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Abstract

The set theory KPl, which stands for Kripke-Platek-limit, roughly stipulates that
there are unboundedly many admissible sets. Admissible sets are models of the
Kripke-Platek set-theory KP which is a very weak fragment of ZFC. In [1], J. Cook
and M. Rathjen classify the provably total set functions in KP using a proof system
based on an ordinal notation system for the Bachmann-Howard ordinal relativized
to a fixed set. In this paper, we adapt this result to the KPl set theory. We consider
set functions which are provably total in KPl and Σ-definable by the same formula
in any admissible set. We prove that, if f is such a function then, for any set x
in the universe, the value f(x) always belongs to an initial segment of L(x), the
constructible hierarchy relativized to the transitive closure of x, at a level below
the relativized Takeuti-Feferman-Buchholz ordinal (the TFB ordinal is the proof-
theoretic ordinal of KPl).
To prove this result, we first construct an ordinal notation system based on [2] for
KPl relativized to a fixed set that we will use in order to build a logic dependent on
this fixed set where we will embed KPl. Thanks to this relativized system, we will
be able to bound the value of the function at this fixed set.
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1 Introduction

Set theory has several different axiomatizations. The most studied one is ZFC
(Zermelo-Fraenkel with the axiom of Choice), but many others are interesting as
well. In particular, if we exclude the Power Set axiom and restrict the Separation
and Collection schemas to ∆0-formulas (formulas that do not have any unbounded
quantifier) from ZF, we end up with KP, which stands for Kripke-Platek Set Theory.
The transitive set models of KP are known as admissible sets, while an ordinal is
called admissible whenever Lα is admissible, where Lα is the α-th rank of Gödel’s
constructible hierarchy. Admissible sets and admissible ordinals have been widely
studied and are related to numerous areas of computability theory. They appear in
hyperarithmetical theory: the first admissible ordinal above ω is the Church-Kleene
ordinal ωck1 , which is the first non-recursive ordinal. Admissible ordinals are crucial
in α-recursion theory, which is a generalization of computability theory to subsets
of admissible ordinals. Moreover, admissible sets are related to E-recursion theory,
a generalization of the theory of computability from natural numbers to arbitrary
sets, via Van de Wiele’s theorem, that states that a function is E-recursive if and
only if the function is uniformly Σ1-definable on every admissible set (see [16]). It is
also worth mentioning that KP, and by extension admissible sets, is also related to
(subsystems of) second-order arithmetic.

In this thesis, we are interested in a set theory that states that the universe is a
limit of admissible sets. This theory, called KPl for Kripke-Platek-limit, is not ex-
actly an extension of KP. The language of most of the set-theoretic theories, for
example the language of KP, is {∈}. As for the language of KPl, it expands the
language of KP with the predicate Ad, that intends to mean that a set is admissible.
As we will see in Section 2, KPl consists in the axioms of KP (minus ∆0-Collection)
written in the language {∈, Ad} together with some axioms defining the predicate Ad
and the Limit axiom. Roughly, the Limit axiom states that there are unboundedly
many admissible sets. The main objective of this thesis is to classify the provably
total and Σ-definable set-recursive functions of KPl.

Those kind of classification results for a given theory rely on the ordinal analysis of
the studied theory. Research in mathematics at the beginning of the XXth century
was deeply influenced by Hilbert’s programme. The programme seeked to provide a
grounding for mathematics by showing the consistency of formal systems by finitistic
means. Gentzen started Hilbert’s programme by providing such a finitistic proof for
number theory. In [6], he proved the consistency of Peano Arithmetic, PA, from a
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finitistically acceptable theory (e.g. Primitive Recursive Arithmetic) using transfinite
induction up to ε0. The ordinal ε0 is the first fixpoint of the ordinal function β 7→ ωβ,
also defined as the limit of {ω, ωω, ωωω , . . . }. Gentzen’s proof relies on a recursive
representation system for ordinals below ε0. Moreover, Gentzen also showed that PA
proves transfinite induction for arithmetic predicates up to any ordinal below ε0, but
not up to ε0. This way, the “strength” of PA is measured by ε0: we say that ε0 is
the proof-theoretic ordinal of PA. Gentzen’s work marks the start of modern ordinal
analysis.
Later, the ordinal analysis of many theories has been obtained. First, it was for
subsytems of second order arithmetic. For example, Takeuti gave an ordinal analysis
of (Π1

1 − CA) in 1967 in [18]. Takeuti’s work was followed by himself and by many
other mathematicians, such as Buchholz and Pohlers, that refined his techniques and
simplified the treatment of ordinal analysis. Next, manly due to the work of Jäger
and Pohlers ([7]), the ordinal analysis of set theories was achieved, starting with KP.
Ordinal analysis is still nowadays a widely studied branch of proof theory.

Thanks to ordinal analysis, classification results of provably total recursive func-
tions of many theories have been obtained. The starting point is the classification of
the provably total recursive functions of PA, that has been proved in different ways
(e.g. by Kreisel in 1951-1952 in [9] and [10], by Buchholz and Wainer in 1987 in [3]
or by A. Weiermann in 1996 in [19]). To state and prove such a classification result,
we establish a representation system for the ordinals below ε0 (the proof-theoretic
ordinal of PA). Then, we define a hierarchy of functions, called the fast growing hi-
erarchy, based on the ordinals below ε0. It can be shown that any provably total
recursive function of PA has to be majorised1 by some function of the fast growing
hierarchy at level less than ε0.

In 2016, Jacob Cook and Michael Rathjen in [5] gave a classification of the prov-
ably total set-recursive functions of KP using tools from ordinal analysis and proof
theory. The result we show in this thesis is similar to Theorem 6.2 in [5] (and, in
fact, the proof uses the same methods) but for KPl total set-recursive functions.
Nonetheless, there is a constraint: the existence of many non-recursive ordinals (e.g.
ωck1 ) is provable in KPl. The image of a set x by a function could be contained by
an admissible set not containing x. To avoid this obstacle, we have to restrict our
study to functions that have the property that the image of any set x belongs to
the same admissible sets as x does. The statement of our main theorem will be the

1We say that a function f is majorised by the function g whenever there is some natural number
n such that ∀m > n(f(m) < g(m))
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following. Given any set-recursive function f such that KPl proves that f is total and
Σ-definable with the same formula in any admissible set, for any set x, the value f(x)
belongs to an initial segment of the constructible hierarchy relativized to x at level
below the relativized Takeuti-Feferman-Buchholz ordinal, where the TFB ordinal is
the proof-theoretic ordinal of KPl. We will call this bounding set Ĝn(x), where n
is some natural number that can be read of the proof of totality so n is related to
the adequate level of the relativized constructible hierarchy. The formal statement
of our main theorem will be the following.

Theorem 6.3. Let f be a set-recursive function such that KPl proves that f is total
and uniformly Σ-definable in any admissible set. Then, there is some n < ω such
that

V ⊨ ∀x(f(x) ∈ Ĝn(x)).

In the proof of our main theorem, given such a function f , we will fix a set X and
show that, indeed, the value f(X) is bounded as stated. To do that, we will construct
a logic depending on X in which we will embed KPl and through which we will be
able to show that f(X) belongs to Ĝn(X). This system, that we will call RSl(X)
for Ramified Set Theory relativized to X (the l stands for limit), will be based on
a relativized ordinal notation system for KPl. By means of this relativized notation
system we will give names to relevant ordinals. In particular, we will write the first
(ω+1)-many regular uncountable cardinals above the set-theoretic rank of X as Ωn

for each n ≤ ω. In RSl(X), the admissible ordinals will be exactly the Ωn’s and we
will use the ordinals from the recursive set of notations in many ways (to define the
terms of the system, the length of the derivations, the complexity of the formulas,
etc.).

As we said earlier, the skeleton of this thesis will be similar to the skeleton of Cook
and Rathjen’s paper [5]. In fact, the main references used in thesis are Cook and
Rathjen’s paper [5] together with Pohlers’ article [12].
In Section 2 we will give the formal definition of KP and KPl. In Section 3 we will
introduce and study our relativized notation system, based on [2] and [12]. We will
employ this notation system to define the system RSl(X) in Section 4, where we
will show some proof-theoretic properties of this system such that, under certain
conditions, cuts can be eliminated. In this section we also prove an important result
that will help to eliminate cuts, the Collapsing Theorem, that allows to collapse the
length of a proof and the complexity of the cuts in a proof below a certain Ωn, for
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n < ω. In Section 5 we embed KPl into RSl(X). Finally, we will put all the tools
and results together to prove the main theorem in Section 6.
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2 The axiomatic set theory KPl

In this section, we define the axiomatic set theory KPl. This theory is strongly
related to KP, Kripke-Platek: the theory KPl states that the universe is a limit of
models of KP. This is why we will deal, at the beginning, with two languages, the
language of KP, which is L := {∈, /∈} (we will use the connective ¬ as a defined
notion) and the language of KPl, where we add a predicate that intends to mean
that a given set is a model of KP together with the negation of this predicate. So we
define L′ := {∈, /∈, Ad,¬Ad}.
Moreover, since KP and KPl are first-order axiomatic theories, we use the usual first-
order language to construct formulas. We have the connectives {∨,∧}, the quantifiers
{∀, ∃}, the auxiliary symbols {(, )} and an infinite set of variables V . We will often
use the letters x, y and z, as well as a and b, to denote both variables and sets (it
should be easy to discern if a letter is used as a variable or as a set by context).
We define the following notation to say that some axiom or formula is satisfied in a
given set.

Definition 2.1. Let A be a formula in any of the languages L or L′. Let x be a set.
The formula obtained by restricting all the unbounded quantifiers of A to x will be
denoted by Ax.

Moreover, we will use the equality symbol as a defined notion and we will define
the connectives ¬ and →. The following definition works for both languages L and
L′.

Definition 2.2. The formula a ⊆ b will stand for ∀x ∈ a(x ∈ b).
The formula a = b will stand for a ⊆ b ∧ b ⊆ a.

The formula ¬A is obtained by replacing in A the symbol ∈ by /∈ and vice-versa,
∧ by ∨ and vice-versa, ∀ by ∃ and vice-versa, and Ad(·) by ¬Ad(·) and vice-versa.
We define a→ b ≡ ¬a ∨ b.
The formula a ̸= b will stand for ¬a = b.

We will start by stating all of the axioms and schemas that we will use and, after
that, we will introduce both KP and KPl. We will work with finite sets of formulas.
In the following definition, we consider Γ to be any finite set of formulas in the
language L or L′.

Definition 2.3.
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Logical axioms: Γ, A,¬A for any formula A,
Leibniz Principle: Γ, (a = b ∧B(a)) → B(b) for any formula B(a),
Pair: Γ,∃z(a ∈ z ∧ b ∈ z),
Union: Γ,∃z∀y ∈ a∀x ∈ y(x ∈ z),
∆0-Separation: Γ,∃y[∀x ∈ y(x ∈ a ∧B(x)) ∧ ∀x ∈ a(B(x) → x ∈ y)]

for any ∆0-formula B(a),
Class Induction: Γ,∀x[∀y ∈ xB(y) → B(x)] → ∀xB(x)

for any formula B(a),
Infinity: Γ,∃x[∃z ∈ x(z ∈ x) ∧ ∀y ∈ x∃z ∈ x(y ∈ z)],
∆0-Collection: Γ,∀x ∈ a∃yB(x, y) → ∃z∀x ∈ a∃y ∈ zB(x, y)

for any ∆0-formula B(a, b).

Now, the axioms defining the Ad predicate are the following (the set ω is the first
ordinal that contains all the natural numbers; the predicate Tran(x) means that x is
transitive, i.e. for any y ∈ x all the elements of y are elements of x).

Ad1: Γ,∀x[Ad(x) → ω ∈ x ∧ Tran(x)],
Ad2: Γ,∀x∀y[Ad(x) ∧ Ad(y) → x ∈ y ∨ x = y ∨ y ∈ x],
Ad3: Γ,∀x[Ad(x) → (Pair)x ∧ (Union)x ∧ (∆0 − Sep)x ∧ (∆0)− Coll)x],
Lim: Γ,∀x∃y[Ad(y) ∧ x ∈ y].

The KP theory is a weak subtheory of ZF, where we get rid of the Power Set axiom
and we restrict the Separation and Collection axiom schemas to ∆0-formulas. One
of the most interesting properties about KP is the fact that this theory is sufficient
to construct Gödel’s constructible hierarchy. In fact, the constructible universe L is
a model of both ZFC and KP.

Definition 2.4. The axioms of KP are the Logical axioms and the following axioms
and schemas in the language L = {∈, /∈}.

1. Leibniz Principle,

2. Pair,

3. Union,

4. ∆0-Separation,

5. Class Induction,

6. Infinity,
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7. ∆0-Collection.

Transitive set models of KP are called admissible sets or classes. In KPl, the
(Lim) axiom states that for any set x we can find an admissible set that contains x.
Therefore, starting with some set (for instance the empty set), we can build a chain
of any length of admissible sets, each containing the previous one. This gives the
existence of unboundedly many admissible sets in our universe.

We remind that the language of KPl is L′ = {∈, /∈, Ad,¬Ad}, where, in general,
the Ad predicate intends to mean that a given set is admissible. Actually, the predi-
cate Ad in this thesis does not just mean admissible. Admissible sets are not linearly
ordered by the ∈-relation, and so axiom (Ad2) should in general not hold. Nonethe-
less, we will restrict our study of admissible sets to those belonging to a particular
hierarchy of sets, which will be linearly ordered, and so the predicate Ad will mean
“is admissible and belongs to this hierarchy”. That is reason why we include (Ad2)
as an axiom of KPl.
We now introduce the axioms of KPl. We observe that we don’t have ∆0-Collection
here.

Definition 2.5. The axioms of KPl are the Logical axioms and the following axioms
and schemas in the language L′.

1. Leibniz Principle,

2. Pair,

3. Union,

4. ∆0-Separation,

5. Class Induction,

6. Infinity,

7. Ad1,

8. Ad2,

9. Ad3,

10. Lim.
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We will now introduce the rules of inference that we will use for KPl. These rules
are written in Tait’s sequent style. Both in the premises and in the conclusion of
each rule, we have finite sets of L′-formulas. That means that, below, the symbol
Γ represents any finite set of L′-formulas, just as in the formulation of the axioms.
Moreover, A and B are any L′-formulas. The formulas derived in the conclusion can
intuitively be thought as a disjunction. That is, when we derive A,B, it means that
either A or B is true.

Definition 2.6. The rules of inference of KPl are the following.

Γ, A Γ, B
(∧)

Γ, A ∧B

Γ, A
(∨)

Γ, A ∨B
Γ, B

(∨)
Γ, A ∨B

Γ, a ∈ b ∧B(a)
(b∃)

Γ,∃x ∈ b B(x)

Γ, B(a)
(∃)

Γ,∃x B(x)

Γ, a ∈ b→ B(a)
(b∀)

Γ,∀x ∈ b B(x)

Γ, B(a)
(∀)

Γ,∀x B(x)

Γ, A Γ,¬A
(Cut)

Γ

In the rules (b∀) and (∀), it must be the case that a does not occur in the conclusion.

We write KPl ⊢ Γ whenever Γ is an axiom or there is one (or two) set(s) of formulas
∆ (and ∆′) such that KPl ⊢ ∆ (and KPl ⊢ ∆′) and we can obtain Γ from ∆ (and
∆′) by the application of a rule.
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The rules of KP are the same but in the language L.
We will make explicit an important difference between KP and KPl. We will show
that KP proves Σ-Reflection. A formula A is Σ if there is no unbounded universal
quantifier occurring in A. The proof of Σ-Reflection uses the ∆0-Collection axiom
and thus cannot be performed in KPl. Since we only want to highlight a major
difference between KP and KPl, we will omit some details. We will be following the
proof of Barwise, in [1].

Theorem 2.7 (Σ-Reflection principle). For any Σ-formula A in the language L =
{∈, /∈}, we have

KP ⊢ A→ ∃x Ax.

Proof. The central idea of the proof is to use the following claim, that states that if
a Σ-formula holds in some set x, then the formula holds in any superset of x.

Claim 2.7.1. Let B be a Σ-formula in the language L. Then we have

KP ⊢ Bx ∧ x ⊆ y → By.

We prove Claim 2.7.1 by induction on the construction of B. We fix a model of
KP and we fix two sets in this model (the interpretations of x and y in the model,
that we will call just x and y).

Base Case. If B is a ∆0-formula, then Bx ≡ By and so the claim is reduced to
showing KP ⊢ B → B, which always holds.

We suppose B ≡ B0 ∧B1. We want to show

KP ⊢ (B0 ∧B1)
x ∧ x ⊆ y → (B0 ∧B1)

y.

So we assume that (B0 ∧ B1)
x holds in our model. Hence, the formulas Bx

0 and Bx
1

also hold. The induction hypothesis gives

KP ⊢ Bx
i ∧ x ⊆ y → Bx

i (1)

for i ∈ {0, 1}. Therefore, since Bx
i and x ⊆ y are true in the model, By

i is also true,
for i ∈ {0, 1}. Hence, (B0 ∧B1)

y holds in the model. This means that, in any model
of KP, (B0 ∧B1)

y is true whenever (B0 ∧B1)
x ∧ y ⊆ x is true. Hence,

KP ⊢ (B0 ∧B1)
x ∧ x ⊆ y → (B0 ∧B1)

y.
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The other cases are similar. Since we do not want to insist in this proof, we consider
that Claim 2.7.1 is shown.
We prove Theorem 2.7 by induction on the construction of A.
We treat the most interesting case for us, where ∆0-Collection shows up. We suppose
that A is ∀a ∈ b B(a). By the induction hypothesis we have

KP ⊢ B(a) → ∃x B(a)x.

To verify that KP proves ∀a ∈ b B(a) → ∃x∀a ∈ b B(a)x, we fix a set b in a fixed
model of KP and we assume that ∀a ∈ b B(a) holds in the model. Our aim is
to show that ∃x∀a ∈ b B(a)x holds in this model. In the model, for every a in
b there is a set ya such that B(a)ya holds by the induction hypothesis applied to
B(a). This means that ∀a ∈ b∃yaB(a)ya holds. Now we use ∆0-Collection to get
∃y∀a ∈ b ∃ya ∈ y B(a)ya . We take a witness y and we define Y :=

⋃
y. Then, for

each a ∈ b, we have some ya such that B(a)ya ∧ ya ⊆ Y holds. Therefore, by Claim
2.7.1, we obtain ∀a ∈ b B(a)Y . Hence, taking Y as our witness, we obtain that
∃x∀a ∈ b B(a)x holds in the model.

We cannot perform the proof of Σ-Reflection within KPl due to the absence
of ∆0-Collection. This difference between KP and KPl has further implications:
the principle of Σ-Reflection is used to prove more results, like Σ-Collection or ∆-
Replacement, that are used to prove Σ-Recursion (see [1]). So in KP, mainly due
to ∆0-Collection, we are able to define an n + 1-ary Σ function from an n + 2-ary
Σ function by recursion. This definition cannot be done within KPl, where only a
weaker result can be proved (see [12]).
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3 Relativized ordinal notation system

We recall that our main goal in this thesis is to show that, given a set-recursive
Σ-definable function f such that KPl proves that f is total and definable with the
same Σ-formula in any admissible set, the image of any set under f is bounded. In
the proof of this main theorem, our way to show that f(x) is bounded for every x will
consist on fixing a set X and seeing that f(X) is indeed bounded by a bound that
depends on X. Once our set X is fixed, we will build a proof system dependent on
this X where we will embed KPl in some way, in order to reason in this new system.
This system, that we will call RSl(X), for Ramified Set Theory relativized to X,
will be defined based on ordinals: since KPl states that there are unboundedly many
admissible sets, we will consider the sequence of the first ω-many different admissible
sets from the constructible hierarchy relativized to X, defined as follows. The set
TC({X}) is the transitive closure of {X}, the smallest transitive set that includes
{X}.

Definition 3.1. Let X be any set. We define for every ordinal α the set Lα(X) as:

L0(X) = TC({X}),
Lα+1(X) = {Y ⊆ Lα(X) : Y is definable over ⟨Lα(X),∈⟩ with parameters in Lα(X)},
Lγ(X) =

⋃
α<γ Lα(X) if γ is a limit.

Moreover, having a fixed set X we let θ be the set-theoretic rank of X (where
rank(y) = sup{rank(z)+1 : z ∈ y} for any set y). Let λβ.Ωβ enumerate the sequence
of consecutive cardinals κ such that κ ≥ θ. In particular, for every ordinal β we have
that LΩβ(X) is admissible. Actually, we will only be interested in those cardinals up
to Ωω, which contains ω many X-admissible ordinals (each Ωn for n < ω).
We will be using ordinals to a great extent in RSl(X). Since this system will depend
on the fixed set X, we need the ordinals that we will employ to depend on X too.
That is why we firstly have to thoroughly define the set of ordinals that we will be
using in a recursive way from X. This is exactly what this section is about: we are
going to define for a fixed set X with set-theoretic rank θ a recursive set T (θ) of
strings representing ordinals.

3.1 Preliminaries

In this subsection we develop the tools that we need to define T (θ). We will define
the Veblen functions φα for each ordinal α. The general idea is that φα enumerates
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the fixpoints of the previous φβ for β < α. To understand the construction of the
Veblen functions, we first need some ordinal theory. We refer the interested reader
not familiar with ordinals and cardinals to Chapter I sections 6-10 of [11] for an
overview, or Chapters 2 and 3 of [8] for a more complete study.

Definition 3.2. A set x is transitive iff ∀ y∈x ∀ z∈y (z ∈ x).
A set x is well-ordered by a relation R iff every non-empty subset y of x has a least
element in the R-ordering.
An ordinal is a set α such that α is transitive and well-ordered by the ∈-relation. We
write On to denote the class of all the ordinals.

We also define an ordering on On.

Definition 3.3. Let α, β ∈ On. We define α < β iff α ∈ β.

Ordinals fall into three categories, defined as follows.

Definition 3.4. Let α be any ordinal. Then either

1. α = 0 := ∅, or

2. α = β + 1 for some β, in which case α is called a successor ordinal, or

3. For every β < α we have β + 1 < α, in which case α is called a limit ordinal.

To define the Veblen functions, we will need some basic ordinal arithmetic.

Definition 3.5. Let α be an ordinal.
We define α + β for every ordinal β by recursion on β.

1. α + 0 = α,

2. α + (β + 1) = (α + β) + 1,

3. α + β = sup(α + δ : δ < β) if β is a limit ordinal.

We define α · β for every ordinal β by recursion on β.

1. α · 0 = 0,

2. α · (β + 1) = α · β + α,

3. α · β = sup(α · δ : δ < β) if β is a limit ordinal.
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We define αβ for every ordinal β by recursion on β.

1. α0 = 1,

2. αβ+1 = αβ · α,

3. αβ = sup(αδ : δ < β) if β is a limit ordinal.

We refer to page 23 of [8] to see some properties of the operations defined above.
We need the notion of cardinal that we define as follows.

Definition 3.6. Let x be any set. Then, we write |x| to denote the cardinality of x,
i.e. the least ordinal κ such that there is a bijection between x and κ.
An ordinal κ is called a cardinal iff |κ| = κ.

We are specially interested in regular cardinals, that we define now.

Definition 3.7. A cardinal κ is called regular iff for every ordinal β, if there is a
sequence of ordinals ⟨λα : α < β⟩ such that λα < κ for every α < β and κ =

⋃
α<β λα,

then β ≥ κ.

Usually, we will use greek letters α, β to denote ordinals. We reserve κ to denote
cardinals.

Now, before presenting the Veblen functions, we need two important concepts re-
lated to a regular cardinal κ. First, we define the notion of closed and unbounded in
κ class of ordinals. Next, we define the notion of normal function in κ.

Definition 3.8. Let M be a class of ordinals and let κ be a regular cardinal. We
say that M is closed in κ iff for any subset U ⊆ M ∩ κ with |U | < κ we have that
sup(U) ∈M .
We say that M is unbounded in κ iff for any α < κ there is some β ∈ M such that
α < β < κ.
If M is closed and unbounded in κ, we say that M is κ-club.

Moreover, if a class M is κ-club for any regular cardinal κ, then we will say that
M is club.

Definition 3.9. Let f : On → On be an ordinal function. We say that f is order-
preserving iff for any ordinals α and β we have

α ≤ β → f(α) ≤ f(β).

We say that f is κ-normal iff f is order-preserving and
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• κ ⊆ dom(f),

• for any subset U ⊆ κ with |U | < κ we have that

sup(f [U ]) = f(sup(U)).

Moreover, if an ordinal function f is κ-normal for any regular cardinal κ we will
say that f is normal.

Lemma 3.10. Given an order-preserving function f , for any ordinal β we have that
β ≤ f(β). In particular, this result applies for κ-normal functions for any regular
cardinal κ.

Proof. We assume that this does not hold. Then, consider

β = min({δ : δ > f(δ)}).

By definition, we have that f(β) < β. Since f preserves the order, f(f(β)) < f(β),
contradicting the minimality of β.

The next lemma relates κ-club classes to κ-normal functions. In particular, we
will use enumerating functions of classes of ordinals. The enumerating function of
M enumerates M by associating to each ordinal of the order-type of M an element
of M in a strictly increasing manner.

Lemma 3.11. Let M be a class of ordinals and let κ be a regular cardinal. Then,

M is κ-club iff the enumerating function enM of M is κ-normal.

Proof. Let us start with the left to right implication.
We notice that otype(M ∩ κ) = κ. Otherwise, it would be otype(M ∩ κ) = α < κ
and so κ =

⋃
β<α enM∩κ(β), against the regularity of κ. This shows that κ =

dom(enM∩κ) ⊆ dom(enM).
Now, let U ⊆M ∩ κ with |U | < κ. Then |enM [U ]| < κ and so sup(enM [U ]) ∈ κ∩M
since κ is regular andM is closed. Therefore, there is α < κ such that sup(enM [U ]) =
enM(α). Let us see that α = sup(U). First, if β ∈ U then enM(β) < enM(α) and
so β < α. This means that sup(U) ≤ α. Now, if the inequality was strict, we would
have that enM(sup(U)) < enM(α) = sup(enM [U ]) and so there would be some β ∈ U
such that enM(sup(U)) < enM(β), against β ≤ sup(U). Hence, the desired result is
obtained.
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Now, suppose that enM is κ-normal. Let α < κ. Then, by Lemma 3.10, we have

α < α+ 1 ≤ enM(α + 1).

Also, enM(α + 1) < κ and so M is unbounded in κ.
Let U ⊆M ∩ κ with |U | < κ. Then, we have

sup(U) = sup(enM [otype(U)]) = enM(sup(otype[U ])) ∈M.

Hence, M is closed in κ.

For an ordinal function f , we say that x ∈ dom(f) is a fixpoint of f if it belongs to
the class Fix(f) := {x ∈ dom(f) : f(x) = x}. We will now show that the fixpoints of
a κ-normal function form a κ-club class. This means that the enumerating function of
Fix(f) is κ-normal and we can form a chain of κ-club classes and κ-normal functions
by iterating the processus of taking fixpoints of the enumerating function of the
previous class. This is how, in particular, Veblen functions work.

Lemma 3.12. Let κ be a regular cardinal. Let f be a κ-normal function. Then,
the class Fix(f) = {x ∈ dom(f) : f(x) = x} of the fixpoints of f is κ-club.

Proof. Let α < κ. We define β0 = α+ 1 and βn+1 = f(βn) for any n < ω. Then, we
define β := sup{βn : n < ω} < κ. By κ-normality, we get

f(β) = f(sup(βn : n < ω)) = sup(f(βn : n < ω)) = sup(βn+1 : n < ω) = β.

Therefore, we obtain α < β ∈ Fix(f) ∩ κ. Hence, the class Fix(f) is unbounded in
κ.
Now, let U ⊆ Fix(f) ∩ κ with |U | < κ. We get

f(sup(U)) = sup(f [U ]) = sup(U).

Thus, we obtain sup(U) ∈ Fix(f). Hence, the class Fix(f) is closed in κ.

We are now able to define the Veblen functions.

Definition 3.13. We define simultaneously Cr(α) and φα for every ordinal α by
induction on α.
Cr(0) := {α : ∀ β, δ<α (β + δ < α)} and φ0 enumerates Cr(0).
Cr(α) := {β : ∀ δ<α (φδ(β) = β)} and φα enumerates Cr(α).
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Sometimes, we will write φαβ instead of φα(β). Since each φα enumerates a class of
ordinals, every φα is an ordinal order-preserving function.
The following results show that each Cr(α) is club and each φα is normal. We first
see that this holds for α = 0.

Lemma 3.14. Cr(0) is κ-club for any regular κ.

Proof. To see that Cr(0) is uncountable, let α < κ. Let β0 = α+1 and βn+1 = βn+βn.
It follows that β := sup({βn : n < ω}) < κ. Therefore, we have the inequalities

α < β0 ≤ β < κ.

Moreover β is additive principal: let δ, γ < β. In particular, we have δ, γ < βn for
some n. Hence, δ + γ < βn + βn = βn+1 < β.
Let U ⊆ Cr(0) ∩ κ with U < κ. Let α, β < sup(U). In particular, α, β < γ for some
γ ∈ U . Then, since γ ∈ Cr(0), by definition we obtain α + β < γ ≤ sup(U).

Corollary 3.15. φ0 is κ-normal for any regular κ.

Proof. By Lemma 3.17, the class Cr(0) is κ-club for any regular κ and so by Lemma
3.11 its enumerating function φα is κ-normal for any regular κ.

Now, we prove this result for any ordinal α.

Lemma 3.16. For any ordinal α and any uncountable regular cardinal κ > α,

Cr(α) is κ-club and φα is κ-normal.

Proof. We proceed by induction on α.

• The case α = 0 is already done in Lemma 3.17 and Corollary 3.15.

• We suppose that Cr(α) is κ-club and φα is κ-normal. Then Cr(α+1) consists
on the fixpoints of φα and so Cr(α + 1) is κ-club by Lemma 3.12. Since φα+1

enumerates Cr(α + 1), we have that φα+1 is κ-normal by Lemma 3.11.

• We suppose that α is a limit. Then Cr(α) =
⋂
β<αCr(β). Since the intersec-

tion of less than κ many κ-club sets is κ-club (cf. Theorem 8.3 of [8]), the class
Cr(α) is again κ-club. It follows that φα is κ-normal by Lemma 3.11.

The next Lemma gives an explicit description of the elements of Cr(0), which
are the additive principal ordinals.
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Lemma 3.17. Let α be an ordinal. Then α ∈ Cr(0) iff α = ωβ for some ordinal β
.

Proof. First, we show that all ordinals of the form ωβ are additive principal by
induction on β.

• ω0 = 1, which is additive principal.

• We suppose that ωβ is additive principal. Then, we have

ωβ+1 = ωβ · ω = sup({ωβ · n : n < ω}.

Let δ, γ < ωβ+1. That is, there is n < ω such that δ, γ < ωβ · n. Therefore, we
get

δ + γ < ωβ · n+ ωβ · n = ωβ · (2n) < ωβ+1.

• We suppose that β is a limit ordinal. Then, we have

ωβ = sup({ωξ : ξ < β}).

Let δ, γ < ωβ. That is, there is ξ < β such that δ, γ < ωξ. By the induction
hypothesis, we obtain δ + γ < ωξ ≤ ωβ.

Now, we will see that any additive principal ordinal is of the form ωβ. We suppose not.
The, let α ∈ Cr(0) such that α ̸= ωβ for any β. Since the class {ωβ : β is an ordinal}
is unbounded, there is some β such that α < ωβ. In fact, the least such ordinal, that
we call β = min({δ : α < ωδ}), has to be a successor ordinal. Otherwise, α > ωδ for
all δ < β and so α ≥ sup({ωδ : δ < β}) = ωβ, a contradiction.
We now know that there is β such that

ωβ < α < ωβ+1 = ωβ · ω = sup({ωβ · n : n < ω}).

Therefore, there is some n < ω such that

ωβ · n < α < ωβ · (n+ 1) = ωβ · n+ ωβ.

But since α is additive principal, we have

ωβ · n+ ωβ · n < α < ωβ · n+ ωβ < ωβ · n+ ωβ · n,

which is a contradiction. Hence α /∈ Cr(0).
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The first element of Cr(1) is ε0, which is the limit of {ω, ωω, ωωω , . . . }.
By means of Lemma 3.17, we can write each ordinal as the sum of a finite number of
additive principal ordinals of the form ωβ. This is how we define the Cantor normal
form of an ordinal.

Definition 3.18. Let α be an ordinal. We define the Cantor normal form of α as
follows.

α =NF ω
α1 + · · ·+ ωαn if α ≥ α1 ≥ · · · ≥ αn and α = ωα1 + · · ·+ ωαn.

If α = 0, then taking n = 0 we get an empty sum, which by convention equals 0.

We show that Veblen functions are monotone on the first component.

Lemma 3.19. Let α and β be ordinals. If α < β, then Cr(β) ⊊ Cr(α) and φα(γ) ≤
φβ(γ) for any ordinal γ.

Proof. We suppose that α < β. If δ ∈ Cr(β), then φξ(δ) = δ for all ξ < β and so, in
particular, for all ξ < α, showing that δ ∈ Cr(α).
Let us see that the inclusion is proper. Let δ = φα(0) ∈ Cr(α). Then δ > 0 (since in
particular 0 /∈ Cr(0)). Therefore, we have φα(δ) > φα(0) = δ and so δ /∈ Cr(β).

The next lemma shows that the outputs of each φβ are fixpoints of the previous
Veblen functions.

Lemma 3.20. Let α and β be ordinals. If α < β then φα(φβ(γ)) = φβ(γ) for any
ordinal γ.

Proof. We observe that φβ(γ) ∈ Cr(β). Since α < β, it must be a fixpoint of φα,
and so φα(φβ(γ)) = φβ(γ).

Since we want to represent ordinals with Veblen functions, we are interested in
knowing how some ordinal can be the output of different Veblen functions.

Lemma 3.21. Let α1, α2, β1, β2 be ordinals. Then

φα1β1 = φα2β2 ⇔


α1 = α2 ∧ β1 = β2, or

α1 < α2 ∧ β1 = φα2β2, or

α2 < α1 ∧ β2 = φα1β1.

Proof. If α1 = α2, then (φα1β1 = φα1β2 iff β1 = β2), since φα1 is an enumerating
function.
If α1 < α2, then φα1(φα2β2) = φα2β2 by Lemma 3.21. Therefore, we obtain the
equivalence
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(φα1β1 = φα2β2 iff φα1β1 = φα1(φα2β2) iff β1 = φα2β2).

The case α2 < α1 is analogous.

A similar proof shows the following Lemma.

Lemma 3.22. Let α1, α2, β1, β2 be ordinals. Then

φα1β1 < φα2β2 ⇔


α1 = α2 ∧ β1 < β2, or

α1 < α2 ∧ β1 < φα2β2, or

α2 < α1 ∧ β2 < φα1β1.

Lemma 3.23. For any ordinal α, all fixpoints of φα are limit ordinals.

Proof. First, we observe that 0 < φα0 for any α and so 0 is not a fixpoint for any
α. Let us see that successor ordinals are not fixpoints.
We suppose that β + 1 = φα(β + 1). Then, given δ ≤ α, we have

φδ(β + 1) = φδ(φα(β + 1)) = φα(β + 1) = β + 1.

In particular, taking δ = 0 yields

ωβ+1 = φ0(β + 1) = β + 1,

a contradiction since ωξ is always a limit.

Lemma 3.24. Let α and β > 0 be ordinals. Then α ≤ φα0 < φαβ.

Proof. We proceed by induction on α.

• 0 < 1 = φ0(0).

• We suppose that α ≤ φα(0). But φα(0) < φα+1(0) and so α < φα+1(0). It
follows that α + 1 ≤ φα+1(0). In fact, by the previous Lemma, we get that
α + 1 < φα+1(0).

• We suppose that α is a limit and β ≤ φβ(0) for all β < α. Fix β < α. Then
φβ(φα(0)) = φα(0) > φβ(0) ≥ β. Therefore, for any β < α we have β < φα(0).
It follows that α ≤ φα0.

We show that any additive principal ordinal α can be written as the output of
some Veblen function with second argument below α.
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Lemma 3.25. Let α ∈ Cr(0). There are uniquely determined ordinals δ, β such
that α = φδβ and β < α.

Proof. We start by proving the existence of δ and β.
Let γ = min({δ : α < φδα}). This minimum exists because α ≤ φα0 < φα(α) by
Lemma 3.24 (in the case α = 0 we have 0 < φ0(0)). If γ = 0, then α < φ0α. But
α = φ0β for some β and φ0β = α < φ0α. This shows that β < α.
We suppose that γ ̸= 0. Then, we have α ≥ φδγ for all δ < γ. Since α ≤ φδα, it
must be α = φδα for all δ < γ, and so α ∈ Cr(δ) for all δ < γ. Therefore, α ∈ Cr(γ)
and so there is some β with α = φγβ. But by the definition of γ, φγβ = α < φγα
and so β < α.

We prove uniqueness. We suppose that α = φδβ = φγξ with β, ξ < α.
If δ < γ, then α = φδβ < φδα = φδ(φγξ) = φγξ = α, a contradiction. Hence, we
have δ = γ. It follows that β = ξ.

We define the class of strongly critical ordinals. An ordinal α is strongly critical
if α is a fixpoint of every φβ, for β < α.

Definition 3.26. SC := {α : α ∈ Cr(α)}.
The function λβ.Γβ enumerates SC.

Lemma 3.27. Let α be an ordinal. Then

α ∈ Cr(α) iff φβδ < α for any β, δ < α.

Proof. First, we notice that (α ∈ Cr(α) iff α = φα0) since α ≤ φα0 < φαβ for any
β > 0.
We suppose that α ∈ Cr(α) and so α = φα0. Let β, δ < α. Then

φβα = φβ(φα0) = φα0 = α,

and so α = φβα. Therefore, we obtain φβδ < φβα = α.
Now, suppose that φβδ < α for any β, δ < α. Fix β < α. Then, we have φβδ < α
for any δ < α. It follows that

φβα = sup({φβδ : δ < α}) ≤ α.

But α ≤ φβα. Hence, we get α = φβα, and so α ∈ Cr(β) for any β < α. This
means that α ∈ Cr(α).
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We notice that the proof shows in particular that

α ∈ SC iff α ∈ Cr(α)

iff α = φα0

iff φβδ < α for any β, δ < α

iff α = φβα for any β < α.

A deeper study of Veblen functions can be found in [13]or in [17].

3.2 The ordinal notation system

Now, we will construct the ordinal notation system T (θ) that we will use to build
the RSl(X)-logic. Recall that RSl(X) will depend on some fixed set X.

Reading Convention 3.28. The set X is a fixed set. The set-theoretic rank of
X is θ. The sequence ⟨Ωn : n ≤ ω⟩ enumerates the first ω + 1 uncountable regular
cardinals κ such that κ > θ. We have that LΩn(X) ⊨ KP for every n ≤ ω.

We first have to study the ordinal machinery needed to define T (θ). One of the
features of RSl(X) for which we will use ordinals will be to associate an ordinal
level to each term of the system. This means that, since the starting point of the
relativized constructible hierarchy is the transitive closure of X, the sets of TC({X})
will be seen as basic elements, and the level of those basic terms will be some initial
ordinals. Thus, we need one initial ordinal per element of TC({X}), that is, we need
“θ-many” ordinals. Those ordinals will be chosen to be the first “θ-many” strongly
critical ordinals. That is why we will include in T (θ) a representation of every Γβ
for β ≤ θ (see Definition 3.26).
Moreover, we want the set T (θ) to contain a representation of each ordinal Ωn for
n ≤ ω because the RSl(X)-system will be mainly based on the admissible sets of
the relativized constructible hierarchy, that is, on each LΩn(X) for n < ω. Finally,
the set of ordinals represented by a string in T (θ) will be closed under addition, the
Veblen function φ and some Collapsing functions ψn for n < ω that we will use in
order to collapse ordinals under every Ωn for n < ω. We define the ψn functions as
follows, given Reading Convention 3.28.

Definition 3.29. We define simultaneously the sets Bn(α) of ordinals and the ordi-
nal function ψn(α). For every n < ω, we define Bn(α) =

⋃
k<ω B

k
n(α), where B

k
n(α)

is defined by double induction on n and k as follows.
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• B0
0(α) = {0} ∪ {Γβ : β ≤ θ} ∪ {Ωm : m ≤ ω},

Bk+1
0 (α) = Bk

0 ∪ {δ + δ′, φδδ′ : δ, δ′ ∈ Bk
0 (α)} ∪ {ψm(δ) : δ ∈ Bk

0 (α) ∧ δ <
α ∧m < ω}.

• B0
n+1(α) = Ωn ∪ {Ωm : m ≤ ω},

Bk+1
n+1(α) = Bk

n+1 ∪ {δ + δ′, φδδ′ : δ, δ′ ∈ Bk
n+1(α)} ∪ {ψm(δ) : δ ∈ Bk

n+1(α)∧ δ <
α ∧m < ω}.

The ordinal collapsing function ψn is defined as ψn(α) = min{β : β /∈ Bn(α)}.

We will sometimes write ψnα instead of ψn(α). Now, we will be studying the sets
Bn(α) and the collapsing functions ψn. The next lemma shows that the function ψ0

takes values on the strongly critical ordinals between Γθ+1 and Ω0, and that ψn+1

takes values on the strongly critical ordinals between Ωn and Ωn+1 for every n < ω.
In particular, for any natural number n the function ψn(α) collapses any ordinal
under Ωn: this is an important property, since, in our system RSl(X), we will want
to collapse some ordinal bounds under some Ωn, as we will see later.

Lemma 3.30. For every ordinal α and every natural number n, we have:

1. ψn(α) is a strongly critical ordinal,

2. |B0(α)| = max(ℵ0, |θ|) and |Bn+1(α)| = Ωn,

3. Γθ+1 ≤ ψ0(α) < Ω0 and Ωn < ψn+1(α) < Ωn+1.

Proof.

1. We will show that ψn(α) = φψn(α)(0). First, we write ψn(α) in Cantor normal
form to show, in the first place, that ψn(α) is additive principal:

ψn(α) = ωα1 + · · ·+ ωαm ,

with α1 ≥ · · · ≥ αm. We need to see that m = 1. We suppose not. Then,
α1, . . . , αm < ψn(α) and so α1, . . . , αm ∈ Bn(α). But then ψn(α) = φ0(α1) +
· · · + φ0(αm) ∈ Bn(α), a contradiction with the definition of the ψn function.
Therefore, ψn(α) = φ0(α1) with α1 ≤ ψn(α) and so ψn(α) is additive principal.
Now, by Lemma 3.25 we can find some ordinals δ ≤ ψn(α) and γ < ψn(α) such
that ψn(α) = φδγ. We will show that γ = 0, which yields δ = ψn(α). So,
suppose that γ ̸= 0. It follows that δ ≤ φδ0 < φδγ = ψn(α). That is, both
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γ and δ are strictly below ψn(α), which means that γ, δ ∈ Bn(α). But then
ψn(α) = φδγ ∈ Bn(α), in contradiction with the definition of the ψn function.
Hence,

ψn(α) = φψn(α)(0),

which means that ψn(α) is strongly critical.

2. First, we study the case n = 0. We suppose that |θ| is infinite. We have

|B0
0(α)| = |{0} ∪ {Γβ : β ≤ θ} ∪ {Ωm : m ≤ ω}|

= |{Γβ : β < θ}|
= |θ|

and, if |Bk
0 (α)| = |θ| then also |Bk+1

0 (α)| = |θ|. This shows that |Bk
0 (α)| = |θ|

for all k < ω. Therefore, B0(α) is a countable union of sets of cardinality |θ|.
Thus, the cardinality of B0(α) is |θ|.
If |θ| is finite, then |B0

0(α)| = |{Ωn : n < ω}| = ℵ0 and by induction we
can prove that B0(α) is a countable union of sets of cardinality ℵ0, and so
|B0(α)| = ℵ0.
Now, we assume that n > 0. Then |B0

n(α)| = Ωn and, whenever |Bm
n (α)| = Ωn,

also |Bm+1
n (α)| = Ωn since Bm+1

n (α) is a countable union of sets of cardinality
Ωn. Thus, Bn(α) is a countable union of sets of cardinality Ωn. Hence, the
cardinality of Bn(α) is Ωn.

3. We first study the case n = 0. By the first item of this lemma, we have that
ψ0(α) is strongly critical. Moreover, by definition {Γβ : β ≤ θ} ⊆ B0(α). This
means that the first strongly critical ordinals up to and including Γθ must be
below ψ0(α). Therefore, Γθ+1 ≤ ψ0(α). Furthermore, if Ω0 ≤ ψ0(α) we would
have that Ω0 ⊆ B0(α), contradicting Item 2.
Now, we assume that n > 0. By definition, for any n < ω we have that
Ωn ⊆ Bn+1(α) and so Ωn < ψn+1(α). If ψn+1(α) ≥ Ωn+1 then Ωn+1 ⊆ Bn+1(α),
in contradiction with Item 2.

The next lemma states more results about the sets Bn(α) and the functions ψn.
In particular, Items 6., 7. and 8. mean that when α ∈ Bn(α), the function ψn on
input α + 1 grows to the next strongly critical ordinal and, when α /∈ Bn(α), the
function ψn on input α + 1 stays at the same value as on input α.

Lemma 3.31. For any ordinals α and β and for any natural number n, we have:
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1. If β < α then Bn(β) ⊆ Bn(α) and ψn(β) ≤ ψn(α),

2. If β ∈ Bn(α) ∩ α then ψn(β) < ψn(α),

3. If β ≤ α and [β, α) ∩Bn(α) = ∅ then Bn(β) = Bn(α),

4. Bn(α) ∩ Ωn = ψn(α),

5. If α is a limit then Bn(α) =
⋃
β<αBn(β) and ψn(α) = sup(ψn(β) : β < α),

6. ψn(α+1) ∈ {ψn(α), (ψn(α))Γ}, where δΓ is defined as the first strongly critical
ordinal above δ,

7. If α ∈ Bn(α) then ψn(α + 1) = (ψn(α))
Γ,

8. If α /∈ Bn(α) then ψn(α + 1) = ψn(α).

Proof. We prove Item 1. Fix some natural number n.
Let β < α. First, we note that B0

n(β) ⊆ B0
n(α). But from β < α we get

ψn ↾ β = (ψn ↾ α) ↾ β. (⋆)

Now, suppose that Bk
n(β) ⊆ Bk

n(α). We have that Bk+1
n (α) is closed under every

function under which Bk+1
0 (β) is closed by ⋆. This means that Bk+1

n (β) ⊆ Bk+1
n (α).

Hence, we obtain Bn(β) ⊆ Bn(α). Moreover, we get by definition ψn(β) ≤ ψn(α).

The proof of the rest of the items is analogous to the proof of Lemma 2.6 in [5]
(page 5).

Thanks to those properties, we are able to define the normal form of an ordinal
α. This normal form is an extension of Cantor normal form that gives representations
to some strongly critical ordinals.

Definition 3.32. Let α be an ordinal. We define the normal form of α as follows.

1. α =NF α1+ · · ·+αn iff α = α1+ · · ·+αn, n > 1, where the ordinals α1, . . . , αn
are written in normal form and are additive principal and α1 ≥ · · · ≥ αn,

2. α =NF φα1α2 iff α = φα1α2 with α1, α2 < α and α1, α2 are written in normal
form,

3. α =NF ψn(α1) iff α = ψn(α1) with α1 ∈ Bn(α1) and α1 is written in normal
form.
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The idea is that, starting with some basic ordinals (the ordinal 0, the first strongly
critical ordinals up to Γθ and the Ωn ordinals), we will construct ordinals using these
normal forms, so that each ordinal constructed this way has a unique representation.
This is the reason why we add the condition α1 ∈ Bn(α1) in Item 3.: it may be the
case that α = ψn(β) = ψn(β + 1) = · · · = ψn(α1), but the condition α1 ∈ B(α1)
forces ψn(α1+1) to take another value (for instance, the first strongly critical ordinal
above α). Therefore, α1 is the greatest ordinal with image α, and we choose ψn(α1)
to represent α.
This also motivates the next lemma that states that an ordinal is in some Bn(α) if
and only if its “normal form components” are.

Lemma 3.33. Let α, γ be any ordinals and let m be any natural number.

1. If α =NF α1 + · · ·+ αn then [α ∈ Bm(γ) iff α1, . . . , αn ∈ Bm(γ)],

2. If α =NF φα1α2 then [α ∈ Bm(γ) iff α1, α2 ∈ Bm(α)],

3. If α =NF ψm(α1) then [α ∈ Bm(γ) iff α1 ∈ Bm(γ) ∩ γ].

Proof. 1. Let α =NF α1 + · · ·αn. If α1, . . . , αn ∈ Bm(γ), then, since Bm(γ) is closed
under addition, we have α ∈ Bm(γ) too.
We suppose now that α ∈ Bm(γ). We define for any ordinal β in normal form the
set AP (β) of additive predecessors of β as follows

AP (β) =


∅ if β = 0

{β} if β is additive principal

{β1, . . . , βk} if β =NF β1 + · · ·+ βk

We also define the set

Y = {δ ∈ Bm(γ) : AP (δ) ⊆ Bm(γ)}.

The inclusion Y ⊆ Bm(γ) is obvious by definition. Our objective is to show that
Bm(γ) ⊆ Y . This way, we will have Bm(γ) = Y and so, since α ∈ Bm(γ) = Y we
will conclude that α1, . . . , αn ∈ Y = Bm(γ).
Now, we have AP (0) = ∅ ⊆ Bm(γ). Also, we have AP (δ) = {δ} ⊆ Bm(γ) for
any δ ∈ {Ωk : k ≤ ω} ∪ {Γβ : β ≤ θ}. Therefore, we get {0} ∪ {Ωk : k ≤
ω} ∪ {Γβ : β ≤ θ} ⊆ Y . Also, in the case that m ̸= 0, if β < Ωm, then
AP (β) ⊆ Ωm ⊆ Bm(γ) and so AP (β) ⊆ Y . Now, the set Y is closed under addition,
any Veblen function and the ψm function restricted to γ. Indeed, let δ, ξ ∈ Y . Then
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AP (δ+ξ) ⊆ AP (δ)∪AP (ξ) ⊆ Bm(γ). Since φδξ is always additive principal, we have
AP (φδξ) = {φδξ} ⊆ Bm(γ). At last, if δ < γ then AP (ψm(δ)) = {ψm(δ)} ⊆ Bm(γ)
since ψm(δ) is always additive principal.

2. Let α =NF φα1α2. If α1, α2 ∈ Bm(γ), then, since Bm(γ) is closed under φ,
we have α ∈ Bm(γ) too.
We suppose now that α ∈ Bm(γ). We define for any ordinal β in normal form the
set PP (β) of predicative predecessors of β as follows

PP (β) =


∅ if β = 0

{β} if β is strongly critical

{β1, β2} if β =NF φβ1β2

We also define the set

Y = {δ ∈ Bm(γ) : PP (δ) ⊆ Bm(γ)}.

By a reasoning analogous to the one in the first item of this lemma we obtain
Y = Bm(γ), and so α1, α2 ∈ Bm(γ).

3. Let α = ψm(α1). If α1 ∈ Bm(γ) then α ∈ Bm(γ) because Bm(γ) is closed
under ψm ↾ γ.
We suppose now that α ∈ Bm(γ). Then we get ψm(α1) < ψm(γ) which means that
α1 < γ. But, by Definition 3.32, we have α1 ∈ Bm(α1). Therefore, Bm(α1) ⊆ Bm(γ),
which yields α1 ∈ Bm(γ) ∪ γ.

At this point, we can do a first step in the definition of T (θ): we construct R(θ),
the set of ordinals that the strings of T (θ) will intend to denote.

Definition 3.34. We inductively define the set R(θ) together with the complexity
Cα ∈ ω of its elements.

1. 0 ∈ R(θ) and C0 = 0.

2. For every n < ω, Ωn ∈ R(θ) and CΩn = 0.

3. For every β ≤ θ, Γθ ∈ R(θ) and CΓθ = 0.

4. If α1, . . . , αn ∈ R(θ) and α =NF α1 + · · · + αn then α ∈ R(θ) and Cα =
max(Cα1, . . . , Cαn) + 1.
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5. If α1, α2 ∈ R(θ) and α =NF φα1α2 then α ∈ R(θ) and Cα = max(Cα1, Cα2)+
1.

6. If α1 ∈ R(θ) and α =NF ψnα1 then α ∈ R(θ) and Cα = Cα1 + 1.

Let α ∈ R(θ). If α is either 0, Γβ for some β ≤ θ or Ωn for some n < ω, then
α has no normal forms and so Cα is uniquely determined to be 0. If α is not an
R(θ)-basic ordinal, then by Lemma 3.33 it is included in R(θ) due to exactly one of
the rules of this definition, and so Cα is uniquely determined.
Recall that we want to transform R(θ) into a recursive representation system. So the
first problem is that we have to computably deal with the condition α1 ∈ Bn(α1) in
Definition 3.32(3.). To do this, we define for each n < ω and each α ∈ R(θ) the set
of ordinals Argn(α), that consists in all the ordinals that occur in the normal form
of α as an argument of the ψn function.

Definition 3.35. Let n < ω. We define for each α ∈ R(θ) the set of ordinals
Argn(α) by induction on Cα as follows

1. Argn(0) = Argn(Γβ) = Argn(Ωm) = ∅ for all β ≤ θ and all m < ω,

2. If α =NF α1 + · · ·+ αm then Argn(α) = Argn(α1) ∪ · · · ∪ Argn(αm),

3. If α =NF φα1α2 then Argn(α) = Argn(α1) ∪ Argn(α2),

4. If α =NF ψm(α1) with m ̸= n then Argn(α) = Argn(α1),

5. If α =NF ψn(α1) then Argn(α) = {α1} ∪ Argn(α1).

An easy induction on Cα shows the next lemma, that gives a recursive equivalence
to the condition α1 ∈ Bn(α1) in Definition 3.32.

Lemma 3.36. Let α, β ∈ R(θ). Let n < ω. Then,

α ∈ Bn(β) iff ∀δ ∈ Argn(α)(δ < β).

We define T (θ) as the set of unique representations of ordinals in R(θ).

Definition 3.37. We define T (θ) as the set of strings in the language {0,+, φ}∪{Γβ :
β < θ} ∪ {Ωn : n ≤ ω} ∪ {ψn : n < ω} corresponding to ordinals in R(θ) written in
normal form, as in Definition 3.32.

Strings in T (θ) are ordered by the order induced from the ordering of ordinals in
R(θ). Let ≺ denote this order.
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Theorem 3.38. The set T (θ) and the relation ≺ on T (θ) are primitive recursive in
θ.

Again, this theorem can be proved by induction on Cα. We refer to [5] (Theorem
2.13 in page 9) for the proof.
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4 The system RSl(X)

Now that we have the needed ordinal machinery, we can develop our system RSl(X)
for each set X. We will first define the terms of the system, which will correspond to
elements of the constructible hierarchy relativized to X (see Definition 3.1). Then,
we will define the formulas of the system together with some syntactical features
related to the rules of derivations, that we will define after that.
Since the objective is to embed KPl into RSl(X), we need to have a (Cut) rule.
Nonetheless, it is complicated to trace back a proof from a derivation that has used
the (Cut) rule since the active formulas in the premises do not appear in the conclu-
sion. We recall that, in our main theorem, we consider a provably in KPl total and
uniformly Σ-definable set-recursive function f . We want to show that for any set x
the value f(x) belongs to an initial segment of the constructible universe relativized
to x at level below the relativized Takeuti-Feferman-Buchholz ordinal. In the proof
of our main theorem, we will eventually show that there is a derivation in RSl(X)
of ∃y(Af (X, y))Lα(X) for some α, where Lα(X) is an RSl(X)-term representing the
α-th stage of the constructible hierarchy and Af is the formula that uniformly de-
fines f . From this result, we will be able to show by induction on the length of the
RSl(X)-proof that, indeed, there is a set y in the set Lα(X) such that Af (X, y) is
satisfied in Lα(X). But to perform this induction we need, in fact, a derivation of
∃y(Af (X, y))Lα(X) in RSl(X) without cuts. To obtain such a derivation, we will need
to eliminate cuts.
So, after defining the system RSl(X), the main goal of this section is to show that, for
certain derivations (that are conveniently the ones we need) cuts can be eliminated.

4.1 The terms and formulas of RSl(X)

We define and study the system RSl(X) for a fixed set X, following Reading Con-
vention 3.28. This means that θ and the Ωn for n ≤ ω ordinals are also fixed. The
set of strings T (θ) defined in the previous section is fixed too, as it depends on X.
From now on, we assume that all the ordinals we use are represented by a string in
the set T (θ). Actually, we won’t make a difference between ordinals and representa-
tions and we will simply talk about ordinals. We are going to define T , our set of
RSl(X)-terms. Each term t will have a level |t|. Below, by rank(u) we will mean the
set-theoretic rank of u.

Definition 4.1. The set T of RSl(X)-terms is defined as follows.

• u ∈ T for every u ∈ TC({X}) and |u| = Γrank(u). Those are called basic terms.

32



• Lα(X) ∈ T for every α ≤ Ωω and |Lα(X)| = Γθ+1 + α.

• [x ∈ Lα(X) : B(x, s1, . . . , sn)
Lα(X)] ∈ T for every α < Ωω, for every KPl-

formula B(x, y1, . . . , yn) and every s1, . . . , sn ∈ T with |s1|, . . . , |sn| < Γθ+1+α.
Moreover, |[x ∈ Lα(X) : B(x, s1, . . . , sn)

Lα(X)]| = Γθ+1 + α.

Usually, we will just write [x ∈ Lα(X) : B(x)] for terms of the third kind. We
notice that the level of LΩn(X) is Ωn for every n < ω.
Now, we define the RSl(X)-formulas, together with their type. The type of a formula
is strongly related to the rules of inference that we will define later: a formula will
have

∨
-type whenever we can derive it from a single premise, and a formula will have∧

-type whenever we need all the formulas from a given set of premises to derive the
formula.

Definition 4.2. The RSl(X)-formulas are exactly the KPl-formulas replacing free
variables by RSl(X)-terms and restricting all unbounded quantifiers to RSl(X)-terms.
The RSl(X)-formulas of the form u ∈ v or u /∈ v are called basic.
Moreover, each non-basic RSl(X)-formula of the form s ∈ t, A ∨ B, Ad(t) and
∃x ∈ t G(x) has

∨
-type and each non-basic RSl(X)-formula of the form s /∈ t,

A ∧B, ¬Ad(t), ∀x ∈ t G(x) has
∧
-type.

We observe that, by definition, there are no free variables in the RSl(X)-formulas.
From now on, we will call RSl(X)-terms and RSl(X)-formulas simply terms and for-
mulas.

We will say that a formula A(s1, . . . , sn)
LΩn (X) is ΣΩn iff A(x1, . . . , xn) is a KPl Σ-

formula and |s1|, . . . , |sn| < Ωn.

We want to keep track of the terms that appear in the formulas. This motivates
the following definition.

Definition 4.3. For a formula A, we define k(A) = {|t| : t occurs in A including subterms}.
For a finite set of formulas Γ, we define k(Γ) =

⋃
A∈Γ k(A).

For example, we have k([x ∈ LΩn(X) : x ∈ LΩm(X)] ∈ LΩm(X)) = {Ωn,Ωm}.
We will use the following abbreviations. Whereas Items 2., 3. and 4. from below
are the standard standard abbreviations already introduced in Section 2, we will use
the symbol ∈̇ defined in Item 1. to ease and simplify definitions and proofs. Some
examples will be provided when we use this abbreviation.

Definition 4.4.
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1. Let s and t be terms such that |s| < |t|. For ◦ ∈ {∧,→}, we define

s ∈̇ t ◦ A(s, t) =


u ∈ v ◦ A(u, v) if s ∈ t ≡ u ∈ v,

A(s, t) if t = Lα(X),

B(s) ◦ A(s, t) if t = [x ∈ Lα(X) : B(x)].

2. s = t will stand for ∀x ∈ s(x ∈ t) ∧ ∀x ∈ t(x ∈ s).

3. ¬A is obtained from A by replacing ∈ by /∈ and vice-versa, ∨ by ∧ and vice-
versa, ∀ by ∃ and vice-versa and Ad(·) by ¬Ad(·) and vice-versa.

4. A→ B will stand for ¬A ∨B.

We now define two objects that will characterize formulas to build the logic
RSl(X). First, we define for each non-basic formula A the set C(A) of its characteristic
subsentences. It contains all the premises that allow the derivation of A.

Definition 4.5. We define C(A) for a non-basic formula A of
∨
-type.

C(r ∈ t) = {s ∈̇ t ∧ r = s : |s| < |t|};
C(A ∨B) = {A,B};
C(Ad(t)) = {t = LΩn(X) : n < ω ∧ Ωn ≤ |t|};
C(∃x ∈ t A(x)) = {s ∈̇ t ∧ A(s) : |s| < |t|}.

Now, given a non-basic formula A of
∧
-type, we define C(A) = {¬B : B ∈ C(¬A)}.

In some of the above definitions the symbol ∈̇ introduced in Definition 4.4 ap-
pears. Actually, we have three different definitions of C(A) in those cases, depending
on the form of some term that appears in A.

Example. The set C(∃x ∈ t A(x)) is different depending on the form of t.

• If t ≡ u then C(∃x ∈ u A(x)) = {s ∈ u ∧ A(s) : |s| < Γrank(u)},

• If t ≡ Lα(X) for some α ≤ Ωω then C(∃x ∈ Lα(X) A(s)) = {A(s) : |s| <
Γθ+1 + α},

• If t ≡ [x ∈ Lα(X) : B(x)] for some α < Ωω then C(∃x ∈ t A(s)) = {B(s)∧A(s) :
|s| < Γθ+1 + α}.
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This makes sense: we give an intuitive explanation. We focus on the second item of
the example. We suppose that a term s intends to mean some set Y and s has level
less than the level of the term Lα(X). Then, the set Y belongs to the set Lα(X),
because it is below in the constructible hierarchy. Thus, to derive that there is some
x in Lα(X) that satisfies some formula we only need to know that some term s of
level less than Γθ+1+α satisfies that formula (because we already know that, granted
that |s| < Γθ+1 + α, we have that s “belongs” to Lα(X)).
A similar comment can be made for the third case: if |s| < Γθ+1 + α then s already
“belongs” to Lα(X), and so in order to derive ∃x ∈ [x ∈ Lα(X) : B(x)] A(x) it suffices
that some s with |s| < Γθ+1+α satisfies B (and so s “belongs” to [x ∈ Lα(X) : B(x)])
and A.

Now, we define the rank of a term or formula by recursion. This notion will measure
the complexity of the formulas that are active in an application of the (Cut) rule.

Definition 4.6. We define the rank of a term or formula by recursion.

• rk(u) = Γrank(u),

• rk(Lα(X)) = Γθ+1 + ω · α,

• rk([x ∈ Lα(X) : B(x)]) = max(Γθ+1 + ω · α + 1, rk(B(∅)) + 2),

• rk(s ∈ t) = rk(s /∈ t) = max(rk(s) + 6, rk(t) + 1),

• rk(Ad(t)) = rk(¬Ad(t)) = rk(t) + 5,

• rk(A ∨B) = rk(A ∧B) = max(rk(A), rk(B)) + 1,

• rk(∃x ∈ t A(x)) = rk(∀x ∈ t A(x)) = max(rk(t), rk(A(∅)) + 2).

Remark. Since s = t is an abbreviation for

∀x ∈ s(x ∈ t) ∧ ∀x ∈ t(x ∈ s),

we have that

rk(s = t) = max(rk(∀x ∈ s(x ∈ t)), rk(∀x ∈ t(x ∈ s))) + 1

= max(max(rk(s), rk(t) + 3),max(rk(t), rk(s) + 3)) + 1

= max(rk(s), rk(t)) + 4.
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Since we have defined many complexity measures with similar names, we are going
to summarize all the measures we are using in the following table.

Measure Introduced in Explanation
rank(u) Page 14 The set-theoretic rank of the set u.

|t| Definition 4.1
The level of the RSl(X)-term t. For basic terms,
the definition of the level of the term u uses the
rank of the set u.

k(A) Definition 4.3
The set that contains all the levels of the RSl(X)-
terms appearing in the RSl(X)-formula A.

k(Γ) Definition 4.3
The set that contains all the levels of the RSl(X)-
terms appearing in the RSl(X)-formulas of Γ.

rk(t) Definition 4.6
The rank of the RSl(X)-term t. It measures the
complexity of the term t and can be written using
the level |t| by Lemma 4.7.

rk(A) Definition 4.6

The rank of the RSl(X)-formula A. It measures
the complexity of the RSl(X)-formula A. We
will use rk(A) to measure the complexity of the
cuts performed in the derivations in RSl(X). By
Lemma 4.7 we can write rk(A) in terms of k(A).

We now state and show some properties about the rank of a formula. We will
prove in Lemma 4.8 that the complexity of the characteristic formulas (the possi-
ble/needed premises) of a formula is always below the complexity of that formula.
First, we show some technical results.

Lemma 4.7.

1. Let t be any term. Then there is n < ω such that rk(t) = ω · |t|+ n.

2. Let A be any formula. Then there is n < ω such that rk(A) = ω ·max(k(A))+n.

3. Let A be any formula and s be any term. If |s| < max(k(A(s))) then rk(A(s)) =
rk(A(∅)).

Proof. 1. We consider cases based on the form of t.

Case 1. We suppose t ≡ u. Then rk(u) = Γrank(u) = |u|, and Γrank(u) = ω ·Γrank(u), so
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taking n = 0 we obtain the result.

Case 2. We suppose t ≡ Lα(X). Then

rk(Lα(X)) = Γθ+1 + ω · α = ω · (Γθ+1 + α) = ω · |Lα(X)|.

Again, we take n = 0 to complete this case.

Case 3. We suppose t ≡ [x ∈ Lα(X) : B(x)].
We assume first that Γθ+1 + ω · α + 1 ≥ rk(B(∅)) + 2. This means that

rk(t) = Γθ+1 + ω · α + 1 = ω · |t|+ 1.

We assume now that Γθ+1 + ω · α + 1 < rk(B(∅)) + 2. It follows that rk(t) =
rk(B(∅)) + 2. But observe that, following Definition 4.1, the formula B(∅) has all
its terms of level less than or equal to Γθ+1 + α. But B(∅) must have at least a
term of level Γθ+1 + α, so that Γθ+1 + ω · α + 1 < rk(B(∅)) + 2. This means that
rk(B(∅)) = Γθ+1 + ω · α +m for some m < ω. This m comes from the form of B,
following Definition 4.6. Hence,

rk(t) = rk(B(∅)) = ω · (Γθ+1 + α) +m+ 2 = ω · |t|+m+ 2

for some m < ω.

2. We consider cases based on the form of A.

Case 1. We suppose A ≡ s ∈ t or A ≡ s /∈ t. Then

rk(A) = max(rk(s) + 6, rk(t) + 1) = max(ω · |s|+ ns + 6, ω · |t|+ nt + 1)

for some ns, nt < ω.
If |s| < |t| then rk(A) = ω · |t|+ nt + 1 = ω ·max(k(A)) + n with n = nt + 1.
If |t| < |s| then rk(A) = ω · |s|+ ns + 6 = ω ·max(k(A)) + n with n = ns + 1.
If |s| = |t| then r(A) = ω ·max(k(A)) + n with n = max(ns + 6, nt + 1).

Case 2. We suppose A ≡ Ad(t) or A ≡ ¬Ad(t). Then rk(A) = rk(t)+5 = ω · |t|+5 =
ω ·max(k(A)) + 5, as k(A) = {|t|}.

Case 3. We suppose A ≡ A0∨A1 or A ≡ A0∧A1. Then by the induction hypothesis
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rk(A0) = ω ·max(k(A0)) + n0 for some n0 < ω and rk(A1) = ω ·max(k(A1)) + n1 for
some n1. Therefore,

rk(A) = max(ω ·max(k(A0)) + n0, ω ·max(k(A1)) + n1) + 1 = ω ·max(k(A)) + n

where n = n0 + 1 if max(k(A0)) > max(k(A1)), or n = n1 + 1 if max(k(A0)) <
max(k(A1)), or n = max(n0, n1) + 1 if max(k(A0)) = max(k(A1)).

Case 4. We suppose A ≡ ∃x ∈ t B(x) or A ≡ ∀x ∈ t B(x). By the induction hypoth-
esis, we have rk(B(∅)) = ω ·max(k(B)) + n0 for some n0 < ω and rk(t) = ω · |t|+ n1

for some n1 < ω.
If rk(t) > rk(B(∅)) + 2, then |t| > max(k(B)) and so

rk(A) = rk(t) = ω · |t|+ n1 = ω ·max(k(A)) + n1

If rk(t) < rk(B(∅))+2, then either |t| = max(k(B)) = max(k(A)) or |t| < max(k(B)) =
max(k(A)). In both cases, we get

rk(A) = ω ·max(k(B)) + n = ω ·max(k(A)) + n

for some n < ω.

3. This proof goes by induction using Items 1. and 2. of this lemma. We refer
the interested reader to [5] (Lemma 3.12. in page 17).

Lemma 4.8. Let A be any non-basic formula and let B ∈ C(A). Then, we have

rk(B) < rk(A).

Proof. We prove this result by induction on the construction of A, supposing that A
has

∨
type.

Case 1. We suppose A ≡ s ∈ t. We split the cases depending on the form of
t.
Subcase 1.1. We assume t ≡ u. Then s is not basic since A is not basic by assump-
tion. Therefore, rk(A) = rk(s)+6 and if B ∈ C(A) then B is of the form r ∈ u∧r = s
for some r with |r| < |u|. It follows from this last condition that r is basic, say r ≡ v,
and then

rk(B) = max(rk(v ∈ u), rk(v = s) + 1

= rk(v = s) + 1

= rk(s) + 5

< rk(s) + 6 = rk(A).
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Subcase 1.2. We assume t ≡ Lα(X). Then rk(A) = max(rk(s) + 6, rk(t) + 1). If
B ∈ C(A), then B is of the form r = s for some r with |r| < |t|. Therefore,

rk(B) = max(rk(r), rk(s)) + 4 < max(rk(t) + 1, rk(s) + 6) = rk(A).

Subcase 1.3. We assume t ≡ [x ∈ Lα(X) : F (x)]. Then rk(A) = max(rk(s) +
6, rk(t) + 1). If B ∈ C(A), then B is of the form F (r) ∧ s = r for some r with
|r| < |t|. Therefore,

rk(B) = max(rk(F (r)), rk(s = r)) + 1

= max(rk(F (r)), rk(s) + 4, rk(r) + 4) + 1.

But rk(s) + 5, rk(r) + 5 < max(rk(s) + 6, rk(t) + 1) = rk(A). Also, rk(F (r)) < rk(t).
Indeed, if max(k(F (r))) ≤ |s|, then rk(F (r)) + 1 < ω · |s| + ω ≤ rk(t) by Lemma
4.7(2.); if |s| < max(k(F (r))), then by Lemma 4.7(3.) we have

rk(F (r)) + 1 = rk(F (∅)) + 1 < max(Γθ+1 + ω · α + 1, rk(F (∅)) + 2) = rk(t).

Hence, from rk(F (r)) < rk(t) we get rk(F (r)) + 1 < rk(A). Gathering everything,
we obtain

rk(B) = max(rk(F (r)), rk(s) + 4, rk(r) + 4) + 1 < rk(A).

Case 2. We suppose A ≡ B ∨ C. Then rk(A) = max(rk(B), rk(C)) + 1 and so
rk(B), rk(C) < rk(A).

Case 3. We suppose A ≡ ∃x ∈ t F (x). We split subcases based on the form of
t.
Subcase 3.1. We assume t ≡ u. Then rk(A) = max(rk(u) + 3, rk(F (∅)) + 2). We
have B ≡ v ∈ u ∧ F (v) for some basic term with |v| < |v|. This means that

rk(B) = max(rk(u) + 2, rk(F (v)) + 1).

If rk(u) + 2 ≥ rk(F (v)) + 1 then

rk(A) = max(rk(u) + 3, rk(F (v)) + 2)

= rk(u) + 3

< rk(u) + 2

= rk(B).
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We assume now that rk(u) + 2 < rk(F (v)) + 1. If |v| ≥ max(k(F (v))), then, using
Lemma 4.7 (1.), we get rk(B) = rk(F (v))+1 < rk(u) < rk(A). If |v| < max(k(F (v),
then, using Lemma 4.7(3.), we get rk(B) = rk(F (v))+1 = rk(F (∅))+1 < rk(F (∅))+
2 = rk(A).

Subcase 3.2. We suppose t ≡ Lα(X) for some ordinal α. This means that rk(A) =
max(rk(t), rk(F (∅))+2). Moreover, we have B = F (s) for some term s with |s| < |t|,
and so rk(B) = rk(F (s)). If |s| ≥ max(k(F (s))), then rk(B) = rk(F (s)) < rk(t) ≤
rk(A) by Lemma 4.7(1. and 2.). If |s| < max(k(F (s))), then rk(B) = rk(F (s)) =
rk(F (∅)) < rk(A) by Lemma 4.7(3.).

Subcase 3.3. We suppose t ≡ [y ∈ Lα(X) : C(y)]. We have rk(A) = max(rk(t), rk(F (∅))+
2). Moreover, we have B = C(s) ∧ F (s) for some term s with |s| < |t|, and so

rk(B) = max(rk(C(s)), rk(F (s))) + 1.

Subcase 3.3.1. We first assume that |s| < max(k(F (s))). In this case rk(F (s))+ 1 =
rk(F (∅)) + 2 < rk(A). Moreover, we also have rk(C(s)) < rk(A): if max(k(C(s))) <
|t|, then rk(B) < rk(C(s)) + 1 < rk(t) ≤ rk(A) by Lemma 4.7(1. and 2.); if
max(k(C(s))) ≥ |t|, then by Lemma 4.7(3.), we get rk(C(s)) + 1 = rk(C(∅)) + 1 <
rk(A).
This means that rk(B) < rk(A).

Subcase 3.3.2. Now, we assume |s| ≥ max(k(F (s))). In this case, we have rk(F (s)) <
rk(t) by Lemma 4.7(1. and 2.) and so rk(F (s)) + 1 < rk(A). Moreover, by the same
reasoning than in Subcase 3.3.1, we get rk(C(s)) + 1 < rk(A).
Hence, rk(B) < rk(A).

An analogous proof shows that the result holds if A has
∧
-type.

4.2 Operator-controlled derivations

Now, we define the derivations of the RSl(X)-proof system. Derivations will be
controlled by operators, that are some kind of functions between sets of ordinals.
We need operators to control the depth of the proofs as well as the formulas that
are being derived at each step, as we will explain later. Moreover, the key use of
operators is that, when we eliminate cuts, we somehow transfer the complexity that
was patent in the cut formulas (that is, their rank) to the operator, under the form
of adding more ordinals to the set controlling the derivations. We now define the
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notion of operator. This notion depends on the fixed set X. Recall that, following
Reading Convention 3.28, we have a set X fixed together with the cardinals Ωn for
n ≤ ω.

Definition 4.9. Consider the class P(ON) = {Y : Y is a set of ordinals}. An
operator is a function H : P(ON) → P(ON) such that for every Y, Y ′ ∈ P(ON) the
following conditions are satisfied.

1. {0} ∪ {Γβ : β ≤ θ + 1} ∪ {Ωi : i ≤ ω} ⊆ H(Y ).

2. Let α =NF α1 + · · ·+ αn. Then, α ∈ H(Y ) iff α1, . . . , αn ∈ H(Y ).

3. Let α =NF φα1α2. Then, α ∈ H(Y ) iff α1, α2 ∈ H(Y ).

4. Y ⊆ H(Y ).

5. If Y ⊆ H(Y ′) then H(Y ) ⊆ H(Y ′).

Moreover, we will use the following abbreviations.

• H will often denote H(∅).

• For a term t, H[t](Y ) will mean H(Y ∪ {|t|}).

• For a formula A, H[A](Y ) will mean H(Y ∪ k(A)).

• For a finite set of formulas Γ, H[Γ](Y ) will mean H(Y ∪ k(Γ)).

We notice that we add extra conditions in comparison with the common definition
of operator because, in this thesis, we only care about some specific operators (e.g.
we need operators to contain the Ωn ordinals - this also means that the definition of
operator is different for each set X). Operators are functions but we can treat them
as sets of ordinals: if we write H(Y ) for some operator H and some set of ordinals
Y , we are considering the image of Y by H, which is a set of ordinals. As well, when
we write H, we are considering the set of ordinals H(∅).
As we said earlier, operators will control the depth of the proof and the formulas
derived. This will be done in the following sense. There will be an ordinal associated
to each derivation. Each application of a rule will increase this ordinal. To make
a derivation controlled by an operator H of a set of formulas with some ordinal α
associated to the derivation, the ordinal α must be in H. As well, the operator
H must control the formulas that are derived by containing the levels of the terms
appearing in the derived formulas.
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Definition 4.10. Let H be an operator and let Γ be a set of formulas. We have that
Γ is derived by an H-controlled derivation with ordinal α whenever {α} ∪ k(Γ) ⊆ H
and one of the following axioms or rules can be applied.

Axioms:

H α
Γ, u ∈ v for any u, v ∈ TC({X}) such that u ∈ v,

H α
Γ, u /∈ v for any u, v ∈ TC({X}) such that u /∈ v.

Rules:

H α0
Γ, A ∧B,A H α1

Γ, A ∧B,B
(∧)

H α
Γ, A ∧B

α0, α1 < α

H α0
Γ, A ∨B,A

(∨)
H α

Γ, A ∨B
α0 < α

H α0
Γ, A ∨B,B

(∨)
H α

Γ, A ∨B
α0 < α

H α0
Γ, r ∈ t, s ∈̇ t ∧ r = s

(∈)
H α

Γ, r ∈ t

α0 < α,
|s| < |t|,
|s| < Γθ+1 + α,
r ∈ t not basic.

H[s]
αs

Γ, r /∈ t, s ∈̇ t→ r ̸= s for all |s| < |t|
(/∈)

H α
Γ, r /∈ t

αs < α,
r ∈ t not basic.
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H α0
Γ,∃x ∈ t B(x), s ∈̇ t ∧B(s)

(b∃)
H α

Γ,∃x ∈ t B(x)

α0 < α,
|s| < |t|,
|s| < Γθ+1 + α.

H[s]
αs

Γ,∀x ∈ t B(x), s ∈̇ t→ B(s) for all |s| < |t|
(b∀)

H α
Γ,∀x ∈ t B(x)

αs < α

H α0
Γ, Ad(t), t = LΩn(X)

(Ad)
H α

Γ, Ad(t)

α0 < α,
n ≤ ω,
Ωn < |t|.

H αn
Γ,¬Ad(t), t ̸= LΩn(X) for all n ≤ ω

(¬Ad)
H α

Γ,¬Ad(t)
αn < α

H α0
Γ, A H α0

Γ,¬A
(Cut)

H α
Γ

α0 < α

H α0
Γ,∃z ∈ LΩn(X) Az, ALΩn (X)

(Refn)
H α

Γ,∃z ∈ LΩn(X) Az

α0,Ωn < α,
A is a Σ formula.

Besides (Cut), each rule supplies a new formula in the conclusion. This formula is
called the principal formula of the inference. Likewise, each rule withholds a (some)
formula(s) of the premise(s). Those kind of formulas are called the active formulas
of the derivation. Any other formula is called passive.

We observe that the principal formula of a given rule already appears in the premise(s).
Usually, rules are used to derive a formula by introducing the formula in the con-
clusion from the active formulas in the premises. However, we take the convention
of writing the principal formula in the premises of the rule to have access to the
Weakening principle, that we will show in Lemma 4.15. Roughly, weakening states
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that whenever we derive a finite set of formulas Γ we can also derive Γ,Γ′ for another
finite set of formulas Γ′ (we can add formulas to the conclusion of the derivation). We
cannot prove this principle without taking the convention of including the principal
formula in the premises of each rule for technical proof-theoretic details.

Remind that the symbol ∈̇ is an abbreviation introduced in Definition 4.4. This
means that whenever this symbol appears, we have three different rules that depend
on the form of a term occuring in the principal formula.
We now give an example to illustrate this remark. We will make explicit the three
different rules condensed in the (b∃) rule of Definition 4.10 thanks to the ∈̇ symbol.

Example. The rule (b∃) has three different forms.

H α0
Γ,∃x ∈ u B(x), s ∈ u ∧B(s)

(b∃)
H α

Γ,∃x ∈ u B(x)

α0 < α
|s| < Γrank(u),
|s| < Γθ+1 + α.

H α0
Γ,∃x ∈ Lγ(X) B(x), B(s)

(b∃)
H α

Γ,∃x ∈ Lγ(X) B(x)

α0 < α,
|s| < Γθ+1 + γ,
|s| < Γθ+1 + α.

H α0
Γ,∃x ∈ t B(x), F (s) ∧B(s)

(b∃)
H α

Γ,∃x ∈ t B(x)

t ≡ [x ∈ Lγ(X) : F (x)],
α0 < α,
|s| < |t|,
|s| < Γθ+1 + α.

Instead of writing those three rules, we condense them in one rule using the de-
fined abbreviation.
Moreover, in the rules (∈) and (b∃) we impose the condition |s| < Γθ+1+α to restrict
the search of witnesses to coherent terms. For example, in the above example, we
made explicit the (b∃) rule when the term that bounds the quantification is u. To
derive ∃x ∈ u B(x), we are searching for a term s that “belongs” to u and satisfies
B. Therefore, we are only interested in the terms of level below the level of u, which
is Γrank(u).

To show how derivations work, we exhibit a proof in RSl(X). The objective of

44



the next lemma is only to display a proof in RSl(X) and will not have any further
importance. To simplify the proof we omit to write the principal formula of each
inference in the premises (actually, to be rigous we should write all the formulas that
appear in the derivation at the leaves of the proof-tree, and the application of a rule
would remove the premise). Since we want to exhibit a proof, we write it without
repeating formulas to make the inferences clearer. In fact, once we have proved
weakening, we will adopt Reading Convention 4.16 to omit the repeated formulas in
the premises along this thesis.

Lemma 4.11. Let H be any operator and X ̸= ∅. Then,

1. H α ∅ ∈ L0(X), and

2. H α ∃x ∈ {∅}(x ∈ L0(X)).

Proof. 1. We observe that, since Γ1 is the minimum of the levels of the RSl(X)-terms,
the first line of each side of the following derivation hold vacuously.

H[s]
0
s ∈ ∅ → s ∈ ∅ for all |s| < Γ1

(b∀)
H 1 ∀x ∈ ∅(x ∈ ∅)

H 0
s ∈ ∅ → s ∈ ∅ for all |s| < Γ1

(b∀)
H 1 ∀x ∈ ∅(x ∈ ∅)

(∧)
H 2 ∅ = ∅

(∈)
H 3 ∅ ∈ L0(X)

2. From Item 1., we get the first line of the right branch of the following derivation.

Axiom

H 3 ∅ ∈ {∅} H 3 ∅ ∈ L0(X)
(∧)

H 4 ∅ ∈ {∅} ∧ ∅ ∈ L0(X)
(b∃)

H 5 ∃x ∈ {∅}(x ∈ L0(X))

We will see more involved examples of RSl(X) derivations in Section 5.
Now, focusing on the definition of the rules of inference, we notice that the ordi-

nals that appear in each derivation are related to the depth of the proof in the sense
that the application of a rule increases this ordinal. In the following lemmas, we will
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be proving results of the form “if H α
Γ then P” for some conclusion P , and to

prove some result like this we will say that we argue “by induction α”. This means
that we will be reasoning by induction on the length of the derivation.

We observe that if (R) is a rule with principal formula A, the active formula in
the premise(s) of (R) is always some B ∈ C(A), as in Definition 4.5. Moreover, if
A is not a disjunction or a conjunction, each B ∈ C(A) is of the form F (t) for a
so-called characteristic term t.

Definition 4.12. If A is a formula with
∧
-type different from a conjunction, we

define tA(B) := t for B ∈ C(A), where t is the characteristic term of the premise
B ≡ F (t) in the derivation of A.
If A has

∨
-type or is a conjunction, then we define tA(B) := L0(X) for any B ∈

C(A).

For example, given a formula F := ∀x ∈ t A(x) and a term s such that |s| < |t|,
we have tF (s ∈̇ t→ A(s)) = s. Again, the explicit version without the abbreviating
symbol ∈̇ of this last set will depend on the form of t.
Moreover, we conveniently define tA(B) this way for conjunctions and

∨
-type for-

mulas because it allows us to uniformize the controlling operator in the premise of a
derivation.
Indeed, we observe that in the rules deriving a formula with

∧
-type, the operator that

controls the premise with active formula B ∈ C(A) is exactlyH[tA(B)], no matter the
form of A. That is the reason why we took the convention to define tA(B) = L0(X)
for any non

∧
-type formula (or any conjunction) A. In fact, for a conjunction or a∨

-type formula, the operator H[tA(B)] is exactly H for any B ∈ C(A) and so, while
talking about the premise(s) of A we can freely use the controlling operator H[tA(B)]
for formulas of both

∧
-type and

∨
-type.

4.3 Cut-elimination for RSl(X)

We recall that the rank of a formula was introduced in Definition 4.6. We will write
the complexity of the formulas that have been removed by an application of the
(Cut) rule in some derivation as a subscript, as follows.

Definition 4.13. We will write H ρ
α
Γ whenever H α

Γ and all the active formulas
of the premise of an inference using (Cut) occurring in the derivation have rank
strictly less than ρ. In this case, we will say that the cut complexity of the derivation
is bounded by ρ.
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Recall that the objective is to eliminate cuts from derivations. First, we show
some immediate results about operator controlled derivations that will be useful to
prove the cut-elimination lemmas.
Henceforth, we will use y as the set of indexes of the possibly many premises used
to derive some conclusion. The next lemma states that an operator appearing in the
conclusion of an inference is always contained in the operator(s) appearing in the
premise(s).

Lemma 4.14. Let H be any operator. We suppose that H ρ
α

Γ can be obtained

by the application of an inference rule with premises Hi ρi

αi
Γi with αi < α and Hi

operators, for i ∈ y. Then, H ⊆ Hi.

Proof. First, we suppose that the principal formula is A ∈ Γ. If A has
∨
-type, then

there is only one premise, with control operator Hi = H. If A has
∧
-type, then

Hi = H[tA(B)] ⊇ H for some B ∈ C(A).
Now, if H ρ

α
Γ has been obtained by (Cut) then Hi = H in both premises. If the

derivation has been obtain by applying (Refn(X)) for some n < ω then Hi = H in
the unique premise.

Now, we prove a very useful lemma that we will often use throughout this thesis.
It states that we can weaken derivations as long as the operator controls the added
formulas, we can increase the ordinal of the derivation as long as the new ordinal
belongs to the operator, and we can increase the upper bound of the complexity of
the cuts.

Lemma 4.15. Let H be an operator. Let α, α′, ρ and ρ′ be ordinals. Let ∆ and
Γ be finite sets of formulas. If α ≤ α′ ∈ H, ρ ≤ ρ′, k(∆) ⊆ H and H ρ

α
Γ then

H
ρ′
α′

Γ,∆.

Proof. We proceed by induction on α. If Γ is an axiom, then Γ,∆ is an axiom too
and, since {α′} ∪ k(Γ ∪ ∆) ⊆ H and an axiom has no cuts (which means that the

complexity of the cut formulas is bounded by any ordinal), we have that H
ρ′
α′

Γ,∆.

We suppose that Γ has been derived by the application of a rule (R) and consider
cases based on (R).

Case 1. We assume that (R) is (Cut). Then we have H ρ
α

Γ and the premises
are

H ρ
α0

Γ, A, and (1)

H ρ
α0

Γ,¬A (2)
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with α0 < α < α′ for some formula A with rank(A) < ρ.
First, we assume that A or ¬A are in ∆. Then, we use the induction hypothesis on
(1) or (2) respectively to obtain

H
ρ′
α′

Γ,∆.

We assume now that A and ¬A are not in ∆. Then, since α0 < α, by the induction
hypothesis, we have H

ρ′
α

Γ,∆, A and H
ρ′
α

Γ,∆,¬A. We apply (Cut), observing

that the cut complexity of the derivation does not increase since rank(A) < ρ < ρ′,

and we obtain H
ρ′
α′

Γ,∆,¬A.

Case 2. Suppose that A ∈ Γ is the principal formula of the last derivation obtained
by an application of the rule (R) and A has

∨
-type. Then, we have H ρ

α0
Γ, A,B for

some B ∈ C(A) (we write Γ, A, which is the same as Γ, to make explicit the principal
formula A). If B ∈ ∆, by the induction hypothesis, we get

H
ρ′
α′

Γ,∆, A.

We assume that B /∈ ∆. Then, the induction hypothesis gives

H
ρ′
α
Γ,∆, A,B.

We use the rule (R) to obtain

H
ρ′
α′

Γ,∆, A.

The cases where the principal formula of the last derivation has
∧
-type and the

case where the last rule is some (Refn) are analogous.

Now that we have proved that the Weakening rule is acceptable in RSl(X), we
will drop the repetition of the principal formula of a rule in the premises to simplify
proofs following the next reading convention.

Reading Convention 4.16. We suppose that we have the following inference with
principal formula A by applying the rule (R).

H αi
Γi, A

(R)
H α

Γ, A

We will often omit the repeated formula A in the premises and, instead, write

H αi
Γi

(R)
H α

Γ, A
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We can prove some kind of Inversion for
∧
-type formulas.

Lemma 4.17 (Inversion). Let H be any operator. Let A be a
∧
-type formula

and let Γ be a finite set of formulas. Let α and ρ be ordinals. If H ρ
α

Γ, A then

H[tA(B)] ρ
α
Γ, B for every B ∈ C(A).

Proof. We proceed by induction on α. If Γ, A is an axiom, then Γ is an axiom since A
is non-basic. Therefore, Γ, B is an axiom for each B ∈ C(A) and so H[tB(A)] ρ

α
Γ, B.

We suppose that Γ, A has been obtained by the application of a rule with A not
principal. Then, we can apply the induction hypothesis to the premises of this
inference and use the rule again to obtain the result.
We suppose that Γ, A has been obtain by the application of a rule (R) with principal
formula A. This means that, for each B ∈ C(A), we have

H[tA(B)] ρ
αB

Γ, A,B

with αB < α. By the induction hypothesis, for every B ∈ C(A) we have

H[tA(B)][tA(B)] ρ
αB

Γ, B,B. (1)

But H[tA(B)][tA(B)] = H[tA(B)] since tA(B) ∈ H[tA(B)], and so (1) is exactly

H[tA(B)] ρ
αB

Γ, B.

Again by Lemma 4.15, we obtain

H[tA(B)] ρ
α
Γ, B

for every B ∈ C(A).

The next lemma will only be used at the end of the thesis, but we include it
here since it is a technical result that is proved the same way as many others in this
section. This result follows the idea that conclusions of derivation can be thought to
be disjunctions.

Lemma 4.18. Let H be any operator. Let Γ ∪ {A,B} be a finite set of formulas.

If H ρ
α
Γ, A ∨B then H ρ

α
Γ, A,B.

Proof. We proceed by induction on α. If Γ, A ∨ B is an axiom, then Γ is an axiom
(A ∨ B cannot be an axiom because it is not a basic formula). This means that
Γ, A,B is also an axiom, and the result holds.
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We suppose that Γ, A ∨ B has been obtained by the application of a rule. If the
principal formula is not A∨B, then we use the induction hypothesis on the premise(s)
and use again the rule to obtain the result.
So we assume that the principal formula is A∨B. We have H ρ

α0
Γ, A∨B,C where

C is either A or B. By the inudction hypothesis, we get H ρ
α0

Γ, A,B,C, which is

exactly H ρ
α0

Γ, A,B. By means of Lemma 4.15, we obtain H ρ
α
Γ, A,B.

We are now ready to prove the Predicative Cut Elimination Theorem. To prepare
for the proof, we first show the Reduction Lemma. This result will only be used to
simplify the proof the upcoming Predicative Cut Elimination Theorem and will not
appear further in the thesis.

Lemma 4.19 (Reduction). Let H be any operator. Let α be an ordinal. Let Γ and
∆ be finite sets of formulas. Let A be a formula with rk(A) = ρ /∈ {Ωn : n < ω}.
If A is u ∈ v for some u, v ∈ TC({X}) or A has

∨
-type, and both H ρ

α
Γ,¬A and

H ρ
β
∆, A hold, then H ρ

α+β
Γ,∆ also holds.

Proof. We will consider cases based on the form of A. Before considering the case
where A is a basic formula, we show the following claim:

Claim 4.19.1.

1. If u ∈ v is true in TC({X}) and H ρ
α
Γ,¬u ∈ v then H ρ

α
Γ.

2. If u /∈ v is true in TC({X}) and H ρ
α
Γ, u ∈ v, then H ρ

α
Γ.

We prove Item 1. of Claim 4.19.1 by induction on α. If Γ,¬u ∈ v is an axiom,
then Γ is an axiom since u /∈ v is false in TC({X}), and so H ρ

α
Γ holds.

We suppose that Γ,¬u ∈ v was derived by an application of a rule (R). Then ¬u ∈ v
is a passive formula since it is basic. Therefore, we have (possibly many) premises of

the form Hi ρ
αi

Γi,¬u ∈ v with αi < α for every i ∈ y. By the induction hypothesis,

we obtain Hi ρ
αi

Γi, with αi < α, for every i ∈ y. Finally, we apply the rule (R) to

get H ρ
α
Γ.

The proof of Item 2. is analogous, and so Claim 4.19.1 is shown.

We now start the proof of the Reduction Lemma.

We suppose that A ≡ u ∈ v. Then, by Claim 4.19.1, we have either H ρ
α
Γ or H ρ

β
∆

depending on whether u ∈ v holds in TC({X}) or not. Therefore, by Lemma 4.15

we obtain H ρ
α+β

Γ,∆.
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We suppose now that A has
∨
-type. We have

H ρ
α
Γ,¬A, (1)

H ρ
β
∆, A. (2)

We proceed by induction on β. If ∆, A is an axiom, then ∆ is an axiom since A is

non-basic and so Γ,∆ is also an axiom, showing that H ρ
α+β

Γ,∆ holds.

Now, we assume that ∆, A has been obtained by the application of a rule (R).
We suppose that A is not the principal formula in this last derivation. Then, we
can apply the induction hypothesis to the premises and apply again the rule (R) to
obtain the result.
We suppose now that A is the principal formula of the last derivation. We notice
that (R) cannot be any (Refn) rule since, if it were, we would have rk(A) = Ωn,
against the hypothesis. Therefore, the rule (R) is either (∨), (∈), (b∃) or (Ad), and
we have the only premise

H ρ
β0

∆, A,B, (3)

with β0 < β. We apply the induction hypothesis to (1) and (3) to obtain

H ρ
α+β0

Γ,∆, B. (4)

On the other hand, from (1), we use Lemma 4.17 (Inversion) and we get

H[tA(B)] ρ
α
Γ,¬B. (5)

But tA(B) ∈ H by (4), and so H[tA(B)] = H. Thus, Lemma 4.15 on (5) gives

H ρ
α+β0

Γ,∆,¬B. (6)

Finally, we apply (Cut) to (4) and (6) to obtain H ρ
α+β

Γ,∆. We note that, by
Lemma 4.8, we have rk(B) < rk(A) = ρ and so the complexity of the cuts done in
the derivation is still bounded by ρ.

At last, we state and prove the Predicative Cut Elimination Theorem. If we have
a derivation H ρ

α
Γ with ρ < Ωk where k = min(n < ω : ρ < Ωn), this results allows

us to lower the bound of the complexity of the cuts up to Ωk−1 + 1, or to 0 if k = 0.

51



Theorem 4.20 (Predicative Cut Elimination). Let H be any operator closed under
φ. Let α ∈ H and ρ be ordinals such that Ωn /∈ [ρ, ρ+ ωα) for any n < ω. We have

that if H ρ+ωα
β

Γ then H ρ
φαβ

Γ.

Proof. First of all, we observe that φαβ ∈ H since α, β ∈ H and so the ordinal
bound of the derivation appearing in the conclusion of the theorem is coherent. We

proceed by induction on β. If Γ is an axiom then trivially H ρ
φαβ

Γ.
We suppose that Γ has been obtained by the application of a rule (R). We distin-
guish cases according to whether (R) is the rule (Cut) or (R) is any other rule.

Case 1. We suppose that (R) is not (Cut). Then we have the premise(s) Hi ρ+ωα
βi

Γi

with βi < β for each i ∈ y. By the induction hypothesis, we get Hi ρ
φαβi

Γi and,

since φαβi < φαβ for all i ∈ y we obtain H ρ
φαβ

Γ by an application of (R).

Case 2. We suppose now that (R) is (Cut). This means that the premises are

H ρ+ωα
β0

Γ, B with β0 < β (1)

H ρ+ωα
β0

Γ,¬B with β0 < β (2)

for some formula B. By the induction hypothesis applied to (1) and (2), we have

H ρ
φαβ0

Γ, B (3)

H ρ
φαβ0

Γ,¬B. (4)

We observe that rk(B) < ρ+ ωα (if the rank of B was greater than ρ+ ωα we could
not have derived Γ with cuts of complexity bounded by ρ+ ωα). If rk(B) < ρ, then

we can apply (Cut) to (3) and (4) and get H ρ
φαβ

Γ since φαβ0 < φαβ.
If rk(B) ∈ [ρ, ρ + ωα) we cannot apply (Cut) efficiently because it would increase
the complexity of the cuts. In this case, we write rk(B) = ρ + ωα1 + · · · + ωαn for
some α > α1 ≥ · · · ≥ αn. By Lemma 4.15 on (3) and (4) we are able to have the cut
complexity bound equal to the rank of B:

H ρ+ωα1+···+ωαn
φαβ0

Γ, B (5)

H ρ+ωα1+···+ωαn
φαβ0

Γ,¬B. (6)
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We observe that either B or ¬B has
∨
-type, and so we can apply Lemma 4.19

(Reduction) to (5) and (6) and obtain

H ρ+ωα1+···+ωαn
φαβ0+φαβ0

Γ.

By Lemma 4.15, since φαβ0 + φαβ0 < φαβ and φαβ ∈ H, we get

H ρ+ωα1+···+ωαn
φαβ

Γ. (7)

Now, since ρ+ωα1 + · · ·+ωαn = rk(B) ∈ H (this comes from the fact that k(B) ⊆ H
by (3) and rk(B) = ω ·max(k(B))+n′ for some n′ < ω), we have that α1, . . . , αn ∈ H.
Therefore, as αn < α, we can apply the induction hypothesis to (7) and obtain

H
ρ+ωα1+···+ωαn−1

φαn (φαβ)
Γ. (8)

But αn < α shows that φαn(φαβ) = φαβ by Lemma 3.20, and so (8) is exactly

H
ρ+ωα1+···+ωαn−1

φαβ
Γ. (9)

Repeating this n− 1 times, we finally obtain

H ρ
φαβ

Γ. (10)

We will use Theorem 4.20 in two different ways. The optimal use of this theorem
will come when the bound of the complexity of the cuts is δ < Ω0. In this case, it
will be that δ = 0 + ωα1 + · · ·+ ωαn for some α1, . . . , αn < Ω0, and so n consecutive
applications of the Predicative Cut Elimination Theorem will provide a derivation
of the same formulas but with no cuts. The second case appears when the bound of
the complexity of the cuts is Ωn < δ < Ωn+1 for some n < ω. Here, the Predicative
Cut Elimination Theorem will eliminate cuts up to Ωn + 1. This is why we need
another result that will allow us to collapse bounds below the Ωn ordinals. This will
be provided by Theorem 4.24 (Collapsing Theorem), that we will state and prove in
the next subsection. Before that, we show another very useful predicative result.

Lemma 4.21 (Boundedness). Let H be any operator. Let n be any natural number.
Let ρ be an ordinal. Let ALΩn (X) be a ΣΩn formula and let α, β be ordinals such that
β ∈ H and α ≤ β < Ωn. If H ρ

α
Γ, ALΩn (X) then H ρ

α
Γ, ALβ(X).
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Proof. We proceed by induction on α. If Γ, ALΩn (X) is an axiom then Γ, ALβ(X) is
also an axiom (if Γ is an axiom this is clear; if ALΩn (X) is an axiom then A has no
quantifiers and therefore ALΩn (X) ≡ A ≡ ALβ(X)).
We suppose that the derivation has been obtained by the application of a rule (R).
If ALΩn (X) is not the principal formula, then we can apply the induction hypothesis
to the premise(s) and use the rule (R) again to obtain the result. So assume that
ALΩn (X) is the principal formula. We distinguish 3 cases: the rule (R) is not (Refn)
and the formula ALΩn (X) has

∧
-type, the rule (R) is not (Refn) and the formula

ALΩn (X) has
∨
-type, or the rule (R) is (Refn). We observe that the last rule can not

be (Refm) with m > n since all the terms that appear in ALΩn (X) have level less than
Ωn. The case where (R) is (Refm) with m < n falls within the Case 2, where ALΩn (X)

has
∨
-type.

Case 1. We suppose that ALΩn (X) has
∧
-type. We notice that, since ALΩn (X) is

ΣLΩn (X), every formula in C(ALΩn (X)) is also ΣΩn . This means that formulas in
C(ALΩn (X)) are of the form BLΩn (X) and BLβ(X) ∈ C(ALβ(X)) for every BLΩn (X) ∈
C(ALΩn (X)). So, we have

H[t
ALΩn

(X)(BLΩn (X))] ρ
αB

Γ, ALΩn (X), BLΩn (X).

with αB < α, for every BLΩn (X) ∈ C(ALΩn (X)). Since αB < α, we can use the
induction hypothesis, that gives

H[t
ALΩn

(X)(BLΩn (X))] ρ
αB

Γ, ALβ(X), BLβ(X).

Applying the rule (R), we obtain as desired

H ρ
α
Γ, ALβ(X).

Case 2. We suppose that ALΩn (X) has
∨
-type and is not of the form

∃x ∈ LΩn(X) C(x)LΩn (X). Then, again each formula in C(ALΩn (X)) is ΣLΩn (X). So,
there is BLΩn (X) ∈ C(ALΩn (X)) such that

H ρ
α0

Γ, ALΩn (X), BLΩn (X),

with α0 < α. By the induction hypothesis, we have

H ρ
α0

Γ, ALβ(X), BLβ(X).

We apply the rule (R) and we obtain

H ρ
α
Γ, ALβ(X).
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We notice that we can do this even in the case thatALΩn (X) ≡ ∃x ∈ LΩn(X) C(x)LΩn (X).
If this is the case, we would have

H ρ
α0

Γ, ALΩn (X), C(t)LΩn (X),

for some term t with |t| < LΩn(X) and |t| < Γθ+1 + α. By the previous reasoning,
we get

H ρ
α
Γ, ALβ(X), C(t)Lβ(X).

The thing is that α < β shows that Γθ+1 + α < Γθ+1 + β, and so |t| < Γθ+1 + β,
meaning that we can apply (b∃) to get

H ρ
α
Γ,∃x ∈ Lβ(X) C(x)Lβ(X),

as desired.

Case 3. We suppose ALΩn (X) ≡ ∃x ∈ LΩn(X) Cx for some formula C and (R) is
(Refn). This means that we have

H ρ
α0

Γ, ALΩn (X), CLΩn (X),

with α0 < α. We will use the induction hypothesis on ALΩn (X) and on CLΩn (X)

separately: on ALΩn (X) to get ALβ(X) and on C to get CLα0 (X). We obtain the
following.

H ρ
α0

Γ, ALβ(X), CLα0 (X).

We obtain by an application of (b∃) the desired result:

H ρ
α
Γ,∃x ∈ Lβ(X) Cx.

4.4 The Collapsing Theorem

Unfortunately, we are unable to collapse ordinal bounds of derivations below some
Ωn for every operator. We are going to define some specific operators that will allow
us to collapse cuts below each Ωn with our ψn functions.

Definition 4.22. We define Hβ as follows. For any set of ordinal Y we let

Hβ(Y ) =
⋂

{Bn(α) : Y ⊆ Bn(α) with β < α and n < ω}.
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We notice that Hβ =
⋂
{Bn(α) : β < α∧n < ω} = B0(β+1) since if β < α then

β + 1 ≤ α and so Bn(β + 1) ⊆ Bn(α) for any n < ω and B0(β + 1) ⊆ Bn(β + 1) for
any n < ω.
It is straightforward to show that Hβ is an operator closed under Veblen functions
for every ordinal β.
Next, we show a result that holds for arbitrary operators but that we will use only
in the proof of the Collapsing Theorem.

Lemma 4.23. Let H be any operator. Let α, β, γ and ρ be ordinals. Let Γ ∪ {A}
be a finite set of formulas. If β > γ ∈ H and H ρ

α
Γ,∀x ∈ Lβ(X)A(x) then

H ρ
α
Γ,∀x ∈ Lγ(X)A(x).

Proof. We proceed by induction on α. If Γ, ∀x ∈ Lβ(X)A(x) is an axiom, then Γ is
an axiom. Therefore, Γ,∀x ∈ Lγ(X)A(x) is an axiom too.
We suppose that Γ,∀x ∈ Lβ(X)A(x) has been obtained by the application of a rule. If
the principal formula is not ∀x ∈ Lβ(X)A(x), then we just use the induction hypoth-
esis on the premise(s) and apply the rule again. So assume that ∀x ∈ Lβ(X)A(x)
is the principal formula of the last derivation, and the rule applied is (b∀). The

premises are H[s] ρ
αs

Γ,∀x ∈ Lγ(X)A(x), A(s) with αs < α for all terms the terms s
with |s| < Γθ+1 + β. By the induction hypothesis, we get

H[s] ρ
αs

Γ, A(s),∀x ∈ Lγ(X)A(x) for all |s| < Γθ+1 + β. (1)

But A(s) ≡ s∈̇Lγ(X) → A(s) for all |s| < Γθ+1 + γ, and so focusing on those
|s| < Γθ+1 + γ in (1) we have in particular

H[s] ρ
αs

Γ, s∈̇Lγ(X) → A(s),∀x ∈ Lγ(X)A(x) for all |s| < Γθ+1 + γ.

We apply (b∀) and get

H ρ
α
Γ,∀x ∈ Lγ(X) A(x),∀x ∈ Lγ(X) A(x),

which is the same as
H ρ

α
Γ, ∀x ∈ Lγ(X) A(x).

We recall that, given some m ≤ ω, a ΣΩm formula is an RSl(X)-formula that has
been obtained from a KPl Σ-formula by restricting all the unbounded quantifiers to
LΩm(X) and by replacing free variables by terms of level strictly less than Ωm.
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Theorem 4.24 (Collapsing Theorem). Let n ≤ ω and let m < ω. Let Γ be a set of
ΣΩm-formulas and let α and β be ordinals with β ∈ Hβ.

If Hβ Ωn+1

α
Γ then Hβ+ωΩn+1+α

ψm(β+ωΩn+1+α)

ψm(β+ωΩn+1+α)
Γ.

Proof. To simplify notation we define for every ordinal α

α̂ = β + ωΩn+1+α.

We are going to prove a more general claim to deal with cases where some terms
might be added to the operator:

Claim 4.24.1. Let Γ, α, β, n and m as in the assumption of the theorem. Let ∆ be
any finite set of formulas such that k(∆) ⊆ Bm(β + 1).

If Hβ[∆] Ωn+1

α
Γ then Hα̂[∆] ψmα̂

ψmα̂
Γ.

With Claim 4.24.1, taking ∆ = ∅ we obtain the theorem.
First, we observe that, from 0, 1, α,Ωn, β ∈ Hβ[∆] =

⋂
{Bk(γ) : k(∆) ⊆ Bk(γ)∧ k <

ω}, we get that
α̂ = β + φ0(Ωn + 1 + α) ∈ Hβ[∆]

since each Bk(α) is closed under addition and Veblen functions. Therefore, also
α̂ ∈ Hα̂[∆], and so ψm(α̂) ∈ Hα̂[∆].
Now, we prove Claim 4.24.1 by induction on Ωn with a subsidiary induction on α.
If Γ is an axiom, then the claim is trivial.

We suppose that Γ has been obtained by the application of a rule. We run through
the cases based upon this last inference rule.

Case 1. We suppose that the last rule applied has principal formula A of
∨
-type.

Then Hβ[∆] Ωn+1

α
Γ′, A by hypothesis and Hβ[∆] Ωn+1

α0
Γ′, B with α0 < α for some

B ∈ C(A). By the induction hypothesis, Hα̂0 [∆] ψmα̂0

ψmα̂0
Γ′, B. But Hα̂0 [∆] ⊆ Hα̂[∆]

and so we get Hα̂[∆] ψmα̂

ψmα̂0
Γ′, B by means of Lemma 4.15. Since ψmα̂0 < ψmα̂ and

ψmα̂ ∈ Hα̂[∆], we can apply the rule to obtain Hα̂[∆] ψmα̂

ψmα̂
Γ′, A.

Case 2. We suppose that the last rule applied has principal formula A of
∧
-type.

Then Hβ[∆] Ωn+1

α
Γ′, A by hypothesis and Hβ[∆ ∪ tA(B)] Ωn+1

αB
Γ′, B with αB < α

for each B ∈ C(A). We need to show that k(∆ ∪ tA(B)) ⊆ Bm(β + 1) for any
B ∈ C(A) to be able to use the induction hypothesis. So we prove the following
claim.
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Claim 4.24.2. With the hypothesis of Case 2., we have that k(∆∪tA(B)) ⊆ Bm(β+
1).

We prove Claim 4.24.2 by considering cases based on the form of A.

Subcase 2.1. We assume A ≡ ¬Ad(t) for some term t. Then, since A is Σm, we
have |t| < Ωm. Any premise in C(A) is of the form t ̸= LΩl(X) for some l < ω, and
so k(t ̸= LΩl(X)) = {|t|,Ωl} ⊆ Bm(β + 1).

Subcase 2.2. We assume A ≡ B0 ∧ B1. Then k(A) = k(B0) ∪ k(B1). Since
k(A) ⊆ Bm(β + 1), we also have k(B0), k(B1) ⊆ Bm(β + 1).

Subcase 2.3. We assume A ≡ s /∈ t or A ≡ ∀x ∈ t C(x) for some term(s) t
and s with |t|, |s| < Ωm (because A is Σm). Then, the characteristic term tA(B) for
any B ∈ C(A) has always level below |t|. Therefore, {|tA(B)| : B ∈ C(A)} ⊆ δ, where
δ := |t| < Ωm. But then δ ∈ k(A) ∩ Ωm ⊆ Hβ[∆] ∩ Ωm ⊆ Bm(β + 1) ∩ Ωm. The last
inclusion comes from the equality H[∆] =

⋂
{Bk(γ) : β < γ∧k(∆) ⊆ Bk(γ)∧k < ω}

and the fact that k(∆) ⊆ Bm(β + 1).
Gathering everything together, we have that k(tA(B)) ⊆ Bm(β+1) for all B ∈ C(A).

Thus, Claim 4.24.2 is shown, and we can use the induction hypothesis, that yields

Hα̂B [∆ ∪ tA(B)] ψmα̂B

ψmα̂B
Γ′, B for every B ∈ C(A). But, for each B ∈ C(A), we have

ψmα̂B < ψmα̂ and ψmα̂ ∈ Hα̂[∆]. Therefore, by an application of the rule, we obtain

Hα̂[∆] ψmα̂

ψmα̂
Γ′, A.

Case 3. We suppose that the last rule applied is (Refk) for some k ≤ m. Then,

we have Hβ[∆] Ωn+1

α
Γ′,∃z ∈ LΩk(X)F z, where F is a Σ-formula and Hβ[∆] Ωn+1

α0

Γ′, F LΩk
(X). By the induction hypothesis, Hα̂0 [∆] ψmα̂0

ψmα̂0
Γ′, F LΩk

(X). We cannot use
again the rule since maybe ψmα̂ ≥ Ωk. Instead, we use Lemma 4.21 (Boundedness)

to obtain Hα̂0 [∆] ψmα̂0

ψmα̂0
Γ′, F Lψkα̂0 (X). Moreover, since Hα̂0 [∆] ⊆ Hα̂[∆], we apply

Lemma 4.15 to change the controlling operator and increase the bound of the com-

plexity of the cuts and get Hα̂[∆] ψmα̂

ψmα̂0
Γ′, F Lψkα̂0 (X). Now, an application of (b∃)

yields Hα̂[∆] ψmα̂

ψmα̂
Γ′,∃z ∈ LΩk(X)F z.

Case 4. We suppose that the last rule applied is (Cut). Then, we haveHβ[∆] Ωn+1

α
Γ.

We also have the premises Hβ[∆] Ωn+1

α0
Γ, A and Hβ[∆] Ωn+1

α0
Γ,¬A with α0 < α

and rk(A) < Ωn + 1. We will run through cases based upon the ordering relation
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between rk(A) and Ωm.

Subcase 4.1. We assume rk(A) < Ωm. First of all, we observe that

Hβ[∆] = ∩{Bl(δ) : k(∆) ⊆ Bl(δ) ∧ β < δ ∧ l < ω} ⊆ Bm(β + 1)

since k(∆) ⊆ Bm(β+1) by assumption. Thus, since rk(A) ∈ k(A) ⊆ Hβ[∆], we have

rk(A) ∈ Hβ[∆] ∩ Ωm ⊆ Bm(β + 1) ∩ Ωm = ψm(β + 1) ≤ ψmα̂.

By the induction hypothesis, we have Hα̂0 [∆] ψmα̂0

ψmα̂0
Γ, A and Hα̂0 [∆] ψmα̂0

ψmα̂0
Γ,¬A.

Now, taking as the operator control Hα̂[∆] by means of Lemma 4.15, an applica-

tion of (Cut) yields Hα̂[∆] ψmα̂

ψmα̂
Γ as desired. Cut complexity is not increased since

rk(A) < ψmα̂.

Subcase 4.2. We assume Ωm ≤ rk(A) < Ωn + 1. We notice that we are not able to
proceed as in Subcase 4.1 because the complexity of the cuts in the last derivation
go beyond ψmα̂. We prove the following claim.

Claim 4.24.3. Let β ≤ η < α̂ such that η ∈ Hη, let k = min(l < ω : rk(A) < Ωl).

If Hη[∆] δ

δ
Γ, A and Hη[∆] δ

δ
Γ,¬A for some δ < Ωk then

Hα̂[∆] ψmα̂

ψmα̂
Γ.

We show Claim 4.24.3.
We let µ = max(rk(A), δ) + 1. We notice that µ ≤ ωµ < Ωk. Let ρ = Ωk−1 + 1 (we
know k > 0 since Ωm ≤ rk(A)).
Then, we have Ωk−1 < ρ < ρ+ ωµ < Ωk ≤ Ωn.
From the hypothesis of Claim 4.24.3, we have

Hη[∆] δ

δ
Γ, A (1)

and
Hη[∆] δ

δ
Γ,¬A. (2)

By an application of (Cut), we obtain

Hη[∆] ρ+ωµ
δ+1

Γ.

We observe that the complexity of the cuts is in fact bounded by µ, and so it is also
bounded by ρ+ ωµ.
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Obviously, there is no Ωl in the interval [ρ, ρ + ωµ). Moreover, ωµ ∈ Hη[∆] since
δ, rk(A) ∈ Hη[∆]. We can use Theorem 4.20 (Predicative Cut Elimination) and we
get

Hη[∆] ρ

φµ(δ+1)
Γ.

Now, since β ≤ η, we have that k(∆) ⊆ Bm(β+1) ⊆ Bm(η+1). Also, η ∈ Hη[∆] by
assumption. Thus, the conditions of the Collapsing Theorem (in fact, the conditions
of the general Claim 4.24.1 we are proving) are met and so, since ρ < Ωn, we use the
main induction hypothesis to obtain

Hη+ωρ+φµ(δ+1) [∆]
ψm(η+ωρ+φµ(δ+1))

ψm(η+ωρ+φµ(δ+1))

Γ. (3)

Here, we have used the induction hypothesis from the main induction on Ωn.
It remains to show that ψm(η+ω

ρ+φµ(δ+1)) ≤ ψm(β+ω
Ωn+1+α) in order to use Lemma

4.15 and obtain the conclusion of Claim 4.24.3.
From ρ+ φµ(δ + 1) < Ωk+1 ≤ Ωn we get that

ωρ+φµ(δ+1) < ωΩn .

Now, we observe that, since β ≤ η < β + ωΩn+1+α we can write

η = β + ζ for some ζ < ωΩn+1+α.

It follows that

η + ωΩk+φµ(δ+1) = β + ζ + ωΩk+φµ(δ+1)

< β + ζ + ωΩn

≤ β + ωΩn+1+α since ζ, ωΩn < ωΩn+1+α and ωΩn+1+α is additive principal

= α̂.

From this inequality we derive that

Hη + ωρ+φµ(δ+1)[∆] ⊆ Hα̂ and ψm(η + ωρ+φµ(δ+1)) < ψm(α̂).

Lemma 4.15 on (3) yields

Hα̂[∆]
ψm(α̂)

ψm(α̂)
Γ.

Hence, Claim 4.24.3 is verified and we can continue analyzing Subcase 4.2 as follows.

Subsubcase 4.2.1. We assume rk(A) ̸= Ωj for any j < ω. Let Ωk = min(Ωi :
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rk(A) < Ωi). We notice that Γ ∪ {A,¬A} is in particular a set of ΣΩk formulas

because Ωm < rk(A) < Ωk. By the induction hypothesis, we have Hα̂0 [∆] ψkα̂0

ψkα̂0
Γ, A

and Hα̂0 [∆] ψkα̂0

ψkα̂0
Γ,¬A. We use Claim 4.24.3 with η = α̂0, δ = ψkα̂0 and k = k to

get the result.

Subsubcase 4.2.2. We assume Ωm ≤ rk(A) = Ωk ≤ Ωn. In this case, A and ¬A
are of the form ∃x ∈ LΩk(X)B(x) and ∀x ∈ LΩk(X)¬B(x) (respectively or alterna-
tively), and we have

Hβ[∆] Ωn+1

α0
Γ,∃x ∈ LΩk(X)B(x) (4)

and
Hβ[∆] Ωn+1

α0
Γ,∀x ∈ LΩk(X)¬B(x). (5)

By the induction hypothesis on (4), we have Hα̂0 [∆] ψkα̂0

ψkα̂0
Γ,∃x ∈ LΩk(X)B(x).

Let ξ = ψk(Ωn + ωβ+α0). We observe that ξ ∈ Hα̂0 [∆] ∩ Ωk. By Lemma 4.21
(Boundedness), we get

Hα̂0 [∆] ψkα̂0

ψkα̂0
Γ,∃x ∈ Lξ(X)B(x). (6)

On the other hand, we apply Lemma 4.23 to (5) to obtain

Hβ[∆] Ωn+1

α0
Γ,∀x ∈ Lξ(X)¬B(x).

Since β < α̂0, by Lemma 4.15 we get

Hα̂0 [∆] Ωn+1

α0
Γ,∀x ∈ Lξ(X)¬B(x).

By the induction hypothesis,

Hα̂0+ωΩn+1+α0 [∆]
ψk(α̂0+ωΩn+1+α0 )

ψk(α̂0+ωΩn+1+α0 )
Γ, ∀x ∈ Lξ(X)¬B(x). (7)

Now, we apply Claim 4.24.3 to (6) and (7) with δ = ψk(α̂0 + ωΩn+1+α0), η = α̂0 +
ωΩn+1+α0 and k = k and obtain the result.

61



5 Embedding KPl into RSl(X)

In this section, we will prove that we can derive in RSl(X) any given finite set of for-
mulas provable in KPl changing free variables by terms and bounding the unbounded
quantifiers of the formulas by LΩω(X) with a bounded cut complexity and depth. In
particular, in Theorem 5.20 we will show that if KPl ⊢ Γ(a1, . . . , an) then there is

m < ω such that H[s1, . . . , sn] Ωω+m

Ωω ·ωm
Γ(s1, . . . , sn)

LΩω (X) for any operator H and any
terms s1, . . . , sn of level below Ωω.

5.1 The ⊩ relation

We start by introducing the ⊩ relation. The relation ⊩ Γ will mean that a set of
formulas Γ is derivable with the control of any operator with a reasonable depth
depending on the rank of those formulas. The ordinal bounds of the derivations will
use the following operation.

Definition 5.1. Let α1, . . . , αn be ordinals. Let π : {1, . . . , n} → {1, . . . , n} be a
function such that απ(1) ≥ · · · ≥ απ(n). We define

α1# . . .#αn = απ(1) + · · ·+ απ(n).

With the operation #, we can now define ⊩ Γ.

Definition 5.2. Given a set of formulas Γ = {A1, . . . , An}, we define

#Γ = ωrk(A1)# · · ·#ωrk(An).

Now, we define the relation ⊩.

We write ⊩ Γ whenever for any operator H we have H[Γ] 0

#Γ
Γ.

We write ρ
α
Γ whenever for any operator H we have H[Γ] ρ

#Γ#α
Γ.

The first part of the next lemma shows that we can treat the ⊩ relation as a
logic in the sense that given the premise(s) Γi, for i ∈ y, of the conclusion Γ of some
instance of an RSl(X)-rule, if ⊩ Γi for all i ∈ y then ⊩ Γ. The second part of the
lemma shows that whenever the formulas A,B are derivable with ⊩ then we can
derive A ∨ B instead. This will be useful to derive formulas of the form A → B.
For instance, a general reasoning that we will use to prove that ⊩ A→ B will be to
first derive ⊩ ¬A,B and, by means of this Lemma, we will get ⊩ ¬A ∨ B, which is
equivalent to ⊩ A→ B.
Along this section, we follow Reading Convention 4.16 and omit the repetition of
principal formulas in the premises.
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Lemma 5.3. Let Γ ∪ {A,B} be a finite set of formulas. Let α and ρ be ordinals.

1. If B ∈ C(A) then #(Γ, B)#α < #(Γ, A)#α.
Moreover, if Γ, A follows from the premise(s) Γ, Bi, for i ∈ y, by a rule other
than (Cut) and (Refn), with n < ω, with principal formula A and active for-

mulas Bi, then ρ
α
Γ, A whenever ρ

α
Γ, Bi for all i ∈ y.

2. If ρ
α
Γ, A,B then ρ

α
Γ, A ∨B.

Proof. 1. First, by Lemma 4.8 we have rk(B) < rk(A) whenever B ∈ C(A). It
follows that ωrk(B) < ωrk(A) for any B ∈ C(A) and so #(Γ, B) < #(Γ, A) for every
B ∈ C(A).
We suppose now that ρ

α
Γ, Bi for all i ∈ y and fix an operator H. Then,

H[Γ, Bi] ρ

#(Γ,Bi)#α
Γ, Bi

for all i ∈ y. By an application of the rule, and since #(Γ, Bi)#α < #(Γ, A)#α for

all i ∈ y, we get H[Γ, A] ρ

#(Γ,A)#α
Γ, A. Hence, ρ

α
Γ, A.

2. We suppose ρ
α
Γ, A,B and fix an operator H. Then,

H[Γ, A,B] ρ

#(Γ,A,B)#α
Γ, A,B.

We apply (∨) twice (one on A and the other on (B)) to obtain

H[Γ, A,B] ρ

#(Γ,A,B)#α+2
Γ, A ∨B,A ∨B,

which is exactly H[Γ, A,B] ρ

#(Γ,A,B)#α+2
Γ, A ∨ B. By Item 1. of this lemma and

since ωrk(A∨B) is additive principal, we have

#(Γ, A,B)#α+2 = #Γ#ωrk(A)#ωrk(B)#α+2 < #Γ#ωrk(A∨B)#α = #(Γ, A∨B)#α.

Therefore, by Lemma 4.15 and since H[Γ, A,B] = H[Γ, A ∨B] we obtain

H[Γ, A ∨B] ρ

#(Γ,A∨B#α)
Γ, A ∨B.

Hence, ρ
α
Γ, A ∨B.
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We explain the remark preceding the statement of Lemma 5.3 more precisely.
This lemma says that whenever we can derive a set of formulas Γ with the ⊩ relation
and a set of formulas Γ′ follows from Γ by an RSl(X) rule (with the control of any
operator), then we can write the derivation with the ⊩ relation. For example, if for

any operator H we have H[A] 0
ωrk(A)

A then we also have H[A ∨ B] 0
ωrk(A∨B)

A ∨ B.
In this case, we will write

⊩ A
(∨)

⊩ A ∨B
This is how we will write derivations with the ⊩ relation, for example, in the proof
of the next lemma.

Lemma 5.4. For any formula A we have ⊩ A,¬A.

Proof. We proceed by induction on the rank of A. We note that given any non-basic
formula A, since rk(B) < rk(A) for any B ∈ C(A), when proving ⊩ A,¬A we can
suppose ⊩ B,¬B by the induction hypothesis. We consider cases based on the form
of A.

Case 1. We suppose that A ≡ u ∈ v. This means that A,¬A is an axiom (since
either u ∈ v or u /∈ v holds).

Case 2. We suppose that A ≡ r ∈ t is not a basic formula. This means that either r
or t is not a basic term, and so |r| > Γθ+1 or |t| > Γθ+1. By the induction hypothesis,
we have ⊩ s∈̇t ∧ r = s,¬(s∈̇t ∧ r = s), which is exactly ⊩ s∈̇t ∧ r = s, s∈̇t→ r ̸= s,
for all terms s with |s| < |t|. Therefore, we have the following derivation for every
term s with |s| < |t|, where the first inference is applied to the first formula and the
second inference is applied to the second formula:

⊩ s∈̇t ∧ r = s, s∈̇t→ r ̸= s
(∈)

⊩ r ∈ t, s∈̇t→ r ̸= s
(/∈)

⊩ r ∈ t, r /∈ t

Hence, we obtain ⊩ A,¬A.

Case 3. We suppose that A ≡ ∃x ∈ t B(x). By the inductive hypothesis, we
have ⊩ s∈̇t ∧ B(s),¬(s∈̇t ∧ B(s)), which is exactly ⊩ s∈̇t ∧ B(s), s∈̇t → ¬B(s), for
all terms s with |s| < |t|. Therefore, we have the following derivation for every term
s with |s| < |t|, where the first inference is applied to the first formula and the second
inference is applied to the second formula:

64



⊩ s∈̇t ∧B(s), s∈̇t→ ¬B(s)
(b∃)

⊩ ∃x ∈ t B(x), s∈̇t→ ¬B(s)
(b∀)

⊩ ∃x ∈ t B(x),∀x ∈ t ¬B(x)

Hence, we obtain ⊩ A,¬A.
The other cases are analogous to those ones, but using the appropriate rules.

At some points we will need to write derived formulas in some equivalent expres-
sion, e.g. write A → B instead of ¬A ∨ B as already mentioned before. We will
simply use the symbol ≡ as the label of the derivation when this happens.
The next lemma states some results that will be helpful to embed the KPl axioms
and rules into the RSl(X)-system.

Lemma 5.5. Let s be any term. Then, we have

1. ⊩ s /∈ s,

2. Given any term t, if |s| < |t| then ⊩ s∈̇t→ s ∈ t,

3. ⊩ s ⊆ s,

4. ⊩ s = s,

5. Let α be an ordinal. If |s| < Γθ+1 + α then ⊩ s ∈ Lα(X).

Proof. 1. We proceed by induction on rk(s). We consider cases based on the form
of s.

Case 1. We suppose s ≡ u. Then s /∈ s is an axiom.

Case 2. We suppose s ≡ Lα(X). By the induction hypothesis, we get ⊩ r /∈ r
for all |r| < |s|, which is the same as ⊩ r∈̇s ∧ r /∈ r by Definition 4.4. Therefore, we
obtain the following derivation for all |r| < |s|:

⊩ r∈̇s ∧ r /∈ r
(b∃)

⊩ ∃x ∈ s(x /∈ r)
(∨)

⊩ ∃x ∈ s(x /∈ r) ∨ ∃x ∈ r(x /∈ s)
≡

⊩ s ̸= r
≡

⊩ r∈̇s→ s ̸= r
(/∈)

⊩ s /∈ s
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Case 3. We suppose s ≡ [x ∈ Lα(X) : B(x)]. By Lemma 5.4 we have ⊩ B(r),¬B(r)
for any term r, and in particular for any term r with |r| < |s|. Moreover, by the
induction hypothesis we have ⊩ r /∈ r for all |r| < |s|. We get the following derivation
for all |r| < |s|:

⊩ B(r),¬B(r) ⊩ r /∈ r
(∧)

⊩ B(r) ∧ r /∈ r,¬B(r)
(b∃)

⊩ ∃x ∈ s(x /∈ r),¬B(r)
(∨)

⊩ ∃x ∈ s(x /∈ r) ∨ ∃x ∈ r(x /∈ s),¬B(r)
≡

⊩ s ̸= r,¬B(r)
Lemma 5.3

⊩ ¬B(r) ∨ ¬s = r
≡

⊩ B(r) → s ̸= r
≡

⊩ r∈̇s→ s ̸= r
(/∈)

⊩ s /∈ s

We prove 2. and 3. simultaneously. Actually, we show ⊩ ∀x ∈ s(x ∈ s) by induction
on rk(s) and considering cases based on the form of s, and 2. will be shown along
the way.

Case 1. We suppose s ≡ u. Then, given the basic term v, either v ∈ u or v /∈ u is
an axiom, and so v ∈ u, v /∈ u is an axiom. We have the following derivation for any
basic term v:

⊩ v ∈ u, v /∈ u
Lemma 5.3

⊩ ¬v ∈ u ∨ v ∈ u≡
⊩ v ∈ u→ v ∈ u≡
⊩ v∈̇u→ v ∈ u

(b∀)
⊩ ∀x ∈ s(x ∈ s)

We notice that the second to last line is exactly ⊩ v∈̇u→ v ∈ u, as in Item 2.

Case 2. We suppose s ≡ Lα(X). By the induction hypothesis ⊩ ∀x ∈ r(x ∈ r)
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for any |r| < |s|. Therefore, we have the following derivation for all |r| < |s|:
⊩ ∀x ∈ r(x ∈ r) ⊩ ∀x ∈ r(x ∈ r)

(∧)
⊩ ∀x ∈ r(x ∈ r) ∧ ∀x ∈ r(x ∈ r)

≡
⊩ r = r≡
⊩ r∈̇s ∧ r = r

(∈)
⊩ r ∈ s≡
⊩ r∈̇s→ r ∈ s

(b∀)
⊩ ∀x ∈ s(x ∈ s)

Case 3. We suppose s ≡ [x ∈ Lα(X) : B(x)]. By the induction hypothesis, we get
⊩ ∀x ∈ r(x ∈ r) for all |r| < |s|. So, by Lemma 4.15, we obtain ⊩ ∀x ∈ r(x ∈
r),¬B(r). Applying (∧), we have ⊩ r = r,¬B(r). Moreover, we have ⊩ B(r),¬B(r)
by Item 1. We get the following derivation for all |r| < |s|:

⊩ r = r,¬B(r) ⊩ B(r),¬B(r)
(∧)

⊩ B(r) ∧ r = r,¬B(r)
≡

⊩ r∈̇s ∧ r = r,¬B(r)
(∈)

⊩ r ∈ s,¬B(r)
Lemma 5.3

⊩ ¬B(r) ∨ r ∈ s
≡

⊩ B(r) → r ∈ s
≡

⊩ r∈̇s→ r ∈ s
(b∀)

⊩ ∀x ∈ s(x ∈ s)

4. The result follows from Item 3. by an application of the (∧) rule.

5. First, for all |s| < Γθ+1 + α we have ⊩ s = s by Item 3. Using Definition
4.4, this is equivalent to ⊩ s∈̇Lα(X) ∧ s = s. We apply (∈) to obtain the result.

5.2 The embedding Theorem

In this subsection, we will show that all the axioms of KPl can be embedded in
RSl(X) and we will give ordinal length and cut-complexity bounds of the derivations
of the axioms in RSl(X). It seems that, in order to prove the desired Theorem 5.20
stated at the beginning of this section, it is sufficient to prove that we can find ordinal
bounds α and β such that, for any KPl axiom Ax and any operator H, we have

H β

α
(Ax)LΩω (X).
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Nonetheless, we need a stronger result: the third Ad axiom states that any admissible
set has to satisfy basic axioms. This means that we have to prove that, given an
axiom Ax among Leibniz Principle, Pair, Union, ∆0-Separation and ∆0-Collection

H β

α
(Ax)LΩn (X)

for all n ≤ ω and for any operator H. Actually, for ∆0-Collection we only need n < ω
since this axiom is not an axiom of KPl.

To prove that the Leibniz Principle can be embedded into the RSl(X)-system, we
will use the following preliminary Lemma.

Lemma 5.6. Let s, t be terms such that |s| < |t|. Let Γ be any finite set of formulas
and let A and B be formulas. If ⊩ Γ, A,B then

⊩ Γ, s∈̇t→ A, s∈̇t ∧B.

Proof. We argue by splitting cases based on the form of t.

Case 1. We suppose that t ≡ u. Then, s ≡ v since |s| < |t|, Therefore, by hypothesis
⊩ Γ, A,B and by Lemma 5.4 (together with Lemma 4.15) we have ⊩ Γ, v ∈ u, v /∈ u.
We get the following derivaitons:

⊩ Γ, v ∈ u, v /∈ u
(∨)

⊩ Γ,¬v ∈ u ∨ A, v ∈ u
≡

⊩ Γ, v ∈ u→ A, v ∈ u

⊩ Γ, A,B
(∨)

Γ,¬v ∈ u ∨ A,B
≡

Γ, v ∈ u→ A,B
(∧)

⊩ Γ, v ∈ u→ A, v ∈ u ∧B
≡

Γ, v∈̇u→ A, v∈̇u ∧B
Case 2. We suppose that t ≡ Lα(X). Then s∈̇t→ A ≡ A and s∈̇t∧B ≡ B by Defini-
tion 4.4. The desired result is, in this case, exactly ⊩ Γ, A,B, which is the hypothesis.

Case 3. We suppose that t ≡ [x ∈ Lα(X) : C(x)]. Then s∈̇t → A ≡ C(s) → A
and s∈̇t ∧B ≡ C(s) ∧B. Now, by Lemma 5.4 (together with Lemma 4.15) we have
⊩ Γ, C(s),¬C(s) and by hypothesis we have ⊩ Γ, A,B. We obtain the following
derivations:

⊩ Γ, C(s),¬C(s)
(∨)

⊩ Γ,¬C(s) ∨ A,C(s)
≡

⊩ Γ, C(s) → A,C(s)

⊩ Γ, A,B
(∨)

Γ,¬C(s) ∨ A,B
≡

Γ, C(s) → A,B
(∧)

⊩ Γ, C(s) → A,C(s) ∧B
≡

Γ, s∈̇t→ A, s∈̇t ∧B
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Lemma 5.7 (Leibniz Principle). Let s and t be terms. Let n ≤ ω. For any formula
KPl-formula A(x), we have

⊩ s ̸= t,¬A(s)LΩn (X), A(t)LΩn (X).

Proof. We prove a more general claim.

Claim 5.7.1. Let s1, . . . , sk, t1, . . . , tk be terms. Let n ≤ ω. For any KPl-formula
B(x1, . . . , xk),

⊩ s1 ̸=t1, . . . , sk ̸=tk,¬B(s1, . . . , sk)
LΩn (X), B(t1, . . . , tk)

LΩn (X), (1)

where x ̸=y := ¬x ⊆ y,¬y ⊆ x.

With Claim 5.7.1, let m be the number of appearances of the free variable x
in A(x). Define the KPl-formula C(x1, . . . , xm) with m free variables as the formula
A(x) but replacing the first appearance of x with x1, the second appearance of x with
x2, . . . , the m − th appearance of x with xm. This means that A(x) ≡ C(x, . . . , x).
We apply the Claim 5.7.1 to C(x1, . . . xm) to obtain

⊩ s ̸=t, . . . , s ̸=t,¬C(s, . . . , s)LΩn (X), C(t, . . . , t)LΩn (X).

which is the same as
⊩ s ̸=t,¬A(s)LΩn (X), A(t)LΩn (X).

Applying (∨) to s ̸=t yields

⊩ s ̸= t,¬A(s)LΩn (X), A(t)LΩn (X).

We prove Claim 5.7.1 by induction and by splitting cases based on the form of the
KPl-formula B(x1, . . . , xk). First, we show a useful property about the symbol ̸=:
given any terms a, b and any finite set of formulas Γ

if ⊩ Γ, a̸=b, then ⊩ Γ, a ̸= b. (2)

Indeed, we have the following derivation:

⊩ Γ, a̸=b
≡

⊩ Γ,¬(a ⊆ b),¬(b ⊆ a)
(∨)

⊩ Γ,¬(a ⊆ b) ∨ ¬(b ⊆ a),¬(b ⊆ a)
(∨)

⊩ Γ,¬(a ⊆ b) ∨ ¬(b ⊆ a),¬(a ⊆ b) ∨ ¬(b ⊆ a)
≡

⊩ Γ, a ̸= b, a ̸= b
≡

⊩ Γ, a ̸= b
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Case 1. We suppose that B(x1, . . . , xk) ≡ B(xi, xj) ≡ xi ∈ xj for some i, j ∈
{1, . . . , n}.
Subcase 1.1. We assume i = j. We haveB(xi) ≡ xi ∈ xi and soB(si)

LΩn (X) ≡ si ∈ si.
Then, ¬B(si)

LΩn (X) ≡ s1 /∈ s1. But, by Lemma 5.5(1.) (together with Lemma 4.15),
we already have ⊩ si ̸=ti, si /∈ si, ti ∈ ti, which is the desired result.

Subcase 1.2. We assume i ̸= j. Then B(xi, xj) ≡ xi ∈ xj. This means that
B(si, sj)

LΩn (X) ≡ si ∈ sj. We notice that any premise C ∈ C(si ∈ sj) is of the form
si = s for |s| < |sj|. By the induction hypothesis, we have

⊩ si ̸=ti, s̸=t, si ̸= s, ti = t

for all |s| < |sj| and |t| < |tj|. We obtain the following derivation for all |s| < |sj|
and all |t| < |tj|:

⊩ si ̸=ti, s̸=t, si ̸= s, ti = t
(2)

⊩ si ̸=ti, s ̸= t, si ̸= s, ti = t
Lemma 5.6

⊩ si ̸=ti, t∈̇tj → s ̸= t, si ̸= s, t∈̇tj ∧ ti = t
(∈)

⊩ si ̸=ti, t∈̇tj → s ̸= t, si ̸= s, ti ∈ tj
(/∈)

⊩ si ̸=ti, s /∈ tj, si ̸= s, ti ∈ tj
Lemma 5.6

⊩ si ̸=ti, s∈̇sj ∧ s /∈ tj, s∈̇sj → si ̸= s, ti ∈ tj
(b∃)

⊩ si ̸=ti,∃x ∈ sj(x /∈ tj), s∈̇sj → si ̸= s, ti ∈ tj
(/∈)

⊩ si ̸=ti,∃x ∈ sj(x /∈ tj), si /∈ sj, ti ∈ tj
(∨)

⊩ si ̸=ti,∃x ∈ sj(x /∈ tj) ∨ ∃x ∈ tj(x /∈ sj), si /∈ sj, ti ∈ tj≡
⊩ si ̸=ti, sj ̸= tj, si /∈ sj, ti ∈ tj

(2)
⊩ si ̸= ti, sj ̸= tj, si /∈ sj, ti ∈ tj

Case 2. We suppose thatB(x1, . . . , xk) ≡ ∃y ∈ xi F (y, x1, . . . , xk) for some 1 ≤ i ≤ k.
Then B(s1, . . . , sk)

LΩn (X) ≡ ∃y ∈ si F (y, s1, . . . , sk).
All the premises in C(B(s1, . . . , sn)

LΩn (X)) are of the form F (r, s1, . . . , sk) for |r| < |si|.
By the induction hypothesis, we have

⊩ s1 ̸=t1, . . . , sk ̸=tk,¬F (r, s1, . . . , sk), F (r, t1, . . . , tk)
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for all |r| < |si|. By Lemma 5.6, we get

⊩ s1 ̸=t1, . . . , sk ̸=tk, r∈̇si → ¬F (r, s1, . . . , sk), r∈̇si ∧ F (r, t1, . . . , tk).

for all |r| < |si|. We apply (b∀) and we obtain

⊩ s1 ̸=t1, . . . , sk ̸=tk,∀y ∈ si F (y, s1, . . . , sk), F (r, t1, . . . , tk)

for |r| < |si|. An application of (b∃) yields

⊩ s1 ̸=t1, . . . , sk ̸=tk,∀y ∈ si F (y, s1, . . . , sk),∃y ∈ tiF (y, t1, . . . , tk).

Case 3. We suppose B(x1, . . . , xk) ≡ F1(x1, . . . , xk)∨F2(x1, . . . , xk). This means that
B(s1, . . . , sk)

LΩn (X) ≡ F1(s1, . . . , sk)
LΩn (X) ∨ F2(s1, . . . , sk)

LΩn (X). By the induction
hypothesis, we get

⊩ s1 ̸=t1, . . . , sk ̸=tk,¬F1(s1, . . . , sk), F1(t1, . . . , tk) (3)

and
⊩ s1 ̸=t1, . . . , sk ̸=tk,¬F2(s1, . . . , sk), F2(t1, . . . , tk). (4)

Using (∨) on (2) and (3) gives

⊩ s1 ̸=t1, . . . , sk ̸=tk,¬F1(s1, . . . , sk), F1(t1, . . . , tk) ∨ F2(t1, . . . , tk)

and
⊩ s1 ̸=t1, . . . , sk ̸=tk,¬F2(s1, . . . , sk), F1(t1, . . . , tk) ∨ F2(t1, . . . , tk).

Finally, we apply (∧) to get

⊩ s1 ̸=t1, . . . , sk ̸=tk,¬F1(s1, . . . , sk) ∧ ¬F2(s1, . . . , sk), F1(t1, . . . , tk) ∨ F2(t1, . . . , tk),

which is equivalent to

⊩ s1 ̸=t1, . . . , sk ̸=tk,¬(F1(s1, . . . , sk) ∨ F2(s1, . . . , sk)), F1(t1, . . . , tk) ∨ F2(t1, . . . , tk).

All the other cases are dual to the ones already shown.

We show now that the Set Induction axiom can be embedded into the RSl(X)-
system.

Lemma 5.8 (Set Induction). Let n ≤ ω. For any KPl-formula A, we have

ωrk(B)

B → ∀x ∈ LΩn(X) A(x),

where B ≡ ∀x ∈ LΩn(X)(∀x ∈ y A(y)LΩn (X) → A(x)LΩn (X)).
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Proof. We will use the following claim.

Claim 5.8.1. For any term s with |s| < Ωn and any operator H:

H[B, s] 0

ωrk(B)#ω|s|+1

¬B,A(s)LΩn (X). (1)

Having Claim 5.8.1, we apply (b∀) to get

H[B] 0

ωrk(B)#Ωn ¬B, ∀x ∈ LΩn(X)A(x)LΩn (X)

for any operator H. We apply (∨) twice (one time to ¬B and the other to ∀x ∈
LΩn(X)A(x)LΩn (X)) to obtain

H[B] 0

ωrk(B)#Ωn+2 ¬B ∨ ∀x ∈ LΩn(X)A(x)LΩn (X),¬B ∨ ∀x ∈ LΩn(X)A(x)LΩn (X).

Now, removing one repeated formula and writing the formula as an implication, this
is the same as

H[B] 0

ωrk(B)#Ωn+2
B → ∀x ∈ LΩn(X)A(x)LΩn (X).

But rk(LΩn(X)) = Ωn, and so obviously

rk(B → ∀x ∈ LΩn(X)A(x)LΩn (X))) > Ωn + 1.

This yields
#(B → ∀x ∈ LΩn(X)A(x)LΩn (X))) ≥ ωΩn+1.

Hence, by Lemma 4.15, we obtain

H[B] 0

#(B→∀x∈LΩn (X)A(x)LΩn
(X)))#ωrk(B)

B → ∀x ∈ LΩn(X)A(x)LΩn (X).

Since this holds for any operator H, we can conclude

ωrk(B)

B → ∀x ∈ LΩn(X) A(x).

We just need to prove Claim 5.8.1. So let H be any operator. Recall that we need
to prove that

H[B, s] 0

ωrk(B)#ω|s|+1

¬B,A(s)LΩn (X).

for any term s with |s| < Ωω. We proceed by induction on |s|. By the induction
hypothesis, we get

H[B, r] 0

ωrk(B)#ω|r|+1

¬B,A(r)LΩn (X). (2)
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From this we can obtain

H[B, r, s] 0

ωrk(B)#ω|r|+1+1 ¬B, r∈̇s→ A(r)LΩn (X), (3)

no matter the form of s. Indeed,

• If s ≡ u, we apply (∨) to (2) to get

H[B, r, s] 0

ωrk(B)#ω|r|+1+1 ¬B,¬r ∈ u ∨ A(r)LΩn (X),

which, by Definition 4.4, is exactly

H[B, r] 0

ωrk(B)#ω|r|+1

¬B, r∈̇u→ A(r)LΩn (X).

• If s ≡ Lα(X), then r∈̇Lα(X) → A(r)LΩn (X) ≡ A(r)LΩω (X), and so the derivation
(2) is exactly

H[B, r] 0

ωrk(B)#ω|r|+1

¬B, r∈̇Lα(X) → A(r)LΩn (X).

By Lemma 4.15, we can add 1 to the ordinal bound to obtain the desired result.

• If r ≡ [x ∈ Lα(X) : C(x)], then we apply (∨) to the derivation (2) to get

H[B, r] 0

ωrk(B)#ω|r|+1+1 ¬B,¬C(r) ∨ A(r)LΩn (X),

which, by Definition 4.4, is exactly the same as

H[B, r] 0

ωrk(B)#ω|r|+1+1 ¬B, r∈̇s→ A(r)LΩn (X).

On the other hand, by Lemma 5.4 we have

H[A, s] 0

ωrk(B)#ω|s|+2 ¬A(s)LΩn (X). (4)

So, starting with (3) and (4), we have the following derivations for all |r| < |s|:

H[B, r, s] 0

ωrk(B)#ω|r|+1+1 ¬B, r∈̇s→ A(r)LΩn (X)

(b∀)
H[B, s] 0

ωrk(B)#ω|s|+2 ¬B, ∀y ∈ s A(y)LΩn (X) H[A, s] 0

ωrk(B)#ω|s|+2 ¬A(s)LΩn (X)

(∧)
H[A, s] 0

ωrk(B)#ω|s|+3 ¬B, ∀y ∈ s A(y)LΩn (X) ∧ ¬A(s)LΩn (X), A(s)LΩn (X)

(b∃)
H[A, s] 0

ωrk(B)#ω|s|+4 ¬B, ∃x ∈ LΩn(X)[∀y ∈ x A(x)LΩn (X) ∧ ¬A(x)LΩn (X)], A(s)LΩn (X)
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We notice that the second formula displayed in the last line is exactly ¬B. Moreover,
we observe that ωrk(B)#ω|s| + 4 < ωrk(B)#ω|s|+1. Hence, we can remove one of the
repeated formulas and also use Lemma 4.15 to obtain

H[A, s] 0

ωrk(B)#ω|s|+1

¬B,A(s)LΩn (X).

and Claim 5.8.1 is verified.

We continue with the ∆0-Separation axiom schema.

Lemma 5.9 (∆0-Separation). Let n ≤ ω. Let A(x, y1, . . . , yk) be a KPl ∆0-formula.
Let s, t1, . . . , tk be terms such that |s|, |t1|, . . . , |tk| < Ωn. We will use the abbreviation
t⃗ = t0, . . . , tk. Then,

⊩ ∃y ∈ LΩn(X)[∀x ∈ y(x ∈ s ∧ A(x, t⃗)LΩn (X)) ∧ ∀x ∈ s(A(x, t⃗)LΩn (X) → x ∈ y)].

Proof. Before all else, we observe that A is a ∆0-formula, which means that A does
not have any unrestricted quantifier. This means that, since |t1|, . . . , |tn| < Ωn, we
have A(·, t⃗)LΩω (X) ≡ A(·, t⃗).
Let α = max{|s|, |t1|, . . . , |tn|} + 1 < Ωn. We define β. We define the term t as
follows

t = [z ∈ Lβ(X) : z ∈ s ∧ A(z, t⃗)].

First, we show that
⊩ ∀x ∈ t(x ∈ s ∧ A(x, t⃗)). (1)

The following derivation gives this result (the first line follows Lemma 5.4):

⊩ ¬(r ∈ s ∧ A(r, t⃗)), r ∈ s ∧ A(r, t⃗) for all |r| < Ωn
Lemma 5.3(2.)

⊩ ¬(r ∈ s ∧ A(r, t⃗)) ∨ (r ∈ s ∧ A(r, t⃗))
≡

⊩ r ∈ s ∧ A(r, t⃗) → (r ∈ s ∧ A(r, t⃗))
Definition 4.4

⊩ r∈̇t→ (r ∈ s ∧ A(r, t⃗))
(b∀)

⊩ ∀x ∈ t(x ∈ s ∧ A(x, t⃗))

On the other hand, we will show that, for any |r| < |s|,

⊩ ∀x ∈ s(A(x, t⃗)LΩω (X) → x ∈ t) (2)
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by splitting cases based on the form of s.

Case 1. We suppose s ≡ u. Then we have the following derivation for all |r| < |u|

Lemma 5.4

⊩ ¬r ∈ u, r ∈ u

Lemma 5.4

⊩ ¬A(r, t⃗), A(r, t⃗)
(∧)

⊩ ¬r ∈ u,¬A(r, t⃗), r ∈ u ∧ A(r, t⃗)
Lemma 5.5(4.)

⊩ r = r
(∧)

⊩ ¬r ∈ u,¬A(r, t⃗), (r ∈ u ∧ A(r, t⃗)) ∧ r = r
Definition 4.4

⊩ ¬r ∈ u,¬A(r, t⃗), r∈̇t ∧ r = r
(∈)

⊩ ¬r ∈ u,¬A(r, t⃗), r ∈ t
Lemma 5.3(2.)

⊩ ¬r ∈ u,¬A(r, t⃗) ∨ r ∈ t
≡

⊩ ¬r ∈ u,A(r, t⃗) → r ∈ t
Lemma 5.3(2.)

⊩ ¬r ∈ u ∨ (A(r, t⃗) → r ∈ t)
≡

⊩ r∈̇u→ (A(r, t⃗) → r ∈ t)
(b∀)

⊩ ∀x ∈ s(A(x, t⃗) → x ∈ t)

Case 2. We suppose that s ≡ Lγ(X). We have the following derivation for all
|r| < |s|:

Lemma 5.5(5.)

⊩ r ∈ u

Lemma 5.4

⊩ ¬A(r, t⃗), A(r, t⃗)
(∧)

⊩ ¬A(r, t⃗), r ∈ s ∧ A(r, t⃗)
Lemma 5.5(4.)

⊩ r = r
(∧)

⊩⊩ ¬A(r, t⃗), (r ∈ s ∧ A(r, t⃗)) ∧ r = r
Definition 4.4

⊩ ¬A(r, t⃗), r∈̇t ∧ r = r
(∈)

⊩ ¬A(r, t⃗), r ∈ t
Lemma 5.3(2.)

⊩ ¬A(r, t⃗) ∨ r ∈ t
≡

⊩ A(r, t⃗) → r ∈ t
Definition 4.4

⊩ r∈̇s→ (A(r, t⃗) → r ∈ t)
(b∀)

⊩ ∀x ∈ s(A(x, t⃗) → x ∈ t)

Case 3. We suppose that s ≡ [y ∈ Lγ(X) : B(x)]. We have the following derivation
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for all |r| < |s|.

Lemma 5.4

⊩ B(r),¬B(r)

Lemma 5.5(4.)

⊩ r = r
(∧)

⊩ ¬B(r), B(r) ∧ r = r
(∈)

⊩ ¬B(r), r ∈ s

Lemma 5.4

⊩ ¬A(r, t⃗), A(r, t⃗)
(∧)

⊩ ¬B(r),¬A(r, t⃗), r ∈ s ∧ A(r, t⃗)
Lemma 5.5(4.)

⊩ r = r
(∧)

⊩ ¬B(r),¬A(r, t⃗), (r ∈ s ∧ A(r, t⃗)) ∧ r = r
Definition 4.4

⊩ ¬B(r),¬A(r, t⃗), r∈̇t ∧ r = r
(∈)

⊩ ¬B(r),¬A(r, t⃗), r ∈ t
Lemma 5.3(2.)

⊩ ¬B(r),¬A(r, t⃗) ∨ r ∈ t
≡

⊩ ¬B(r), A(r, t⃗) → r ∈ t
Lemma 5.3(2.)

⊩ ¬B(r) ∨ (A(r, t⃗) → r ∈ t)
≡

⊩ B(r) → (A(r, t⃗) → r ∈ t)
Definition 4.4

⊩ r∈̇s→ (A(r, t⃗) → r ∈ t)
(b∀)

⊩ ∀x ∈ s(A(x, t⃗) → x ∈ t)

Now, using (1) and (2) as a starting point, we have the following derivation.

⊩ ∀x ∈ t(x ∈ s ∧ A(x, t⃗)) ⊩ ∀x ∈ s(A(x, t⃗) → x ∈ t)
(∧)

⊩ ∀x ∈ t(x ∈ s ∧ A(x, t⃗)) ∧ ∀x ∈ s(A(x, t⃗) → x ∈ t)
Definition 4.4

⊩ t∈̇LΩn(X) ∧ (∀x ∈ t(x ∈ s ∧ A(x, t⃗)) ∧ ∀x ∈ s(A(x, t⃗) → x ∈ t))
(b∃)

⊩ ∃y ∈ LΩn(X)[∀x ∈ y(x ∈ s ∧ A(x, t⃗)) ∧ ∀x ∈ s(A(x, t⃗) → x ∈ y)]

The proof of the next lemma can be found in [5]. To help the reader interested
in those proofs, we give the correspondence between the results used in the proofs in
Cook-Rathjen ([5]) and their version stated in this thesis.
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Cook-Rathjen This thesis
Abbreviations 3.5 ii) Definition 4.4
Lemma 4.2 ii) Lemma 5.3(2.)
Lemma 4.3 i) Lemma 5.4
Lemma 4.3 iii) Lemma 5.5(3.)
Lemma 4.3 vii) Lemma 5.5(5.)

Lemma 5.10. Here are the Infinity, Pairing and Union axioms embedded into the
RSl(X)-system. Let n ≤ ω.

1. ⊩ ∃x ∈ LΩn(X)[∃z ∈ x(z ∈ x) ∧ ∀y ∈ x∃z ∈ x(y ∈ z)].

2. Let s and t be terms such that |s|, |t| < Ωn. Then

⊩ ∃z ∈ LΩn(X)(s ∈ z ∧ t ∈ z).

3. Let s be a term such that |s| < Ωn. Then

⊩ ∃z ∈ LΩn(X)∀y ∈ s∀x ∈ y(x ∈ z).

Proof.
1. The proof is analogous to the proof of Lemma 4.6 of [5] (page 32).
2. The proof is analogous to the proof of Lemma 4.8 i) of [5] (page 34).
3. The proof is analogous to the proof of Lemma 4.8 ii) of [5] (page 34).

Now, we focus on the axioms ruling the Ad predicate. To embed the first axiom,
we need to know what (Ad1)LΩω (X) will look like. In particular, we need to see what
term ω translates to and what predicate Tran translates to. We start with the latter.

Definition 5.11. Let t be any term. We define the RSl(X)-predicate

Tran(t) ≡ ∀x ∈ t∀y ∈ x(y ∈ t).

We note that the KPl ∆0-formula Tran(x) with free variable x is translated to
Tran(t) in the RSl(X)-language, for some chosen term t. This is why we write both
predicates the same way. Now, we notice that, in KPl, the ordinal ω is the first limit
ordinal. This means that we can define ω as the unique ordinal containing infinitely
many successor ordinals.

y = ω iff On(y) ∧ ∀z ∈ y[∃z′ ∈ y(z ∈ z′) ∧ ∃u ∈ z∀v ∈ z(u ̸= z → v ∈ u)].
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Since the formula defining ω is ∆0, the translation of the formula to the RSl(X)-
system will be the same, and so the term

ω = [y ∈ Lω(X) : ∃y ∈ x(On(y)∧∀z ∈ y[(z = 0∨Succ(z))∧∃u ∈ y(z ∈ u)]∧Tran(x)]]

fully captures the set ω. This means that (Ad1)LΩω (X) can be written as

∀x ∈ LΩω(X)[Ad(x) → ω ∈ x ∧ Tran(x)].

We show that Tran(LΩn(X)) holds for every natural number n.

Lemma 5.12. Let n < ω. Then,

⊩ Tran(LΩn(X)).

Proof. Let t be any term such that |t| < Ωn. We show that for every term s with
|s| < |t|

⊩ s∈̇t→ s ∈ LΩn(X) (1)

by fixing such an s and splitting cases based on the form of t. First, we observe that
|s| < Ωn and so, by Lemma 5.5(5.), we have

⊩ s ∈ LΩn(X). (2)

Case 1. We suppose t ≡ u. Then s ≡ v. Therefore, using Lemma 4.15 on (2), we get

⊩ ¬v ∈ u, v ∈ LΩn(X).

By Lemma 5.3(2.), we obtain

⊩ ¬v ∈ u ∨ v ∈ LΩn(X),

which is equivalent to
⊩ v ∈ u→ v ∈ LΩn(X).

By Definition 4.4, this is
⊩ v∈̇u→ v ∈ LΩn(X).

Case 2. We suppose t ≡ Lα(X). Then, by Definition 4.4 the derivation (2) is exactly

⊩ s∈̇t→ s ∈ LΩn(X).

Case 3. We suppose t ≡ [x ∈ Lα(X) : B(x)]. Then, using Lemma 4.15 on (2) we get

⊩ ¬B(s), s ∈ LΩn(X).
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By Lemma 5.3(2.), we obtain

⊩ ¬B(s) ∨ s ∈ LΩn(X)

which is exactly
⊩ B(s) → s ∈ LΩn(X).

This is equivalent, by Definition 4.4, to

⊩ s∈̇t→ s ∈ LΩn(X).

We have shown (1) for any |s| < |t|. By an application of (b∀), we obtain

⊩ ∀y ∈ t(y ∈ LΩn(X)).

Again by Definition 4.4, this is the same as

⊩ t∈̇LΩn(X) → ∀y ∈ t(y ∈ LΩn(X)).

Since this holds for any |t| < Ωn, another application of (b∀) yields

⊩ ∀x ∈ LΩn(X)∀y ∈ x(y ∈ LΩn(X)).

Similarly, we show that ω ∈ LΩn(X) holds for every n < ω.

Lemma 5.13. Let n < ω. Then,

⊩ ω ∈ LΩn(X)(X).

Proof. We observe that |ω| = Γθ+1 + ω. Let n < ω. Then, since Γθ+1 + ω < Ωn, by
Lemma 5.5(5.) we have

⊩ ω ∈ LΩn(X).

We can now proceed to the proof of the embedding of (Ad1) into RSl(X).

Lemma 5.14 (Ad1). Let H be any operator. We have

H Ωω

Ωω+1 ∀x ∈ LΩω(X)(Ad(x) → ω ∈ x ∧ Tran(x))
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Proof. We need to derive

Ad(t) → ω ∈ t ∧ Tran(t)

for every term t with |t| < Ωω to be able to apply (b∀). So, fix a term t such that
|t| < Ωω. In the following derivations, we fix a natural number n. By Lemmas 5.12
and 5.13, we have by an application of (∧)

⊩ ω ∈ LΩn(X) ∧ Tran(LΩn(X)).

By means of Lemma 4.15, we get

⊩ t ̸= LΩn(X), ω ∈ LΩn(X) ∧ Tran(LΩn(X)), ω ∈ t ∧ Tran(t). (1)

On the other hand, by Lemma 5.7 we have

⊩ t ̸= LΩn(X),¬(ω ∈ LΩn(X) ∧ Tran(LΩn(X)), ω ∈ t ∧ Tran(t). (2)

Fix an operator H. An application of (Cut) to (1) and (2) gives

H[t] Ωn+1

α
t ̸= LΩn(X), ω ∈ t ∧ Tran(t),

where α = #(t ̸= LΩn(X), ω ∈ t ∧ Tran(t)) < Ωω. Since this derivation holds for
every n < ω, we apply (¬Ad) to get

H[t] Ωω

Ωω ¬Ad(t), ω ∈ t ∧ Tran(t).

By Lemma 5.3(2.), we obtain

H[t] Ωω

Ωω ¬Ad(t) ∨ ω ∈ t ∧ Tran(t),

which is the same as

H[t] Ωω

Ωω
Ad(t) → ω ∈ t ∧ Tran(t).

This holds for any |t| < Ωω. An application of (b∀) yields

H Ωω

Ωω+1 ∀x ∈ LΩω(X)(Ad(x) → ω ∈ x ∧ Tran(x)).

We continue with the second axiom about the Ad predicate.
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Lemma 5.15 (Ad2). Let H be any operator. We have

H Ωω

Ωω+3 ∀x ∈ LΩω(X)∀y ∈ LΩω(X)(Ad(x) ∧ Ad(y) → x ∈ y ∨ x = y ∨ y ∈ x)

Proof. We need to derive

Ad(s) ∧ Ad(t) → s ∈ t ∨ s = t ∨ t ∈ s

for all the terms s, t with |s|, |t| < Ωω in order to apply (b∀) twice. In the following
derivations, we fix two natural numbers n and m.
If n = m, then by Lemma 5.5(4.) we have

⊩ LΩn(X) = LΩm(X).

If n < m, by Lemma 5.5(5.) we have

⊩ LΩn(X) ∈ LΩm(X).

If m < n, by Lemma 5.5(5.) we have

⊩ LΩm(X) ∈ LΩn(X).

In any case, two applications of (∨) give

⊩ LΩn(X) ∈ LΩm(X) ∨ LΩn(X) = LΩm(X) ∨ LΩm(X) ∈ LΩn(X).

We use Lemma 4.15 to get

⊩s ̸= LΩn(X), t ̸= LΩm(X),LΩn(X) ∈ LΩm(X) ∨ LΩn(X) = LΩm(X) ∨ LΩm(X) ∈ LΩn(X),

s ∈ t ∨ s = t ∨ t ∈ s.

(1)

On the other hand, by Lemma 5.7 we have

⊩s ̸= LΩn(X), t ̸= LΩm(X),¬(LΩn(X) ∈ LΩm(X) ∨ LΩn(X) = LΩm(X) ∨ LΩm(X) ∈ LΩn(X)),

s ∈ t ∨ s = t ∨ t ∈ s.

(2)

We fix an operator H. An application of (Cut) on (1) and (2) yields

H[s, t] Ωn+m

α
s ̸= LΩn(X), t ̸= LΩm(X), s ∈ t ∨ s = t ∨ t ∈ s,
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where α = #(s ̸= LΩn(X), t ̸= LΩm(X), s ∈ t ∨ s = t ∨ t ∈ s). Since this derivation
holds for any n,m < ω, we use (¬Ad) twice and we obtain

H[s, t] Ωω

Ωω+1 ¬Ad(s),¬Ad(t), s ∈ t ∨ s = t ∨ t ∈ s.

We use Lemma 5.3(2.) to have

H[s, t] Ωω

Ωω+1 ¬Ad(s) ∨ ¬Ad(t), s ∈ t ∨ s = t ∨ t ∈ s,

which is the same as

H[s, t] Ωω

Ωω+1 ¬(Ad(s) ∧ Ad(t)), s ∈ t ∨ s = t ∨ t ∈ s

Again by Lemma 5.3(2.), we get

H[s, t] Ωω

Ωω+1 ¬(Ad(s) ∧ Ad(t)) ∨ s ∈ t ∨ s = t ∨ t ∈ s,

which is equivalent to

H[s, t] Ωω

Ωω+1
Ad(s) ∧ Ad(t) → s ∈ t ∨ s = t ∨ t ∈ s

Therefore, since this last derivation holds for any t, s with |t|, |s| < Ωω, we can apply
(b∀) twice to obtain

H Ωω

Ωω+3 ∀x ∈ LΩω(X)∀y ∈ LΩω(X)(Ad(x) ∧ Ad(y) → x ∈ y ∨ x = y ∨ y ∈ x).

We keep up with the third axiom about the Ad predicate. We already know
that RSl(X) shows that any X-admissible ordinal satisfies all the axioms appearing
in (Ad3) but ∆0-Collection. So we first focus on ∆0-Collection.

Lemma 5.16. Let A(x, y) be any ∆0-formula of KPl with free variables x and y.
Let n < ω. Let s be a term such that |s| < Ωn. Then,

⊩ ∀x ∈ s∃y ∈ LΩn(X) A(x, y) → ∃z ∈ LΩn(X)∀x ∈ s∃y ∈ z A(x, y).

Proof. We fix an operator H. To simplify formulas, we write B ≡ ∀x ∈ s∃y ∈
(X) A(x, y). This means that we will show

⊩ BLΩn (X) → ∃z ∈ LΩn(X) Bz.
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First, by Lemma 5.4 we have

H[BLΩn (X)] 0

ωrk(B
LΩn

(X)
)#ωrk(¬BLΩn

(X)
)

BLΩn (X),¬BLΩn (X).

We apply the (Refn) rule to get

H[BLΩn (X)] 0
α ∃z ∈ LΩn(X)Bz,¬BLΩn (X)

with α = ωrk(BLΩn
(X))#ωrk(¬BLΩn

(X)) + 1. Since rk(LΩn(X)) = Ωn, we have α > Ωn

and we are able to use the rule with this ordinal bound.
We use (∨) twice, the first time applying the rule to the first formula and the second
time applying the rule to the second formula in order to obtain the same formula
twice, as displayed here after removing one repeated formula:

H[BLΩn (X)] 0

α+2 ¬BLΩn (X) ∨ ∃z ∈ LΩn(X) Bz.

But since ωβ is additive principal for any ordinal β, we have

α+2 = ωrk(BLΩn
(X))#ωrk(¬BLΩn

(X)
)

+3 < ωrk(BLΩn
(X))+1 = #(BLΩn (X) → ∃z ∈ LΩn(X)Bz).

Therefore, by Lemma 4.15

H[¬BLΩn (X)∨∃z ∈ LΩn(X) Bz] 0

#(BLΩn
(X)→∃z∈LΩn (X) Bz)

¬BLΩn (X)∨∃z ∈ LΩn(X) Bz.

which is exactly the same as

H[BLΩn (X) → ∃z ∈ LΩn(X)Bz] 0

#(BLΩn
(X)→∃z∈LΩn (X) Bz)

BLΩn (X) → ∃z ∈ LΩn(X)Bz.

We have everything we needed to embed (Ad3).

Lemma 5.17 (Ad3). H Ωω

Ωω+1 ∀x ∈ LΩω(X)(Ad(x) → (Pair)x ∧ (Union)x ∧ (∆0 −
Separation)x ∧ (∆0 − Collection)x).

Proof. We need to derive

Ad(t) → (Pair)t ∧ (Union)t ∧ (∆0 − Separation)t ∧ (∆0 − Collection)t)
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for every t with |t| < Ωω in order to apply (b∀) and obtain the desired derivation.
So let t be any term with |t| < Ωω. Fix a natural number n. By Lemmas 5.10, 5.16
and 5.9, we have

⊩ (Ax)LΩn (X)

for every axiom Ax among Pair, Union, ∆0-Collection and ∆0-Separation. We will use
the following abbreviation: given any term (or variable) s, we will write

∧
(Axioms)s

to denote

(Pair)s ∧ (Union)s ∧ (∆0 − Separation)s ∧ (∆0 − Collection)s

By three application of (∧) starting on (1), we get

⊩
∧

(Axioms)LΩn (X).

Lemma 4.15 gives

⊩ t ̸= LΩn(X),
∧

(Axioms)t,
∧

(Axioms)LΩn (X). (1)

On the other hand, by Lemma 5.7 we have

⊩ t ̸= LΩn(X),
∧

(Axioms)t,¬
∧

(Axioms)LΩn (X). (2)

Therefore, for any operator H, an application of (Cut) on (2) and (3) yields

H[t] Ωn+1

α
t ̸= LΩn(X),

∧
(Axioms)t,

where α = #(t ̸= LΩn(X),
∧
(Axioms)t). Since this derivation holds for any n < ω,

an application of (¬Ad) yields

H[t] Ωω

Ωω ¬Ad(t),
∧

(Axioms)t.

By Lemma 5.3(2.), we get for any operator H

H[t] Ωω

Ωω ¬Ad(t) ∨
∧

(Axioms)t,

which is equivalent to

H[t] Ωω

Ωω
Ad(t) →

∧
(Axioms)t.

Therefore, for any operator H, we obtain by an application of (b∀):

H Ωω

Ωω+1 ∀x ∈ LΩω(X)(Ad(x) → (Pair)x∧(Union)x∧(∆0−Separation)x∧(∆0−Collection)x).
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Finally, we embed the limit axiom. We state a preliminary Lemma that we will
use only twice in this thesis. We will use it to embed (Lim) into RSl(X) and in the
proof of the main Theorem 6.3. This result is very natural, as it states that all the
LΩn(X) for n < ω are admissible.

Lemma 5.18. For any natural number n we have

⊩ Ad(LΩn(X)).

Proof. Let n < ω. By Lemma 5.5(4.), we have ⊩ LΩn(X) = LΩn(X). We apply (Ad)
to obtain the result.

Lemma 5.19 (Lim). Let H be any operator. Then

H 0

Ωω ·ω2

∀x ∈ LΩω(X)∃y ∈ LΩω(X)(Ad(y) ∧ x ∈ y).

Proof. Let s be a term such that |s| < Ωω. Then there is n < ω such that |s| < Ωn.
So let n := min(m < ω : |s| < Ωn). It follows that ⊩ s ∈ LΩn(X) by Lemma 5.5(5.).
On the other hand, by Lemma 5.18 we have

⊩ Ad(LΩn(X)). (1)

We have the following derivation for any |s| < Ωω:

⊩ Ad(LΩn(X)) ⊩ s ∈ LΩn(X)
(∧)

⊩ Ad(LΩn(X)) ∧ s ∈ LΩn(X)
(b∃)

⊩ ∃y ∈ LΩω(X)(Ad(y) ∧ s ∈ y)
(b∀)

⊩ ∀x ∈ LΩω(X)∃y ∈ LΩω(X)(Ad(y) ∧ x ∈ y)

Since #((Lim)LΩω (X)) = ωrk(LΩω (X)) = ωΩω+2 = ωΩω · ω2 = Ωω · ω2, we finally obtain
that for any operator H

H 0

Ωω ·ω2

(Lim)LΩω (X).

We have successfully embedded all of the axioms of KPl into the RSl(X)-system.
It is now time to state and show the full embedding theorem.

Theorem 5.20. Let Γ(a1, . . . , an) be a finite set of formulas with all the free vari-
ables displayed such that KPl ⊢ Γ(a1, . . . , an). Then, there is some m < ω such that
for any operator H and any terms s1, . . . , sn we have
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H[s1, . . . , sn] Ωω+m

Ωω ·ωm
Γ(s1, . . . , sn)

LΩω (X).

Proof. We proceed by induction on the KPl proof.
If Γ(a1, . . . , an) is an axiom of KPl, then by one of the Lemmas 5.7, 5.8, 5.10, 5.14,
5.15, 5.17 and 5.19, we obtain the result.
Now, we assume that Γ(a1, . . . , an) is obtained by a KPl rule (R). So, if ∆(a1, . . . , an)
is the premise, or one of the premises, of this inference, then KPl proves ∆(a1, . . . , an).
Therefore, by the induction hypothesis, we have

H[s1, . . . , sn] Ωω+m

Ωω ·ωm
∆(s1, . . . , sn)

LΩω (X).

for any operator H and any terms s1, . . . , sn of level below Ωω. This is the way we
will reason for each case (cases correspond to KPl rules).
So, we fix an arbitrary operator H and arbitrary terms s1, . . . , sn of level less than
Ωω. To simply notation, we will write a⃗ = a1, . . . , an and s⃗ = s1, . . . , sn (even though
a⃗ is a vector of variables of KPl and s⃗ is a vector of RSl(X)-terms). As a reminder,
when we write A(s⃗)LΩω (X) we are meaning the formula A replacing free variables by
the terms in s⃗ and bounding all unrestricted quantifiers to LΩω(X).

Case 1. We suppose that the last KPl rule applied is (∧). This means that

Γ(⃗a) = Γ′(⃗a), A(⃗a) ∧B(⃗a),

for some KPl formulas A and B. Therefore, we have

KPl ⊢ Γ′(⃗a), A(⃗a) (1)

and
KPl ⊢ Γ′(⃗a), B(⃗a) (2)

We apply the induction hypothesis to (1) to find some m0 < ω such that

H[s⃗] Ωω+m0

Ωω ·ωm0

Γ′(s⃗)LΩω (X), A(s⃗)LΩω (X). (3)

We also apply the induction hypothesis to (2) to find some m1 < ω such that

H[s⃗] Ωω+m1

Ωω ·ωm1

Γ′(s⃗)LΩω (X), B(s⃗)LΩω (X). (4)

We apply the RSl(X) rule (∧) to (3) and (4) to obtain

H[s⃗]
Ωω+max(m0,m1)+1

Ωω ·ωmax(m0+m1)+1

Γ′(s⃗)LΩω (X), A(s⃗)LΩω (X) ∧B(s⃗)LΩω (X),
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which is exactly

H[s⃗]
Ωω+max(m0,m1)+1

Ωω ·ωmax(m0+m1)+1

Γ′(s⃗)LΩω (X), (A ∧B)(s⃗)LΩω (X).

Case 2. We suppose that the last KPl rule applied is (∨). This means that

Γ(⃗a) = Γ′(⃗a), A(⃗a) ∨B(⃗a),

for some KPl formulas A and B. Therefore, we have

KPl ⊢ Γ′(⃗a), C (⃗a) (5)

where C ∈ {A,B}. By the induction hypothesis, we can find some m < ω such that

H[s⃗] Ωω+m

Ωω ·ωm
Γ′(s⃗)LΩω (X), C(s⃗)LΩω (X).

We apply the RSl(X) rule (∨) to obtain

H[s⃗] Ωω+m

Ωω ·ωm
Γ′(s⃗)LΩω (X), A(s⃗)LΩω (X) ∨B(s⃗)LΩω(X) ,

which is exactly

H[s⃗] Ωω+m

Ωω ·ωm
Γ′(s⃗)LΩω (X), (A ∨B)(s⃗)LΩω(X) .

Case 3. We suppose that the last KPl rule applied is (b∀). This means that

Γ(⃗a) = Γ′(⃗a),∀x ∈ ai A(x, a⃗)

for some KPl-formula A and some free variable ai with i ∈ {1, . . . , n}. Therefore, we
have

KPl ⊢ Γ′(⃗a), b ∈ ai → A(b, a⃗)

where b ̸= aj for all j ∈ {1, . . . , n}. By the induction hypothesis we can find some
m < ω such that

H[r, s⃗] Ωω+m

Ωω ·ωm
Γ′(s⃗)LΩω (X), r ∈ si → A(r, s⃗)LΩω (X), (6)

for all term r with |r| < |si|. We would like to apply (b∀) to end this case. Nonethe-
less, we need to have r∈̇s → A(r, s⃗)LΩω (X) instead of r ∈ s → A(r, s⃗)LΩω (X) in the
premise to be able to do this. We split subcases based on the form of si.
Subcase 3.1. We assume that si ≡ u. Then, we have

r ∈ u→ A(r, s⃗)LΩω (X) ≡ r∈̇u→ A(r, s⃗)LΩω (X).
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We apply the RSl(X)-rule (b∀) to (6) to obtain

H[s⃗] Ωω+m+1

Ωω ·ωm+1

Γ′(s⃗)LΩω (X),∀x ∈ si A(x, s⃗)
LΩω (X),

which is the same as

H[s⃗] Ωω+m+1

Ωω ·ωm+1

Γ′(s⃗)LΩω (X), (∀x ∈ si A(x, s⃗))
LΩω (X).

Subcase 3.2. We assume that si ≡ Lα(X). We apply Lemma 4.18 to (6) to get

H[r, s⃗] Ωω+m

Ωω ·ωm
Γ′(s⃗)LΩω (X), r /∈ si, A(r, s⃗)

LΩω (X). (7)

On the other hand, we have |r| < |si|. Therefore, we can use Lemma 5.5(5.) to get

H[r, s⃗] 0
ωrk(r∈s)

r ∈ si

and so, by Lemma 4.15 we can add more formulas and increase the bounds of the
derivation to have

H[r, s⃗] Ωω+m

Ωω ·ωm
Γ′(s⃗)LΩω (X), r ∈ si, A(r, s⃗)

LΩω (X). (8)

Now, using (Cut) on (7) and (8) gives

H[r, s⃗] Ωω+m

Ωω ·ωm+1
Γ′(s⃗)LΩω (X), A(r, s⃗)LΩω (X).

By Definition 4.4, this can be written as

H[r, s⃗] Ωω+m

Ωω ·ωm+1
Γ′(s⃗)LΩω (X), r∈̇si → A(r, s⃗)LΩω (X).

Finally, we apply (b∀) and artificially increase the cut complexity bound to obtain

H[s⃗] Ωω+m+1

Ωω ·ωm+1

Γ′(s⃗)LΩω (X),∀x ∈ si A(x, s⃗)
LΩω (X).

Subcase 3.3. We assume that si ≡ [x ∈ Lα(X)]. We apply Lemma 4.18 to (6) to get

H[r, s⃗] Ωω+m

Ωω ·ωm
Γ′(s⃗)LΩω (X), r /∈ si, A(r, s⃗)

LΩω (X).

Using Lemma 4.15, we obtain

H[r, s⃗] Ωω+m

Ωω ·ωm
Γ′(s⃗)LΩω (X), r /∈ si, A(r, s⃗)

LΩω (X),¬B(r). (9)
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On the other hand, by Lemma 5.4 we have

⊩ ¬B(r), B(r). (10)

and by Lemma 5.5(4.) we have
⊩ r = r. (11)

Since |r| < |si|, we have the following derivation

⊩ ¬B(r), B(r) r = r
(∧)

⊩ ¬B(r), B(r) ∧ r = r
(∈)

⊩ ¬B(r), r ∈ si

Using Lemma 4.15, we get

H[r, s⃗] Ωω+m

Ωω ·ωm
Γ′(s⃗)LΩω (X),¬B(r), r ∈ si, A(r, s⃗)

LΩω (X). (12)

Applying (Cut) to (9) and (12) yields

H[r, s⃗] Ωω+m

Ωω ·ωm+1
Γ′(s⃗)LΩω (X),¬B(r), A(r, s⃗)LΩω (X).

We have the following derivation

H[r, s⃗] Ωω+m

Ωω ·ωm+1
Γ′(s⃗)LΩω (X),¬B(r), A(r, s⃗)LΩω (X)

(∨)
H[r, s⃗] Ωω+m

Ωω ·ωm+2
Γ′(s⃗)LΩω (X),¬B(r) ∨ A(r, s⃗)LΩω (X), A(r, s⃗)LΩω (X)

(∨)
H[r, s⃗] Ωω+m

Ωω ·ωm+3
Γ′(s⃗)LΩω (X),¬B(r) ∨ A(r, s⃗)LΩω (X),¬B(r) ∨ A(r, s⃗)LΩω (X)

≡
H[r, s⃗] Ωω+m

Ωω ·ωm+4
Γ′(s⃗)LΩω (X), B(r) → A(r, s⃗)LΩω (X)

(b∀)
H[r, s⃗] Ωω+m

Ωω ·ωm+5
Γ′(s⃗)LΩω (X),∀r ∈ si A(r, s⃗)

LΩω (X)

We use Lemma 4.15 to obtain the final bounds:

H[r, s⃗] Ωω+m+5

Ωω ·ωm+5

Γ′(s⃗)LΩω (X),∀r ∈ si A(r, s⃗)
LΩω (X).

Case 4. We suppose that the last KPl rule applied is (∀). This means that

Γ(⃗a) = Γ′(⃗a),∀xA(x, a⃗)
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for some KPl formula A. Therefore,

KPl ⊢ Γ′(⃗a), A(c, a⃗),

with c ̸= ai for all i ∈ {1, . . . , n}. By the induction hypothesis, we can find some
m < ω such that

H[r, s⃗] Ωω+m

Ωω ·ωm
Γ′(s⃗), A(r, s⃗)LΩω (X) for all terms r with |r| < Ωω.

We apply the RSl(X) rule (b∀) to get

H[s⃗] Ωω+m

Ωω ·ωm+1
Γ′(s⃗),∀x ∈ LΩω(X) A(x, s⃗)LΩω (X).

Using Lemma 4.15 gives the desired bounds, as we obtain

H[s⃗] Ωω+m+1

Ωω ·ωm+1

Γ′(s⃗), ∀x ∈ LΩω(X) A(x, s⃗)LΩω (X).

Case 5. We suppose that the last KPl rule applied is (b∃). This means that

Γ(⃗a) = Γ′(⃗a),∃x ∈ aiA(x, a⃗)

for some KPl formula A and some free variable ai, with i ∈ {1, . . . , n}. Therefore,
we have

KPl ⊢ Γ′(⃗a)LΩω (X), c ∈ ai ∧ A(c, a⃗)
for some free variable c. This case is done by splitting two subcases based on whether
c is aj for some j ∈ {1, . . . , n} or not. We divide subcases based on the form of si.
We refer the reader interested in the details to [5], Theorem 4.10. (case 3 of the
proof, page 36).

Case 6. We suppose that the last KPl rule applied is (∃). This means that

Γ(⃗a) = Γ′(⃗a),∃xA(x, a⃗).

for some KPl formula A. Therefore,

KPl ⊢ Γ′(⃗a), A(c, a⃗). (13)

We distinguish two cases depending on whether c = ai for some i ∈ {1, . . . , n} or
not.
We suppose that c = ai with i ∈ {1, . . . , n}. Then, the derivation (13) is

KPl ⊢ Γ′(⃗a), A(ai, a⃗).
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By the induction hypothesis, we can find some m < ω such that

H[s⃗] Ωω+m

Ωω ·ωm
Γ′(s⃗), A(si, s⃗)

LΩω (X).

Since |si| < Ωω, we use the RSl(X) rule (b∃) to get

H[s⃗] Ωω+m

Ωω ·ωm+1
Γ′(s⃗),∃xA(x, s⃗)LΩω (X).

Finally, by means of Lemma 4.15, we are able to obtain the desired ordinal bounds,
as follows

H[s⃗] Ωω+m+1

Ωω ·ωm+1

Γ′(s⃗),∃xA(x, s⃗)LΩω (X).

We suppose now that c ̸= ai for any i ∈ {1, . . . , n}. Since in the translation of KPl
formulas to RSl(X)-formulas, free variables become terms in, we can assign to c any
term we want with level below Ωω, and so we choose ∅ while applying the induction
hypothesis, that produces an m < ω such that

H[s⃗] Ωω+m

Ωω ·ωm
Γ′(s⃗), A(∅, s⃗)LΩω (X).

Here, we apply the RSl(X) rule (∃) to obtain

H[s⃗] Ωω+m

Ωω ·ωm+1
Γ′(s⃗),∃x ∈ LΩω(X)A(x, s⃗)LΩω (X).

Finally, by means of Lemma 4.15, we obtain the desired ordinal bounds, as follows

H[s⃗] Ωω+m+1

Ωω ·ωm+1

Γ′(s⃗), ∃x ∈ LΩω(X)A(x, s⃗)LΩω (X).

Case 7. We suppose that the last KPl rule applied is (Cut). This means that there is
some KPl formula A(⃗a, b1, . . . , bk), where b1, . . . , bk are all the free variables occuring
in A different from the free variables in a⃗, such that

KPl ⊢ Γ(⃗a), A(⃗a, b1, . . . , bk) and KPl ⊢ Γ(⃗a),¬A(⃗a, b1, . . . , bk).
Since the level of ∅ is below Ωω, we can choose ∅ as the term replacing bj in the
RSl(X)-formula ALΩω (X) for all j ∈ {1, . . . , k}, and so by the induction hypothesis
we can find m0,m1 < Ωω such that

H[s⃗] Ωω+m0

Ωω ·ωm0

Γ(s⃗)LΩω (X), A(s⃗, ∅, . . . , ∅)LΩω (X). (14)

and
H[s⃗] Ωω+m1

Ωω ·ωm1

Γ(s⃗)LΩω (X),¬A(s⃗, ∅, . . . , ∅)LΩω (X). (15)

We apply the RSl(X) rule (Cut) to (14) and 15) and obtain

H[s⃗]
Ωω+max(m0,m1)

Ωω ·ωmax(m0,m1)+1

Γ(s⃗)LΩω (X).
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6 The provably total set-recursive functions of KPl

We are now ready to prove the main theorem of this thesis. We will give a bound
for f(x), where f is a set-recursive function such that KPl proves that f is total and
uniformly Σ-definable in every admissible set, and x is any set. This bound will be
Ĝn(x), defined as follows. This definition depends on a fixed setX, following Reading
Convention 3.28. This means that the cardinals Ωn for n ≤ ω and the functions ψn
for n < ω are also fixed and depend on X.

Definition 6.1. We define the ordinal en by recursion on n as follows:

• e0 = Ωω + 1,

• en+1 = ωen.

Now, we define for each n < ω the set Ĝn(x) = Lψ0(en+3)(X).

Lemma 6.2. For every natural number n we have

en ∈ B0(en+1).

Proof. We proceed by induction on n.
For n = 0, we have e0 = Ωω+1 ∈ B0(e1) since, by definition, we have 1,Ωω ∈ B0(e1).
We suppose that en ∈ B0(en+1). We show that en+1 ∈ B0(en+2).
We have en+1 = ωen = φ0en. By the induction hypothesis,

en ∈ B0(en+1) ⊆ B0(en+2).

It follows that 0, en ∈ B0(en+2), and therefore

en+1 = φ0en ∈ B0(en+2).

We finally state and show our main theorem.

Theorem 6.3 (Main Theorem). Let f be a set-recursive function such that KPl
proves that f is total and uniformly Σ-definable in any admissible set. Then, there
is some n < ω such that

V ⊨ ∀x(f(x) ∈ Ĝn(x)).
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Proof. Let Af (·, ·) be the Σ formula that defines f in any admissible set. In par-
ticular, KPl proves that f is total and Af (x, f(x)) is satisfied in LΩ0(x) for any x.
Therefore, we have that KPl ⊢ Ad(u) → [∀x ∈ u∃!y ∈ u Af (x, y)

u].
Now, fix a set X and let θ be the set-theoretic rank of X, as in Reading Convention
3.28. By Theorem 5.20, we have

H0 Ωω+m

Ωω ·ωm
Ad(LΩ0(X)) → ∀x ∈ LΩ0(X)∃!y ∈ LΩ0(X)Af (x, y)

LΩ0
(X),

which is exactly

H0 Ωω+m

Ωω ·ωm ¬Ad(LΩ0(X)) ∨ ∀x ∈ LΩ0(X)∃!y ∈ LΩ0(X)Af (x, y)
LΩ0

(X).

Therefore, by Lemma 4.18 we obtain

H0 Ωω+m

Ωω ·ωm ¬Ad(LΩ0(X)),∀x ∈ LΩ0(X)∃!y ∈ LΩ0(X)Af (x, y)
LΩ0

(X). (1)

On the other hand, we have by Lemma 5.18 and Lemma 4.15

H0 Ωω+m

Ωω ·ωm
Ad(LΩ0(X)),∀x ∈ LΩ0(X)∃!y ∈ LΩ0(X)Af (x, y)

LΩ0
(X). (2)

We apply (Cut) to (1) and (2) to obtain

H0 Ωω+m

Ωω ·ωm ∀x ∈ LΩ0(X)∃!y ∈ LΩ0(X)Af (x, y)
LΩ0

(X).

We notice that rk(Ad(LΩ0(X))) = Ω0 + 5 and so the complexity of the cuts has not
been increased. We now apply Lemma 4.17 (Inversion) two times. First, since

∃!y ∈ LΩ0(X)Af (X, y)
LΩ0

(X) ∈ C(∀x ∈ LΩ0(X)∃!y ∈ LΩ0(X)Af (x, y)
LΩ0

(X)),

we get

H0 Ωω+m

Ωω ·ωm ∃!y ∈ LΩ0(X)Af (X, y)
LΩ0

(X).

Now, since the symbol “!” acts like a conjunction, we finally obtain

H0 Ωω+m

Ωω ·ωm ∃y ∈ LΩ0(X)Af (X, y)
LΩ0

(X). (3)

We are now going to eliminate cuts from the derivation (3). By Theorem 4.20
(Predicative Cut Elimination), we have

H0 Ωω+1

em+1 ∃y ∈ LΩ0(X)Af (X, y)
LΩ0

(X).

93



By the Collapsing Theorem 4.24, we get

Hem+2 ψ0(em+2)

ψ0(em+2) ∃y ∈ LΩ0(X)Af (X, y)
LΩ0

(X).

Again by Theorem 4.20 (Predicative Cut Elimination), we have

Hem+2 0
α ∃y ∈ LΩ0(X)Af (X, y)

LΩ0
(X).

where α = φ(ψ0(em+2))(ψ0(em+2)). By the Boundedness Lemma we get

Hem+2 0
α ∃y ∈ Lα(X)Af (X, y)

Lα(X).

It follows that

Lα(X) ⊨ ∃yAf (X, y).

Indeed, we prove a more general result.

Claim 6.3.1. Given a ΣLδ(X)-formula ALδ(X), if Hγ 0

β
ALδ(X) then Lδ(X) ⊨ A.

Fix δ. We prove Claim 6.3.1 by induction on β. If ALδ(X) is an axiom, then
ALδ(X) is a basic formula. We suppose that this formula is u ∈ v. This means that
u, v ∈ TC({X}) satisfy u ∈ v. But TC({X}) ⊆ Lδ(X). It follows that Lδ(X) ⊨ A.
We assume that ALδ(X) has been derived using a rule (R) different from (Cut)

and (Refn). Then, we have Hγ[tA(B)] 0

βB
BLδ(X) for some/any premise BLδ(X) ∈

C(ALδ(X)). But all those premises are also ΣLδ(X)-formulas. By the induction hy-
pothesis, Lδ(X) ⊨ B for some/any B. Finally, apply the same rule (R) but in KPl
to obtain Lδ(X) ⊨ A.

Hence, using Claim 6.3.1, we get Lα(X) ⊨ ∃y Af (X, y). This means that f(x) ∈
Lα(X). Finally, Lα(X) ⊆ Ĝm+3(X). By Lemma 6.2, we have

em+2 ∈ B0(em+3).

It follows that ψ0(em+2) < ψ0(em+3). Thus,

α = φ(ψ0(em+2))(ψ0(em+2)) < ψ0(em+3).

Hence,
Lα(X) ⊆ Lψ0(em+3)(X) = Ĝm+3(X).
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ρ
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Ĝn(X), 92
rk(·), 35
φ·(·), 18
ψn(α), 25
θ, 14
en, 92
k(A), 33
tA(B), 46

97



General Index

RSl(X)-formulas, 33
RSl(X)-terms, 32

Cardinal, 16

Normal Form, 27

Operator, 41

Ordinal, 15

Rank, 35

Transitive set, 15

Veblen functions, 18

98


	Introduction
	The axiomatic set theory KPl
	Relativized ordinal notation system
	Preliminaries
	The ordinal notation system

	The system RSl(X)
	The terms and formulas of RSl(X)
	Operator-controlled derivations
	Cut-elimination for RSl(X)
	The Collapsing Theorem

	Embedding KPl into RSl(X)
	The  relation
	The embedding Theorem

	The provably total set-recursive functions of KPl

