ≈ 1.

• Involutivity: ¬¬x ≈ x.

• Nilpotent minimum: (x ∗ y → 0) ∨ (x ∧ y → x ∗ y) ≈ 1.

That is, they are MTL-algebras satisfying the last two conditions.

Definition 1.59. We name standard NM-algebra the NM-algebra whose universe is [0, 1].
Esteva and Godo ([12, Proposition A.6]) proved that there is only one nilpotent minimum
algebra defined on [0, 1] up to isomorphism. We take it to be [0,1] = ⟨[0, 1]; ∗,→,∧,∨,¬, 0, 1⟩
where ∧ and ∨ are the meet and join respectively with the usual order and

¬x = 1 − x,

x ∗ y =

{
0 if y ≤ ¬x;

x ∧ y otherwise.

x→ y =

{
1 if x ≤ y;

¬x ∨ y otherwise.
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Remark 1.60. In fact, given a totally ordered set A with upper bound 1 and lower bound
0 equipped with an involutive negation ¬ which is order preserving, ∧ and ∨ defined as the
meet and join and

a ∗ b =

{
0 if b ≤ ¬a;

a ∧ b otherwise.

a→ b =

{
1 if a ≤ b;

¬a ∨ b otherwise.

for every a, b ∈ A, we obtain that A = ⟨A; ∗ →,∧,∨,¬, 0, 1⟩ is an NM-chain:

Clearly A is bounded, totally ordered, satisfies the involutive equation and it holds that
∧ and ∨ are the meet and join. Since 0 is the lower bound, by definition of →, it is clear that
¬ is the associated negation (¬x = x → 0) and since we have a total order (it either holds
x ≤ y or y ≤ x) we obtain that the pre-linearity equation holds.
It is easily checked that ⟨∗,→⟩ is a residuated pair and it is also clear that ⟨A, ∗, 1⟩ is a
commutative monoid where 1 is the neutral element of ∗ (because it is the upper bound of
A).
Finally, by definition of ∗ we know it either holds x ∗ y = 0 or x ∗ y = x ∧ y therefore, the
nilpotent minimum equation is satisfied.
Thus, we have seen that A is a NM-chain.

Moreover, every NM-chain is of this form.

We have previously defined the concept of NM-algebra and, now, we can present some
results and examples of NM-chains (totally ordered NM-algebras):

Proposition 1.61. [15, Proposition 1] Each NM-algebra is representable as a subdirect prod-
uct of NM-chains.

Example 1.62. For every n ∈ ω we consider A2n+1 = ⟨[−n, n] ∩ Z; ∗,→,∧,∨,¬,−n, n⟩
where ∧ and ∨ are the meet and join with the usual order, the negation is also defined as
usual (¬x := −x) and, for every m, k ∈ {−n, . . . , 0, . . . , n} we have:

m ∗ k =

{
−n if k ≤ −m;

m ∧ k (= min{m, k}) otherwise.

m→ k =

{
n if m ≤ k;

−m ∨ k (= max{−m, k}) otherwise.

Note that A1 is the trivial algebra.

Definition 1.63. Given an NM-algebra A and some element a ∈ A:

• If a > ¬a then we say that a is a positive element of A.

• If a < ¬a then we say that a is a negative element of A.
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• We call a a negation fixpoint iff a = ¬a.

In [21] Höhle proves that, given any NM-algebra, the negation fixpoint, if it exists, is
unique.

Proposition 1.64. Given an NM-chain C with negation point c ∈ C, C \{c} is the universe
of a subalgebra of C which we denote by C -.

Proof. It is enough to see that C \ {c} is closed under →, ∗,¬, 0, 1 (it is trivially closed under
∧ and ∨ since they are min and max respectively):

• Closed under 0: The fixpoint c satisfies ¬c = c → 0 = c. By Remark 1.60 we know
how → and ∗ are defined, thus, we know 0 → 0 = 1 which means that 0 can’t be the
fixpoint and 0 ∈ C \ {c}.

• Closed under 1: We assume 1 = c → 0 is the fixpoint c and we will arrive to a
contradiction. If this holds then 1 ≤ c → 0 and, by the residuation law, c = 1 ∗ c ≤ 0
which can’t be the case because 0 is the lower bound and we have seen that c ̸= 0.
Therefore, 1 ∈ C \ {c}.

• Closed under ¬: If for some a ∈ C \ {c} we have ¬a = c, then a = ¬¬a = ¬c = c holds.
We were assuming a ̸= c, therefore we have showed that we have closure under ¬.

• Closed under ∗: For any a, b ∈ C \ {c}, by Remark 1.60, we know either a ∗ b = 0 or
a ∗ b = a ∧ b and, in both cases, a ∗ b ̸= c since ∧ is defined as the minimum and we
have seen 0 ̸= c. Thus, a ∗ b ∈ C \ {c}.

• Closed under →: It is seen analogously to the previous case.
For any a, b ∈ C \ {c}, by Remark 1.60, we know either a → b = 1 or a → b = ¬a ∨ b
and, in both cases, a → b ̸= c since ∨ is defined as the maximum, we know we have
closure under ¬ and we have seen 1 ̸= c.

Therefore, it is clear what we wanted to prove. □

Thanks to this proposition, we can give more examples of NM-chains:

Example 1.65. For every natural number n > 0 we consider A2n = ⟨[−n, n]∩ (Z\{0}); ∗,→
,∧,∨,¬,−n, n⟩, where A2n is the subalgebra of A2n+1 obtained by removing the negation
fixpoint 0 from its universe (A2n := A−

2n+1).

Thus, by the definitions we have given, the following relations between NM-chains hold:

Proposition 1.66. [15, Proposition 2]

• A2m+1 is a subalgebra of A2n+1 for every m ≤ n,

• A2m is a subalgebra of A2n+1 for every 0 < m ≤ n,

• A2m is a subalgebra of A2n for every 0 < m ≤ n,

• Am is embeddable into [0,1] for every m > 1,
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• A2m is embeddable into [0,1]− for every m > 0.

Remark 1.67. It is easy to see that A2n and A2n+1 are, up to isomorphism, the only
nilpotent minimum chains with exactly 2n and 2n+1 elements, respectively. Moreover, any
finitely generated subalgebra of a nontrivial NM-chain is finite and, therefore, isomorphic to
A2n or A2n+1 for some n > 0.

Esteva and Godo proved that NML is complete with respect to the class of NM-algebras
and, moreover, standard complete, that is, complete with respect to the standard NM-algebra
(see [12, Theorem 4]). In fact, NM = V([0,1]) = Q([0,1]), since every countable NM-chain
is embeddable into [0,1] (where we denote by NM the class of all NM-algebras). Furthermore:

Proposition 1.68. [15, Corollary 2] Let A be an infinite NM-chain containing the negation
fixpoint. Then V(A) = Q(A) = NM .

Finally, Theorem 1.40 and Lemma 1.41 will also be valid for NM-algebras (since they are,
in particular, MTL-algebras) and they will be useful to prove some important results in the
next sections.

In order to be able to study, later on, how some results change when expanding the lan-
guage of NML; first, we will speak about the lattice of axiomatic extensions of the Nilpotent
minimum logic and we will present some statements about it:

Definition 1.69. For each n > 0 we consider the following formulas:

A12n : Sn(x0, . . . , xn) :=
∧
i<n

((xi → xi+1) → xi+1) →
∨

i<n+1

xi

A13 : BP (x) := ¬(¬x2)2 ↔ (¬(¬x)2)2

Where it can be proved (see [15, Theorem 2]) that an NM-chain satisfies Sn(x0, . . . , xn) ≈ 1
if and only if it has less than 2n+ 2 elements and a nontrivial NM-chain satisfies BP (x) ≈ 1
if and only if it does not contain the negation fixpoint.

Theorem 1.70. [15, Theorem 3] Every proper nontrivial subvariety of NM is of one of the
following types:

1. NM− := V([0,1]−) = V({A2k : k ∈ ω})

2. V(A2m+1) for some m > 0

3. V(A2n) for some n > 0

4. V([0,1]−, A2m+1) for some m > 0

5. V(A2n, A2m+1) for some m,n ∈ ω such that 0 < m < n

Moreover, if Σ is any set of equations axiomatizing NM, then

1. V([0,1]−) is axiomatized by Σ plus the equation BP (x) ≈ 1,

2. V(A2m+1) is axiomatized by Σ plus the equation Sm(x0, . . . , xm) ≈ 1,
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3. V(A2n) is axiomatized by Σ plus the equations Sn(x0, . . . , xn) ≈ 1 and BP (x) ≈ 1,

4. V([0,1]−, A2m+1) is axiomatized by Σ plus the equation BP (x)∨Sm(x0, . . . , xm) ≈ 1,

5. V(A2n, A2m+1) with m < n is axiomatized by Σ plus (BP (x) ∧ Sn(x0, . . . , xn)) ∨
Sm(x0, . . . , xm) ≈ 1.

Since NML is algebraizable by the class of all NM-algebras, there is a dual lattice isomor-
phism between the lattice of all subvarieties of NM and the lattice of all axiomatic extensions
of NML, thus:

Theorem 1.71. All proper consistent axiomatic extensions of NML are:

For every natural numbers n,m > 0

1. NM - = NML plus A13

2. NM2m+1 = NML plus A12m

3. NM2n = NML plus A12n and A13

4. NM - 2m+1 = NML plus A13 ∨ A12m

5. NM2n,2m+1 = NML plus (A12n ∧ A13) ∨ A12m with n > m

Therefore, from this and the inclusion relations between subvarieties of NM given by
Proposition 1.66, we obtain that the dual lattice of axiomatic extensions of the Nilpotent
minimum logic will be of the form [15, Figure 2]:
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Moreover, we can present some results about structural completeness and active structural
completeness and introduce an axiomatization of all admissible quasiequations, given any
axiomatic extension of NML:

Theorem 1.72. [16, Theorem 2.1 and Corollary 2.2] NML is not structurally complete, in
fact, given any variety of NM-algebras K satisfying V(A3) ⊆ K, the logic algebraized by K is
not SC.

Theorem 1.73. [16, Theorem 2.4] NM- is hereditarily structurally complete.

Theorem 1.74. [16, Theorem 2.9] NML is hereditarily active structurally complete.

Theorem 1.75. [16, Theorem 2.9] Let K be a variety of NM-algebras. Then, the quasiequa-
tion ¬x ≈ x ⇒ 0 ≈ 1 axiomatizes all (passive) admissible quasiequations. Thus, Q(FK(ω))
is axiomatized by the quasiequation ¬x ≈ x⇒ 0 ≈ 1.

Using the above statements about (almost) structural completeness on axiomatic exten-
sions of NML, in [16] have been proven some results about subquasivarieties of NM, with
the aim to define the lattice LQ(NM):

Proposition 1.76. [16, Proposition 3.1] Let M be a variety of NM-algebras and K be an
M-quasivariety. Then K is a proper M-quasivariety iff there is A2n+1 ∈ M \ K for some
n > 0.

Theorem 1.77. [16, Theorem 3.3] LetM be an NM-variety. If K is a properM-quasivariety
and k = max{n ∈ N : A2n+1 ∈ K}, then

K = Q({A2n : A2n ∈M} ∪ {A2 ×A2m+1 : A2m+1 ∈M} ∪ {A2k+1}).

Corollary 1.78. [16, Corollary 3.4] Let K be a nontrivial quasivariety of NM-algebras, then

K = Q({A2n : A2n ∈ V(K)} ∪ {A2 ×A2m+1 : A2m+1 ∈ V(K)} ∪ {A2k+1 : A2k+1 ∈ K}).

In fact, the lattice LQ(NM) is depicted in [16, page 805] and we know that the lattice of
finitary extensions of NML will be dually isomorphic:
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2 The Rational Nilpotent Minimum Logic

We will first study the expansion of the Nilpotent minimum logic obtained by adding rational
constants to the language and how the addition of rational constants affects the lattices of
axiomatic and finitary extensions and the structural completeness properties.
We will obtain analogous results to the ones achieved for the rational Gödel logic in [18].

We recall that, as it has been mentioned in Section 1.2, the rational Nilpotent minimum
logic (RNML, for short) is defined from NML by adding the bookkeeping axioms of [0,1].
Moreover, the class of rational NM-algebras (denoted by RNM) will be its equivalent algebraic
semantics and we have, for every set of formulas Γ ∪ {φ}:

Γ ⊢RNML φ if and only if τ[Γ] ⊨RNM τ(φ)

where τ := {x ≈ 1}.

In this case, the importance of the algebra [0,1]Q is witnessed by the fact that, as has
been proven in [13, Theorem 14], the following equality holds: RNM = V([0,1]Q). On
the other hand, RNM doesn’t coincide with the quasivariety generated by [0,1]Q (see [13,
Section 4]).

2.1 The lattices of axiomatic and finitary extensions

In this section, we will see, similarly to how it has been done in [18, Section 7] for the case
of Gödel logic, how the addition of rational constants to NML affects the structure of the
lattice of (axiomatic) extensions of RNML.

Given a real r ∈ (12 , 1], let Qr be the rational NM-algebra with universe

{0} ∪ ((1 − r, r) ∩ Q) ∪ {1}.

The order relation of Qr is the natural order in Q, therefore Qr is a chain. We define the
negation to be ¬a := 1 − a for any a ∈ Qr, since its interpretation is not established by the
fact that Qr is a chain. Thus, by Remark 1.60, this settles the interpretation of the lattice
connectives and also of the implication (for all a, b ∈ Qr, we get a → b to be 1 if a ≤ b and
max{¬a, b} otherwise). The interpretation of ∗ is also fixed (for all a, b ∈ Qr, we get a ∗ b to
be 0 if b ≤ ¬a and min{a, b} otherwise).
Finally, given a rational q ∈ [0, 1], the interpretation of cq in Qr is q if q ∈ Qr, 0 if q ≤ 1 − r
and 1 in the other cases. This way, it is clear that the bookkeeping axioms hold.

Remark 2.1. Notice that, in the case r = 1, we obtain Qr =[0,1]Q ∩ Q, where the last
algebra is the one mentioned in Definition 1.54.

Now, we fix a denumerable set {tn : n ∈ ω} disjoint from [0, 1] and such that, for every
n ∈ ω, ¬tn /∈ [0, 1]. Given a rational p ∈ [12 , 1)∩Q and some ordinal γ ∈ ω+ 1, let Qγ

p be the
rational NM-algebra with universe

{¬tn : n ∈ γ} ∪ {0} ∪ ([1 − p, p] ∩ Q) ∪ {1} ∪ {tn : n ∈ γ}.
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We define the order relation of Qγ
p by keeping the usual order in {0} ∪ ([1 − p, p] ∩ Q) ∪ {1}

and inserting the totally ordered set {tn : n ∈ γ} between p and 1 and the set {¬tn : n ∈ γ}
(which is also totally ordered) between 0 an 1 − p.
That is:

0 < ¬tn−1 < · · · < ¬t1 < ¬t0 < 1 − p
p < t0 < t1 < · · · < tn−1 < 1.

Therefore, Qγ
p is a chain and, since the interpretation of the negation is not established by

this fact, we define it such that: for any a ∈ Qγ
p ∩ [0, 1], ¬a := 1 − a and, for the elements

that are disjoint from [0, 1], ¬(ti) := ¬ti, ¬(¬ti) := ti. This settles the interpretation of the
operations as in the previous case for Qr: by Remark 1.60, we have fixed the interpretation
of the lattice connectives (given by the order) and also the definition of ∗ and the implication.
Finally, given a rational q ∈ [0, 1], the interpretation of cq in Qγ

p is q if q ∈ Qγ
p , 0 if q < 1− p

and 1 otherwise.

We introduce and prove some results about rational NM-chains that will be useful:

Proposition 2.2. For every nontrivial rational NM-chain A, there are r ∈ (12 , 1], p ∈
[12 , 1)∩Q and γ ∈ ω+1 such that ISPU (A) = ISPU (Qr) or ISPU (A) = ISPU (Qγ

p). Moreover,

1. ISPU (Qr) is axiomatized relative to the class of RNM chains by the sentences

cq′ ̸≈ 1 for all q′ ∈ [12 , r) ∩ Q and cq ≈ 1 for all q ∈ [r, 1] ∩ Q;

2. ISPU (Qω
p ) is axiomatized relative to the class of RNM chains by the sentences

cp ̸≈ 1 and cq ≈ 1 for all q ∈ (p, 1] ∩ Q;

3. ISPU (Qn
p ) is axiomatized relative to the class of RNM chains by the sentences

cp ̸≈ 1, cq ≈ 1 for all q ∈ (p, 1] ∩ Q and

∀x0 . . . xn+2

(∨
0≤i<j≤n+2(cp ∨ xi) ↔ (cp ∨ xj)

)
≈ 1.

Proof. Let A be a rational NM-chain, we want to define an algebra SA that has the same
universal theory as A (we will see that this algebra can be Qr or Qγ

p for r, p, γ as desired).
In order to do this, we will start by defining SA as an algebra that embeds into A.

Let C be the zero-generated subalgebra of A (its universe is comprised by the interpre-
tations of the elements of C ). Since we assume A to be nontrivial, we either have C = Qr

for some real r ∈ (12 , 1] or C = Q0
p for some p ∈ [12 , 1) ∩ Q.

• If C = Qr for some r ∈ (12 , 1] then, we take SA := C.

• Otherwise, if C = Q0
p for some p ∈ [12 , 1) ∩ Q, we analyse ↓ (C \ {1}) (which is the

downset of (C \ {1}) in A, i.e. for any b ∈ A if there exists some a ∈ (C \ {1}) such
that b ≤ a then, b ∈↓ (C \ {1})).
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– If ω ≤ |A\ ↓ (C \ {1})| then, we take SA := Qω
p .

– If |A\ ↓ (C \ {1})| = n+ 1 ∈ ω then, we take SA := Qn
p .

In any case, it is clear that SA embeds into A, thus, SA ∈ IS(A) and from this we obtain
SA ∈ ISPU (A).

Therefore, in order to see that SA and A have the same universal theory it is enough to
show that A validates the universal theory of SA. This last statement holds if A partially
embeds into SA thus, that is what we will prove next.

To prove what we want, it suffices to see that every finite partial subalgebra of A is em-
beddable into SA. Therefore, we consider B to be an arbitrary finite partial subalgebra of
A.
The elements of B can be classified depending on whether they are the interpretation of some
constant (we will denote these elements: cAq1 , . . . , c

A
qm) or they are not (we will name these

elements: a1, . . . , an).
We can assume, without losing generality, that, for every element of B, its negation is also
contained in B (in case this didn’t hold we can just add the elements) and we can also suppose
that we have

0 = cAq1 < cAq2 < . . . < cA1
2

< . . . < cAqm = 1.

Since we have taken A to be a chain, [cAq1 , c
A
q2), . . . [cAqm−1

, cAqm) is a partition of A \ {1}.

Now, for every i ≤ m− 1, let ai1 < . . . < aik be the elements of {a1, . . . , an} in the i-th com-
ponent [cAqi , c

A
qi+1

), we will argue it holds the fact that we can choose some bi1 , . . . , bik ∈ SA
such that

cSA
qi < bi1 < . . . < bik < cSA

qi+1
.

It suffices to show that the statement above holds for [cAqi , c
A
qi+1

) with qi ≥ 1
2 . That is because:

in NM-chains (thus, also in rational NM-chains) the negation is dually order preserving; we
have assumed that B is closed under the negation; and because by the bookkeeping axioms
we know cA1

2

is the negation fixpoint.

That is, if for some [cAqi , c
A
qi+1

) with qi ≥ 1
2 such that there are k elements of B laying inside

and satisfying
cAqi < ai1 < . . . < aik < cAqi+1

we have cSA
qi < bi1 < . . . < bik < cSA

qi+1
, for some bi1 , . . . bik ∈ SA, then we also have

cSA
¬qi+1

< ¬bik < . . . < ¬bi1 < cSA
¬qi

. Where the interval [cA¬qi+1
, cA¬qi) belongs to the partition we have mentioned before (because

of the closure of B under the negation) and we also have exactly k elements from B in this
interval (which are the negations of the previous aij ).

Now, let’s argue the existence of those bij for rationals qi ≥ 1
2 :
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• If i ̸= m − 1: Then, we have the interval [cAqi , c
A
qi+1

) where cAqi+1
̸= 1 and, therefore,

cSA
qi+1

̸= 1. Since the rationals are dense in the reals, by the definition we have given of

SA it is clear that [cSA
qi , c

SA
qi+1

) is an infinite set. Thus, we can find such elements bij .

• If i = m− 1: Then, we are considering the interval [cAqi , 1). By construction of SA it is

clear the existence of those bij in [cSA
qi , 1):

– If SA = Qr: it holds because of the density of Q in R.

– If SA = Qω
p : we have {tn : n ∈ ω} ⊆ [cSA

qi , 1) thus, the interval is infinite and
there exist some elements we can choose to be our bij s.

– If SA = Qn
p : then, |A\ ↓ (C \ {1})| = n + 1 therefore, there can be at most n

elements in [cAqi , 1). We know {tn′ : n′ ∈ n} ⊆ [cSA
qi , 1) so it is clear the existence

of some elements bij satisfying what we want.

Hence, we consider a map h : B −→ SA and we let h(aij ) := bij (for those aij > cA1
2

) and

h(¬aij ) := ¬bij for the rest of elements of {a1, . . . , an}. Moreover, we define h(cAq ) = cAq =

cSA
q for every q ∈ {q1, . . . , qm}.

This completes the definition of h which is clearly an homomorphism since in NM-chains the
behaviour of → and ∗ is completely determined by the order and the negation and we have:
for any a, b ∈ B, a ≤ b⇒ h(a) ≤ h(b) and h(¬a) = ¬h(a).

By the definition we have given, h : B −→ SA is an embedding which is what we needed
in order to prove that A and SA have the same universal theory. Therefore, there are
either r ∈ (12 , 1] or p ∈ [12 , 1) ∩ Q and γ ∈ ω + 1 such that ISPU (A) = ISPU (Qr) or
ISPU (A) = ISPU (Qγ

p).

Now, we will prove what remains to be seen:

1. Let A be a rational NM-chain validating the sentences in the statement. Then, the
zero-generated subalgebra of A is Qr. Thus, by the previous construction we have
given of SA we know SA = Qr. Consequently, A and Qr have the same universal
theory and, in particular, A ∈ ISPU (Qr).

2. Let A be a rational NM-chain validating the sentences in the statement. Then, the
zero-generated subalgebra of A is Q0

p. Thus, by the previous construction we have
given of SA we know SA ∈ {Qγ

p : γ ∈ ω + 1} (thus, SA ⊆ Qω
p ) and, since A and SA

have the same universal theory, A ∈ ISPU (SA).
Therefore,

A ∈ ISPU (SA) ⊆ ISPUS(Qω
p ) = ISPU (Qω

p ).

3. Let A be a rational NM-chain validating the sentences in the statement. By arguing
as in case 2. we obtain that SA ∈ {Qγ

p : γ ∈ ω + 1} where A and SA have the same
universal theory.
Moreover, since A validates

∀x0 . . . xn+2

( ∨
0≤i<j≤n+2

(cp ∨ xi) ↔ (cp ∨ xj)
)
≈ 1,
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it is clear that |A\ ↓ (C \ {1})| = m+ 1 for some m ≤ n where C is the universe of the
zero-generated subalgebra of A.
Therefore, SA = Qm

p for some m ≤ n.
Hence,

A ∈ ISPU (SA) = ISPU (Qm
p ) ⊆ ISPUS(Qn

p ) = ISPU (Qn
p ).

□

Corollary 2.3. Every variety of rational NM-algebras is generated by a set of algebras of the
form Qr, where r ∈ (12 , 1], or Qγ

p , where p ∈ [12 , 1) ∩ Q and γ ∈ ω + 1.

Proof. Recall that every variety is generated by its subdirectly irreducible members. As every
subdirectly irreducible rational NM-algebra is a chain, the result follows from Proposition 2.2.
The fact that every subdirectly irreducible element of RNM is a chain is given by Proposition
1.49 (since the logic RNML is a core fuzzy logic).

□

Theorem 2.4. The following hold.

1. Every nontrivial variety K of rational NM-algebras is of the form V(Qr) for some
r ∈ (12 , 1] or V(Qγ

p) for some γ ∈ ω + 1 and p ∈ [12 , 1) ∩ Q. Furthermore, V(Qr) is
axiomatized by the equations {cq ≈ 1 : q ∈ [r, 1] ∩ Q} and V(Qγ

p) is axiomatized by the
equations:

• {cq ≈ 1 : q ∈ (p, 1] ∩ Q} and(∨
0≤i<j≤n+2(cp ∨ xi) ↔ (cp ∨ xj)

)
≈ 1

if γ = n ∈ ω.

• {cq ≈ 1 : q ∈ (p, 1] ∩ Q}, otherwise.

2. For all r1, r2 ∈ (12 , 1], p1, p2 ∈ [12 , 1) ∩ Q and γ1, γ2 ∈ ω + 1,

V(Qr1) ⊆ V(Qr2) if and only if r1 ≤ r2,

V(Qr1) ⊆ V(Qγ1
p1) if and only if r1 ≤ p1,

V(Qγ1
p1) ⊆ V(Qr1) if and only if p1 < r1,

V(Qγ1
p1) ⊆ V(Qγ2

p2) if and only if either p1 < p2 or (p1 = p2 and γ1 ≤ γ2).

3. The lattice of subvarieties of RNM (which we denote by LV(RNM) ) is an uncountable
chain isomorphic to the poset obtained by adding a new bottom element to the Dedekind-
MacNeille completion of the lexicographic order of [12 , 1) ∩ Q and ω + 1.

Proof. 2. Consider r1, r2 ∈ (12 , 1], p1, p2 ∈ [12 , 1)∩Q, and γ1, γ2 ∈ ω+ 1. We need to prove
that:
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• V(Qr1) ⊆ V(Qr2) if and only if r1 ≤ r2.

⇒) To prove this implication we reason by contraposition: we assume that r2 < r1.
Since Q is dense in R, there exists a rational number r2 ≤ q < r1. Hence, cq ≈ 1
holds in Qr2 but fails in Qr1 (by the definition we have given of this algebras).
Therefore, Qr1 /∈ V(Qr2) and, consequently, V(Qr1) ⊈ V(Qr2).
⇐) Now, we prove the other direction. If r1 ≤ r2, then Qr1 ∈ H(Qr2) ⊆ V(Qr2).

• V(Qr1) ⊆ V(Qγ1
p1) if and only if r1 ≤ p1.

⇒)To prove this implication we reason by contraposition: we assume that p1 < r1.
Since Q is dense in R, there exists a rational number p1 < q < r1. Hence, cq ≈ 1
holds in Qγ1

p1 but fails in Qr1 (by the definition we have given of this algebras).
Therefore, Qr1 /∈ V(Qγ1

p1) and, consequently, V(Qr1) ⊈ V(Qγ1
p1).

⇐) Now, we prove the other direction. If r1 ≤ p1, then Qr1 ∈ H(Qγ1
p1) ⊆ V(Qγ1

p1).

• V(Qγ1
p1) ⊆ V(Qr1) if and only if p1 < r1.

⇒) To prove this implication we reason by contraposition: we assume that r1 ≤ p1.
Hence, cp1 ≈ 1 holds in Qr1 but fails in Qγ1

p1 (by the definition we have given of
this algebras). Therefore, Qγ1

p1 /∈ V(Qr1) and, consequently, V(Qγ1
p1) ⊈ V(Qr1).

⇐) Now, we prove the other direction. If p1 < r1, then every partial subalgebra
of Qγ1

p1 embeds into some member of {Qq : q ∈ (p1, r1] ∩ Q}. This last statement
implies that Qγ1

p1 validates the universal theory of {Qq : q ∈ (p1, r1] ∩ Q} (i.e.
Qγ1

p1 ∈ ISPU ({Qq : q ∈ (p1, r1] ∩ Q}).
We know {Qq : q ∈ (p1, r1]∩Q} ⊆ H(Qr1) ⊆ V(Qr1). Therefore, by what we have
previously showed about the membership of Qγ1

p1 , we obtain Qγ1
p1 ∈ V(Qr1).

• V(Qγ1
p1) ⊆ V(Qγ2

p2) if and only if either p1 < p2 or (p1 = p2 and γ1 ≤ γ2).

⇒) To prove this implication we reason by contraposition: we assume that ei-
ther p2 < p1 or (p1 = p2 and γ2 < γ1).

– If p2 < p1: Then, by density, there exists a rational q such that p2 < q < p1.
Hence, cq ≈ 1 holds in Qγ2

p2 but fails in Qγ1
p1 (by the definition we have given

of this algebras). Therefore, Qγ1
p1 /∈ V(Qγ2

p2) and, consequently, V(Qγ1
p1) ⊈

V(Qγ2
p2).

– If p1 = p2 (= q ∈ [12 , 1) ∩ Q) and γ2 < γ1: Since γ2 < γ1, necessarily γ1 > 0,
moreover, from γ2 < γ1 ∈ ω + 1 it follows that γ2 = n for some n ∈ ω.
Given the fact that q < 1 and γ2 = n, it is clear that the interval [cq, 1] in
Qγ2

q has n+ 2 elements, hence:

Qγ2
q = Qγ2

p2 ⊨
∨

0≤i<j≤n+2

(cq ∨ xi) ↔ (cq ∨ xj) ≈ 1.

On the other hand, since γ1 > γ2 = n, the interval [cq, 1] in Qγ1
q = Qγ1

p1 has
more than n+ 2 elements. Thus, the above equation fails in Qγ1

p1 and, conse-
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quently, Qγ1
p1 /∈ V(Qγ2

p2).

⇐) Now, we prove the other direction:

– If p1 < p2: Then, we have V(Qγ1
p1) ⊆ V(Qp2) ⊆ V(Qγ2

p2) by the previous items
we have proved (the third and the second, respectively).

– If p1 = p2 and γ1 ≤ γ2: Then,

Qγ1
p1 ∈ S(Qγ2

p2) ⊆ V(Qγ2
p2).

1. Let K be a nontrivial variety of rational NM-algebras, first we will show that K is of
the form V(Qr) for some r ∈ (12 , 1] or V(Qγ

p) for some γ ∈ ω + 1 and p ∈ [12 , 1) ∩ Q.
By Corollary 2.3, we know K is generated by a set of algebras {Ai : i ∈ I} ̸= ∅ of the
form Qr, where r ∈ (12 , 1], or Qγ

p , where p ∈ [12 , 1) ∩ Q and γ ∈ ω + 1.

Thus, we want to define some algebra S of the previous types such that K = V(S).
Let s = sup{r ∈ [12 , 1] : Qr ∈ {Ai : i ∈ I} or Qγ

r ∈ {Ai : i ∈ I} for some γ ∈ ω + 1}.

- If there exists γ ∈ ω+ 1 such that Qγ
s ∈ {Ai : i ∈ I}, then we take S := Qδ

s where
δ = sup{γ ∈ ω + 1 : Qγ

s ∈ {Ai : i ∈ I}}.

- Otherwise, we take S := Qs.

By the inclusions we have proved in item 2 and the definition we have given of S, it is
clear that K ⊆ V(S). Now, we show the other inclusion also holds:

- If S ∈ {Ai : i ∈ I}, then trivially V(S) ⊆ K.

- Otherwise, either S = Qs or S = Qω
s . In both cases, every finite partial subalgebra

of S embeds into some member of {Ai : i ∈ I}, therefore, S validates the universal
theory of {Ai : i ∈ I}. Hence, S ∈ ISPU{Ai : i ∈ I} ⊆ K since K is a variety
generated by {Ai : i ∈ I} and, consequently, V(S) ⊆ K.

We have proved that K = V(S) and, thus, every variety of rational NM-algebras is
generated by an algebra of the form Qr or Qγ

p .

Now, we will show that varieties of the form V(Qγ
p) are axiomatized by the equations:

{cq ≈ 1 : q ∈ (p, 1] ∩ Q} and
(∨

0≤i<j≤n+2(cp ∨ xi) ↔ (cp ∨ xj)
)
≈ 1, if γ = n ∈ ω;

{cq ≈ 1 : q ∈ (p, 1] ∩ Q}, otherwise.

Let Σ be the set of equations given by the statement, it holds that Qγ
p ⊨ Σ.

On the other hand, let’s consider a rational NM-algebra A /∈ V(Qγ
p). By what we have

proven previously we obtain that V(A) is generated by some algebra of the form Qr

for some r ∈ (12 , 1] or Qδ
p′ for some p′ ∈ [12 , 1) ∩ Q and δ ∈ ω + 1:

- IfV(A) = V(Qr): Then, since we are assuming that A /∈ V(Qγ
p), it holdsV(Qr) ⊈

V(Qγ
p). Now, by item 2 of this theorem, this implies that p < r. Therefore, by

density of Q in R, there is a rational q such that p < q < r. Hence, c
Qr
q ̸= 1 and,

consequently, Qr ⊭ Σ, which means A ⊭ Σ.
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- If V(A) = V(Qδ
p′): Then, since we are assuming that A /∈ V(Qγ

p), it holds

V(Qδ
p′) ⊈ V(Qγ

p). Now, by item 2, this implies that either p < p′ or (p = p′ and
γ < δ).

– If p < p′, analogously to the previous case, c
Qδ

p′

p′ ̸= 1 and, consequently,

Qδ
p′ ⊭ Σ which means A ⊭ Σ.

– If p = p′ and γ < δ, then γ = n ∈ ω and

Qδ
p′ ⊭

( ∨
0≤i<j≤n+2

(cp ∨ xi) ↔ (cp ∨ xj)
)
≈ 1.

Hence, A ⊭ Σ.

Therefore, we can conclude that Σ axiomatizes V(Qγ
p).

Finally, we will show that varieties of the form V(Qr) are axiomatized by the equations:
{cq ≈ 1 : q ∈ [r, 1] ∩ Q}.
Let Σ be the set of equations given by the statement, it holds that Qr ⊨ Σ.

On the other hand, we consider some rational NM-algebra A such that A /∈ V(Qr)
and arguing as in the previous case: either V(A) = V(Qr′) or V(A) = V(Qγ

p) for some

r ∈ (12 , 1], p ∈ [12 , 1) ∩ Q and γ ∈ ω + 1.

- If V(A) = V(Qr′) since A /∈ V(Qr), by item 2 of this theorem, r < r′ where there

exists some rational q such that r < q < r′. Hence, c
Qr′
q ̸= 1 and Qr′ ⊭ Σ, which

implies A ⊭ Σ.

- If V(A) = V(Qγ
p) and A /∈ V(Qr) then, by item 2, r ≤ p < 1. Hence, c

Qγ
p

p ̸= 1
and Qγ

p ⊭ Σ, which implies A ⊭ Σ.

Therefore, we can conclude that Σ axiomatizes V(Qr).

3. Let LV(RNM)− be the poset of nontrivial varieties of rational NM-algebras, then
LV(RNM)− is indeed a complete lattice (that is clear since: given a poset X, if

∨
Y

exists for all Y ⊆ X, then X is complete).
Moreover, LV(RNM) is obtained by adding a new bottom element to LV(RNM)−

hence, by 1. and 2., it is clear that LV(RNM) is an uncountable chain and, in order to
conclude the proof, it suffices to show that LV(RNM)− is isomorphic to the Dedekind-
MacNeille completion of the poset X obtained by endowing ([12 , 1) ∩ Q) × (ω + 1) with
the lexicographic order:

⟨q1, γ1⟩ ≤ ⟨q2, γ2⟩ iff q1 < q2 or (q1 = q2 and γ1 ≤ γ2) for any q1, q2 ∈ [12 , 1) ∩ Q,
γ1, γ2 ∈ ω + 1.

To see what we have left to prove, we can consider the map f : X −→ LV(RNM)−

defined by:
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f(⟨q, γ⟩) :=


V(Qγ

1
2

) if q = 1
2 ,

V(Qq) if q ̸= 1
2 and γ = 0,

V(Qn
q ) if q ̸= 1

2 and γ = n+ 1,

V(Qω
q ) if q ̸= 1

2 and γ = ω.

Then, by the previous items we have proven, it is clear that it is an order-embedding:
it is injective by 1. and, by 2., we know that for any q1, q2 ∈ [12 , 1) ∩ Q, γ1, γ2 ∈ ω + 1
we have ⟨q1, γ1⟩ ≤ ⟨q2, γ2⟩ iff f(⟨q1, γ1⟩) ⊆ f(⟨q2, γ2⟩).

Moreover, f [X] is both join-dense and meet-dense in the complete lattice LV(RNM)−,
that is, every element of LV(RNM)− is a join (and also a meet) of some subset of f [X].
This is clear since, for a subset D of a complete lattice Y, D being join-dense in Y is
equivalent to the fact that, for every x, y ∈ Y , x ≰ y ⇔ there exists d ∈ D such that
d ≤ x and d ≰ y. Dual statements also characterize meet density.

Therefore, since up to isomorphism the Dedekind-MacNeille completion of a poset Y is
the only completion in which Y is both join-dense and meet-dense (see [2, Proposition 1]
and also [6]), we can conclude (by what we have recently proved) that LV(RNM)− is
isomorphic to the Dedekind-MacNeille completion of X. Hence, we have seen what we
wanted and the proof of item 3. is concluded.

□

Remark 2.5. The axiomatization given in item 1. of Theorem 2.4 can be simplified for
varieties of the form V(Qq) with q ∈ Q ∩ (12 , 1], as these can be axiomatized by the equation
cq ≈ 1. On the other hand, varieties of the form V(Qr) with r ∈ (12 , 1] \ Q do not admit a
finite axiomatization (that’s because Q is dense in R: there always exists a rational in between
any two given real numbers).

Since there is a dual isomorphism between the lattice of subvarieties of RNM and the
lattice of axiomatic extensions of RNML, Theorem 2.4 provides a full description of the last
one, which is presented in the following result:

Corollary 2.6. Every consistent axiomatic extension of RNML is of the form

RNMLr := RNML + {cq : q ∈ [r, 1] ∩ Q} for some r ∈ (12 , 1],

RNMLω
p := RNML + {cq : q ∈ (p, 1] ∩ Q} for some rational p ∈ [12 , 1), or

RNMLn
p := RNMLω

p +
∨

0≤i<j≤n+2(cp ∨ xi) ↔ (cp ∨ xj) for some rational p ∈ [12 , 1) and

n ∈ ω.
Moreover, the lattice of axiomatic extensions of RNML is an uncountable chain dually iso-
morphic to the poset obtained by adding a new bottom element to the Dedekind-MacNeille
completion of the lexicographic order of [12 , 1) ∩ Q and ω + 1.

The structure of the lattice of arbitrary extensions of RNML is still unknown as in the
case of RG (see [18, Section 7]). However, it is easy to see that it has uncountable chains
and antichains, the first statement is directly obtained by Corollary 2.6. The claim that the

31



lattice of arbitrary extensions of RNML has uncountable antichains is easily proven from
the fact that {Q(Qr) : r ∈ (12 , 1]}∪{Q(Q0

p) : p ∈ [12 , 1)∩Q} is a set of minimal quasivarieties:

• Given some p ∈ [12 , 1)∩Q, we observe that, if A∈ Q(Q0
p) is nontrivial, then it validates

the quasiequations of the form cq ≈ 1 ⇒ 0 ≈ 1, for q ∈ [12 , p] ∩ Q.
Thus, cAq < 1 for all q ∈ [12 , p] ∩ Q and, consequently, 0 <cAq for any q ∈ [1 − p, 12 ] ∩ Q.
Hence, Q0

p is embeddable into A and this implies that Q(Q0
p) ⊆ Q(A), i.e. that Q(Q0

p)
is a minimal quasivariety.

• Analogously, given some r ∈ (12 , 1], we can see that, if A∈ Q(Qr) is nontrivial, then Qr

is embeddable into A. This implies that Q(Qr) ⊆ Q(A), therefore Q(Qr) is a minimal
quasivariety.

2.2 Structural completeness in RNML

Now, we move on to studying some structural completeness results for the rational Nilpotent
minimum logic: as it has been done for the rational Gödel logic in [18, Section 8], we will
obtain a full characterization of structural completeness and its variants in extensions of
RNML. The following result characterizes PSC extensions of RNML:

Theorem 2.7. The following are equivalent for an extension ⊢ of RNML:

1. ⊢ is PSC;

2. ⊢ is algebraized by a quasivariety with the JEP;

3. ⊢ is algebraized by a quasivariety whose nontrivial members have isomorphic zero-
generated subalgebras.

Proof. 1.⇒ 2. : Is a direct consequence of Theorem 1.30.

2.⇒ 3. : Is easily seen by definition of what it means for a quasivariety to have the JEP.

3.⇒ 1. : Consider K to be the quasivariety algebraizing ⊢, then, by Theorem 1.29, in order to
see that ⊢ is PSC it suffices to show that every two nontrivial members of K (the equivalent
algebraic semantics of ⊢) validate the same positive existential sentences.
To prove what we want, we consider two nontrivial algebras A, B ∈ K and, by assumption,
their zero-generated subalgebras will coincide (let’s denote this algebra by C).

By Lemma 1.41 (taking I = C \{1}), the set F of prime filters F of A such that F ∩C = {1}
is nonempty. Thus, we are considering a nonempty partially ordered set satisfying that every
chain has an upper bound (its union) in the set, therefore, by applying Zorn’s Lemma we
obtain a maximal F ∈ F .

Since F is prime, by Theorem 1.40, A/F is a chain and, by construction of F, the zero-
generated subalgebra of A/F is isomorphic to C. Hence, we can assume without loss of
generality that C is a subalgebra of A/F .
The algebra A is assumed to be nontrivial, therefore either C = Qr for some r ∈ (12 , 1] or
C = Q0

p for some p ∈ [12 , 1) ∩ Q.
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Moreover, we have taken F to be maximal on F thus, for any a ∈ A/F strictly larger
than all the elements of C \ {1}, a = 1 must hold (otherwise a wouldn’t belong to F nor
C \ {1} and F wouldn’t be maximal).
Therefore, we have seen that A/F is a rational NM-chain satisfying that |(A/F )\ ↓ (C \
{1})| = 1 and, by Proposition 2.2, either ISPU (A/F ) = ISPu(Qr) for some r ∈ (12 , 1] or
ISPU (A/F ) = ISPu(Q0

p) for some p ∈ [12 , 1) ∩ Q. Thus, A/F ∈ ISPU (C).

By assumption we know C is a subalgebra of B (the zero-generated one) then, we obtain
A/F ∈ ISPU (B). Hence, there exists some embedding fA : A/F ↪→ BU where BU is an
ultrapower of B.
We can consider gA : A −→ A/F to be the canonical surjection and, then, the composition
fA ◦ gA will be a homomorphism from A to BU .

Finally, since positive existential sentences are preserved by homomorphic images, exten-
sions and ultraroots, it has been showed what we wanted: every positive existential sentence
that is true in A will also be true in B. □

We present and prove the following result, which will be helpful to characterize structural
completenes, active structural completeness and hereditary structural completeness later on:

Proposition 2.8. Let K be a nontrivial sub-quasivariety of RNM and let FK(ω) be its de-
numerably generated free algebra. Then, there are r ∈ (12 , 1], p ∈ [12 , 1) ∩ Q and γ ∈ ω + 1
such that Q(FK(ω)) = Q(Qr) or Q(FK(ω)) = Q(Qγ

p).

Proof. We consider K to be as mentioned in the statement. Now, we know that FK(ω) =
FV(K)(ω) where V(FV(K)(ω)) = V(K) is a variety of RNM (the last equality is given by

[7, Theorem 10.12 and Lemma 11.8]). Thus, by Theorem 2.4, there exist some r ∈ (12 , 1],
p ∈ [12 , 1)∩Q and γ ∈ ω+ 1 such that FK(ω) will be the denumerably generated free algebra
of V(Qr) or V(Qγ

p).
This last statement implies that FK(ω) will also be the denumerably generated free algebra
of Q(Qr) or Q(Qγ

p). Hence, Q(FK(ω)) ⊆ Q(Qr) or Q(FK(ω)) ⊆ Q(Qγ
p).

We have left to see the other inclusion holds for both cases:

• If FK(ω) = FV(Qr)
(ω): then Qr is the zero-generated subalgebra of FK(ω). Therefore,

Q(Qr) ⊆ Q(FK(ω)).

• If FK(ω) = FV(Q0
p)

(ω): analogously to the previous case we obtain Q(Q0
p) ⊆ Q(FK(ω)).

• Finally, we consider the case where FK(ω) = FV(Qγ
p)

(ω) with γ > 0: since every finite
partial subalgebra of Qγ

p embeds into {Qn
p : n ∈ ω and 1 ≤ n ≤ γ} it is clear that

Qγ
p ∈ ISPU ({Qn

p : n ∈ ω and 1 ≤ n ≤ γ}).
Thus, if we show that each Qn

p (for n ∈ ω and 1 ≤ n ≤ γ) is embeddable into FK(ω) we
obtain Qγ

p ∈ ISPUS(FK(ω)) = ISPU (FK(ω)) ⊆ Q(FK(ω)) and, hence, what we wanted.

For every 1 ≤ n ≤ γ such that n ∈ ω, the algebra Qn
p is the chain consisting of

the interval [1 − p, p] ∩ Q in between the n+ 1 element chains:
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0 < ¬tn−1 < · · · < ¬t1 < ¬t0
t0 < t1 < · · · < tn−1 < 1.

Then, Qn
p is embeddable into FK(ω) via the map that is the identity on {0} ∪ ([1 −

p, p]∩Q)∪{1} and that sends ti to (the equivalence class of) the formula φi and ¬ti to
its negation, where:

φ0 := cp ∨ x1 and φj+1 := xj+1 ∨ (xj+1 → φj).

That is, we have an embedding:

h : Qn
p
∆ ↪→ FK(ω)

a 7→ h(a) :=

{ a if a ∈ {0} ∪ ([1 − p, p] ∩ Q) ∪ {1},
φi if a = ti,
¬φi if a = ¬ti.

which is what we needed in order to conclude the proof.

□

The other variants of structural completeness turn out to be equivalent among extensions
of RNML:

Theorem 2.9. The following are equivalent for an extension ⊢ of RNML:

1. ⊢ is HSC;

2. ⊢ is SC;

3. ⊢ is ASC;

4. ⊢ is algebraized by a quasivariety K generated by a chain A.

Furthermore, in condition 4., A can be chosen either trivial or of the form Qr or Qγ
p , where

r ∈ (12 , 1], p ∈ [12 , 1) ∩ Q and γ ∈ ω + 1.

Proof. 1.⇒ 2. : Is straightforward by definition of hereditary structural completeness.

2.⇒ 3. : Is also trivial by the explanation of what it means to be active structural complete.

3. ⇒ 2. : Let K be a quasivariety algebraizing ⊢ and FK(ω) be its denumerably generated
free algebra.
Assume that ⊢ is not SC with the aim to arrive to a contradiction. From this last statement
and the supposition that ⊢ is ASC we obtain that ⊢ must not be PSC.
Therefore, by Theorem 2.7, there is a zero-generated algebra C ∈ K different from the zero-
generated subalgebra FK(0) of FK(ω). Then, since C is distinct from FK(0) and, for every
A ∈ K, there is a set X such that A ∈ H(FK(X)), there must be some q ∈ [12 , 1) ∩ Q such
that cq ≈ 1 holds in C, but not in FK(0) (nor in FK(ω)).

Moreover, by Proposition 2.8, there are r ∈ (12 , 1], p ∈ [12 , 1) ∩ Q and γ ∈ ω + 1 such
that Q(FK(ω)) = Q(Qr) or Q(FK(ω)) = Q(Qγ

p). Then, we can take A ∈ {Qr,Q
γ
p} such that

Q(FK(ω)) = Q(A).
In particular A ⊭ cq ≈ 1 and, since by definition it is a chain,
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A ⊨ x ∨ cq ≈ 1 =⇒ x ≈ 1.

Given that ⊢ is ASC, by Theorem 1.29, it holds C× FK(0) ∈ Q(FK(ω)) = Q(A), therefore,

C× FK(0) ⊨ x ∨ cq ≈ 1 =⇒ x ≈ 1.

But this last statement is false: if we consider the assignment x 7→ ⟨0, 1⟩ we obtain ⟨0, 1⟩ ∨
⟨1, . . . ⟩ ≈ 1 but x ̸≈ 1. Hence, by assuming ⊢ isn’t PSC we have arrived to a contradiction
and this concludes our proof that ⊢ is structurally complete.

2. ⇒ 4. : We assume ⊢ is SC and, by Theorem 1.29, this implies that ⊢ is algebraized
by a quasivariety K that is generated by FK(ω) (that is, K = Q(FK(ω))). Moreover, by
Proposition 2.8, we obtain what we wanted: either K is trivial or of the form Q(Qr) for some
r ∈ (12 , 1] or Q(Qγ

p) for some p ∈ [12 , 1) ∩ Q and γ ∈ ω + 1.

4.⇒ 1. : We presume that 4. holds and we distinguish the following cases:

• If ⊢ is algebraized by a trivial quasivariety K: then ⊢ is clearly HSC.

• If ⊢ is algebraized by a quasivariety K = Q(A) where A is a nontrivial chain: then, by
Proposition 2.2, either A = Qr for some r ∈ (12 , 1] or A = Qγ

p for some p ∈ [12 , 1) ∩ Q
and γ ∈ ω + 1.
We can deduce this last statement because, by Proposition 2.2, we obtain ISPU (A) =
ISPU (Qr) or ISPU (A) = ISPU (Qγ

p), hence PISPU (A) = PISPU (Qr) or PISPU (A) =
PISPU (Qγ

p) and, for any class of algebras K′, PI(K′) = IP(K′) and PS(K′) ⊆ ISP(K′).

Thus, we have two different subcases:

– First, we suppose that A = Qr. Then, it is clear that the zero-generated sub-
algebra of every nontrivial member of Q(Qr) will be Qr. Thus, the quasivariety
Q(Qr) is minimal (there is no subquasivariety different than the trivial one) and,
therefore, by Theorem 1.29, we obtain that ⊢ is HSC.

– Finally, we consider the case where A = Qγ
p . Since we know that every extension

of ⊢ will be algebraized by a subquasivariety of K then, by definition of HSC and
Theorem 1.29, to prove what we want it suffices to see that every subquasivariety
of Q(Qγ

p) is generated as a quasivariety by its denumerably generated free algebra.

The previous statement holds for Q(Qγ
p): by the proof that has been given of

Proposition 2.8 it is obtained that Q(FK(ω)) = Q(Qγ
p) = K.

Moreover, if we consider a proper subquasivariety K′ of Q(Qγ
p), we can assume

K′ to be nontrivial since otherwise it is easily seen what we want to show. Then,
Q0

p ∈ K′ (by its nontriviality) and Qγ
p /∈ K′ (since it is proper). Consequently,

there is some n ∈ ω such that, for all m ∈ ω + 1,

Qm
p ∈ K′ if and only if m ≤ n.

This together with Proposition 2.8 implies that Q(FK′(ω)) = Q(Qn
p ): that’s be-

cause Q(FK′(ω)) ⊆ K′ thus, for any m > n, Qm
p /∈ Q(FK′(ω)).
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From the equality Q(FK′(ω)) = Q(Qn
p ), in particular, we obtain:

K′ ⊨

( ∨
0≤i<j≤n+2

(cp ∨ xi) ↔ (cp ∨ xj)
)

≈ 1.

Recall that we want to show Q(FK′(ω)) = K′ where, clearly, the inclusion from
left to right holds. Thus, in order to prove what is left to see, we let B ∈ K′ and
we will show that B ∈ Q(FK′(ω)).

Now, since K′ is a quasivariety of Q(Qγ
p), we know B ∈ Q(Qγ

p) and, by the
Subdirect Decomposition Theorem (see [7, Theorem 8.6]), B is a subdirect prod-
uct of algebras that are relatively subdirectly irreducible in Q(Qγ

p) (let’s denote
them by Ci).
It is easy to see that Q(Qγ

p) = ISPPU(Qγ
p) = IPSDSPU(Qγ

p). In particular, this
implies that Ci ∈ IPSDSPU(Qγ

p) and, since we are assuming that they are rela-
tively subdirectly irreducible inQ(Qγ

p), Ci ∈ ISPU(Qγ
p), therefore, they are chains.

Hence, we have that B is a subdirect product of the chains {Ci : i ∈ I} in
Q(Qγ

p). Furthermore, B validates the equation previously exhibited and so do all
the Ci.
From this, the fact that Ci ∈ Q(Qγ

p) (for every i ∈ I) and Proposition 2.2, we
obtain:

{Ci : i ∈ I} ⊆ ISPU ({Q0
p, . . . ,Q

n
p}) ⊆ ISPU (Qn

p ).

Thus, B is a subdirect product of members of Q(Qn
p ) and, since we had shown

Q(FK′(ω)) = Q(Qn
p ), we conclude B ∈ Q(FK′(ω)).

Therefore, K′ is generated as a quasivariety by FK′(ω), as we wanted to prove.

In all the cases we have distinguished we have shown to be true that ⊢ is HSC.

□

Next, we will introduce a result that presents bases for the admissible rules on all the
axiomatic extensions of RNML.

Theorem 2.10. The following hold for all r ∈ (12 , 1], p ∈ [12 , 1) ∩ Q and γ ∈ ω + 1:

1. A base for the admissible rules of the logic RNMLr is given by the rules of the form
cq ∨ z ▷ z, for all q ∈ [12 , r) ∩ Q;

2. A base for the admissible rules of RNMLγ
p is given by the rule cp ∨ z ▷ z.

Proof. By Theorem 2.9, we obtain that the structural completion of RNMLr is algebraized
by Q(Qr) and that of RNMLγ

p by Q(Qγ
p). Thus, in order to obtain a base for the admissible

rules of RNMLr and RNMLγ
p , it is enough to find an axiomatization of Q(Qr) and Q(Qγ

p)
relative to V(Qr) and V(Qγ

p), respectively (since, by Theorem 2.4, they algebraize RNMLr

and RNMLγ
p).
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Proposition 2.2 and Theorem 2.4 tell us that the universal class of Qr is axiomatized relative
to V(Qr) by cq ̸≈ 1 for all q ∈ [12 , r) ∩ Q. Then, we let T be the set of all terms cq with
q ∈ [12 , r) ∩ Q and we consider some arbitrary A ∈ V(Qr):

• If A validates all the quasiequations t ∨ z ≈ 1 =⇒ z ≈ 1 for t ∈ T , then, for every
t ∈ T , A validates t ̸≈ 1.
Hence, by what we have mentioned about the axiomatization of the universal class of
Qr relative to V(Qr), A ∈ ISPU (Qr) ⊆ Q(Qr).

• On the other hand, if A ∈ Q(Qr), then A validates all quasiequations of the form
t ∨ z ≈ 1 =⇒ z ≈ 1 since they all hold in Qr.

Therefore, it is clear that Q(Qr) is axiomatized relative to V(Qr) by cq ∨ z ≈ 1 =⇒ z ≈ 1,
for all q ∈ [12 , r) ∩ Q.

Analogously, we obtain that Q(Qγ
p) is axiomatized relative to V(Qγ

p) by cp∨z ≈ 1 =⇒ z ≈ 1.
□

2.3 Comparative analysis of the results

The addition of rational constants to the language of NML changes the lattice of axiomatic
extensions. The lattice of the new logic is totally ordered and has uncountable elements
while, on the other hand, we have a countable number of axiomatic extensions for NML.
Moreover, logics of the type NM2n+1 and NM2(n+1) can’t be compared given any n > 0.

The change produced in the ordering of the lattice is due to the fact that now, every RNM-
chain satisfies c 1

2
→ 0 ≈ c¬ 1

2
. In other words, ¬c 1

2
≈ c 1

2
, consequently, every RNM-chain

contains the negation fixpoint. Thus, while studying the lattice of axiomatic extensions of
RNML, we obtain something totally ordered, as is the case for the sublattice of LV(NM)
that contains all the subvarieties generated by chains with negation fixpoint.

The lattice of finitary extensions of RNML will also be different from the one we obtain for
NML since the latter doesn’t have neither uncountable chains nor unncountable antichains.
In fact, it has a countable number of elements.

Lastly, we have seen that we can give a bases for the admissible rules on all axiomatic
extensions, just as what happens in the case of NML (see Theorem 1.75).
But even so, the addition of rational constants to the language does change some structural
completeness results. Previously, for NML we had hereditary active structural completeness
and we had also seen that every logic algebraized by some variety of NM-algebras containing
V(A3) was not structural complete. Thus, for NML we have some extensions that are ASC
but not SC, in contrast to the results we obtain for RNML, where the notions of ASC, SC
and HSC are equivalent for any extension.
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3 The logic NML∆

Clearly, NML is a core fuzzy logic (see Definition 1.32) and, in this section, we will study
the ∆-core fuzzy logic NML∆, in particular, how the addition of the ∆ connective impacts
the lattices of axiomatic and finitary extensions and the results about structural completeness.

By Proposition 1.49, we know that NML∆ is complete with respect to the class of NM∆-
algebras described in Definition 1.43 (which we will denote by NM∆ from now on), moreover,
it is complete with respect to the class of NM∆-chains.
We have previously mentioned in Definition 1.59 that the standard NM-algebra is unique up
to isomorphism. Hence, there will be a unique standard NM∆-algebra which we will denote
by [0,1]∆ = ⟨[0, 1]; ∗,→,∧,∨,¬,∆, 0, 1⟩ where ∆ is as presented in (1.1) and the rest of op-
erations as described in Definition 1.59.
Thus, by Proposition 1.50 and standard completeness of NML, for every set of formulas
Γ ∪ {φ} we have:

Γ ⊢NML∆
φ if and only if there exists a finite Λ ⊆ Γ such that τ[Λ] ⊨[0,1]∆

τ(φ)

where τ := {x ≈ 1}.

Therefore, NML∆ is algebraized by the variety NM∆ = V(NM∆-chains) = V([0,1]∆).
In fact, as in the case of NML, it also holds NM∆ = Q([0,1]∆), since every countable
NM∆-chain will be embeddable into [0,1]∆.

We will present some particular properties of the variety NM∆ that will be useful later
on to study the lattice of finitary extensions of the logic NML∆. But first, we introduce
some concepts:

Definition 3.1. Given a set A, the quaternary discriminator on A is defined by

dA(x, y, z, w) =

{
z if x = y;
w otherwise.

Definition 3.2. A variety V is called a discriminator variety if it is generated by a class K
for which there exists a term N such that NA = dA for every A ∈ K.

Remark 3.3. NM∆ is a discriminator variety. That is because, as we have seen, it is
generated by a class of algebras that are linearly ordered. Thus, the connective ∆ will be
defined in those algebras as in (1.1) and the operations ∗,→ as in Remark 1.60.
Therefore, the term

N(x, y, z, w) := (∆(x→ y ∧ y → x) ∗ z) ∨ (¬∆(x→ y ∧ y → x) ∗ w)

will satisfy that, for every algebra A in the generator class of NM∆, NA = dA.

Hence, we will be able to use the following definitions and results about discriminator
varieties:

Definition 3.4. Given V a discriminator variety, we denote by B the class of algebras
{A ∈ V : A is simple and has no trivial subalgebra }.
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In our case, where V = NM∆, B will be the class of all nontrivial NM∆-chains. This
is due to Proposition 1.49 given that the notions of simple and subdirectly irreducible are
equivalent because we are in a discriminator variety (check [23, page 240]).
In fact, since B is a universal class, it will be closed under the formation of ultraproducts.

Theorem 3.5. [4, Theorem 1]

a) LQ(V ) = LV(V ) if and only if either B = ∅ or LV(V ) ∼= 2.

b) The following are equivalent:

1. LQ(V ) is modular

2. LQ(V ) is distributive

3. V1 ⊆ V2 or V2 ⊆ V1, for every V1, V2 ∈ LV(V ), V1 ⊆ V(B).

Moreover, if the language has a constant, then the above conditions are equivalent to

4. LV(V ) is a chain or LQ(V ) = LV(V ).

c) LQ(V ) is a chain if and only if some of the following conditions hold

1. LQ(V ) = LV(V ) is a chain

2. LV(V ) = {V(∅),V(B),V } ∼= 3 (and, hence, LQ(V ) ∼= 4).

d) LQ(V ) is a Boolean lattice iff LQ(V ) = LV(V ) is a Boolean lattice.

e) The pair (LV(V ),V(B)) determines LQ(V ), i.e., if V ′ is a discriminator variety such
that B′ is closed under the formation of ultraproducts and such that LV(V ′) is iso-
morphic to LV(V ) via an isomorphism which carries V(B′) in V(B), then LQ(V ′) ∼=
LQ(V ).

Where LV(V ) (respectively LQ(V )) denote the lattice of subvarieties (respectively sub-
quasivarieties) of V .

3.1 The lattices of axiomatic and finitary extensions

First, we want to study the lattice of axiomatic extensions of NML∆, equivalently, since
they are dually isomorphic, we will analize the lattice of proper subvarieties of NM∆.
By Remark 1.67 we know that, for each n ∈ N \ {0}, there is only one NM-chain An with
exactly n elements, up to isomorphism. Therefore, since every NM∆-chain is an expansion
of an NM-chain (seen in Definition 1.43) and ∆ is uniquely defined in NM∆-chains (by
Proposition 1.47), we obtain that, for each n ∈ N \ {0}, there is (up to isomorphism) only
one NM∆-chain with exactly n elements which we will denote by A∆

n .
Moreover, we have already seen that there is just one standard NM∆-algebra [0,1]∆ up to
isomorphism.

Remark 3.6. As in the case of NM-algebras, any finitely generated subalgebra of a nontrivial
NM∆-chain is finite, that means, it will be isomorphic to A∆

2n or A∆
2n+1 for some n > 0.

The following result is a direct consequence of Proposition 1.66:
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Proposition 3.7.

• A∆
2m+1 is a subalgebra of A∆

2n+1 iff m ≤ n,

• A∆
2m is a subalgebra of A∆

2n+1 iff 0 < m ≤ n,

• A∆
2m is a subalgebra of A∆

2n iff 0 < m ≤ n,

• A∆
2n+1 is not a subalgebra of A∆

2m for any n,m > 0,

• A∆
m is embeddable into [0,1]∆ for every m > 1,

• A∆
2m is embeddable into [0,1] −

∆ for every m > 0.

In fact, by Definitions 1.43 and 1.69, we know that, just as stated for the case of NM-
algebras, an NM∆-chain satisfies Sn(x0, . . . , xn) ≈ 1 if and only if it has less than 2n + 2
elements. Furthermore, a nontrivial NM∆-chain satisfies BP (x) ≈ 1 if and only if it does not
contain the negation fixpoint.

Moreover, we had previously mentioned NM∆ = V(NM∆-chains) and it has been seen that
NM∆-chains have the same properties as the ones presented for NM-chains. Therefore, we
will be able to characterize, classify and axiomatize all axiomatic extensions of NML∆ (or,
equivalently, all proper subvarieties of NM∆) analogously as in the case of NML:

Theorem 3.8. (The proof is analogous to the one of [15, Theorem 1]) A variety of NM∆-
algebras is a proper subvariety of NM∆ if and only if it does not contain some A∆

k with
1 < k.

Corollary 3.9. NM∆ = V({A∆
n : n ∈ ω, 0 < n}) = V({A∆

2n+1 : n ∈ ω}) = Q({A∆
n

: n ∈ ω, 0 < n}).

Corollary 3.10. Let A be an infinite NM∆-chain containing the negation fixpoint. Then
V(A) = NM∆ = Q(A).

Since any finitely generated NM∆-chain is finite and every NM∆-algebra is a subdirect
product of NM∆-chains, it is easy to see that:

Proposition 3.11. Every variety of NM∆-algebras is generated by its finite NM∆-chains.

Proof. Let W be a variety of NM∆-algebras, we want to see that W = V(Wfinite chains). The
inclusion from right to left is clear, hence, it is enough to show W ⊆ V(Wfinite chains).

In order to see what we want, first we will prove that, given W and some other variety
of NM∆-algebras W ′ ⊆W :

W’ is a proper subvariety ⇔ W’ doesn’t contain some finite NM∆-chain of W.

⇐) Holds trivially.

⇒) Since W’ is a proper subvariety, there is some equation ϵ ≈ δ with m variables (let’s
denote them {x0, . . . , xm−1}) satisfied in W’ and not in W.
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Hence, there is some nontrivial algebra A ∈W such that A /∈W ′. That is, there exist some
elements a0, . . . , am−1 ∈ A such that ϵ(a0, . . . , am−1) ̸= δ(a0, . . . , am−1).
By Proposition 1.49 we know every NM∆-algebra is a subdirect product of NM∆-chains, thus,
we can assume, without losing generality, that A is an NM∆-chain.
We take B to be the subalgebra of A generated by {a0, . . . , am−1}. Since every finitely gen-
erated NM∆-chain is finite, B is a finite NM∆-chain such that B ∈ S(A) ⊆W and B ⊭ ϵ ≈ δ.
Therefore, B /∈W ′.
Thus, it has been seen that W’ doesn’t contain some finite NM∆-chain.

Now, we can finally argue that W = V(Wfinite chains). That is because V(Wfinite chains) con-
tains every finite NM∆-chain of W, hence, by what we have proven, it must not be a proper
subvariety. □

From the above results and completeness for NML∆ (Proposition 1.49) we obtain:

Proposition 3.12. NML∆ is decidable. Moreover, so will be every axiomatic extension.

The proper subvarieties of NM∆ are characterized and axiomatized just as stated in
Theorem 1.70 for the case of NM but with the respective algebras A∆

2n, A∆
2m+1, [0,1]

−
∆ . The

proof is analogous to the one in [15, Theorem 3]:

Theorem 3.13. Every proper nontrivial subvariety of NM∆ is of one of the following types:

1. V([0,1] −
∆ )= V({A∆

2k : k ∈ ω}) = Q({A∆
2k : k ∈ ω}),

2. V(A∆
2m+1) = Q(A∆

2m+1) for some m > 0,

3. V(A∆
2n) = Q(A∆

2n) for some n > 0,

4. V([0,1] −
∆ , A∆

2m+1) = V({A∆
2k: k ∈ ω} ∪ {A∆

2m+1}) = Q({A∆
2k: k ∈ ω} ∪ {A∆

2m+1}) for
some m > 0,

5. V(A∆
2n, A

∆
2m+1)= Q(A∆

2n, A
∆
2m+1) for some m,n ∈ ω such that 0 < m < n.

Moreover, if Σ is any set of equations axiomatizing NM∆, then

1. V([0,1] −
∆ ) is axiomatized by Σ plus the equation BP (x) ≈ 1,

2. V(A∆
2m+1) is axiomatized by Σ plus the equation Sm(x0, . . . , xm) ≈ 1,

3. V(A∆
2n) is axiomatized by Σ plus the equations Sn(x0, . . . , xn) ≈ 1 and BP (x) ≈ 1,

4. V([0,1] −
∆ , A∆

2m+1) is axiomatized by Σ plus the equation BP (x)∨Sm(x0, . . . , xm) ≈ 1,

5. V(A∆
2n, A∆

2m+1) with m < n is axiomatized by Σ plus (BP (x) ∧ Sn(x0, . . . , xn)) ∨
Sm(x0, . . . , xm) ≈ 1.

Furthermore, from Proposition 3.7 we can easily obtain relations among NM∆ varieties:

Proposition 3.14.

• V(A∆
2n+1) ⊆ V(A∆

2m+1) for every n ≤ m,
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• V(A∆
2n) ⊆ V(A∆

2m+1) for every 0 < n ≤ m,

• V(A∆
2n) ⊆ V(A∆

2m) for every 0 < n ≤ m,

• V(A∆
2n) ⊆ V([0,1] −

∆ ) for every n > 0,

• V([0,1] −
∆ ) ∩V(A∆

2m+1) = V(A∆
2m) for every m > 0,

• V(A∆
2n) ∩V(A∆

2m+1) = V(A∆
2min{n,m}) for every n,m > 0.

We know there is a lattice isomorphism between the lattice of all subvarieties of NM∆

and the lattice of all axiomatic extensions of NML∆. Thus, from Theorem 3.13, we have:

Theorem 3.15. All proper consistent axiomatic extensions of NML∆ are:
For every natural numbers n,m > 0

1. NM -
∆ = NML∆ plus A13,

2. NM2m+1∆ = NML∆ plus A12m,

3. NM2n∆ = NML∆ plus A12n and A13,

4. NM -2m+1∆ = NML∆ plus A13 ∨A12m,

5. NM2n,2m+1∆ = NML∆ plus (A12n ∧A13) ∨A12m with n > m.

In fact, the relations between NM∆-varieties stated in Proposition 3.14 can also be trans-
lated to relations among extensions of the logic we are studying. Hence, we obtain the
following lattice of axiomatic extensions of NML∆ (with the dual order):
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Remark 3.16. This lattice happens to be equal to the one obtained for the case of the logic
NML.

Now, we will proceed to examine the lattice of finitary extensions of the logic.
In order to do so, we will use the isomorphism between the lattice of all subquasivarieties
of NM∆ and the lattice of all finitary extensions of the logic, and we will focus on studying
LQ(NM∆).

We recall Remark 3.3 and use Theorem 3.5:
It is clear that A∆

2 ∈ B = {A ∈ NM∆ : A is simple and has no trivial subalgebra} ̸= ∅.
Furthermore, we have previously studied LV(NM∆) and we know it is not isomorphic to 2,
hence, by Theorem 3.5 a), we obtain that LQ(NM∆) ̸= LV(NM∆).

Actually, the language of NM∆ contains a constant (e.g. the 0-ary function 1), therefore,
by the inequality we have proven and Theorem 3.5 b) 4., we deduce that LQ(NM∆) is not
modular nor distributive and, by d) and c), LQ(NM∆) is not a Boolean lattice nor a chain.

In fact, if we were able to find a locally finite discriminator variety whose lattice of all
subvarieties was isomorphic to LV(NM∆) then, by Theorem 3.5 e), we could know how the
lattice of subquasivarieties LQ(NM∆) would look (see Remark 3.33 for an example).
The local finiteness of the variety would assure us that the requirement that B′ is closed
under the formation of ultraproducts is satisfied (see [4, Lemma 13]).

Remark 3.17. NM∆ is a locally finite variety. That is, every finitely generated subalgebra
of some NM∆-algebra is, in fact, finite. Therefore, every subquasivariety of NM∆ will also
be locally finite.

In order to get more information about LQ(NM∆), we will present some results about
locally finite NM∆-quasivarieties that will let us obtain all quasivarieties of NM∆-algebras,
establish inclusion relations between them and characterize and axiomatize its generators.

Theorem 3.18. Every finite NM∆-algebra is isomorphic to a direct product of finite simple
NM∆-algebras.

Proof. Given some finite NM∆-algebra A, by [7, Theorem 7.10] we obtain that A is isomor-
phic to a direct product of directly indecomposable algebras.
Moreover, since NM∆ is a discriminator variety, from [23, page 240] we deduce that directly
indecomposable algebras are simple. In particular, we will have a direct product of finite
simple algebras since, otherwise, A wouldn’t be finite. □

Remark 3.19. Thus, by the last result and Proposition 1.49, every finite NM∆-algebra is
isomorphic to a direct product of finite NM∆-chains.

Definition 3.20. A critical algebra is a finite algebra not belonging to the quasivariety gen-
erated by all its proper subalgebras.

The interest of critical algebras is given by the following theorem:

Theorem 3.21. [17, Theorem 2.3] Every locally finite quasivariety is generated by its critical
algebras.
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Moreover, we will be able to characterize all NM∆-critical algebras, similarly to how it
has been done in [17], by means of the following lemma:

Lemma 3.22. If A∆
n0

× · · ·× A∆
nl−1

is embeddable into
∏

j∈JA
∆
mj

where the set {mj : j ∈ J}
is finite, then

1. For every i < l, there exists j ∈ J such that ni ≤ mj and ni odd ⇒ mj odd.

2. For every j ∈ J , there exists some i < l such that ni ≤ mj and mj even ⇒ ni even.

Proof. 1. Given A∆
n0

× · · ·× A∆
nl−1

embeddable into
∏

j∈JA
∆
mj

, then

A∆
n0

× · · ·× A∆
nl−1

∈ V(
∏

j∈JA
∆
mj

)= V({A∆
mj

: j ∈ J}).

Hence, for every i < l, A∆
ni
∈ V({A∆

mj
: j ∈ J}). Given

M(x, y, z) = (∆(x→ y ∧ y → x) ∗ y) ∨ (¬∆(x→ y ∧ y → x) ∗ z),

it is clear, by [7, Theorem 12.3] that V({A∆
mj

: j ∈ J}) is a congruence-distributive
variety. Thus, from this and the fact that the set {mj : j ∈ J} is finite we can ap-
ply [7, Corollary 6.10] which states that the class of subdirectly irreducible algebras of
V({A∆

mj
: j ∈ J}) will be in HS({A∆

mj
: j ∈ J}).

Moreover, by Proposition 3.7,

HS({A∆
mj

: j ∈ J}) = H({A∆
n : ∃j ∈ J such that n ≤ mj and n odd ⇒ mj odd})

where a homomorphic image of a finite NM∆-chain will also be a finite NM∆-chain
(whose cardinality is smaller or equal).

Furthermore, given 0 < k < n, we can’t have an exhaustive homomorphism
h : A∆

2n ↠ A∆
2k+1. That’s because, in that case, there would be some a ∈ A∆

2n such
that h(a) = h(¬a) would be the negation fixpoint (denoted by 0 in these algebra).
Then, if we consider b = max{a,¬a} and c = min{a,¬a}, we have b → c = c. Hence,
h(b → c) = 0 while h(b) → h(c) = 0 → 0 = k. We had taken k ̸= 0, therefore, such
homomorphism doesn’t exist.
Moreover, for any A∆

2k, it is clear that this algebra cannot be a homomorphic image of
any algebra that has a negation fixpoint.

Thus, H(A∆
n ) is the set of A∆

k such that k ≤ n and k odd ⇔ n odd.

Therefore, the class of irreducible members of V({A∆
mj

: j ∈ J}) will be contained

in I({A∆
n : ∃j ∈ J such that n ≤ mj and n odd ⇒ mj odd}).

By Proposition 1.49, we know NM∆-chains are subdirectly irreducible members of
NM∆, hence, for every i < l, A∆

ni
belongs to V({A∆

mj
: j ∈ J})SI .

Then, we have proven that, for every i < l, there exists some j ∈ J such that ni ≤ mj

and ni odd ⇒ mj odd.
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2. Given some A∆
n0

× · · ·× A∆
nl−1

embeddable into
∏

j∈JA
∆
mj

, we can consider γ to
be such an embedding and, for every j ∈ J , we can take the natural projection
πj :

∏
j∈J A

∆
mj

↠ A∆
mj

.

Then, for every j ∈ J , γj = πj ◦ γ : A∆
n0

× · · ·× A∆
nl−1

→ A∆
mj

is an homomorphism
and, by the Homomorphism Theorem [7, Theorem 6.12],

A∆
n0

× · · ·× A∆
nl−1

/Ker(γj) ∼= γj(A
∆
n0

× · · ·× A∆
nl−1

) ⊆ A∆
mj

.

From this, since in a discriminator variety the concepts of simple, subdirectly irreducible
and directly indecomposable are equivalent ([23, page 240]), we obtain that A∆

n0
× · · ·×

A∆
nl−1

/Ker(γj) is simple.
By definition of simple algebra, this last statement is equivalent to Ker(γj) being a
maximal congruence relation of A∆

n0
× · · ·× A∆

nl−1
.

Now, we consider [8, Lemma 2.3] and remark that this result also holds for NM∆-
algebras since the proof is general. Thus, from this, the maximality of Ker(γj) and the
fact that the A∆

ni
’s are simple (that is, Con(A∆

ni
)= {A∆

ni

2, IdA∆
ni

} ) we obtain that there

is some i < l such that:

Ker(γj)= A∆
n0

2 × · · ·× A∆
ni−1

2 × IdA∆
ni

× A∆
ni+1

2 × · · ·× A∆
nl−1

.

Therefore, for every j ∈ J , there exists i < l such that:

A∆
n0

× · · ·× A∆
nl−1

/Ker(γj) ∼= A∆
ni

⊆ A∆
mj

.

Finally, by Proposition 3.7, we have proven what we wanted: for every j ∈ J , there
exists i < l such that ni ≤ mj and mj even ⇒ ni even.

□

Now, we can give a characterization of all critical NM∆-algebras:

Theorem 3.23. An NM∆-algebra A is critical if and only if A is isomorphic to a finite
NM∆-algebra A∆

n0
× · · ·× A∆

nl−1
satisfying the following conditions:

1. For every i, j < l, i ̸= j implies ni ̸= nj.

2. If there exists some nj with j < l such that for some i ̸= j with i < l it holds ni ≤ nj
and ni odd ⇒ nj odd, then nj is unique. That is, for any s, r < l such that s ̸= r,
ns ≤ nr and ns odd ⇒ nr odd it must hold nr = nj.

Proof. ⇐) First, we assume that A = A∆
n0

× · · ·× A∆
nl−1

satisfies conditions 1. and 2. and
we will show that A is critical. Before doing that, we will prove the following claim:

Claim: Every proper subalgebra of A is embeddable into a subalgebra of A of the form
A∆

d0
× · · ·× A∆

dl−1
where di ≤ ni and di odd ⇒ ni odd for every i < l and there exists

some j < l such that dj ̸= nj .
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Proof. Let B be a proper subalgebra of A. Since A is finite, so will be B and then,
by Remark 3.19, we obtain that B is isomorphic to an NM∆-algebra A∆

r0 × · · ·× A∆
rk−1

.

Now, for every i < l, we can consider the natural projection

πi : A = A∆
n0

× · · · ×A∆
nl−1

↠ A∆
ni

and we can take γi to be πi ↾ B. Then, B will be embeddable into γ0(B)×· · ·×γl−1(B)
(not necessarily exhaustively).
Moreover, since for every i < l the inclusion γi(B) ⊆ A∆

ni
holds, by Proposition 3.7, we

have γi(B) = A∆
di

for some di ≤ ni such that di odd ⇒ ni odd.

Thus, if there is some j < l such that dj ̸= nj we have already seen what we wanted.
Therefore, let’s assume the opposite: for every i < l, γi(B) = A∆

ni
.

Then, by the Homomorphism Theorem [7, Theorem 6.12], for all i < l, B/Ker(γi) ∼= A∆
ni

and, since A∆
ni

is simple then, by definition, Ker(γi) is a maximal congruence relation
of B.
Thus, by [8, Lemma 2.3] (which we have previously mentioned that also holds for NM∆-
algebras), by the fact that we had seen B ∼= A∆

r0 × · · ·× A∆
rk−1

for simple A∆
ri ’s and by

the maximality of Ker(γi) we obtain that there is some j < k such that

Ker(γi)= A∆
r0

2 × · · ·× A∆
rj−1

2 × IdA∆
rj
× A∆

rj+1

2 × · · ·× A∆
rk−1

.

Hence, for every i < l, there exists some j < r such that B/Ker(γi) ∼= A∆
rj = A∆

ni
.

By condition 1. we know that i1 ̸= i2 implies ni1 ̸= ni2 . Therefore, l ≤ k, be-
cause otherwise there would exist some i1, i2 < l and some j < r such that i1 ̸= i2 and
A∆

ni1
= A∆

rj = A∆
ni2

, contradicting our assumption.

Moreover, for each i1, i2 < l such that i1 ̸= i2 the corresponging j1, j2 < r must also
be different. Otherwise, A∆

ni1
= A∆

rj1
= A∆

rj2
= A∆

ni2
holds, which again contradicts

condition 1.

Then, since l ≤ k and we obtain

B ∼= A∆
r0 × · · ·× A∆

rk−1
= A∆

n0
× · · ·× A∆

nl−1
× A∆

ml
× · · ·× A∆

mr−1
=

A × A∆
ml

× · · ·× A∆
mr−1

where ml, . . . ,mr−1 ∈ {r0, . . . , rk−1}. But this implies |A| ≤ |B|, which contradicts the
fact that B is a proper subalgebra of A.

Thus, it never occurs the case where there is no j < l such that dj ̸= nj and the
claim has been proven. □
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Now, we continue with the proof of the theorem. Given the algebra A = A∆
n0

× · · ·× A∆
nl−1

satisfying conditions 1. and 2., we assume A ∈ Q({B ⊊ A}) with the goal of arriving to a
contradiction.
In that case, it will be clear that A is a critical algebra since these are finite algebras not
belonging to the quasivariety generated by all its proper subalgebras and we already know
A is finite.

Since A ∈ Q({B ⊊ A}), then, by the claim,

A ∈ ISPPU ({A∆
d0

× · · ·× A∆
dl−1

: ∀i di ≤ ni, di odd ⇒ ni odd; ∃j dj ̸= nj}).

Moreover, given that {A∆
d0

× · · ·× A∆
dl−1

: ∀i di ≤ ni, di odd ⇒ ni odd; ∃j dj ̸= nj} is

a finite set of finite NM∆-algebras, by [7, Lemma 6.5], we have: A ∈ ISP({A∆
d0

× · · ·×
A∆

dl−1
: ∀i di ≤ ni, di odd ⇒ ni odd; ∃j dj ̸= nj}).

Thus, A = A∆
n0

× · · ·× A∆
nl−1

is embeddable into
∏

k<m(A∆
d0,k

× · · ·× A∆
dl−1,k

)αk where

{A∆
d0,k

× · · ·× A∆
dl−1,k

: k < m} ⊆ {A∆
d0

× · · ·× A∆
dl−1

: ∀i di ≤ ni, di odd ⇒ ni
odd; ∃j dj ̸= nj}.

Since the set {dt,k : t < l, k < m} is finite, we can apply Lemma 3.22. First, we consider two
possible cases:

• There exist i, j < l such that i ̸= j, ni ≤ nj and ni odd ⇒ nj odd:
Then, by the fact that A satisfies condition 2., nj must be unique. By Lemma 3.22 1.,
there exists some A∆

dt,k
such that nj ≤ dt,k and nj odd ⇒ dt,k odd. In other words,

there exists some

A∆
d0,k

× · · ·× A∆
dl−1,k

∈ {A∆
d0

× · · ·× A∆
dl−1

: ∀i di ≤ ni, di odd ⇒ ni odd; ∃j dj ̸= nj}

such that nj ≤ dt,k and nj odd ⇒ dt,k odd for some t < l. Combining this with the
fact that nj is unique and, by definition, dt,k ≤ nt and dt,k odd ⇒ nt odd, we obtain
nj = dt,k = nt.
Thus, by condition 1., j = t.

Since we know

A∆
d0,k

× · · ·× A∆
dl−1,k

∈ {A∆
d0

× · · ·× A∆
dl−1

: ∀i di ≤ ni, di odd ⇒ ni odd; ∃j dj ̸= nj},

there exists some r < l such that dr,k ≤ nr, dr,k odd ⇒ nr odd and dr,k ̸= nr (hence, it
must hold r ̸= j).
Now, by Lemma 3.22 2., there exists some s < l such that ns ≤ dr,k and ns odd ⇒
dr,k odd. Then, combining this with the properties given by how we have defined r, we
obtain ns ≤ nr and ns odd ⇒ nr odd (with s ̸= r, since ns is strictly less than nr).
Furthermore, in this case, we had considered the existence of some i ̸= j such that
ni ≤ nj and ni odd ⇒ nj odd.
We have seen r ̸= j and this leads us to a contradiction with respect to condition 2.
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• For all i, j < l such that i ̸= j either ni > nj or ni odd ⇏ nj odd:
Then, the argument of the previous case follows analogously by taking any nj with
j < l.

Therefore, we have arrived to a contradiction in both cases, as we wanted. Then, A is finite
and A /∈ Q({B ⊊ A}) which means that A is critical.

⇒) We proceed to prove the converse, let A be a critical NM∆-algebra. Then, by defi-
nition, A is finite and, by Theorem 3.18, we can suppose, without loss of generality, that

A = A∆
n0

m0 × · · ·× A∆
nr−1

mr−1

for some n0, . . . , nr−1,m0, . . . ,mr−1 ∈ ω and ni ̸= nj when i ̸= j. We assume not all mi’s are
equal to 1 in order to arrive to a contradiction.

Let m = max{m0, . . . ,mr−1}, then we consider the map

β :A∆
n0

m0 × · · ·× A∆
nr−1

mr−1 → A∆
n0

m × · · ·× A∆
nr−1

m

such that, for every k < r,

β(b(0), . . . , b(r − 1)) (k) = (b(k)(1), . . . , b(k)(mk),

m−mk︷ ︸︸ ︷
b(k)(1), . . . , b(k)(1) ).

This function gives an embedding from A into A∆
n0

m×· · ·× A∆
nr−1

m ∼= (A∆
n0

× · · ·× A∆
nr−1

)m.

Thus, A ∈ Q(A∆
n0

× · · ·× A∆
nr−1

).

On the other hand, the map

α : A∆
n0

× · · · ×A∆
nr−1

−→ B ⊊ A∆
n0

m0 × · · · ×A∆
nr−1

mr−1

(a(0), . . . , a(r − 1)) 7−→ α(a) =
( m0︷ ︸︸ ︷
a(0), . . . , a(0), . . . ,

mr−1︷ ︸︸ ︷
a(r − 1), . . . , a(r − 1)

)
defines an isomorphism from A∆

n0
× · · ·× A∆

nr−1
into a proper subalgebra of A (because there

is some mi different than 1).
This leads us to a contradiction since, then, A ∈ Q(A∆

n0
× · · ·× A∆

nr−1
) implies A is not

critical.
Thus, m0 = · · · = mr−1 = 1 and A = A∆

n0
× · · ·× A∆

nr−1
with ni ̸= nj if i ̸= j, that is,

satisfying condition 1.

Now, we just have left to see condition 2. holds. We will assume it fails and, once more,
arrive to a contradiction.
We suppose there exist i ̸= j and k ̸= s such that ni ≤ nj , nk ≤ ns, ni odd ⇒ nj odd, nk
odd ⇒ ns odd and j ̸= s.

Since i ̸= j, ni ≤ nj and ni odd ⇒ nj odd, by Proposition 3.7, we have that the map

A∆
n0

× · · · ×A∆
nj−1

×A∆
nj+1

× · · · ×A∆
nr−1

−→ B ⊊ A∆
n0

× · · · ×A∆
nr−1

(a(0), . . . , a(j − 1), a(j + 1), . . . , a(r − 1)) 7−→ (a(0), . . . , a(j − 1), a(i), a(j + 1), . . . , a(r − 1))
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is a isomorphism between A∆
n0

× · · ·× A∆
nj−1

× A∆
nj+1

× · · ·× A∆
nr−1

and some proper subal-
gebra of A.

Analogously, A∆
n0

× · · ·× A∆
ns−1

× A∆
ns+1

× · · ·× A∆
nr−1

is also isomorphic to a proper sub-
algebra of A.

Finally, we observe that we have an embedding:

δ : A∆
n0

× · · · ×A∆
nr−1

↪→ A∆
n0

2 × · · · ×A∆
nj−1

2 ×A∆
nj

×A∆
nj+1

2 × · · · ×A∆
ns−1

2 ×A∆
ns

×A∆
ns+1

2 × · · · ×A∆
nr−1

2

(a(0), . . . , a(r − 1)) 7−→ δ(a(0), . . . , a(r − 1)) (i) =

{
(a(i), a(i)) if i ̸= j, i ̸= r,

a(i) otherwise .

Therefore, A ∈ Q(A∆
n0

× · · ·× A∆
nj−1

× A∆
nj+1

× · · ·× A∆
nr−1

, A∆
n0

× · · ·× A∆
ns−1

× A∆
ns+1

× · · ·× A∆
nr−1

) which implies that A belongs to the quasivariety generated by all its proper
subalgebras, contradicting the fact that A is critical.
Thus, it is clear that condition 2. also holds and we have showed what we wanted to prove.
□

Corollary 3.24. Every critical NM∆-algebra is of one of the following types:

1. A∆
n for some n > 0

2. A∆
2n × A∆

2m for some 0 < n < m

3. A∆
2n × A∆

2m+ 1 for some n,m > 0

4. A∆
2n+ 1 × A∆

2m+ 1 for some 0 < n < m

5. A∆
2k + 1 × A∆

2n × A∆
2m for some 0 < k < n < m

6. A∆
2k + 1 × A∆

2n × A∆
2m+ 1 for some 0 < k < n,m

Moreover, we can try to give an axiomatization of quasivarieties generated just by one
critical NM∆-algebra. In order to do so, we present the following formula and give some
results about it:

Definition 3.25. For every n > 0 we consider the formula

SLn(x1, . . . , xn) := ∆
( ∨
i<n

(xi → xi+1)
)

Theorem 3.26. A direct product of finite NM∆-chains A =
∏m

i=1 A∆
ki

satisfies:

1. ¬SLn(x1, . . . , xn) ≈ 1 ⇒ y ≈ 1 iff there exists some A∆
ki

with ki < n.

2. SLn(x1, . . . , xn) ≈ 1 iff for every A∆
ki

holds ki < n, that is, every A∆
ki

has strictly less
than n elements.

3. ∆(x ↔ ¬x) ∨ ¬SLn(x1, . . . , xn) ≈ 1 ⇒ y ≈ 1 iff there exists some A∆
ki

with ki even
such that ki < n.
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4. ¬∆(x↔ ¬x) ∧ SLn(x1, . . . , xn) ≈ 1 iff every A∆
ki

satisfies that ki is even and ki < n.

5. ∆(x↔ ¬x) ≈ 1 ⇒ y ≈ 1 iff there exists some A∆
ki

with ki even.

Proof. 1. ⇒) We will assume, by contraposition, that every i ≤ m satisfies ki ≥ n. Then,
our goal is to prove that A =

∏m
i=1 A∆

ki
doesn’t satisfy ¬SLn(x1, . . . , xn) ≈ 1 ⇒ y ≈ 1.

That is, we want to find some a1, . . . , an ∈ A such that ¬SLn(a1, . . . , an) ≈ 1.

Since for every i ≤ m, ki ≥ n holds, we can choose a1, . . . , an such that, for any
j < n, aj(i) > aj+1(i). Hence, it is clear that ¬SLn(a1, . . . , an) ≈ 1 which is what we
wanted to see.

⇐) Given some algebra A =
∏m

i=1 A∆
ki

such that there exists some A∆
ki

satisfying

ki < n, we will prove that this A∆
ki

doesn’t satisfy ¬SLn(x1, . . . , xn) ≈ 1 for any evalu-
ation, therefore, neither does A. Hence, it always holds the quasiequation.

For any a1, . . . , an ∈ A∆
ki

, since ki < n, there exists some j < n such that aj ≤ aj+1.

Thus, aj → aj+1 = 1 and ¬∆
(∨

j<n(aj → aj+1)
)

= 0, which is what we wanted to
show.

2. ⇒) Given some algebra A =
∏m

i=1 A∆
ki

it is clear that it satisfies SLn(x1, . . . , xn) ≈ 1

if and only if every A∆
ki

does.

We will assume, by contraposition, there exists some i ≤ m such that ki ≥ n and,
then, we will prove that A∆

ki
doesn’t satisfy SLn(x1, . . . , xn) ≈ 1, therefore, neither

does A.

Since A∆
ki

has at least n elements, there exist some a1, · · · , an ∈ A∆
ki

such that aj > aj+1

for every j < n. Then, for all j, aj → aj+1 = ¬aj ∨aj+1 < 1 since aj+1 ̸= 1 and aj ̸= 0.
Thus, ∆

(∨
j<n(aj → aj+1)

)
= 0 .

Therefore, it is clear that SLn(x1, . . . , xn) ≈ 1 is not satisfied.

⇐) Given some algebra A =
∏m

i=1 A∆
ki

such that, for every A∆
ki

, ki < n holds, we

will prove that, for all i ≤ m, A∆
ki

satisfies SLn(x1, . . . , xn) ≈ 1, therefore, so does A.

Given any i ≤ m, we take some arbitrary a1, . . . , an ∈ A∆
ki

. Since we are assuming

|A∆
ki
| < n, there exists some j < n such that aj ≤ aj+1 then, aj → aj+1 = 1. Thus,

SLn(x1, . . . , xn) ≈ 1 is satisfied.

3. ⇒) We will assume, by contraposition, that every i ≤ m satisfies that ki is odd or
ki ≥ n. Then, our goal is to prove that A =

∏m
i=1 A∆

ki
doesn’t satisfy ∆(x ↔

¬x) ∨ ¬SLn(x1, . . . , xn) ≈ 1 ⇒ y ≈ 1. That is, we want to find some a, a1, . . . , an ∈ A
such that ∆(a↔ ¬a) ∨ ¬SLn(a1, . . . , an) ≈ 1.

We choose a, a1, . . . , an such that, for any i ≤ m:
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• If ki is odd: we take a(i) to be the negation fixpoint of A∆
ki

and consider
a1(i), . . . , an(i) to be any elements of the algebra.
Thus, ∆(a(i) ↔ ¬a(i)) = 1.

• If ki ≥ n: we take a1(i), . . . , an(i) to be elements of A∆
ki

such that, for any j < n,
aj(i) > aj+1(i) and consider a(i) to be any element of the algebra.
Then, ¬SLn(a1(i), . . . , an(i)) = 1.

Hence, it is clear that ∆(a↔ ¬a) ∨ ¬SLn(a1, . . . , an) ≈ 1 which is what we wanted to
see.

⇐) Let A =
∏m

i=1 A∆
ki

be an arbitrary algebra with some A∆
ki

such that ki is even and

ki < n, we will prove that this A∆
ki

doesn’t satisfy ∆(x↔ ¬x) ∨ ¬SLn(x1, . . . , xn) ≈ 1
for any evaluation, therefore, neither does A. Hence, it always holds the quasiequation.

For any a, a1, . . . , an ∈ A∆
ki

, since ki is even, a will never be a negation fixpoint, that

is, ∆(a↔ ¬a) = 0.
Moreover, we also know ki < n, therefore there exists some j < n such that aj ≤ aj+1.
This means that aj → aj+1 = 1 and ¬∆

(∨
j<n(aj → aj+1)

)
= 0.

Then, we have seen ∆(a ↔ ¬a) ∨ ¬SLn(a1, . . . , an) = 0 for any a, a1, . . . , an ∈ A∆
ki

,
which is what we wanted to show.

4. ⇒) Given some algebra A =
∏m

i=1 A∆
ki

, it is clear that it satisfies ¬∆(x ↔ ¬x) ∧
SLn(x1, . . . , xn) ≈ 1 if and only if every A∆

ki
does.

We will assume, by contraposition, that there exists some i ≤ m such that either
ki ≥ n or ki is odd and we will prove that, then, A∆

ki
doesn’t satisfy ¬∆(x ↔

¬x) ∧ SLn(x1, . . . , xn) ≈ 1, therefore, neither does A.

• If ki ≥ n: then, by 2., SLn(x1, . . . , xn) ≈ 1 is not satisfied, hence, neither is
¬∆(x↔ ¬x) ∧ SLn(x1, . . . , xn) ≈ 1.

• If ki is odd: we can consider a ∈ A∆
ki

to be the negation fixpoint. Then, ¬∆(a↔
¬a) = 0

Therefore, it is clear that ¬∆(x↔ ¬x) ∧ SLn(x1, . . . , xn) ≈ 1 is not satisfied in A.

⇐) Given some algebra A =
∏m

i=1 A∆
ki

such that, for every A∆
ki

, ki is even and ki < n,

we will prove that, for all i ≤ m, A∆
ki

satisfies ¬∆(x ↔ ¬x) ∧ SLn(x1, . . . , xn) ≈ 1,
therefore, so does A.

Given any i ≤ m, we take a, a1, . . . , an ∈ A∆
ki

. Since ki is even, a cannot be a negation

fixpoint, thus, ¬∆(a ↔ ¬a) = 1. Moreover, by 2., it is clear that SLn(a1, . . . , an) = 1
holds. Therefore, ¬∆(x↔ ¬x) ∧ SLn(x1, . . . , xn) ≈ 1 is satisfied in A.

5. ⇒) We will assume, by contraposition, that ki is odd for every i ≤ m. Then, our goal
is to prove that A =

∏m
i=1 A∆

ki
doesn’t satisfy ∆(x ↔ ¬x) ≈ 1 ⇒ y ≈ 1. That is, we
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want to find some a ∈ A such that ∆(a↔ ¬a) ≈ 1.

Since ki is odd for every i ≤ m, we can choose a(i) to be the negation fixpoint of
A∆

ki
. Hence, it is clear that ∆(a↔ ¬a) ≈ 1 which is what we wanted to see.

⇐) Given some algebra A =
∏m

i=1 A∆
ki

such that there exists some A∆
ki

satisfying

ki is even, it is clear that this A∆
ki

doesn’t satisfy ∆(x ↔ ¬x) ≈ 1 for any evaluation
since there is no negation fixpoint. Therefore, neither does A and it always holds the
quasiequation.

□

Remark 3.27. We can express the axiomatization of varieties of NM∆-algebras presented
in Theorem 3.13 in terms of ¬∆(x ↔ ¬x) and SLn(x1, . . . , xn). That is because in NM∆

BP (x) ≈ 1 is satisfied if and only if ¬∆(x ↔ ¬x) ≈ 1 is (see Definition 1.69) and, analo-
gously, Sn(x0, . . . , xn) ≈ 1 holds if and only if SL2(n+1)(x1, . . . , x2(n+1)) ≈ 1 also does.

In fact, when some chain without negation fixpoint is considered, we can substitute
Sn(x0, . . . , xn) ≈ 1 by SL2n+1(x1, . . . , x2n+1) ≈ 1 since it is clear that it will have an even
number of elements.

Thus, we can now proceed to give an axiomatization of the quasivarieties generated by a
single critical algebra:

Corollary 3.28. Given Σ any set of equations axiomatizing NM∆:

1. Q(A∆
n ) = V(A∆

n ), by Theorem 3.13, is axiomatized by Σ plus the equation ¬∆(x ↔
¬x)∧SLn+1(x1 . . . , xn+1) ≈ 1 if n is even and, otherwise, by Σ and SLn+1(x1, . . . , xn+1) ≈
1.

2. Q(A∆
2n × A∆

2m) with 0 < n < m is axiomatized by Σ plus:

• ¬∆(x↔ ¬x) ∧ SL2m+1(x1 . . . , x2m+1) ≈ 1, which axiomatizes V(A∆
2m), and

• ¬SL2n+1(x1, . . . , x2n+1) ≈ 1 ⇒ y ≈ 1.

3. Q(A∆
2n × A∆

2m+ 1) satisfying n ≤ m is axiomatized by Σ plus:

• SL2(m+1)(x1, . . . , x2(m+1)) ≈ 1, which axiomatizes V(A∆
2m+ 1), and

• ∆(x↔ ¬x) ∨ ¬SL2n+1(x1, . . . , x2n+1) ≈ 1 ⇒ y ≈ 1.

4. Q(A∆
2n × A∆

2m+ 1) satisfying n > m is axiomatized by Σ plus:

•
(
¬∆(x ↔ ¬x) ∧ SL2n+1(x1, . . . , x2n+1)

)
∨ SL2(m+1)(x1, . . . , x2(m+1)) ≈ 1, which

axiomatizes V(A∆
2n, A

∆
2m+ 1),

• ¬SL2(m+1)(x1, . . . , x2(m+1)) ≈ 1 ⇒ y ≈ 1 and

• ∆(x↔ ¬x) ≈ 1 ⇒ y ≈ 1.

5. Q(A∆
2n+ 1 × A∆

2m+ 1) with 0 < n < m is axiomatized by Σ plus:

• SL2(m+1)(x1, . . . , x2(m+1)) ≈ 1, which axiomatizes V(A∆
2m+ 1), and
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• ¬SL2(n+1)(x1, . . . , x2(n+1)) ≈ 1 ⇒ y ≈ 1.

6. Q(A∆
2k + 1 × A∆

2n × A∆
2m) with 0 < k < n < m is axiomatized by Σ plus:

•
(
¬∆(x ↔ ¬x) ∧ SL2m+1(x1, . . . , x2m+1)

)
∨ SL2(k+1)(x1, . . . , x2(k+1)) ≈ 1, which

axiomatizes V(A∆
2m, A∆

2k + 1),

• ¬SL2(k+1)(x1, . . . , x2(k+1)) ≈ 1 ⇒ y ≈ 1 and

• ∆(x↔ ¬x) ∨ ¬SL2n+1(x1, . . . , x2n+1) ≈ 1 ⇒ y ≈ 1.

7. Q(A∆
2k + 1 × A∆

2n × A∆
2m+ 1) with 0 < k < n ≤ m is axiomatized by Σ plus:

• SL2(m+1)(x1, . . . , x2(m+1)) ≈ 1, which axiomatizes V(A∆
2m+ 1),

• ¬SL2(k+1)(x1, . . . , x2(k+1)) ≈ 1 ⇒ y ≈ 1 and

• ∆(x↔ ¬x) ∨ ¬SL2n+1(x1, . . . , x2n+1) ≈ 1 ⇒ y ≈ 1.

8. Q(A∆
2k + 1 × A∆

2n × A∆
2m+ 1) with 0 < k < m < n is axiomatized by Σ plus:

•
(
¬∆(x ↔ ¬x) ∧ SL2n+1(x1, . . . , x2n+1)

)
∨ SL2(m+1)(x1, . . . , x2(m+1)) ≈ 1, which

axiomatizes V(A∆
2n, A

∆
2m+ 1),

• ¬SL2(k+1)(x1, . . . , x2(k+1)) ≈ 1 ⇒ y ≈ 1 and

• ∆(x↔ ¬x) ≈ 1 ⇒ y ≈ 1.

Now that we have studied the class of critical NM∆-algebras, we give a result that
allows us to further classify and distinguish quasivarieties of NM∆-algebras in terms of their
generators:

Lemma 3.29. Let {A∆
ni1

× · · ·× A∆
nil(i)

: i ∈ I} and {A∆
mj1

× · · ·× A∆
mjl(j)

: j ∈ J} two

finite families of critical NM∆-algebras, then

Q({A∆
ni1

× · · ·× A∆
nil(i)

: i ∈ I}) ⊆ Q({A∆
mj1

× · · ·× A∆
mjl(j)

: j ∈ J})

if and only if, for every i ∈ I, there exists a non-empty subset H ⊆ J such that:

1. For any 1 ≤ k ≤ l(i) there are j ∈ H and 1 ≤ r ≤ l(j) such that nik ≤ mjr and nik odd
⇒ mjr odd.

2. For any j ∈ H and 1 ≤ r ≤ l(j) there exists some 1 ≤ k ≤ l(i) such that nik ≤ mjr and
nik odd ⇒ mjr odd.

Proof. ⇒) Assume Q({A∆
ni1

× · · ·× A∆
nil(i)

: i ∈ I}) ⊆ Q({A∆
mj1

× · · ·× A∆
mjl(j)

: j ∈ J}) for

some finite families of critical NM∆-algebras.
Then, by [7, Lemma 6.5], it is clear that, for every i ∈ I, there exists some ∅ ̸= H ⊆ J such
that A∆

ni1
× · · ·× A∆

nil(i)
is embeddable into

∏
j∈H(A∆

mj1
× · · ·× A∆

mjl(j)
)αj . Therefore, since

the set
⋃

j∈H{mjr : r ≤ j(l)} is finite, we can apply Lemma 3.22, and 1. and 2. follow from
Lemma 3.22 conditions 1. and 2., respectively.

⇐) To prove the converse we show that, for every i ∈ I,

53



A∆
ni1

× · · ·× A∆
nil(i)

∈ ISP({A∆
mj1

× · · ·× A∆
mjl(j)

: j ∈ H})

where H is the subset of J defined in the hypothesis.

Given any i ∈ I, by condition 1., for every 1 ≤ k ≤ l(i) we can choose j ∈ H (which
we will name jk) and 1 ≤ rk ≤ l(jk) such that nik ≤ mjkrk

and nik odd ⇒ mjkrk
odd.

Then, the following map will be an embedding:

β : A∆
ni1

× · · · ×A∆
nil(i)

→
∏

1≤k≤l(i)

A∆
mjk1

× · · · ×A∆
mjkl(jk)

a 7−→ β(a) (k)(r) =

{
a(k) if r = rk,
a(l) otherwise .

where l satisfies 1 ≤ l ≤ l(i) and is such that nil ≤ mjkr
and nil odd ⇒ mjkr

odd. This l
exists by condition 2.
Therefore, it has been showed what we needed in order to conclude the proof. □

With all the previous given results, now we have more information about the lattice of
subquasivarieties LQ(NM∆). In fact, by Remark 3.17, Theorem 3.21 and Corollary 3.24, we
can determine all the quasivarieties of NM∆-algebras.

Even so, it will be difficult to fully determine the lattice LQ(NM∆) due to its dimension, but
we can study the lattices of quasivarieties contained in some varieties of NM∆-algebras:

Example 3.30. The lattice of all quasivarieties contained in V(A∆
3 ).

By the characterization given in Theorem 3.23, it is clear that the critical NM∆-algebras
contained in V(A∆

3 ) are

I({A∆
2 , A∆

3 , A∆
2 ×A∆

3 }).

Thus, by Lemma 3.29, the lattice of quasivarieties contained in V(A∆
3 ) is the following:
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Example 3.31. The lattice of all quasivarieties contained in V(A∆
4 ).

The class of critical NM∆-algebras contained in the variety, by Theorem 3.23, is given by

I({A∆
2 , A∆

4 , A∆
2 ×A∆

4 }).

Therefore, the lattice of all the subquasivarieties will be similar to the one in the previous
example.

Example 3.32. The lattice of all quasivarieties contained in V(A∆
3 , A∆

4 ).

By Theorem 3.23, the critical algebras contained in the variety are the ones in

I({A∆
2 , A∆

3 , A∆
4 , A∆

2 ×A∆
3 , A∆

2 ×A∆
4 , A∆

3 ×A∆
4 }).

Thus, by Theorem 3.21, we can determine all subquasivarieties and, by Lemma 3.29, we
obtain the following lattice:

Where the presented quasivarieties that are generated by a single algebra have already been
axiomatized in Corollary 3.28. Moreover, in some result introduced later on (see Proposition
3.35) there is also an axiomatization of Q(A∆

2 ×A∆
3 , A∆

2 ×A∆
4 ) and the axiomatization of

Q(A∆
3 , A∆

4 ) = V(A∆
3 , A∆

4 ) is clear, by Theorem 3.13.

Furthermore, we could give an axiomatization of some of the remaining quasivarieties of
the lattice.
We know all of them are contained in V(A∆

3 , A∆
4 ) thus, let Σ be a set of constituted by(

¬∆(x↔ ¬x) ∧ SL5(x1, . . . , x5)
)
∨ SL4(x1, . . . , x4) ≈ 1 plus any set of equations axiomatiz-

ing NM∆, then:
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• Q(A∆
3 , A∆

3 × A∆
4 ) is axiomatized by Σ plus ¬SL4(x1, . . . , x4) ≈ 1 ⇒ y ≈ 1.

• Q(A∆
4 , A∆

3 × A∆
4 ) is axiomatized by Σ plus ∆(x↔ ¬x) ≈ 1 ⇒ y ≈ 1.

Remark 3.33. In fact, we could have obtained the previous lattice by applying Theorem
3.5 e). That is because V( Lp,  Lq) is also a locally finite discriminator variety (see [17,
Lemma 2.6]) whose lattice of subvarieties is the following:

Since the lattice of subvarieties of V(A∆
3 , A∆

4 ) is analogous:

then, by [17, Figure 1] and Theorem 3.5 we would have obtained, in a different way, the same
lattice of subquasivarieties as the one presented in the previous example.

Remark 3.34. From Theorem 3.5 we can also deduce that, the sublattice of LQ(NM∆) that
consists of the quasivarieties generated by chains A∆

ki
with ki even, will be distributive and

modular. This is obtained from section b) applying 3. to LV(NM−
∆) where NM−

∆ denotes
V([0,1]−∆).

3.2 Structural completeness in NML∆

Once we have studied both the lattices of subvarieties and subquasivarieties, we proceed to
study some structural completeness properties about the logic NML∆

First, we can identify which are the least quasivarieties of LQ(NM∆):
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Proposition 3.35. For any quasivariety K of NM∆-algebras that generates V(A∆
2n, A

∆
2m+ 1)

for some n > 0, n,m ∈ ω + 1, we have:

Q(A∆
2 ×A∆

2n, A
∆
2 ×A∆

2m+ 1) ⊆ K.

In fact, given Σ to be any set of equations axiomatizing NM∆, the quasivariety Q(A∆
2 ×A∆

2n,
A∆

2 ×A∆
2m+ 1) is axiomatized by:

• If m < n, with n ∈ ω: Σ plus the equation
(
¬∆(x ↔ ¬x) ∧ SL2n+1(x1, . . . , x2n+1)

)
∨

SL2(m+1)(x1, . . . , x2(m+1)) ≈ 1, which axiomatizes V(A∆
2n, A∆

2m+ 1), and also
¬SL3(x1, . . . , x3) ≈ 1 ⇒ y ≈ 1.

• If m < n, with n = ω: Σ plus ¬∆(x ↔ ¬x) ∨ SL2(m+1)(x1, . . . , x2(m+1)) ≈ 1, which

axiomatizes V([0,1] −
∆ , A∆

2m+ 1), and ¬SL3(x1, . . . , x3) ≈ 1 ⇒ y ≈ 1.

• If n ≤ m, such that m ∈ ω: Σ plus SL2(m+1)(x1, . . . , x2(m+1)) ≈ 1, which axiomatizes

V( A∆
2m+ 1), and ¬SL3(x1, . . . , x3) ≈ 1 ⇒ y ≈ 1.

• If n ≤ m, with m = ω: Σ plus ¬SL3(x1, . . . , x3) ≈ 1 ⇒ y ≈ 1.

Proof. Let K be a quasivariety that generates V(A∆
2n, A∆

2m+ 1) for some n,m ∈ ω+1, n > 0.
By Theorem 3.21, K will be generated by its critical algebras, that is, K = Q({Ci : i ∈ I}).
We proceed to show that there exist critical algebras Ci and Cj , for some i, j ∈ I, such that
A∆

2n and A∆
2m+1 are, respectively, one of its components:

• If n,m ∈ ω: We know V(K) = V(A∆
2n,A

∆
2m+1) and, in our way to a contradiction, we

can assume that there is no critical algebra in K such that A∆
2n is one of its components.

Then, it is clear that every component without negation point of any critical algebra
of K has to have less than 2n elements. Let

k = max{r ∈ ω : ∃i ∈ I such that A∆
2r is a component of Ci}.

We would have that V(K) ⊆ V(A∆
2k,A

∆
2m+1) ⊊ V(A∆

2n,A
∆
2m+1), contradicting our as-

sumption.

By arguing similarly, we obtain that there also exists some critical algebra Cj such
that A∆

2m+1 is one of its components.

• If n = ω, m ∈ ω: We know V(K) = V([0,1]−∆,A
∆
2m+1) and we can prove, analogously

to the previous case, that there must exist some critical algebra Cj in K such that
A∆

2m+1 is one of its components.

On the other hand, we can assume there exists some k ∈ ω satisfying that

k = max{r ∈ ω : ∃i ∈ I such that A∆
2r is a component of Ci}.

Then, we would obtain that V(K) ⊆ V(A∆
2k,A

∆
2m+1) which would be a contradiction.

Thus, there is no upper bound on the cardinal of the chains without negation fixpoint
satisfying that they are a component of one of the critical algebras of K. Hence, this is
also valid for [0,1]−∆ (which, in this case, is our algebra A∆

2n).
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• If m = ω: Arguing analogously we obtain the same as in the previous cases.

Thus, there must exist some Ci satisfying that A∆
2n is one of its components and A∆

2m+ 1 will
also satisfy the same with respect to some Cj .
Therefore, A∆

2 × A∆
2n ∈ IS(Ci) ⊆ Q(Ci) ⊆ K and A∆

2 × A∆
2m+ 1 ∈ IS(Cj) ⊆ Q(Cj) ⊆ K

which implies that the inclusion we wanted to show holds. □

Theorem 3.36. The logic NML∆ is not structurally complete.

Proof. We know the logic NML∆ is algebraized by the class of NM∆-algebras. Moreover,
by Theorem 3.13, every variety K of NM∆-algebras is of the form V(A∆

2n, A∆
2m+ 1) for some

n,m ∈ ω + 1, n > 0.

By definition of structural completion, Q(FK(ω)) will generate K as a variety, thus, by
Proposition 3.35, Q(A∆

2 × A∆
2n, A∆

2 × A∆
2m+ 1) ⊆ Q(FK(ω)). In fact, both quasivarieties

generate K, therefore, since Q(FK(ω)) is structurally complete, they will be equal.

Then, if n ̸= 1 or m ̸= 0, Q(FK(ω)) = Q(A∆
2 × A∆

2n, A∆
2 × A∆

2m+ 1) ⊊ V(A∆
2n, A∆

2m+ 1)
because A∆

2n /∈ Q(A∆
2 × A∆

2n, A∆
2 × A∆

2m+ 1). Hence, by Theorem 1.29, it is clear that any
logic algebraized by some V(A∆

2n, A∆
2m+ 1) with n ̸= 1 or m ̸= 0 is not structurally complete.

□

Corollary 3.37. Let M be a variety of NM∆-algebras such that V(A∆
2 ) ⊊ M. Then, the

logic algebraized by M is not structurally complete.

Remark 3.38. The previous Corollary tells us that there is no nontrivial variety of NM∆-
algebras that is structurally complete. Therefore, NM-

∆ won’t be SC, unlike what happens
in the case of NM- (see Theorem 1.73).

Theorem 3.39. NML∆ is hereditarily active structurally complete.

Proof. We will prove this from an algebraic perspective. Let K be a subvariety of NM∆.
Using the characterization of ASC given in Theorem 1.29, it will be enough to show that, for
any B ∈ KSI , A∆

2 ×B ∈ Q(FK(ω)) in order to prove that K is ASC.

Given any B ∈ KSI , by Proposition 1.49, B is a NM∆-chain of K. Moreover, by Theo-
rem 3.13, we know K is of the form V(A∆

2n,A
∆
2m+1) for some n,m ∈ ω + 1 such that n > 0

and, from Proposition 3.35, we obtain the inclusion Q(A∆
2 ×A∆

2n,A
∆
2 ×A∆

2m+1) ⊆ Q(FK(ω)).

• If n,m ∈ ω: Since B is a NM∆-chain of K = V(A∆
2n,A

∆
2m+1), either B has no fixpoint

and has strictly less than 2n + 1 elements or |B| < 2(m + 1). In both cases it is clear
that A∆

2 ×B ∈ Q(A∆
2 ×A∆

2n,A
∆
2 ×A∆

2m+1) ⊆ Q(FK(ω)).

• If m = ω: Then, K = V([0,1]∆) = V({A∆
k : k ∈ ω}) and, since A∆

2 × [0,1]∆ partially
embeds into {A∆

2 ×A∆
k : k ∈ ω}, Q(A∆

2 × [0,1]∆) = Q({A∆
2 ×A∆

k : k ∈ ω}).

By [17, Theorem 2.8], we know B (which is a chain) will be embeddable into an ul-
traproduct of its finitely generated subalgebras. Since NM∆ is a locally finite variety,
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every finitely generated algebra is finite thus, B ∈ ISPU ({Ak : k ∈ I}). Therefore,

A∆
2 ×B ↪→ A∆

2 ×
∏
k∈I

A∆
k /F

∼=
∏
k∈I

(
A∆

2 ×A∆
k

)
/F

Hence, A∆
2 ×B ∈ ISPPU ({A∆

2 ×A∆
k : k ∈ ω}) ⊆ Q(FK(ω)).

• Otherwise, ifm ∈ ω and n = ω: We knowK = V([0,1]−∆,A
∆
2m+1) and, since A∆

2 ×[0,1]−∆
partially embeds into {A∆

2 ×A∆
2k : k ∈ ω}, Q(A∆

2 × [0,1]−∆,A
∆
2 ×A∆

2m+1) = Q({A∆
2 ×

A∆
2k : k ∈ ω} ∪ {A∆

2 ×A∆
2m+1}).

If B is a chain of K with negation fixpoint it is clear that it will have less than 2m+ 2
elements, thus, A∆

2 ×B ∈ Q(A∆
2 ×A∆

2n,A
∆
2 ×A∆

2m+1) ⊆ Q(FK(ω)).

On the other hand, if B is a chain without negation fixpoint, by arguing as in the
previous case, it is also shown what we wanted.

□

Finally, from the previous results, an axiomatization of all passive admissible rules is
directly obtained:

Corollary 3.40. Let K be a variety of NM∆-algebras. Then, Q(FK(ω)) is axiomatized by the
quasiequation ¬SL3(x1, . . . , x3) ≈ 1 ⇒ 0 ≈ 1. Thus, the quasiequation ¬SL3(x1, . . . , x3) ≈
1 ⇒ 0 ≈ 1 axiomatizes all (passive) admissible quasiequations.

3.3 Comparative analysis of the results

On one hand, it has been showed that adding the ∆ connective to the language doesn’t
change the lattice of axiomatic extensions.
On the other hand, from Example 3.31 we can deduce that the lattices LQ(V(A∆

4 )) and
LQ(V(A4)) are different. We know V(A4) = Q(A4) and, from Corollary 1.78, we get that its
only proper subquasivariety is Q(A2). Therefore, LQ(V(A4)) has only two elements while
LQ(V(A∆

4 )) has three and, even though the lattices of axiomatic extensions of NML and
NML∆ are equal, we don’t have the same for the finitary extensions.

With respect to (almost) structural completeness results, we have proven that NML∆ is not
structurally complete, just like what happens for NML. Moreover, both logics are hereditar-
ily active sructurally complete and we can axiomatize all (passive) admissible quasiequations
in the two cases (see Theorem 1.75 and Corollary 3.40).
The difference between the results obtained for both of them lies in the fact that NM- is
HSC while NM-

∆ is not even SC (as mentioned in Remark 3.38).
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4 The logic RNML∆

Now, we will focus on studying the logic RNML∆, which is obtained by the addition of
rational constants to NML∆. In fact, the calculus ⊢RNML∆

is defined by extending the
axioms of NML∆ with the bookkeeping axioms of [0,1].

Equivalently, we can also consider the logic RNML∆ to be the ∆-core fuzzy logic corre-
sponding to the core fuzzy logic RNML (Proposition 1.46).

We move on to defining the equivalent algebraic semantics for the logic:

Definition 4.1. An algebra A in the language of MTL∆-algebras expanded with the constants
in C = {cq: q ∈ [0, 1] ∩ Q} is said to be a rational NM∆-algebra if the MTL∆-reduct of A
is an NM∆-algebra and A validates the bookkeeping axioms B([0,1]) presented in Definition
1.52.

We denote by RNM∆ the variety of rational NM∆-algebras.

Remark 4.2. Alternatively, we could have described these algebras as in Definition 1.43
given L to be the logic RNML.

Definition 4.3. The canonical rational NM∆-algebra can be obtained by expanding the stan-
dard NM∆-algebra [0,1]∆ with the natural interpretation of the constants in C (interpreting

cq as the rational q, for every q ∈ [0, 1] ∩ Q). We will denote this algebra by [0,1]Q∆ and its

subalgebra with universe [0, 1] ∩ Q by [0,1]Q∆ ∩Q.

For readability’s sake we will usually omit the superscript Q from here onwards.

It is clear that the variety RNM∆ algebraizes RNML∆, that is, for every set of formulas
Γ ∪ {φ}, as:

Γ ⊢RNML∆
φ if and only if τ[Γ] ⊨RNM∆

τ(φ)

where τ := {x ≈ 1}.

Remark 4.4. By definition of rational NM∆-algebras and Proposition 1.49, RNM∆ will also
be a discriminator variety since every algebra A in the generator class of RNM∆ will satisfy
NA = dA where N and d are as presented in Remark 3.3 and Definition 3.1.

We will consider, as in the case of RNML, two types of rational NM∆-chains:

• Given a real r ∈ (12 , 1], we take Qr
∆ to be the expansion of Qr (introduced in Section

2) with the connective ∆ defined as in (1.1).

Remark 4.5. In the case r = 1, we obtain Qr
∆ = [0,1]Q∆ ∩Q, where the last algebra

is the one mentioned in Definition 4.3.

• Given a rational p ∈ [12 , 1) ∩ Q and some ordinal γ ∈ ω + 1, let Qγ
p
∆ be the rational

NM∆-algebra obtained from expanding the algebra Qγ
p (presented in Section 2) with a

connective ∆ defined as in (1.1).
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4.1 The lattice of axiomatic extensions

In this section we will just focus on the axiomatic extensions of the logic, which we have
already mentioned that can be seen as the ∆-core fuzzy logic corresponding to the core fuzzy
logic RNML.
In Section 3 we have showed that the addition of the ∆ connective to NML doesn’t change
the lattice of axiomatic extensions. Thus, although we don’t fully study all the extensions
of RNML∆, we can analyze if this is still the case when comparing the lattice of axiomatic
extensions of the logic to the one of RNML.

We proceed similarly to how it was done in Section 2 and present some results about RNM∆-
chains and varieties of rational NM∆-algebras. Since the operation ∆ is uniquely defined
in all RNM∆-chains (see Proposition 1.47), we obtain a result analogous to the one from
Proposition 2.2:

Proposition 4.6. For every nontrivial rational NM∆-chain A, there are r ∈ (12 , 1], p ∈
[12 , 1) ∩ Q and γ ∈ ω + 1 such that ISPU (A) = ISPU (Qr

∆) or ISPU (A) = ISPU (Qγ
p
∆).

Moreover,

1. ISPU (Qr
∆) is axiomatized relative to the class of RNM∆ chains by the sentences

cq′ ̸≈ 1 for all q′ ∈ [12 , r) ∩ Q and cq ≈ 1 for all q ∈ [r, 1] ∩ Q.

That is, ISPU (Qr
∆) is the class of RNM∆-chains that have Qr

∆ as the interpretation
of the constants.

2. ISPU (Qω
p
∆) is axiomatized relative to the class of RNM∆ chains by the sentences

cp ̸≈ 1 and cq ≈ 1 for all q ∈ (p, 1] ∩ Q.

In other words, ISPU (Qω
p
∆) is the class of RNM∆-chains that have Q0

p
∆

as the inter-
pretation of the constants.

3. ISPU (Qn
p
∆) is axiomatized relative to the class of RNM∆ chains by the sentences

cp ̸≈ 1, cq ≈ 1 for all q ∈ (p, 1] ∩ Q and

∀x0 . . . xn+2

(∨
0≤i<j≤n+2(cp ∨ xi) ↔ (cp ∨ xj)

)
≈ 1.

That is, ISPU (Qω
p
∆) is the class of RNM∆-chains that have Q0

p
∆

as the interpretation
of the constants and contain less than n+ 2 elements above cp.

The proof is easily obtained by slightly adapting the one from Proposition 2.2.

Corollary 4.7. Every variety of rational NM∆-algebras is generated by a set of algebras of
the form Qr

∆, where r ∈ (12 , 1], or Qγ
p
∆, where p ∈ [12 , 1) ∩ Q and γ ∈ ω + 1.

Proof. We know every variety is generated by its subdirectly irreducible members [7, Corol-
lary 9.7] and, by Proposition 1.49, subdirectly irreducible rational NM∆-algebras are RNM∆-
chains. Thus, what we wanted to see is derived from Proposition 4.6.
□
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In the following theorem we give an axiomatization of some varieties of rational NM∆-
algebras and we show how these are related between them, in terms inclusion:

Theorem 4.8. The following hold.

1. Any variety of rational NM∆-algebras of the form V(Qr
∆), where r ∈ (12 , 1], is axiom-

atized by the equations {¬∆(cq) ≈ 1 : q ∈ [12 , r) ∩ Q} and {cq ≈ 1 : q ∈ [r, 1] ∩ Q} and

varieties of the form V(Qγ
p
∆), with p ∈ [12 , 1)∩Q and γ ∈ ω+ 1, are axiomatized by the

equations:

• ¬∆(cp) ≈ 1, {cq ≈ 1 : q ∈ (p, 1] ∩ Q} and(∨
0≤i<j≤n+2(cp ∨ xi) ↔ (cp ∨ xj)

)
≈ 1

if γ = n ∈ ω.

• ¬∆(cp) ≈ 1 and {cq ≈ 1 : q ∈ (p, 1] ∩ Q}, otherwise.

2. For all r1, r2 ∈ (12 , 1], p1, p2 ∈ [12 , 1) ∩ Q and γ1, γ2 ∈ ω + 1,

V(Qr1
∆) ⊆ V(Qr2

∆) if and only if r1 = r2,

V(Qr1
∆) ⊆ V(Qγ1

p1
∆) never holds,

V(Qγ1
p1

∆) ⊆ V(Qr1
∆) never holds,

V(Qγ1
p1

∆) ⊆ V(Qγ2
p2

∆) if and only if p1 = p2 and γ1 ≤ γ2.

Proof. 2. Consider r1, r2 ∈ (12 , 1], p1, p2 ∈ [12 , 1)∩Q and γ1, γ2 ∈ ω+ 1. Wee need to prove
that:

• V(Qr1
∆) ⊆ V(Qr2

∆) if and only if r1 = r2.

⇒) We show this direction holds by contraposition:

– If r2 < r1: Since Q is dense in R, there exists a rational number such that r2 ≤
q < r1. Hence, cq ≈ 1 holds in Qr2

∆ but fails in Qr1
∆ (by the definition we

have given of this algebras). Therefore, Qr1
∆ /∈ V(Qr2

∆) and, consequently,
V(Qr1

∆) ⊈ V(Qr2
∆).

– If r1 < r2: Since Q is dense in R, there exists a rational number such that
r1 ≤ q < r2. Hence, ¬∆(cq) ≈ 1 holds in Qr2

∆ but fails in Qr1
∆ (by the

definition we have given of this algebras). Therefore, Qr1
∆ /∈ V(Qr2

∆) and,
consequently, V(Qr1

∆) ⊈ V(Qr2
∆).

In fact, this could also be proven directly by assuming Qr1
∆ ∈ V(Qr2

∆) and seeing
that, then, r1 = r2 must hold. Since Qr1

∆ is simple and the notions of simple and
subdirectly irreducible coincide for RNM∆-algebras, by [7, Theorem 6.8] we would
have Qr1

∆ ∈ HSPU (Qr2
∆). Moreover, Qr2

∆ is also simple and the class of simple
algebras is closed under S and PU , hence, Qr1

∆ ∈ ISPU (Qr2
∆).

Therefore, by Proposition 4.6, Qr1
∆ would have Qr2

∆ as the interpretation of
its constants. This implies r1 = r2, which is what we wanted to see.
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⇐) Is clear.

• V(Qr1
∆) ⊆ V(Qγ1

p1
∆) never holds.

We reason by cases:

– If p1 < r1: Since Q is dense in R, there exists a rational number such that p1 <
q < r1. Hence, cq ≈ 1 holds in Qγ1

p1
∆ but fails in Qr1

∆ (by the definition we

have given of this algebras). Therefore, Qr1
∆ /∈ V(Qγ1

p1
∆) and, consequently,

V(Qr1
∆) ⊈ V(Qγ1

p1
∆).

– If r1 ≤ p1: Then, ¬∆(cp1) ≈ 1 holds in Qγ1
p1

∆ but fails in Qr1
∆ (by the

definition we have given of this algebras). Therefore, Qr1
∆ /∈ V(Qγ1

p1
∆) and,

consequently, V(Qr1
∆) ⊈ V(Qγ1

p1
∆).

• V(Qγ1
p1

∆) ⊆ V(Qr1
∆) never holds.

We reason by cases:

– If r1 ≤ p1: Then, cp1 ≈ 1 holds in Qr1
∆ but fails in Qγ1

p1
∆ (by the definition we

have given of this algebras). Therefore, Qγ1
p1

∆ /∈ V(Qr1
∆) and, consequently,

V(Qγ1
p1

∆) ⊈ V(Qr1
∆).

– If p1 < r1: Since Q is dense in R, there exists a rational number p1 < q < r1.
Hence, ¬∆(cq) ≈ 1 holds in Qr1

∆ but fails in Qγ1
p1

∆ (by the definition we

have given of this algebras). Therefore, Qγ1
p1

∆ /∈ V(Qr1
∆) and, consequently,

V(Qγ1
p1

∆) ⊈ V(Qr1
∆).

• V(Qγ1
p1

∆) ⊆ V(Qγ2
p2

∆) if and only if p1 = p2 and γ1 ≤ γ2.

⇒) By contraposition, we will show this direction holds:

– If p2 < p1: Then, by density, there exists a rational q such that p2 < q < p1.
Hence, cq ≈ 1 holds in Qγ2

p2
∆ but fails in Qγ1

p1
∆ (by the definition we have given

of this algebras). Therefore, Qγ1
p1

∆ /∈ V(Qγ2
p2

∆) and, consequently, V(Qγ1
p1

∆) ⊈
V(Qγ2

p2
∆).

– If p1 < p2: Since Q is dense in R, there exists a rational number p1 < q < p2.
Hence, ¬∆(cq) ≈ 1 holds in in Qγ2

p2
∆ but fails in Qγ1

p1
∆ (by the definition we

have given of this algebras). Therefore, Qγ1
p1

∆ /∈ V(Qγ2
p2

∆) and, consequently,

V(Qγ1
p1

∆) ⊈ V(Qγ2
p2

∆).

– If p1 = p2(= q ∈ [12 , 1) ∩ Q) and γ2 < γ1: Since γ2 < γ1, necessarily γ1 > 0
moreover, from γ2 < γ1 ∈ ω + 1 it follows that γ2 = n for some n ∈ ω.
Given the fact that q < 1 and γ2 = n, it is clear that the interval [cq, 1] in
Qγ2

q
∆ has n+ 2 elements, hence:

Qγ2
q

∆ = Qγ2
p2

∆ ⊨
∨

0≤i<j≤n+2(cq ∨ xi) ↔ (cq ∨ xj) ≈ 1.
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On the other hand, since γ1 > γ2 = n, the interval [cq, 1] in Qγ1
q

∆ = Qγ1
p1

∆

has more than n + 2 elements. Thus, the above equation fails in Qγ1
p1

∆ and,

consequently, Qγ1
p1

∆ /∈ V(Qγ2
p2

∆).

⇐) If p1 = p2 and γ1 ≤ γ2 then,

Qγ1
p1

∆ ∈ S(Qγ2
p2

∆) ⊆ V(Qγ2
p2

∆).

1. We will show that varieties of the form V(Qγ
p
∆) are axiomatized by the equations:

¬∆(cp) ≈ 1, {cq ≈ 1 : q ∈ (p, 1] ∩ Q} and
(∨

0≤i<j≤n+2(cp ∨ xi) ↔ (cp ∨ xj)
)
≈ 1, if

γ = n ∈ ω; ¬∆(cp) ≈ 1 and {cq ≈ 1 : q ∈ (p, 1] ∩ Q}, otherwise.

Let Σ be the set of equations given by the statement, it holds that Qγ
p
∆ ⊨ Σ.

On the other hand, let’s consider a rational NM∆-algebra A /∈ V(Qγ
p
∆). By what we

have proven in Corollary 4.7, we obtain that V(A) is generated by some algebras of the

form Qr
∆ for some r ∈ (12 , 1] and/or Qδ

p′
∆

for some p′ ∈ [12 , 1) ∩ Q and δ ∈ ω + 1.

Thus, since A /∈ V(Qγ
p
∆), by item 2., there must exist some Qr

∆ or some Qδ
p′
∆

with
p ̸= p′ or γ < δ among the generators of V(A).

- If we have some Qr
∆: Then, either p < r or r ≤ p. In the first case, by density of Q

in R, there is a rational q such that p < q < r. Hence, c
Qr

∆

q ̸= 1 and, consequently,
Qr

∆ ⊭ Σ which means A ⊭ Σ.

On the other hand, if we have r ≤ p, then c
Qr

∆

p = 1 and, consequently, Qr
∆ ⊭ Σ

which means A ⊭ Σ.

- If there exists some algebra Qδ
p′
∆

: Then, either p < p′, p′ < p or p = p′ and γ < δ.

– If p < p′, analogously to the previous case, c
Qδ

p′
∆

p′ ̸= 1 and, consequently,

Qδ
p′
∆ ⊭ Σ which means A ⊭ Σ.

– If p′ < p, by density of the Q in R, there exists some rational p′ < q < p.

Thus, ¬∆(c
Qδ

p′
∆

q ) ̸= 1 and, consequently, Qδ
p′
∆ ⊭ Σ which means A ⊭ Σ.

– If p = p′ and γ < δ, then γ = n ∈ ω and

Qδ
p′
∆ ⊭

( ∨
0≤i<j≤n+2

(cp ∨ xi) ↔ (cp ∨ xj)
)
≈ 1.

Hence, A ⊭ Σ.

Therefore, we can conclude that Σ axiomatizes V(Qγ
p
∆).

Finally, we will show that varieties of the form V(Qr
∆) are axiomatized by the equa-

tions: {¬∆(cq) ≈ 1 : q ∈ [12 , r) ∩ Q} and {cq ≈ 1 : q ∈ [r, 1] ∩ Q}.
Let Σ be the set of equations given by the statement, it holds that Qr

∆ ⊨ Σ (clearly
by how we have defined Qr

∆).
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On the other hand, we consider some rational NM∆-algebra A such that A /∈ V(Qr
∆)

and, arguing as in the previous case, by Corollary 4.7 we know V(A) will be gener-

ated by a set of algebras of the form Qr
∆, for some r ∈ (12 , 1], and/or Qδ

p
∆

, for some

p ∈ [12 , 1) ∩ Q and δ ∈ ω + 1. By item 2. and the fact that A /∈ V(Qr
∆), there must

exist some Qr
∆ with r′ ̸= r or some Qδ

p′
∆

among the generators of V(A).

- If there exists some Qr′
∆ with r ̸= r′ then, either r < r′ or r′ < r. In the first case,

since Q is dense in R, there exists some rational q such that r < q < r′. Hence,

c
Qr′

∆

q ̸= 1 and Qr′
∆ ⊭ Σ, which implies A ⊭ Σ.

In the other case, if we have r′ < r, again by density, there exists some rational

r′ < q < r, hence, ¬∆(c
Qr′

∆

q ) ̸= 1 and Qr′
∆ ⊭ Σ, which implies A ⊭ Σ.

- For the case in which we have some algebra Qγ
p
∆ either r ≤ p < 1 or p < r. In

the first case, c
Qγ

p
∆

p ̸= 1 and Qγ
p
∆ ⊭ Σ, which implies A ⊭ Σ.

In the second case, by density of Q in R, there is some rational p < q < r. Thus,

¬∆(c
Qγ

p
∆

q ) ̸= 1 and Qγ
p
∆ ⊭ Σ, which implies A ⊭ Σ.

Therefore, we can conclude that Σ axiomatizes V(Qr
∆).

□

Remark 4.9. The axiomatization given in item 1. of Theorem 4.8 can be simplified for
varieties of the form V(Qq

∆) with q ∈ Q∩(12 , 1], as these can be axiomatized by the equations

cq ≈ 1 and {¬∆(cq) ≈ 1 : q ∈ [12 , r) ∩ Q}. Varieties of the form V(Qr
∆) with r ∈ (12 , 1] \ Q

do not admit a simpler axiomatization (that’s because Q is dense in R: there always exists a
rational in between any two given real numbers).

In Corollary 4.7 we have given a characterization of all RNM∆-varieties in terms of their
generators and, in the following proposition, we prove that they allow us to fully distinguish
different varieties:

Proposition 4.10. Let V1, V2 be two varieties of rational NM∆-algebras. Denote by K1,K2

the respective sets of rational NM∆-chains of the form Qr
∆, Qγ

p
∆ that generate the varieties.

If K1 and K2 are finite and satisfy that, given any Qγ
p
∆ ∈ Ki, we have Qδ

p
∆ ∈ Ki for all

δ < γ; then, the fact that K1 and K2 are different implies that so are V1 and V2.

Proof. Assume the sets of generators are different, then, without losing generality, we can
suppose that there is some algebra of the form Qr

∆ or Qγ
p
∆ (let’s denote it by A) that is in

K1 but doesn’t belong to K2.
We presume A ∈ V2 in order to reach a contradiction. Then, it will be clear that V1 ̸= V2.

Since RNM∆-chains are simple, in fact, subdirectly irreducible (see Remark 4.4 and [23,
page 240]), by [7, Theorem 6.8] we obtain that A ∈ HSPU (K2) = ∪B∈K2HSPU (B), where
the last equality is due to the fact that K2 is finite. Moreover, K2 is a set of simple elements,
hence, A ∈ ∪B∈K2ISPU (B).
Therefore, there exists some B ∈ K2 such that A belongs to it universal class, that is, A
satisfies the axiomatization presented in Proposition 4.6.
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We distinguish two cases:

• If A is of the form Qr
∆ for some r ∈ (12 , 1]:

Then, by Proposition 4.6, B has to be Qr
∆. This contradicts our assumption that

A /∈ K2.

• If A is of the form Qγ
p
∆ for some p ∈ [12 , 1) ∩ Q and some γ ∈ ω + 1:

Then, by Proposition 4.6, B has to be of the form Qδ
p
∆

for some δ ≥ γ but, in that

case, by the definition we have given of the sets of generator,s we obtain Qγ
p
∆ ∈ K2.

This implies that A belongs to K2, which contradicts our assumption.

Then, it is clear that A /∈ V2 and, then, V1 ̸= V2. □

Corollary 4.11. There is a countable chain of rational NM∆-varieties.

Since there is a dual isomorphism between the lattice of subvarieties of RNM∆ and the
lattice of axiomatic extensions of RNML∆, Theorem 4.8, Corollary 4.7 and Proposition 4.10
provide some information of the last one, which is presented in the following result:

Corollary 4.12. Some consistent axiomatic extensions of RNML∆ are of the form

RNMLr∆ := RNML∆ + {¬∆(cq) : q ∈ [12 , r)∩Q} + {cq : q ∈ [r, 1]∩Q} for some r ∈ (12 , 1],

RNMLω
p∆ := RNML∆ + ¬∆(cp) + {cq : q ∈ (p, 1] ∩ Q} for some rational p ∈ [12 , 1),

RNMLn
p∆ := RNMLω

p∆+
∨

0≤i<j≤n+2(cp ∨ xi) ↔ (cp ∨ xj) for some rational p ∈ [12 , 1)

and n ∈ ω.

Moreover, the lattice of axiomatic extensions of RNML∆ has uncountable antichains and
countable chains.

4.2 Structural completeness in RNML∆

We move on to studying the structural completeness of some varieties of RNM∆-algebras. In
order to do so, first, we present the following result:

Proposition 4.13. Given any r ∈ (12 , 1], p ∈ [12 , 1) ∩ Q and γ ∈ ω + 1, the equalities

V(Qr
∆) = Q(Qr

∆) and V(Qγ
p
∆) = Q(Qγ

p
∆) hold.

Proof. Let r ∈ (12 , 1], p ∈ [12 , 1) ∩ Q and γ ∈ ω + 1, we consider A ∈ {Qr
∆,Qγ

p
∆}. The

inclusion Q(A) ⊆ V(A) is trivial and, to show the other one also holds, we take B ∈ V(A)
and prove that B ∈ Q(A).

By Proposition 1.49, B will be representable as a subdirect product of chains in V(A).
Since all RNM∆-chains are subdirectly irreducible (see Remark 4.4 and [23, page 240]), we
can apply [7, Theorem 6.8] and deduce that B ∈ ISPHSPU (A).
Given that A is simple and the class of simple algebras is closed under S and PU , we obtain
B ∈ ISPISPU (A) = ISPPU (A) = Q(A), which is what we wanted to see. □
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From the information we have obtained about the previous varieties, we can deduce the
following statement about their structural completeness:

Theorem 4.14. For any r ∈ (12 , 1], p ∈ [12 , 1) ∩ Q and γ ∈ ω + 1, V(Qr
∆) and V(Qγ

p
∆) are

structurally complete.

Proof. Given any r ∈ (12 , 1], p ∈ [12 , 1) ∩ Q and γ ∈ ω + 1, let A ∈ {Qr
∆,Qγ

p
∆}. By Theorem

1.29, in order to see that V(A) is structurally complete it will be enough to see that it is
generated as a quasivariety by FV(A)(ω).

On one hand, we have Q(FV(A)(ω)) ⊆ V(FV(A)(ω)) = V(A), where the last equality is
given by [7, Theorem 10.12 and Lemma 11.8].

On the other hand, we have left to show the other inclusion, we proceed as we have done for
Proposition 2.8 (similarly to the proof of [18, Proposition 8.3]):

• If FV(A)(ω) = FV(Qr
∆)(ω): then Qr

∆ is the zero-generated subalgebra of FV(A)(ω).

Therefore, V(Qr
∆) = Q(Qr

∆) ⊆ Q(FV(A)(ω)).

• If FV(A)(ω) = F
V(Q0

p
∆
)
(ω): analogously to the previous case we obtain V(Q0

p
∆

) =

Q(Q0
p
∆

) ⊆ Q(FV(A)(ω)).

• Finally, we consider the case where FV(A)(ω) = F
V(Qγ

p
∆
)
(ω) with γ > 0: since every

finite partial subalgebra of Qγ
p
∆ embeds into {Qn

p
∆ : n ∈ ω and 1 ≤ n ≤ γ} it is clear

that Qγ
p
∆ ∈ ISPU ({Qn

p
∆ : n ∈ ω and 1 ≤ n ≤ γ}).

Thus, if we show that each Qn
p
∆ (for n ∈ ω and 1 ≤ n ≤ γ) is embeddable into FV(A)(ω)

we obtain Qγ
p
∆ ∈ ISPUS(FV(A)(ω)) = ISPU (FV(A)(ω)) ⊆ Q(FV(A)(ω)) and, hence,

what we wanted.

For every 1 ≤ n ≤ γ such that n ∈ ω, the algebra Qn
p
∆ is the chain consisting of

the interval [1 − p, p] ∩ Q in between the n+ 1 element chains:

0 < ¬tn−1 < · · · < ¬t1 < ¬t0
t0 < t1 < · · · < tn−1 < 1.

As happened in Proposition 2.8, Qn
p
∆ can be embedded into FV(A)(ω) considering the

map that is the identity on {0}∪([1−p, p]∩Q)∪{1} and that sends ti to (the equivalence
class of) the formula φi and ¬ti to its negation, where:

φ0 := cp ∨ x1 and φj+1 := xj+1 ∨ (xj+1 → φj).

That is, we have an embedding:

h : Qn
p
∆ ↪→ FV(A)

a 7→ h(a) :=

{ a if a ∈ {0} ∪ ([1 − p, p] ∩ Q) ∪ {1},
φi if a = ti,
¬φi if a = ¬ti.

which is what we needed in order to conclude the proof.
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□

4.3 Comparative analysis of the results

In the case of the lattice of axiomatic extensions of RNML∆ we have obtained that the
addition of the ∆ connective does have an impact on the results, unlike what we had for the
logic NML∆. The lattice of axiomatic extensions of RNML is an uncountable chain, while
in RNML∆ not all the axiomatic extensions are comparable between them. Moreover, we
have seen that there are many more elements in the lattice of RNML∆.

On the other hand, regarding the lattice of axiomatic extensions of NML∆ (of NML,
equivalently) we can also spot some differences: in there we don’t have uncountable an-
tichains unlike what happens for RNML∆.

For this logic, we have proven that there is an uncountable number of axiomatic extensions
that are structurally complete. This differs from the results obtained for NML∆, which
doesn’t have structural completeness for any axiomatic extensions different than NM2∆ (see
Corollary 3.37).
On the other hand, for NML we have a countable number of structurally complete exten-
sions. In particular NM- is hereditarily structurally complete (see Theorem 1.73), that is,
every extension of NM- is SC.

4.4 The addition of bookkeeping axioms for ∆ to the logic RNML∆

In the previous section, the RNM∆-algebras we have studied don’t necessarily satisfy that
the interpretation of the constants constitutes a subuniverse closed under the operations.

For example, given some algebra Q0
p
∆ × Qr

∆ with p ∈ [12 , 1) ∩ Q and r ∈ (12 , 1] such that
p ≥ r, we know: {

c
Q0

p
∆

p = p,

c
Q0

p
∆×Qr

∆

p = (p, 1).

But then, ∆(c
Q0

p
∆

p ) = 0 and ∆(c
Q0

p
∆×Qr

∆

p ) = (0, 1) which is not the interpretation of any

constant of Q0
p
∆ ×Qr

∆.

Therefore, now we will study the logic obtained from RNML∆ by adding some axioms
assuring that the rational constants behave well with respect to the ∆ connective.

Definition 4.15. We call ∆-bookkeeping axioms of [0,1]∆ the axioms in the language of
[0,1]∆ expanded with the constants in C = {cq : q ∈ [0, 1] ∩ Q} that are of the form:

∆(cp) ↔ c∆(p),

for all p ∈ [0, 1] ∩ Q.

We can also express them as equations of the form: ∆(cp) ≈ c∆(p), where will denote by
B∆([0,1]∆) the set constituted by these equations, for all p ∈ [0, 1] ∩ Q.
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The logic CRNML∆ (canonical rational Nilpotent minimum logic) is defined from RNML∆

by adding the ∆-bookkeeping axioms of [0,1]∆.

Now, we will present the equivalent algebraic semantics for this logic:

Definition 4.16. A rational NM∆-algebra is considered to be a CRNM∆-algebra if it validates
the ∆-bookkeeping axioms B∆([0,1]∆).

We denote by CRNM∆ the variety of rational NM∆-algebras satisfying B∆([0,1]∆). We
have decided on these names because satisfying these last equations implies that every con-
stant has to be evaluated differently (as happens for the canonical interpretation).
In fact, the canonical CRNM∆-algebra will coincide with the one from RNM∆ (see Definition
4.3).
From the viewpoint of logic, the variety CRNM∆ algebraizes CRNML∆, that is, for every
set of formulas Γ ∪ {φ}:

Γ ⊢CRNML∆
φ if and only if τ[Γ] ⊨CRNM∆

τ(φ)

where τ := {x ≈ 1}.

Remark 4.17. Studying whether some algebra satisfies ∆(cp) ↔ c∆(p) for every p ∈ [0, 1]∩Q
is the same as considering if the axioms {¬∆(cq) ≈ 1 : q ∈ [12 , 1)∩Q} and c1 ≈ 1 hold, which
are the ones axiomatizing V(Q1

∆) (see Theorem 4.8).
Thus, from the previous RNM∆-chains presented in Section 4.2, it is clear that the only one
satisfying the ∆-bookkeeping axioms will be Q1

∆.

Now, we can proceed to study the varieties of CRNM∆-algebras. Since all of them will
be, in particular, varieties of RNM∆-algebras, the results proven in the previous subsection
will also be valid in this case. In particular, from Corollary 4.7 and our previous Remark, we
obtain:

Proposition 4.18. Every variety of CRNM∆-algebras is of the form V(Q1
∆). Moreover,

V(Q1
∆) is axiomatized by equations {¬∆(cq) ≈ 1 : q ∈ [12 , 1) ∩ Q} and c1 ≈ 1.

Hence, from the dual isomorphism that exists between the lattice of subvarieties of
CRNM∆ and the lattice of axiomatic extensions of CRNML∆, we deduce:

Corollary 4.19. The logic CRNML∆ has no proper consistent axiomatic extensions.

Finally, from Theorem 4.14:

Theorem 4.20. The logic CRNML∆ is structurally complete.
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5 Conclusions

In this thesis we have studied some expansions of the Nilpotent minimum logic, in particular,
we have focused on the rational Nilpotent minimum logic, the logic NML∆, the rational
NML∆ logic, and its further extension with additional bookkeeping axioms for the ∆ con-
nective. We have examined their lattices of axiomatic and finitary extensions, along with
several results on structural completeness.

We can now summarize what we have seen during the project and explain how the expansion
of the language affects, in each case, our object of study.

Regarding the lattices of axiomatic and finitary extensions, the ones corresponding to NML
are presented in [16]. The first one has a countable number of elements, not all of which are
comparable, such as NM2n+1 and NM2(n+1) given any n > 0. However, when rational
constants are added to the language, the lattice of axiomatic extensions becomes an uncount-
able chain, which makes the lattice different than the one we have for NML.
That is because every RNM-chain satisfies ¬c 1

2
≈ c 1

2
, in other words, contains the negation

fixpoint. Therefore, we obtain a totally ordered lattice, as is the case of the sublattice of
LV(NM) constituted by all the subvarieties generated by chains with negation fixpoint.

On the other hand, concerning the lattice of finitary extensions of NML, there is also a
countable number of elements. This differs from the lattice obtained for RNML which con-
tains both uncountable chains and antichains.

Next, we analyze what happens when we expand the NML language with the Delta Baaz
connective. In this case, we have proven that the lattice of axiomatic extensions is the same
as the one for NML.
Although adding the ∆ connective does not affect axiomatic extensions, it does affect the
lattice of finitary extensions. Even if we have not completely defined this lattice for NML∆,
we know all its elements (thanks to the study of critical algebras) and we have graphically
represented some of its sublattices. From this, we have been able to deduce that the lattices
of finitary extensions of NML and NML∆ do not coincide, as LQ(V(A∆

4 )) and LQ(V(A4))
are different (the first one has three elements while the latter only two).

Finally, we analyze the rational NML∆ logic, which is an expansion of both RNML and
NML∆. We limited our study to its lattice of axiomatic extensions, which has countable
chains and uncountable antichains, making it more similar to the lattice of finitary extensions
of RNML (which also has this property) than to the one of axiomatic extensions. The later
is an uncountable chain but, for RNML∆, we have seen that not all axiomatic extensions
are comparable. Thus, they are different and, additionally, it is clear that there are many
more elements in the lattice of RNML∆.
From this, we observe that although the addition of the ∆ connective didn’t affect the lattice
of axiomatic extensions of NML∆, this is not the case for RNML∆.

We can also compare the results obtained in Section 4 with the lattice of axiomatic ex-
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tensions of NML∆ (equivalently, of NML). Clearly, they will be different since the last
lattice doesn’t have uncountable antichains.

Lastly, we recall that the expansion obtained from RNM∆ by adding bookkeeping axioms
for the ∆ connective has no proper axiomatic extensions.

We proceed to analyze the results concerning structural completeness. In [16] it is seen
that the logic NML is hereditarily active structurally complete but not structurally com-
plete, and neither is any logic algebraized by a variety of NM-algebras containing V(A3).
However, the extension NM− is structurally complete (HSC, to be precise). Furthermore,
we know we can axiomatize the admissible quasiequations (equivalently, provide a basis for
admissible rules) for any axiomatic extension of NML.

When we add rational constants to the language, some of these results change. We still
can provide a basis for the admissible rules on all axiomatic extensions, but we no longer
have logics that are ASC (active structurally complete) and not SC, as was previously the
case for logics algebraized by a variety V(A3) ⊆ K. This is because the concepts of heredi-
tary structural completeness, structural completeness, and active structural completeness are
equivalent for any extension of RNML. Additionally, a characterization of passive structural
completeness is presented.

Now, we turn to analyze how adding the Delta Baaz connective to the language of NML
influences its results on structural completeness, presented earlier. We prove that NML∆

is not structurally complete but it is hereditarily active structurally complete, similarly to
what we have for NML. Moreover, we can also axiomatize the admissible quasiequations of
every axiomatic extension of the logic. The difference here is that, in this case, no axiomatic
extension other than NM2∆ is structurally complete, whereas for NML it is shown that
NM- is HSC.

Finally, in the project we study the rational NML∆ logic, which can either be seen as
an expansion of RNML or NML∆. It has been proven in the thesis that there are several
axiomatic extensions of this logic that are structurally complete (in fact, an uncountable
amount). The same does not hold for the case of NML∆, where the only structurally com-
plete axiomatic extension is the logic NM2∆. However, for NML, we have a countable
number of axiomatic extensions that are SC (all axiomatic extensions of NM-, for example).
We conclude by recalling that the expansion obtained from RNML∆ by adding bookkeeping
axioms for the ∆ connective has been proven to be structurally complete.

There is future work that could be done with the aim of providing a continuation to the
results presented in the thesis:

• The finitary extensions of the RNML∆ logic could be analyzed. Further research could
also include providing more information about the active structural completeness of the
logic and its extensions and attempting to axiomatize all admissible quasiequations for
any given axiomatic extension.

• The Q-universality of the logic RNML∆ could be studied. The necessary conditions
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to apply [1, Corollary 3.4] are not satisfied (the language is not finite, hence, RNM∆-
algebras do not have finite type). Nevertheless, by [7, Theorem 12.2], it is easily checked
that RNM∆ is congruence-permutable, hence, it is congruence-modular (see [7, Theo-
rem 5.10]). From this and [26, Theorem 1] it is deduced that the variety of RNM∆-
algebras has the Fraser-Horn property.

Thus, we can consider the class of algebras of the form Qr
∆ or Q0

p
∆

, given any r ∈ (12 , 1],

p ∈ [12 , 1)∩Q. Even though their algebras will not be finite, the class satisfies the Fraser-
Horn property and contains infinitely many algebras, none of which is embeddable into
any other one and each of which is hereditarily simple.
Therefore, maybe there could exist an infinite family of RNM∆-algebras satisfying the
conditions P1)-P4) presented in [1, page 1054].
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