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Introduction

The deduction-detachment theorem is commonly regarded as one of the central met-
alogical properties of classical logic: to prove that an implication holds between
propositions it suffices to provide a proof of the conclusion on the basis of the as-
sumption of the antecedent. Formally, this means that for every set Γ ∪ {φ, ψ} of
formulas,

Γ ∪ {φ} ⊢ ψ iff Γ ⊢ φ → ψ,

where ⊢ is the consequence relation naturally associated with classical propositional
logic.

Another notable feature of classical propositional logic, which emerges as a corol-
lary of the deduction theorem, is that it admits proofs by contradiction. Formally, this
means that for any set Γ ∪ {α} of formulas,

Γ ∪ {¬α} is inconsistent iff Γ ⊢ α,

where ⊢ is the consequence relation naturally associated with classical propositional
logic. While it is well known that intuitionistic propositional logic rejects proofs by
contradiction, it still satisfies the following weaker principle: for every set Γ ∪ {α} of
formulas

Γ ∪ {α} is inconsistent iff Γ ⊢ ¬α,

where ⊢ is the consequence relation naturally associated with intuitionistic proposi-
tional logic.

The study of deduction-detachment theorems has played a major role in shaping
the evolution of abstract algebraic logic since the early eighties [5, 13] (see also [4]).
Traditionally, algebraic logic has focused on the algebraic investigation of particular
classes of algebras of logic, regardless of whether they could be connected to some
known logic by means of the Lindenbaum-Tarski method. When such a connection
could be established, there was interest in exploring the relationhip between various
syntactical properties of the logic and the algebraic properties of the associated class of
algebras, leading to the formulation of what are known as bridge theorems.

The term bridge theorem (see [1], pp. 133-135 and pp. 186-188) refers to results that
establish a connection between two different fields, logic and algebra, by associating
a purely algebraic interpretation to metalogical properties. These theorems allow us
to use a better known toolbox, that of algebra, to adress logical problems, and then
translate the solution back to the original logical setting. In particular, this methodology
allows us to cope with an ever-increasing forest of new logics with a more uniform
approach.
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Abstract algebraic logic allows us to study such connections in a general context.
Within this framework, a logic is determined by its formal consequence relation ⊢,
considered as a consequence operation on the algebra of formulas. A (propositional)
logic in some algebraic language is any pair ⟨Fm;⊢⟩ where Fm is the algebra of
formulas of the appropriate type with a denumerable set of variables and ⊢⊆ P(Fm)×
Fm is a relation that satisfies that for all sets of formulas Γ, ∆ and all formulas φ, ψ

(i) if φ ∈ Γ, then Γ ⊢ φ (identity),

(ii) if Γ ⊢ φ and ∆ ⊢ ψ for all ψ ∈ Γ, then ∆ ⊢ φ (cut),

(iii) if Γ ⊢ φ and h is a substitution, then h[Γ] ⊢ h(φ) (substitution invariance)

where a substitution h is just an endomorphism of Fm. A logic ⊢ is finitary if whenever
we have Γ ⊢ φ, there is a finite subset ∆ of Γ in such a way that ∆ ⊢ φ.

One class of logics that holds a prominent position within abstract algebraic logic
is the class of protoalgebraic logics [2, 15], i.e., logics possessing a set of formulas that
globally expresses logical equivalence. Protoalgebraicity is the weakest non-trivial
property of logics which makes them amenable to most of the standard methods of
algebra. Their role in algebraic logic consists in providing a framework suitable for the
formulation of bridge theorems.

It is a well-known fact that a finitary protoalgebraic logic has a deduction-detachment
theorem – briefly a DDT – if and only if the semilattice of compact deductive filters
of every algebra of the corresponding type is dually Brouwerian (see, e.g., [13]). The
bridge theorem has algebraic consequences, which in turn have logical applications
crossing back over the bridge. For instance, any finitary protoalgebraic logic satisfying
a DDT is filter-distributive, and the logical counterpart of filter-distributivity is the
so-called proof by cases property, a metalogical property which has been extensively
studied in [10, 12, 15, 16].

In contrast, the theory of inconsistency lemmas, or ILs, for short, has not been
systematically investigated so far, with a few exceptions (see, e.g., [9, 26, 27, 28, 30]).
An abstract account of the inconsistency lemma was first given by Raftery in [30].
Accordingly, a logic ⊢ is said to have an inconsistency lemma – briefly an IL – if, for
n ∈ N+, there exists a finite set of formulas Ψn(x1, . . . , xn) such that for every Γ ∪
{φ1, . . . , φn} ⊆ Fm,

Γ ∪ {φ1, . . . , φn} is inconsistent in ⊢⇐⇒ Γ ⊢ Ψn(φ1, . . . , φn).

This definition encompasses the familiar inconsistency lemma of intuitionistic
propositional logic, because

Γ ∪ {α} is inconsistent ⇐⇒ Γ ⊢ ¬α.

amounts to the conjunction, over all n ∈ Z+, of the claims

Γ ∪ {α1, . . . , αn} is inconsistent ⇐⇒ Γ ⊢ ¬(α1 ∧ . . . ∧ αn).

Raftery proved in [30, Thm. 3.7] that for a finitary protoalgebraic logic to have a
(global) IL amounts to the demand that the join semilattice of compact deductive filters
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in each algebra of the corresponding type should be dually pseudo-complemented.
This result, in particular implies, on lattice-theoretic grounds that a protoalgebraic
logic with a DDT and a greatest compact theory has an inconsistency lemma.

Subsequently, Lávička and Přenosil [26, 28] introduced and studied the local and
parametrized local versions in a similar fashion to the hierarchy of DDTs. Following
the terminology introduced in [26], a logic ⊢ is said to have a local inconsistency lemma –
briefly a LIL – if for every positive integer n, there exists a family Ψn of finite sets of
formulas I(x1, . . . , xn) such that for every Γ ∪ {φ1, . . . , φn} ⊆ Fm,

Γ ∪ {φ1, . . . , φn} is inconsistent in ⊢ ⇐⇒ Γ ⊢ I(φ1, . . . , φn) for some I ∈ Ψn.

The corresponding algebraic counterpart is the maximal consistent filter extension
property, or MCFEP, for short, which a logic ⊢ is said to have if for every model ⟨A, F⟩
of ⊢ and every submatrix ⟨B, G⟩ of ⟨A, F⟩, for every maximal ⊢-filter H containing
G there is a ⊢-filter H′ containing F such that H = H′ ∩ B. This result established in
[26] for protonegational logics * translates in the framework of finitary protoalgebraic
logics as the following theorem:

Theorem. [26, Thm. 6.35] Let ⊢ be a finitary protoalgebraic logic. The following are equiva-
lent:

(i) ⊢ has the LIL;

(ii) ⊢ has the MCFEP and for every algebra A the deductive filter A is finitely generated;

(iii) The MCFEP holds in the algebra of formulas and ⊢ posseses a finite inconsistent set of
formulas.

Considering these advances, as the theory of the deduction-detachment theorems
is rather satisfying, it is natural to ask whether a similar theory can be developed for
inconsistency lemmas. Specifically, one may wonder what is necessary for a LIL to
reduce to an IL. The original motivation for this work was to adress that question and
obtain a theory for ILs parallel to the existing theory for DDTs.

Chapter 2 investigates the algebraic counterparts of the global and local inconsis-
tency lemmas, previously addressed in [30, Thm. 3.7] and [26, Thm. 6.35], respectively.
Here, we adapt the proof for the local version to the framework of finitary protoalge-
braic logics. Moreover, as a first step to determine what is necessary for a LIL to reduce
to an IL, we introduce the new notion of (first-order) definable maximal consistent filters
– briefly DMCF. This property is reminiscent of the (first-order) definability of principal
deductive filters, introduced by Czelakowski (see [15], pp. 132-134).

A logic ⊢ is said to have DMCF if for each n ∈ Z+ there exists a formula
δn(x1, . . . , xn) in the language of the first-order predicate logic (with equality), whose
only non-logical symbols are the operation symbols of ⊢ and a unary predicate P(x),
such that for every model ⟨A, F⟩ of ⊢ and elements a1, . . . , an ∈ A,

A = FgA
⊢ (F ∪ {a1, . . . , an}) ⇐⇒ ⟨A, F⟩ ⊨ δn(a1, . . . , an).

*The class of protonegational logics is introduced in [26] as a weakening of protoalgebraicity, restrict-
ing some of its defining conditions to maximal consistent theories. Particular examples are the negation
fragments of protoalgebraic logics.
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In this case, for a finitary protoalgebraic logic ⊢ with a LIL and DMCF, we prove
that any family Ψn witnessing the LIL must include a finite subset of sets of formulas
for each n ∈ N+ such that the resulting family also witnesses the LIL for ⊢. However,
the question of whether Ψn can be taken to be a singleton for every n, and obtain a
global IL, is more involved.

To answer this question, in Chapter 3 we introduce a new metalogical prop-
erty that arises as a consequence of the IL: a logic ⊢ has the inconsistency by cases
property, or ICP, for short, when for every positive integers n, m, there exists a pa-
rameterized set ∇n,m(x1, . . . , xn, y1, . . . , ym, z⃗) of formulas such that for any set Γ ∪
{φ1, . . . , φn, ψ1, . . . , ψm} of formulas, φ⃗ ⊢ φ⃗∇n,mψ⃗ and ψ⃗ ⊢ φ⃗∇n,mψ⃗, and whenever
Γ ∪ {φ⃗} and Γ ∪ {ψ⃗} are inconsistent in ⊢, then Γ ∪ {φ⃗∇n,mψ⃗} is inconsistent in ⊢,
where, φ⃗∇n,mψ⃗ is defined as

⋃{∇n,m(φ⃗, ψ⃗, γ⃗) : γ⃗ ∈ Fm}.

It turns out that, in parallel to the connection between the proof by cases property
and filter-distributivity, the corresponding bridge theorem arises between the ICP and
the notion of 1-distributivity. Recall that a lattice A with 1 is said to be 1-distributive if
whenever a ∨ b = 1 and a ∨ c = 1, then a ∨ (b ∧ c) = 1 for all elements a, b, c ∈ A. We
obtain the following new result:

Theorem. Let ⊢ be a finitary protoalgebraic logic. The following are equivalent:

(i) ⊢ has the ICP and possesses a finite inconsistent set of formulas;

(ii) For every algebra A, the lattice of ⊢-filters of A is 1-distributive;

(iii) The lattice of theories of ⊢ is 1-distributive.

While a syntactical proof already shows that if a logic has an inconsistency lemma,
then it has the inconsistency by cases property, the above theorem allows us to view
this implication in the algebraic setting. Since every dually pseudo-complemented join
semilattice with 1 is 1-distributive and any algebraic lattice is isomorphic to the lattice
of ideals of the join semilattice of its compact elements, crossing back over the bridge
to the syntactical setting, this implies that any finitary protoalgebraic logic with an IL
has the ICP. Moreover, we prove that for a finitary protoalgebraic logic having a LIL
witnessed by Ψn, the demand for the family to be directed for each n ∈ N+ amounts
to the 1-distributivity of the logic.

Consequently, we are finally able to address the original question motivating this
work: what is necessary for an LIL to reduce to an IL? The crucial result of the thesis
– Theorem 3.10 – states that a finitary protoalgebraic logic has an IL if and only if it
has the MCFEP, for every algebra A the deductive filter A is finitely generated, it has
DMCF and it is filter-1-distributive.
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CHAPTER 1
Preliminaries

This preliminary chapter provides a comprehensive overview of the fundamental
concepts and results relevant to our work. While some facts are presented without
proofs, we direct the reader to our primary sources in the literature. Section 1.1 contains
a brief introduction to lattices, and to the close connection between complete lattices
and closure operators. In Section 1.2 we introduce the standard notion of logic in
abstract algebraic logic and the class of protoalgebraic logics.

1.1 Lattices and closure operators
We refer to [8] and [20] for an introduction to orders and lattices. We start with the
definition of poset.

There are two standard ways of defining lattices: one puts them on the same
(algebraic) footing as groups or rings, and the other, based on the notion of order, offers
geometric insight. In order to introduce both definitions of a lattice we need to present
the notion of a partial order on a set.

A binary relation ⩽ on a set X is said to be a partial order when it is reflexive,
transitive and antisymmetric. In this case, the pair X = ⟨X,⩽⟩ is said to be a partially
ordered set, a poset, for short.

Given a poset X and x, y, z ∈ X, we write x < y when both x ⩽ y and x ̸= y, or
equivalently x ⩽ y and y ⩽̸ x. Furthermore, we will write x ⩽ y, z as an abbreviation
for x ⩽ y and x ⩽ z. A similar reading will apply to expressions of the form x, y ⩽ z.

Two elements x and y of a poset X are said to be comparable when either x ⩽ y
or y ⩽ x. Accordingly, we say that X is a chain when every two elements of X are
comparable. By extension, a subset Y ⊆ X is said to be a chain in X when the poset
(Y,⩽Y) is a chain, where ⩽Y is the restriction of the order ⩽X to Y.

Let X be a poset and let Y ⊆ X. An upper bound of Y in X is any element x ∈ X such
that y ⩽ x, for all y ∈ Y. An element x is called the least upper bound (or supremum)
of Y in X if x is an upper bound of Y in X, and x ⩽ y for every upper bound y of Y.
Similarly, we can define what it means for an element x of X to be a lower bound and
greatest lower bound of Y. An element x of X is said to be a lower bound of Y in X when
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x ⩽ y, for all y ∈ Y. An element x is called the greatest lower bound (or infimum) of Y in
X if x is a lower bound of Y in X, and y ⩽ x for every lower bound y of Y.

Let X be a poset and Y ⊆ X. An element x ∈ X is said to be a meet of Y when x is
the greatest lower bound of Y in X. An element x ∈ X is said to be a join of Y when x
is the least upper bound of Y in X. Given a poset X and Y ⊆ X, when the meet (resp.
join) of Y exists, it is unique. Accordingly, if the meet of Y in X exists, we denote it by∧

Y, and if the join of Y exists, we denote it by
∨

Y. When Y = {x, y}, we will write
x ∧ y and x ∨ y instead of

∧
Y and

∨
Y.

Now we can define lattices order-theoretically: A nonempty poset X is said to be

(i) a meet semilattice when the meet of {x, y} exists for every pair of elements x, y ∈ X;

(ii) a join semilattice when the join of {x, y} exists for every pair of elements x, y ∈ X;

(iii) a lattice when it is both a meet semilattice and a join semilattice.

A lattice is said to be complete when
∧

Y and
∨

Y exist for every Y ⊆ X.

Lattices and semilattices can also be viewed as algebraic structures, as we proceed
to explain. To this end, we need to take a detour in universal algebra.

An operation of arity n on a set A is a function f : An → A. A type is a map
rho : F → N, where F is a set of function symbols. In this case ρ( f ) is said to be the
arity of the function symbol f , for every f ∈ A. Function symbols of arity 0 are called
constants. An algebra of type ρ is a pair A = ⟨A,F⟩ where A is a nonempty set and
F = { f A : f ∈ F} is a set of operations on A whose arity is determined by ρ in the
sense that each f A has arity ρ( f ). The set A is called the universe of A.

Algebras of the same type are called similar and can be compared by means of
maps that preserve their structure. Let A and B be two similar algebras. Then B is said
to be a subalgebra of A if B ⊆ A and f B is the restriction of f A to A, for every f ∈ F .
In this case, we write A ⩽ B.

Given similar algebras A and B, a homomorphism from A to B is a map f : A → B
such that, for every n-ary operation g of the common type and a1, . . . , an ∈ A,

f (gA(a1, . . . , an)) = gB( f (a1), ..., f (an)).

An endomorphism of an algebra A is a homomorphism whose domain and codomain
is A. The set of endomorphisms of an algebra A will be denoted by End(A). An
injective homomorphism is called an embedding, and a surjective embedding is called
an isomorphism.

Given a type ρ : F → N and a set of variables X disjoint from F , the set of terms of
type ρ over X is the least set Tρ(X) such that

(i) X ⊆ Tρ(X);

(ii) if c ∈ F is a constant, then c ∈ Tρ(X);

(iii) if φ1, . . . , φn ∈ Tρ(X) and f ∈ F is n-ary, then f (φ1, . . . , φn) ∈ Tρ(X).

In the context of logic, the term algebra Tρ(X) is often called the algebra of formulas
(of type ρ) and its elements are referred to as formulas. Therefore, given an algebraic
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language, we will denote the set of its formulas built up from a denumerable set of
variables by Fm and the corresponding algebra of formulas by Fm. Generic elements
of X will be denoted by x, y, z . . . . Moreover, the endomorphisms of Fm will be called
substitutions.

Given a formula φ ∈ Fm, we write φ(x1, . . . , xn) to indicate that the variables
occuring in φ are among x1, . . . , xn. For each positive integer n, we define

Fm(n) := {φ ∈ Fm : the variables occurring in φ are among x1, . . . , xn}.

Furthermore, given φ ∈ Fm(n) and an algebra A with elements a1, . . . , an ∈ A,
then φA(a1, . . . , an) denotes h(φ), where h : Fm → A is any homomorphism such
that h(xi) = ai for i ∈ {1, . . . , n}. If Ξ ⊆ Fm(n), then ΞA(a1, . . . , an) abbreviates
{ξA(a1, . . . , an) : ξ ∈ Ξ}.

An equation of type ρ over X is an expression of the form φ ≈ ψ, where φ, ψ ∈ Fm. A
quasi-equation of type ρ over X is an expression Φ of the form

(φ1 ≈ ψ1 & . . . & φn ≈ ψn) =⇒ ε ≈ δ,

where {φ1 ≈ ψ1, . . . , φn ≈ ψn, ε ≈ δ} is a set of equations of type ρ over X.

Then Φ is valid in an algebra A of type ρ when so is its universal closure ∀x⃗ Φ, i.e.,
for every a⃗ ∈ A,

if φA
1 (⃗a) = ψA

1 (⃗a), . . . , φA
n (⃗a) = ψA

n (⃗a), then εA (⃗a) = δA (⃗a),

in which case we say that A validates Φ. Alternatively, we say that A satisfies Φ or that
the quasi-equation Φ holds in A and write A ⊨ Φ. Observe that the antecedent of the
above expression can be empty, in which case we have an equation.

Let K be a class of similar algebras and Ψ ∪ {ε ≈ δ} a set of equations in variables
X. We define

Ψ ⊨K ε ≈ δ ⇐⇒ for every algebra A ∈ K and every a⃗ ∈ A,

if φA (⃗a) = ψA (⃗a) for all φ ≈ ψ ∈ Ψ, then εA (⃗a) = δA (⃗a).

The relation ⊨K is known as the equational consequence relative to K.

A class of similar algebras K is called a variety if it is closed under subalgebras,
homomorphic images, and direct products.

Birkhoff’s Theorem 1.1. [8, Thm. II.11.9] A class of similar algebras is a variety if and only
if it can be axiomatized by a set of equations.

A class of similar algebras K is called a quasivariety if it is closed under isomor-
phisms, subalgebras, direct products, and ultraproducts.

Maltsev’s Theorem 1.2. [8, Thm. V.2.25] A class of similar algebras is a quasivariety if and
only if it can be axiomatized by a set of quasi-equations.

Lattices and semilattices admit a definition as algebras which satisfy certain equa-
tions.

A semilattice is an algebra A = ⟨A; ⋆⟩ such that ⋆ is a binary idempotent, commuta-
tive and associative operation, i.e., A satisfies the following equations:
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(i) x ⋆ x ≈ x;

(ii) x ⋆ y ≈ y ⋆ x;

(iii) x ⋆ (y ⋆ z) ≈ (x ⋆ y) ⋆ z.

From a purely formal perspective, meet and join semilattices are essentially the
same objects, differing only in the symbol which represents their unique binary op-
eration, ∧ and ∨, respectively. We shall give these two classes of algebras a different
order theoretic interpretation.

A lattice is an algebra A = ⟨A,∨,∧⟩ such that ⟨A,∧⟩ is a meet semilattice and
⟨A,∨⟩ is a join semilattice, that is, ∧ and ∨ are binary idempotent, commutative and
associative operations, and moreover A satisfies the equations:

x ∧ (y ∨ x) ≈ x and x ∨ (y ∧ x) ≈ x.

We will now describe the equivalence of the order-theoretic and algebraic defini-
tions of a lattice, and describe the translation between these definitions. By ”equivalent”
we mean the following: if A is a lattice according to one definition, then it is possible
to construct, in a simple and uniform manner, a lattice on the same underlying set
according to the other definition, and the two constructions (converting from one
definition to the other) are inverses.

First we describe the construction from the algebraic definition to the order-
theoretic one. Every semilattice A can be associated with two partial orders on A,
namely the meet order ⩽m and the join order ⩽j, defined respectively by the following
rules:

a ⩽m b ⇐⇒ a ⋆ b = a and a ⩽j b ⇐⇒ a ⋆ b = b.

Accordingly, we say that A is a meet semilattice (respectively, join semilattice) when
we prioritize the meet order (respectively, join order). It follows that ⟨A,⩽m⟩ is a
poset that forms a meet semilattice, and ⟨A,⩽j⟩ is a poset that forms a join semilattice.
Therefore, we have described a translation from the algebraic definition of meet and
join semilattices to their order-theoretic definition.

In the converse direction, consider a poset X = ⟨X,⩽⟩ which is a meet semilattice.
We can define a binary operation ∧ : X × X → X by taking x ∧ y to be the meet of the
set {x, y} in X. It then follows that the algebra ⟨X,∧⟩ is a meet semilattice in the sense
of its algebraic definition. Similarly, if we consider a poset X = ⟨X,⩽⟩ which is a join
semilattice and define a binary operation ∨ : X × X → X taking x ∨ y to be the join
of the set {x, y} in X. It then follows that the algebra ⟨X,∨⟩ is a join semilattice in the
sense of its algebraic definition.

From now on we shall treat lattices and semilattices both as posets and algebras
without further notice.

Let A be a lattice. A filter F is a nonempty subset of A such that, for all x, y ∈ A,
the following conditions hold:

(i) F is upward closed, i.e., if x ∈ F and x ⩽ y, then y ∈ F;

(ii) If x ∈ F and y ∈ F, then x ∧ y ∈ F.

8



1.1. Lattices and closure operators

Dually, an ideal I of A is a nonempty subset of A such that, for all x, y ∈ A, the
following conditions hold:

(i) F is downward closed, i.e., if x ∈ F and y ⩽ x, then y ∈ F;

(ii) If x ∈ F and y ∈ F, then x ∨ y ∈ F.

A filter F (resp. an ideal I) is said to be proper if F ̸= A (resp. I ̸= A). Observe that if F
is a filter on a lattice A, then ↑ x is a filter of A and ↓ x is an ideal of A, for every x ∈ A,
where

↑ x := {y ∈ A : x ⩽ y};
↓ x := {y ∈ A : y ⩽ x}.

They are called principal filters and principal ideals, respectively. For a lattice A, let us
denote by Fi(A) the set of filters of A, ordered by inclusion. A filter F of A is said to
be maximal if it is maximal in Fi(A).

We now introduce another key concept: closure operators, which allow the general
study of logic using the tools of universal algebra. In fact, we can define the abstract
notion of logic as a particular kind of closure operator on the algebra of formulas of a
given type, as outlined in the introduction.

A closure operator on a set X is a map C : P(X) → P(X) which satisfies the
following conditions for every Y, Z ⊆ X:

(i) Extensivity: Y ⊆ C(Y);

(ii) Idempotence: C(C(Y)) = C(Y);

(iii) Monotonicity: if Y ⊆ Z, then C(Y) ⊆ C(Z).

We say that a set Y ⊆ X is closed when Y = C(Y). When no confusion shall occur,
given a closure operator C on X and x1, . . . , xn ∈ X, we shall write C(x1, . . . , xn) as a
shorthand for C({x1, . . . , xn}).

A closure system on a set X is a family S ⊆ P(X) closed under arbitrary intersections,
that is, if for every {Yi : i ∈ I} ⊆ P(X),

if Yi ∈ S for every i ∈ I, then
⋂
i∈I

Yi ∈ S.

The intersection of the empty family of subsets of X is understood here as ∩∅ := X.
Consequently, the set X belongs to every closure system on X.

It is well known that the collection of closed sets of a closure operator C on X form
a closure system on X and that a closure system S on X gives rise to a closure operator
on X, defining

CS(Y) :=
⋂
{Z ∈ S : Y ⊆ Z} for every Y ⊆ X.

These transformations are indeed inverse to one another. Therefore definitions
and results established for closure operators transfer naturally to closure systems and
viceversa.

A consequence relation on a set X is a relation ⊢⊆ P(X)× X satisfying the following
conditions:
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1. PRELIMINARIES

(i) Reflexivity: if Y ⊆ X and y ∈ Y, then Y ⊢ y;

(ii) Transitivity: for all Y, Z ⊆ X and x ∈ X, if Y ⊢ z for all z ∈ Z and Z ⊢ x, then
Y ⊢ x.

If C is a closure operator on X, the relation ⊢C:= {⟨Y, x⟩ ∈ P(X)× X : x ∈ C(Y)}
is a consequence relation on X. Conversely, if ⊢ is a consequence relation on X, the
map C⊢ : P(X) → P(X) defined as C⊢(Y) := {x ∈ X : Y ⊢ x} is a closure operator
on X. These transformations are inverse to each other, so the notions of a consequence
relation and closure operator are coextensive.

Every closure system can be viewed as a poset ordered under the inclusion relation.
In fact, this poset turns out to be a complete lattice.

Proposition 1.3. [8, Thm. I.5.2] Let S be the closure system associated with a closure operator
C on a set X. Then ⟨S,⊆⟩ is a complete lattice in which meets are intersections and joins are
closures of unions. That is, for every {Yi : i ∈ I} ⊆ S,∧

i∈I

Yi =
⋂
i∈I

C(Yi) and
∨
i∈I

Yi = C(
⋃
i∈I

Yi)

In view of Proposition 1.3, we will often treat closure systems S as complete lattices
and write S as a shorthand for ⟨S,⊆⟩. Interestingly enough, not only is every closure
system a complete lattice, but (up to isomorphism) every complete lattice arises in
this way. Consequently, the lattices arising from closure operators provide typical
examples of complete lattices.

Theorem 1.4. [8, Thm. I.5.3] Every complete lattice is isomorphic to a closure system.

Given a closure operator C on a set X, a closed set Y of C is said to be finitely
generated when there exists a finite Z ⊆ X such that Y = C(Z). Furthermore, C is
said to be finitary when for every Y ∪ {x} ⊆ X such that x ∈ C(Y) there exists a finite
Z ⊆ Y such that x ∈ C(Z). Consequently, a closure operator is finitary precisely when
each of its closed sets is the union of all the finitely generated closed sets contained
into it.

Since the notions of a closure operator, closure system and consequence relation
are coextensive, it is natural to wonder how to characterize finitary closure operators
in terms of the structure of closure systems and consequence relations associated to
them.

Given a poset X, a nonempty set Y ⊆ X is said to be upward directed in X when for
every x, y ∈ Y there exists z ∈ Y such that x, y ⩽ z. A closure system S is said to be
inductive when

⋃
Y ∈ S for every family Y ⊆ S that is upward directed in ⟨S,⊆⟩. A

consequence relation ⊢ is said to be finitary when for every Y ∪ {x} ⊆ X, if Y ⊢ x, then
there exists a finite Z ⊆ Y such that Z ⊢ z.

The following theorem states the connection between these concepts:

Theorem 1.5. The following conditions are equivalent for a closure operator C on a set X:

(i) C is finitary;

(ii) The closure system associated with C is inductive;

10



1.1. Lattices and closure operators

(iii) The consequence relation associated with C is finitary.

The finitely generated closed sets of a finitary closure operator can be described
in purely lattice theoretic terms. To this end, we introduce the following notion: an
element x of a complete lattice X is said to be compact if for every Y ⊆ X, if x ⩽

∨
Y,

there exists a finite Z ⊆ Y such that x ⩽
∨

Z. As a consequence of the definition, we
have that compact elements are closed under binary joins.

Proposition 1.6. The set Comp(X) of compact elements of a complete lattice X is closed
under binary joins in X and contains the least element of X.

Recall from Theorem 1.4 that every complete lattice can be represented as a closure
system. Therefore, we can consider the compact elements of a closure system. For a
finitary closure operator, the finitely generated closed sets and the compact elements
of the associated closure system coincide.

Proposition 1.7. Let C be a finitary closure operator on a set X and S the associated closure
system. A closed set Y ⊆ X is finitely generated iff it is a compact element of ⟨S,⊆⟩.

Another natural question that may arise from the fact that every complete lattice
can be represented as a closure system, is which are the complete lattices isomorphic
to the inductive closure systems. Before we describe these lattices, let us first introduce
a useful auxiliary notion.

A subset D of a complete lattice X is said to be join dense (resp. meet dense) when
each element of X is a join (resp. a meet) of some subset of D. That is, for each x ∈ X
there exists some Y ⊆ D such that x =

∨
Y (resp. x =

∧
Y). The notion of join

density admits equivalent formulations. Here, we present one such formulation that is
particularly relevant in what follows: a subset D of a complete lattice X is join dense
in X iff for every x, y ∈ X,

x ⩽̸ y ⇐⇒ there exists d ∈ D such that d ⩽ x and d ⩽̸ y.

A complete lattice X is said to be algebraic when the set Comp(X) of compact
elements of X is join dense in X, i.e, when each element of X is a join of compact
elements of X.

Let A = ⟨A,∨⟩ be a join semilattice with least element 0. An ideal of A is a downset
containing 0 such that for every a, b ∈ A, if a, b ∈ I, then a ∨ b ∈ I. The set of ideals
of A will be denoted by Id(A). Equivalently, the ideals of A are the upward directed
downsets of ⟨A,⩽j⟩.

Proposition 1.8. If A is a join semilattice with a least element, then Id(A) is an inductive
closure system on A.

Let X be a complete lattice. According to Proposition 1.6, ⟨Comp(X),∨⟩ is a
join semilattice, with its least element being the least element of X. Consequently,
Id(⟨Comp(X),∨⟩) is an inductive closure system by Proposition 1.8. Therefore, we pro-
ceed to formulate a representation theorem that relates algebraic lattices and inductive
closure systems as follows:

Theorem 1.9. Every inductive closure system is an algebraic lattice. Conversely, if A is an
algebraic lattice, then Id(⟨Comp(X),∨⟩) is an inductive closure system isomorphic to A.

11



1. PRELIMINARIES

1.2 Logic
This section follows closely [29]. For a general background on abstract algebraic logic
and for the concept of logic we work with we refer the reader to [21]. For the concept
of protoalgebraic logic and related topics see [2, 15].

A propositional logic ⊢ (from now on, simply a logic) is a consequence relation on the
set Fm of formulas of some algebraic language that, moreover, is substitution invariant
in the sense that, for every substitution σ and every Γ ∪ {φ} ⊆ Fm,

if Γ ⊢ φ, then σ[Γ] ⊢ σ(φ).

This condition is also referred to as structurality. Among other standard abbreviations,
given Γ ∪ Σ ⊆ Fm, we write Γ ⊢ Σ when Γ ⊢ φ, for all φ ∈ Σ and, we write Γ ⊣⊢ Σ
whenever Γ ⊢ Σ and Σ ⊢ Γ.

Every logic ⊢ can be associated with a closure operator Cn⊢ : P(Fm) → P(Fm)
defined, for every Γ ⊆ Fm, as follows:

Cn⊢(Γ) := {φ ∈ Fm : Γ ⊢ φ}.

Moreover, a set of formulas Γ is said to be a theory of ⊢ if Γ = Cn⊢(Γ). When ordered
under the inclusion relation, the set of theories of ⊢ forms a closure system and,
therefore, a lattice that we denote by T h(⊢).

A rule is an expression of the form Γ � φ, where Γ ∪ {φ} ⊆ Fm. A rule Γ � φ is
said to be valid in a logic ⊢ when Γ ⊢ φ. Given an algebra A in the same language as ⊢,
a set F ⊆ A is said to be a deductive filter of ⊢ (or ⊢-filter) on A when it is closed under
the interpretation of the rules valid in ⊢, that is, when, for every Γ ∪ {φ} ⊆ Fm such
that Γ ⊢ φ and every homomorphism f : Fm → A,

if f [Γ] ⊆ F, then f (φ) ∈ F.

A (logical) matrix is a pair ⟨A, F⟩, where A is an algebra and F ⊆ A. A matrix
⟨A, F⟩ is trivial if F = A. Given two matrices ⟨A, F⟩ and ⟨B, G⟩, we say that ⟨B, G⟩ is a
submatrix of ⟨A, F⟩ if B is a subalgebra of A and G = F ∩ B. In that case, we will use
the notation ⟨A, F⟩ ⩽ ⟨B, G⟩.

A matrix ⟨A, F⟩ is said to be a model of a logic ⊢ when F is a deductive filter of ⊢
on A. The class of models of ⊢ will be denoted by Mod(⊢).

Remark 1.10. The class of models of a logic ⊢ is closed under submatrices, i.e., if
⟨A, F⟩ ∈ Mod(⊢) and ⟨B, G⟩ ⩽ ⟨A, F⟩, then ⟨B, G⟩ ∈ Mod(⊢). Indeed, suppose that
Γ ⊢ φ and consider a homomorphism f : Fm → A such that f [Γ] ⊆ F. Then f (φ) ∈ F
because ⟨A, F⟩ ∈ Mod(⊢) and, therefore, F is a ⊢-filter on A. Hence f (φ) ∈ G because
B is a subalgebra of A and G = F ∩ B.

A strict homomorphism from a matrix ⟨A, F⟩ to a matrix ⟨B, G⟩ is a homomorphism
f : A → B such that, for every a ∈ A,

a ∈ F ⇐⇒ f (a) ∈ G.

When ordered under the inclusion relation, the set of deductive filters of ⊢ on A
forms a complete lattice, which we denote by Fi⊢(A). If ⊢ is finitary, this lattice is

12



1.2. Logic

algebraic, so its compact elements are just the finitely generated ⊢-filters. Furthermore,
we denote the closure operator of deductive filter generation on A by FgA

⊢ : P(A) →
P(A). Then the join operation +A of the lattice Fi⊢(A) can be described, for every
F, G ∈ Fi⊢(A), as

F +A G = FgA
⊢ (F ∪ G).

Proposition 1.11. [29, Prop. 2.7] The deductive filters of a logic ⊢ on Fm coincide with the
theories of ⊢. Consequently, T h(⊢) = Fi⊢(Fm) and Cn⊢(−) = FgFm

⊢ (−).

A congruence θ on an algebra A is said to be compatible with a subset F of A
provided that F is the union of θ-classes, i.e., when, for every a, b ∈ A,

if ⟨a, b⟩ ∈ θ and a ∈ F, then b ∈ F.

Proposition 1.12. [29, Prop. 2.10] Deductive filters are closed under inverse images of
homomorphisms, in the sense that if f : A → B is a homomorphism, ⊢ a logic, and G ∈
Fi⊢(B), then f−1[G] ∈ Fi⊢(A). Furthermore, if f is surjective and ker(h) is compatible with
F ∈ Fi⊢(A), then h[F] ∈ Fi⊢(B).

Here, as usual, ker(h) := {(a, a′) ∈ A × A : h(a) = h(a′)}.

From Propositions 1.11 and 1.12 we deduce:

Corollary 1.13. [29, Cor. 2.11] If Γ is a theory of a logic ⊢ and σ a substitution, then σ−1[Γ]
is also a theory of ⊢.

Protoalgebraic logics were introduced in [15] and [13, 14] and constitute the core of
abstract algebraic logic. Their theory is enshrined in the monograph [15].

Let A be an algebra and F ⊆ A, the Leibniz congruence of F on A, in symbols ΩAF,
is the largest congruence of A compatible with F. The Leibniz congruence always
exists (see, e.g., [29, Prop. 2.13]).

A logic ⊢ is said to be protoalgebraic if there exists a set ∆(x, y, z⃗) of formulas such
that, for every model ⟨A, F⟩ of ⊢ and a, b ∈ A,

⟨a, b⟩ ∈ ΩAF ⇐⇒ ∆A(a, b, c⃗) ⊆ F, for every c⃗ ∈ A.

In this case, we say that ∆ is a set of equivalence formulas for ⊢.

Protoalgebraic logics admit an even simpler syntactic description which, however,
does not guarantee that ∆(x, y) is a set of equivalence formulas.

Theorem 1.14. [29, Thm. 3.8] A logic ⊢ is protoalgebraic iff there exists a set ∆(x, y) of
formulas such that

∅ ⊢ ∆(x, x) and x, ∆(x, y) ⊢ y.

Remark 1.15. As a consequence of Theorem 1.14, every logic possessing an implication
→ such that ∅ ⊢ x → x and x, x → y ⊢ y is protoalgebraic, as witnessed by the set
δ(x, y) = {x → y}. Because of this, most familiar logics are protoalgebraic.

Numerous additional characterizations of protoalgebraicity are known. One note-
worthy example is the Correspondence Theorem, which will be used repeatedly in
what follows. The Correspondence Theorem of universal algebra [8, Thm. II.6.20]
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1. PRELIMINARIES

states that if f : A → B is a surjective homomorphism, then the congruence lattice
Con(B) is isomorphic to the sublattice of Con(A) consisting of the congruences of A
that extend ker( f ). The existence of a similar isomorphism characterizes protoalgebraic
logics, as we proceed to explain.

Given a logic , an algebra A, and a subset F ⊆ A, we denote the sublattice of Fi(A)
consisting of the deductive filters extending F by Fi(A)F. When A is Fm, we will
write T h(⊢)F instead of Fi(A)F.

A logic ⊢ is said to have the correspondence property when for every strict surjective
homomorphism f : ⟨A, F⟩ → ⟨B, G⟩ between models of ⊢, the direct image map

f [−] : Fi⊢(A)F → Fi⊢(B)G

is a well-defined lattice isomorphism.

Theorem 1.16. [29, Thm. 3.21] A logic ⊢ is protoalgebraic iff it has the correspondence
property.

The following proposition, which will be usefull in what follows, relies on the
equivalence between protoalgebraicity and the correspondence property.

Proposition 1.17. Let ⊢ be a protoalgebraic logic. For all Γ ∪ {α, β} ⊆ Fm,

Γ, α ⊢ β ⇐⇒ there is Γ′ ∈ Th(⊢) satisfying Γ′, x ⊢ y and Γ ⊢ σΓ′ for a substitution σ

such that σx = α and σy = β.

Proof. Let Γ ∪ {α, β} ⊆ Fm. The right-to-left implication follows from substitution-
invariance regardless of the protoalgebraicity of ⊢. To prove the converse implication,
let σ be a substitution such that σx = α and σy = β, and suppose that Γ, α ⊢ β.
Define Γ′ := σ−1[Cn⊢(Γ)]. It is clear that Γ ⊢ σΓ′. Moreover observe that σ is a strict
surjective homomorphism between the models ⟨Fm, Γ′⟩ and ⟨Fm, Cn⊢(Γ)⟩ of ⊢. Then,
since ⊢ is protoalgebraic, it has the correspondence property, which implies that the
direct map

σ[−] : T h(⊢)Γ′ → T h(⊢)Cn⊢(Γ)

is a well-defined order isomorphism.

Therefore σ[Cn⊢({x} ∪ Γ′)] is a ⊢-theory extending Γ because Cn⊢({x} ∪ Γ′) ∈
T h(⊢)Γ′

and σ[−] is well-defined. Furthermore, σ[Cn⊢({x} ∪ Γ′)] also contains α be-
cause σx = α. Hence Cn⊢({α} ∪ Γ) ⊆ σ[Cn⊢({x} ∪ Γ′)], and since the correspondence
property guarantees that σ−1σ = id, we get

σ−1[Cn⊢({α} ∪ Γ)] ⊆ Cn⊢({x} ∪ Γ′).

Together with the assumption that β ∈ Cn⊢({α} ∪ Γ) and σy = β we obtain that
y ∈ Cn⊢({x} ∪ Γ′). Thus Γ′, x ⊢ y. ⊠

Theorem 1.18. A logic ⊢ is protoalgebraic iff the following is true whenever F and G are
⊢-filters of an algebra A, and θ is a congruence of A: if F ⊆ G and θ is compatible with F,
then θ is compatible with G.
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1.2. Logic

Characterizing the process of filter generation in arbitrary algebras is not a simple
task. In the context of finitary logics, the operation of deductive filter generation can
be described as follows. Let ⊢ be a finitary logic, A an algebra, and X ⊆ A. For every
n ∈ N we define a set Xn as follows:

X0 := X;
Xm+1 :=Xm ∪ {a ∈ A : there are a finite set of formulas Γ ∪ {φ} and a homomorphism

h : Fm → A such that Γ ⊢ φ and h[Γ] ⊆ Xm and h(φ) = a}.

Then
FgA

⊢(X) =
⋃

n∈N

Xn.

Yet, in the protoalgebraic case, the following result is useful.

Lemma 1.19. [6, Thm. 3.1] Let ⊢ be a finitary protoalgebraic logic and let A be an algebra
with X ∪ {a} ⊆ A. Then a ∈ FgA

⊢ (X) iff there exists a finite set of formulas Γ ∪ {φ} and a
homomorphism h : Fm → A such that Γ ⊢ φ and h[Γ] ⊆ X ∪ FgA

⊢ (∅) and h(φ) = a.

To conclude this chapter, we present the class of algebraizable logics, introduced
by Blok and Pigozzi [3]. The connection between these logics and their algebraic
counterpart goes beyond a mere completeness theorem; it requires a more robust
connection as we shall see.

Given a set ∆(x, y) of formulas and a set Ψ of equations, we shall abbreviate

∆[Ψ] :=
⋃
{∆(φ, ψ) : φ ≈ ψ ∈ Ψ}.

A finitary logic ⊢ is said to be algebraizable if there exist a finite set τ(x) of equations,
a finite set ∆(x, y) of formulas, and a quasivariety K such that

(i) Γ ⊢ φ ⇐⇒ τ[Γ] ⊨K τ(φ);

(ii) Ψ ⊨K ε ≈ δ ⇐⇒ ∆[Ψ] ⊢ ∆(ε, δ);

(iii) φ ⊢ ∆[τ(φ)] and ∆[τ(φ)] ⊢ φ;

(iv) ε ≈ δ ⊨K τ[∆(ε, δ)] and τ[∆(ε, δ)] ⊨K ε ≈ δ.

for every set Γ ∪ {φ} and every set Ψ ∪ {ε ≃ δ} of equations.

In this case, K is said to be an equivalent algebraic semantics for ⊢. In addition, we
say that τ, ∆ and K witness the algebraization of the logic ⊢. The first condition in the
definition states that K is a τ-algebraic semantics for ⊢ , i.e., ⊢ can be interpreted into
K by means of the set τ(x) of equations that allows to translate sets Γ of formulas into
sets τ[Γ] of equations. Condition (ii) states that this interpretation can be reversed, in
the sense that K can also be interpreted into by means of the set ∆(x, y) of formulas that
allows to translate sets ψ of equations into sets ∆[Ψ] of formulas. Lastly, Conditions
(iii) and (iv) require that these two interpretations are inverses of each other up to
provability equivalence. Because of this, the definition of an algebraizable logic
essentially states that the consequence relations ⊢ and ⊨K are equivalent, as witnessed
by the translations τ(x) and ∆(x, y).
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In view of Proposition 1.12, given a logic ⊢ and an algebra A, the lattice Fi⊢(A)
of deductive filters of ⊢ on A can be expanded with the unary operation {σ−1 : σ ∈
End(A)}. Similarly, given a quasivariety K, the lattice ConK(A) of K-congruences of
A can also be expanded with the unary operations {σ−1 : σ ∈ End(A)}. Thus, we
define

Fi⊢(A)+ := ⟨Fi⊢(A);∧,∨, {σ−1 : σ ∈ End(A)}⟩
ConK(A)+ := ⟨ConK(A);∧,∨, {σ−1 : σ ∈ End(A)}⟩

The above structures can be viewed as algebras whose type consists of two binary
operations, ∧ and ∨, along with a set of unary operations {σ−1 : σ ∈ End(A)}.
Accordingly, an isomorphism from Fi⊢(A)+ to ConK(A)+ is an isomorphism between
the underlying lattice structures h : Fi⊢(A) → ConK(A) that additionally commutes
with inverse endomorphisms, in the sense that

h(σ−1[F]) = σ−1[h(F)], for every σ ∈ End(A).

Theorem 1.20. The following conditions are equivalent for a finitary logic ⊢ and a quasivariety
K:

(i) ⊢ is algebraizable with equivalent algebraic semantics K;

(ii) T h(⊢)+ ∼= ConK(Fm)+;

(iii) Fi⊢(A)+ ∼= ConK(A)+, for every algebra A of the suitable type.

In view of the implication (i) ⇒ (ii) in the Isomorphism Theorem, every alge-
braizable logic induces an isomorphism between lattices of deductive filters and of
K-congruences.
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CHAPTER 2
Inconsistency lemmas

In this chapter we formulate an abstract account of the global and local inconsistency
lemma, and investigate their algebraic counterparts, previously presented in [30, Thm.
3.7] and [26, Thm. 6.35], respectively. Moreover, at the end of the chapter we introduce a
novel notion, that of (first order) definable maximal consistent filters. The main contribution
of this chapter – Theorem 2.15 – establishes that for a finitary protoalgebraic logic ⊢
with a local inconsistency lemma and definable maximal consistent filters, any family
Ψn witnessing the LIL must include a finite subset of sets of formulas for each n ∈ Z+

such that the resulting family also witnesses the LIL for ⊢. This represents a significant
improvement towards understanding what is necessary for a LIL to reduce to an IL.

Given a logic ⊢, a set Ξ of formulas is said to be inconsistent in ⊢ if Ξ ⊢ α for all
α ∈ Fm.

Remark 2.1. Notice that if a logic ⊢ possesses a finite and inconsistent set of formulas
Ξ, then Ξ ⊣⊢ h[Ξ] for every substitution h. Indeed, consider an arbitrary substitution
h and let x1, . . . , xn be the variables occuring in the formulas of Ξ. Let also y1, . . . , yn
be variables different from x1, . . . , xn. Since Ξ is inconsistent in ⊢, we have that
Ξ ⊢ ξ(y1, . . . , yn) for each ξ(y1, . . . , yn) ∈ Ξ. Now, as Ξ is finite we can define another
substitution h′ such that it agrees with h on the variables x1, . . . , xn and h′(yi) =
xi for i ∈ {1, . . . , n}, while it sends any other variable to x1. Therefore, h′[Ξ] ⊢
h′(ξ(y1, . . . , yn)) which implies that h[Ξ] ⊢ ξ(x1, . . . , xn). Hence, h[Ξ] ⊢ Ξ. Moreover,
notice that it follows from the inconsistency of Ξ that Ξ ⊢ h[Ξ].

Using this fact we can prove the equivalence of the following conditions, which
will be useful in the proof of the forthcoming results.

Proposition 2.2. The following statements are equivalent for a logic ⊢:

(i) ⊢ possesses some finite inconsistent set of formulas.

(ii) There is some finite set of formulas Ξ(x) such that A = FgA
⊢ (Ξ

A(a)) for every algebra
A and every a ∈ A.

(iii) ⊢ has a greatest compact theory.
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Proof. (i)⇒(ii): First suppose that Ξ is a finite set of formulas inconsistent in ⊢. Without
loss of generality we may assume that Ξ consists of formulas in just one variable x.
Otherwise, we can take the substitution h that maps every variable to x. Then, Remark
2.1 guarantees that h[Ξ] ⊢ Ξ, making h[Ξ] a set of formulas in variable x only, finite,
and inconsistent in ⊢. Therefore, if we consider an arbitrary algebra A and a ∈ A, the
inconsistency of Ξ(x) implies that b ∈ FgA

⊢ (Ξ(a)) for every b ∈ A, so it must be the
case that A = FgA

⊢ (Ξ
A(a)).

(ii)⇒(iii): Assume that there is some finite set of formulas Ξ(x) such that A =
FgA

⊢ (Ξ
A(a)) for every algebra A and every a ∈ A. Then, in particular for A = Fm, the

statement amounts to Fm = Cn⊢(Ξ(x)). Thus, Fm is a compact theory, and, therefore,
⊢ has a greatest compact theory.

(iii)⇒(i): Assume that ⊢ has a greatest compact theory, say Γ. This means that
there is some finite set Ξ of formulas such that Γ = Cn⊢(Ξ) and Cn⊢(∆) ⊆ Γ for every
finite ∆ ⊆ Fm. Since Fm =

⋃{Cn⊢(∆) : ∆ ⊆ Fm and ∆ is finite}, it must be the case
that Fm = Cn⊢(Ξ). Therefore, Ξ is finite and inconsistent in ⊢. ⊠

In the case of classical and intuitionistic propositional logic, the theory Fm is
compact. Among the finite sets that generate the theory Fm we find Ξ = {x,¬x} and
also Ξ = {⊥}.

A logic ⊢ is said to have an inconsistency lemma – briefly an IL – if, for every
positive integer n, there exists a finite set of formulas Ψn(x1, . . . , xn) such that for every
Γ ∪ {α1, . . . , αn} ⊆ Fm,

Γ ∪ {α1, . . . , αn} is inconsistent in ⊢⇐⇒ Γ ⊢ Ψn(α1, . . . , αn).

Following the terminology introduced in [30], the family {Ψn : n ∈ Z+} is called
an elementary IL-sequence. Observe that the convention n ∈ Z+ is significant. Without
it, the constant-free formulation of classical logic would lack an inconsistency lemma.
Indeed, if we take 0 ∈ N, the set Ψ0 cannot exist since we do not have any constant in
the language.

Moreover, the definition of an inconsistency lemma could be streamlined in the
case of logics with a binary connective ∧ such that x, y ⊣⊢ x ∧ y. However, not all
logics with an IL have such connective. For example, the family

{{x1 → (x2 → (. . . → (xn → ⊥) . . .))} : n ∈ Z+}

witnesses an IL for the →,⊥ fragment of intuitionistic logic.

A logic ⊢ is said to have a local inconsistency lemma – briefly a LIL – if for every
positive integer n, there exists a family Ψn, possibly infinite, of finite sets of formulas
I(x1, . . . , xn) such that for every Γ ∪ {α1, . . . , αn} ⊆ Fm,

Γ ∪ {α1, . . . , αn} is inconsistent in ⊢⇐⇒ Γ ⊢ I(α1, . . . , αn) for some I ∈ Ψn.

If the family Ψn witnessing the LIL consists of just one finite set of formulas
I(x1, . . . , xn) for each n ∈ Z+, then the LIL reduces to the IL.
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Remark 2.3. Let ⊢ be a finitary logic with the LIL witnessed by the family {Ψn : n ∈
Z+}. Then ⊢ possesses some finite inconsistent set of formulas, or equivalently, there
is some finite set of formulas Ξ(x) such that A = FgA

⊢ (Ξ
A(a)) for every algebra A and

every a ∈ A. Indeed, if {Ψn : n ∈ Z+} witnesses the LIL for ⊢, then it follows from
the definition of the LIL that I(x1, . . . , xn) ∪ {x1, . . . , xn} is finite and inconsistent in
⊢ for every I ∈ Ψn because I(x1, . . . , xn) ⊢ I(x1, . . . , xn). The same reasoning is valid
for every I(x) ∈ Ψ1, so we may assume that there is some finite set of formulas Ξ(x)
inconsistent in ⊢. This is because, if we consider an arbitrary algebra A and a ∈ A, the
inconsistency of Ξ(x) implies that b ∈ FgA

⊢ (Ξ
A(a)) for every b ∈ A. Therefore, it must

be the case that A = FgA
⊢ (Ξ

A(a)). Conversely, if we assume that there is some finite
set of formulas Ξ(x) such that A = FgA

⊢ (Ξ
A(a)) for every algebra A and every a ∈ A,

in particular for A = Fm, the statement amounts to Fm = Cn⊢(Ξ(x)) for some finite
set of formulas Ξ(x). Thus, Ξ(x) is finite and inconsistent in ⊢.

2.1 The transfer of inconsistency lemmas
Observe that if the family {Ψn : n ∈ Z+} witnesses the LIL for a logic ⊢, then it is the
case that for every Γ ∪ {α1, . . . , αn} ⊆ Fm,

Fm = Cn⊢(Γ ∪ {α1, . . . , αn}) ⇐⇒ I(α1, . . . , αn) ⊆ Cn⊢(Γ) for some I ∈ Ψn,

or equivalently, since the deductive filters of the algebra of formulas are the ⊢-theories,
that for any ⊢-filter F of the algebra of formulas Fm and any α1, . . . , αn ∈ Fm,

Fm = F + Fg⊢({α1, . . . , αn}) ⇐⇒ I(α1, . . . , αn) ⊆ F for some I ∈ Ψn.

The next result extends this equivalence from Fm to arbitrary algebras. It is the
first example we present of the so-called transfer theorems: theorems which transfer a
given property of a logic ⊢ (understood as the closure operator/system over the set
of formulas) to the analogous property of the closure operator/system of all ⊢-filters
over any algebra.

While this result can be found already in [30, Thm. 3.6], it was originally presented
for the particular case of a global inconsistency lemma. Here, we adapt it for the local
version of the inconsistency lemma. Its proof relies on the protoalgebraicity of ⊢. A
different proof is provided in [26, Thm. 6.32] for the transfer of the LIL in the more
general framework of compact protonegational logics.

Theorem 2.4. Let ⊢ be a finitary protoalgebraic logic with the LIL witnessed by the family
{Ψn : n ∈ Z+}. Then for every model ⟨A, F⟩ of ⊢ and elements a1, . . . , an ∈ A,

A = FgA
⊢ (F ∪ {a1, . . . , an}) ⇐⇒ IA(a1, . . . , an) ⊆ F for some I ∈ Ψn.

Proof. Let ⟨A, F⟩ be a model of ⊢ and a1, . . . , an ∈ A. First observe that it follows
from the LIL that I(x1, . . . , xn) ∪ {x1, . . . , xn} is finite and inconsistent in ⊢ for every
I ∈ Ψn because I(x1, . . . , xn) ⊢ I(x1, . . . , xn). Since infinitely many variables are at our
disposal, this implies that I(x1, . . . , xn) ∪ {x1, . . . , xn} ⊢ y for some variable y different
from x1, . . . , xn. Therefore, if we assume that IA(a1, . . . , an) ⊆ F for some I ∈ Ψn, then
A = FgA

⊢ (F ∪ {a1, . . . , an}).

It remains to prove the forward implication in the statement. To this end, let
a ∈ A and observe that the assumption that A = FgA

⊢ (F ∪ {a1, . . . , an}) amounts to
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2. INCONSISTENCY LEMMAS

ΞA(a) ⊆ FgA
⊢ (F ∪ {a1, . . . , an}) for some finite inconsistent set of formulas Ξ(x) and

a ∈ A. The existence of such a set is guaranteed by the LIL, as seen in Remark 2.3. It
then follows from the assumption that ⊢ is finitary and protoalgebraic together with
Lemma 1.19 that for each ξ ∈ Ξ there exists a finite set of formulas Γξ ∪ {φξ} and a
homomorphism hξ : Fm → A such that

Γξ ⊢ φξ and hξ [Γξ ] ⊆ F ∪ {a1, . . . , an} and hξ(φξ) = ξA(a).

Then, by substitution-invariance, we may assume that for distinct ξ, ξ ′ ∈ Ξ the sets of
variables occurring in Γξ ∪ {φξ} and Γξ ′ ∪ {φξ ′} are pairwise disjoint and that all these
variables are among y1, y2, y3, . . . Consequently, we can consider a homomorphism
h : Fm → A such that for every ξ ∈ Ξ it acts as hξ on the variables that occur in
Γξ ∪ {φξ}, and h(xi) = ai for i ∈ {1, . . . , n} and h(xn+1) = a. Therefore we get⋃

ξ∈Ξ

Γξ ⊢ {φξ : ξ ∈ Ξ} and h[
⋃

ξ∈Ξ

Γξ ] ⊆ F ∪ {a1, . . . , an}.

Moreover, the protoalgebraicity of ⊢ amounts to the existence of a set ∆(x, y) of
formulas such that ∅ ⊢ ∆(x, x) and x, ∆(x, y) ⊢ y. Hence, from x, ∆(x, y) ⊢ y we get
that

∆(φξ , ξ(xn+1)), φξ ⊢ ξ(xn+1) for each ξ ∈ Ξ,

and it follows from ∅ ⊢ ∆(x, x) that for every δ ∈ ∆ and ξ ∈ Ξ,

h(δ(φξ , ξ(xn+1)) = δA(h(φξ), h(ξ(xn+1))) = δA(ξ A(a), ξA(a)) ∈ F.

So, if
Γ :=

⋃
ξ∈Ξ

Γξ ∪
⋃

∆(φξ , ξ(xn+1)) ∪ {x1, . . . , xn},

then Γ ⊢ Ξ(xn+1) and h[Γ] ⊆ F ∪ {a1, . . . , an}.

Observe that we can write Γ = Γ′ ∪Π1 ∪ . . .∪Πn, say, where h[Γ′] ⊆ F and xi ∈ Πi
and h[Πi] = {ai} for i ∈ {1, . . . , n}. We may assume without loss of generality that
Πi = {xi}. Indeed, h[Γ′] ⊆ F remains true if for every i ∈ {1, . . . , n} we add to Γ′ the
formulas δ(xi, α) for every δ ∈ ∆ and xi ̸= α ∈ Πi, since h(δ(xi, α)) = δ(h(α), h(α)) ∈ F
because ∅ ⊢ ∆(x, x). Furthermore, for each i ∈ {1, . . . , n} and each α ∈ Πi, we also
have that ∆(xi, α), xi ⊢ α (because x, ∆(x, y) ⊢ y) and h(xi) = h(α). Thus, by extending
Γ′ in this way, we obtain a set Γ∗ such that h[Γ∗] ⊆ F and Γ∗ ∪ {x1, . . . , xn} ⊢ Ξ(xn+1).

In other words, we may assume that Γ = {γ1, . . . , γm, x1, . . . , xn} where h sends
γ1, . . . , γm into F and x1, . . . , xn into {a1, . . . , an}. Then, since Γ is inconsistent in ⊢
because Γ ⊢ Ξ(xn+1), the LIL implies that γ1, . . . , γm ⊢ I(x1, . . . , xn) for some I ∈ Ψn.
Together with the fact that h[{γ1, . . . , γm}] ⊆ F, this yields that

IA(a1, . . . , an) = h[I(x1, . . . , xn)] ⊆ F.

⊠

As a corollary we obtain the analogous result for the inconsistency lemma.
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2.2. The algebraic counterpart of the global inconsistency lemma

Theorem 2.5. [30, Thm. 3.6] Let ⊢ be a finitary protoalgebraic logic with the IL witnessed by
the family {Ψn : n ∈ Z+}. Then for every model ⟨A, F⟩ of ⊢ and elements a1, . . . , an ∈ A,

A = FgA
⊢ (F ∪ {a1, . . . , an}) ⇐⇒ ΨA

n (a1, . . . , an) ⊆ F.

The transfer of inconsistency lemmas, Theorems 2.4 and 2.5 allow us to prove
semantic characterizations for both local and global inconsistency lemmas.

2.2 The algebraic counterpart of the global inconsistency
lemma

We shall first focus on the algebraic counterpart of the global inconsistency lemma. We
will prove that a finitary protoalgebraic logic has an inconsistency lemma if and only
if its join semilattice of compact theories is dually pseudo-complemented.

A join semilattice A is said to be dually pseudo-complemented if it has a greatest
element 1 and for each a ∈ A, there exists an element a∗ ∈ A such that for every b ∈ A,

a ∨ b = 1 ⇐⇒ a∗ ⩽ b.

It follows from the definition that a join semilattice A is dually pseudo-complemented
if it has a maximum element 1 and for each a ∈ A there exists the smallest b ∈ A
such that a ∨ b = 1, in which case b is taken to be a∗. Consequently, every dually
pseudo-complemented semilattice has a minimum element, namely 0 := 1∗.

Clearly, the compact ⊢-filters of an algebra A form a join semilattice with minimum
element 0 under the operation +A, and the inclusion as the join order. Therefore, the
connection between an IL and dual pseudo-complements, suggested by Theorem 2.5,
is as follows.

Theorem 2.6. [30, Thm. 3.7] Let ⊢ be a finitary protoalgebraic logic. Then the following
conditions are equivalent.

(i) ⊢ has an inconsistency lemma.

(ii) For every algebra A, the compact ⊢-filters of A form a dually pseudo-complemented
semilattice with respect to +A.

(iii) The join semilattice of compact ⊢-theories is dually pseudo-complemented.

Proof. (i)⇒(ii): Observe that A is compact by Remark 2.3. Therefore, A is the maximum
element of the semilattice of compact deductive filters of A. Furthermore, recall from
Proposition 1.7 that the deductive filters of the form FgA

⊢ ({a1, . . . , an}) for arbitrary
elements a1, . . . , an of an algebra A are exactly the compact elements of the lattice
of ⊢-filters on A. Therefore, we will prove that for any n ∈ Z+ and any elements
a1, . . . , an of an algebra A, we have

(FgA
⊢ ({a1, . . . , an}))∗ = FgA

⊢ (Ψ
A
n (a1, . . . , an)).

To this end, let A be an algebra and a1, . . . , an ∈ A. By assumption there exists a family
{Ψn : n ∈ Z+} witnessing the IL for ⊢. From Theorem 2.5 it follows that for any
⊢-filter F of A

A = FgA
⊢ (F ∪ {a1, . . . , an}) ⇐⇒ FgA

⊢ ΨA
n (a1, . . . , an) ⊆ F.
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2. INCONSISTENCY LEMMAS

In particular, this equivalence implies that

A = FgA
⊢ ({a1, . . . , an}) +A FgA

⊢ ΨA
n (a1, . . . , an).

Additionally, observe that under the given assumption of Ψn being finite, we have that
FgA

⊢ ΨA
n (a1, . . . , an) is compact. Consequently, FgA

⊢ ΨA
n (a1, . . . , an) is equal to the dual

pseudocomplement of FgA
⊢ ({a1, . . . , an}).

(ii)⇒(iii): It is clear that if for every algebra A, the compact ⊢-filters of A form a
dually pseudo-complemented semilattice with respect to +A, then for the particular
case of A being the algebra of formulas Fm, the join semilattice of compact ⊢-theories
is dually pseudo-complemented.

(iii)⇒(i): Let n ∈ Z+ and consider a finite set Ψ′
n ⊆ Fm such that

Cn⊢Ψ′
n = (Cn⊢(x1, . . . , xn))

∗

in the semilattice of compact ⊢-theories. This choice is enabled by the assumption that
the join semilattice of compact ⊢-theories is dually pseudo-complemented. We can
also deduce from this assumption that Fm is a compact ⊢-theory, or alternatively, that
there is some finite Ξ(x) inconsistent in ⊢ in view of Proposition 2.2.

Consequently, for any ⊢-theory Γ, regardless whether it is compact or not, the
following equivalence holds:

Fm = Γ + Cn⊢(x1, . . . , xn) ⇐⇒ Cn⊢Ψ′
n ⊆ Γ, (2.1)

This is due to the compactness of Fm and the fact that Γ is a join of compact elements
of the lattice of all ⊢-theories, because this lattice is algebraic.

We define Ψn := g[Ψ′
n], where g is a substitution that fixes x1, . . . , xn and sends all

other variables to x1. Then Ψn is a finite subset of Fm where only variables x1, . . . , xn
occur. Moreover, given Γ ∪ {α1, . . . , αn} ⊆ Fm, let h be a surjective substitution that
sends xi to αi for i ∈ {1, . . . , n} and that sends to α1 all other variables occurring in
Ψ′

n. This substitution exists because Ψ′
n is finite. Then h[Ψ′

n] = Ψn(α1, . . . , αn) and
Γ = h[h−1[Γ]] because h is surjective.

We need to show that Γ ∪ {α1, . . . , αn} is inconsistent in ⊢ if and only if Γ ⊢
Ψn(α1, . . . , αn). Proposition 1.12 implies that h−1[Cn⊢Γ] and h−1[Cn⊢(Γ∪{α1, . . . , αn})]
are ⊢-theories. Moreover, ker(h) is compatible with h−1[Cn⊢Γ]. This is because if
⟨α, β⟩ ∈ ker(h), i.e. h(α) = h(β), and α ∈ h−1[Cn⊢Γ], then h(α) = h(β) ∈ Cn⊢Γ, so
β ∈ h−1[Cn⊢Γ]. Now, the protoalgebraicity of ⊢ together with Theorem 1.18 imply
that ker(h) is also compatible with the larger theory

Y := h−1[Cn⊢Γ] + Cn⊢(x1, . . . , xn) = Cn⊢(h−1[Cn⊢Γ] ∪ {x1, . . . , xn}).

Therefore, h[Y] is a theory, by Proposition 1.12. It follows that h[Y] extends Cn⊢(Γ ∪
{α1, . . . , αn}), because it contains

h[h−1[Γ] ∪ {x1, . . . , xn}] = Γ ∪ {α1, . . . , αn}.

On the other hand, it is clear that Y ⊆ h−1[Cn⊢(Γ ∪ {α1, . . . , αn})] because h(xi) = αi
for each i ⩽ n. Hence

h[Y] = Cn⊢(Γ ∪ {α1, . . . , αn}).
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2.2. The algebraic counterpart of the global inconsistency lemma

Finally, we can finish the proof of the theorem with the following equivalences.

Γ ∪ {α1, . . . , αn} is inconsistent in ⊢ ⇐⇒ Γ, α1, . . . , αn ⊢ Ξ

⇐⇒ Γ, α1, . . . , αn ⊢ h[Ξ]

⇐⇒ h[Ξ] ⊆ h[Y]
⇐⇒ Ξ ⊆ Y

⇐⇒ Fm = h−1[Cn⊢Γ] + Cn⊢(x1, . . . , xn)

⇐⇒ Ψ′
n ⊆ h−1[Cn⊢Γ]

⇐⇒ h[Ψ′
n] ⊆ Cn⊢Γ

⇐⇒ Γ ⊢ h[Ψ′
n]

⇐⇒ Γ ⊢ Ψn(α1, . . . , αn).

The first and second equivalences follow from the fact that Ξ is inconsistent in
⊢ together with Remark 2.1, that is, Ξ ⊣⊢ h[Ξ]. The third is a consequence of
h[Y] = Cn⊢(Γ ∪ {α1, . . . , αn}). The forth holds because, as mentioned above, ker(h) is
compatible with Y. The fifth one by the inconsistency of Ξ and the definition of Y. The
sixth by Condition (2.1). The last three are staightforward. ⊠

Given that for a finite algebra A, its compact ⊢-filters and its ⊢ filters coincide, the
previous theorem together with the fact that the ⊢-filters of A form a lattice, yields the
following result.

Corollary 2.7. [30, Cor. 3.8] If a finitary protoalgebraic logic ⊢ has an inconsistency lemma,
then every finite algebra has a dually pseudo-complemented lattice of ⊢-filters.

It is worth recalling at this point the parallelism with the theory of the deduction-
detachment theorem. A logic ⊢ is said to have a deduction-detachment theorem – briefly
a DDT – if there exists a set of formulas I(x, y) such that for every Γ ∪ {α, β} ⊆ Fm,

Γ ∪ {α} ⊢ β ⇐⇒ Γ ⊢ I(α, β).

A finitary protoalgebraic logic has a deduction-detachment theorem –briefly a
DDT– if and only if the join semilattice of compact deductive filters of every algebra of
the corresponding type is dually Brouwerian (see, e.g., [13, 25]). Moreover, a dually
Brouwerian join semilattice is dually pseudo-complemented if it has a greatest element.
Crossing back over the bridge, the next result follows from Theorem 2.6.

Corollary 2.8. [30, Thm. 3.9] If a logic with a greatest compact theory has a deduction-
detachment theorem, then it has an inconsistency lemma.

Given a quasivariety K and an algebra A of the same type, the K-congruences of A
are the congruences θ such that A/θ ∈ K. They form an algebraic closure system over
K× K, and therefore, an algebraic lattice, ordered by inclusion. For every quasivariety
K, the K–congruence lattices of A and A/CgA

K∅ are isomorphic, where CgA
KY denotes

the least K–congruence of A containing a subset Y of A × A. Since A/CgA
K∅ ∈ K, the

following conclusion can be drawn from Theorem 2.6.

Theorem 2.9. [30, Thm. 3.7] Let K be a quasivariety that algebraizes a finitary logic ⊢. Then
the following conditions are equivalent.
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2. INCONSISTENCY LEMMAS

(i) ⊢ has an inconsistency lemma.

(ii) For every algebra A, the join semilattice of compact K–congruences of A is dually
pseudo-complemented.

(iii) For every A ∈ K, the join semilattice of compact K–congruences of A is dually pseudo-
complemented.

Observe that if moreover K is a variety, then ⊢ has an inconsistency lemma iff
every algebra in K has a dually pseudo-complemented join semilattice of compact
congruences.

2.3 The algebraic counterpart of the local inconsistency
lemma

We shall now focus on the algebraic counterpart of the local inconsistency lemma.

Given a logic ⊢, a ⊢-theory is said to be maximal consistent if it is maximal non-
trivial in T h(⊢). Similarly, given an algebra A, a deductive filter of ⊢ on A is maximal
consistent if it is maximal non-trivial in Fi(⊢), i.e., if F is maximal and F ̸= A. We
denote the collection of maximal consistent filters as MaxFi⊢(A). Following the
terminology introduced in [26], these filters are called simple. The motivation to call
these theories and filters simple comes from universal algebra, where an algebra is
called simple provided Con(A) has two elements; however, in this thesis, we opt for
the self-explanatory term ”maximal consistent”.

A logic ⊢ has the maximal consistent filter extension property (MCFEP, for short) if
for every model ⟨A, F⟩ of ⊢ and every submatrix ⟨B, G⟩ of ⟨A, F⟩ and every H ∈
MaxFi⊢(B) with G ⊆ H there is H′ ∈ Fi⊢(A) with F ⊆ H′ such that H = H′ ∩ B.
Note that in the definition we do not require H′ to be maximal.

Lemma 2.10. [7, Lem. 36] If a logic ⊢ has a finite inconsistent set of formulas, then the class
of its non-trivial models is closed under submatrices.

Proof. Let Ξ(x) be a finite set of formulas inconsistent in ⊢. Observe that since Ξ(x)
is finite, we may assume that Ξ is in variable x only. Let ⟨B, G⟩ be a submatrix of a
non-trivial model ⟨A, F⟩ of ⊢. As the class of arbitrary models of ⊢ is closed under
submatrices, then ⟨B, G⟩ is also a model of ⊢. Suppose towards a contradiction that
the matrix ⟨B, G⟩ is trivial, that is, G = B. Since ⟨A, F⟩ is non-trivial by assumption,
there is some element a ∈ A \ F. Consider a homomorphism h : Fm → A such that
h(x) = b for some b ∈ B and h(y) = a. Then we have that

h[Ξ(x)] = ΞA(h(x)) = ΞA(b) = ΞB(b) ⊆ B = G ⊆ F.

The first equality above follows from the fact that h is a homomorphism, the second
from the definition of h, and the third equality and last inclusion follow from the
assumption that ⟨B, G⟩ is a submatrix of ⟨A, F⟩, which by definition implies that B is
a subalgebra of A and that B = B ∩ F. The inclusion ΞB(b) ⊆ B is straightforward,
while the equality B = G holds by the assumption that ⟨B, G⟩ is trivial.

Therefore, it follows from h[Ξ(x)] ⊆ F together with the fact that Ξ(x) ⊢ y that
a = h(y) ∈ F, which is a contradiction. ⊠
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Lemma 2.11. If a finitary logic ⊢ has a finite inconsistent set of formulas, then every non-trivial
⊢-filter is contained in some maximal non-trivial ⊢-filter.

Proof. Let A be an algebra and F a non trivial ⊢-filter on A. Clearly, every maximal
element in the poset X with universe

{F+ ∈ Fi⊢(A) : F ⊆ F+ and F+ ̸= A}

ordered by the inclusion relation is a maximal non-trivial ⊢-filter on A extending F.

We will use Zorn’s Lemma to establish the existence of such a maximal element.
By assumption, F is non-trivial, which implies that F ∈ X, hence X is non-empty, so it
suffices to prove that every chain in X has an upperbound in X. Accordingly, consider
a chain {Fi : i ∈ I} in X. First observe that Fi⊢(A) is an inductive closure system.
This is a consequence of Theorem 1.5 together with the assumption that ⊢ is a finitary
consequence relation. Therefore, ∪i∈I Fi is a ⊢-filter, and it contains F. Moreover, it is
non-trivial. If it was not the case, since ⊢ contains a finite inconsistent set of formulas
Ξ, we could consider a homomorphism h : Fm → A such that there would exist n ∈ N

such that h[Ξ] = ΞA ⊆ ∪i⩽nFi. But then, since {Fi : i ∈ I} is a chain, there would exist
Fn such that Fi ⊆ Fn for i ⩽ n, and, therefore, ΞA ⊆ Fn. Consequently, Fn would be
a trivial filter, i.e., Fn = Fm, contradicting the fact that for every i ∈ I, the filter Fi is
non-trivial.

Therefore, the existence of a finite set of formulas inconsistent in ⊢ ensures that X

is closed under unions of chains and we can apply Zorn’s Lemma to deduce that such
a maximal element always exists. ⊠

The following result is already established in [26] for the class of protonegational
logics. This class of logics is presented as a weakening of protoalgebraicity, restricting
some of its defining conditions to maximal consistent theories. Particular examples are
the negation fragments of protoalgebraic logics. As we shall not need to employ this
notion, we omit its definition, which can be found in [26, pp. 108]. In the framework of
finitary protoalgebraic logics, the result translates as the following theorem:

Theorem 2.12. [26, Thm. 6.35] Let ⊢ be a finitary protoalgebraic logic. The following are
equivalent:

(i) ⊢ enjoys the LIL;

(ii) ⊢ enjoys the MCFEP and for every algebra A the deductive filter A is compact;

(iii) The MCFEP holds in the algebra of formulas and ⊢ possesses a finite inconsistent set of
formulas.

Proof. (i)⇒(ii): Suppose that ⊢ has the LIL witnessed by {Ψn : n ∈ Z+}. It follows
from remark 2.3 that for every algebra A, the deductive filter A is compact. More
precisely, A = FgA

⊢ (Ξ
A(a)) for some finite inconsistent set of formulas Ξ(x) and for all

a ∈ A.

Therefore, we turn to prove that ⊢ enjoys the MCFEP. Accordingly, let ⟨A, F⟩ be a
model of ⊢, ⟨B, G⟩ a submatrix of ⟨A, F⟩ and H ∈ MaxFi⊢(B) with G ⊆ H. Define

H′ = FgA
⊢ (F ∪ H).
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It follows from the definition of H′ that F ⊆ H′ and that H ⊆ H′ ∩ B. Hence, we
shall prove the reverse inclusion H′ ∩ B ⊆ H. We claim that to prove H′ ∩ B ⊆ H, it
suffices to show that A ̸= H′.

To this end, consider b ∈ H′ ∩ B. We need to prove that if A ̸= H′, then it must be
the case that b ∈ H. First, the maximality of H implies that b ∈ H iff FgB

⊢(H ∪{b}) ̸= B.
Hence, by the transfer of LIL (Theorem 2.4) we get that the latter is equivalent to
IB(b) ⊈ H for every I ∈ Ψ1. Therefore, we obtain

b ∈ H ⇐⇒ IB(b) ⊈ H for every I ∈ Ψ1.

Now, observe that, by assumption, ⟨B, G⟩ is a submatrix of ⟨A, F⟩. This implies by the
definition of submatrix that B is a subalgebra of A, so IA(b) = IB(b). Consequently,
the right-hand side of the equivalence can be rewritten as IA(b) ⊈ H for every I ∈ Ψ1.
But it is clear that, if IA(b) ⊈ FgA

⊢ (F ∪ H), then IA(b) ⊈ H. Therefore, we have

b ∈ H ⇐= IA(b) ⊈ FgA
⊢ (F ∪ H) = H′ for every I ∈ Ψ1.

Again, by Theorem 2.4, the right-hand side amounts to A ̸= FgA
⊢ (H′ ∪ {b}). But this is

is equivalent to A ̸= H′ by the assumption that b ∈ H′. Hence, we get

b ∈ H ⇐= A ̸= H′.

Therefore it suffices to show that A ̸= H′. By way of contradiction suppose that
it is not the case, i.e., A = FgA

⊢ (F ∪ H). Then, since A = FgA
⊢ (Ξ

A(a)) for some finite
inconsistent set of formulas Ξ(x) and a ∈ A, and FgA

⊢ (−) is finitary, there are elements
f1, . . . , fn ∈ F and h1, . . . , hm ∈ H such that

FgA
⊢ (Ξ

A(a)) = FgA
⊢ ( f1, . . . , fn, h1, . . . , hm),

but then it must be the case that

A = FgA
⊢ ( f1, . . . , fn, h1, . . . , hm).

It then follows from Theorem 2.4 that there is I ∈ Ψm such that

IA(h1, . . . , hm) ⊆ FgA
⊢ ( f1, . . . , fn) ⊆ F.

Since h1, . . . , hn ∈ H ⊆ B and G = F ∩ B, we obtain

IB(h1, . . . , hm) = IA(h1, . . . , hm) ⊆ F ∩ B = G.

One more time, the transfer of LIL and G ∪ {h1, . . . , hn} ⊆ H imply that that

B = FgB
⊢(G ∪ {h1, . . . , hm}) ⊆ H.

In other words, we conclude that H is trivial, i.e., H = B, which contradicts the
assumption that H ∈ MaxFi⊢(B). Hence H = H′ ∩ B, as desired.

(ii)⇒(iii): If ⊢ enjoys the MCFEP and for every algebra A the deductive filter A
is finitely generated, then for the particular case of A being the algebra of formulas
Fm, the MCFEP holds for A = Fm, and Fm = Cn⊢(Ξ) for some finite set Ξ, i.e., Ξ is a
finite inconsistent set in ⊢.
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(iii)⇒(i): Define an inconsistency sequence as

Ψn = {Σ∩ Fm({x1, . . . , xn}) : {x1, . . . , xn}∪Σ is inconsistent in ⊢ and Σ ∈ T h(⊢)}.

First we prove that for any I ∈ Ψn we have that {x1, . . . , xn} ∪ I is inconsistent in
⊢. In other words, for every Σ ∈ T h(⊢), if {x1, . . . , xn} ∪ Σ is inconsistent in ⊢, then
{x1, . . . , xn} ∪ (Σ ∩ Fm({x1, . . . , xn})) is still inconsistent in ⊢.

Suppose, with a view to contradiction, that this is not the case. Then for some
Σ ∈ Th(⊢) such that {x1, . . . , xn} ∪ Σ is inconsistent in ⊢, we have that

Cn⊢[{x1, . . . , xn} ∪ (Σ ∩ Fm({x1, . . . , xn}))] ̸= Fm.

We define then two matrices

⟨A, F⟩ := ⟨Fm, Σ⟩,
⟨B, G⟩ := ⟨Fm({x1, . . . , xn}), Σ ∩ Fm({x1, . . . , xn})⟩,

both being models of ⊢. This is because Σ is a ⊢-theory, i.e., F is a filter of ⊢ on A = Fm
by Proposition 1.11. Moreover, ⟨B, G⟩ is a submatrix of ⟨A, F⟩ since B is a subalgebra
of A and G = F ∩ A. Therefore, ⟨B, G⟩ is also a model of ⊢ by Remark 1.10.

Let

J = Fm({x1, . . . , xn}) ∩ Cn⊢[{x1, . . . , xn} ∪ (Σ ∩ Fm({x1, . . . , xn}))].

Observe that J is a non-trivial ⊢-filter on B. This is a consequence of Remark 1.11,
and Lemma 2.10 together with the assumption that ⊢ possesses a finite inconsistent
set of formulas, since ⟨B, J⟩ is a submatrix of

⟨Fm, Cn⊢[{x1, . . . , xn} ∪ (Σ ∩ Fm({x1, . . . , xn}))⟩,

which is non-trivial model of ⊢.

In virtue of Lemma 2.11 there exists a maximal non-trivial filter H such that
J ⊆ H ⊆ Fm({x1, . . . , xn}). We also have that G ⊆ H because G ⊆ J. It then follows
from the MCFEP that there exists a ⊢-filter H′ on A such that F ⊆ H′ and H = H′ ∩ B.

Since F ⊆ H′, we get that Σ ⊆ H′. Moreover, we have {x1, . . . , xn} ⊆ H′ because
{x1, . . . , xn} ⊆ J ⊆ H and H = H′ ∩ B. We also have that H′ is non-trivial, i.e.,
H′ ̸= Fm because H ̸= Fm({x1, . . . , xn}) and H = H′ ∩ B = H′ ∩ Fm({x1, . . . , xn}).
As a result, Cn⊢[{x1, . . . , xn} ∪ Σ] ⊆ H′ ̸= Fm, which implies that {x1, . . . , xn} ∪ Σ is
consistent — contradiction. Thus, for every I ∈ Ψn we have that {x1, . . . , xn} ∪ I is
inconsistent in ⊢.

In particular, we get one direction of the LIL, that is, for every Γ ∪ {α1, . . . , αn} ⊆
Fm,

Γ ⊢ I(α1, . . . , αn) for some I ∈ Ψn implies that Γ ∪ {α1, . . . , αn} is inconsistent in ⊢ .

For the converse direction of the LIL, suppose that Γ ∪ {α1, . . . , αn} ⊆ Fm is
inconsistent in ⊢ and take a surjective substitution σ such that σ(xi) = αi for every
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2. INCONSISTENCY LEMMAS

i ∈ {1, . . . , n}. Since ⊢ is protoalgebraic, Proposition 1.17, together with the assumption
that Γ∪{α1, . . . , αn} ⊆ Fm is inconsistent in ⊢, implies that σ−1[Cn⊢(Γ)]∪{x1, . . . , xn}
is inconsistent in ⊢.

Let I = σ−1[Cn⊢(Γ)] ∩ Fm({x1, . . . , xn}). Clearly I ∈ Ψn by the definition of
Ψn. Moreover, from the assumption that σ is surjective, we get that σ(σ−1(Γ)) = Γ.
Together with the fact that σ−1(Γ) ⊢ I, by substitution invariance, we conclude that
Γ ⊢ σ(I(x1, . . . , xn)) = I(α1, . . . , αn). In conclusion,

Γ ∪ {α1, . . . , αn} is inconsistent in ⊢ implies that Γ ⊢ I(α1, . . . , αn) for some I ∈ Ψn.

⊠

Let K be a quasivariety. We say that K has the maximal relative congruence extension
property (MRCEP) if, for all A, B ∈ K, if B is a subalgebra of A and θ ∈ ConKB maximal,
then there is some θ′ ∈ ConK(A) such that θ′ ∩ B2 = θ. If K is a variety, we say that it
has the maximal congruence extension property (MCEP).

Theorem 2.13. Let ⊢ be a finitary algebraizable logic with equivalent algebraic semantics K.
Then ⊢ has a local inconsistenct lemma if and only if K has the MRCEP and for every algebra
A the total congruence is compact.

At this point in the discussion, it is worth presenting the bridge theorem that
connects the local deduction theorem and the so-called filter extension property. We
begin by formally defining the notions of local deduction-detachment theorem and filter
extension property.

A logic ⊢ is said to have a local deduction-detachment theorem – briefly a LDDT – if
there exists a family Ψ of sets of formulas I(x, y) such that for every Γ ∪ {α, β} ⊆ Fm,

Γ ∪ {α} ⊢ β ⇐⇒ Γ ⊢ I(α, β) for some I ∈ Ψ.

A logic ⊢ has the filter extension property, or FEP, for short) if for every model ⟨A, F⟩
of ⊢ and every submatrix ⟨B, G⟩ of ⟨A, F⟩ and every H ∈ Fi⊢(B) with G ⊆ H there is
H′ ∈ Fi⊢(A) with F ⊆ H′ such that H = H′ ∩ B.

In parallelism to Theorem 2.12, the corresponding bridge theorem arises between
the LDDT and the FEP: a finitary protoalgebraic logic has the LDDT if and only if it
has the FEP (see, [14, Thm. II.1]).

2.4 First-order definability of maximal consistent filters
To conclude this chapter, we introduce a new notion reminiscent of the (first-order)
definability of principal deductive filters introduced by Czelakowski (see [15], pp. 132-134).

Recall that a logic ⊢ is a consequence relation on the set Fm of formulas of some
algebraic language L. A logical matrix ⟨A, F⟩ can be viewed as a first order structure in
the algebraic language L extended with a unary predicate symbol P(x). More precisely,
a matrix can be regarded as an algebra equipped with the interpretation of P(x) given
by the designated set F ⊆ A. An intuitive reading of logical matrices suggests that the
set of designated elements F represents truth inside the set of truth-values A, so P(x)
can be understood as a truth predicate and F as the truth set of ⟨A, F⟩.
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A logic ⊢ is said to have (first order) definable maximal consistent filters –briefly a
DMCF – if for each n ∈ Z+ there exists a formula δn(x1, . . . , xn) in the language of the
first-order predicate logic (without equality), whose only non-logical symbols are the
operation symbols of ⊢ and a unary predicate P(x), such that for every model ⟨A, F⟩
of ⊢ and elements a1, . . . , an ∈ A,

A = FgA
⊢ (F ∪ {a1, . . . , an}) ⇐⇒ ⟨A, F⟩ ⊨ δn(a1, . . . , an).

A class of similar algebras is elementary if it is the model class of a set of first-order
sentences.

Lemma 2.14. The class of models of a finitary logic is elementary.

Proof. For every finite set of formulas Γ∪{φ} such that Γ ⊢ φ we consider the sentence

∀x⃗(
∧

γ∈Γ

P(γ) ⇒ P(φ)).

To prove that the set of all these sentences axiomatizes Mod(⊢), it suffices to consider
a matrix ⟨A, F⟩ of ⊢ and prove that it is a model of ⊢ if and only if it satisfies these
axioms. It is clear that if ⟨A, F⟩ is a model of ⊢, then it satisfies these axioms. Conversely,
assume that ⟨A, F⟩ satisfies the axioms. Consider Γ ∪ {φ} ⊆ Fm such that Γ ⊢ φ and
a⃗ ∈ A such that ΓA (⃗a) ⊆ F. Since ⊢ is finitary we may assume that Γ is finite. Now
∀x⃗(

∧
γ∈Γ P(γ) ⇒ P(φ)) is an axiom and ΓA (⃗a) ⊆ F, so that φA (⃗a) ∈ F. Therefore,

⟨A, F⟩ is a model of ⊢. ⊠

Theorem 2.15. Let ⊢ be a finitary protoalgebraic logic with the LIL witnessed by the family
{Ψn : n ∈ Z+}. Then the following are equivalent:

(i) For every n ∈ Z+ there exists a finite Ψ′
n ⊆ Ψ such that {Ψ′

n : n ∈ Z+} also witnesses
the LIL for ⊢;

(ii) ⊢ has definable maximal consistent filters.

Proof. (i)⇒(ii): Let ⟨A, F⟩ be a model of ⊢ and a1, . . . , an ∈ A. It follows from the
semantic version of the LIL, Theorem 2.4, that

A = FgA
⊢ (F ∪ {a1, . . . , an}) ⇐⇒ IA(a1, . . . , an) ⊆ F for some I ∈ Ψn.

However, by assumption there exists a finite Ψ′
n ⊆ Ψ such that {Ψ′

n : n ∈ Z+} also
witnesses the LIL for ⊢. Suppose that Ψ′

n is the finite family of finite sets of formulas
{I1(x1, . . . , xn), . . . , Im(x1, . . . , xn)}. Then the above display amounts to

A = FgA
⊢ (F ∪ {a1, . . . , an}) ⇐⇒ IA

i (a1, . . . , an) ⊆ F for some i ∈ {1, . . . , m}.

Observe that IA
i (a1, . . . , an) ⊆ F for some i ∈ {1, . . . , m} if and only if

⟨A, F⟩ ⊨
∨

i⩽m

∧
γ∈Ii

P(γ(a1, . . . , an)).

Therefore, we can define a first-order formula δn(x1, . . . , xn) which witnesses the
definability of maximal consistent filters for ⊢ as follows:

δn(x1, . . . , xn) :=
∨

i⩽m

∧
γ∈Ii

P(γ(x1, . . . , xn)).
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2. INCONSISTENCY LEMMAS

(ii)⇒(i): Let {Ψn : n ∈ Z+} be the family witnessing the LIL for ⊢, and let
{δn(x1, . . . , xn) : n ∈ Z+} be the family of first-order formulas witnessing the defin-
ability of maximal consistent filters for ⊢. Since ⊢ is finitary, Lemma 2.14 guarantees
that the class of models of ⊢ is axiomatized by some set Σ of sentences. We first prove
that for every n ∈ Z+

Σ ∪ {
∨
γ∈I

¬P(γ(x1, . . . , xn)) : I ∈ Ψn} ⊢FOL ¬δn(x1, . . . , xn),

where, ⊢FOL denotes first-order entailment. To this end, consider a model ⟨A, F⟩ of Σ
and a1, . . . , an ∈ A such that

⟨A, F⟩ ⊨
∨
γ∈I

¬P(γ(a1, . . . , an)) for every I ∈ Ψn.

Then, IA(a1, . . . , an) ⊈ F for every I ∈ Ψn, which, together with the semantic version
of the LIL, Theorem 2.4, implies that A ̸= FgA

⊢ (F ∪ {a1, . . . , an}). As a consequence,
⟨A, F⟩ ⊨ ¬δn(a1, . . . , an) because ⊢ has DMCF witnessed by the family {δn(x1, . . . , xn) :
n ∈ Z+}.

It then follows from the compactness theorem of first-order logic that there is a
finite family Ψ′

n = {I1(x1, . . . , xn), . . . , Im(x1, . . . , xn)} ⊆ Ψn such that

Σ ∪ {
∨

γ∈Ii

¬P(γ(x1, . . . , xn)) : i ⩽ m} ⊢FOL ¬δn(x1, . . . , xn). (2.2)

Now, we shall prove that Ψ′
n also witnesses the LIL for ⊢. We show that for every

model ⟨A, F⟩ of ⊢ and elements a1, . . . , an ∈ A

A = FgA
⊢ (F ∪ {a1, . . . , an}) ⇐⇒ IA

i (a1, . . . , an) ⊆ F for some i ⩽ m.

The right-to-left implication holds because {Ψn : n ∈ Z+} witnesses the LIL for ⊢
and Ψ′

n = {I1(x1, . . . , xn), . . . , Im(x1, . . . , xn)} ⊆ Ψn. To prove the converse implication
we reason by contraposition. Assume that IA

i (a1, . . . , an) ⊈ F for every i ⩽ m. Then
we have that

⟨A, F⟩ ⊨
∨

γ∈I1

¬P(γ(a1, . . . , an)) ∧ . . . ∧
∨

γ∈Im

¬P(γ(a1, . . . , an)).

Since ⟨A, F⟩ ∈ Mod(⊢), then ⟨A, F⟩ ⊨ Σ. Therefore, by the display 2.2 we conclude
that ⟨A, F⟩ ⊨ ¬δn(a1, . . . , an), which amounts to A ̸= FgA

⊢ (F ∪ {a1, . . . , an}) because
{δn(x1, . . . , xn) : n ∈ Z+} witnesses the definability of maximal consistent filters.

Since Proposition 1.11 establishes that the deductive filters of the algebra of formu-
las are the ⊢-theories, in particular we have that for every Γ ∪ {α1, . . . , αn} ⊆ Fm,

Fm = Cn⊢(Γ ∪ {α1, . . . , αn}) ⇐⇒ I(α1, . . . , αn) ⊆ Cn⊢(Γ) for some I ∈ Ψ′
n,

which is equivalent to the statement that for every Γ ∪ {α1, . . . , αn} ⊆ Fm,

Γ ∪ {α1, . . . , αn} is inconsistent in ⊢⇐⇒ Γ ⊢ I(α1, . . . , αn) for some I ∈ Ψ′
n.

Hence, we conclude that Ψ′
n = {I1(x1, . . . , xn), . . . , Im(x1, . . . , xn)} also witnesses the

LIL for ⊢.

⊠
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Following the parallelism with the theory for deduction-detachment theorem, we
present at this point the notion of (first-order) definable principal filters (see [15], pp.
132-134), which a logic ⊢ is said to have if there exists a formula δ(x, y) in the language
of the first-order predicate logic (with equality), whose only non-logical symbols are
the operation symbols of ⊢ and a unary predicate P(x), such that for every model
⟨A, F⟩ of ⊢ and elements a, b ∈ A,

b ∈ FgA
⊢ (F ∪ {a}) ⇐⇒ ⟨A, F⟩ ⊨ δ(a, b).

If a finitary protoalgebraic logic ⊢ has a LDDT witnessed by some family of formu-
las Ψ, then there exists a finite Ψ′ ⊆ Ψ such that Ψ′

n also witnesses the LDDT for ⊢ if
and only if ⊢ has definable principal filters (see [15, Thm. 2.2.1]).
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CHAPTER 3
The inconsistency by cases property

In this final chapter we present the crucial result of the thesis – Theorem 3.10 – which
states that a finitary protoalgebraic logic has an IL if and only if it satisfies the following
conditions: (1) ⊢ has the MCFEP; (2) for every algebra A the deductive filter A is finitely
generated; (3) ⊢ has DMCF; and (4) ⊢ is filter-1-distributive. To this end, we introduce
the so-called inconsistency by cases property. Theorem 3.4 provides, in the framework of
finitary protoalgebraic logics, a characterization of this novel property in terms of an
algebraic property of its lattice of deductive filters on any algebra of the suitable type,
namely filter-1-distributivity.

Let ∇n,m(x1, . . . , xn, y1, . . . , ym, z⃗) be a set of formulas in variables x1, . . . , xn,
y1, . . . , ym and possible parameters z⃗. We define

α1, . . . , αn∇n,mβ1, . . . , βm as
⋃
{∇n,m(α1, . . . , αn, β1, . . . , βm, γ⃗) : γ⃗ ∈ Fm}.

We start by defining a useful notion. A parameterized set ∇n,m(x1, . . . , xn, y1, . . . , ym, z⃗)
of formulas is a parameterized protodisjunction (or just a protodisjunction if ∇n,m has no
parameters) in ⊢ whenever α⃗ ⊢ α⃗∇n,m β⃗ and β⃗ ⊢ α⃗∇n,m β⃗.

We observe that the notion of protodisjunction is not interesting on its own since,
essentially, any theorem (or set of theorems) in variables x1, . . . , xn, y1, . . . , ym of a given
logic would be a protodisjunction in this logic; we introduce it primarly as a tool for
simplifying the presentation of upcoming definitions and results.

A more characterizing property of disjunction is given by the so-called proof by
cases of classical disjunction, which has already been explored for arbitrary logics in the
literature (see [10, 12, 15, 16]). We say that a logic ⊢ has the proof by cases property if for
every n, m there exists a parameterized protodisjunction ∇n,m(x1, . . . , xn, y1, . . . , ym, z⃗)
such that for any set Γ, α1, . . . , αn, β1, . . . , βm, χ of formulas, if Γ, α⃗ ⊢ χ and Γ, β⃗ ⊢ χ,
then Γ, α⃗∇n,m β⃗ ⊢ χ.

In a similar fashion, we introduce another relevant property: we say that a logic ⊢
enjoys the inconsistency by cases property (ICP) if for every positive integers n, m, there
exists a parameterized protodisjunction ∇n,m(x1, . . . , xn, y1, . . . , ym, z⃗) such that for any
set Γ, α1, . . . , αn, β1, . . . , βm of formulas, if Γ ∪ {⃗α} and Γ ∪ {β⃗} are inconsistent in ⊢,
then Γ ∪ {⃗α∇n,m β⃗} is inconsistent in ⊢.
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Proposition 3.1. If a logic has an inconsistency lemma, then it has the inconsistency by cases
property witnessed by protodisjunctions ∇n,m without parameters.

Proof. Let ⊢ be a logic with the IL witnessed by the family {Ψn : n ∈ Z+} and define

∇n,m(x1, . . . , xn, y1, . . . , ym) = Ψk(Ψn(x1, . . . , xn), Ψm(y1, . . . , ym)),

where k = |Ψn ∪ Ψm|. First we shall prove that ∇n,m is a protodisjunction. To this
end, consider α1, . . . , αn, β1, . . . , βm ∈ Fm. Since Ψn(α1, . . . , αn) ⊢ Ψn(α1, . . . , αn), it
follows from the IL that {α1, . . . , αn} ∪ Ψn(α1, . . . , αn) is inconsistent in ⊢. Therefore,
{α1, . . . , αn} ∪ Ψn(α1, . . . , αn) ∪ Ψm(β1, . . . , βm) is also inconsistent in ⊢. Together with
the IL this implies that

α1, . . . , αn ⊢ Ψk(Ψn(α1, . . . , αn), Ψm(β1, . . . , βm)).

A symmetrical argument yields that

β1, . . . , βm ⊢ Ψk(Ψn(α1, . . . , αn), Ψm(β1, . . . , βm)).

Hence, α⃗ ⊢ α⃗∇n,m β⃗ and β⃗ ⊢ α⃗∇n,m β⃗. Thus ∇n,m is a protodisjunction.

We turn to prove that ∇n,m witnesses the ICP for ⊢, i.e., that for any set of
formulas Γ, α1, . . . , αn, β1, . . . , βm, if Γ ∪ {⃗α} and Γ ∪ {β⃗} are inconsistent in ⊢, then
Γ ∪ Ψk(Ψn (⃗α), Ψm(β⃗)) is inconsistent in ⊢. In view of the IL, this amounts to show-
ing that if Γ ⊢ Ψn (⃗α) and Γ ⊢ Ψm(β⃗), then Γ ⊢ Ψl(Ψk(Ψn (⃗α), Ψm(β⃗))), where
l = |Ψk(Ψn (⃗α), Ψm(β⃗))|.

Observe that, by the transitivity of ⊢, it suffices to prove that

Ψn (⃗α) ∪ Ψm(β⃗) ⊢ Ψl(Ψk(Ψn (⃗α), Ψm(β⃗))),

which, considering the IL translates to

Ψn (⃗α) ∪ Ψm(β⃗) ∪ Ψk(Ψn (⃗α), Ψm(β⃗)) is inconsistent in ⊢ .

Considering the IL again, this is true since Ψk(Ψn (⃗α), Ψm(β⃗)) ⊢ Ψk(Ψn (⃗α), Ψm(β⃗)). ⊠

We now characterize the inconsistency by cases property. In parallel with the
connection between the proof by cases property and filter-distributivity (see [10, 12,
15, 16]), the corresponding bridge theorem links the ICP to filter-1-distributivity. First
we must introduce some notions from lattice theory.

A join semilattice A with maximum element 1 is called 1-distributive if for all
a, b, c ∈ A with a ∨ b = 1 and a ∨ c = 1, then a ∨ d = 1 for some element d ⩽ b, c.
Similarly, a lattice A with maximum element 1 is said to be 1-distributive if whenever
a ∨ b = 1 and a ∨ c = 1, then a ∨ (b ∧ c) = 1 for all elements a, b, c ∈ A. This notion is
sometimes referred to as join-semidistributivity at 1.

A logic ⊢ is filter-1-distributive if for each algebra A the lattice of ⊢-filters Fi⊢(A) is
1-distributive. We omit the prefix ’filter-’ whenever the corresponding property holds
for the algebra of formulas Fm.
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Proposition 3.2. Let A be a semilattice with minimum 0 and maximum 1. Then A is
1-distributive if and only if the lattice of ideals Id(A) is 1-distributive.

Proof. Suppose that A is a 1-distributive semilatice. Let I, J, K ∈ Id(A) such that
I + J = A and I + K = A. We shall prove that I + (J ∩ K) = A. From 1 ∈ I + J
we obtain that a′ ∨ b = 1 for some a′ ∈ I and b ∈ J. From 1 ∈ I + K we obtain
that a′′ ∨ c = 1 for some a′′ ∈ I and c ∈ K. Let a = a′ ∨ a′′, then a ∨ b = 1 and
a ∨ c = 1. Then it follows from the 1-distributivity of A that a ∨ (d) = 1 for some
element d ∈ A such that d ⩽ b, c. Therefore, d ∈ J ∩ K because I and J are downsets
and, by assumption, b ∈ J and c ∈ K. Consequently, 1 ∈ I + (J ∩ K) which implies
that I + (J ∩ K) = A. Thus, Id(A) is 1-distributive.

Conversely, suppose that Id(A) is 1-distributive and let a, b, c ∈ A such that
a ∨ b = 1 and a ∨ c = 1. Then, ↓ a+ ↓ b = A and ↓ a+ ↓ c = A, which together
with the 1-distributivity of Id(A) implies that ↓ a + (↓ b∩ ↓ c) = A. Therefore, it
must be the case that a ∨ d = 1 for some element d ∈ A with d ⩽ b, c. Hence, A is
1-distributive. ⊠

Since every algebraic lattice is isomorphic to the lattice of ideals of the join semilat-
tice of its compact elements, by Theorem 1.9, we get:

Corollary 3.3. Let A be an algebraic lattice whose maximum element is compact. Then A is
1-distributive if and only if the join semilattice of its compact elements is 1-distributive.

Theorem 3.4. Let ⊢ be a finitary protoalgebraic logic. The following are equivalent

(i) ⊢ enjoys the ICP and ⊢ possesses a finite inconsistent set of formulas.

(ii) ⊢ is filter-1-distributive.

(iii) The lattice T h(⊢) is 1-distributive.

Proof. (i)⇒(ii): Let A be an algebra over the same language of ⊢. Since the logic is
finitary, Theorem 1.5 and Theorem 1.9 imply that the lattice of its deductive filters,
Fi⊢(A) is algebraic. It also follows from the representation theorem of algebraic
lattices, Theorem 1.9, that Fi⊢(A) is isomorphic to the lattice of ideals of the join
semilattice of compact deductive filters of A. In symbols, Fi⊢(A) ∼= Id(CompFi⊢(A)).
Furthermore, the finitary property also implies that the compact elements are just the
finitely generated ⊢–filters of A by Proposition 1.7. Therefore, in view of Corollary
3.3, it suffices to show that the join semilattice of finitely generated ⊢–filters of A is a
1-distributive join semilattice.

To this end, first observe that it follows from the assumption that ⊢ possesses a
finite inconsistent set of formulas, together with Proposition 2.2 that there is some
finite set of formulas Ξ(x) such that A = FgA

⊢ (Ξ
A(a)) for every a ∈ A. Therefore, the

deductive filter A is finitely generated, i.e., CompFi⊢(A) has a maximum element.

Moreover, consider elements a1, . . . , an, b1, . . . , bm, c1, . . . , ck ∈ A and suppose that
FgA

⊢ (a1, . . . , an) +A FgA
⊢ (b1, . . . , bm) = A and FgA

⊢ (a1, . . . , an) +A FgA
⊢ (c1, . . . , ck) = A.

To prove that CompFi⊢(A) is a 1-distributive join semilattice, we need to establish the
existence of a finite subset D ⊆ A satisfying the following conditions:

1. FgA
⊢ (D) ⊆ FgA

⊢ ({b1, . . . , bm}), FgA
⊢ ({c1, . . . , ck});
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2. FgA
⊢ ({a1, . . . , an}) +A FgA

⊢ (D) = A.

To achieve this, consider the protodisjunction ∇m,k given by the ICP associated
with the integers m, k. Take a homomorphism g : Fm → A such that g(xi) = bi for
i ∈ {1, . . . , m} and g(yj) = cj for j ∈ {1, . . . , k}, where x1, . . . , xm, y1, . . . , yk are disjoint
variables. Define

D := g[x1, . . . , xm∇A
m,ky1, . . . , yk] = b1, . . . , bm∇A

m,kc1, . . . , ck.

It follows from the ICP that x⃗ ⊢ x⃗∇m,ky⃗ and y⃗ ⊢ x⃗∇m,ky⃗ because ∇m,k is a protodis-
junction. This implies that for every ⊢-filter F on A and homomorphism f : Fm → A
such that f [⃗x] ⊆ F or f [⃗y] ⊆ F, we have f [⃗x∇m,ky⃗] ⊆ F. Since g[⃗x] ⊆ FgA

⊢ ({b1, . . . , bm})
and g[⃗y] ⊆ FgA

⊢ ({c1, . . . , ck}) , then g[⃗x∇m,ky⃗] ⊆ FgA
⊢ ({b1, . . . , bm}), FgA

⊢ ({c1, . . . , ck}).
Hence, taking D as above, the first condition is met. Observe that the set D need not
be finite. However, the assumption that ⊢ is finitary implies that the consequence op-
eration of ⊢-filter generation on A is finitary. So a ∈ FgA

⊢ (D) implies that a ∈ FgA
⊢ (D0)

for some finite D0 ⊆ D.

Thus, we focus on proving the second condition, i.e.,

FgA
⊢ ({a1, . . . , an}) +A FgA

⊢ (b1, . . . , bm∇Ac1, . . . , ck) = A.

Recall from Proposition 2.2 that the assumption that there is a finite set of inconsis-
tent formulas in ⊢ implies that A is finitely generated, i.e., A = FgA

⊢ (Ξ
A(a)) for some

finite inconsistent set of formulas Ξ(x) and any a ∈ A. Therefore, the condition

FgA
⊢ ({a1, . . . , an}) +A FgA

⊢ ({b1, . . . , bm}) = A

translates to
ΞA(a) ⊆ FgA

⊢ ({a1, . . . , an}) +A FgA
⊢ ({b1, . . . , bm}).

It then follows from the fact that ⊢ is finitary and protoalgebraic together with Lemma
1.19 that for each ξ ∈ Ξ there exists a finite set of formulas Γb

ξ ∪ {φb
ξ} and a homomor-

phism hb
ξ : Fm → A such that

Γb
ξ ⊢ φb

ξ and hb
ξ [Γ

b
ξ ] ⊆ FgA

⊢ ({a1, . . . , an}) ∪ {b1, . . . , bm} and hb
ξ(φb

ξ) = ξ A(a).

Then, by substitution-invariance and since infinitely many variables are at our
disposal, we may assume that for distinct ξ, ξ ′ ∈ Ξ, the sets of variables occurring
in Γb

ξ ∪ {φb
ξ} and Γb

ξ ′ ∪ {φb
ξ ′} are pairwise disjoint and that all these variables are

among y1, y2, y3, . . ., and distinct from x1, . . . , xm+1. Consequently, we can consider a
homomorphism hb : Fm → A such that for every ξ ∈ Ξ it acts as hb

ξ on the variables
that occur in Γb

ξ ∪ {φb
ξ}, and we set hb(xi) = bi for i ∈ {1, . . . , m} and hb(xm+1) = a.

Therefore we get⋃
ξ∈Ξ

Γb
ξ ⊢ {φb

ξ : ξ ∈ Ξ} and hb[
⋃

ξ∈Ξ

Γb
ξ ] ⊆ FgA

⊢ ({a1, . . . , an}) ∪ {b1, . . . , bm}.
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Moreover, recall from Theorem 1.14 that the protoalgebraicity of ⊢ amounts to the
existence of a set ∆(x, y) of formulas such that ∅ ⊢ ∆(x, x) and x, ∆(x, y) ⊢ y. Hence,
from x, ∆(x, y) ⊢ y we get that

∆(φb
ξ , ξ(xm+1)), φb

ξ ⊢ ξ(xm+1),

and it follows from ∅ ⊢ ∆(x, x) that for every δ ∈ ∆,

hb(δ(φb
ξ , ξ(xm+1)) = δA(hb(φb

ξ), hb(ξ(xn+1))) = δA(ξ A(a), ξ A(a)) ∈ FgA
⊢ ({a1, . . . , an}).

So, if we consider

Γb :=
⋃

ξ∈Ξ

Γb
ξ ∪

⋃
ξ∈Ξ

∆(φb
ξ , ξ(xm+1)) ∪ {x1, . . . , xm},

then Γb ⊢ Ξ(xm+1) and hb[Γb] ⊆ FgA
⊢ ({a1, . . . , an}) ∪ {b1, . . . , bm}.

Similar reasoning applies to the assumption that

FgA
⊢ (a1, . . . , an) +

A FgA
⊢ (c1, . . . , ck) = A.

In this case, there exists a finite set of formulas Γc and a homomorphism hc : Fm → A
such that Γc ⊢ Ξ(xm+1) and hc[Γc] ⊆ FgA

⊢ (a1, . . . , an) ∪ {c1, . . . , ck} and hc(xm+1) = a.

Again by substitution-invariance and with infinitely many variables at our disposal,
we may assume that the sets of variables occurring in Γb and Γc are pairwise disjoint
and that all these variables are different from xm+1. Consequently, we can consider a
homomorphism h : Fm → A such that it acts as hb on the variables that occur in Γb, as
hc on the variables that occur in Γc, and h(xm+1) = a.

Observe that we can write Γb = Πb ∪ Σb where Σb := {x1, . . . , xm} and

Πb :=
⋃

ξ∈Ξ

∆(φb
ξ , ξ(xm+1)) ∪

⋃
{∆(xi, α) : i ⩽ m and α ∈

⋃
ξ∈Ξ

Γb
ξ and hb(α) = bi}.

Notice first that h[Σb] ⊆ {b1, . . . , bm} because hb(xi) = bi for i ∈ {1, . . . , m}. Also
notice first that h[Πb] ⊆ FgA

⊢ (a1, . . . , an). This is because for every i ∈ {1, . . . , m},

hb[∆(xi, α)] = ∆A(hb(xi), hb(α)) = ∆A(bi, bi),

hb[∆(φb
ξ , ξ(xm+1))] = ∆A(h(φb

ξ), h(ξ(xm+1))) = ∆A(ξ A(a), ξA(a)),

and ∅ ⊢ ∆(x, x) by Theorem 1.14.

Finally, notice that Πb ∪ Σb ⊢ Ξ(xm+1). This is because ∆(x, y), x ⊢ y by Theorem
1.14, so we have that ∆(xi, α), xi ⊢ α. Hence Πb ∪ Σb ⊢ α for every α ∈ ⋃

ξ∈Ξ Γb
ξ .

Moreover
⋃

ξ∈Ξ ∆(φb
ξ , ξ(xm+1)) ⊆ Πb and {x1, . . . , xm} ⊆ Σb. Hence

Γb =
⋃

ξ∈Ξ

Γb
ξ ∪

⋃
ξ∈Ξ

∆(φb
ξ , ξ(xm+1)) ∪ {x1, . . . , xm} ⊆ Πb ∪ Σb,

which together with Γb ⊢ Ξ(xm+1), implies that Πb ∪ Σb ⊢ Ξ(xm+1).
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Furthermore, following a similar strategy, we can write Γc = Πc ∪ Σc where
Σc := {y1, . . . , yk} and

Πc :=
⋃

ξ∈Ξ

∆(φc
ξ , ξ(xm+1)) ∪

⋃
{∆(xj, α) : j ⩽ k and α ∈

⋃
ξ∈Ξ

Γc
ξ and hc(α) = cj}.

With this arrangement, by an analogous reasoning, we observe that h[Σc] ⊆ {c1, . . . , ck},
h[Πc] ⊆ FgA

⊢ (a1, . . . , an), and Πc ∪ Σc ⊢ Ξ(xm+1)

Now, letting Π = Πb ∪ Πc, we have that Π ∪ Σb and Π ∪ Σc are inconsistent in
⊢. The inconsistency by cases property guarantees that Π ∪ Σb∇m,kΣc is inconsis-
tent in ⊢, or stated equivalently that Π ∪ Σb∇m,kΣc ⊢ Ξ(xm+1). Together with the
fact that h[Π] ⊆ FgA

⊢ ({a1, . . . , an}), and h[Σb∇m,kΣc] ⊆ b1, . . . , bm∇A
m,kc1, . . . , ck, and

h[Ξ(xm+1)] = ΞA(a), this implies that

ΞA(a) ⊆ FgA
⊢ ({a1, . . . , an}) +A FgA

⊢ (b1, . . . , bm∇A
m,kc1, . . . , ck).

Given that A = FgA
⊢ (Ξ

A(a)), we conclude that

FgA
⊢ ({a1, . . . , an}) +A FgA

⊢ (b1, . . . , bm∇A
m,kc1, . . . , ck) = A.

By the definition of D, this is FgA
⊢ ({a1, . . . , an}) +A FgA

⊢ (D) = A. Although D is not
necessarily finite, the assumption that ⊢ is finitary implies that the operation of ⊢-filter
generation is also finitary, so we may assume that D is finite.

(ii)⇒(iii): If ⊢ is filter-1-distributive, then for the particular case of A being the
algebra of formulas Fm, the lattice T h(⊢) is 1-distributive.

(iii)⇒(i): Define

∇n,m(x1, . . . , xn, y1, . . . , ym, z⃗) = Cn⊢(x1, . . . , xn) ∩ Cn⊢(y1, . . . , ym).

Given a set Γ and α1, . . . , αn, β1, . . . , βm of formulas, let σ be a surjective substitution
such that σxi = αi for i ∈ {1, . . . , n} and σyj = β j for j ∈ {1, . . . , m}. If we knew
that Cn⊢(Γ) + Cn⊢ [⃗α∇n,m β⃗] = Fm ⇐⇒ Cn⊢(Γ) + [Cn⊢ (⃗α) ∩ Cn⊢(β⃗)] = Fm, then we
could write the following chain of equivalences demonstrating that ⊢ enjoys the ICP:

Cn⊢(Γ ∪ {⃗α∇n,m β⃗}) = Fm ⇐⇒ Cn⊢(Γ) + Cn⊢ [⃗α∇n,m β⃗] = Fm

⇐⇒ Cn⊢(Γ) + [Cn⊢ (⃗α) ∩ Cn⊢(β⃗)] = Fm

⇐⇒ [Cn⊢(Γ) + Cn⊢ (⃗α)] ∩ [Cn⊢(Γ) + Cn⊢(β⃗)] = Fm

⇐⇒ Cn⊢(Γ ∪ {⃗α}) ∩ Cn⊢(Γ ∪ {β⃗}) = Fm

The first and last equivalences follow from the definition of + in T h(⊢), while the third
is a consequence of the 1-distributivity of T h(⊢). The rest of the proof is dedicated to
proving the second equivalence, namely,

Cn⊢(Γ) + Cn⊢ [⃗α∇n,m β⃗] = Fm ⇐⇒ Cn⊢(Γ) + [Cn⊢ (⃗α) ∩ Cn⊢(β⃗)] = Fm.

To this end, we establish the following two claims:
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Claim 3.5. Σ + Cn⊢σΓ = σ[σ−1Σ + Cn⊢Γ] for each theory Σ and set of formulas Γ.

Proof. Recall that the deductive filters of a logic ⊢ on the algebra of formulas coincide
with the theories of ⊢, i.e, T h(⊢) = Fi⊢(Fm) and Cn⊢(−) = FgFm

⊢ (−). It then follows
that σ is a strict surjective homomorphism beetween the models ⟨Fm, σ−1Σ⟩ and
⟨Fm, Σ⟩ of ⊢, where Σ is a ⊢-theory. Since ⊢ is protoalgebraic, it has the correspondence
property by Theorem 1.16, which implies that the direct image map

σ[−] : T h(⊢)σ−1Σ → T h(⊢)Σ

is a well-defined lattice isomorphism.

Therefore, for every set of formulas Γ ⊆ Fm we have that σ[Cn⊢(Γ ∪ σ−1[Σ])]
is a ⊢-theory because it is the image under σ of Cn⊢(Γ ∪ σ−1[Σ]) which is a theory
of ⊢ extending σ−1[Σ]. Together with the fact that Σ ∪ σ[Γ] ⊆ σ[Cn⊢(Γ ∪ σ−1[Σ])],
because σ is surjective, this implies that Cn⊢(Σ ∪ σ[Γ]) ⊆ σ[Cn⊢(σ

−1[Σ] ∪ Γ)]. Then,
the inclusion Σ + Cn(σ[Γ]) ⊆ σ[Cn⊢(Γ) + σ−1[Σ]] follows from the definition of the
join operator in T h(⊢) and the fact that σ−1Σ and Σ are ⊢-theories.

To prove the converse inclusion, let ξ ∈ σ[σ−1[Σ] + Cn⊢Γ], then ξ = σδ for some
δ ∈ Fm such that σ−1[Σ]∪ Γ ⊢ δ. Thus, by the surjectivity of σ, we have that Σ, σΓ ⊢ σδ,
i.e., Σ, σΓ ⊢ ξ so that ξ ∈ Σ + Cn⊢(σΓ), as required. □

Claim 3.6. Σ + (Cn⊢(σx1, . . . , σxn) ∩ Cn⊢(σy1, . . . , σym)) = Fm if and only if ⇔ Σ +
Cn⊢[σ(Cn⊢(x1, . . . , xn) ∩ Cn⊢(y1, . . . , ym))] = Fm for every theory Σ.

Proof. Let Σ be a theory and recall that σ is a surjective substitution. Due to the
1-distributivity of T h(⊢) together with the Claim 3.5, we can write the equivalences

Σ + (Cn⊢σx⃗ ∩ Cn⊢σy⃗) = Fm ⇐⇒ [Σ + Cn⊢σx⃗] ∩ [Σ + Cn⊢σy⃗] = Fm

⇐⇒ σ[σ−1Σ + Cn⊢ x⃗] ∩ σ[σ−1Σ + Cn⊢y⃗] = Fm.

Now using the same argument as before, the protoalgebraicity of ⊢ implies that
the direct image map

σ[−] : T h(⊢)σ−1Σ → T h(⊢)Σ

is a well-defined isomorphism.

Therefore both σ[σ−1Σ + Cn⊢ x⃗] and σ[σ−1Σ + Cn⊢y⃗] are ⊢-theories because they
are images under σ of theories extending σ−1Σ. Moreover, it follows from the fact
that σ[−] is an isomorphism that the intersection of these two theories is the set of
all formulas if and only if so does the intersection of its preimages under σ. Hence,
σ[σ−1Σ+Cn⊢ x⃗]∩ σ[σ−1Σ+Cn⊢y⃗] = Fm ⇐⇒ [σ−1Σ+Cn⊢ x⃗]∩ [σ−1Σ+Cn⊢y⃗] = Fm.

As a consequence of the 1-distributivity of T h(⊢), the latter amounts to σ−1Σ +
[Cn⊢ x⃗ ∩ Cn⊢y⃗] = Fm, which is equivalent to σ(σ−1Σ + [Cn⊢ x⃗ ∩ Cn⊢y⃗]) = Fm because
σ[−] is a lattice-isomorphism so it preserves the top element of the lattice structure.
Applying the previous claim, Claim 3.5, to the above expression, we obtain the right-
hand side of the equivalence in the claim statement: Σ + Cn⊢[σ(Cn⊢ x⃗ ∩ Cn⊢y⃗)] = Fm.

Therefore, tracing back through the chain of equivalences, we have established the
desired result: Σ + (Cn⊢σx⃗ ∩ Cn⊢σy⃗) = Fm ⇔ Σ + Cn⊢[σ(Cn⊢ x⃗ ∩ Cn⊢y⃗)] = Fm. □
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Finally, we can finish the proof of the theorem by a series of equivalences

Cn⊢(Γ) + [Cn⊢ (⃗α) ∩ Cn⊢(β⃗)] = Fm ⇐⇒ Cn⊢(Γ) + [Cn⊢(σx⃗) ∩ Cn⊢(σy⃗)] = Fm
⇐⇒ Cn⊢(Γ) + Cn⊢[σ(Cn⊢(x⃗) ∩ Cn⊢ (⃗y))] = Fm

⇐⇒ Cn⊢(Γ) + Cn⊢ [⃗α∇n,m β⃗] = Fm

The first equivalence holds by the definition of σ, while the second follows from
Claim 3.6. To justify the last equivalence, observe that from the definitions of ∇n,m and
σ it follows that α⃗∇n,m β⃗ is the union of Cn⊢(σx⃗) ∩ Cn⊢(σy⃗) over all possible substitu-
tions σ such that σxi = αi and σyj = β j. Consequently, σ(Cn⊢(x⃗)∩Cn⊢ (⃗y)) ⊆ α⃗∇n,m β⃗,
and the left-to-right implication follows trivially. We prove the reverse inclusion.

To this end, let δ(x⃗, y⃗, z⃗) ∈ ∇n,m. It suffices to show that

σ(Cn⊢(x⃗) ∩ Cn⊢ (⃗y)) ⊢ δ(⃗α, β⃗, γ⃗) for every γ⃗ ⊆ Fm.

Observe that σ is surjective, so there is η⃗ ⊆ Fm such that ση⃗ = γ⃗. Since ∇n,m is a
protodisjunction, we have that x⃗ ⊢ δ(x⃗, y⃗, η⃗) and y⃗ ⊢ δ(x⃗, y⃗, η⃗). Therefore δ(x⃗, y⃗, η⃗) ∈
Cn⊢(x⃗) ∩ Cn⊢ (⃗y). Hence δ(⃗α, β⃗, γ⃗) ∈ σ[Cn⊢(x⃗) ∩ Cn⊢ (⃗y)]. ⊠

Recall that Proposition 3.1 shows that any finitary logic satisfying an inconsistency
lemma also has the inconsistency by cases property. While this result is proven
syntactically, a purely algebraic proof can also be provided crossing back over the
bridge given by Theorem 3.4. To this end, we present the following observation:

Remark 3.7. Every dually pseudo-complemented join semilattice with 1 is a 1-distributive
semilattice. Indeed, let A be a dually pseudo-complemented semilattice and con-
sider a, b, c ∈ A such that a ∨ b = 1 and a ∨ c = 1. It follows from the pseudo-
complementation of A that there exists a smallest element a∗ ∈ A such that a ∨ a∗ = 1.
Therefore, we get that a∗ ∨ b = b and a∗ ∨ c = c. Therefore,a∗ ⩽ b, c , which implies
that A is a 1-distributive join semilattice.

Consequently, the bridge theorems for the IL and the ICP, Theorem 2.6 and 3.4,
respectively, allow us to obtain the following weaker version of Proposition 3.1.

Corollary 3.8. If a finitary protoalgebraic logic ⊢ has an inconsistency lemma, then it has the
inconsistency by cases property.

Proof. In view of the semantic characterizations of the inconsistency lemma and the
inconsistency by cases property, Theorems 2.6 and 3.4, respectively, the present theo-
rem’s statement amounts to the claim that if for any algebra A over the appropriate
language, if its semilattice of compact ⊢-filters is dually pseudo-complemented with
respect to +A, then its lattice of ⊢-filters is 1-distributive.

As the ⊢-filter lattice of an algebra A is algebraic, then it is isomorphic to the
lattice of ideals of the join semilattice of compact filters of A by Proposition 1.9. In
symbols, Fi⊢(A) ≃ Id(CompFi⊢(A)). Consequently, to establish the 1-distributivity
of Fi⊢(A), it suffices to prove the same property for the lattice of ideals of CompFi⊢(A).
To this end, let A be an algebra such that the compact filters of A form a dually
pseudo-complemented semilattice. The proof proceeds as follows: since the semilattice
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CompFi⊢(A) is dually pseudo-complemented, we can deduce from Remark 3.7 that it
is 1-distributive, which together with Proposition 3.2 implies that the lattice of ideals
Id(CompFi⊢(A)) is also 1-distributive. ⊠

3.1 From the local inconsistency lemma to the global
inconsistency lemma

According to Proposition 3.1 (or Corollary 3.8), every finitary protoalgebraic logic ⊢
with an inconsistency lemma has the inconsistency by cases property, which in turn
implies by Theorem 3.4 that it is filter-1-distributive. Establishing whether the logics
which admit a local inconsistency lemma are filter-1-distributive is more involved.
Before we answer this question, we shall consider one more property.

Consider a logic ⊢, a non-empty family of sets of formulas {Iα(x, z⃗) : α ⩽ β}
has the refinement property with respect to a given logic ⊢ if for every pair Iα1 , Iα2 with
α1, α2 < β there is a set Iα with α < β such that Iα ⊆ Cn⊢(Iα1) ∩ Cn⊢(Iα2).

Theorem 3.9. Let ⊢ be a finitary protoalgebraic logic with the LIL witnessed by the family
{Ψn : n ∈ Z+}. The following assertions are equivalent:

(i) ⊢ is filter-1-distributive.

(ii) For every n ∈ Z+, the family Ψn has the refinement property.

Proof. (i)⇒(ii): Observe that if we assume the filter-1-distributivity of ⊢, then it can be
inferred, considering the algebra of formulas, that the lattice T h(⊢) of theories of ⊢ is
1-distributive.

Let {Ψn : n ∈ Z+} be the family of sets of formulas which witnesses the lo-
cal inconsistency lemma for ⊢, and consider I1, I2 ∈ Ψn and α1, . . . , αn ∈ Fm. Since
I1(α1, . . . , αn) ⊢ I1(α1, . . . , αn) and I2(α1, . . . , αn) ⊢ I2(α1, . . . , αn), the local inconsis-
tency lemma for ⊢ implies that both sets of formulas {α1, . . . , αn} ∪ I1(α1, . . . , αn) and
{α1, . . . , αn} ∪ I2(α1, . . . , αn) are inconsistent in ⊢. Using the definition of + in T h(⊢),
this can be equivalently stated as Cn⊢({α1, . . . , αn}) + Cn⊢(I1(α1, . . . , αn)) = Fm and
Cn⊢({α1, . . . , αn}) + Cn⊢(I2(α1, . . . , αn)) = Fm. In view of the 1-distributivity of
T h(⊢), it follows that

Cn⊢({α1, . . . , αn}) + [Cn(I1(α1, . . . , αn)) ∩ Cn(I2(α1, . . . , αn))] = Fm.

Together with the LIL, this implies that there is some I ∈ Ψn such that

Cn(I1(α1, . . . , αn)) ∩ Cn(I2(α1, . . . , αn)) ⊢ I(α1, . . . , αn).

We conclude that I1(α1, . . . , αn) ⊢ I(α1, . . . , αn) and I2(α1, . . . , αn) ⊢ I(α1, . . . , αn)
for some I ∈ Ψn. Thus, for every n ∈ Z+, the family Ψn has the refinement property.

(ii)⇒(i): In order to show that the lattice Fi⊢(A) is 1-distributive for every algebra
A of the appropiate language, recall from Proposition 1.9 that for a finitary logic ⊢,
the ⊢-filter lattice of an algebra A is algebraic and, therefore, it is isomorphic to the
lattice of ideals of the join semilattice of compact deductive filters of A. In symbols,
Fi⊢(A) ≃ Id(CompFi⊢(A)). Furthermore, the compact elements of Fi⊢(A) are just
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the finitely generated filters of A. Therefore, in view of Proposition 3.2, it suffices to
show that for an arbitrary algebra A, the join semilattice CompFi⊢(A) is 1-distributive.

To this end, we observe that it follows from the assumption that ⊢ has a LIL,
together with Remark 2.3, that there is some finite set of formulas Ξ(x) such that
A = FgA

⊢ (Ξ
A(a)) for every a ∈ A. Therefore, the deductive filter A is finitely generated,

i.e., CompFi⊢(A) has a maximum element.

Now, let a1, . . . , an, b1, . . . , bm, c1, . . . , ck ∈ A such that

FgA
⊢ (a1, . . . , an) +

A FgA
⊢ (b1, . . . , bm) = A and FgA

⊢ (a1, . . . , an) +
A FgA

⊢ (c1, . . . , ck) = A.

From the definition of + in T h(⊢) together with the semantic LIL, Theorem 2.4, it
follows that IA

1 (a1, . . . , an) ⊆ FgA
⊢ (b1, . . . , bm) and IA

2 (a1, . . . , an) ⊆ FgA
⊢ (c1, . . . , ck) for

some I1, I2 ∈ Ψn.

Since, by assumption, for every n ∈ Z+ the family Ψn has the refinement property
with respect to ⊢, there is some I ∈ Ψn such that I ⊆ Cn⊢(I1) ∩ Cn⊢(I2). Therefore,
let h : Fm → A be a homomorphism such that h(xi) = ai for i ∈ {1, . . . , n}. From
IA
1 (a1, . . . , an) ⊆ FgA

⊢ (b1, . . . , bm) it follows that h(I1(x1, . . . , xn)) ⊆ FgA
⊢ (b1, . . . , bm)

and from IA
2 (a1, . . . , an) ⊆ FgA

⊢ (c1, . . . , ck) that h(I2(x1, . . . , xn)) ⊆ FgA
⊢ (c1, . . . , ck).

Hence, we obtain

h(I(x1, . . . , xn)) = IA(a1, . . . , an) ⊆ FgA
⊢ (b1, . . . , bm), FgA

⊢ (c1, . . . , ck).

This implies that FgA
⊢ (Z) ⊆ FgA

⊢ (b1, . . . , bm), FgA
⊢ (c1, . . . , ck) for Z = IA(a1, . . . , an).

Moreover, Z is a finite subset of A because I is guaranteed to be finite by the definition
of the LIL. Finally, from IA(a1, . . . , an) ⊆ FgA

⊢ (Z), together with Theorem 2.4, we obtain
that A = FgA

⊢ (Z ∪ {a1, . . . , an}), which is equivalent to

A = FgA
⊢ (a1, . . . , an) +

A FgA
⊢ (Z),

by the definition of the join operator in T h(⊢). Thus, we have proved that ⊢ is filter-1-
distributive. ⊠

To conclude this chapter, we shall apply the preceding results to characterize the
set of logics ⊢ that have an inconsistency lemma. The theorem presented below is
reminiscent of [15, Thm. 2.6.2], which provides a similar characterization concerning
the deduction-detachment theorem.

Theorem 3.10. A finitary protoalgebraic logic ⊢ has an inconsistency lemma if and only if it
has the maximal consistent filter extension property, for every algebra A the deductive filter A
is finitely generated, it has definable maximal consistent filters, and it is filter-1-distributive.

Proof. Observe that if a logic ⊢ has an inconsistency lemma, then in particular it has
a local inconsistency lemma witnessed by the family Ψn consisting of just one finite
set of formulas I(x1, . . . , xn) for each n ∈ Z+. The forward implication then follows
directly from Theorem 2.12, Theorem 2.15, Corollary 3.8, and Theorem 3.4.

We turn to prove the converse implication. To this end, assume that ⊢ has the
maximal consistent filter extension property and for every algebra A the deductive
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filter A is finitely generated, then Theorem 2.12 guarantees that ⊢ enjoys the LIL
witnessed by a family {Ψn : n ∈ Z+}, i.e., for every Γ ∪ {α1, . . . , αn} ⊆ Fm,

Γ ∪ {α1, . . . , αn} is inconsistent in ⊢⇐⇒ Γ ⊢ I(α1, . . . , αn) for some I ∈ Ψn.

Additionally, assuming that ⊢ has definable maximal consistent filters, then Theorem
2.15 implies that for every n ∈ Z+, the family Ψn can be assumed to be finite. In other
words, we can assume that there exists m ∈ Z+ such that Ψn(x1, . . . , xn) is a finite
family of finite sets of formulas {I1(x1, . . . , xn), . . . , Im(x1, . . . , xn)}. Consequently, for
every Γ ∪ {α1, . . . , αn} ⊆ Fm,

Γ ∪ {α1, . . . , α} is inconsistent ⇐⇒ Γ ⊢ I1(α1, . . . , αn) or . . . or Γ ⊢ Im(α1, . . . , αn).

Finally, under the assumption that ⊢ is filter-1-distributive, we claim that for
every n ∈ Z+, the family Ψn may be assumed to consist of just one finite set of
formulas I(x1, . . . , xn). Indeed, in view of Theorem 3.9, the filter-1-distributivity of
⊢ implies that for every n ∈ Z+, the family Ψn has the refinement property with
respect to ⊢, i.e, for every pair I1, I2 ∈ Ψn there is a set I ∈ ψn such that I1 ⊢ I
and I2 ⊢ I. As a consequence there exists I ∈ {I1(x1, . . . , xn), . . . , Im(x1, . . . , xn)}
such that Ii(x1, . . . , xn) ⊢ I(x1, . . . , xn) for every i ∈ {1, . . . , m}. Therefore, for every
Γ ∪ {α1, . . . , αn} ⊆ Fm, we have

Γ ∪ {α1, . . . , αn} is inconsistent ⇐⇒ Γ ⊢ I(α1, . . . , αn).

⊠
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